
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-45

2004-04-30

Automatic Determination of Factors for Real-Time Garbage Automatic Determination of Factors for Real-Time Garbage

Collection Collection

Tobias Mann and Ron K. Cytron

Several approaches to hard, real-time garbage collection have been recently proposed. All of

these approaches require knowing certain statistical properties about a program's execution,

such as the maximum extent of live storage, the rate of storage allocation, and the number of

non-null object references. While these new approaches offer the possibility of guaranteed,

reasonably bounded behavior for garbage collection, the determination of the required

information may not be straight forward for the application programmer. In this paper we

present evidence suggesting that the necessary factors can vary widely over the program's

execution, indicating that an automatic, phased approach may... Read complete abstract on Read complete abstract on

page 2. page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Mann, Tobias and Cytron, Ron K., "Automatic Determination of Factors for Real-Time Garbage Collection"
Report Number: WUCSE-2004-45 (2004). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1019

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1019&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1019&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1019?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1019&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1019

Automatic Determination of Factors for Real-Time Garbage Collection Automatic Determination of Factors for Real-Time Garbage Collection

Tobias Mann and Ron K. Cytron

Complete Abstract: Complete Abstract:

Several approaches to hard, real-time garbage collection have been recently proposed. All of these
approaches require knowing certain statistical properties about a program's execution, such as the
maximum extent of live storage, the rate of storage allocation, and the number of non-null object
references. While these new approaches offer the possibility of guaranteed, reasonably bounded behavior
for garbage collection, the determination of the required information may not be straight forward for the
application programmer. In this paper we present evidence suggesting that the necessary factors can
vary widely over the program's execution, indicating that an automatic, phased approach may be wise for
a real-time collector. We present a static framework for determining some of the factors and present run-
time statistics on Java benchmarks.

https://openscholarship.wustl.edu/cse_research/1019?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1019?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1019&utm_medium=PDF&utm_campaign=PDFCoverPages

Automatic Determination of Factors for Real-Time

Garbage Collection�

Tobias Mann and Ron K. Cytron

Washington University in St. Louis, Department of Computer Science and
Engineering, April 30, 2004

Abstract

Several approaches to hard, real-time garbage collection have been recently pro-

posed. All of these approaches require knowing certain statistical properties about a

program's execution, such as the maximum extent of live storage, the rate of storage

allocation, and the number of non-null object references. While these new approaches

o�er the possibility of guaranteed, reasonably bounded behavior for garbage collec-

tion, the determination of the required information may not be straightforward for the

application programmer.

In this paper we present evidence suggesting that the necessary factors can vary

widely over a program's execution, indicating that an automatic, phased approach may

be wise for a real-time collector. We present a static framework for determining some

of the factors and present run-time statistics on Java benchmarks.

1 Introduction

Real-Time Speci�cation for JavaTM (RTSJ) [3] has emerged as a viable standard for
developing real-time systems in Java. Unfortunately, to obtain real-time guarantees, a pro-
gram must not touch the garbage-collected heap and must instead use scoped memories.
Use of such memories is di�cult [5, 6] and may involve an unbounded amount of leaked
(dead) storage [10]. While automatic techniques for using scoped memories have been devel-
oped [7, 11, 2], the best situation would result if the ordinary, garbage-collected heap could
be used for real-time Java programs.

To realize that goal, garbage-collection must occur in real-time, with absolute guaran-
tees on its performance and its e�ect on the application program (sometimes called the
mutator). Several approaches to real-time garbage collection have been proposed, including
Metronome [1], NewMonics PERC1, and the Jamaica VM2. The guarantees associated with
those collectors are dependent on certain program properties. Statistical bounds on those

�This work is supported by DARPA under contract F33615-00-C-1697
1http:/www.newmonics.com/
2http://www.aicas.com/

1

properties, currently provided by the application developer, must be speci�ed in order for
the collector to deliver its promised performance.

In fact, all methods of storage reclamation that can claim to be precise currently depend
on information provided by the programmer:

Explicit delete: In non-garbage-collected languages, the programmer must insert explicit
statements to deallocate storage. The programmer must understand ownership and
lifetime issues of dynamically allocated objects. Such information is often di�cult to
obtain, especially where a program makes extensive use of externally authored material,
such as middleware and libraries. Moreover, insertion of explicit delete instructions
can make code di�cult to reuse.

Scoped memories: Because RTSJ places strict rules on the allowable references between
scoped memories, and because violation of those rules causes an application to ter-
minate (by exception), the programmer must understand scoping and lifetime issues
of scope-allocated storage to make certain that the application contains only valid
references.

Automatic collection: Approaches here are based on traditional garbage-collection meth-
ods [12]. As we describe in greater detail below, sophisticated information about a
program's allocation, pointer-setting, and referencing behavior is required to obtain
reasonable bounds on the collector's behavior.

2 Automatic Real-Time Garbage Collection

Of signi�cant relevance to this paper is the speci�c information required to obtain real-time
performance, as follows; the notation is reprised and adopted from papers on the Metronome
collector [1]:

m is the maximum live storage (in bytes) of the application. In other words, the program
requires at leastm bytes to run with a perfect, continuously operating garbage collector.
Determining m statically is undecidable. Even a dynamic approach to determining
m [9, 4] is computationally intensive, as the garbage collector must be run when any
stack or heap cell is modi�ed.

In spite of the above considerations, it is generally assumed that programmers and
those who execute Java applications know m for a given application. This follows from
the fact that the size of the run-time heap must be speci�ed when a Java program is
executed. Failure to specify the heap size causes the program to execute with a heap
of some default size, typically 16 Mbytes.

Pointer density: The mark phase of a precise garbage-collection algorithm involves touch-
ing all live objects. Liveness is determined by tracing references from a program's live
roots, such as its stack and static variables. Each object visited by the mark phase
o�ers pointers that, if not null, point to objects now determined to be live. The cost
of the marking phase, and so its length and the length of the entire garbage-collection

2

phase, are thus dependent on the number of non-null references that can be discovered
while marking live objects.

Thus, some real-time garbage collectors must know the number of non-null references
to bind the time required for the mark phase.

Allocation rate: While the collector is operating, the program may continue to allocate
objects. The number of such objects must be known, so that the extent of \
oating
garbage" can be determined, if such objects are allocated beyond the reach of the
currently executing collector. If such objects can be collected by the current cycle of
garbage collection, the number of such objects must still be known as it can a�ect the
runtime of the collector.

For this reason, the following information is required concerning a program's allocation
behavior:

(t;�t) = the allocation rate from time t to time t +�t

T = runtime of the program

(0; T) = average allocation rate for the program

�(�t) = max
t
(
(t;�t));maximum allocation rate during any �t

��(�t) =
�(�t) ��t;maximum storage allocated during any �t

Mutator and Collector time quanta: We assume a single-CPU system in which the ap-
plication program (the mutator) and the garbage collector must alternate execution
on the CPU. The following are therefore of interest:

QT = mutator time quantum

CT = collector time quantum

These refer to the smallest amount of non-preemptive execution time that the mutator
and collector respectively are guaranteed.

P : is the work-rate of the collector (Storage/time unit)

Equations 1 and 2 show how this information is used by the Metronome collector to determine
when to schedule a garbage collection cycle and to place an upper bound on the space
requirement of the whole application.

The maximum amount of memory allocated during one collection cycle, e, is de�ned in
Equation 1.

e = ��(
m

P
�
QT

CT

) (1)

The expression m
P
� QT

CT
is the amount of time that the mutator is allowed to execute

during one collection cycle. Throughout this paper we will refer to this period of time as
�t. The garbage collector must be scheduled so that the amount of available memory never
falls below e.

3

The total space requirement of the program:

s = m + ke (2)

The k term in equation 2 refers to the number of garbage collection cycles that are needed
to guarantee that the
oating garbage is collected. In summary, while real-time collectors
are an exciting development, they cannot operate without certain statistical bounds on some
aspects of a program's behavior.

In this paper, we present analysis of Java programs|dynamic analysis as well as static
analysis|to determine properties of interest to a real-time garbage collector. We focus in
particular on the allocation rate of a program. Although the number of bytes allocated by
a program is undecidable, the maximum allocation rate can be bound statically if the size
of each allocation is known and if the time of each instruction is known. Section 4 presents
our method for this computation.

3 Dynamic Approach

The allocation characteristics of applications have not been widely studied. To gain a deeper
understanding of our problem domain and to get a sense of the results that we may expect
from a static prediction we use dynamic techniques to study the allocation rate characteristics
of benchmark programs for the following reasons:

1. Static analysis is conservative, and we are interested in knowing actually observed
lower bounds on a program's maximum allocation rate.

2. Assumptions made in exant work speculate that a program's average allocation rate is
similar to its allocation rate observed over relatively small windows of the program's
execution. We show that for the benchmarks we studied, this is not the case. An
implication of this discovery is the new merit that could be attributed to a garbage-
collection scheme that operates in phases, changing its scheduling and resource con-
sumption throughout a program's execution.

3. For some applications, dynamic measurements can su�ce in providing bounds on the
program's behavior, if the program is expected to behave similarly over many runs of
the program.

Our approach measures the allocation rate of the program for a set of di�erent window
sizes (�t) to analyze what e�ect �t has on allocation rate. Speci�cally we are interested in
seeing how the variability of the allocation rate changes with di�erent �t. In addition we
want to see what e�ect the window has on the maximum allocation rate of the program.

3.1 Experiments

We executed our tests on a subset of the jvm98 SPEC benchmarks. All experiments were
performed on a Solaris 7 machine with a Sparcv9-333 MHz processor with hardware support
for
oating point operations. The Java Virtual Machine (JVM) was the jdk-1.1.8 source

4

release. For the purpose of this research, the JVM was instrumented to record the size and
time of each allocation. To ensure that the data gathered were free of noise due to other
processes executing on the computer we execute the benchmarks in high priority, real-time
executing mode.

The information gathered by the instrumented JVM was processed o�ine to compute
8t
(t;�t) for a range of di�erent values of �t. The data gathered provide us with the
maximum allocation rate, as well as the allocation rate for any given part of the executing
program.

3.2 Implementation

The allocation-rate-�nding software uses a queue data structure, implemented as a linked
list. One queue is created for each putative time window. The input into this program is
the allocation trace generated by our instrumented JVM. As the software steps through the
allocation trace it encapsulates each allocation into an object. This allocation object is then
processed by placing a reference to it in each of the queues.

The basic idea is that as the program processes its input each queue will always contain
a reference to all allocations that have occurred within the time window assigned to that
queue. Each queue is updated both synchronously and asynchronously. The synchronized
update occurs with a period speci�ed by the user and the asynchronous occurs with each
new allocation. This update period is given to the program by the user. The pseudo code
below shows how the queues are updated:

Queue Update

tc the current time

jW j the size of the window for this queue

A:time the time of allocation A

queue:size the size of the queue in bytes

queue:front gets the front of the queue

queue:dequeue removes the front element

timeLimit tc � jW j
Aold queue:front

while Aold:time < timeLimit

queue:dequeue

Aold queue:front

record tc
record queue:size

jW j

3.2.1 Implementation Analysis

The cost of each update to a queue is O(k), where k is the number of dequeue operations.
Each queue is updated n + m times where n is the number of allocations of the program

5

0 0.5 1 1.5 2 2.5

x 10
5

0

50

100

150

200

250

300

350

Execution Time (ms)

B
yt

es
 p

er
 m

s

Figure 1: Allocation rate of jvm98 benchmark jack, as a function of execution time, �t =
1049ms.

and m is the number of times that the queue is updated between allocations. To simplify
the analysis we assume that each update has the same constant cost, meaning 8i;j(ki = kj).
This is a valid assumption because if we use a small enough sampling size we can expect
the variations of k to be small. Therefore, the cost of updating a queue can be treated
as a constant. The complexity of maintaining one queue throughout the execution of the
program is then the number of times that the queue is updated, O(m + n). The program
has x number of queues, speci�ed by the user. Thus, the overall complexity of the program
is O(x(m+ n)).

3.3 Results

The primary result of these experiments are depicted as graphs of the mutator's allocation
rate for a given time window as a function of time. What is remarkable about these results is
the high variability of the allocation rate for each of the benchmarks we tested. In particular
all of the benchmarks exhibited shorter periods of time were the allocation rate was unusually
high. An example of this is shown in Figure 1.

This is signi�cant because, as previously mentioned, the only allocation rate information
used by current real-time collectors is the maximum allocation rate. As we have seen, the
maximum allocation rate of a mutator, for the window size considered, is not representative
of the allocation rate throughout the execution of the program.

However, because the garbage collector must budget for the worst-case scenario one
could argue that although the maximum allocation rate is an abnormality, budgeting for
worst case necessitates the use of this value. This is a valid argument, but by observing that
the maximum allocation rate of the mutator is dependent on the �t used to measure the
allocation rate, it becomes clear that the worst case will vary with the time alotted for one

6

Benchmark Max Live Coll. Rate �t MMU

javac 34 39.4 707 0.446
jess 21 53.2 325 0.441
jack 30 57.4 429 0.441
mtrt 28 45.1 509 0.446
db 30 36.7 670 0.441

Figure 2: Time Windows for the Metronome Collector QT = 10, CT = 12:2

complete collection cycle.
Using the maximum allocation rate to determine when to schedule the collector and the

memory requirement of the program means that resources are wasted whenever the mutator
does not exhibit the maximum rate. The average allocation rate of the program is calculated
using a window size that is the entire length of the program,
(0; T). This means that as
�t increases we can expect the maximum allocation rate to approach the average allocation
rate.

Ideally, the maximum rate should be equal to the average rate or, stated more clearly, we
want the worst case to be as close to the average case as possible. To enable us to measure
how close the worst case is to average we de�ne the following metric,
(0;T)

�(�t)
.Where
�(�t) is

the maximum allocation rate for a value of �t. When this value is close to 1, the maximum
rate provides a good approximation of the average. As this value gets further from 1 this
assumption becomes more and more costly in terms of resources wasted.

The graph depicted in Figure 3 shows
(0;T)

�(�t)

as a function of �t. As expected, for all
benchmarks tested this value is approaching 1 as �t increases. As a frame of reference the
�t used in the experiments presented by Bacon et. al [1] are shown in Figure 2. Clearly
for the window sizes normally used the maximum allocation rate is a poor estimate of the
average with the aforementioned implication that resources are wasted.

In addition, Figure 4 shows an indirect bene�t of an increased window size. Here Min-

imum Mutator Utilization (MMU) is graphed as a function of �t. MMU is formally
de�ned in equation 3. Informally it can be thought of as the minimum fraction of CPU time
that the mutator is guaranteed during one collection cycle.

The MMU has been calculated using the following formula presented by Bacon et. al. [1]

MMU(��) =
QT � b

��
QT+CT

c + x

��
(3)

Where �� is the time window for which MMU is calculated, and QT and CT are the
mutator and collector time quanta respectively. �� is here QT + CT . x is the remaining
partial mutator quantum and is de�ne in Equation 4.

x = max(0;�� � (QT + CT) � b
��

QT + CT

c � CT) (4)

For large values of �� , this expression reduces to

lim
��!1

MMU(��) =
QT

QT + CT

(5)

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1e+06

A
ve

ra
ge

_A
llo

ca
tio

n_
R

at
e

/ M
ax

_A
llo

ca
tio

n_
R

at
e

Window Size (ms)

db
jack

javac
jess
mtrt

Figure 3:
(0;T)

�(�t)

vs. �t. This graph shows that as �t increases, assuming that the allocation

rate is
�(�t) becomes less costly for any given point in the programs execution. The reason for

this is that
�(�) approaches
(0; T)

Hence, we expect that as QT increases, thus increasing �t and �� , MMU will approach 1.
This is an obvious observation since making the mutator's execution time per collection cycle
equal to the entire execution time of the program is synonymous to running the program
with out any garbage collection. Although the observation is obvious it does highlight an
additional bene�t to increasing �t.

Ideally it appears that we would want to run the program with �t as large as possible.
However, there is a problem with this argument. The largest possible �t is the entire length
of execution which is synonymous to executing the program without any garbage collection
at all. Therefore, in general, increasing �t will increase the memory requirements of the
program. Nonetheless, because max does not approximate average, budgeting for the worst
case means that, most of the time, a signi�cant part of the heap will be unutilized. This
unutilized memory leaves room for improvement.

The collector must be scheduled so that the amount of memory available when collection
starts makes it impossible for the mutator to deplete the amount of available memory during
the collection cycle. If this decision is based on the assumption that the mutator allocates
memory at the maximum allocation rate of the program then, on average, the collector
will be scheduled prematurely. If the work of the collector is mostly dependent on amount
of garbage being collected then this would not be signi�cant because the collector would
perform less work during each cycle.

However, the work of a mark-sweep collector is dependent on the amount of live memory
that needs to be processed during the marking phase. This means that scheduling the
collector more frequently will not have a considerable a�ect on the amount of work performed
during each collection cycle. Consequently, additional collection cycles results in the collector

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100

M
M

U

Window Size Percentage of Program Length

db
jack

javac
jess
mtrt

Figure 4: MMU vs. �t
T
�100 Here we see experimental data depicting the relation ship between

MMU and �t described in equation 5

needlessly occupying CPU resources.
There are two approaches to solving this problem, and both will require knowing more

about the allocation rate of the mutator than simply its maximum allocation rate. Either
the collector can adapt its scheduling policy as the allocation rate changes and execute less
frequently during periods of low allocation rates, or it can adapt the �t used to the change in
allocation rate. As mentioned previously increasing �t will increase the amount of memory
needed by the program. However, because the program is allocated enough heap memory
to handle the programs maximum allocation rate there is room for increasing �t when the
program does not exhibit maximum allocation rate.

Out of these two approaches we prefer the latter one because of the fact that increasing
�t also increases MMU during that part of the execution. As shown in Figure 3, �t <
�t1 implies
�(�t) <
�(�t1). This means that for all periods of execution time where

(t;�t) <
�(�t) we can safely increase �t and thus achieve a higher MMU than what has
been previously reported, [1], without increasing the resources allocated to the program.

To be able to harvest these advantages we require that the garbage collector can adapt
to the changes in the allocation rate of the mutator. This means that the collector must
be able to predict future allocation rates of the mutator. In the next section we present a
static framework for allocation rate determination that can be used to give the collector this
prediction ability.

4 Static Approach

The problem with a dynamic approach to determine the allocation rate of a program is that
it cannot provide any guarantees. The maximum allocation rate that is found dynamically

9

during one run of a program may not be the maximum possible allocation rate that the
program can exhibit. Basing parameters for the collector on any number of actual runs
could underestimate the maximum allocation rate of the program. A static approach to
allocation rate determination is needed.

The problem of statically predicting a mutator's allocation rate can be formulated as
a data
ow problem [8]. The data
ow graph consists of nodes and edges and is denoted
Gdf (Ndf ; Edf) where Ndf and Edf are the nodes and the edges in the graph. Each node
in the graph represents an instruction in the program that the graph depicts. Each edge
leaving a node points to an instruction that may execute just after this instruction. For our
purposes each instruction is either an allocation or a non-allocation. The most trivial way to
represent this is using one bit. When the bit is set the instruction is an allocation, when it
is not then the instruction is a non-allocation. Thus, the solution to this data
ow problem
will be represented as a bit-vector where the length of the bit-vector is the window size (�t)
considered. Here �t is measured in number of instructions rather than execution time.

In addition to Gdf we must provide further formal de�nitions of this data
ow problem
to be able to reason about it. First, Gdf is augmented as is customary with a stop and start
node and an edge (start; stop) connecting the start node with the stop node in the implied
direction. Second, the meet lattice must be de�ned. The meet lattice is used to combine
information from several paths that are converging at a node. It is de�ned as follows:

L = (A; T;?;�;
V
)

� A is the domain of the data
ow problem, the set of bit-vectors

� T and ? is commonly called top and bottom. Top is a bit-vector consisting of only 0's
while bottom is a bit-vector of only 1's

� � is called re
ective partial ordering. This operator is interpreted as if a � b the a is
no better than b.

�
V
is the meet operator. Here this operator is the bitwise or of its bit-vector operands.

8a; b 2 A the following must hold.
a � b implies a

V
b = a

a
V
a = a

a
V
b � a

a
V
b � b

a
V
T = a

a
V
? = ?

We also need to de�ne a transfer function, f . Each node n 2 Ndf uses f to transform its
input to output. f(IN) = OUT where IN is the input to the node. The input is generated
by taking the meet of all inputs into n. OUT is the output of n generated by f . To guarantee

10

that our Gdf converges we require f to be monotone. Monotoneicity is de�ned as follows:
(8x; y)x � y ! f(x) � f(y)
The proof that data
ow frameworks with monotone transfer functions must converge is
beyond the scope of this paper, see [8] for details.

For our purposes we want the transfer function at node n to update the input bit-vector
so that the output includes the instruction represented by n. This is achieved by simply
shifting in the bit representing allocation (1) or non-allocation (0) into the bit-vector. This
transfer function satis�es all constraints that we have discussed.

So far we have shown a solution that is guaranteed to converge but we have not show how
to evaluate the framework. Ideally we would like our data
ow framework to compute the
meet-over-all-paths (MOP) solution. The MOP solution would calculate the allocation
rate for possible paths of execution of the program. Obviously this is not feasible. Instead
we use a forward iterative solution. This iterative solution can be show to produce a result
that is no worse than the MOP solution, see [8], provided that the data
ow framework is
distributive. A data
ow framework is distributive if:
(8a; b 2 A)f(a

V
b) = f(a)

V
f(b)

The meet property of our framework gives us:
a
V
b � a

a
V
b � b

Monotonicity gives us:
f(a

V
b) � f(a)

f(a
V
b) � f(a)

Combining these two properties gives us:
f(a

V
b)
V
f(a

V
b) � f(a)

V
f(b)

f(a
V
b) � f(a)

V
f(b)

Thus, the data
ow framework we have devised gives us an iterative solution that is no
worse than the MOP solution.

However, as with most static analysis this analysis will err on the side of caution. It is
overly conservative. This is an artifact of how the meet operator combines information from
several paths of execution. To show this consider a node n. Let n represent a non-allocation
instruction. There are two inputs edges a and b leading into n. Further assume that at the
values of a and b are:
a = 0100 meaning that out of the last four instructions the third most recent one was an
allocation
b = 0001 meaning that out of the last four instructions the most recent one was an allocation

The meet operator will produce the following result:
a
V
b = 0100 OR 0001 = 0101

This will be transformed by the transfer function:
f(0101) = 1010

11

Thus the output of node n would indicate that out of the past four instructions, two where
allocations. However, since none of the inputs into n contained more than one allocation
and n itself is a non-allocation, this estimate is obviously overly conservative.

Thus far the described static approach for determining allocation rates have not yet been
fully implemented and tested. However our dynamic analysis has given us an idea of the
results that we may expect from performing this static analysis.

5 Conclusion

We have studied the allocation rate of programs dynamically, and have determined that there
is great variation in the allocation rate. As such, the choice of window size for the collector
is an important issue. Longer windows tend to decrease the signi�cance of allocation spikes,
lowering the apparent maximum allocation rate. This in turn can reduce the storage needed
in reserve during a collection cycle. However, longer windows also increase the storage
requirements once the maximum allocation rate is �xed. The tension between longer and
shorter windows is application-speci�c and merits further study.

Moreover, the variance in maximum allocation rate throughout a program indicates the
potential of an adaptive approach based on phases of the application's allocation behavior.

Finally, we propose a static method for measuring the maximum allocation rate of a pro-
gram given a window size. This is useful, in that most problems of this form are undecidable.
One cannot determine the number of bytes allocated nor can the running time of a program
be computed statically. However, the number of bytes allocated per �xed window size can
be bounded from above by making conservative estimates of time and space where necessary.
The actual accuracy of this upper bound must be explored, and that is a subject of future
work for us.

References

[1] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage collector with low
overhead and consistent utilization. In Proceedings of the 30th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 285{298. ACM Press, 2003.

[2] William S. Beebee, Jr. and Martin Rinard. An implementation of scoped memory for
real-time java. In EMSOFT, pages 289{305, 2001.

[3] Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble, Steve Furr, David Hardin,
and Mark Turnbull. The Real-Time Speci�cation for Java. Addison-Wesley, 2000.

[4] Dante J. Cannarozzi, Michael P. Plezbert, and Ron K. Cytron. Contaminated garbage
collection. Programming Language Design and Implementation, pages 264{273, 2000.

[5] Angelo Corsaro and Ron K. Cytron. E�cient Memory-reference Checks for Real-Time
Java. In Proceedings of the 2003 ACM SIGPLAN conference on Language, Compiler,

and Tools for Embedded Systems, pages 51{58. ACM Press, 2003.

12

[6] Angelo Corsaro and Ron K. Cytron. Implementing and optimizing real-time java. In
Proceedings of The 11th International Workshop on Parallel and Distributed Real-Time

Systems. IEEE, 2003.

[7] Morgan Deters, Nicholas Leidenfrost, and Ron K. Cytron. Translation of Java to Real-
Time Java using aspects. In Proceedings of the International Workshop on Aspect-

Oriented Programming and Separation of Concerns, pages 25{30, Lancaster, United
Kingdom, August 2001. Proceedings published as Tech. Rep. CSEG/03/01 by the
Computing Department, Lancaster University.

[8] Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., 1997.

[9] Ran Shaham, Elliot Kolodner, and Mooly Sagiv. Heap pro�ling for space-e�cient Java.
ACM SIGPLAN Notices, 36(5):104{113, May 2001.

[10] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information
and Computation, 132(2):109{176, February 1997.

[11] F. Vivien and M. Rinard. Incrementalized pointer and escape analysis. In Proceedings

of the SIGPLAN '01 Conference on Program Language Design and Implementation,
Snowbird, Utah, June 2001.

[12] Paul R. Wilson. Uniprocessor garbage collection techniques (Long Version). Submitted
to ACM Computing Surveys, 1994.

13

	Automatic Determination of Factors for Real-Time Garbage Collection
	Recommended Citation
	Automatic Determination of Factors for Real-Time Garbage Collection

	tmp.1470340445.pdf.KeMXS

	Abstract: Abstract: Several approaches to hard, real-time garbage collection have been

recently proposed. All of these approaches require knowing certain

statistical properties about a program's execution, such as the

maximum extent of live storage, the rate of storage allocation, and

the number of non-null object references. While these new approaches

offer the possibility of guaranteed, reasonably bounded behavior for

garbage collection, the determination of the required information may

not be straightforward for the application programmer.

In this paper we present evidence suggesting that the necessary

factors can vary widely over a program's execution, indicating that an

automatic, phased approach may be wise for a real-time collector. We

present a static framework for determining some of the factors and

present run-time statistics on Java benchmarks.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: April 30, 2004
	Author: Authors: Mann, Tobias; Cytron, Ron K
	Title: Automatic Determination of Factors for Real-Time Garbage Collection
	ReportNumber: 2004-45
	DepartmentName: Department of Computer Science & Engineering

