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Abstract

Background: One of the most promising but challenging task in the post-genomic era is to reconstruct

the transcriptional regulatory networks. The goal is to reveal, for each gene that responds to a certain

biological event, which transcription factors affect its transcription, and how several transcription factors

coordinate to accomplish specific regulations.

Results: Here we propose a supervised machine learning approach to address these questions. We build

decision trees to associate the expression level of a gene with the transcription factor binding data of

its promoter. From the decision trees, we extract regulatory rules that specify how the binding of a

combination of several transcription factors affects the expression of a gene. Such rules are easy to

interpret, and represent experimentally testable hypotheses. We use a decision tree ensemble approach

to increase modeling accuracy and robustness. We also propose a novel method to integrate rules

learned from several time series that measure the same biological processes. We apply our method to

publicly available cell cycle expression data and transcription factor binding data for the budding yeast.

Cross-validation experiments show that our method is highly accurate and reliable. The method correctly

identifies all major known yeast cell cycle transcription factors, and assigns them into appropriate cell
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cycle phases. It also explicitly reveals synergetic relationships of transcription factors, most of which

agree well with existing literatures, while the rest provide testable biological hypotheses.

Conclusions: The high accuracy of our method indicates that our method is valid and that the learned

regulatory rules can be used as the basic building elements of a transcriptional regulatory network. As

more and more gene expression and TF binding data are available, we believe that our method will be

useful for reconstructing large scale transcriptional regulatory networks.

Background

Transcriptional level of gene expression is controlled, to a large extent, by specific interactions

between transcription factors (TFs) and the promoter sequences of their target genes. The inter-

actions between TFs and target genes can be many-to-many, i.e., each TF controls many genes,

and a gene can be controlled by many TFs. To understand gene functions in different biological

processes, it is necessary to reveal this transcriptional regulatory network.

To reveal transcriptional regulatory networks, traditional methods start by clustering genes ac-

cording to similar expression patterns across multiple conditions [1–3], and then look for statistically

over-represented sequence motifs from the promoter regions of genes in the same cluster [4–6]. Such

enriched motifs, if identified, are often believed to be the binding motifs of a common TF. These

approaches have been successful in small datasets, but are limited by theirs strong assumptions

that co-expression means co-regulation and vice versa [7, 8]. Furthermore, in higher eukaryotes,

genes are typically regulated by a combination of several TFs, and the TF binding motifs often

organize into modular units [9]. Although some progress has been made [10–12], it is still difficult

to precisely identify combinatorial motifs. Finally, it may not be easy to map the putative binding

motifs to their corresponding TFs.

Another type of approaches formulates the problem in a statistical learning framework [8,13,14].

These approaches assume that each motif makes an additive contribution to the expression of a

gene. Therefore, the expression level of a gene can be modeled as a linear function of scores for

binding motifs. Given a set of putative binding motifs and gene expression levels, these methods
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use linear regression and feature selection techniques to find the most significant motifs that can

explain the expression levels. These methods have been shown effective for discovering conserved

short motifs related to several biological processes in S. cerevisiae. However, they are limited by

their assumption of linear additivity of binding motifs. Furthermore, the biological meaning of

a learned linear function is difficult to interpret, and may be interpreted in multiple ways. For

example, if two binding motifs has the same coefficient in a linear function, it may be that the two

motifs are both required, but it is also possible that one motif can replace the other.

In this paper, we propose a different approach and formulate the problem in a supervised

machine learning framework. In our formulation, we assume that each gene can be in a number

of different states, for example, up-regulated, down-regulated and unchanged. Given the states of

a set of genes and putative regulatory elements (e.g., binding motifs) in their promoter regions,

our goal is to infer a model that associates the expression states of genes with their regulatory

elements. This can be considered as a classification problem in machine learning, where the genes

are called instances, the regulatory elements are called features, the expression states are called

classes, and the model is called a classifier. Many different classification approaches have been

studied previously, such as association rules, k-nearest neighbors, support vector machines, and

naive bayes [15]. Here we choose decision trees [16], which is a well-studied machine learning

technique that has been successfully applied in a variety of application domains [17–19]. For this

work, decision trees have several advantages compared to other classification or linear regression

approaches. First, decision trees can represent complex logics in transcriptional regulation. Second,

decision trees can be easily converted to rules, which are easy to interpret and are experimentally

testable. Third, decision trees can handle continuous values in features. Finally, decision tree

algorithms have feature selection method built in.

In our work, we also explore the use of classifier ensembles, i.e., we learn multiple decision trees

for each data set. Comparing to single classifier approach, the ensemble approach generally results

in more accurate and robust classifiers. Furthermore, it provides alternative models that can be

studied.

To our knowledge, supervised machine learning approach, in particular decision tree approach,

has not been used for learning transcriptional regulatory networks, although it has been used for
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learning regulatory networks [18–21]. In these works, supervised machine learning approaches were

used to associate the expression level of a gene with the expression levels of putative TFs. Since

there is no evidence of binding, the learned regulation relationships may be indirect interactions.

Besides the difference in problem formulation, our method also differ from previous approaches

in that it exploits the genome-wide TF binding data [22]. TF binding data is measured by the

chromatin immunoprecipitation (ChIP) DNA chip technology [23], and reflects the relative binding

strength of TFs to all promoter regions in a genome. There are several advantages in using TF

binding data instead of putative binding motifs. First, the number of TFs is generally much smaller

than the number of putative binding motif scores. Using TF binding data therefore significantly

reduces the number of irrelevant features that may distract the learning algorithms. Second, with

TF binding data, our method directly associates a gene’s expression with TFs that regulate it.

While knowing binding motifs of TFs is still important, it can be separated from the learning of

transcriptional regulatory networks. If there is no TF binding data, however, our method can still

use putative binding motifs. In addition, we can also use a mixture of both TF binding data and

putative binding motifs to reduce the risk of missing relevant features. Note that TF binding data

can also be used by linear regression approaches [8,13,14], however some of these works were done

before the TF binding data was available.

Microarray experiments are often done in time series (e.g., in [24]). For each time point, our

approach learns an ensemble of decision trees. We then extract rules from these decision trees by

following each path from the root to a leaf. Such rules are called regulatory rules, which predict

for a gene its expression state given its TF binding data. We compute a significance score for each

rule based on how many genes it controls. Plotting the significance score of a rule as a function of

time therefore reveals the function of TFs.

In some cases, two or more time series related to the same biological process were measured by

different researchers, often with different sampling rates. Here we propose a spline interpolation

method to combine results from multiple time series. Such an integrated approach can substantially

eliminate noises contained in each individual data source and improve modeling accuracy.

To test the validity of our approach, we applied it to three sets of yeast cell cycle gene expression

data [24,25]. We demonstrate that the method is able to identify biologically significant regulatory
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rules from genome-wide TF binding data and gene expression data. Statistical evaluation indicates

that the rules identified are robust and reliable. Many of the transcriptional regulatory rules for

yeast cell cycle genes discovered by our approach have been confirmed by published literature, while

the testing of other yet-unverified rules may yield additional insights into the biological process.

Results
Overview of the Algorithm

Our method takes as input the expression data and TF binding data of a set of genes and proceeds

in two stages (Figure 1). In the first stage, we construct a training data set for each experimental

condition of the expression data, and learn a set of regulatory rules. In the second stage, we generate

profiles for rules, integrate results from multiple data sets, and combine rules into a transcriptional

regulatory network.

A training set contains a set of genes (instances), where each gene is represented by a vector.

The vector corresponding to the jth gene is defined as < B1j , B2j , ..., Bnj , Ckj >, where Bij is the

strength for the ith TF binding to the jth gene, and Ckj is the label of expression state for the jth

gene under condition k. For simplicity, we considered only binary labels: “up-regulated” and “not-

up-regulated”, while it can be easily generalized to any number of states. In this paper, we refer to

up-regulated and not-up-regulated genes as positive and negative genes, respectively. The labels

are determined by fixed thresholds (see Materials and Methods). The strength of a TF binding to

a promoter sequence is represented by the negative logarithm of the binding p-value. Note that

the binding strength Bij is measured statically and therefore does not change as k changes.

Once we have constructed the training set, we can learn a function that maps the TF binding

data of a gene to its expression states. As discussed in the introduction, we choose decision trees to

represent this function, because of its advantages over other techniques. A decision tree is a rooted

tree consisting of two kinds of nodes: internal nodes and leaf nodes. Each internal node corresponds

to a test of the binding of a selected TF to a gene (for example, “can TF A bind to gene g?”), and

each leaf is a prediction of the state of that gene (for example, “gene g is up-regulated”). Each

internal node has two branches: the right branch is chosen when the test succeeds; and the left

branch is chosen when it fails. Therefore, a path from the root to a leaf defines a possible regulatory

rule (for example, “ if a gene can be bound by TF A and TF B, then it can be up-regulated at time

5



Choose differentially expressed 
genes for a given condition to 

construct a training set

Learn regulatory rules 
that can explain the 

expression differences

Expression data

Binding data

(a)

Rule 
learning 
algorithm

Condition 1

Condition 2

Condition 3

Condition n

…

Training 
sets

Regulatory 
rules

Rule 
profiles

Regulatory
Networks

(b)

Figure 1: Overview of our approach. a), Constructing the training set and learning a set of regula-
tory rules for each condition. b), Generating rule profiles and combining them into transcriptional
regulatory networks.

t”). We extract regulatory rules from decision trees, and calculate a significance score (p-value)

for each rule (see Materials and Methods). Only significant rules (p-values < 0.001) are retained.

This provides a single-experiment view of regulatory rules.

A regulatory rule may very often be discovered at multiple conditions (or time points). The

negative logarithm of the p-value of a rule under a given condition reflects the significance of the

rule. Thus it is informative to plot −log(p) as a function of experimental conditions; such a plot is

referred to as a rule profile. This provides a single-rule view across multiple conditions. When two

or more microarray time series are available for the same biological process, we can also combine

the rule profiles learned from different time series. We approximate each rule profile with a spline

interpolation, and add together profiles for the same rule from different time series to give a single

profile.

In the last step, we identify the most probable experimental conditions for each rule and the

genes it regulates, and organize this information into a transcriptional regulatory network.

Decision trees and regulatory rules relevant to the yeast cell cycle

Learning decision trees and regulatory rules in our method is best illustrated by the yeast cell cycle

data. It is known that nine TFs - Mbp1, Swi4, Swi6, Mcm1, Fkh1, Fkh2, Ndd1, Swi5 and Ace2 -

regulate a large number of yeast cell cycle dependent genes [26, 27]. Specifically, MBF (a complex
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of Mbp1 and Swi6) and SBF (a complex of Swi4 and Swi6) control late G1 genes; Mcm1, together

with Fkh1 or Fkh2, recruits Ndd1 in late G2 and controls the transcription of G2/M genes; and

Swi5 and Ace2 regulate genes at the end of M and early G1. This model was developed using a

small set of genes and was recently confirmed by a number of whole-genome analysis combining

gene expression and TF binding data [22, 28]. We thus applied our method to the cell cycle data

to verify the accuracy of our method. We also aimed to construct a more detailed transcriptional

regulation network as well as new, testable hypotheses about yeast cell-cycle regulations.

Gene expression during the yeast cell cycles has been measured with several different synchro-

nization methods. We apply our method to three data sets obtained from the methods of CDC28,

CDC15 and α-factor [24,25], while our discussion below mostly focus on the rules learned from the

CDC28 data set. Later we also propose a novel method to combine the results from all three data

sets.

We first learned only a decision tree for each time point. Figure 2 shows the decision trees

learned from the 20, 40, 70 and 100 minute CDC28 data, corresponding to late G1, S, G2/M and

early G1 phases, respectively. The method rediscovered all nine known TFs in appropriate cell

cycle phases. As can be seen, Swi4, Swi6 and Mbp1 appeared in 20 and 100 minute. Ndd1, Mcm1,

Fkh1 and Fkh2 appeared in 40 and 70 minute. Swi5 and Ace2 appeared in 100 minute.

We then extracted regulatory rules from the trees by a depth-first search from the root node to

all leaf nodes labeled as positive. A node was included in a rule only if its right branch was taken by

the path. For example, we extracted the following two rules from the 70-minute tree (Figure 2c):

(Ndd1 ≥ 2.47) ∩ (Mcm1 ≥ 3.82), and (Ndd1 ≥ 2.47) ∩ (Fkh1 ≥ 3.44). According to the first rule,

genes that can be bound by Ndd1 with a p-value less than e−2.47 and by Mcm1 with a p-value less

than e−3.82 will be up-regulated at 70 minute. For simplicity, we will omit the p-value thresholds

of binding data in later discussions, and write the two rules as Ndd1 ∩ Mcm1 and Ndd1 ∩ Fkh1,

respectively. It is worth mentioning, however, that the thresholds are learned automatically and

may be different in different rules.

Each rule has some number of supporting genes in the training set, from which a p-value can be

calculated. For example, the rule Ndd1 ∩ Mcm1 in the 70-minute tree is supported by 18 positive

and 1 negative genes out of a total of 41 positive and 416 negative genes. This corresponds to a
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p-value ≈ 10−20. (For the detail of calculating the p-value of a rule, see Materials and Methods).

The strongest rule identified for 20-minute time point is Mbp1 ∩ Swi6 (p = 10−19). The

other three significant rules are Swi4 ∩ Swi6 (p = 10−9), Mbp1 ∩ Dot6 (p = 10−5) and Mbp1

∩ Ash1 (p = 10−5) (Figure 2a). Ash1 was known to accumulate in the daughter cell throughout

the G1 phase, inhibiting transcription of the HO endonuclease, thereby preventing mating-type

switching [29]. Dot6 has been shown to affect pseudohyphal differentiation [30]. Genes up-regulated

at 40 minute are described by three significant rules: Swi4 (p = 10−17), Fkh1 ∩ Fkh2 (p = 10−6),

and Met4 ∩ Met31 (p = 10−4) (Figure 2b). Met4 and Met31 cooperate to regulate the sulfur amino

acid pathway [31]. A cluster of genes involved in the biosynthesis of methionine have been previously

discovered as cell cycle regulated [24]. Two significant rules were identified for 70-minute time point

(Figure 2c), both are well known: Ndd1 ∩ Mcm1 (p = 10−20) and Ndd1 ∩ Fkh1 (p = 10−6). Rules

identified for 100-minute time point include early G1 phase TFs, Swi5 ∩ Ace2 (p = 10−5), as well

as late G1 phase TFs Mbp1 (p = 10−20) and Swi4 (p = 10−8).

Ensemble decision trees and regulatory rules learned from all data sets

The above example illustrated the ability of the single decision tree approach in identifying the

known TFs and associating them with appropriate cell cycle phases. However, like all methods

providing optimal solutions, it may miss suboptimal but meaningful solutions. Even worse, the

standard decision tree learning algorithm (for instance, C4.5) is essentially greedy, since the tree

structure is learned top-down without backtracking. Therefore, there may be other trees that can

explain the training data equally well or even better than the tree reported by the algorithm. A

common approach for solving this problem is by learning a set of decision trees for each training

data (often referred to as a tree ensemble in machining learning).

Many machine learning approaches have been developed for learning tree ensembles (for review,

see [32]), including Bagging [33] and Boosting [34]. One basic idea in these methods is to perturb

the original data set many times, and learn a decision tree from each derived data set. Each

decision tree stands for an alternative model. To make a prediction, an instance is passed to each

individual decision tree and predictions are combined by voting [32]. We adopt the basic idea, but

also consider a unique feature of our data set: the number of negative instances is much larger than
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Mbp1
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< 4.63

Swi6

>= 4.63
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Swi6
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+ (17)
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Dot6

< 3.1

+ (5)

>= 3.1

- (19/7)

< 3.04

+ (5)

>= 3.04

(a)

Swi4

Fkh2

< 4.61

+ (26/6)

>= 4.61

Met4

< 2.62

Fkh1

>= 2.62

- (558/20)

< 3.47

Met31

>= 3.47

- (17/3)

< 3.17

+ (5/1)

>= 3.17

- (27/5)

< 3.0

+ (10/3)

>= 3.0

(b)

Ndd1

- (409/14)

< 2.47

Mcm1

>= 2.47

Fkh1

< 3.82

+ (19/1)

>= 3.82

- (19/2)

< 3.44

+ (10/3)

>= 3.44

(c)

Mbp1

Swi4

< 5.17

+ (27/5)

>= 5.17

Swi5

< 7.9

+ (11/2)

>= 7.9

- (677/28)

< 5.65

Ace2

>= 5.65

- (5/1)

< 2.55

+ (8/2)

>= 2.55

(d)

Figure 2: Example decision trees learned from the CDC28 cell cycle data set at four different time
points. a), 20 minute. b), 40 minute. c), 70 minute. d), 100 minute. Each oval represents an
internal node and each box represents a leaf node. The text inside an internal nodes is a regulator,
while the text associated with an edge is a test on a DNA binding p-value. The text inside a
leaf node is a prediction of the state of a gene. The number of supporting genes and the number
of counter examples are included in parentheses. For example, “+(19/1)” in the 40-minute tree
means that the rule will predict positive and there are 19 genes satisfy this rule, of which 18 are
true positive and the remaining one is false positive.
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Table 1: Rules learned by the splitting approach
20min 40min 70min 100min

Mbp1 (10−31) Swi4 (10−17) Mcm1 ∩ Ndd1 (10−25) Mbp1 (10−20)
Mbp1 ∩ Swi6 (10−26) Mth1 ∩ Swi4 (10−11) Fkh2 (10−21) Swi4 (10−18)

Stb1 ∩ Swi4 (10−15) Fkh2 (10−10) Ndd1 (10−17) Swi4 ∩ Swi6 (10−14)
Swi4 ∩ Swi6 (10−9) Fkh1 ∩ Fkh2 (10−6) Fkh2 ∩ Ndd1 (10−15) Ste12 ∩ Swi4 (10−8)

Swi4 (10−7) Met4 (10−5) Fkh1 ∩ Ndd1 (10−6) Hir2 ∩ Swi4 (10−5)
Mbp1 ∩ Swi4 (10−6) Fkh2 ∩ Msn1 (10−5) Fkh1 ∩ Fkh2 (10−4) Mbp1 ∩ Mss11 (10−5)

Dot6 ∩ Mbp1 (10−5) Hsf1 (10−5) Mcm1 (10−4) Ace2 ∩ Swi5 (10−5)
Ash1 ∩ Mbp1 (10−5) Met4 ∩ Met31 (10−5) Nrg1 ∩ Smp1 (10−3) Mbp1 ∩ Stb1 (10−5)
Ecm22 ∩ Mbp1 (10−3) Met4 ∩ Cbf1 (10−5) Swi5 (10−4)

the number of positive ones. Such a skewed class distribution deteriorates the learning ability of

most machine learning algorithms [35], including decision trees. To overcome this difficulty, we split

negative instances into smaller subsets and combine each of them with positive instances to form

a training set, from which a decision tree is learned (see Materials and Methods). We refer to this

method as splitting. By this approach, we effectively adjust the class distribution to a preferred

value without losing any information in the original data set. The prominent regulatory rules will

likely be present in many trees and stand out when the trees are combined. An idea similar to the

splitting approach was proposed to learn decision trees for detecting credit-card frauds [36].

Table 1 shows a selected list of significant rules discovered by the splitting approach when apply-

ing to the 20, 40, 70 and 100 minute CDC28 data set. A complete list is included in supplementary

table 1. As can be seen, the splitting approach discovered additional synergetic relationships among

the known cell cycle TFs, such as Mbp1 ∩ Swi4 and Fkh2 ∩ Ndd1, which were not identified by

the single tree approach. Furthermore, several rules involving cell-cycle related TFs were discov-

ered. For example, Stb1 and Ecm22 were found in 20 minute, Cbf1, Hsf1, Rgm1 and Mth1 in

40 minute, Nrg1 and Smp1 in 70 minute, Ste12, Hir2 and Mss11 in 100 minute. Among them,

Stb1 is known to regulate in G1 [37]; Cbf1 binds to centromere and is involved in DNA replication

and methionine biosynthesis together with Met4 [31, 38]; Nrg1 and Smp1 were recently found to

regulate filamentous growth [39].

We repeated the learning method on the CDC15 and α-factor data sets, and the resulting

regulatory rules are listed in Supplementary table 2 and 3, respectively. Not unexpected, most of
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the significant rules involve at least one of the nine well-known TFs. Two significant rules identified

in the α-factor data set involve novel transcription factors: Yap5 (p = 10−10 at 14-minute and 10−8

at 77-minute) and Gat3 (p = 10−9 at 14-minute and 10−8 at 77-minute). The role of the two TFs

in G1 is still unknown and may deserve further investigation. Later, we will introduce a method

for combining the rules learned from the three data sets.

Evaluating the reliability of rules

A critical issue of classification algorithms is generalization - how well a learned model can be

applied to data that have not been seen by the learning algorithm? When the number of features

is large, a classifier is often over-fitted. In another word, it can achieve very good performance

on the data used to learn the classifier, while performs poorly on unseen data. Therefore, it is

important to evaluate the accuracy of a classifier on unseen data, which is typically done by a cross-

validation procedure (see Materials and Methods). A straightforward measurement of accuracy is

the percentage of correctly classified instances (denoted as A). However, A tends to under-estimate

the true error, especially when the ratio of positive and negative instances is skewed. For example,

if there are 990 negative and 10 positive instances, simply predicting everything as negative will

achieve 99% accuracy. Therefore, we compute the kappa statistic K to measure accuracy. K is

a better estimation of the true classification accuracy, and is guaranteed to be no greater than A

(See Materials and Methods). Furthermore, it has been suggested that K < 0.4 indicates a poor

classifier, K > 0.75 implies an excellent classifier, and 0.4 < K < 0.75 means a reasonably good

classifier [40].

Figure 3 shows the cross-validation kappa statistics of the single decision tree approach and

three ensemble approaches (bagging, boosting and splitting) on eight time points of the CDC28

data set. The splitting method has the best K under almost all conditions, with a value at least

0.4 in essentially all time points. Furthermore, when we randomized the training set by randomly

exchanging positive and negative labels, the same splitting method yield kappa statistics smaller

than 0.02 in all cases (average = -0.002). This confirms that the rules learned are not random.
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Figure 3: 10-fold Cross-validation accuracy of C4.5 [41], Bagging [33], Boosting [34] and Split-
ting [36]. Experiments were done on eight different time points of CDC28 data set. Implementation
of Bagging, Boosting and C4.5 were obtained from the WEKA package [42]. C4.5 was also used
as the base level classifier for Bagging, Boosting and Splitting. Default parameters were used for
C4.5, Bagging and Boosting. Splitting were done according to Materials and Methods.

Integrating rule profiles

The negative logarithm of the p-value of a rule under a give condition reflects the significance of

the rule. We obtained the profile of each rule by plotting its −log(p) as a function of time. Such a

plot can be used for several purposes. First, the wave form shows the change of significance score

of a regulatory rule over time. Therefore it reveals the most probable period of time during which

the rule regulates. Second, the pattern of rule profiles in a time series reveal certain properties

of the biological process (for example, critical time point for a phase transition or length of a cell

cycle). Third, comparing the profile of a rule with the expression pattern of the corresponding TFs

indicates the direction of the regulation (See Discussion).

Figure 4b illustrates rule profiles of G1 and G2/M TFs Mbp1, Swi4, Swi6, Ndd1, Mcm1, Fkh1

and Fkh2 obtained from the CDC28 data set. These profiles all showed clear periodicity. Their

peaks agree very well to cell cycle phases determined by phenotypes and gene expression data

(Figure 4a) [25]: Swi4, Swi6 and Mbp1 peak in G1, and Ndd1, Mcm1, Fkh1 and Fkh2 peak in

G2/M. The rule profiles also show that there is a significant lag between the peaks of Mbp1 and

Swi4, which was also discovered by previous studies [13, 22, 24]. We also found a lag between

the peaks of Fkh2 and Mcm1, which is different from a antagonistic (out-of-phase) relationship

suggested by Bussemaker et al. [13], but similar to the results reported by Lee et al. [22]. Our results

also show a significant lag between Fkh2 and Fkh1, similar to what was reported previously [22].
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Figure 4: Profiles of selected rules. a), Approximate cell cycle phases in CDC28 data set. b), Rule
profiles obtained from CDC28 data set alone. b), Integrated rule profiles obtained from CDC28,
CDC15 and α-factor data sets. 13



Since all three data sets, CDC15, CDC28, and α-factor, measured gene expression levels during

yeast cell cycle, the gene expression patterns in them should be similar; so should the inferred

profiles of regulatory rules. Therefore, it should be possible to combine the rule profiles learned

from them. However, the length of a cell cycle and the sampling rates are different in these three

data sets, which makes a direct point-to-point addition invalid. Previous studies have shown that

it is possible to convert the time scales of the CDC15 and α-factor data sets to the time scale in

CDC28 [43]. They found that, after conversion, expression curves in the three data sets can be

aligned together very well. We used the same conversion and took the parameters from their results.

As we expected, the rule profiles from different data sets can often be aligned together accurately

(Figure 4c). We then used spline interpolation in MATLAB (the MathWorks Inc.) to convert rule

profiles to continuous curves, which are then added together to obtain a combined profile for each

rule. Figure 4c shows the integrated profiles of several rules. As shown, the integrated profiles

show prominent cell cycle dependencies (period ≈ 85 minutes). Supplementary Figure 2 contains

integrated rule profiles with notable cell cycle dependencies, and Supplementary Figure 3 shows

integrated rule profiles that do not show clear cell cycle dependencies.

A model for the yeast cell cycle transcriptional regulatory network

From the cell cycle dependent rule profiles in Supplementary Figure 2, we constructed a model of

yeast cell cycle transcriptional regulatory network (Figure 5). We first determined for each rule

the most probable period of time during which the rule functions, and plotted the rule in the

corresponding phase of the cell cycle. We then determined the genes that each rule regulates, and

created a link from the rule to a gene if the gene also appears in a regulatory rule (see Materials

and Methods). We grouped most rules into two large modules (gray area), where the rules in each

module share a lot of common target genes. One module is in G1/S and has Mbp1, Swi4, Swi6

and Stb1 in the rules. The other module is in G2/M and involves Fkh1, Fkh2, Ndd1 and Mcm1.

We found that the rules functioning in one phase of the cell cycle regulate TFs functioning in the

next phase (red lines in Figure 5). This result is consistent with previous studies [22,28], although

we identified more such relations. We also found that, within each phase, rules that function earlier

often regulate TFs that function later (blue lines in Figure 5). For example, we found that the
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earliest TF in G2, Fkh2, regulates Ndd1 and Fkh1. As to our knowledge, this result has not been

reported previously.

In addition, two rules combining G1 and G2 TFs (Fkh2 ∩ Swi4 and Fkh2 ∩ Swi6) function

in S phase and regulate Ndd1. Another such combination, Fkh1 ∩ Mbp1, functions in M phase.

We also identified several novel TFs for yeast cell cycle: Dot6, Yap5 and Gat3 in G1, and Met4 in

S. Yap5 and Gat3 may be suspicious since the rules were only learned in the α-factor data sets,

although their profiles show very clear cell-cycle dependencies. Gat3 was found to be regulated by

Swi5 in our network.

Discussion

Reconstructing gene regulatory networks from gene expression data is a promising but challenging

task for the post-genomic era. Traditional methods use a two approach. The first phase groups

genes into clusters according their expression similarities [1–3]. The second phase scan for single or

composite motifs that are enriched in the promoter regions of clustered genes [4–6, 10–12]. These

methods, however, are limited by their over-reliance on expression similarities. Furthermore, com-

putational motif finding is a difficult task, while the mapping from binding motifs to corresponding

TFs is even harder. Statistical learning method consider individual expression experiment sepa-

rately, and fit a linear model to describe the additive effect of motifs on the expression levels of

individual genes [8, 13, 14]. These methods did not, however, explicitly take combinatorial effects

into account.

In this paper we proposed a supervised machine learning approach to discover transcriptional

regulatory rules from gene expression data and TF-DNA binding data. We used decision trees to

model the relationship between the expression level of a gene at particular time points and the TFs

that can bind to it, and extracted easy-to-interpret regulatory rules from decision trees. We applied

an ensemble learning approach to explore alternative models and increase the modeling accuracy.

We also proposed a spline interpolation approach for integrating the regulatory rules learned from

multiple time series expression data.

Using the cell cycle data sets as examples, we demonstrated that our method is able to identify

biologically significant regulatory rules from genome-wide TF binding data and gene expression

15



Fkh2∩Swi6
Fkh2∩Swi4

M
bp

1∩
Swi4∩

Swi6

F
kh

2∩
M

cm
1∩

N
dd

1

M
cm

1∩
N

dd
1 

Fk
h1
∩M

cm
1

Fk
h1
∩N

dd
1

Ace2∩Swi5

Mcm1∩Swi5

Mbp1∩Dot6
Yap5
Gat3

G1

S

G2

M

Fkh1∩Mbp1

Mbp1
Mbp1∩Swi6

M
bp

1∩
Stb

1

Stb1∩Swi6

Ace2

Swi5

Swi4∩Swi6

Swi6

Stb1∩Swi4

M
bp1∩

S
w

i4

Swi4

Met4

Ndd1

Fkh2∩Ndd1

Fkh2∩Mcm1

Mcm1
Fkh2

0

21

42

64

Figure 5: A model for the yeast cell cycle transcriptional regulatory network learned by our method.
The text inside each rounded rectangle represents one or more regulatory rules. The position of
a box, together with the green arc crossing it if exists, represents the period during which the
rules inside are functioning. Two long dashed lines divide the area into G1, S, G2 and M phases
approximately. The numbers in the inner circle represent the corresponding middle time point of
each phase in the CDC28 data set. The gray area on the top contains the module of rules that
regulate late G1/S phase, and the one on the bottom encloses the module of rules that regulate
G2/M phase. A red line represents that a set of regulatory rules regulates a regulator outside the
module, while a blue line represents that a set of regulatory rules regulates a regulator within the
same module.

16



data. The process of deriving all predictions in our method was unbiased by any computational

or experimental knowledge. Without pre-clustering genes based on global similarity of expression

patterns, we re-discovered all nine known TFs that are relevant to the yeast cell cycle and assigned

them into appropriate cell cycle phases. Most regulatory rules in our results involve two or three

TFs, suggesting synergetic relationships for them. For example, we have identified the collabo-

ration of many well known TF pairs, such as Mbp1/Swi6, Swi4/Swi6, Stb1/Swi6, Fkh1/Mcm1,

Fkh1/Ndd1, Fkh2/Ndd1, Ace2/Swi5 and Met4/Met31, as well as the recently reported Met4/Cbf1

and Nrg1/Smp1 complexes. The test of other yet unverified rules may yield additional insights to

the biological process.

Our method has some limitations. Although statistically significant rules often reflect biological

significance, the opposite is not always true. As a result, our method may miss regulatory rules that

regulate only a few genes. For example, our method failed to discover Skn7, a TF functioning in S

phase, since the number of genes regulated by Skn7 is small in the given data sets to be considered

statistically significant. However, this limitation is probably common to most large-scale analysis

methods.

Another limitation of our method is that regulatory rules do not specify whether a participating

TF contributes inductively or repressively. This is because concentrations of TF proteins are not

taken into account. For example, if a rule states that “if gene g can be bound by TF f, then it can

be up-regulated at time t”, it is possible that g is up-regulated at t due to a reduced concentration

of f, which actually implies a repressive role of f. This ambiguity may be resolved by comparing

rule profiles with expression patterns of TFs. For example, the rule profile of Swi4 reaches its peak

at 40 minute, while expression of Swi4 peaks at about the same time. This suggests that Swi4 is

a transcriptional activator. However, the correlation does not always hold, since there may be a

lag of time between the expression of a TF and its functioning, and many TFs may be modified

post-transcriptionally. For example, the mRNA level of Mbp1 is almost constant during the cell

cycle, although its rule profile peaks at 20 minute. We note that the same limitation exists for

linear regression approaches [8, 13, 14].

It is also worth noting that there are alternative ways to label genes with expression states.

Here we labeled a gene according to its expression level under a single condition relative to an
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initial condition. Alternatively, we may label a gene according to its expression level relative to

the previous time point, or relative to its mean expression level in a time series. It may also

be advisable to consider several consecutive time points simultaneously. We have tested some of

these ideas, and the conclusion is that all these labeling methods are valid to a certain extent (in

terms of cross-validation accuracy), and there is no single method that is the best for all data

sets. The labeling method we chose has the best cross-validation accuracy in average. The decision

trees learned with different labeling methods are often different. Nevertheless, when the ensemble

approach is used, the most significant regulatory rules tends to be stable with respect to labeling

methods.

We also tested our method in other data sets that are not time series or do not have TF

binding data. For example, we applied the method to the glucose-limited growth of yeast cells [44],

and correctly identified Hap4 as a significant TF that regulates the process. For many species,

especially in higher eukaryotes, we do not have TF binding data available. To study transcriptional

regulations for them, we can utilize information of putative binding motifs. For example, we applied

our method to study the transcriptional regulation of stress-responsive genes in Arabidopsis [45],

using putative binding motifs from a plant motif database (PLACE) [46]. We successfully identified

two motifs (ABRE and CE) that are known to regulate stress-responses in plants. Using putative

binding motifs, however, involves some modification of the decision tree learning algorithm, since

there are more features and some of them may overlap with each other. The details of these results

will be published elsewhere.

Conclusions

We have proposed a decision tree approach for discovering transcriptional regulatory rules. By

integrating multiple heterogeneous data sources, we are able to achieve high modeling accuracy.

Statistical evaluation and literature validation indicate that the results are robust and reliable. We

have also shown that the regulatory rules can be used as the basic building elements of a transcrip-

tional regulatory network. As more and more gene expression data and TF binding data become

available, we believe that our method will be useful for reconstructing large-scale transcriptional

regulatory networks.
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Materials and methods

Gene expression and TF binding data. We used S. cerevisiae cell-cycle data synchronized

with CDC28 [25], CDC15 [24] and α-factor [24]. For CDC28 data set, we used a 3-fold induction as

the threshold for selecting positive genes. That is, a gene is positive at time point t if Et/E0 ≥ 3,

where Et is its expression level at time t and E0 is its expression level at the starting point of the

time series. To have a clear separation of positive and negative genes, we chose a gene as negative

only if Et/E0 ≤ 1.2. Since expression levels in CDC15 and α-factor are normalized by a log2 ratio,

we chose positive genes so that Et−E0 ≥ log23 and negative Et−E0 ≤ log21.2. Furthermore, in all

three data sets, we required the expression levels of positive genes and negative genes to be greater

than and less than their average expression values, respectively. We used genome-wide binding

data of 113 S. cerevisiae TFs from Lee et al [22]. We used a less stringent threshold (p < 0.1)

than the suggested threshold (p < 0.001) to reduce false negatives, and depended on the learning

algorithm to automatically determine an optimal threshold for each TF.

Learning decision trees and tree ensembles. We modified a standard algorithm C4.5 for

learning decision trees [41]. The implementation of the algorithm was from the WEKA machine

learning package [42]. To learn tree ensembles, we first separate a training set into positive gene

set and negative gene set. Instances in the negative set were randomly partitioned into n subsets,

where n is chosen so that the size of a negative set is 3 – 4 times the size of the positive set. This is

then repeated 5 times with different random seeds, giving a total of 5n negative sets. We combined

each negative set with the positive set to learn a decision tree. We also learn a decision tree on the

complete original training set. To make predictions, the prediction from individual decision tree is

combined by a weighted voting, where the weight is the probability that an instance is predicted

as positive.

Cross-validation. A 10-fold cross-validation was used to estimate the accuracy of our method.

In other words, we randomly partitioned the training data into 10 subsets of equal size, and then

combined 9 subsets for training and the remaining one for testing. The process was repeated 10

times so that each subset was used as a test set once. Furthermore, we repeated the cross-validation

procedure 10 times with different random partitioning and calculated the average performance.

Denote TP , TN , FP , and FN as the numbers of true positive, true negative, false positive and
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false negative predictions, respectively. The overall accuracy A = (TP+TN)/(TP+FP+TN+FN)

tends to under-estimate the true error when the class distribution is skewed. We thus calculated

the kappa static [40], which is defined as

K = (A − C)/(1 − C) (1)

where C is the expected accuracy that a classifier can achieve by chance and is calculated as

C =
(TP + FP )(TP + FN) + (TN + FN)(TN + FP )

(TP + FP + TN + FN)2
(2)

Extracting significant regulation rules. For each learned decision tree, we extracted rules

by following the branches from the root node to leaf nodes labeled as positive. A node was included

in a rule only if its right branch was taken to reach the leaf node of the rule. We calculated a p-value

for each rule with a hypergeometric distribution, and we considered a rule to be significant if its

p-value is smaller than 10−3. If there are totally M positive genes and N negative genes, and a

rule is supported by m positive and n negative genes (m > n), we calculate the p-value for the rule

as the probability that we would select at least m positive genes if we randomly pick m + n gene.

This can be calculated as:

P (m, n, M, N) =
∑

m≤x≤min(m+n,M)

(
M
x

) (
N

m + n − x

)
(

M + N
m + n

) (3)

Combining rule profiles. We converted the time scale for the three expression data sets to

a common scale. We used a linear function T (s) = a ∗ s + b for the conversion, where s is the

actual time in an experiment and T (s) is its converted time. The coefficients a, b were obtained

from [43]. Using the cell cycle length of CDC28 as a reference, the coefficients are a = 0.70 and

b = −1.58 for CDC15, and a = 1.37 and b = 5.71 for α-factor, meaning that the length of a cell

cycle in CDC28 is 0.70-fold of the cell cycle length in CDC15 and 1.37-fold of that in α-factor, and

the cell cycle in CDC28 starts 1.58 minutes earlier than in CDC15. We then approximated each

rule profile with piecewise polynomial functions using the spline function in the Matlab package.

An integrated profile was obtained for each rule by summing its three splines from CDC28, CDC15

and α-factor experiments. A rule was considered cell cycle dependent if its integrated profile has

two peaks and the distance between the two peaks are approximately 80 - 100 minutes.
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Constructing regulatory networks. The rules with notable cell cycle dependency (in Sup-

plementary Figure 2) were used to construct a regulatory network for the yeast cell cycle. By

calculating the average distance between two peaks of all the profiles, we estimated the length of a

cell cycle to be 85 minutes with CDC28 data set as reference. The period that each rule functions

was determined by finding the time points left and right to the peak where the y axis values were

two thirds that of the peak. We then plotted the rules in their corresponding functioning phases.

Next, a subset of the training data with only the genes that are part of some rules in the network

were constructed and passed to the decision tree ensembles. If a gene is predicted to be positive,

the rules used for the prediction were extracted, and links were created between the rules and the

gene.
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