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Most scalable switches are required to buffer packets at both their inputs and
outputs to overcome the slow memory speeds of packet queues. This thesis deals with
the design of scheduling algorithms for such Combined Input and Output Queued
(CIOQ) switches.

For crossbar based CIOQ switches, we demonstrate the underperformance
of commercially used scheduling algorithms under overload traffic conditions using
targeted stress tests and present ideas to develop robust, stress resistant versions
of these algorithms that are still simple enough to be implemented in high speed
switches.

To regulate the flow of traffic in buffered, multi-stage switches, we introduce

a novel mechanism called distributed scheduling. Distributed scheduling is similar to



crossbar scheduling used in switches with small port counts, but is both distributed
and coarse-grained to enable high-speed implementations of scheduling algorithms in
high capacity, high performance switches. In this thesis, we comprehensively study

and evaluate distributed scheduling.



To my parents



Contents

List of Tables . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . ... ix
Acknowledgments . . . . . . ... Lo xii
1 Introduction. . . . . . .. .. ... 1
1.1 The Scheduling Problem . . . . . .. ... .. ... ... ...... 1
1.1.1 Anatomy of a Router . . . . . . .. ... ... ... ...... 1

1.1.2 Output Queuing (OQ) . . . . . . . .. .. .. ... ... .. 1

1.1.3 Combined Input and Output Queuing (CIOQ) . . . . . . . .. 2

1.2 CIOQ Switches . . . . . . . . . . . 3
1.2.1  Crossbar based CIOQ Switches . . . . .. ... ... .. ... 3

1.2.2 Buffered, Multi-stage CIOQ Switches . . . . . . . .. ... .. 4

1.3 Thesis Overview . . . . . . . . . . . L 6
1.3.1 Stress Resistant Crossbar Scheduling Algorithms. . . . . . . . 6

1.3.2 Distributed Scheduling . . . . . .. ... ... 0000 7

1.3.3 Organization . . . ... ... ... ... 7

2 Related Literature Survey . . . . . . . .. ... Lo 8
2.1 System Model and Definitions . . . . .. . ... ... 000 8
2.1.1  Arrival Traffic . . . . ... ..o oL 8

2.1.2  Stability Results . . . . . .. ... 000000 9

2.1.3 Worst Case Results . . . . . ... ... ... .. ... .. 10

2.1.4 Chapter Organization. . . . . . . ... .. ... ... ..... 10

2.2 Queuing Policies . . . . . . ... oo 11
2.2.1 FIFO Queueing . . . . . . . ... . e 11

2.2.2 Virtual Output Queuing . . . . . . . . ... ... ... .... 12



2.3 Crossbar based switches . . . . . . . . . . .. ... . 12

2.3.1 Bipartite Graph Matching . . . . ... ... ... ....... 12
2.3.2 Maximum Size Matching . . . . . ... ... .o 13
2.3.3 Maximum Weight Matching . . . . .. ... ... ... .... 14
2.3.4 Heuristic Matching Algorithms . . . . .. .. ... ... ... 16
2.3.5 Sequential and Iterative Matching . . . . . . . . ... .. ... 17
2.3.6 Parallel and Iterative Matching . . . . .. ... ... .. ... 18
2.3.7 Greedy Matching . . . . . .. ... ... oo, 19
2.3.8 Reservation Vector . . . . . . ... .. ... . 20
2.3.9 Randomized Algorithms with Memory . . . ... ... .. .. 20
2.3.10 De-Randomized Algorithms with Memory . . . . .. .. ... 21
2.3.11 Matrix Decomposition . . . . . . . .. .. ... ... ... .. 22
2.3.12 Birkhoff-von Neumann scheduler . . . .. .. ... ... ... 23
2.3.13 Work Conserving Schedulers . . . . .. .. ... ... . .... 24
2.3.14 Complexity Comparison . . . . . . . . ... ... ... .... 24
2.3.15 Performance Comparison . . . . . . . . . ... ... ... ... 25
2.4 Buffered Multi-stage Switches . . . . . . ... .o o000 25
2.5 Load Balanced Switches . . . . . . . ... ... 0000 26
2.6 SUIMMATY . . . . .« vt e e e e e e 27
Stress Resistant Scheduling Algorithms . . . .. ... ... ... .. 32
3.1 Imtroduction . . . . . . . . ... L 32
3.1.1 Implementation Complexity . . . .. .. ... ... ... ... 32
3.1.2 Theory vs Simulation . . . . . .. ... ..o 32
3.1.3 Inadmissible Traffic Conditions . . . . .. .. .. ... .... 33
3.1.4 Chapter Outline. . . . . . .. ... .. ... ... ....... 34
3.2 Simulating Overload Traffic Conditions . . . . .. ... ... . ... 34
3.2.1 Throughput Metrics . . . .. ... ... ... ... .. 34
3.2.2 Miss Fraction . . . . ... .. oo 0oL 36
3.2.3 Admissible Traffic Patterns . . . . . .. ... ... ... ... 36
324 Stress Test . . . . . . . L 38
3.3 Crossbar Schedulers . . . . . . .. ... o 0000000 40
3.3.1 Parallel Iterative Matching (PIM) . . . .. .. ... ... ... 40
3.3.2 Iterative Round Robin Matching with Slip (4SLIP) . . . . .. 41
3.3.3 APSARA . . . . .o 42



3.3.4 Lowest Occupancy Output First Algorithm (LOOFA) . . . . . 42

3.4 Performance Evaluation . . .. ... ... ... ... 0000, 43
3.4.1 Miss fraction vs Delay . . . . ... ... ... 0. 43
3.4.2 Varying Speedup and Number of Iterations . . . . . . . . . .. 44
343 Stress Test . . . . . . . L L 48
3.44 Conclusions . . . . . . ... o 49

3.5 Stress Resistant Algorithms . . . . . ... .. ... 0000 49

3.6 Lowest Layer Selection . . . . ... ... ... ... .. ... 50
3.6.1 Lowest Layer Selection - Random (LLS-R) . .. ... ... .. 52
3.6.2 Lowest Layer Selection - Slip (LLS-S) . . . .. ... ... ... 52
3.6.3 Performance Evaluation . . ... ... ... .. ..., ... 53

3.7 Using Output Backlogs in Edge Weights . . . . . ... ... ... .. 55
3.7.1 Minimum Weight Matching (MinWM) . . ... ... ... .. 56
3.7.2  Shortest Output Longest Input First (SOLIF) . . . . ... .. 57

3.8 Approximate LOOFA (A-LOOFA) . .. ... ... ... ....... 59
3.8.1 Hardware implementation of matching . . . . .. . ... ... 99
3.8.2 Odd-Even Sorting . . . . .. ... ... .. .. 61
3.8.3 Input permutation . .. ... ... .. ... ... ... 62
3.8.4 Implementationissues . .. ... ... .. ... ........ 62
3.8.5 Performance Evaluation . . . .. ... ... ... ....... 63

Distributed Scheduling . . . . . . . . ... ... ... ... ... 65

4.1 Introduction . . . . . . . ... Lo 65

4.2 Distributed Scheduling . . . . . . ... o o000 66
4.2.1 Mechanism . . ... ... oo o Lo 66
4.2.2 Constraints . . . . . . . ..o L o 67
4.2.3 Distributed Scheduling vs Crossbar Scheduling . . . . . .. .. 68

4.3 Work Conserving Scheduling Algorithms . . . . . ... ... ... .. 68
4.3.1 Problem Definition . . . . .. ... ... 68
4.3.2 System Model . . . . . . . . ... oo 69
4.3.3 Maximal and Ordered Scheduling Algorithms . . ... .. .. 70

4.4 Batch Critical Cells First Algorithm . . . . . . .. ... ... ... .. 71
441 VOQOrdering . . . . . .. e 71
442 Example . . . . ..o 71
443 Proof. . . . . . . 73

vi



4.5 Batch Least Occupied Output First Algorithm . . . . . . ... .. .. 75

4.5.1 VOQOrdering . . . . .. ... 75

452 Example . . . . ..o 76

453 Proof. . . .. . .. 76

4.6 Implementation of Maximal, Ordered Schedulers . . . . . . . ... .. 82
4.7 Distributed, Iterative Schedulers . . . . . . . ... ... ... ..... 84
4.8 Distributed BLOOFA (DBL) . . . . . ... .. .. ... ... ..... 85
4.8.1 Example . . . . .. . ... 86

4.8.2 Performance Analysis (Stress Test) . . .. ... ... .. ... 87

4.8.3 Performace Analysis (Bursty Traffic) . . ... ... ...... 89

4.8.4 Contention Factor . . . . . .. ... ... 91

4.9 The Output Leveling Algorithm (OLA) . . . . ... ... ... .... 92
4.9.1 Work Conservation . . . . .. ... ... ... 93

4.9.2 Implementing OLA . . . . .. ... . ... L. 95

4.10 A-OLA . . . . e 97
4.10.1 Example . . . . ..o 98

4.10.2 Distributed OLA . . . . . .. ... o000 98

4.10.3 Performance Analysis . . . . . ... .. ... ... ... 100

4.11 Practical Considerations . . . . . . . .. ... ... ... 101
4.12 Future Work . . . . . . . . . 103

5 Concluding Remarks . ... ... ... ... .. .. ........... 105
References . . . . . . . . . . L 107
Vita . . . . . 114

vii



List of Tables

2.1

2.2

2.3

4.1
4.2

4.3

Comparison of run-time complexity of various scheduling algorithms
for crossbar based CIOQ switches. . . . . . .. . ... .. ... ....
Comparison of run-time complexity of various scheduling algorithms
for crossbar based CIOQ switches (continued from Table 2.1).

Summary of performance results of various scheduling algorithms for

crossbar based CIOQ switches under various traffic conditions. . . . .

Notation used in describing batch critical cells first algorithm.
Notation used in describing the batch least occupied output first algo-
rithm. . . . .

Notation used in describing the output leveling algorithm. . . . . ..

viii

29

30

31



List of Figures

1.1
1.2
1.3
1.4

2.1
2.2

2.3

24

2.5

3.1
3.2

3.3

3.4

3.5

3.6

3.7

Router Architecture . . . . . . . . . . . . .o
Crossbar based switch. . . . . . . . . .. ... L.

Buffered crossbar switch element. . . . . . . . . . ... ... .. ...

(2 BN N W)

Multi-stage switch. . . . . . .. .o Lo L

FIFO vs Virtual Output Queuing . . . . . . . .. ... ... .. ... 11
Representation of the scheduling problem in a CIOQ switch as a bi-
partite graph and a corresponding matching. . . . . . . . ... .. .. 13
Classification of various heuristic matching algorithms used in schedul-
ing CIOQ switches. . . . . . . .. . oo o 16
Configuration of a 3x3 crossbar and the corresponding permutation

matrix. . . . .. 22
The Load Balanced switch. . . . .. ... .. ... ... ... ..., 26
Example of stress test with 3 participating inputs and 4 phases. . . . 38

Queue lengths of various VOQs and miss fraction for PIM under a
stress test with 3 participating inputs and 4 phases. (N=16, speedup=1.5) 39

Average delays and miss fractions for various iterations of PIM, N=16,

speedup=1.0 . . . . . . . . L. 43
Average delays and miss fractions for various iterations of :SLIP, N=16,
speedup=1.0 . . . . . . . .. 45

Miss fractions for various iterations of PIM (N=16, speedup=1.0), with
varying load, under various admissible traffic patterns. . . . . . . .. 45
Miss fractions for various iterations of iSLIP (N=16, speedup=1.0),

with varying load, under various admissible traffic patterns. . . . . . . 46
Miss fractions for various iterations of PIM (N=16, load=1.0) with
varying speedup, under various admissible traffic patterns. . . . . . . 46

ix



3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18
3.19
3.20
3.21
3.22

4.1
4.2
4.3
4.4
4.5

4.6

Miss fractions for various iterations of iSLIP (N=16, load=1.0), with
varying speedup, under various admissible traffic patterns. . . . . . .
Performance of APSARA (with d = 20) under varying loads (N=16,
speedup = 1.0), under various admissible traffic patterns . . . . . . .
Miss fractions for PIM, ;SLIP and LOOFA under stress test with 5
participating inputs and 12 phases. . . . . . . .. . ... ... .. ..
Exponentially graded scale used in assigning outputs to layers based
on their queue length. . . . . . . .. ... ... oL,
Miss fractions for various iterations of LLSR (N=16, load=1.0), with
varying speedup, under various admissible traffic patterns. . . . . . .
Miss fractions for various iterations of LLSS (N=16, load=1.0), with
varying speedup, under various admissible traffic patterns. . . . . . .
Miss fractions for LLS-R, LLS-S (using 16 layers) and LOOFA under
stress test with 5 participating inputs and 12 phases. . . .. . . . ..
Miss fractions for LLS-R and LLS-S (single iteration) with varying
layers under stress test with 5 participating inputs and 12 phases (Test
A)
Miss fractions for MWM, MinWM and LOOFA, with varying speedup,
under two stress tests. . . . . . ... ..o oL L
Miss fractions for SOLIF, MWM, MinWM and LOOFA, with varying
speedup, under two stress tests. . . . . . ... ... ...
Principal hardware components and example operation of A-LOOFA
Match Logic . . . . . . .. o . L
Example demonstrating the use of the odd-even sorting technique. . .
Example showing the permutation of inputs. . . . . . . ... .. ...
Miss fractions for A-LOOFA and LOOFA under stress test with 5 par-
ticipating inputs and 12 phases. . . . . . . . . ... ..o L.

Router with distributed scheduling. . . ... .. ... ... .. ...
Example operation of the BCCF algorithm. . . . ... .. ... ...
Example operation of the BLOOFA algorithm. . . . . .. ... .. ..
Precedence list. . . . . . . .. oL
Example of a maximal ordered schedule constructed from a blocking
flow. . . . .

Example operation of the DBL algorithm. . . . ... ... ... ...

47

47

48

ol

93

o4

o4

95

26

o7
39
60
61
62

64



4.7
4.8

4.9

4.10

4.11

4.12

4.13

4.14
4.15

Example stress test (3 inputs, 5 phases, speedup=1.2) on BLOOFA. . 87
Miss fractions for DBL and BLOOFA on a variety of stress tests (with
varying inputs and phases). . . . .. .. ... L. 88
Results from a sample simulation of DBL under bursty traffic (speedup=1.1,
load=0.9, mean dwell time = 10). . . . . ... ... ... ... ... .. 89
Performance of DBL under bursty traffic patterns with varying speedups

and subject, target dwell times. . . . . . . ... ..o 89
Contention factor for the sample bursty traffic test on DBL shown in

Fig. 4.9. . . . o 91
Implementing OLA using minimum-cost blocking flow with convex cost
function. Differences from earlier solution highlighted in bold. . .. 96
Example operation of the A-OLA algorithm (with A=1). . ... .. 99
Sample stress test (3 inputs, 5 phases) on DOLA with speedup=1.2 . 100
Miss fractions for Distributed OLA and under a variety of stress tests

with varying delta. . . . . .. .. .. . L 0oL 101

xi



Acknowledgments

To these, I owe a debt past telling.

First, my advisor Dr. Jon Turner for all his guidance and wisdom. Also, all
the committee members for their support and feedback.

My colleagues at the Applied Research Laboratory for all their help and com-
pany.

And finally, my parents and family for their infinite patience and unconditional
love and support.

Prashanth Pappu

Washington University in Saint Louis
August 2004

xii



Chapter 1

Introduction

1.1 The Scheduling Problem

1.1.1 Anatomy of a Router

The main function of a router! is to forward packets from its input ports to its output
ports. Fig. 1.1 shows the various components of a router. A switching fabric connects
the input side Port Procesors (PPs) to the output side PPs. The port processors queue
packets and perform all packet processing functions like packet classification, route
lookup and packet scheduling. The input and output transmission interfaces (ITT and
OTTI) terminate the physical links and provide the requisite conversion and encoding
functions for transmitting/receiving packets on the target physical layer. The control

processor implements the routing and other network management protocols.

1.1.2 Output Queuing (OQ)

Ideally, we would like all packets in the router to be buffered only at the output
ports. In such a router (called Output Queued (OQ) router), when two or more
packets destined to the same output arrive simultaneously at different input ports,
they are immediately transferred to the output queue to avoid any packet loss. This

architecture not only simplifies the design of the router but also

1. Maximizes the throughput of the router.

'We use the terms router and switch and packet and cell interchangeably, unless explicitly speci-
fied.
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Figure 1.1: Router Architecture

2. Enables the ready use of packet scheduling algorithms [67] for providing Quality

of Service (QoS) guarantees to individual flows.

Since there is no queuing at the inputs, the output queues of an OQ router with
N line cards each connected to a line operating at a rate R should have a bandwidth
of (N +1) x R (to support N writes for each read). Unfortunately, although router
capacities (IV X R) have increased by about 2.2 times every 18 months (slightly faster
than Moore’s law), router buffer (DRAM) speeds have only increased by about 1.1
times every 18 months (slower than Moore’s law) [57]. This mismatch makes the use

of output queuing infeasible in scalable routers.

1.1.3 Combined Input and Output Queuing (CIOQ)

To overcome the mismatch between the capacities of routers and the speed of memo-
ries, most switches queue packets at both input and output ports of the switch. This
Combined Input and Output Queuing (CIOQ) lets us use lower speed memories for
buffering packets. When two or more packets at different inputs, contend to go to
the same output some of them are temporarily held in the input queues before being
transferred to the outputs.

The switching fabric of a CIOQ switch is itself operated at a speed S (called
speedup) times the link rate R. Though, the speedup of a CIOQ switch can be any
value between 1 and N, in practice, it is usually a small constant (typically, < 2).

Hence, a CIOQ switch with a speedup of S needs memories with a bandwidth of just



3
(14+S) x R. A switch with a speedup of 1 effectively queues all packets only at inputs
and is called an Input Queued (IQ) switch.

While a CIOQ switch requires lower speed switching fabrics and memories, it
also introduces a scheduling problem. A decision needs to be made every time slot to
determine which inputs are allowed to transfer cells to which outputs. The design of
scheduling algorithms to perform this function is the focus of this dissertation. The
objective in the design of these schedulers is to approximate the throughput and delay

properties of a pure output queued switch.

1.2 CIOQ Switches

1.2.1 Crossbar based CIOQ Switches

Commercial CIOQ switches with small port counts often use a non-blocking crossbar
as the switching fabric. An N x N crossbar is organized as an N x N matrix to
connect input ports to output ports as shown in Fig. 1.2. A crossbar allows mul-
tiple cells to pass in parallel to distinct outputs. Though a crossbar has quadratic
complexity (O(N?)), it concentrates this complexity within a single chip or a chipset
for moderate scale switches, reducing impact on the system cost. The scheduling
problem in crossbar based CIOQ switches is reduced to configuring the non-blocking
crossbar using a centralized controller every time slot to determine which inputs are
allowed to transmit to which outputs.

Though the throughput and delay properties of a scheduler determine its per-
formance, it is the implementation simplicity which is the primary factor in deter-
mining which scheduling algorithms are used in high speed switches. For instance,
in a switch with external link rates of 10 Gb/s, the scheduler has less than 40 ns to
make a scheduling decision.?. Hence, though a number of scheduling algorithms have
been proposed and studied in the literature (see Chapter 2), very few of them can
be implemented and used in practice.

This has created a situation where algorithms with proven performance under
a variety of traffic conditions are often not implementable, and implementable algo-
rithms (which do not lend themselves to theoretical analysis) are evaluated only ac-

cording to their packet delays under admissible and/or random uniform traffic. Hence,

2 Assuming a minimum packet size of 50 bytes.
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Figure 1.2: Crossbar based switch.

it is unclear how most commercially used algorithms perform under extreme traffic

conditions frequently encountered in unrequlated IP networks.

1.2.2 Buffered, Multi-stage CIOQ Switches

In crossbar based switches, all the line cards and the crossbars in the switching fabric
must be synchronized to the centralized scheduler. The frequency (once in less than
40 ns for a switch with 10 Gb/s links) and the complexity (O(log N) iterations for even
simple algorithms) of the scheduling algorithms, makes it infeasible to use crossbars
for large switching systems.

One approach to alleviate the centralized scheduling problem is the introduc-
tion of buffers at the crosspoints of a crossbar. Such a switching element is called
a buffered crossbar. With these buffers, cells are sent from inputs into the crossbar
only if the corresponding crosspoint has empty buffers. Thus, the ingress scheduling
problem is reduced to a simple flow control mechanism. A backpressure signal is used
to indicate if the input can forward cells to the crosspoint. On the egress side, the
outputs schedule cells from one of the N cross-points destined to them. Unfortu-
nately, the discrete nature of buffering makes this architecture memory intensive. A
16 x 16 crossbar needs 256 buffers, each with a space for at least a few cells.

The buffered crossbar architecture can be further simplified by using shared

memory within the crossbar as shown in Fig. 1.3. The switching element has an
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Figure 1.4: Multi-stage switch.

internal shared buffer (cell store) for up to a few thousand cells with current technol-
ogy. The cells are multiplexed from the inputs of the switching element to free slots
in the cell store. These cells are then forwarded to the outputs as and when they
become idle. A controller uses per output queue information to configure the input
side multiplexer and the output side demultiplexer.

Such switching elements can be used in multi-stage switching fabrics with inter
stage flow control to build large switching systems as shown in Fig. 1.4. The simple
flow control mechanism along with a modest speedup can alleviate the need for a
centralized scheduler and maintain throughput even under temporary overloads.

The performance of such switching systems can degrade drastically in the pres-

ence of sustained overloads. In extreme traffic conditions, when a single output port
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of a switch is under sustained overload, the shared memory buffers in the switching
fabric can be congested with cells attempting to reach the overloaded output, inter-
fering with other traffic directed to non-overloaded outputs. The unrequlated nature
of IP traffic makes such overloads a normal fact of life, which router designers must
address if their systems are to be robust enough to perform under the most demanding

of traffic conditions.

1.3 Thesis Overview

1.3.1 Stress Resistant Crossbar Scheduling Algorithms

Crossbar scheduling algorithms are commonly evaluated according to the packet delay
under random admissible traffic which tends to obscure significant differences that
affect the robustness of different algorithms when exposed to extreme conditions.
Commercially used crossbar scheduling algorithms for CIOQ switches can perform
poorly under extreme traffic conditions, frequently failing to be work-conserving. On
the other hand, there are algorithms with provably good worst-case performance
that do not lend themselves readily to high performance implementation. In this
thesis, we advocate evaluating crossbar scheduling algorithms using targeted stress
tests which seek to probe the performance boundaries of competing alternatives when
exposed to extreme traffic conditions. Appropriately designed stress tests can reveal
key differences among algorithms and can provide the insight needed to spur the
development of better solutions.

In this thesis, we introduce the use of stress testing for crossbar scheduling
which can be used to evaluate the performance of various kinds of scheduling algo-
rithms (maximal, maximum weighted and work-conserving). We present results that
show that maximal size matching and maximum weight matching algorithms need
large speedups in order to perform well on stress tests, while work-conserving algo-
rithms like LOOFA can deliver excellent performance, even for speedups less than
1.5. We present ideas to develop improved versions of these algorithms, which take
output queue lengths into account, making them much more robust (stress resistant).
We also present an algorithm which closely approximates the behavior (and perfor-
mance) of LOOFA, but which admits a straightforward, high performance hardware

implementation.



1.3.2 Distributed Scheduling

In this thesis, we introduce distributed scheduling as a means of regulating the flow of
traffic through large, high performance multi-stage routers which use buffered crossbar
switching elements. The mechanism is both distributed and coarse-grained to
enable high speed implementations of the algorithms. Distributed scheduling, unlike
crossbar scheduling, does not seek to schedule the transmission of individual packets.
Instead, it regulates the rates at which traffic is forwarded through the switching
fabric from inputs to outputs. These rates are themselves determined and readjusted
at pre-determined time periods using distributed algorithms to let the mechanism
scale to switches with large capacities. This also implies that distributed scheduling
can only approximate the performance of a pure output queued switch.

In this thesis we present a comprehensive study and evaluation of scheduling

algorithms for buffered, multi-stage switching systems including:
1. Work conserving scheduling algorithms.
2. Iterative, work conserving, distributed scheduling algorithms.
3. Single iteration, distributed scheduling algorithms.

4. Performance analysis of distributed scheduling algorithms.

1.3.3 Organization

This thesis is organized as follows. Chapter 2 presents a survey of literature related
to the problem of scheduling in CIOQ switches. In this chapter, we identify several
areas that require further research and motivate the problems we address in the
subsequent chapters. In Chapter 3, we introduce the idea of stress testing and present
stress-resistant scheduling algorithms that are simple to implement and have good
performance under a wide variety of traffic conditions. In Chapter 4, we introduce
the idea of distributed scheduling for buffered, multi-stage switching systems and
present a comprehensive study and evaluation of this mechanism. Conclusions and

future work are presented in Chapter 5.



Chapter 2

Related Literature Survey

2.1 System Model and Definitions

In this chapter, we consider CIOQ cell based switches with /N input lines and N output
lines, all operating at the same cell rate R. Also, let the internal switching rate be
R x S, where S denotes the speedup of the switch. Thus, the internal switching
fabric operates S times faster than the external input/output links. Although the
internal switch speedup can, in general, be obtained in several domains (time, space,
wavelength etc), we assume that the CIOQ switch operates in the time domain.
In such switches, time is slotted and synchronized and packets from different input
queues can be moved simultaneously to different output queues with the conditions
that

1. Inputs/outputs can receive/transmit at most one cell in each time slot.

2. Any input can transfer (and any output can receive) a maximum of S cells in

each time slot.

It is the job of the scheduling algorithm used in the CIOQ switch to examine the
contents of the various packet queues and determine which inputs are allowed to

transfer cells to their corresponding outputs.

2.1.1 Arrival Traffic

The arrival traffic to a switching system can be viewed as a set of arrival processes
A, ;(t), where A, ;(t) is the discrete-time arrival process of cells at input ¢ to output

j. The set of all arrival processes at various inputs is together simply referred to as
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the arrival process. Let )A; ; be the average arrival rate of cells at input 7 destined to
output j and let A be the matrix of all average arrival rates, i.e, A = [\, ].

DEFINITION 1: An arrival process is said to be admissible if no input or

output s oversubscribed, i.e,

N

Vihi=) Xj; <1 (2.1)
j=1
N

Vi =) N; <1 (2.2)
=1

else, the arrival process is said to be inadmissible.

DEFINITION 2: An arrival process is said to be uniform, if all the arrival
rates \;; are equal , otherwise the traffic is non-uniform.

DEFINITION 3: An arrival process is called independent and identically dis-
tributed (i.i.d) if all arrivals (both at the same input and across all inputs) are inde-

pendent of each other and are identically distributed.

2.1.2 Stability Results

Given an admissible traffic pattern, ideally, we would like to prove that a given
scheduling algorithm is stable under that traffic.

DEFINITION 4: A scheduling algorithm is said to lead to weak stability if
for every e > 03 D > 0 such that, Vi,j lim; o P{X;(%,7) > D} < €, where, X;(i,7)
denotes the number of cells queued at input i for output j at time t.

DEFINTION 5: A scheduling algorithm s said to lead to strong stability if
Vi, j limy oo E(X:(i,7)) is finite.

If an algorithm can be shown to lead to strong stability, it is said to achieve
100% throughput and all cells are guaranteed a bounded delay. Performance results
which show various scheduling algorithms to be stable under various traffic conditions

are simply referred to as stability results.
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2.1.3 Worst Case Results

Scheduling algorithms cannot be shown to be stable' (by definition) under inadmis-
sible traffic patterns. But inadmissble traffic patterns that overload ports of a switch
are commonly encountered in IP networks.

Scheduling algorithms are evaluated under such worst case traffic conditions
by comparing their performance with the performance of an ideal output queued
switch under the same traffic conditions.

DEFINITION 6: A CIOQ switch is said to behave identically to an output
queued switch, if under identical inputs, the departure time of every cell from both
switches is identical.

Consequently, a CIOQ switch that behaves identically to an OQ switch has
exactly the same delay and throughput properties under all traffic patterns. This
requirement can be relaxed to decouple the definition of the ideal throughput and
delay properties.

DEFINITION 7: A CIOQ switch is said to be work-conserving if, in a given
operating cycle, every output that has cells queued for it in the system (at various input
queues or the output queue) transmits a cell on its outgoing link.

Performance results which show a CIOQ switch to behave identically to an OQ

switch or show that it is work-conserving are referred to as worst case results.

2.1.4 Chapter Organization

This study of the literature related to scheduling algorithms for CIOQ switches is
organized as follows. First, we study the queuing policies used in CIOQ switches in
Section 2.2. CIOQ switching architectures can be broadly divided into

1. Crossbar based switches.
2. Multi-stage switches.
3. Load balanced switches.

We study the related work for each of these architectures in the following sections.

Among these, crossbar based CIOQ switches have been studied in great detail and

'When we say a scheduling algorithm is/isn’t stable, we mean the switch employing the scheduling
algorithm is/isn’t stable under the traffic pattern being considered.
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Figure 2.1: FIFO vs Virtual Output Queuing

we study the relevant queuing policies, scheduling algorithms and their related per-
formance and complexity measures in Section 2.3. Section 2.4 presents notes on
multi-stage switches (with emphasis on buffered multi-stage switches) and Section 2.5
presents the recently introduced load balanced switches. In Section 2.6, we summa-
rize these studies and results and identify several unanswered questions and areas for

further research.

2.2 Queuing Policies

2.2.1 FIFO Queueing

While combined input and output queuing (CIOQ) is a more practical design when
compared to output queuing, it can lead to poor performance of the switching system.
When the input queues in a CIOQ switch are First In First Out (FIFO) queues (as
shown in Fig. 2.1(a)), it is well known that for uniformly distributed, Bernoulli i.i.d
arrival traffic, the maximum throughput achieved by any scheduling algorithm is
limited to 2 —+/2 = 58% of the link bandwidth [30]. This is because, in FIFO queues,
only the first cell in each queue is eligible to be forwarded, leading to the notorious
Head Of Line (HOL) blocking problem. If a cell at the head of an input queue is
blocked, all cells behind it in the queue are also prevented from being transmitted,
even when the output link they need is idle.

Also, FIFO queuing can have worse performance under certain traffic patterns.

For example, if several input ports each receive a burst of cells destined to the same
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output, all the cells that arrive later for other outputs will be delayed. It has been
shown that such periodic traffic patterns can make the throughput of the switch as
small as the throughput of a single link leading to stationary blocking [36].

Many techniques have been suggested to overcome HOL blocking. One method
is to consider the first K(K > 1) cells in a FIFO queue for transmission during each
scheduling cycle [23]. Although these algorithms can improve the throughput of the
switch, they are still sensitive to traffic arrivals and perform as badly as FIFO queuing

under bursty traffic.

2.2.2 Virtual Output Queuing

HOL blocking can be completely eliminated by the use of separate queues at each
input for every output (as shown in Fig. 2.1(b)) [61]. These queues are called Virtual
Output Queues (VOQs) and the VOQ at input 4 for queuing cells destined to output
J is represented by vog; ;. These VOQs are implemented as linked lists, so the only
per queue overhead is the queues’ head and tail pointer. We note that despite the
increased complexity at the input buffer, the memory bandwidth does not increase:

each input still receives and transmits at most one cell per input.

2.3 Crossbar based switches

With the use of VOQs, the scheduling problem for crossbar based switches can be

approached in two ways:
1. as a bipartite graph matching problem.
2. as a matrix decomposition problem.

Each of these approaches leads to distinct solutions as presented in the following

sections.

2.3.1 Bipartite Graph Matching

The task of the scheduler is to determine which inputs are allowed to transmit cells to
which outputs in a given time slot with the condition that no input or output sends
or receives more than one cell. Thus, with the use of VOQs, the task of the scheduler

in a crossbar based CIOQ switch can be reduced to finding a matching on a bipartite
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Figure 2.2: Representation of the scheduling problem in a CIOQ switch as a bipartite
graph and a corresponding matching.

graph [62] whose vertices are the inputs and the outputs, and an edge between an
input and an output denotes that the input has a cell queued for that output [6].
This matching is then used to configure the crossbar.

DEFINITION 8: An undirected graph G = (V, E) connects the set of vertices
V with a set of edges E. The graph is said to be bipartite if the set of vertices V can
be partitioned into two sets (the corresponding inputs and outputs in the scheduling
problem) such that every edge in E has one end in each set. A matching M on a
graph is a subset of the edges E such that no two edges in E have a common vertex.

Fig. 2.2 shows an example of a bipartite graph and a matching on this graph.
Different solutions to the bipartite graph matching problem lead to different schedul-
ing algorithms for the corresponding CIOQ switch.

2.3.2 Maximum Size Matching

A desirable solution to the bipartite graph matching problem would be one that would
maximize the number of edges selected in a matching. This approach called maximum
size matching provides the highest possible instantaneous throughput in a given time
slot. A number of stability results have been presented regarding the performance of

maximum size matching schedulers:

e In [44], it was demonstrated using simulations that the maximum size matching

algorithm is stable for uniform i.i.d traffic arrivals for up to a load of 100%.
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e But, in [46], the authors prove (using counter examples for N > 3) that even un-
der Bernoulli admissible traffic, maximum size matching can lead to instability

and unfairness, especially, under non-uniform traffic patterns.

This result was extended to all switch sizes (N > 2) in [33].

e Also, under inadmissible traffic patterns, the maximum size matching algorithm

can lead to starvation [46)].

e However, the Longest Port First (LPF) algorithm presented in [48] showed that
a carefully chosen maximum size matching algorithm can be provably stable
under Bernoulli admissible traffic for up to a load of 100%.

The maximum size matching can be found by transforming the bipartite graph
into a network flow (with unit edge capacities) and finding the mazimum flow in this
network [62]. But these techniques are not suitable for implementation in CIOQ
switches because it takes too long to find a maximum size matching. The best
known algorithm has a complexity of O(N?), where N is the number of ports of
the switch [22].

2.3.3 Maximum Weight Matching

The maximum size matching algorithm makes scheduling decisions that depend on
whether a vog; ; is empty or not. Since the scheduler does not make use of the relative
backlogs of different queues, it cannot adjust its decisions to favor VOQs with larger
backlogs. This can cause it to make poor decisions when exposed to non-uniform
traffic. A maximum weight matching (MWM) algorithm can be employed to use
greater information about the state of the various VOQs in finding a matching.

DEFINITION 9: A weight w, = w;; is assigned to each edge e = (i,7) in E
of the bipartite graph G. The MWM algorithm finds a matching M which mazximizes
the sum of the weights of all the edges in M. We denote the weight of the matching
by W(M), i.e, W(M) =3 car We.

Different maximum weight matching algorithms can be obtained by using dif-

ferent weights.

1. Longest Queue First (LQF)
LQF presented in [46] uses the backlog of vog; ; (denoted by B; ;) as the weight
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w; ;) of the edge e = (4, 7) in the bipartite graph.
J

w;; = By

The LQF maximum weight matching algorihtm has been proven to be stable
for all admissible i.i.d arrival processes. However, the LQF algorithm can lead

to permanent starvation of non-empty VOQs as illustrated in [46].

. Oldest Cell First (OCF)
OCEF, also presented in [46], uses the waiting time of the cell at the head of
vog; ; (denoted by 7, ;) as the weight (w; ;) of the edge e = (4, j).

Wi,j = Ti,j

The OCF maximum weight matching algorithm has been proven to be stable
for all admissible i.i.d arrival processes. Clearly, unlike LQF, there can be no

indefinite starvation of any VOQs when using the OCF algorithm.

. MWM-f (B, ;)
The authors in [32] conjectured that if w;; = B;; can lead to stability then
w;,; = f(Bi,;) will also lead to stability and perhaps, even lesser delays, where

f(.) represents a class of nonnegative and continuously differentiable functions.

The algorithms MWM-B7;, MWM-BY; (o > 1) are all stable under admissi-
ble i.i.d traffic and a theorem proved in [32] suggests stronger stability with
increasing powers of backlog. However, increasing powers of B; ; do not lead to
smaller delays implying that perhaps, stronger stability and smaller delays are

not necessarily linked.

. Longest Port First (LPF)

The LPF algorithm presented in [48], by a careful choice of weights, makes the
desired matching (the solution) both a maximum weight and a maximum size
match. In LPF,

Yoy Big + Xy By if Bij >0
iaj = 3
0 otherwise

LPF is also stable for all admissible i.i.d traffic arrival processes. Also, since

LPF finds a match that is both maximum weight and maximum size, it has
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Figure 2.3: Classification of various heuristic matching algorithms used in scheduling
CIOQ switches.

smaller cell delays. The run-time complexity of LPF is the same as that of

finding a maximum size match O(N%%).

A maximum weight matching can be obtained by solving the equivalent minimum cost
network flow problem. The most efficient known algorithm for sequential computation
of MWM takes O(N>5log N) [62] and O(N?/3(log N)*) for a parallel computation of
MWM with a polynomial number of processors [7].

2.3.4 Heuristic Matching Algorithms

Both the maximum size and weight matching algorithms are too complex for imple-
mentation in high speed routers. Hence, a number of simpler, implementable heuris-
tics have been studied to find a good matching on the bipartite graph. Given that a
maximum size matching is also a maximum weight matching (with binary weights),
it can be argued that these simpler algorithms have been designed to approximate a
maximum weight matching.

These approximate maximum weight matching algorithms can be broadly clas-

sified as being distributed or centralized [41] as shown in Fig. 2.3.
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Distributed algorithms can be implemented such that each input port is re-
quired to know only the status of its own queues or cells (local information) in finding
the desired match. The various input ports use only this local information and follow
a distributed protocol (involving exchange of control cells) to converge on a match-
ing. Therefore, these algorithms are good candidates for use in switches which enable
incremental scalability, where additional switching capacity and ports are added by
introducing more line cards. However, these algorithms can also be implemented in
a centralized fashion by just aggregating the status of all ports at a single centralized
location where the scheduling decision is made.

Centralized algorithms, on the other hand, require input ports to use infor-
mation about the status of cells or queues at other input ports also in finding the
matching. It is conceivable that this information is small enough to still enable a
distributed implementation where individual ports exchange both control and status
information (this is possible when the switch has a small number of ports or when the
status information exchanged, itself, is minimal). However, for the purposes of classi-
fication, we still refer to them as centralized algorithms. Though, as has been noted
above, in a few cases, this does not preclude their distributed implementation.?

In most cases, both distributed and centralized schedulers attempt to at least
converge on a mazrimal size matching.

DEFINITION 10: A maximal match on a bipartite graph is one for which
at least one endpoint of every edge in the graph is matched. Thus, no more edges
can be trivially added to a maximal matching. A maximum size or weight match is
maximal; the converse is not true.

In the following sections, we briefly enumerate the broad techniques used by

the two classes of schedulers.

2.3.5 Sequential and Iterative Matching

This simple, distributed technique is executed over multiple iterations. In each iter-
ation, a single input (according to a pre-defined sequence) gets to pick an unmatched
output to which it wishes to send a cell. If the input picks an output, both ports

are declared matched and are unavailable for other unmatched inputs in succesive

2The distributed scheduling algorithms for multi-stage, buffered switching systems, introduced
in chapter 4 are an instance of such ”centralized” algorithms which have been designed explicitly
for distributed implementations.
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iterations. Clearly, this technique requires NN iterations to converge on a maximal
matching.

The ¢ZIP algorithm discussed in [41] and the LOOFA algorithm introduced

in [34] are examples of algorithms that use sequential and iterative matching.

2.3.6 Parallel and Iterative Matching

This distributed technique, like the sequential and iterative technique, is executed
over multiple iterations. However, in each iteration, all the unmatched inputs send
requests in parallel to all the unmatched outputs for which they have queued cells. The
outputs resolve contending requests by sending a grant to one of the requesting inputs
and similarly, the inputs resolve contending output grants by sending an acknowledge
signal to one of the outputs.

Different parallel and iterative matching algorithms can be obtained with dif-

ferent contention resolution techniques.

1. Using Randomness

A simple way to resolve conflicts is to randomly pick one of the contending inputs
or outputs. PIM (Parallel Iterative Matching) introduced in [6] is a maximal
matching algorithm that tries to approximate the performance of a maximum
size matching algorithm. By using randomness, the algorithm also avoids the
starvation problem of maximum size matching. PIM can be proven to converge
on a maximal size matching in just O(log V) iterations with high probability.
PIM can provide 100% throughput under uniform i.i.d traffic though, with just
a single iteration, the throughput of PIM is limited to 63%.

2. Round Robin Pointers
iSLIP [42] is a parallel, iterative matching algorithm that uses input and output
pointers to resolve contention. In this technique, input (output) ports resolve
contention by picking the output (input) which comes first in a round robin order
starting from their output (input) pointer. In iSLIP, the pointers themselves, are
updated after each round to reflect the outcome of the matching. The specific
method used by ‘SLIP tends to keep the pointers from being synchronized, but

the algorithm does not guarantee any explicit desynchronization properties.

iSLIP is also a maximal size matching algorithm but can provide 100% through-

put under admissible, uniform i.i.d traffic with just one iteration. But PIM and
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iSLIP are designed to handle uniform traffic and have poor performance under
non-uniform traffic patterns with speedup = 1. However, both PIM and iSLIP
(and in general, all maximal matching algorithms) have 100% throughput for
all admissible, i.i.d traffic with speedup= 2 [27].

3. Desynchronized Round Robin Pointers
Unlike the update of pointers in :SLIP, it is possible to ensure that the input and
output pointers are always desynchronized by starting with a desynchronized
setting and updating them in a pre-defined order. This is the technique used in
SRR (Static Round Robin) [28].

4. Using Weights
Another way of resolving contention is to use the weights of the requests them-

selves in prioritizing them. Using appropriate weights, we can obtain the parallel
and iterative versions of LQF and OCF called iLQF, and iOCF [47].

The iLQF and iOCF algorithms have been shown (using simulations) to have
performance comparable to LQF and OCF under both admissible uniform and
non-uniform traffic. These algorithms (like {SLIP) require N iterations to con-
verge on a match in the worst case, although O(log N) iterations have been

deemed to be enough in practice.

2.3.7 Greedy Matching

Centralized algorithms, as opposed to distributed algorithms, have access to complete
state information from all inputs. Hence, a simple, greedy technique for approxi-
mating a maximum weight match is one which iteratively, picks an edge with the
maximum weight in the bipartite graph. Once the edge is picked, the corresponding
input and output are matched and all edges incident on them are removed from the
graph. This process can be continued until no edges are left in the graph, resulting
in a greedy, maximal size matching.

The Matrix Unit Cell Scheduler (MUCS) [18] is an example of such an algo-
rithm. The algorithm has been shown to perform well (using simulations), under
uniform random and bursty traffic. In spite of the O(N?) complexity of the MUCS
scheduler, it permits a transistor level hardware implementation with an execution

time of less than 100 ns using 2 yum CMOS technology.
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iLPF, an iterative version of the LPF algorithm, is also based on a similar
technique. Unlike, iLQF and iOCF, {LPF uses information from all inputs in its
weight assignment for each edge of the bipartite graph. Hence, we consider, :LPF to
be a centralized algorithm. In {LPF, pre-sorting of rows and columns is done to make
the greedy choice of the maximum weighted edge trivial. Simulation results show
that the performance of {LPF is comparable to that of LPF under all admissible
traffic [47]. Also, :LPF has been shown to give smaller cell delays than iLQF for

non-uniform traffic.

2.3.8 Reservation Vector

Another centralized technique is to use a single global array that can be accessed
by all inputs to share common information necessary for finding a good matching.
This technique is used by the Reservation with Preemption and Acknowledgement
(RPA) algorithm, where a single global reservation vector is sequentially accessed by
all the inputs to reserve access and also preempt other inputs from accessing the same
output [40].

The RPA algorithm requires 2N iterations and has O(N?) complexity. The
algorithm has been proven to converge on a matching whose weight is more than half

the weight of the maximum weight matching on the same bipartite graph.

2.3.9 Randomized Algorithms with Memory

Randomness has proven itself to be a useful technique for developing provably effi-
cient, algorithmic solutions to problems whose deterministic solutions are too com-
plex. Randomized algorithms are particularly simple to implemement because they
work on a few randomly chosen samples rather than on the whole state space. A sim-
ple randomized solution to the problem of finding an approximate maximum weight

matching as introduced in [20] is:

At each time step t, let the schedule S(t) used by the algorithm be the

heaviest of d (d > 1) matchings chosen at random.

However, [20] proves that the above algorithm is not stable even when d = O(N).
Tassiulas [39] presents an improved randomized algorithm with memory which works

as follows:
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At the end of each time step t — 1, the scheduler keeps in memory
the schedule S(t — 1). At the following time step t, it computes a new
matching M (t) (which is chosen randomly from all possible matchings)
and compares the W (M (t)) with W(S(t — 1)) keeping the one which has
the higher weight, i.e.,

S = 4 M@ W) > WS- 1)
S(t—1) otherwise

Thus, by using memory, this algorithm (called TASS) always looks to randomly find a
better match. The above algorithm has been proved to be stable for all Bernoulli i.i.d

traffic and requires just one iteration with O(log N) steps to compare the matchings.

2.3.10 De-Randomized Algorithms with Memory

In high capacity switches (which either have a large number of ports or, high indi-
vidual link capacities), the state of the switch, carried in its queue lengths, changes
slowly with time. This observation is used in [20] to contend that a matching with
maximum weight at time ¢, will be very similar (more precisely, a neighbour) to the
matching with the maximum weight at time ¢t — 1.

DEFINITION 11: For a giwen bipartite graph G, let G’ be the complete bi-
partite graph on the same set of input and output vertices, i.e, every input i has a
connecting edge to every output j in G’. Two matchings M and M' on G' are said
to be neighbours, if they have exactly two inputs i1 and 1o which are connected to
outputs j1 and jo in M, but are connected to jo and j, respectively, in M'. And the
matchings M NG and M' NG are said to be neighbours on G.

Note that, either of the cross-edges, (i1, 72) or (i, j1) might not be present in
G. Hence, a neighbour M’ N G can have fewer valid edges than M NG

The authors in [20] conjecture that instead of randomly picking d (d > 1)
matchings and choosing the heaviest (as is done in TASS), it is better to randomly
choose d neighbours and then choose the heaviest. This is the APSARA algorithm.
Using hardware to compute the weights of the d neighbours in parallel, APSARA
requires just a single iteration to compute its matching. We note that the match-
ing computed by APSARA need not be maximal. However, APSARA has 100%
throughput under admissible, Bernoulli i.i.d traffic [19].
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Figure 2.4: Configuration of a 3x3 crossbar and the corresponding permutation ma-
trix.

The original randomized algorithm (TASS) has poor delay performance. In [20]
the authors present two new improved algorithms LAURA and SERENA which use
only the heavy edges (edges with higher weight) from the previous matching (instead of
the whole matching itself) and information of new cell arrivals to find better matching.
In LAURA, at time ¢, the heavier edges of the matching used at time ¢t — 1 and a
randomly chosen neighbour are merged to find the matching used at time ¢. In
SERENA, at time ¢, the new cell arrival information at time ¢ is merged with the
heavier edges of the matching used at time t — 1 to find the new matching. Both
LAURA and SERENA are stable under all Bernoulli i.i.d traffic, although LAURA
has O(N (log N)?) complexity and SERENA has O(N) complexity.

Reference [37] presents a Derandomized Rotating Double Static Round Robin
(DRDSRR) algorithm that combines the low delay properties of SRR and stability
properties of randomized algorithms with memory. The algorithm has been proven
to be stable for all admissible, i.i.d traffic and has O(log N) complexity greater than
SRR (which has a pipelined implementation like iSLIP).

2.3.11 Matrix Decomposition

All the algorithms presented until now, view the problem of crossbar scheduling as
a bipartite graph matching problem. In [16], the authors redefine the problem of
crossbar scheduling as a matrix decomposition problem. Firstly, the schedule used by
a crossbar scheduler (a matching in the context of a bipartite graph) can be viewed

as just a permutation matriz.
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DEFINITION 11: An N x N permutation matriz has exactly one of the ele-
ments in each row and column set to 1. The rest of the elements of the matriz are
set to 0.

Fig. 2.4 shows an example of the schedule used by the crossbar scheduler and
the corresponding permuation matrix. Thus, given an arrival traffic rate matrix
A =[] (Nij, being the average arrival rate of traffic from input ¢ to output j), the
problem of crossbar scheduling can be defined as a decomposition of A into a series

of permutation matrices (Py), such that,
A<D onbPy
k

where, 0 < ¢, < 1 and >, ¢ = 1. With the decomposition, the permuation matrices
can then be used to configure the crossbar for the corresponding fraction of time

(denoted by ¢y), such that, the switching system is stable under the arrrival traffic,
A.

2.3.12 Birkhoff-von Neumann scheduler

In [16], the authors present a scheduler that uses the Birkhoff-von Neumann algorithm
to perform decomposition of any admissible arrival traffic rate matrix.
DEFINITION 12: An admissible traffic matriz is also known as a doubly
substochastic matriz. Furthermore, if the net arrival rate of traffic to any input or
output 1s exactly equal to 1, then, the matriz is said to be doubly stochastic.

The scheduler presented in [16] consists of the following steps:

1. Tt first uses a result by von Neumann [65], to find a doubly stochastic matrix that
is not smaller than the original arrival traffic rate matrix (a doubly substochastic

matrix). This algorithm has O(N?3) complexity.

2. Tt then uses a result by Birkhoff [11], to find a decomposition of the doubly
stochastic matrix obtained from the first step. This algorithm has O(N*®)

complexity.

3. It finally, uses the Packetized Generalized Processor Sharing (PGPS) algorithm
in [53] to determine which permutation matrix (obtained from the decomposi-
tion in step 2) is to be used in a given time slot. This algorithm has O(log N)

complexity.
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The BvN scheduler based on the Birkhoff-von Neumann decomposition has been
shown, using simulations, to have good throughput for all admissible traffic patterns.
However, the BvN scheduler needs to estimate the arrival traffic rates and perform a

complex decomposition and hence, is unsuitable for practical implementations.

2.3.13 Work Conserving Schedulers

All the results regarding the performance of various scheduling algorithms, presented
in previous sections, are stability results. These results, primarily, evaluate the perfor-
mance of the algorithms under only admissible traffic patterns. However, inadmissible
traffic patterns that overload various output ports of a switch are very common in IP
networks. Efforts have been made to design scheduling algorithms which can retain
the properties of output queued switches under all (both admissible and inadmissible)
traffic patterns. These worst case results usually need increased speedup in the
switch to maintain their throughput under all traffic conditions.

Reference [13] proposes a scheduling algorithm called Critical Cells First (CCF)
which (with speedup of 2) can exactly emulate an output queued switch, i.e, it is both
work conserving and preserves the cell ordering of an ideal output queued switch. CCF
needs to compute a stable matching which can take as many as N? iterations and
also the algorithm has high information complexity and needs information (for each
cell at an input) that depends on the state of all queues in the system. Though there
are techniques to reduce the matching complexity to O(N) and the number of cells
that need to be considered at each input can be upper bounded by N, they cannot be
applied together and as the authors note in [13] CCF remains a complex algorithm
to implement using current technology.

Reference [34] presents a simpler (O(N)) algorithm called Lowest Occupancy
Output First Algorithm (LOOFA) which keeps the switch work conserving under all
traffic conditions. This algorithm can be augmented with timestamps to preserve the
cell ordering in a switch with a speedup of 3 [56]. However, these significant algorithms

are only of theoretical interest and are not practical for high speed implementations.

2.3.14 Complexity Comparison

Complexity comparison of different scheduling algorithms for crossbar based switches
can often be unfair because of the varying contexts in which they have their sim-

plest implementations. For instance, while it makes sense to compare the number of
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iterations to convergence of distributed, iterative scheduling algorithms, the same is
not true for centralized algorithms. Even some centralized algorithms, like APSARA,
have been designed to take advantage of hardware parallelism and would have higher
complexities in a sequential computation. Hence, it would be unfair to compare all
the algorithms in a single, centralized context as done in [41]. Detailed implemen-
tation complexity comparison of algorithms is often possible only between similar
algorithms. For example, [45] has in depth notes on complexity comparison of PIM
and SLIP.

However, for the sake of completeness, we highlight the most important, quan-
titative notes regarding the implementation complexity of various scheduling algo-

rithms in their relevant contexts in Table 2.1.

2.3.15 Performance Comparison

Table 2.3 compares the performance of various scheduling algorithms under three

broad classes of traffic
1. Admissible, uniform i.i.d traffic.
2. Admissible, i.i.d traffic.
3. Inadmissible traffic.

From Table 2.1, Table 2.2 and Table 2.3, it is clear that, randomized and derandom-
ized algorithms (like APSARA and DRDSRR) are the best algorithms with respect
to both implementation simplicity and performance. However, these algorithms have
unpredictable performance under inadmissible traffic conditions.

Also, as can be noted, most of the performance results apply to admissible
traffic conditions and there are few algorithms (none of which are simple enough for
high speed implementations) that have good performance under inadmissible traffic

conditions.

2.4 Buffered Multi-stage Switches

In 1953, Charles Clos published his seminal work, ”A study of non-blocking switch-
ing networks”, in Bell Systems Technical Journal [14], in which he showed that it

was possible to construct a strictly non-blocking switching network containing fewer
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crosspoints than a crossbar of the same capacity. The field of multi-stage switching
architectures has since developed a rich technical literature and continues to be of
practical importance [26, 24]. For example, reference [64] generalizes Clos’s results to
systems that support connections with varying bandwidth requirements and [58] de-
scribes a multi-stage switch built with optical WDM grouped links based on dynamic
bandwidth sharing.

The performance of such buffered and unbuffered multistage switching net-
works has been studied, using analytical models and simulation techniques [55].

In a widely cited paper [66], Jenq proposed an elegant, iterative Markov chain
solution for analyzing the performance of binary banyan networks with a single buffer
at each switch point. This result has been extended to switching systems constructed
from an arbitrary number of line cards and an arbitrary number of buffer slots [60].
Turner et al. [63] developed similar techniques for switching systems with shared
buffering and later improved these results in [10].

The general conclusion of these studies is that these systems can provide ex-
cellent performance when carrying traffic that does not cause sustained overloads on
any output links. In overload traffic conditions, the small buffers in these buffered
multi-stage switching fabrics can be congested with cells destined to the overloaded
outputs and interfere with the flow of traffic to other non-overloaded outputs causing

a significant drop in throughput.

2.5 Load Balanced Switches
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Figure 2.5: The Load Balanced switch.

The Birkhoff-von Neumann scheduler, though impractical, motivated the au-

thors in [15] to propose a much simpler, two-stage switch called the Load Balanced



27
Birkhoff-von Neumann switch, shown in Fig. 2.5. The intuition behind this switch

design is as follows:

1. The BvN scheduler needs to simply cycle through a fixed set of permutation
matrices when the incoming traffic is uniform (also, no rate estimation is re-

quired).

2. A similar switch (which is also configured using a fixed set of permutation
matrices, cyclically) can be used to convert admissible, non-uniform input traffic
to uniform traffic! This switch can be used as a load-balancer to a second BvN

switch which needs to just handle uniform traffic.

Thus, by using a two stage switch, both stages of which are identical and walk through
a fixed sequence of configurations (permutation matrices), the load balanced, BvN
switch can achieve 100% throughput for all admissible, random traffic. This archi-
tecture is the basis for the switch described in [15].

Though, this switch has many attractive properties like simple design, low
hardware complexity, no speedup and O(1) complexity of the scheduling algorithm
(fixed set of configurations), it also has a significant drawback. This two stage switch
can badly resequence packets. To avoid resequencing errors, each output requires a
resequencing buffer capable of holding about n? packets. These buffers impose a delay
that grows as the square of the switch size. For the 600 port switch described in [31],
operated with a switching period of 100 ns, this translates to a delay of about 36
milliseconds, a penalty which applies to all packets and not just an occasional packet.

Also, like most of the architectures and scheduling algorithms discussed in this
chapter, the load balanced switch has unpredictable performance under inadmissible

traffic conditions.

2.6 Summary

In this study of related literature for scheduling traffic in Combined Input and Output

Queued (CIOQ) switches, we have identified several unanswered questions.

1. Firstly, as noted in Section 2.3.15, given that most performance studies of im-
plementable scheduling algorithms are primarily stability results, how badly do

these algorithms perform under inadmissible traffic conditions?
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2. Also, we have seen that, there is no algorithm that has a simple implementation

and performs well under all traffic conditions.

3. Again, in the case of buffered, multi-stage switching systems, we have identified
that these architectures do not have built in mechanisms to maintain their

throughput under overload traffic conditions.

In this thesis, we present mechanisms, algorithms and their related performance stud-

ies to address these aforementioned issues.
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Table 2.1: Comparison of run-time complexity of various scheduling algorithms for
crossbar based CIOQ switches.

Algorithm ‘ Complexity ‘
Mazimum Size Matching Algorithms ‘
MSM Most efficient algorithm currently known converges in
O(N®/?) time [22] and is equivalent to Dinic’s algo-
rithm [17].
Mazimum Weight Matching Algorithms
LQF, OCF, | Sequential computation takes O(N?°log N) [62] while,
MWM-f(z) | parallel computation takes O(N?/3(log N)*) with a poly-

nomial number of processors [7].

Sequential and Iterative Matching Algorithms

iZIP

| Requires N iterations to find a maximal match [41].

Parallel and Iterative Matching Algorithms

PIM

Provably converges in O(log N) iterations on average [6].
Requires O(N) iterations in worst case.

iSLIP

Converges to a maximal match in just oneiteration on av-
erage under uniform random traffic [42]. Requires O(N)
iterations in worst case.

SRR, iLQF,
iOCF

Like iSLIP, these algorithms require N iterations to
converge in the worst case. But, log N iterations have
been deemed sufficient in practice [47].

Greedy Algorithms

MUCS

Has O(N?) complexity but allows a fully parallel, tran-
sistor level implementation of the core of the algorithm
with execution time of < 100 ns using 2pm CMOS tech-
nology [18].

iLPF

Has both, an iSLIP like implementation and a O(NN) wave
front arbiter implementation [47].

Randomized Algorithms with memory

TASS

O(log N) complexity for computing and comparing the
weight of the new match with that of the previous
one [39].
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Table 2.2: Comparison of run-time complexity of various scheduling algorithms for
crossbar based CIOQ switches (continued from Table 2.1).

‘ Algorithm ‘ Complexity

De-randomized Algorithms with memory

APSARA

With hardware parallelism, APSARA requires just a sin-
gle iteration. Within each iteration, APSARA takes
O(log N) time for comparing N values [19].

LAURA

Executed for a single iteration with O(N(log N)?) com-
plexity [20].

SERENA

Executed for a single iteration with O(N) complex-
ity [20].

DRDSRR

Has O(log N) complexity greater than SRR which has a
pipelined implementation like ¢SLIP [37].

Birkhoff-von Neumann Scheduler

BvN

The most complex step of the algorithm takes O(N*?)
time. If this computation is performed off-line (for slowly
changing traffic), it has O(log N) complexity [16].

Work Conserving Algorithms

LOOFA

Is similar to sequential, iterative algorithms and has
O(N) complexity [34].

CCF

O(N?) iterations to compute a stable matching. Also has
very high information complexity [13].
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Table 2.3: Summary of performance results of various scheduling algorithms for cross-
bar based CIOQ switches under various traffic conditions.

‘ Traffic Type ‘ Performance of Algorithms ‘
Admissible, 1. Throughput of PIM with one iteration limited to 63%.
Uniform, i.i.d. 2. All other algorithms have 100% throughput.

3. With a speedup of 2, CCF and LOOFA are work-
conserving.
Admissible, 1. PIM and iSLIP have poor performance

Non-uniform, i.i.d | with a speedup of 1.

2. With a speedup of 1, maximum size matching is un-
stable for all switch sizes.

3. With a speedup of 2, all maximal size matching algo-
rithms (including PIM and iSLIP) are stable.

4. MWM, randomized and derandomized algorithms
proven to be stable.

5. MUCS, iLQF, iOCF, iLPF, RPA and BvN shown, us-
ing simulations, to have good performance.

6. With a speedup of 2, CCF and LOOFA are work-
conserving.

Inadmissible 1. With a speedup of 2, CCF and LOOFA are work-
conserving.

2. All the other algorithms have unpredictable
performance.
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Chapter 3

Stress Resistant Scheduling
Algorithms

3.1 Introduction

3.1.1 Implementation Complexity

In Chapter 2, we reviewed a wide variety of scheduling algorithms for crossbar based
CIOQ switches with varying performance and implementation complexities. However,
we note that the implementation complexity is the primary factor in determining
which algorithms are implemented in most high capacity routers. The capacity of a
router is defined as the product of the number of links (V) and the individual link rates
(R). Hence, the capacity (/N x R) of the router increases with both increasing link rates
and increasing number of links supported on each router. Such high capacity routers
pose stringent requirements on the execution time of the scheduling algorithms. For
example, a switch with links operating at a rate of 10 Gb/s and carrying cells with a
minimum size of 50 bytes, has less than 40 ns to make a scheduling decision! Hence,
most scheduling algorithms used in practice are heuristic algorithms optimized for

implementation simplicity.

3.1.2 Theory vs Simulation

Because of the use of simple, implementable, heuristic scheduling algorithms, most
high performance scheduling algorithms and their proven performance results are only
of theoretical interest. In particular, the worst case results are of little practical use,

since the work conserving scheduling algorithms that maintain their throughput in
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all traffic conditions cannot be used in these high capacity switches because of their
high implementation complexity.

Because of the relative difficulty in applying theoretical evaluation techniques
to heuristic algorithms in practice, a number of simulation techniques are being widely

used.

e These techniques can test the performance of any scheduling algorithm under

a variety of traffic conditions.

e Also, with the use of increased speedups in the switch, these techniques can be

used to test the performance of the algorithms with varying speedups.

e Any implementation optimization introduced to an algorithm (like execution

with a reduced number of iterations) can be tested using these techniques.

3.1.3 Inadmissible Traffic Conditions

Most of the traffic patterns currently used in simulation studies are admissible traffic
patterns. These traffic patterns, by definition, do not overload any ports of the
switch and tend to obscure significant differences that affect the robustness of different
algorithms when exposed to extreme traffic conditions.

This is particularly of concern because of the unregulated nature of IP networks
which can cause sustained overloads at output ports of routers. There are a number

of factors which can lead to overload problems in IP networks:

e limited route diversity which makes congested links common.

e use of route selection mechanisms which are not guided by session bandwidth

needs.
e sudden route changes which can cause rapid traffic shifts.
e use of slow congestion control mechanisms.

e presence of malicious users.

These overload conditions in IP networks are essentially inadmissible traffic patterns
that can potentially cause scheduling algorithms to underperform leading to a loss
in throughput. Hence, it is not clear how most practical scheduling algorithms used
in switches would perform under more realistic, inadmissible traffic conditions in TP

networks.
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3.1.4 Chapter Outline

To study the performance of scheduling algorithms under these extreme traffic con-
ditions, we have designed a stress test. This stress test is a traffic pattern which
simulates the unregulated nature of IP networks by overloading the various outputs
of a switch with the objective of bringing about the worst case performance of the
scheduling algorithms. The test, while not providing any conclusive evidence, helps
us in making meaningful distinctions among algorithms operating under extreme con-

ditions. We use this stress test as a tool to gain insight into

e performance of practical scheduling algorithms under extreme conditions (with
varying speedups).

e performance of work conserving scheduling algorithms under speedups < 2.

e design of stress resistant scheduling algorithms which maintain their throughput
both under admissible traffic and extreme traffic conditions and are still simple

enough to be used in high speed implementations.

This chapter is organized as follows. In Section 3.2, we first introduce the var-
ious traffic patterns and metrics used in simulation studies and present a new metric
called miss fraction and an inadmissible traffic pattern called the stress test to eval-
uate the performance of scheduling algorithms in overload conditions. We use these
various traffic patterns to study the performance of crossbar scheduling algorithms in
Section 3.3. In Section 3.5, we use the insights gained from the simulation studies to

design stress resistant scheduling algorithms for crossbar based CIOQ switches.

3.2 Simulating Overload Traffic Conditions

3.2.1 Throughput Metrics

How do we measure/quantify the throughput of a scheduling algorithm?

1. Stability
In theory, a scheduling algorithm is said to achieve 100% throughput if it is
strongly stable: i.e, if it can be shown that E[X ;(t)] < oo, Vi, j where Xj ;(n)
is the occupancy at time n of the VOQ at input ¢ that holds cells destined for

output j (refer section 2.1.2 for complete definitions).
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2. Queuing Delay

In practice, the performance of scheduling algorithms which cannot be theoreti-
cally proven to be stable is quantified by measuring the average queuing delay of
packets under various simulated traffic workloads. In some cases, average input
queue length has also been used as a metric, because, the average queuing delay
can be inferred from it by using Little’s law. The appeal of this metric actually
lies in the fact that it obviates the need for a packet by packet simulation which
is necessary to measure individual packet delays while directly measuring the

average queuing delay.

Average queuing delay as a metric can be used to study the relative performance
of two algorithms for a given workload. But, it is difficult to quantify the ab-
solute performance (throughput) of an algorithm using the measured average
queuing delays, especially, when the traffic is non-uniform. Even under uniform
traffic, while the maximum throughput achieved can be inferred from the mea-
sured average queuing delays, it is non trivial to quantify the exact throughput
achieved at various traffic loads. However, scheduling algorithms which provide
(measured) bounded, average queuing delays can be concluded to provide 100%

throughput under that traffic pattern.

Unfortunately, neither of these metrics is of any use when the traffic is inadmis-
sible. Inadmissible traffic conditions, by definition, oversubscribe a switch port
(an output port in practice) and result in unbounded queue lengths at inputs.
This implies that a scheduling algorithm cannot be stable under these traffic
conditions. Similarly, the measured average queuing delays of the packets are
also unbounded in these traffic conditions, with the inherent queuing delays of
the packets due to the traffic source dominating over the actual delays induced

by the scheduling algorithm.

3. Work Conserving
Hence, in theory, we seek algorithms which can be proven to be work conserv-
ing under all traffic conditions (including inadmissible traffic). As defined in
section 2.1.3, a scheduling algorithm is said to be work conserving if in a given
operating cycle, every output for which there are cells queued in the system
(at input ports and/or output ports), transmits a cell on its outgoing link, i.e,
an output always "works” when there are cells queued in the system. Thus,

a work conserving switch is always busy when the corresponding ideal output
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queued switch is busy. However, algorithms that can be proved to be work
conserving are too complex and many implementable algorithms can be shown

(using counter examples) to not be work conserving.

3.2.2 Miss Fraction

In this section, we introduce a new metric called the miss fraction to quantify the
throughput achieved by a scheduling algorithm used in a CIOQ switch. This metric
has been defined to measure the ”work-conservingness” of an algorithm under any
simulated traffic condition. Hence, this metric can be used to study the performance,
under overload traffic conditions, of algorithms which cannot be theoretically proved
to be work conserving. In a given measurement period let N4 be the number of cells
forwarded by a switch using scheduling algorithm A and N; be the number of cells
forwarded by the ideal output queued switch when subjected to the same workload
as algorithm A. Then miss fraction is defined as
. . Na
miss fraction =1 — N,
Thus, the metric essentially determines the relative loss in throughput of a switch
using the given scheduling algorithm as compared to the ideal output queued switch
under the same traffic conditions. The miss fraction proves to be a particularly useful
metric in inadmissible traffic conditions where the average queuing delays are usually

unbounded and hence immeasurable.

3.2.3 Admissible Traffic Patterns

The following traffic patterns have been used in simulation studies of scheduling

algorithms.

1. Uniform traffic
In the uniform traffic pattern, for a given load p < 1, the average rate of traffic

arrival at any input ¢ to any output j is equal to . Thus,
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where, A is the traffic matrix of average arrival rates.

2. Hotspot traffic
In the hotspot traffic pattern, output 1 (the hotspot) receives twice as much

traffic as other outputs, from each input. Thus,

2 1 1

A=—L !
N? ¥ N

2 1 1

3. Diagonal trafic
In the diagonal traffic pattern, each input i directs a fraction (f) of its incoming
traffic to output ¢ and the remaining to output (i+1) mod N. This traffic pat-
tern is clearly a lot more skewed than the uniform or the hotspot traffic patterns.
The diagonal traffic pattern has been widely used to study the performance of

algorithms under non-uniform traffic patterns.

4. Log-diagonal traffic
The log-diagonal traffic pattern is less skewed than a diagonal traffic pattern
but still spreads the traffic from various inputs in a non-uniform fashion. In
this pattern, each input directs exponentially increasing fractions of its traffic

to various outputs. Thus,

QN-1 oN=2 1

0 1 2Vt 2
A= :

2N72 2N73 2N71

Of these, hotspot, diagonal and log-diagonal are non-uniform but admissible traffic

patterns. In general, algorithms tend to have similar performance under uniform and
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Figure 3.1: Example of stress test with 3 participating inputs and 4 phases

hotspot traffic patterns and diagonal and log-diagonal traffic patterns. But clearly,
these traffic patterns do not test the performance of the algorithms in overload con-

ditions.

3.2.4 Stress Test

To test the performance of scheduling algorithms for CIOQ switches under extreme
and inadmissible traffic conditions, we have designed a stress test. The stress test
simulates unregulated traffic by causing sustained overloads at various outputs of the
router. Also, while stressing individual outputs, the test attempts to bring about the
worst case performance in the work-conserving nature of the scheduling algorithm. To
achieve this, the test takes an adversarial approach to stressing various outputs with
the goal of increasing the miss fraction of the scheduling algorithm. The adversarial

approach of the stress test tries to create conditions where,

1. A single output which has an empty queue has cells queued for it at various

inputs.

2. Inputs which have cells queued for an output with an empty queue, also have

cells queued for other outputs.

A traffic pattern which can create such conditions can potentially cause a scheduling
algorithm to incur larger miss fractions. In particular, the stress test we have designed
consists of a series of phases, as illustrated in Fig. 3.1. In the first phase, the arriving
traffic at each of several inputs is sent to a single output. This causes each of the
inputs to build a backlog for the target output. The arriving traffic at all inputs
is then switched to a second output, causing the accumulation of a backlog for the

second output at each of the inputs. Successive phases proceed similarly, creating
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Figure 3.2: Queue lengths of various VOQs and miss fraction for PIM under a stress
test with 3 participating inputs and 4 phases. (N=16, speedup=1.5)

backlogs at each input for each of several outputs. During the final phase, the arriving
traffic at each of the inputs is switched to distinct new outputs. Since, these inputs
are the only source of traffic for the new target outputs, they must send packets to
them as quickly as they come in, while simultaneously clearing the backlog for other
outputs, in time to prevent underflow at those outputs. This creates an extreme
condition that can cause underflow and increase the miss fraction. The timing of the
transitions is chosen to ensure that all the VOQs at each of the participating inputs
still have some backlog at the final transition. More specifically, to create the worst
case traffic conditions for a given algorithm, the traffic is switched to a new target
output when the input backlog for the current target rises to the same level as the
input backlog for the previous target. However, when comparing the performance of
different schedulers, the transition times and measurement periods are fixed and the
same test is applied to all algorithms. The stress test can be varied by changing the
number of participating inputs and the number of phases.

Fig. 3.2 better illustrates the progress of a stress test. Fig. 3.2(a) plots the
queue lengths of various VOQs of the first input (0), of a switch under a stress test
with 3 participating inputs and 4 phases. (This test is illustrated in Fig. 3.1.) The
algorithm used in the example is PIM and the speedup of the switch is 1.5. The plot
shows how the input directs its traffic to a new output when the input backlog to
the current output equals that of the backlog to a previous output. In the last phase

input 0 is the only input sending traffic to output 3 but it still accumulates a backlog



40
to that output indicating misses incurred by output 3. Fig. 3.2(b) shows the average
miss fraction incurred by the algorithm in this test. We use the interval from the
beginning of the last phase to the end of the simulation as a measurement period for
the average miss fraction due to the stress test. This explains the spike in the miss
fraction curve in Fig. 3.2(b). Algorithms which have smaller miss fractions under
these stress tests evidently maintain their throughput even in overload situations.

We note that the stress test only exemplifies a general approach to evaluating
CIOQ algorithms under extreme conditions. There may well be other stress test
scenarios that are more stressful at least for some algorithms and that algorithms
that are designed to perform well on the stress test might perform poorly under
other tests. However, the intuitive basis of the stress test provides good evidence for
distinguishing among algorithms which perform well in overload situations and those
that do not.

We study the performance of various centralized crossbar scheduling algorithms
under the stress test and present simple improvements which retain the desirable

properties of these algorithms and make them stress resistant.

3.3 Crossbar Schedulers

For the purposes of our performance evaluation of algorithms, we study representative

algorithms from three broad classes of crossbar schedulers.

1. PIM and iSLIP which are maximal size matching algorithms that attempt to

approximate a mazximum size matching.

2. APSARA which is a heuristic algorithm that attempts to converge on a mazi-

mum weight matching.

3. LOOFA which is a work-conserving algorithm.

3.3.1 Parallel Iterative Matching (PIM)

PIM is an iterative matching algorithm which attempts to converge on a maximal

match in multiple iterations. Each iteration consists of three steps where

1. Each unmatched input sends a request to every output for which it has a queued

cell.
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2. If an unmatched output receives any requests, it chooses one randomly to grant.
3. If an input receives any grants, it choose one to accept and notifies that output.

In [6], the authors show that the algorithm converges to a maximal match in O(log N)
iterations by showing that each iteration eliminates an average of 3/4 of the remaining
requests. It is interesting to note that this property is independent of the way the
inputs select a grant in the third step of the algorithm.

Also, since the outputs send their grants randomly, when all the input queues
are occupied, the probability that no output will grant to a particular input in one
iteration is ((N — 1)/N)"). Hence, in a single iteration, the throughput of PIM is
limited to (1 — 1) for large N, which is approximately 63% for N = 16.

3.3.2 TIterative Round Robin Matching with Slip (¢SLIP)

tSLIP, like PIM, is an iterative algorithm but is designed to give higher throughputs

even for a single iteration. The algorithm iterates the following three steps

1. Each unmatched input sends a request to every unmatched output for which it

has a cell queued.

2. If an unmatched output receives any requests, it chooses one that appears next
in a fixed, round-robin schedule starting from its input pointer. The output
notifies each input whether or not its request was granted. The input pointer of
the round-robin schedule is incremented (modulo N) to one location beyond the
granted input if and only if the grant is accepted in step 3 of the first iteration.

The pointer is not incremented in subsequent iterations.

3. If an input receives a grant, it accepts the one that appears next in a fixed,
round-robin schedule starting from its own output pointer. The output pointer
of the round-robin schedule is incremented (modulo N) to one location beyond
the accepted output.

The ¢SLIP algorithm maintains good performance even with a single iteration
under heavy loads due to its desynchronization effect. Step 2 of the algorithm causes
different outputs to send grants to different inputs, particularly, under heavy loads,

causing larger matches in a single iteration.
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3.3.3 APSARA

APSARA is an algorithm that requires just a single iteration to match the perfor-
mance of the maximum weight matching algorithm. Here, we describe the randomized
variant of APSARA as presented in [19].

At the end of time t — 1, the scheduler keeps in memory the schedule
S(t—1). At the following time step t, it randmonly picks d neighbours!
of S(t — 1) (N4(S(t —1))) and computes their weights in parallel. The
matching that has the mazimum weight among Ny(S(t —1))U S(t —1) is
used as the schedule for time t, S(t). Le,

S(t) = arg mazxpen,(si-1yuse—1){W (M)}

This version of APSARA has also been shown to have 100% throughput and good
delays under admissible, i.i.d traffic in [19].

3.3.4 Lowest Occupancy Output First Algorithm (LOOFA)

LOQFA is also an iterative algorithm which iterates the following steps till no more

matches can be made

1. Each unmatched input sends a request to an output with the lowest occupancy

among those for which it has at least one queued cell.

2. Each output, upon receiving requests from multiple inputs, selects one and

sends a grant to that input.

It has been proven that a switch using LOOFA with a speedup of 2 is work conserving
under all traffic conditions [34]. But the algorithm requires O (V) iterations to obtain
a maximal matching. This means that, unlike PIM and ¢SLIP, the algorithm can
have poor performance when used with fewer iterations. For example, under uniform
traffic and heavy loads when all inputs have cells queued for all outputs, all the inputs
send requests to the same output in a single iteration! Such behaviour makes LOOFA
unsuitable for use in high speed implementations where there is only time to perform

a few iterations.

I Refer section 2.3.9 for the definition of a neighbour
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3.4 Performance Evaluation

3.4.1 Miss fraction vs Delay
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Figure 3.3: Average delays and miss fractions for various iterations of PIM, N=16,
speedup=1.0

In this section, we study the performance of PIM and iSLIP under uniform
traffic for varying numbers of iterations. The speedup of the switch is 1.0 implying
that all queuing is done at the inputs. Fig. 3.3 and Fig. 3.4 show the difference
between using miss fraction and average queuing delay as a metric versus offered load
for PIM and ¢SLIP, respectively.

While the maximum load carried by a scheduler can be determined from the
delay plot (by looking for the point at which queuing delays become unbounded), the
miss fraction curves also indicate the throughput achieved by the algorithms at all
loads. It can be inferred from Fig. 3.3(a) that the queuing delays are unbounded for
PIM for load > 0.63 and that the miss fraction for PIM in Fig. 3.3(b) increases to
0.36 for an offered load of 1. This is in agreement with the fact that the throughput
of PIM is limited to 63% (for N = 16) for a single iteration. ¢SLIP on the other
hand performs much better even with a single iteration. The miss fraction curve of
iSLIP in Fig. 3.4(b) shows that for load > 0.63 the rate of increase of miss fraction
actually shows a sharp decrease. This is due to the desynchronization effect of :SLIP

which comes into play when almost all VOQs have non-zero backlogs which happens
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for load > 0.63. The desynchronization effect is also resposible for the linear increase

in miss fraction of zSLIP.

3.4.2 Varying Speedup and Number of Iterations

As mentioned, one of the advantages of using simulation studies is that we can test the
performance of scheduling algorithms under various implementation optimizations.
Fig. 3.5 shows the performance of PIM with 1 and 4 iterations under various traffic
patterns with a speedup of 1. Clearly, while PIM with 4 iterations has good through-
put under uniform traffic, it still performs poorly under non-uniform traffic patterns
like the diagonal and log-diagonal traffic patterns. Fig. 3.6 shows the performance
of sSLIP with 1 and 4 iterations under various traffic patterns with a speedup of 1.
Again, we note that algorithms tend to have similar performance under uniform and
hotspot traffic though the latter is a non-uniform traffic pattern. Clearly, :SLIP has
good performance under these traffic patterns even with a single iteration but like,
PIM, performs poorly under diagonal and log-diagonal traffic patterns.

Fig. 3.7 shows that the poor performance of PIM under non-uniform traffic
patterns can be overcome by using increased speedup in the switch. In fact, PIM
with a single iteration requires a speedup of < 1.7 and PIM with four iterations
requires a speedup of < 1.3 to have negligible miss fractions for all these traffic
patterns! Like PIM, iSLIP also has greatly improved performance under all traffic
patterns with increased speedup as shown in Fig. 3.8. With just a speedup of 1.5 for
1SLIP with a single iteration and a speedup of < 1.3 for ¢:SLIP with four iterations,
the miss fractions for these algorithms are almost negligible.

There are results that demonstrate that all maximal size matching algorithms
(including PIM and ¢SLIP) have 100% throughput for admisible, i.i.d traffic [27]. But,
one of the conclusions that can be drawn from these studies is that, with sufficient
speedup, both PIM and iSLIP can be executed for just a single iteration and still
have good performance under these admissible traffic patterns!

Fig. 3.9 shows the performance of APSARA with varying loads under various
admissible trafic patterns. Clearly, APSARA (which requires just a single iteration)

has good performance under all traffic patterns even for a speedup= 1.
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Figure 3.4: Average delays and miss fractions for various iterations of :SLIP, N=16,

speedup=1.0
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Figure 3.5: Miss fractions for various iterations of PIM (N=16, speedup=1.0), with
varying load, under various admissible traffic patterns.
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Figure 3.6: Miss fractions for various iterations of iSLIP (N=16, speedup=1.0), with
varying load, under various admissible traffic patterns.
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Figure 3.7: Miss fractions for various iterations of PIM (N=16, load=1.0) with varying
speedup, under various admissible traffic patterns.
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Figure 3.8: Miss fractions for various iterations of iSLIP (N=16, load=1.0), with
varying speedup, under various admissible traffic patterns.
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Figure 3.10: Miss fractions for PIM, iSLIP and LOOFA under stress test with 5
participating inputs and 12 phases.

3.4.3 Stress Test

The admissible traffic patterns can obscure severe shortcomings of algorithms when
exposed to extreme traffic conditions. In this section, we use the stress test to study
the performance of the algorithms under more demanding overload condtions.

To compare the performance of the algorithms under the stress test, recall that
the transitions times and the measurement periods of the test have to be fixed for all
algorithms. To determine these basic parameters, we subject one of the algorithms
to a stress test where the transitions between various phases takes place when the
backlog of the VOQ at an input to a target output equals that of the backlog of
a VOQ to the previous target output. In all these stress tests, the initial backlog
threshold (inputs switch to phase 2 on building this backlog to output 0) is set to
10000. We then compare the performance of the rest of the algorithms under the
same test with these basic parameters.

Fig. 3.10(a) and Fig. 3.10(b) compares the performance of PIM, iSLIP, AP-
SARA and LOOFA under a stress test with 5 participating inputs and 12 phases at
various speedups. In Fig. 3.10(a) the basic parameters were determined to create a
worst case traffic scenario for PIM(4) under a speedup of 2.0. We denote the test with
these parameters as Test A. As can be noted, PIM and ¢SLIP have poor performance
under the stress test. :SLIP has almost the same performance for iterations 1 and

4 and has miss fraction of 30% even at a speedup of 2. PIM shows improvement
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with increase in iterations from 1 to 4 but still has a higher miss fraction at various
speedups when compared to LOOFA. LOOFA has been proven to be work conserv-
ing for unlimited iterations under all traffic conditions for a speedup of 2. For this
particular test, LOOFA needs a speedup of just 1.3 to eliminate all underflow.

Fig. 3.10(b) compares the performance of the algorithms under a stress test
where the basic parameters were determined to create worst case traffic for LOOFA
at a speedup of 2.0 (Test B). Again, LOOFA has zero miss fraction for speedups
> 1.5 showing that the output ordering based on queue lengths in LOOFA effectively
reduces all underflow even in extreme conditions. Although the same test doesn’t
cause PIM and iSLIP to perform as badly as in Fig. 3.10(a), the performance of
these algorithms does not match that of LOOFA.

These tests demonstrate the underperformance of widely used algorithms like
PIM and :SLIP under overload traffic conditions.

3.4.4 Conclusions

In the previous sections, we have studied the performance of PIM, i:SLIP, APSARA
and LOOFA under a variety of traffic conditons. We have found that

1. PIM and ¢SLIP can in fact, have good performance under all admissible traffic

conditions even with a single iteration when used with sufficient speedup.

2. APSARA has good performance under admissible traffic with a speedup of 1.0
but has poor performance under more demanding, inadmissible traffic condi-

tions.

3. LOOFA has good performance under all traffic patterns with modest speedups
but only serves as a performance benchmark because of its high implementation

complexity.

3.5 Stress Resistant Algorithms

The better performance of LOOFA under the stress test suggests that biasing outputs
to favour those with smaller queue lengths is the key to maintaining throughput even
under extreme traffic conditions. Unfortunately, complete ordering of outputs and
the large number of sequential iterations needed to use this ordering can themselves

be obstacles to implementing such algorithms at high speeds. But, we note that the
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traffic conditions that are under consideration here are essentially persistent traffic
conditions and that algorithms which achieve and use even approximate or partial
ordering of outputs can perform significantly better than those that do not take output
backlogs into consideration at all. In this section we introduce simple heursitics to
modify all the discussed scheduling algorithms to improve their performance under

the stress test while still keeping them simple enough to implement.

1. For PIM and #SLIP which attempt to approximate the performance of a max-
imum size matching, we introduce a Lowest Layer Selection (LLS) heuristic
which achieves a coarser ordering of outputs based on their queue lengths. We
use LLS to design stress resistant variants of PIM and iSLIP calles LLS-Random
(LLS-R) and LLS-Slip (LLS-S).

2. For algorithms like APSARA that attempt to converge on a maximum weight
matching, we present improved weight metrics that include output queue lengths
in their computation and present algorithms like Shortest Output Longest Input

First (SOLIF), which have improved performance under the stress test.

3. For work-conserving algorithms like LOOFA, we introduce an odd-even sorting
heuristic which achieves only an approximation of the ideal ordering of outputs
but converges to the ideal ordering under persistent traffic conditions. We use
the odd-even sorting technique to design an approximate version of LOOFA
called approximate LOOFA (A-LOOFA).

3.6 Lowest Layer Selection

PIM and iSLIP perform poorly compared to LOOFA under the stress test because
they ignore output occupancies. On the other hand, they perform well under uniform
traffic and also require fewer iterations to converge making them more suitable for
high speed implementations.

In this section, we describe a simple low-cost mechanism that can be used
to make PIM and iSLIP stress resistant. The improved algorithms have the same
performance under uniform traffic and have greatly improved performance under the
stress test. The idea is to prioritize the outputs based on their queue lengths since,
underflow occurs only when an output queue is empty. The various outputs of the

switch are divided into layers based on their queue length using an exponentially
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graded scale. Fig. 3.11 shows an instance of such a scale with 16 layers. In this scale,
queues with length < 8 are put in layer 0, queues with length > 8 and < 16 are put
in layer 1 and so on. The queue length corresponding to a layer i is given by 8 x 2°.
The last layer of the scale (15) holds all queues with lengths > 8 x 24, indicating
that the scale doesn’t differentiate between outputs with the largest queue lengths.

Thus the layering of queue lengths
e achieves a coarser ordering of outputs based on queue lengths.

e bigger layers are used for larger queue lengths, indicating that there is less

chance of underflow at outputs with large queue lengths.

e beyond a queue length limit (indicated by the final layer), all outputs are treated
equally as it is not necessary to order outputs with large queue lengths to avoid

underflow.

Hence, the number of layers itself is independent of the number of ports of the switch
(N) making it possible to use a single scale with 8 to 16 layers for high speed switches
with large numbers of ports. Also, the layers to which various queues belong can be

trivially updated whenever cells are added or removed from the various queues.

Queuelength | 8 | 16 | 32| 64 Y- k- o~

Layer o| 1] 2] 3 « o« | 13| 14115

Figure 3.11: Exponentially graded scale used in assigning outputs to layers based on
their queue length.

Algorithms use the layers to which the various outputs belong by employing a
Lowest Layer Selection (LLS) heuristic. The algorithms (LLS-R and LLS-S) in their
accept phase give priority to outputs in the lowest layer. Thus, the use of the Lowest
Layer Selection heuristic in these algorithms introduces a bias towards outputs with
smaller queue lengths. The exponential scale used in defining the layers determines
the extent of this bias, since the algorithms still show their default behaviour to
outputs which belong in the same layer. A scale which has thin (and hence, more)
layers, forces the inputs to always accept outputs with smaller queue lengths and a

scale with thick layers causes the inputs to pick outputs randomly (in case of PIM)
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or in a round-robin order (in case of iSLIP) irrespective of the queue lengths of the
outputs since, outputs more often than not will belong to the same layer.

The heuristic itself can be implemented at negligible cost by maintaining per
input grant vectors. These vectors have 1 bit corresponding to each layer. When
an output sends a grant to an input in a scheduling algorithm, it also sets the bit
corresponding to the layer to which its queue length belongs, in the input’s grant
vector. The input can then easily find the lowest layer of all granting outputs by
using a priority encoder to find the first bit set to 1 in the grant vector. Also, for
crossbars of moderate size (32 ports), we can quickly determine the output with the

smallest layer index using an N-way minimum finding circuit.

3.6.1 Lowest Layer Selection - Random (LLS-R)

LLS-R is an interative matching algorithm which uses the LLS heuristic and per input
grant vectors to improve the performance of PIM under the stress test. The LLS-R

algorithm iterates the following three steps.

1. Each unmatched input makes a request to every unmatched output for which
it has a queued cell.

2. If an unmatched output receives any requests, it chooses one randomly to grant.

3. Inputs use their grant vectors to determine the lowest layer among all the grant-

ing outputs and accept an output belonging to this layer and notify that output.

It is evident that the algorithm is actually similar to Parallel Iterative Matching
in the first two steps and differs only in the accept phase where the inputs pick an
output from the lowest layer. Hence, the algorithm will still converge on a maximal

match in O(log N) iterations. The proof of this claim is similar to the argument made
in [6] for PIM.

3.6.2 Lowest Layer Selection - Slip (LLS-S)

LLS-S is a variant of the ;SLIP algorithm obtained by using the LLS heuristic and

per input grant vectors. The algorithm iterates the following three steps

1. Each unmatched input sends a request to every unmatched output for which it

has a cell queued.



53

2. If an unmatched output receives any requests, it chooses one that appears next
in a fixed, round-robin schedule starting from its input pointer. The output
notifies each input whether or not its request was granted. The input pointer of
the round-robin schedule is incremented (modulo N) to one location beyond the
granted input if and only if the grant is accepted in step 3 of the first iteration.

The pointer is not incremented in subsequent iterations.

3. Inputs use their grant vectors to determine the lowest layer among all granting
outputs, and accept an output from this layer, that appears next in a fixed,
round-robin schedule starting from their output pointer. The output pointer is

then incremented (modulo N) to one location beyond the accepted output.

Again, we note that LLS-S differs from ¢SLIP only in the last step where the inputs

select one of multiple outputs belonging to the lowest layer.

3.6.3 Performance Evaluation

04

NIFORM
HOTSPOT

DIAGON

" LocD

Miss Fraction
Miss Fraction

0.001

111 12 13 14 15 16 17 18 19 2 111 12 13 14 15 16 1T 18 19 2

Speedup Speedup

(a) LLSR(1) (b) LLSR(4)

Figure 3.12: Miss fractions for various iterations of LLSR (N=16, load=1.0), with
varying speedup, under various admissible traffic patterns.

We first note that in purely input queued switches (speedup = 1.0), the algo-
rithms, LL.S-R and LLS-S behave exactly like PIM and SLIP, since all output queue
lengths are 0. This causes all the outputs to belong to the same layer (layer 0) and

the algorithms follow their default behaviour. This observation is also approximately
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Figure 3.13: Miss fractions for various iterations of LLSS (N=16, load=1.0), with
varying speedup, under various admissible traffic patterns.

true for uniform random traffic under any speedup, since, all the outputs have ap-

proximately the same queue lengths and hence belong to the same layer. Thus, the

performance of the LLS-R and LLS-S algorithms under uniform random traffic at

any load and speedup is similar to the performance of PIM and iSLIP respectively.

Fig. 3.12 and Fig. 3.13 show the performance of these algorithms under admissible

traffic patterns at speedups greater than 1. LLS-R and LLS-S show marginal im-

provement over PIM and ¢SLIP with increased speedup.
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Figure 3.14: Miss fractions for LLS-R, LLS-S (using 16 layers) and LOOFA under
stress test with 5 participating inputs and 12 phases.
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Figure 3.15: Miss fractions for LLS-R and LLS-S (single iteration) with varying layers
under stress test with 5 participating inputs and 12 phases (Test A)

Fig. 3.14 compares the performance of LLS-R, LLS-S and LOOFA under a
stress test with 5 participating inputs and 12 phases. Under both tests A and B,
the algorithms show greatly improved performance over PIM and ¢SLIP shown in
Fig. 3.10. With just a single iteration, LLS-R has zero miss fraction for speedup
> 1.4 (Fig. 3.14(a)) and has similar performance even with 4 iterations. LLS-S
also shows greatly improved performance very similar to that of LOOFA even for a
single iteration. Under Test B (Fig. 3.14(b)), the algorithms have almost identical
performance.

Fig. 3.15 compares the performance of LLS-S and LLS-R algorithms with vary-
ing number of layers. As can be seen from the figures, the algorithms show improve-
ment with increasing number of layers and have performance comparable to that
of LOOFA with 16 layers. This comparison of the performance of these algorithms
with that of LOOFA shows that these simple algorithms can potentially provide high
throughputs even in overload situations even by using only approximate output or-

dering schemes.

3.7 Using Output Backlogs in Edge Weights

Our primary goal in this section is to use output queue lengths in the computation
of weights of the various edges of the bipartite graph in the scheduling problem. The
better performance of LOOFA suggests that an edge weight that creates a bias towards
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outputs with smaller queue lengths can improve the performance of the algorithms

under overload conditions.

3.7.1 Minimum Weight Matching (MinWM)

A simple way to introduce a bias towards outputs with smaller queue lengths is to
use a Minimum Weight Mazimum Size (MinWM) matching algorithm on a bipartite
graph whose edge weights are just the corresponding output backlogs (B(j)). Le,

w(i, j) = B(j)

A minimum weight maximum size matching algorithm finds a matching with the min-
imum weight among all those which have a maximum possible size. This problem can
be solved by solving the minimum cost maximum flow problem in an equivalent flow
graph [62]. We can use the minimum cost augmentation method to find a minimum
cost maximum flow (of capacity f) in an acyclic network with integer capacitites,
in O(fnlogn) time as compared to O(N?®°log N) for maximum weight matching
(MWM). Although, this is more complex than LOOFA, the simpler approximation
of MWM with APSARA suggests that an implementable version of MinWM is also
possible.
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(a) Stress test with parame- (b) Stress test with param-
ters derived from LOOFA at eters derived from MWM at
speedup=2. speedup=2.

Figure 3.16: Miss fractions for MWM, MinWM and LOOFA, with varying speedup,
under two stress tests.
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Figure 3.17: Miss fractions for SOLIF, MWM, MinWM and LOOFA, with varying
speedup, under two stress tests.

Fig. 3.16 compares the performance of LOOFA, MWM and MinWM. Clearly,
MinWM has improved performance over MWM and in fact, has performance com-
parable to that of LOOFA. We also note that both LOOFA and MinWM have high
miss fractions at lower speedups. This is because, the output queue lengths are very
small at these speedups and do not effectively represent the state of the system. On
the other hand, MWM has a relatively small miss fraction compared to LOOFA and
MinWM at these speedups, suggesting that perhaps algorithms that take both input
and output queue lengths into consideration in weight computations will perform well

at all speedups.

3.7.2 Shortest Output Longest Input First (SOLIF)

SOLIF is a maximum weight matching algorithm that uses both the input and output
queues lengths in its weight computation. In SOLIF,

w(i,j) = { OB(Z?J) + Bz — B(j) if, B(1,5) > 0

where, B,,q, is the maximum of all queue lengths B(j). Clearly, for speedup=

3.1
otherwise (3:-1)

1.0, the algorithm is similar to LPF (because all output backlogs are zero) and

w(i, j) = B(i, j)
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At higher speedups, the algorithm gives higher weight to edges whose outputs have
shorter queue lengths. The complexity of SOLIF is the same as that of the MWM
algorithm (O(N*°log N)). Just as APSARA is a simple, single iteration approxima-
tion to MWM, we can use a simple, derandomized algorithm with memory (called
SOLIF-APSARA (SOLIF-A)) to approximate SOLIF.

It is important to realize that APSARA can approximate MWM so well be-
cause, the weights in MWM (w(i, j) = B(3, j)) change slowly with time. The lengths
of the input queues (weights) can increase by a maximum of 1 and decrease by S in
a single cycle. The same is not true for the weights defined in equation 3.1, because
of the use of B,,,;. Hence, we redefine the weights used in SOLIF-A as

0 if B(i,j) =0
w(i,j) ={ Bli,j)+C - B(j) if, B(j)<C (3.2
B(i, 7) otherwise

The use of the constant C' (called output threshold) influences the algorithm in the

following ways

1. All edges to outputs with queue length > C' do not get any additional weight.
This is to reflect the fact that these outputs are less likely to underflow given
their high output queue lengths. Thus, the constant C itself is chosen based on
the individual link rates. For a link rate of 10 Gb/s, an output threshold C' =
1 MByte, ensures that an edge to an output isn’t given any additional weight
when it is certain that it won’t experience underflow in the next 2 x 10* cycles

(with minimum cell size of 50 bytes).

2. Because of the use of C (instead of B,,.;), in the weight computation, the
weights of the edges can increase by a maximum of 2 or decrease by 2 x (S —1),

thus, allowing the use of a derandomized APSARA like algorithm with memory.

Fig. 3.17 compares the performance of SOLIF with LOOFA, MinWM and MWM.
SOLIF has greatly improved performance over MWM (better than LOOFA!) under
the stress tests at varying speedups. SOLIF-A is a single iteration algorithm that is
similar to APSARA but uses the weight computation defined in 3.2. Fig. 3.17 also
shows that SOLIF-A performs as well as SOLIF and has greatly improved performance
over MWM and APSARA at all speedups under the stress tests.
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3.8 Approximate LOOFA (A-LOOFA)

Although LOOFA itself is too complex for high speed implementation, it can be used
as the basis for an algorithm that is practical and which in practice, can provide
very similar performance. This algorithm, which we call Approzimate LOOFA (A-
LOOFA), can be implemented in hardware in a way that makes it suitable for routers
with 10 Gb/s links.

3.8.1 Hardware implementation of matching

Input
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ponents
Figure 3.18: Principal hardware components and example operation of A-LOOFA

Fig. 3.18 illustrates the basic concept behind A-LOOFA and its implementa-
tion. At the left, we have a set of row registers, A; (0 < i < N — 1), each containing
the number of some input. At the bottom, we have a set of column register pairs,
(Bj,qj) (0 <j <N —1) each containing the number of an output (B;) and its asso-
ciated output queue length (in cells). The central area contains an N x N array of
VOQ occupancy bits v; j where v; ; = 1 if and only if input A; has one or more cells to
send to output B;. A-LOOFA attempts to maintain the set of column register pairs
in sorted order, so that gg < ¢; < --- < gy_1. As will be explained shortly, it only
approximates the sorted order, in order to avoid a time-consuming sorting step.

Matching in A-LOOFA is accomplished using a simple combinational circuit.
This circuit effectively implements the N step iterative matching process required
by LOOFA. While it requires O(N) time to complete, the constant factor is deter-

mined by gate delays, making it small enough to allow for high speed implementation.
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Figure 3.19: Match Logic

Fig. 3.19 shows the match logic that is associated with the VOQ occupancy bit v; ;.
The input signals r; ;1 and ¢;_1; are high if output B, is available for selection by
input A;. If both are high and v; ; = 1 then A; is matched with B; and r;; and ¢; ;
are both pulled low. So,

rig = Tig—1(0ig +Cio1) = (Fijo1 + vicio1y)

Cij = Ci1j(Uij +Tij-1) = (@1 + vigrij-1)

To complete a matching operation, these signals must propagate throughout the N x
N array, but note that signals propagate upward and to the right, so the delay is 2V
times the delay in each block, with each block contributing two gate delays. For a
modern .13 pm ASIC process, the gate delays are 25-50 ps, allowing a match to be
completed in 3.2-6.4 ns (for N = 32). A router with 10 Gb/s links and a speedup
of 2 will need to complete a crossbar scheduling operation every 20 ns, making the
matching delay small enough to allow for high speed implementation.

Fig. 3.18(b) shows an example operation of the A-LOOFA circuit. In this
example, output 2 which has the shortest queue length has been moved to the first
column. Output 2, hence, gets to pick first and chooses input 3 that has a cell destined
for it. Output 0 which comes next in the order of increasing queue lengths can no

longer pick input 3. Similarly, output 1 picks input 2 and output 3 picks input 1.
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3.8.2 0Odd-Even Sorting

In order for the approach described to exactly implement LOOFA, it’s necessary to
maintain the column register pairs in sorted order. This is not practical in a high speed
implementation. Fortunately, we can still get good (although not provably work-
conserving) performance without sorting. Because the queue lengths change slowly,
we can maintain an approximate sorted ordering by doing a pair of nearest neighbor
swaps (odd-even sorting) after each crossbar scheduling operation. Specifically, for
all even j < N, we exchange the values of B; and ¢; with B, and g4 if ¢; > g;11.
Then for all odd j < N — 1, we exchange the values of B; and ¢; with B;;; and g1,
if g; > gj4+1. Whenever we perform such an exchange, we also exchange the values of

the VOQ occupancy bits in the corresponding columns.
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Figure 3.20: Example demonstrating the use of the odd-even sorting technique.

Fig. 3.20 shows an instance of the progress of the odd even sorting technique.
The initial state of the system is shown in Fig. 3.20(a). In a given cycle, the out-
put queue lengths can change by at most 1. The new queue lengths are shown in
Fig. 3.20(b). By just swapping the odd and even neighbours the outputs are rear-
ranged in inceasing order of queue lengths as shown in Fig. 3.20(c). Note that when

outputs are swapped, the corresponding columns are also swapped.
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3.8.3 Input permutation

The combinational matching circuit favors inputs that occupy “lower” rows in the
array of VOQ occupancy bits. To ensure fairness among the different inputs, we ran-
domly permute the rows of the array at the end of each crossbar scheduling operation
(both the row registers and the VOQ occupancy bits). Specifically, for all even values
of 1 < N, we generate a pseudo random bit x;. This is easy to do in hardware. If
x; = 0, then all the values in row ¢ are moved to row i/2 and the values in row 7 + 1
are moved to row (N +i)/2. If z; = 1, then all the values in row i are moved to
row (N +¢)/2 and all values in row 7 + 1 are moved to row /2. This permutation
scheme is based on the well-known perfect shuffle, is easy to implement and ensures
long-term fairness. Fig. 3.21 shows an instance of the random permutation of inputs.

Note that when inputs are moved, the corresponding rows are also shifted.

Input
010 1 0 1 210 0 1 1
3|1 |1 |0/|O0 0O(o0o |1 |01
2 10|01 |1 3|11|1|0]0
Quevelength —~ |2 |3 | 3|4 e _ 23|34
Random Settings
e o |23 |1 0231

Figure 3.21: Example showing the permutation of inputs.

3.8.4 Implementation issues

There are a few other issues that need to be addressed to complete the description of
the implementation. First, when we get a match, we need a way to pass the identity of
the matching input to the circuitry that controls the output, so that the appropriate
crossbar control signals can be asserted. This requires a Ig N bit wide data path for
each row and column of the array and a switch that forwards the value on row 7 to
column j if there is a match at location (i, 7). Second, we need a way to load new
values in the VOQ occupancy bit. To do this, the circuitry controlling an input sends
an output number along its row, which is compared at each location (7,j) to j. At
the location where these values match, the VOQ bit is selected to receive a new value.

Finally, we need to maintain a connection between the 1O pins of the device and

the registers associated with each input and output. Since the pins of the device have
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a fixed association with specific inputs and outputs, we need to maintain connections
between these fixed pin locations and the associated registers, which are constantly
exchanging values, as the algorithm proceeds. This requires two special purpose
crossbars, one on the input side and one on the output side. The crosspoint settings
in these crossbars change with each row and column swap to maintain the required
connections to the fixed IO pins. The output side crossbar carries a two bit signal
from the output pins, indicating whether a given output queue length is to increase
by one, decrease by one or stay the same. The input side crossbar carries a 2 4+ lg N
bit signal indicating whether the VOQ occupancy bit for a specified ouput is to be
set, reset or stay the same (note that during one operation cycle, only two VOQs at
any input can change their status).
The gate complexity of the A-LOOFA control circuit has the form C; N?1g N +
CyN? + C3Nlg N + C4N, for constants C,...,Cy. We estimate C; ~ 10, Cy ~ 30,
C5 ~ 50 and C}4 = 20, yielding an overall estimate of less than 90,000 gates. While
not a trivial circuit, to be sure, it is well within the capabilities of modern ASICs.
We note that similar high speed implementations (with conceivably the same
execution times) can be achieved using the iMCRA (sPOINT Multicast Contention
Resolution Algorithm) [38]. This algorithm reduces the execution time by using an
efficient pipelined implementation. The swapping of rows and colums in A-LOOFA
(when input or output order is changed) makes it unsuitable for pipelined implemen-
tation. However, A-LOOFA and :MCRA are also structurally different because the
basic entities used in A-LOOFA correspond to VOQs (which causes the execution of
the algorithm to progress along the diagonal of the VOQ occupancy bit matriz leading

to smaller execution time) whereas the entities in iMCRA correspond to input ports.

3.8.5 Performance Evaluation

To compare the performance of LOOFA and A-LOOFA we subjected both the algo-
rithms to the stress tests, Test A and Test B. As can be seen from Fig. 3.22, they have
almost identical performance under both tests indicating that even partial ordering
techniques like the odd-even sorting used in A-LOOFA can perform well due to the
slowly changing nature of the output queue lengths.

The problem of overload conditions in IP networks makes it important to study
the performance of practical scheduling algorithms under extreme traffic conditions.

The stress test that we have presented in this paper, helps us to determine which
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Figure 3.22: Miss fractions for A-LOOFA and LOOFA under stress test with 5 par-
ticipating inputs and 12 phases.

algorithms perform best under these conditions. Using the stress test, we have studied
the performance of a wide variety of crossbar scheduling algorithms like PIM, ¢SLIP,
APSARA and LOOFA under overload conditions and have designed improved and
implementable stress resistant variants of these algorithms, LLS-R, LLS-S, SOLIF-A
and A-LOOFA which can maintain their throughput under both uniform traffic and

stress tests.
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Chapter 4

Distributed Scheduling

4.1 Introduction

It is common knowledge that increasing traffic demands [5] are making it infeasible
to use low capacity routers in IP networks. Even when a number of low capacity, low
density routers (with 16-32 ports) are configured to together behave like a single large
router, a majority of the ports are used in interconnecting the routers themselves.
Hence, most Internet Service Providers (ISPs) prefer large capacity routers for their
core networks.

Most scalable, high capacity routers currently under development are multi-
rack systems (to reduce power density) and employ distributed, multi-stage switching
fabrics [3, 1, 2] . This distributed, multi-stage architecture also enables incremental
scaling of the switching system, where additional switching capacity can be incremen-
tally added to the system with increasing traffic demands.

Unfortunately, multi-stage switching fabrics have lacked mechanisms to ensure
high throughput when faced with extreme traffic conditions. In the presence of a
sustained overload at an output port, such systems can become congested with traffic
attempting to reach the overloaded output, interfering with the flow of traffic to
other (possibly, non-overloaded) outputs. Thus, the performance of these systems
can degrade unpredictably, especially in unregulated IP networks. This is undesirable,
since network operators need switching systems that can operate at throughputs of
100% to use the full capacity of expensive long haul links.

In this chapter, we introduce a novel and scalable mechanism called Distributed
Scheduling (DS) to provide performance guarantees in such high capacity, buffered,

multi-stage switching systems.
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4.2 Distributed Scheduling

Distributed Scheduling (DS) is a method for regulating the flow of traffic through
large routers employing multi-stage switching fabrics which use buffered switching
elements. DS, unlike crossbar scheduling, does not seek to schedule the transmission
of individual cells every time slot. Instead, it regulates the rates at which traffic is
forwarded through the switching fabric from various inputs to outputs using coarse-
grained scheduling. This means that the rates themselves are determined and read-
justed, only at a pre-determined update period (7'). While this approach keeps the
mechanism scalable, this also implies that DS can only approximate the throughput

and delay properties of a pure output queued switch.

4.2.1 Mechanism

Input Port 1 Output Port 1 % Cell Header
o VCI=DSVC
_ITT] 5 Src Port| Link Rate
— E | % = [T }+» Output qlueuihlinglth
= eue len 0
_TI1Ho4 | 5 Queue leng
% Queue length to 2
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—| Input Port 2 N § Queue length to N—-1
. ) M Queue length to N
. o 7
Pt L oupapoil- _
(a) Distributed Scheduling (b) Control Cell

Figure 4.1: Router with distributed scheduling.

Fig. 4.1(a) shows a simplified block diagram of a router that implements dis-
tributed scheduling. Each output port contains a FIFO queue and each input port
contains a set of N virtual output queues. The VOQ@s are rate controlled by a Dis-
tributed Scheduling Controller (DSC). The DSCs at various input ports execute the
following pseudocode every update period (7).
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DQO

{
Send_V0Q_status () ;
Recv_V0OQ_status();
Allocate_rates();
for(int i=1 to N){

SetPace(V0OQ(i) ,new_rate);

}

}

The DSCs periodically exchange information about the VOQs and the output queues
and use this information to determine new rates at which their VOQs are to be
paced. The exchange of information by inputs can be achieved by using control cells.
Fig. 4.1(b) shows the conrol cells used for distributed scheduling in the Dynamically
Extensible Router (DER) [35] developed at Washington University. The information
exchanged in these particular cells is simply the queue length of various VOQs and
outputs, though, in general, any information that incurs an acceptably small overhead
can be exchanged. The DER, in particular, is small enough to enable complete sharing
of VOQ information by multicasting. Even in larger systems, the overhead due to
the exchange of this information is only a small fraction of the system bandwidth.
For example, in a system with 1000 links, each operating at 10 Gb/s and using an
update period of 100 us, the overhead due to exchange of queue length status is just
5% of the system bandwidth. Also, the exchange of this information can be made
more scalable by having an output aggregate the VOQ information from the various
inputs and send this smaller information back to the inputs. From the pseudocode,

it is clear that the most important component of DS is the rate allocation algorithm.

4.2.2 Constraints

The rate allocation algorithms used in DS are limited by the following constraints

Vi Zri:j < S xR (41)
J

V] ZTivj < SxR (42)
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where r; ; is the rate at which DSC at input 7 forwards traffic to output j, S is the
speedup of the switch and R is the external link rate. Equation 4.1 (referred to as the
output constraint) restricts the net rate at which traffic is sent to each output to the
speed of the switching fabric itself. Equation 4.2 (referred to as the input constraint)
denotes that the total rate at which traffic is transferred from each input is limited
by the speed of the switching fabric itself. A good rate allocation algorithm should
satisfy these constraints and emulate the behaviour of an output queued switch as

closely as possible.

4.2.3 Distributed Scheduling vs Crossbar Scheduling

Distributed scheduling and crossbar scheduling are similar in their use of VOQs.
While crossbar scheduling seeks to schedule the transmission of individual packets,
distributed scheduling regulates the total number of packets pushed by the input ports
into the buffered multi-stage switching fabric during a given scheduling period. This
brings about two important differences. Firstly, the distributed nature of the methods
used in DS rules out the iterative matching methods that have proved effective in
crossbar scheduling, since each iteration would require an exchange of information,
causing the overhead of the algorithm to increase in proportion to the number of
iterations. On the other hand, the shift to coarse scheduling provides some flexibility
that is not present in crossbar scheduling. In crossbar scheduling, it is necessary to
match inputs to outputs in a one-to-one fashion during each scheduling cycle. In
distributed scheduling, we allocate the interface bandwidth at each input and output
and are free to subdivide that bandwidth in whatever proportions that will produce
the best result. These differences lead to different specific solutions, although high

level ideas can be usefully transferred between the two contexts.

4.3 Work Conserving Scheduling Algorithms

4.3.1 Problem Definition

We note that the DS mechanism is scalable compared to crossbar scheduling because
1. it is distributed.

2. it is coarse-grained; it performs a scheduling decision only at pre-determined

update periods (7).
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3. Also, as we will show in further sections, the needed hardware complexity and
execution time of algorithms at each port is O(n) or at most O(nlogn) with
small constants and each port has to send and receive O(n) information per

update period.

The primary issue that we wish to investigate in this section is the effect of making

a scheduling decision only at fixed time periods on the throughput of the switch.

4.3.2 System Model

To address this problem we adopt a somewhat idealized view of the system operation.
(In Section 4.11, we discuss the implications of these assumptions for real systems.)

A crossbar based CIOQ switch can be viewed as operating in three phases.
An arrival phase, a transfer phase and a departure phase. In the arrival phase and
departure phase a maximum of one cell can arrive at an input or depart from an output
respectively and in the transfer phase, up to S (speedup) cells can be transferred from
an input or to an output. Ideally, we would like such a system to be work conserving.
This implies that at the beginning of each departure phase, every output port which
has cells queued for it in the system (at various input ports) has at least one cell
queued in its output queue. This ensures that an output is always ”working” when
it has cells queued for it in the system.

We generalize this simple model and performance metric to define a batch
CIOQ (T-CIOQ) switch. In a T-CIOQ switch, a scheduling decision is made only
every T time units. A 7T-CIOQ switch can also be viewed as operating in three
phases, where, in the arrival phase an input can receive up to 7' cells and during
the departure phase, each output can send up to T cells on its output link. At the
beginning of each transfer phase, a scheduling decision is made to determine which
cells are transferred from inputs to outputs with a limit of S x T cells on each input
and output. Also, the best performance that we can expect from such a system is for
it to be T-work conserving! We say that a T-CIOQ switch is 7-work conserving, if
at the beginning of every departure phase, every output port which has cells queued
for it in the system, has at least T cells queued in its output queue. We note that the
normal CIOQ switch is simply the 1-CIOQ switch and the work conserving property
in this context is the same as 1-work conserving.

We ask the question, us there a scheduling algorithm that can keep a T-CIOQ)

switch, T-work conserving?
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4.3.3 Maximal and Ordered Scheduling Algorithms

In this section, we describe a general scheduling strategy that can be used to obtain
T-work conserving scheduling algorithms for speedups of 2 or more. While these
algorithms are not practical for real systems, they provide a conceptual foundation
for other algorithms that are practical.

The scheduling strategies that we study in this chapter, maintain an ordering
of non-empty VOQs at each input. This ordering is changed (if need be) only at the
beginning of any of the three phases. The ordering of the VOQs can be extended to
an ordering of the cells at an input. Two cells in the same VOQ are ordered according
to their position in the VOQ. Cells in different VOQs are ordered according to the
order of the VOQs.

The following definitions will be useful in describing the T-work conserving
scheduling algorithms.

DEFINITION 1: We say that a cell b precedes a cell ¢ at the same input, if
b comes before c in the cell ordering at the input.

DEFINITION 2: We refer to a cell ¢ as an ij-cell if it is at input i and s
destined for output j. For an ij-cell, let p(c) be the number of cells that precede c at
input i and q(c) be the number of cells at output j.

DEFINITION 3: Given a method for ordering the cells at each input, a schedul-
ing algorithm is said to be ordered if for any 1j-cell ¢ that is not transferred, no cell
preceded by c at input i gets transferred unless output j gets S x T cells.

DEFINITION J: A scheduling algorithm is said to be maximal if for any
17-cell ¢ that is not transferred in a transfer phase, either S x T cells are transferred
from input i or S X T cells are transferred to output j.

Our scheduling strategy produces schedules that are both maximal and or-
dered. We can vary the strategy by using different ordering methods. We describe
two ordering methods that each lead to T-work conserving scheduling algorithms for
speedups of 2 or more. In fact, because there are many different maximal, ordered
scheduling algorithms for any specific ordering method, we obtain two families of
T-work conserving scheduling algorithms.

To prove that these algorithms are T-work conserving, for any ij-cell ¢, we
define the quantity slack(c) = p(c) — g(c). For each of the methods studied, we’ll
show that at the beginning of each departure phase, slack(c) > T, if S > 2. This

implies that for any output with fewer than 7T cells in its outgoing queue, there can be
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no cells that are destined to this output and are still waiting in any inputside VOQs.

This in turn proves that the system is T-work conserving.

4.4 Batch Critical Cells First Algorithm

Table 4.1: Notation used in describing batch critical cells first algorithm.
| Notation | Definition |

17-cell ¢ | Cell ¢ at input ¢ destined to output j.

q(c) Queue length of output j to which cell ¢ is destined.

p(c) Number of cells preceding ¢ at its input 3.

slack(c) | p(c)-q(c).

The algorithm that we describe in this section is based on ideas first developed
for the Critical Cells First algorithm of [13]. Hence, we refer to it as the Batch Critical
Cells First method.

4.4.1 VOQ Ordering

In the BCCF method, the relative ordering of two VOQs remains the same so long
as they remain non-empty, but when a new VOQ becomes non-empty, it must be
ordered relative to the others. When a cell ¢ arrives and the VOQ for ¢’s output is
empty, we insert the VOQ into the existing ordering based on the magnitude of ¢(c)
(refer Table 4.1 for notation). In particular, if the ordered list of VOQs is vy,vg,- - -,
we place the VO(Q immediately after the queue v, determined by the largest integer
k for which the total number of cells in vy, - - -, v is no larger than ¢(c). Notice that
this ensures that slack of ¢ is non-negative right after ¢ arrives. A specific scheduling
algorithm is an instance of the BCCF method if it produces methods that are maximal
and ordered with respect to this VOQ ordering method.

4.4.2 FExample

Fig. 4.2 presents an example of the operation of the BCCF algorithm. In the example,
the system has 4 inputs and 4 outputs and has a speedup of 1.5. The update period
(T) is 4. Hence, the algorithm can transfer ST = 6 cells from any input or to any

output in the transfer phase.
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Figure 4.2: Example operation of the BCCF algorithm.
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Each figure indicates the number and ordering of cells queued at an input
(inputs are numbered 0, 1,2 and 3) to various outputs (a, b, ¢ and d). The figures also
indicate the total backlog at the various outputs. For instance, the initial state of the
system is shown in Fig. 4.2(a). This figure shows that at input 0, the VOQ to output
¢ (with queue length = 1), has the highest priority followed by the VOQs to output b
(with queue length = 2) and output a (with queue length = 1). Also, the figure shows
that outputs a,b,c and d have an initial backlog of 4,5,2 and 3, respectively. Note
that in Fig. 4.2(a), the slack of all cells at the inputs is greater than 0. Fig. 4.2(b)
shows the arrival phase of the system. In this phase, each input receives exactly 4
cells. For instance, input 2 receives two cells each to outputs a and c. When incoming
cells are inserted into empty VOQs at an input, the ordering of the VOQs at that
input is changed according to the VOQ ordering criterion of BCCF. Hence, as shown
in Fig. 4.2(c) (which shows the state of the system after the arrival phase) the VOQ
to output d at input 0 is placed after the VOQs to outputs ¢ and b and before the
VOQ to output a (because, the queue length of output d is 3 and input 0 has exactly
a total of 3 cells queued for output ¢ and b, when the cell destined to d arrives).
Figures 4.2(d), 4.2(e) and 4.2(f) show the progress of the transfer phase of the
algorithm. For the sake of illustration, we’ve broken down the transfer phase into a
series of figures, where the algorithm attempts to move only the cells from the highest
priority VOQ at each input to the corresponding output. For instance, in step 1 of
the transfer phase (Fig. 4.2(d)), the algorithm determines that it can transfer 5 cells
to output ¢ from inputs 0,2 and 3. Each of these figures also keeps track of the total
number of cells transferred from an input or to an output. The notation used in these
figures shows that, in Fig. 4.2(d) for instance, input 0 has transferred 1 cell (0 — 1)
and also output ¢ has received 5 cells (¢ — 5). Clearly, a maximum of ST = 6 cells
can transferred from an input or to an output. The final state of the system, after

the transfer phase is shown in Fig. 4.2(g).

4.4.3 Proof

To prove that the BCCF algorithm is 7-work conserving, we need to show that for
any ij-cell, slack(c) > T at the start of the departure phase. We use two lemmas to

prove the same.
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Lemma 4.4.1 For a system using the BCCF algorithm, if ¢ is any cell that remains
at its input during a transfer phase, then slack(c) increases by at least S x T during

the transfer phase.

Proof Since the VOQ ordering does not change during a transfer phase (more pre-
cisely, VOQs that remain non-empty during the transfer phase have the same relative
order), any maximal, ordered scheduling algorithm either causes ¢(c) to increase by

S x T or causes p(c) to decrease by S x T'. In either case, slack(c) increases by S x T

Note that as long as a cell ¢ remains at an input, each arrival phase and
departure phase cause slack(c) to decrease by at most 7. So, if S > 2, slack(c)
cannot go down over the course of a complete time step, comprising an arrival phase,

transfer phase and a departure phase.

Lemma 4.4.2 For a system using the BCCF algorithm with S > 2, if ¢ is any cell
at an input just before the start of the departure phase, then slack(c) > T.

Proof We show that for any cell ¢ present at the end of an arrival phase, slack(c) >
—T. The result then follows from Lemma 4.4.1 and the fact that S > 2. The proof
is by induction on the time step.

For any cell ¢ that arrives during the first time step, p(c) < T at the end of
the arrival phase, so slack(c) > —T at the end of the arrival phase. Since s > 2,
there can be no net decrease in slack(c) from one time step to the next, so slack(c)
remains > —71 at the end of each subsequent arrival phase, so long as ¢ remains at
the input.

If a cell ¢ arrives during step ¢ and its VOQ is empty when it arrives, then the
rule used to order the VOQ relative to the others ensures that slack(c) > 0 right after
it arrives. Hence, slack(c) > —T at the end of the arrival phase and this remains
true at the end of each subsequent arrival phase, so long as ¢ remains at the input.

If a cell ¢ arrives during step ¢ and its VOQ is not empty, but was empty at
the start of the arrival phase, then let b be the first arriving cell to be placed in ¢’s
VOQ during this arrival phase. Then, slack(b) was at least 0 at the time it arrived
and at most 7" — 1 cells can have arrived after b did in this arrival phase. If exactly

r of these precede b, then at the end of the arrival phase,

slack(c) > slack(b) — (T —1) —r) (4.3)
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(=r) = ((T—=1) =) (4.4)
> T (4.5)

v

If a cell ¢ arrives during step ¢ and its VOQ was not empty at the start of the arrival
phase, then let b be the last cell in ¢’s VOQ at the start of the arrival phase. By the
induction hypothesis, slack(b) > —T at the end of the previous arrival phase. Since
the subsequent transfer phase increases slack(b) by at least 27" and the departure
phase decreases it by at most 7', slack(b) > 0 at the start of the arrival phase in step
t. During this arrival phase, at most 7" new cells arrive at ¢’s input. Let r be the

number of these arriving cells that precede b. Then at the end of the arrival phase

slack(c) > slack(b) — (T —1) —r) (4.6)
> ()= (T=1)-7) (@7)
> -T (4.8)

Hence, slack(c) > —T at the end of the arrival phase in all cases and this remains

true at the end of each subsequent arrival phase, so long as ¢ remains at the input.

Lemma 4.4.2 leads immediately to a work-conservation theorem for BCCF.

Theorem 4.4.3 For S > 2, any scheduler using the BCCF algorithm is T-work

CONSETVING.

4.5 Batch Least Occupied Output First Algorithm

Our second algorithm is based on ideas first developed in the Least Occupied Output
First Algorithm in [34], so we refer to it as the Batch Least Occupied Output First
Algorithm (BLOOFA).

4.5.1 VOQ Ordering

In the BLOOFA algorithm, the VOQs are ordered according to the number of cells
in the output-side queues. VOQs going to outputs with fewer cells precede VOQs
going to outputs with more cells. Outputs with equal number of cells are ordered
according to the numbering of the outputs. We define the BLOOFA algorithm to be
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the combination of this VOQ ordering method with any maximal, ordered scheduling

algorithm.

4.5.2 Example

Fig. 4.3 presents an example of the operation of the BLOOFA algorithm. The figure
uses the same notation as used in Fig. 4.2 for demonstrating the operation of BCCF.
These two figures illustrate the differences in the VO(Q ordering policies of the two
algorithms. In particular, note that the incoming cells to various inputs in Fig. 4.3(b)

are inserted into VOQs ordered according to output backlogs.

4.5.3 Proof

To prove that the BLOOFA algorithm is T-work conserving, we show that slack(c) >
T at the start of each departure phase, using the same overall strategy used for BCCF'.

To prove this claim, we use the notation shown in Table 4.2. Let ¢ be any cell
at an input and o(c) be the output to which c is destined. For a given phase (arrival,
transfer or departure) let go(c) be the queue length of o(c) at the beginning of the
phase and let ¢r(c) be the queue length of o(c) at the end of the phase. Similarly, let
po(c) be the number of cells preceding ¢ at the beginning of the phase and pr(c) be
the number of cells preceding c at the end of the phase. Also, define slack of cell ¢ at
the beginning of the phase as slacky(c) = qo(c) — po(c) and slack of ¢ at the end of
the phase, slackp(c) as slackp(c) = qr(c) — pr(c). Finally, let r(c) be the number of

cells received by o(c) during the transfer phase.

Table 4.2: Notation used in describing the batch least occupied output first algorithm.
| Notation | Definition |

o(c) Output to which a cell ¢ is destined.

qo(c) Queue length of o(c) at the beginning of a phase.

po(c) Number of cells preceding c¢ at the beginning of a phase.
slacky(c) | Slack of cell ¢ at the beginning of a phase = o(c) — p(c)
qr(c) Queue length of o(c) at the end of a phase.

pr(c) Number of cells preceding c at the end of a phase.
slackr(c) | Slack of cell ¢ at the end of a phase = o'(c) — p/(c).

r(c) Number of cells received by o(c) during transfer phase.

T Maximum number of arrivals at an input in arrival phase.
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Lemma 4.5.1 If all cells at an input have non-negative slack before an arrival phase

then the minimum slack of cells at the input after the arrival phase is > —T.

Proof Consider a cell ¢ at an input which didn’t arrive in this phase. Clearly, at the
beginning of the phase
slacky(c) = qo(c) — po(c) > 0 (4.9)

The precedence of ¢ can increase by a maximum of 7" during the arrival phase. Hence,

the slack of c after the arrival phase is
slackr(c) = qr(c) — pr(c) > qo(c) — (po(c) +T) > =T (4.10)

Now, consider a cell b which arrives in this arrival phase. Let ¢ be the latest
cell (w.r.t the cell ordering) among those that didn’t arrive in this phase and precede
b. (If there is no such cell, clearly, slackr(b) > —T.) Since c precedes b after the

arrival phase, and at most 7" cells can arrive in one phase

qr(c) < qr(b) (4.11)

Also, since c is the latest among the cells that didn’t arrive in this phase and precede
b,
(pr(c) = polc)) + (pr(b) — pr(c)) <T (4.12)

since the total number of cells which arrived in this phase and precede b is < T.

Hence,

pr(b) < po(c) +T (4.13)

Using equations 4.9, 4.11 and 4.13

qr(b) —pr(b) > qo(c) = (po(c) +T)) (4.14)
> qo(c) =polc) =T (4.15)
> =T (4.16)

Lemma 4.5.2 For a BLOOFA scheduler with S > 2, if all cells at an input have
slack > —T before a transfer phase, then, the slack of all cells at that input is > T

after transfer phase.
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Proof Let ¢ be a cell at input 7 that is not transferred in the transfer phase. Also,

let the slack of ¢ before the transfer phase be
slacky(c) = =T + x. (4.17)

where x > 0 since, all cells have slack > —T' before the transfer phase.

Because of the change in output queue lengths during the transfer phase, a set
of cells B which didn’t precede c¢ before the transfer phase might precede it after the
transfer phase. If B is empty, i.e, B = {}, then either 27" cells preceding c at its input
were transferred or 27 cells were received by the output to which ¢ is destined. This
is because of the maximality of the scheduling algorithm. Hence, the slack of cell ¢

after the transfer phase (slackr(c)) is
slackp(c) > -T+zx+2T >2+T>T (4.18)

Let B have exactly c¢,, > 0 cells. Let b be a cell such that b € B and Vb’ € B,
po(b) > po(b'). Le, b is the cell latest in the list of cells which succeeded ¢ before the
transfer phase but now precede it.

Since, b precedes c after the transfer phase (but, succeeded it before the transfer

phase)
q0(c) < qo(b) (4.19)
ar(c) = qo(c) +7(c) > ar(b) = qo(b) +7(b) (4.20)
And hence,
r() < r(c) <2T (4.21)

Equation 4.21 and the maximality of the scheduling algorithm imply that, 27 cells
preceeding b at input ¢ were transferred during the phase. Let ¢, of these 27" cells
precede c before the transfer phase and ¢, of them succeed ¢, hence, ¢, + ¢, = 2T.

c b

G Gs Cm

Figure 4.4: Precedence list.



80
Firstly, as shown in Fig. 4.4,

po(b) > polc) + ¢s + cm (4.22)

Also, using equations 4.17 and 4.22 and the fact that slack(b) > —T, we have

Q(c) —po(c) < qo(b) —po(b) += (4.23)
< CIO(b) - (pO(C) +¢s + cm) + (424)

Or simply,
qo(c) < qo(b) +z — ¢5 — Cm (4.25)

Using equation 4.25 in 4.20, we have

%0(b) < go(c) +7(c) —7(b) (4.26)
< @)+ —cs—cm+7(c) —7(D) (4.27)

implying that,
r(d) —xz <r(c) —cs — cm (4.28)

Calculating the new slack of cell ¢ after the transfer phase (slackr(c)), we have

slackp(c) = qr(c) —pr(c) (4.29)
= (qo(c) +7(c)) = (po(c) = ¢p + m) (4.30)
= qo(c) +7(c) — (po(c) — (2T — ¢s) + cm) (4.31)
= slacko(c) + (2T +7(c) — cs — ¢m) (4.32)
Using equation 4.28, we have
slackp(c) > slacky(c) + (2T + r(b) — x) (4.33)
> (=TH+z)+2T —xz+r(b) (4.34)
> T+ 7r(b) (4.35)
> T (4.36)



81
Lemma 4.5.3 If the slack of all cells s > T at the beginning of the departure phase,
then, the slack of all cells is > 0 after departure phase.

Proof The queue length of an output can decrease by a maximum of 7" during the
departure phase. Hence, if no output reordering occurs (which changes the precedence
of cells at inputs), the slack of any cell ¢ at an input slackp(c) > 0 after the departure
phase (since, slacky(c) > T before departure phase).

Now, we prove that there can be no change in the precedence of cells at inputs
due to output reordering during the departure phase. Consider two cells b and ¢ at

an input before the departure phase. Let,

q(b) < qo(c) (4.37)

Then, after departure phase, one of the following holds true.

qr(b) = qr(c) =0 (4.38)

qr(b) =

0 (¢)
qr(b) = @) =T < qr(c)

(c)

(4.39)
(4.40)

IA
)
B!
—~
&
Il

o(c) =T
o(c) =T

I
Qo

Hence, the relative order of output queue lengths does not change during the departure

phase.

Theorem 4.5.4 For any cell ¢ at an input, slack(c) > —T after the arrival phase
(before the transfer phase), slack(c) > T after the transfer phase (before the departure
phase) and slack(c) > 0 after the departure phase (before the arrival phase).

Proof In the beginning when the system does not have any cells, trivially, the in-
equalities hold true.

From Lemmas 4.5.1, 4.5.2 and 4.5.3, we have shown that if the slack of all
cells is > 0 at the beginning of an arrival phase then all three inequalities hold true
and the slack of all cells is > 0 at the next arrival phase too. Hence, by induction, all

three inequalities hold true. |}

From Theorem 4.5.4 it is clear that, no output with cells queued at inputs can have
fewer than 7 cells in its output queue at the beginning of the departure phase. Hence,

the BLOOFA scheduling algorithm is 7T-work conserving with a speedup of 2.
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Scheduling Problem Blocking flow problem with Solution Scheduling Solution
OUTPUTS OUTPUTS
VOQLEVELS O 1 2 3 o 1 2 3
CAPACITY,FLOW 6,6
o|6|0|12/ 0 e o|6|0|6|0
gl 4/5|/0|6 gl 4,503
22/0/6]14/5 22/0/6|6/|0
3|5 312004

0/0| 4
e~ [2]o]3[5]%"
QUEUE — =
QUEVE 2 3| 5]|T=8

Figure 4.5: Example of a maximal ordered schedule constructed from a blocking flow.

4.6 Implementation of Maximal, Ordered Sched-
ulers

We have shown that the combination of two different ordering strategies with the
a maximal, ordered scheduling algorithms ensures work-conserving operation when
the speedup is at least 2. We now need to show how to realize a maximal, ordered
scheduling algorithm. We start with a centralized algorithm and show how it can
be converted into an iterative, distributed algorithm. While the overhead of such
iterative algorithms makes them impractical, they provide the basis for non-iterative
algorithms that are practical.

The key observation is that the scheduling problem can be reduced to finding
a blocking flow in an acyclic flow network [62]. A flow network is a directed graph
with a distinguished source vertex s, a distinguished sink vertex ¢ and a non-negative
capacity for each edge. A flow, in such a network, is a non-negative function defined
on the edges. The flow on an edge must not exceed its capacity and for every vertex
but s and ¢, the sum of the flow values on the incoming edges must equal the sum of
the flow values on the outgoing edges. An edge in the network is called saturated, if
the flow on the edge is equal to its capacity. A blocking flow is one for which every
path from s to ¢ contains at least one saturated edge. (Note that a blocking flow is
not necessarily a maximum flow). Also, if both the capacity and flow of all edges are
integers, the flow defined on the network is called an integer flow.

To convert the scheduling problem to the problem of finding a blocking flow,
we first need to construct a flow network. Our network has a source s, a sink t, n
vertices referred to as the inputs and another n vertices referred to as the outputs.
There is an edge with capacity ST from s to each input. Similarly, there is an edge
with capacity ST from each output to £. For each non-empty VOQ at input ¢ of the
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router with cells for output j, there is an edge in the flow network from input 7 to
output j with capacity equal to the number of cells in the VOQ. (An example of a
flow network constructed to solve a particular scheduling problem together with the
corresponding solution is shown in Figure. 4.5)

For any integer flow, we can construct a schedule that transfers cells from input
1 to output j based on the flow on the edge from input 2 to output j. Note that such
a schedule does not violate any of the constraints on the number of cells that can be
sent from any input or to any output. Also, note that any blocking flow corresponds
to a maximal schedule, since any blocking flow corresponding to a schedule which
fails to transfer a cell ¢ from input ¢ to output j cannot saturate the edge from input
1 to output j, hence it must saturate the edge from s to ¢ or the edge from j to t¢.
Such a flow corresponds to a schedule in which either input ¢ sends ST cells or output
j receives ST cells.

Dinic’s algorithm [17] for the mazimum flow problem constructs blocking flows
in acyclic flow networks as one step in its overall execution. There are several different
variants of Dinic’s algorithm, that use different methods of constructing blocking
flows. The most straightforward method is to repeatedly search for st-paths with no
saturated egde and add as much flow as possible along such paths. We can obtain
a maximal, ordered scheduler by modifying Dinic’s algorithm so that it
preferrentially selects edges between input and output vertices, according
to the VOQ ordering at the input. The blocking flow shown in Fig. 4.5 was
constructed in this way, based on the BLOOFA ordering.

If paths are found using depth-first search and edges leading to dead-ends are
removed as they are discovered, Dinic’s algortithm finds a blocking flow in O(mn)
time where m is the number of edges and n is the number of vertices in the flow
graph. Because the flow graphs corresponding to schedules have bounded depth and
because the number of inputs, outputs and edges are all bounded by the number
of non-empty VOQs, the algorithm finds a blocking flow in these graphs in O(v)
time, where v is the number of non-empty VOQs. This yields an optimal centralized
scheduling algorithm. However, since v can be as large as n? (where n is the number

of inputs of the interconnection network), this is not altogther practical.
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4.7 Distributed, Iterative Schedulers

We can obtain a distributed, iterative scheduling algorithm based on the ideas pre-
sented in the previous section. Rather than state this in the language of blocking
flows, we describe it directly as a scheduling algorithm. In distributed scheduling, we
first have an exchange of messages in which each output announces the number of
cells in its outgoing queue. The inputs use this information to maintain their VOQ
order. Note that this requires that each output send n messages and each input
receive n messages. Next, the inputs and outputs proceed through a series of rounds.

In each round, the inputs that have uncommitted cells to send and have not
yet committed to send ST cells, send bid messages to those outputs that are still
prepared to accept more cells. The inputs construct their bids in accordance with
VOQ ordering. In particular, an input commits all the cells it has for the first output
in the ordering and makes similar maximal bids for subsequent outputs until it has
placed as many bids as it can. Inputs may not overbid as they are obliged to send
cells to any output that accepts a bid. Note that at most one of the bid messages an
input sends during a round does not commit all the cells that it has for the target
output.

During each round, outputs receive bids from inputs and accept as many as
possible. If an output does not receive bids for at least ST cells, it does nothing
during this round. In particular, it sends no message back to the inputs. Such a
“response” is treated as an implicit accept and is taken into account in subsequent
bids. Once an output has received bids for a total of ST cells, it sends an accept
message to the all the inputs (not just those that sent it bids). The accept message
contains a pair of values (4, ) and it means that the output accepts all bids received
from inputs whose index is less than 7, rejects all bids from inputs whose index is
greater then 7 and accepts exactly = cells from input 2. Once an output sends an
accept message, its role in the scheduling is complete.

This procedure has some attractive properties. First note that each output
sends n messages in the bidding process, so each input receives only n messages from
the outputs. Also, an input sends at most two bids to any particular output, so an
input sends at most 2n bids and an output receives at most 2n bids. Thus, the number
of control cells that must be handled at any input or output during the scheduling

is O(n). Unfortunately, this does not imply that the algorithm runs in O(n) time,
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since it can require upto n rounds and some outputs may have to handle close to n
messages during most rounds.

It’s possible to reduce the time for each round by having the switch elements
that make up the interconnection network participate in the handling of bids and
responses. However, in the next section we turn our attention instead, to algorithms
that are simpler to implement and which, while not provably work-conserving, are
able to match the performance of work-conserving algorithms even under extreme

traffic conditions.

4.8 Distributed BLOOFA (DBL)

The work-conserving algorithms discussed in the previous sections can be imple-
mented using iterative algorithms that require a potentially large number of message
exchanges. In this section, we formulate a distributed algorithm that approximates
the behaviour of the BLOOFA algorithm while requiring just one exchange of mes-
sages. Our Distributed BLOOFA (DBL) algorithm avoids the need for many message
exchanges by having the inputs structure their bids to avoid the situation where some
outputs are swamped with more bids than they can accept, while others are left with
no bids. Specifically, we use a technique called backlog-proportional allocation to limit
the number of bids that are made for any output by the inputs.

DBL starts with each input ¢ sending a message to each output j, telling it
how many cells B(3, j) it has in its VOQ for output j. Each output j then sends a
message to all inputs containing the number of cells in its output queue (B(j)) and
the total number of cells that inputs have to send it, (3, B(i,7)). Note that each
input and output sends and receives n messages. Once this exchange of messages has
been made, each input independently decides how many cells to send to each output.
To prevent too many cells from being sent to any output, input ¢ is allowed to send

at most hi(i,j) cells to output j, where

B(i, j)

hili,J) = ST 56 7

Each input then orders the outputs according to the length of their output queues
and goes through this list, assigning as many cells as it is permitted for each output,
before going to the next output in the list. The scheduling is complete when the
input has assigned ST cells or has assigned all the cells permitted by the bound.
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4.8.1 Example
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Figure 4.6: Example operation of the DBL algorithm.

Fig. 4.6 presents an example of the operation of DBL. The initial state of the
system (after the arrival phase) is the same as that of the system in Fig. 4.3 which
illustrates the operation of BLOOFA. Fig. 4.6(a) shows the matrix of VOQ backlogs
at various inputs (B(i,7)). Each of these figures also shows the output backlogs. For
instance, outputs a, b, ¢ and d have backlogs of 4, 3,2 and 1 respectively in Fig. 4.6(a).
Fig. 4.6(b) shows the hi(i,j) values calculated by the DBL algorithm. Fig. 4.6(c)
shows the integral values of hi(i,7) shown in Fig. 4.6(b), where, for simplicity, we
assume that any fractional part > 0.5 (in hi(7, j)) is rounded to 1 with a probability
of 0.5. Hence, output ¢, has hi(i, j) values of 1,2,1 and 2 for inputs 0,1,2 and 3
respectively. Fig. 4.6(e) which shows the state of the system after the transfer phase,
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shows that the number of cells transferred to various outputs in this example is the
same when using the BLOOFA algorithm (as shown in Fig. 4.3) demostrating that
DBL can effectively approximate the performance of BLOOFA.

4.8.2 Performance Analysis (Stress Test)

We studied the performance of DBL using simulation for speedups between 1 and
2. The first simulated traffic pattern is the stress test described in section 3.2.4.
Recall that a stress test consists of a series of phases where various outputs of a
switch are overloaded with the objective of creating extreme traffic conditions that

can potentially lead to underflow.
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Figure 4.7: Example stress test (3 inputs, 5 phases, speedup=1.2) on BLOOFA.

Fig. 4.7 shows the progress of a sample stress test on BLOOFA. This stress
test has 3 participating inputs and 4 phases and has been simulated at a switch
speedup of 1.2. Fig. 4.7(a) shows the buffer levels of the virtual output queues (from
those of output 0 to 4) at input 0 (by symmetry, the VOQ lengths at other inputs
will be approximately the same as those at input 0). The time unit is the update
interval T. The unit of storage is the number of cells that can sent on an external
link during the update interval. Notice that during the last stage of the stress test,
B(0,4) rises, indicating that though input 0 is the sole sender of cells to output 4,
it is unable to transfer them to output 4 as quickly as they come in. This results
in loss of link capacity at output 4. Fig. 4.7(b) shows the miss fraction (defined

in section 3.2.2) for the same stress test. The curve labelled average miss fraction
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Figure 4.8: Miss fractions for DBL and BLOOFA on a variety of stress tests (with
varying inputs and phases).

represents the link capacity lost from that start of the last phase to the time plotted.
The curve labelled miss fraction measures the average miss fraction during successive
measurement intervals (the measurement intervals are 25 time units long). We observe
that almost 30% of the link’s capacity is effectively lost between the start of the last
phase and the period shown.

Fig. 4.8(b) shows how DBL performs on a series of stress tests with speedups
varying between 1 and 1.5. In these tests, the length of the stress test was set to
1.2 times the length of time that would be required to forward all the cells received
during the first phase in an ideal output queued switch. We see here that the average
miss fraction (for the output targeted by input 0 in the last phase) drops steadily with
increasing speedup, dropping to zero before the speedup reaches 1.5. We performed
90 sets of stress tests, using different number of participating inputs and phases (up
to 15 inputs and 15 phases). The results plotted in the figure are the worst cases for
2,3,4 and 5 inputs. In all cases, the average miss fraction for the last phase target
output dropped to zero for speedups greater than 1.5.

To compare DBL to BLOOFA, we performed the same series of 90 stress tests
on BLOOFA. For speedups below 2, the method used to select which inputs send
traffic to a given output can have a significant effect on the performance of BLOOFA.
For the results given here, we went through the outptus in order (from smallest
output-side backlog to largest) and for each output j, we assigned traffic from the

different inputs to output j in proportion to the fraction that each could supply of
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the total that all inputs could send to j in this update interval. Fig. 4.8(a) shows
the results of these stress tests on BLOOFA. From these results, it is clear that the
approximation introduced by using the backlog-proportional allocation method to
enable efficient distributed scheduling, has a negligible effect on the quality of the
scheduling results, even though the distributed version is not known to be provably

work-conserving for any speedup.

4.8.3 Performace Analysis (Bursty Traffic)
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Figure 4.9: Results from a sample simulation of DBL under bursty traffic
(speedup=1.1, load=0.9, mean dwell time = 10).
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Figure 4.10: Performance of DBL under bursty traffic patterns with varying speedups
and subject, target dwell times.
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We have also studied the performance of DBL for less adversarial (although,
still very demanding) traffic conditions. In particular, we have studied bursty traffic
situations in which there is one output (referred to as the subject output), for which
traffic is arriving continuously at a specified fraction of the link rate. The input at
which the subject’s traffic arrives changes randomly as the simulation progresses (it
remains with a given input for an exponentially distributed time interval). Each of
the inputs that is not currently providing traffic for the subject has its own target
output (not equal to the subject) to which it sends traffic, changing targets randomly
and independently of all other inputs (an input retains its current input for an expo-
nentially distributed time interval). With this traffic pattern, roughly one fourth of
the outputs that are not the subject are overloaded at any one time (they are targets
of two or more inputs). An ideal scheduler will forward cells to the subject output
as fast as they come in, preventing any input-side queuing of cells for the subject
output. However, the other outputs can build up significant input side backlogs (due
to the transient overloads they experience), leading to contention that can affect the
subject output. Fig. 4.9 shows an example of what can happen in a system subjected
to this type of traffic. Fig. 4.9(a) shows the amount of data buffered for the subject
output (which is output 0) at all inputs, the amount of data buffered at the input,
which is currently receiving traffic for the subject (VOQ(source,0)) and the amount
of data buffered at the subject. The unit of storage is the amount of data received on
an external link during an update interval and the time unit is the update interval.
Fig. 4.9(b) plots the instantaneous and average miss fractions for the same sample
test.

Fig. 4.10 shows the average miss fraction from a large number of bursty traffic
simulations with varying load and speedups. It’s interesting to note that the miss
fraction reaches its peak when the input load is between 0.8 and 0.9. Larger input
loads lead to a sharp drop in miss fraction. The explanation for this behaviour is
that when the input load approaches 1, the output-side backlogs tend to persist for a
long period of time and it’s only when the output side backlogs are close to zero that
misses can occur. As one would expect, the miss fraction drops quickly as the speedup
increases. Note that for speedup 1.15 the miss fraction never exceeds 2% meaning
that only a fraction of the link capacity is lost. We also note that the bursty traffic
model used in these studies represents a very extreme situation. A more realistic

bursty trafic model would have a large number of bursty sources (at least a few tens)
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with more limited peak rates sharing each input link (at least a few tens of sources

per link). Such a model is significantly less bursty than the one used here.

4.8.4 Contention Factor

Average contention factor
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Figure 4.11: Contention factor for the sample bursty traffic test on DBL shown in
Fig. 4.9.

It is interesting to note that DBL algorithm performs significantly better on
the bursty traffic model (Fig. 4.10) as compared to the stress test (Fig. 4.8(b)). This
is an indication of the extreme conditions created by the stress test.

To compare the severity of these tests, for a given input 7 that needs to send

traffic to output j, define contention factor (n) as

_ B(i, )
=2 >y By, z)

T

Thus, the contention factor denotes the sum of the fractions of traffic to various
outputs that a given input holds. If this factor is large, then the input can be expected
to incur greater misses when forced to be the sole sender of traffic to a distinct output
(7) as is done both in the stress test and the bursty traffic model.

For a stress test with k; participating inputs and k, phases, in the first ks — 1
phases, the k; inputs build an equal backlog (by symmetry) to each of k; — 1 outputs
and in the final phase (k3), each participating input sends all its traffic to a new

distinct output. Hence,
ko — 1

ki

n=1+
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For a stress test with 3 inputs and 7 phases, n = 3. We computed 7 for the sample
test of DBL on the bursty traffic model used in Fig. 4.9. As shown in Fig. 4.11, n is
relatively smaller in the bursty traffic model and averages just 1.59. This corroborates
our contention that the stress test is a very demanding traffic pattern.

We note that though, the contention factor helps to explain the difference in
the performance of DBL on the stress test and the bursty traffic model, it does not
imply, for example, that increasing the number of phases to number of participating
inputs ratio will result in a more demanding stress test. This is because the contention
factor doesn’t include the output backlogs in its definition which is vital for estimating

the miss fraction.

4.9 The Output Leveling Algorithm (OLA)

The intuition behind the BLOOFA algorithm is that by favouring outputs with
smaller queues, we can delay the possibility of underflow and with sufficient speedup,
potentially avoid that possibility altogether. Theorem 4.5.4 tells us that for a speedup
of 2 or more, we can avoid underflow, but it does not say anything about what hap-
pens with smaller speedups. When there are several output queues of nearly the same
length, BLOOFA transfers as many cells as possible to the shortest queues, possibly
preventing any cells from reaching outputs with slightly longer queues. It seems likely
that we could get better performance by balancing the transfers so that the result-
ing output queues are as close to equal as possible. This is the intuition behind the
Output Leveling Algorithm (OLA), which we consider next. In this section, we show
that OLA, like BCCF and BLOOFA, is work conserving for speedups of 2 or more.
Subsequently, we study the performance of OLA and a practical variant of OLA and
show that these algorithms can out-perform BLOOFA and DBL.

OLA orders cells at an input in the same way that BLOOFA does. As shown in
Table. /refola-notation, let B, (7, j) and B,(j) be the lenghts of the VOQs and output
queues respectively, immediately before a transfer phase (after an arrival phase) and
let z(i,j) be the number of cells transferred from input ¢ to output j during the

transfer phase. We say that the transfer is level if for any pair of outputs j; and ja,

B.(51) + zx(i,jl) < B,(j2) + Zx(i,jg) -1 (4.41)
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Table 4.3: Notation used in describing the output leveling algorithm.
| Notation | Definition |
B,(i,7) | Length of voq(i, j) before a transfer phase (after an ar-
rival phase).

B.(j) Length of output queue j before a transfer phase (after
an arrival phase).

x(%, ) Number of cells transferred from input 7 to output j in
the transfer phase.

xk (1, 7) Number of cells transferred from input i to output j in
the first k£ sub-phases.

qx(c) B.(j) + X; zk (4, 7), where j is the output to which ¢ is
destined

pi(c) Number of cells preceding ¢ at the end of a sub-phase k.

slack,(c) | Slack of cell ¢ at the beginning of a transfer phase (after
an arrival phase).

slackg(c) | Slack of cell ¢ after sub-phase k, gx(c) — pi(c).

T Maximum number of arrivals at an input in arrival phase.

implies that

> x(i, j1) = min(ST, ZBa(i, 1)) (4.42)

i
We now define OLA as a scheduling algorithm that produces schedules that are

maximal and level.

4.9.1 Work Conservation

We will essentially use the same strategy as before to show that OLA is work con-
serving when the speedup is 2. However, to show that the minimum slack increases
by ST at each input during a transfer phase, we first need to show how a transfer
phase scheduled by OLA can be decomposed into a sequence of sub-phases. Each
of the sub-phases corresponds to the transfer of one cell from each input and up to
one cell to each output. We let xx(i,j) denote the number of cells trasferred from
input ¢ to output j by the first £ sub-phases. At the end of the sub-phase &, the
outputs are ordered in increasing order of B,(j) + >; xx (4, j) with ties being broken
according to the output numbers. The ordering of the outputs is used to order the
VOQs at each input and this ordering is extended to all the cells at each input. We
say that a cell b precedes a cell ¢ before sub-phase k if b comes before ¢ in this cell
ordering. We define gi(c) = Bo(j) + X ; 2k (4, ) and we define pi(c) to be the number
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of cells at ¢’s input that precede it in the ordering at the end of sub-phase k. We
also define slacky(c) = qx(c) — pr(c). Let slack,(c) be the value of slack(c) before the
transfer phase begins (after arrival phase) and note that if k£ is the last sub-phase,
then slackg(c) is equal to the value of slack(c) following the transfer phase.

Given a schedule constructed by an OLA scheduler, we construct sub-phases
iteratively. To construct sub-phase &, we repeat the following steps until there are no

outputs that are eligible to be selected.

Select an output j that has not yet been selected in this sub-phase for
which >, x,1(4,5) < X;2(4,7) and which, among all such outputs, has
the minimum value of qr_1(c). If there are multiple outputs that satisfy
this condition, select the output that comes first in the fired numbering of
outputs. Then, select some input v that has not yet been selected in this
sub-phase for which zx_1(i,7) < x(i,7). If there is such an input, include
the transfer of a cell from input © to output j in sub-phase k, making

$k(l,]) = xk—l(iaj) + 1.

We will use this decomposition to show that the minimum slack at each input

increases by at least ST during each transfer phase.

Lemma 4.9.1 For a system using the OLA method, during a transfer phase, the
manimum slack at any input that does not transfer all of its cells during the transfer

phase, increases by at least ST'.

Proof Because OLA constructs maximal schedules, any transfer phase that leaves
cells at input 7 must either transfer ST cells from input ¢ or must transfer ST cells to
every output j for which a cell remains at input ¢ following the transfer phase. This
means that if we decompose a transfer phase into sub-phases, as described above,
there will be at least ST sub-phases. We show that every one of these sub-phases
increases the minimum slack at input ¢. Hence, the minimum slack increases by ST
over the complete transfer phase.

Let k£ be the index of any sub-phase and let ¢ be any cell at input ¢ which is
not transferred during sub-phase k and for which slacki_1(c) is minimum among all
cells at input 7. Let j be the output that ¢ is going to. If output j receives no cell
during sub-phase k, then input 7 must tranfer a cell during sub-phase k. The selection
rule used to construct sub-phases ensures that the transferred cell precedes c. Hence,

pr(c) = pr—1(c) — 1 and thus, slackg(c) = slacky—1 + 1.
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If output j does receive a cell, then gx(c) = gx_1(c) + 1. If no cell at input

i passes ¢ during the sub-phase, then slacki(c) > slackg_1(c) + 1. Suppose then,
that there is one or more cell that passes ¢ during the sub-phase and let d be such
a cell. Since c¢ precedes d before the sub-phase, ¢ 1(c) < g¢r_1(d) and px_1(c) <
pr_1(d). Since d precedes c after the sub-phase, no cell is received by d’s output during
the sub-phase and so qx_1(d) < gx_1(c) + 1. Because, slackiy_1(c) < slacky_1(d),
Pr-1(d) —pr_1(c) < gx_1(d) — qx_1(c) < 1 which means that there are no cells that fall
between c and d in the cell ordering. This implies that d is the only cell that passes ¢
during the sub-phase. Because d’s output receives no cells during the sub-phase, there
must be some cell that precedes d that is transferred from input ¢ during the sub-phase

and this cell must precede c. Thus, px(c) = pr_1(c) and so slacky(c) = slacky_1(c)+1.

As before, we note that each arrival phase causes slack(c) to decrease by at most 7.
Also, as before, if slack(c) is at least T before the start of the departure phase, then
slack(c) is at least zero after the departure phase. This is sufficient to establish that

OLA is work-conserving when s > 2.

Lemma 4.9.2 For a system using the OLA method with S > 2, if ¢ is any cell at an
input just before the start of the departure phase, then slack(c) > T.

The proof of Lemma 4.9.2 is similar to the proofs used in proving that BLOOFA
is work conserving (Theorem 4.5.4) except that it uses Lemma 4.9.1 in place of

Lemma 4.5.2. Lemma 4.9.2 immediately leads to the work-conservation theorem
for OLA.

Theorem 4.9.3 For S > 2, any scheduling algorithm using the OLA method is T-

work conserving.

4.9.2 Implementing OLA

An OLA scheduler can be implemented exactly either using linear programming or
by solving a minimum cost, maximum flow problem with a convex cost function.
We outline the latter approach, as it serves to motivate more practical, approximate
variants.

In the classical version of the minimum cost, maximum flow problem [62], each

edge has an associated cost coefficient, which is multiplied by the flow on the edge
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Figure 4.12: Implementing OLA using minimum-cost blocking flow with convex cost
function. Differences from earlier solution highlighted in bold.

to get the edge’s contribution to the overall cost of the flow. There are several well-
known efficient algorithms for solving the minimum cost, maximum flow problem.
Interestingly, these algorithms can be generalized to handle networks in which the
cost is a convex function of the flow on the edge, rather a linear function (z? is an
example of a convex function).

The OLA scheduling algorithm is reduced to solving a minimum cost, maxi-
mum flow problem with a convex edge cost function. An example of such a reduction
is shown in the Fig. 4.12, along with a solution and the corresponding schedule. The
flow graph is constructed in the same way as was discussed in section 4.6. The only
difference is the introduction of non-zero costs on the edges from the output ver-
tices to the sink vertex ¢. The cost of an edge from output j to ¢ carrying a flow
of magnitude z is defined as C(z) = (z + B(j))?>. A minimum cost, maximum flow
for this network corresponds directly to an OLA schedule. The convexity of the cost
function ensures that the flows on different output to sink edges result in costs that
are as nearly equal as the various edge capacities allow (if a flow can be shifted from
a higher cost edge to lower cost edge, there is a net reduction in the cost, because the
lower cost edge has lower incremental cost per unit flow). The use of the offset B(j)
in the edge cost means that the costs of the flows on two output-to-sink edges are
equal whenever the corresponding schedules yield equal levels at the output queue.
Reference [4] describes an algorithm that finds a minimum cost, maximum flow in
O((mlog K)(m+nlogn)) time on an arbitrary network with n vertices, m edges and
maximum edge capacity K. While this algorithm is not useful for distributed schedul-
ing in real systems, it can be used in performance studies to establish a benchmark

on more practical algorithms that seek to approximate the behavior of OLA.
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4.10 A-OLA

In this section, we first describe an approximate centralized version of OLA. We then
show how this can be converted to a distributed scheduler, using an extension of the
backlog-proportional allocation method introduced earlier.

Our approximate centralized output leveling algorithm (called A-OLA), uses
an array x(7,j) which is initialized to zero and which defines the number of cells to
be transferred from input ¢ to output j, when the scheduling algorithm completes. It
also uses a parameter A < ST, which determines the accuracy of the approximation.
During its execution, the algorithm maintains a list of the outputs, sorted in increasing
order of 3, (i, 7) + B(j). The algorithm repeats the following step so long as there

are at least two outputs on the list.

Let j1 and jo be the indices of the first two outputs on the list. Increase
> x(i,41), by repeatedly increasing x(i,j) for selected values of i (input
selection criteria are discussed below). Stop when Y, x(i,j1) + B(j1) =
>ix(i,Jo) + B(jo) + A, or when 3, x(i,71) = ST or when ¥ ; (i, j;) =
>i B(3,j1), whichever occurs first. If either of the last two conditions
ocurs, remove j1 from the list. Otherwise, move it down the list so as to

maintain the ordering criterion.

When the list has been reduced to a single output j, the algorithm increase
i x(4,5) until Y-, 2(4, j) = min(ST, X; B(i, j)) or until all inputs with cells for output
j have scheduled all they can (ST).

The number of steps performed by the algorithm is at most %. It can be
implemented to run in O(m + %nz) time, where m is the number of non-empty
VOQs. This can be improved to O(m + %Tnlog n), if the list is replaced by a heap.
If A =1, the algorithm computes an OLA schedule (regardless of the input selection
criterion). For larger values of A, it implements a A-OLA schedule, which is defined

as any maximal schedule for which
B(j1) + > _z(i,51) < B(ja) + Y_z(i, jo) — A (4.43)

implies that >, 2(4, j1) = min(ST,Y; B(i,j1)). That is, a A-OLA schedule allows the
output queue differences at the end of a transfer phase to exceed A, only if there is
no way to transfer more cells to the outputs with smaller queues. A-OLA schedulers,

like OLA schedulers are work-conserving when the speedup is at least 2 ( a slight
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variation of the proof used for OLA can be used to show this). For smaller speedups,
we can tradeoff scheduling performance against running time by adjusting A.

The criterion used to select the next input to use to effect an increase in
>, (i, j1) does not effect the work-conservation condition. However, different choices
can effect the performance when the speedup is less than 2. In the performance
results reported in this chapter, we distribute the load approximately evenly among
all inputs with traffic for output j; using a round-robin technique. We maintain a list
of inputs that can still send to j; (i.e, they have both cells for j; and uncommitted
bandwidth) and use the first input on the list to increase the flow to j;. To obtain
an even distribution, we take at most A from an input at a time and then move that
input to the end of the list. This method can be implemented without increasing the

time complexity of the algorithm.

4.10.1 Example

Fig. 4.13 presents an example of the operation of A-OLA. The initial state of the
system (after the arrival phase, as shown in Fig. 4.13(a)) and the notation used is the
same as in Fig. 4.6 which demonstrated the performance of Distributed BLOOFA.
Fig. 4.13(b), Fig. 4.13(c) and Fig. 4.13(d) show the various stages of execution of the
distributed OLA algorithm (with A =1). As shown in Fig. 4.13(e), which shows the
state of the system after the transfer phase, A-OLA transfers more cells to outputs
compared to DBL.

4.10.2 Distributed OLA

To convert a A-OLA scheduler to a practical distributed scheduler (Distributed OLA
(DOLA)), we use the backlog proportional allocation technique introduced earlier to
allow inputs to divide the responsibility for supplying traffic to the different outputs.
This allows each input to operate independently of others, once the initial exchange
of information takes place. As with DBL, this initial exchange supplies input ¢ with
the values of B(j) and >, B(i,j) for every output j. Input 7 also has the values
B(i,j) for all j and it uses these to compute values p(i,j) = Z’f (;(JZ)J) Given this
information, input ¢ makes its scheduling decisions in a way that is similar to the

centralized algorithm. In particular, input ¢ maintains a list of outputs for which it

has cells, sorted in increasing order of B(j)+ % It then repeats the following steps
so long as the list has at least two elements.
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Figure 4.13: Example operation of the A-OLA algorithm (with A = 1).
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Let j1 and jo be the indices of the first two outputs on the list. Increase

x(i,71) until one of the following conditions is satisfied.
1. ¥, x(i,j) = ST,
2. (i, j1) = hi(3, j1) = p(i, 1)ST,
3. x(i,51) = B(i, 51) or,

4. B(j) + p(i,j11) = B(i,j2) + A+ p(i,jz)'

If condition 1 occurs, the algorithm terminates. If either of the conditions
2 or 8 occurs, remove ji from the list. Otherwise, move j; down the list

so as to maintain the ordering criterion.

When the list has been reduced to a single output 7, the algorithm increases
x(4, j) until 2(i, j) = min(hi(4, j), B(i, j)) or until 3-; x(4, j) = ST, whichever occurs
first.

The number of steps performed by the algorithm is at most %. It can
be implemented to run in O((2L)n?) time using a naive list implementation or
O((2L)nlogn) time, if the list is replaced with a heap. Using a hardware imple-
mentation of a sorted list, this can be improved to O((F)n) at the cost of n registers

and associated comparison logic.
4.10.3 Performance Analysis
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Figure 4.14: Sample stress test (3 inputs, 5 phases) on DOLA with speedup=1.2
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Figure 4.15: Miss fractions for Distributed OLA and under a variety of stress tests
with varying delta.

Fig. 4.14 shows the performance of distributed OLA on a sample stress test
with 3 participating inputs and 5 phases. This example uses A = 0.1. Comparing
this to Fig. 4.7(a), we see that distributed OLA reduces the miss fraction during the
critical period of the last phase by about 20% relative to DBL. For this situation,
distributed OLA delivers nearly ideal performance, distributing the misses evenly
among the different outputs experiencing misses. Fig. 4.15 shows how distributed
OLA performs on a large number of different stress tests. Comparing these results
with those in Fig. 4.8, we see that distributed OLA provides the largest improvement
for small speedups. The speedups needed to reduce the misses to zero are the same
for both DBL and distributed OLA.

4.11 Practical Considerations

Though the main focus of the results presented in this chapter has been on establish-
ing the theoretical foundation for robust distributed scheduling, we believe that the
results are of direct practical value. Firstly, it’s important to discuss the significance
of the idealized assumptions made to facilitate the analysis; specifically, the assump-
tion that the system operation is structured in discrete phases (the three phases of a
T-CIOQ switch: arrival, transfer and departure). While systems could certainly be
built that adhere to this assumption, this would imply a period during which data

forwarding was suspended, while scheduling was being performed. Pipelining could
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be used to eliminate this inefficiency. During each update period (7T'), a pipelined im-
plementation would perform the scheduling needed to handle traffic received up to the
start of the current update period. This traffic would then be allowed to proceed to
the outputs in the next update period. This implies that all cells would experience a
delay of between one and two update periods. This was our intent in defining T-work
conservation. In other words, a switching system is said to be 7-work conserving, if
an output link is never allowed to be idle, so long as there are no cells that arrives at
least 27" time units earlier.

In practice, it may not be preferable to adhere to this strict pipelining disci-
pline, but to allow scheduling to proceed more or less on a continuous basis, with
ports sending their status information and asynchronously updating the forwarding
rates of their VOQ in response to the data received from other inputs. The asyn-
chronous update capability is a very important feature of the distributed
scheduling mechanism. This eliminates delays that are artificially imposed by the
scheduling algorithm. Delays will still occur when the rate at which traffic arriving at
an input for a given output increases suddenly, but during periods of relative (arrival)
rate stability there would be no unnecessary delays. It should be noted however, that
while the results given here provide strong evidence that such systems can be work-
conserving, they do not specifically apply to them. It would be interesting to see if
one could formalize such asynchronously scheduled systems so as to enable rigorous
statements about work-conservation.

Another important practical issue for distributed scheduling is the overhead of
the message exchanges required by the scheduling algorithms. The practical variants
of the distributed scheduling algorithms described here require that each port send
and receive 2n values, each update period (where n is the number of ports). Using
a compact floating point representation, these can be encoded with accuracy in 4n
bytes. If the update period is chosen so that the amount of data a port can send to
or receive from the interconnection network per update period is much larger than
4n, the overhead required to communicate these values can be kept acceptably small.
For a system with n = 1000 an update period of 50us is enough to keep the overhead
below 5%.

A related issue is the computational overhead of distributed scheduling. Since,
the update period is necessarily a constant multiple of the number of ports, there is
time to perform even moderately complex algorithms. For a system with n = 1000

and a clock frequency of 200M hz, the DBL algorithm can be executed at each port in
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5us, a small fraction of the requried update period. While more complex algorithms
such as the distributed OLA algorithm are more challenging to implement in the
required time, even these are within the scope of practical implementation if A is at
least, say %.

In this thesis, we have not addressed the interconnection network itself and
how it might interact with a distributed scheduler. The performance of multi-stage
interconnection networks with buffered switch elements has been studied in great
detail, using both analysis and simulations. The general conclusion of these studies
has been that these systems can provide excellent performance when carrying traffic
that does not cause sustained overloads on any output links. The use of distributed
scheduling can ensure that this condition is met, allowing one to consider interconnec-
tion network performance as a largely independent issue. Most performace studies of
these networks have been done assuming switch element chips that provide buffering
for just a small number of cells per port (the typical range is 2-12) and these systems
are capable of throughputs exceeding 90% for switch element buffer sizes of eight or
more per port. Modern ICs allow the construction of switch elements with over four
thousand cells, allowing system throughputs to approach 100%. With current tech-
nology, a three stage, multi-plane, Clos-type network using dynamic routing requires
roughly n switch element ICs to support n OC-192 links (for values of n ranging from
100 to several 1000). Such a network can buffer several thousand cells per external
link, allowing it to effectively smooth out any rate variations that may occur within
an update period. Since rate-controlled VOQs feed traffic to the network in a smooth,
rather than a bursty fashion, the magnitude of such variations can be expected to be
quite limited, allowing the network to deliver cells to the outputs with very modest

queueing delays.

4.12 Future Work

In this chapter, we have presented a comprehensive study and analysis of distributed
scheduling algorithms for switches with buffered, multistage interconnection networks.
There are some interesting ways in which these results can be further extended.
Firstly, using simulations, we’ve shown that algorithms like DBL and distributed OLA
are work-conserving for modest speedups. The stress test (with its high contention
factor) suggests that any traffic pattern that can cause these algorithms to not be

work conserving will have to be a very demanding and extreme traffic pattern. It
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seems possible that these algorithms (DBL and distributed OLA) are provably work-
conserving for smaller speedups. However, proving such results seems to require either
extensions to the proof techniques used here (adapted largely from earlier work on
crossbar scheduling), or entirely new techniques. Establishing such results would be
of great interest from both a theoretical and a practical perspective.

In reference [49], we described distributed scheduling algorithms that support
weighted-fair queuing and algorithms that seek to guarantee that packets that arrive
at the same time for the same output link are forwarded at approximately the same
time on that output link. The results developed here can likely be extended to allow
rigorous statements about the performance of these distributed schedulers.

Finally, as noted before, whereas crossbar schedulers must match inputs to
outputs in a one-to-one fashion, distributed schedulers can subdivide the bandwidth
at inputs and outputs arbitrarily. It seems likely that this difference may allow the
construction of distributed schedulers with speedups smaller than 2. Our failure to
prove such a result may just be a consequence of our reliance on proof methods
adapted from crossbar scheduling. Our simulation studies sugest that speedups close
to 1.5 may be sufficient for work-conservation in distributed schedulers. The estab-
lishment of such a result would be of considerable practical value and would also be
interesting from a purely analytical standpoint, as it would likely require different

proof techniques than those that have been employed so far.
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Chapter 5
Concluding Remarks

In this thesis, we have reviewed the literature related to the problem of scheduling
in Combined Input and Output Queued (CIOQ) switches and have identified several
important issues requiring further research. We addressed the important problem of
studying and improving the performance of these systems in demanding but realistic
traffic conditions.

The stress test introduced in this thesis has proven to be a useful tool in these
studies. Algorithms which are provably work-conserving at speedup of 2 or more
require lesser speedups to perform well on the stress tests. Given the high contention
factor of the stress test, this suggests that perhaps, the theoretical results include
traffic patterns that are a lot more demanding and even infrequently encountered in
real networks. It would be very interesting to see if a traffic pattern more demanding
than the stress test (and equally likely to occur in real networks) can be designed to
test these algorithms.

In this thesis, we have also asserted the importance of using the output back-
log information in the scheduling decisions, whenever the switch speedups are greater
than 1. Many original algorithms were all designed to work on switches with speedup
of 1, when the output queue lengths are zero. We’ve shown that these algorithms do
not perform well under extreme traffic conditions even when used in switches with
speedup greater than 1. Our work has demonstrated, how the output backlog infor-
mation can be included in the scheduling decision to greatly improve the performance
of existing schedulers. We’ve used this insight to improve broad classes of schedulers
including iterative, maximal matching algorithms (PIM and iSLIP), heursitic maxi-

mum weight matching algorithms (APSARA) and even work conserving algorithms
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(LOOFA). The new algorithms, LLS-R, LLS-S, SOLIF-A and A-LOOFA are practi-
cal variants of these algorithms, that are simpler to implement, retain the desirable
properties of the original algorithms and most importantly have vastly improved per-
formance in extreme traffic conditions.

In this thesis, we have also introduced and comprehensively studied distributed
scheduling. We belive that system architectures that combine distributed scheduling
and buffered, multistage interconnection networks are among the most scalable and
cost-effective architectures for implementing high performance routers. These archi-
tectures make it feasible today to build systems with aggregate capacities from 1 to
100 Tb/s [2]. Continued improvements in Moore’s Law will allow them to contiue to
scale in both line speed and total capacity. The one drawback that such systems have
suffered from is that their performance can degenerate when they are subjected to
extreme traffic conditions that can occur in Internet routers. While, various ad-hoc
flow control techniques have been used to address this issue, it has not been possible
up to this point, to make rigorous statements about the performance of such systems
under extreme traffic conditions. The theoretical results developed in this thesis show
that the performance of these systems can be directly comparable to the performance
of unbuffered crossbars, controlled by centralized schedulers. While, in both contexts,
the scheduling algorithms with the strongest theoretical guarantees are not practical
to implement, these algorithms provide the insight needed to design practical vari-
ants capable of similar peroformance. The distributed, non-iterative variants DBL
and DOLA introduced in this thesis are algorithms that can be readily implemented

in buffered, multi-stage switching systems.
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