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speed and scalability of the solutions to the route lookup and packet classification problems largely

determine the realizable performance of the router, and hence the Internet as a whole. Despite the

energetic attention of the academic and corporate research communities, there remains a need for
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and increasingly complex filters. The major contributions of this work include the design and anal-

ysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for

route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of

packet classification filter sets, the design and analysis of a suite of performance evaluation tools for

packet classification algorithms and devices, and a new packet classification algorithmthat scales

to support high-speed links and large filter sets classifying on additional packet fields.



copyright by

David Edward Taylor

2004



SOLI DEO GLORIA

to God alone be the glory



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 State of the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The “Next Generation” Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.3 The Packet Classification Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Single-Field Search Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Exact Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 B-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Longest Prefix Matching (LPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Linear Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Content Addressable Memory (CAM) . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Trie Based Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Multiway and Multicolumn Search . . . . . . . . . . . . . . . . . . . . . 21

2.2.5 Binary Search on Prefix Lengths . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.6 Longest Prefix Matching using Bloom Filters . . . . . . . . . . . . . . . . 23

2.3 All Prefix Matching (APM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Range Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Segment Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Interval Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



2.4.3 Range to Prefix Conversion . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.4 Range Matching Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Fast Internet Protocol Lookup (FIPL) . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Tree Bitmap Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Split-Trie Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Hardware Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 FIPL Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 FIPL Engine Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Implementation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.5 Worst-Case Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.6 Hardware Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 System Management and Control Components . . . . . . . . . . . . . . . . . . .43

3.4.1 NCHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 FIPL Memory Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Sockets Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.4 Remote User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.5 Command Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Performance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Memory Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Lookup Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Towards Better Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.1 Implementation Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.2 Root Node Extension & Caching . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Multiple Field Search Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Linear Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Ternary Content Addressable Memory (TCAM) . . . . . . . . . . . . . . . 60

4.3 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Grid-of-Tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Extended Grid-of-Tries (EGT) . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Hierarchical Intelligent Cuttings (HiCuts) . . . . . . . . . . . . . . . . . . 69

4.3.4 Modular Packet Classification . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



4.3.5 HyperCuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.6 Extended TCAM (E-TCAM) . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.7 Fat Inverted Segment (FIS) Trees . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Parallel Bit-Vectors (BV) . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Aggregated Bit-Vector (ABV) . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 Crossproducting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.4 Recursive Flow Classification (RFC) . . . . . . . . . . . . . . . . . . . . . 82

4.4.5 Parallel Packet Classification (P 2C) . . . . . . . . . . . . . . . . . . . . . 84

4.4.6 Distributed Crossproducting of Field Labels (DCFL) . . . . . . . . . . . . 87

4.5 Tuple Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Tuple Space Search & Tuple Pruning . . . . . . . . . . . . . . . . . . . . 92

4.5.2 Rectangle Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.3 Conflict-Free Rectangle Search . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Analysis of Real Filter Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Understanding Filter Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Previous Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Application Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.2 Port Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.3 Port Pair Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Address Prefix Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 Filter Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Field Value Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8 Additional Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.9 Impact of IPv6 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.9.1 Address Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.9.2 Address Allocation & Assignment . . . . . . . . . . . . . . . . . . . . . . 120

6 ClassBench: A Packet Classification Benchmark. . . . . . . . . . . . . . . . . . . 122

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Parameter Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Synthetic Filter Set Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.1 Smoothing Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

vii



6.4.2 Scope Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4.3 Filter Redundancy & Priority . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.5 Trace Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6 Benchmarking with ClassBench . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Scalable Packet Classification using Distributed Crossproducting of Field Labels. . 148

7.1 Description of DCFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Aggregation Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3 Field Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.4 Aggregation Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4.1 Bloom Filter Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4.2 Meta-Label Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.5 Field Search Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5.1 Prefix Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5.2 Range Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.5.3 Exact Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.6 Dynamic Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Appendix A Additional Data from Real Filter Sets . . . . . . . . . . . . . . . . . . . . 183

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

viii



List of Tables

1.1 Example filter set of 16 filters classifying on four fields; each filter has an associated

flow identifier (Flow ID) and priority tag (PT) where† denotes a non-exclusive filter;

wildcard fields are denoted with∗. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Memory usage for theTree Bitmapdata structure and next hop information using a

snapshot of the Mae-West database from March 15, 2002 consisting of 27,609 routes. 48

3.2 Memory usage for root node array optimization. . . . . . . . . . . . . . . . . . . . 53

4.1 Example filter set; port numbers are restricted to be an exact value or wildcard. . .65

4.2 Example filter set; address field is 4-bits and port ranges cover 4-bit port numbers.. 69

4.3 Example filter set; address fields are 4-bits and port ranges cover 4-bit port numbers. 91

5.1 Observed protocols and filter distribution; values given as percentage (%) of filters

in the filter set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Distribution of filters over the five port classes for source and destination port range

specifications; values given as percentage (%) of filters in the filter set. . . . . . . . 103

5.3 Number of unique specifications in the Arbitrary Range (AR) and Exact Match

(EM) port classes for source and destination port ranges. . . . . . . . . . . . . . . 104

5.4 Number of entries required to store filter set in a standard TCAM. . . . . . . . . . 106

5.5 Number of unique address prefix lengths for source address (SA), destination ad-

dress (DA), and source/destination address pairs (SA/DA). . . . . . . . . . . . . . 106

5.6 5-tuple scope measurements, average (µscope) and standard deviation (σscope). . . . 114

5.7 Maximum number of filters matching any packet; partial matches for each fieldin

the 5-tuple, source/destination address prefix pair (SA-DA), and application specifi-

cation (SP-DP-PR); full matches on all fields (All); matches; data from 12 real filter

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8 Number of unique field values and combinations of field values specified byfilters

in 12 real filter sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.9 Maximum number of unique field values and combinations of field values matching

a packet; data from 12 real filter sets. . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



7.1 Sets of unique specifications for each field in the sample filter set. . . . . . . . . . 152

x



List of Figures

1.1 Simple diagram of Internet architecture. . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Format of Internet Protocol Version 4 (IPv4) packet headers with appended transport

protocol header fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Internet Protocol Version 4 (IPv4) address space allocation. . . . . . . . . . . . . . 4

1.4 Example of Longest Prefix Matching for a 12-bit search key; all shaded prefixes

match the key, but1000000011∗ is the longest matching prefix. . . . . . . . . . . . 7

2.1 Example of a B-Tree storing multiples of three, wheret = 3. . . . . . . . . . . . . 14

2.2 Example of hashing with chaining using the four low-order bits as a hash index. .. 15

2.3 Example of inserting two keys,x andy, into a Bloom filter. . . . . . . . . . . . . . 15

2.4 Example of querying a Bloom filter;w is a non-member,x is a correct match;z is

a false positive match. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Example of Longest Prefix Matching for a 12-bit address using linear search; pre-

fixes are sorted in decreasing order of prefix length; the first matching prefix is the

longest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Example of Longest Prefix Matching using a binary trie. . . . . . . . . . . . . . . 20

2.7 Example of a direct lookup array for the first three bits. . . . . . . . . . . . . . . . 22

2.8 Basic configuration of Longest Prefix Matching using Bloom filters, (BIPL). . . . . 24

2.9 Nesting treetechnique for finding all matching prefixes for a given longest matching

prefix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Example of projecting endpoints of intervals to form non-overlapping segmentson

the real line, and using theFat Inverted Segment(FIS) Tree to search the set of

segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 Example of anInterval Treewhere each node stores the maximum endpoint value

for all intervals in its subtree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 IP lookup table of next hops. Next hops for IP packets are found using the longest

matching prefix in the table for the IP destination address of the packet. . . . . . . 33

3.2 IP lookup table represented as a binary trie. Stored prefixes are denoted by shaded

nodes. Next hops are found by traversing the trie. . . . . . . . . . . . . . . . . . . 34

xi



3.3 IP lookup table represented as a multibit trie. A stride, 4-bits, of the unicast desti-

nation address of the IP packet are compared at once, speeding up the lookupprocess. 35

3.4 Bitmap coding of a multibit trie node. The internal bitmap represents the stored

prefixes in the node while the extending paths bitmap represents the child nodes of

the current node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 IP lookup table represented as a Tree Bitmap. Child nodes are stored contiguously

so that a single pointer and an index may be used to locate any child node in the the

data structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Split-trie optimization of theTree Bitmapdata structure. . . . . . . . . . . . . . . 37

3.7 Block diagram of router with multi-engine FIPL configuration; detail of FIPL sys-

tem components in the Port Processor (PP). . . . . . . . . . . . . . . . . . . . . . 38

3.8 FIPL engine dataflow; multi-cycle path from input data flops to output address flops

can be scaled according to target device speed; all multiplexor select lines andflip-

flop enables implicitly driven by finite-state machine outputs. . . . . . . . . . . . . 39

3.9 FIPL engine state transition diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Control of the Field-programmable Port eXtender (FPX) via NCHARGE software.

Each FPX is controlled by an instance of NCHARGE which provides an API for

FPX control via remote software process. . . . . . . . . . . . . . . . . . . . . . . 44

3.11 Command flow for control of FIPL via a remote host. . . . . . . . . . . . . . . . . 46

3.12 FPX Web Interface for FIPL route updates. . . . . . . . . . . . . . . . . . . . . . 46

3.13 Block diagram of FIPL evaluation environment. . . . . . . . . . . . . . . . . . . .47

3.14 FIPL performance: measurements used a snapshot of the Mae-West database from

March 15, 2002 consisting of 27,609 routes. Input IPv4 destination addresses were

created by randomly selecting 16,384 prefixes from the Mae-West database. . . . . 49

3.15 FIPL performance under update load: measurements used a snapshot of the Mae-

West database from March 15, 2002 consisting of 27,609 routes. Input IPv4 desti-

nation addresses were created by randomly selecting 16,384 prefixes from the Mae-

West database. Updates consisted of alternating addition and deletion of a 24-bit

prefix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.16 FIPL Split-Trie performance under update load: measurements used a snapshot of

the Mae-West database from March 15, 2002 consisting of 27,609 routes. Input

IPv4 destination addresses were created by randomly selecting 16,384 prefixes from

the Mae-West database. Updates consisted of alternating addition and deletion of a

24-bit prefix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.17 Root node extension using an on-chip array and multiple sub-tries. . . . . . . . . .52

4.1 Taxonomy of multiple field search techniques for packet classification; adjacent

techniques are related; hybrid techniques overlap quadrant boundaries;∗ denotes a

seminal technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xii



4.2 Example of encoding filters by unique field values to reduce storage requirements.. 60

4.3 Circuit diagram of a standard TCAM cell; the stored value (0, 1, Don’t Care) is

encoded using two registersa1anda2. . . . . . . . . . . . . . . . . . . . . . . . . 61
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Preface

The Internet - a conglomeration of military, academic, and commercial computercommunication

networks - is arguably the most pervasive technology in recent history. Started as an experimental

project by the Defense Advanced Research Projects Agency (DARPA) of the United States Depart-

ment of Defense in 1973, the Internet continues to expand and diversify [1]. The scope of its use has

moved beyond ubiquitous communication and dissemination of information to include new com-

mercial, academic, and private-sector services. Originally the brainchild of the research community

and a novelty for the technology hobbyist, the Internet has radically transformed the way the world

communicates. It has become essential infrastructure for the global economy, entrenched itself in

the cultures of industrialized nations, and penetrated the most remote locations on earth.

While statistics regarding Internet size and use are notoriously difficult to pin down, even the

rough estimates are staggering. As of January 2004, there were approximately 233 million Internet

hosts [2]. A host refers to any device communicating over the Internet: personal computers, work-

stations, servers, Personal Digital Assistants (PDAs), etc. At that time, the United States accounted

for 144 million hosts with over seven thousand Internet Service Providers (ISPs). Roughly 945mil-

lion people use the Internet world-wide, and the number of users is projected to exceed 1.1 billion in

2005 [3]. Spending for online content increased to $1.56 billion in 2003 [4], and consumers trans-

acted over $2.2 billion over the Internet in the one week period following the Thanksgiving holiday

in 2003 [5]. These figures could easily double in the next few years as the Internet penetrates the

two most populous countries in the world - India and China.

The growth and diversification of the Internet imposes increasing demands on the perfor-

mance and functionality of network infrastructure. The Internet may be thought of asa global

postal system for delivering digital letters, or packets; thus, the task of packet forwarding is akin to

sorting mail. In the context of the Internet, the challenge is that packets are transmitted at roughly

the speed of light and arrive at rates exceeding a hundred million packets per second. Furthermore,

routers, the devices responsible for the switching and directing of traffic in the Internet, mayneed

to sort packets into thousands of different “bins” by consulting a complex directory containing tens

of thousands of entries. Routers are being called upon to not only handle increased volumes of

traffic at higher speeds, but also impose tighter security policies and provide support for a richer

set of network services. A critical issue in realizing the latter set of goals is identifying the traffic

belonging to a particular flow or set of flows. A flow may be thought of as the communication traffic

xx



generated by a specific application traveling between a specific set of hosts or subnetworks. Flow

identification is computationally intensive and the task is complicated by the continuallyincreasing

volume and speed of traffic traversing routers.

In this dissertation, we address the packet forwarding and flow identification problems, more

commonly known as route lookup and packet classification. Due to their fundamental role in the

functionality and performance of Internet routers, both problems are well-studied. Despitethe ener-

getic attention of a broad community of researchers in industry and academia, there remains a need

for good solutions. In this context, a solution’s “goodness” is evaluated along the classical engi-

neering criteria of performance, size, cost, and power consumption. The contributions of this work

include a high-performance implementation of a route lookup search engine, an in-depth study of

the filter sets used to classify packets, a suite of performance evaluation tools, and a new algorithm

for packet classification that scales to larger filter sets and more complex filters.

The value of this work goes beyond prototypes, research tools, and algorithms of academic

interest. A number of companies are beginning to offer packet classification searchengines as

products, and the industry is also gaining interest and investing in algorithmic solutions to the packet

classification problem. According to a leading market analyst, the search engine device market grew

14% from $83 million in 2002 to $95 million in 2003 [6]. More profound than the total market

growth is that the leading company offering algorithmic search engines gained 11%market share

while the leading TCAM vendor lost 18% market share. Ternary Content AddressableMemory

(TCAM) is a memory technology that searches all entries in the filter set in a single cycle. This

strategy results in fast packet classification, but the devices are extremely expensiveand power

hungry.

xxi



1

Chapter 1

Introduction

Computer Science is no more about computers than astronomy is about telescopes.

Edsger W. Dijkstra

The world is in the midst of a major paradigm shift in the role and importance of communica-

tions technology. Many contemporary historians have already dubbed this the “Information Age”.

Codified by the protocols produced by the DARPA Internet Architecture project begun in 1973,

the Internet has emerged as a global communications service of ever increasing importance. The

expanding scope of Internet users and applications requires network infrastructure to carry larger

volumes of traffic, tightening already challenging performance constraints. This dissertation ad-

dresses the searching tasks performed by Internet routers in order to forward packets andapply

network services to packets belonging to a particular traffic flows. As these searching tasks must be

performed for each packet traversing the router, the speed and scalability of the solutions to these

problems largely determine the realizable performance of the router, and hence the Internet as a

whole.

1.1 State of the Internet

The Internet refers to the global “network of networks” that utilizes the suite of internetworking

protocols developed by the DARPA Internet Architecture project initiated in 1973. The original

aim of this project was to enable communication across the original ARPANET and the ARPA

packet radio network, but the original architects were tasked with developing protocols to enable

communication across a wide variety of heterogeneous networks [1]. Due to the nature of the ARPA

packet radio network and the set of foreseeable applications, the protocols employdatagrams, or

packets, as the fundamental unit of communication, and thus the Internet is a connection-less packet-

switched network. The use of datagrams endowed the protocols with a simplicity and flexibility that

is largely responsible for the tremendous growth and development that the Internethas enjoyed.
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The building blocks of the Internet are essentially networks, each consisting of combina-

tions of possibly heterogeneous hosts, links, and routers. Figure 1.1 provides a simple example of

the Internet architecture. Hosts produce and consume packets, or datagrams, which contain chunks

of data - a piece of a file, a digitized voice sample, etc. Hosts may be personal computers, worksta-

tions, servers, Personal Digital Assistants (PDAs), IP-enabled mobile phones, or satellites. Packets

indicate the sender and receiver of the data similar to a letter in the postal system. Linksconnect

hosts to routers, and routers to routers. Links may be twisted-pair copper wire, fiber optic cable,

or a variety of wireless link technologies such as radio, microwave, or infrared. Thereare a variety

of strategies for allocating links in a network. These strategies often take into consideration band-

width and latency requirements of applications, geographical location, deployment and operating

costs. The fundamental role of routers is to switch packets from incoming links to the appropriate

outgoing links depending on the destination of the packets. Note that a packet may traverse many

links, often called hops, in order to reach its destination. Due to the transient nature of network

links (failure, congestion, additions, removals), routing protocols allow the routers to continually

exchange information about the state of the network. Based on this information, routers decide on

which link to forward packets destined for a particular host, network, or subnetwork. Note that the

dynamic nature of the routing protocols allows packets from a single host addressed to acommon

destination to follow different paths through the network.

The original Internet protocol suite was comprised of two protocols: the Internet Protocol

(IP) and the Transmission Control Protocol (TCP). The primary function of the Internet Protocol

(IP) is to provide an end-to-end packet delivery service. This task is accomplished by including

information regarding the sender and receiver with each packet transmitted throughthe network,

much like the forwarding and return addresses on a letter. IP specifies the format of this information

which is prepended to the content of each packet. The information prepended by each protocol is

referred to as a packet header and the data content of the packet is referred to as the payload. In order

to uniquely identify Internet hosts, each host is assigned an Internet Protocol (IP) address. Currently,

the vast majority of Internet traffic utilizes Internet Protocol Version 4 (IPv4) which assigns 32-bit

addresses to Internet hosts. As shown in Figure 1.2, the IPv4 header prepended to packets includes

the IP address of the source and destination host. For the purpose of our discussion, theother IPv4

header field of interest is theprotocolfield which identifies the type of transport protocol used by the

sending application. The type of transport protocol determines the format of the transport protocol

header following the IP header in the packet.

Rather than individually assign addresses to every host, IPv4 addresses were allocated to

organizations in contiguous blocks with the intention that all hosts in the same network share a

common set of initial bits. This common set of initial bits is referred to as the network address

or prefix; the remaining set of bits is called the host address. This allocation strategy provided

decentralized control of address allocation; each organization was free to makeallocation decisions

for the addresses within its assigned block. As shown in Figure 1.3, IPv4 addresses were originally
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Figure 1.1: Simple diagram of Internet architecture.

assigned in blocks of three sizes: Class A (16 million hosts), Class B (64 thousand hosts), and Class

C (254 hosts). Note that there are also blocks of Class D addresses for multicast (one-to-many

transmission) and reserved Class E addresses. Most organizations which required a largeraddress

space than Class C were allocated a block of Class B addresses, even though their network consumed

only a fraction of the addresses. This waste of available address space combined with theexplosive

growth of the Internet prompted concerns over the impending shortage of unassigned IP addresses.

Classless Inter-Domain Routing (CIDR) was introduced in order to prolong the life of IPv4 [7].

CIDR essentially allows a network address to be an arbitrary length prefix of the IP address, thus a

network’s address space may span multiple Class C networks. CIDR also allows routing protocols to

aggregate network addresses in order to reduce the amount of packet forwardinginformation stored

by each router. The wide adoption of CIDR by the Internet community has slowed the deployment

of a more permanent solution, Internet Protocol Version 6 (IPv6) [8]. Among other issues,the

designers of IPv6 addressed the address space issue via the use of 128-bit addresses. Despite the

relief provided by CIDR, adoption of IPv6 is probable given the continued increasein the number

of Internet hosts and deployment initiatives by influential research and commercial groups [9].

The second protocol produced by the original Internet Architecture project, the Transmis-

sion Control Protocol (TCP), provides a reliable transmission service for IP packets. Through the
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Figure 1.2: Format of Internet Protocol Version 4 (IPv4) packet headers with appended transport
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Figure 1.3: Internet Protocol Version 4 (IPv4) address space allocation.

use of small acknowledgment packets transmitted from the destination host to the sourcehost, TCP

detects packet loss and paces the transmission of packets in order to adjust to network congestion.

When the source host detects packet loss, it retransmits the lost packet or packets. At the destina-

tion host, TCP provides in-order delivery of packets to higher level protocols or applications. After
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initial development of TCP, a third protocol, the User Datagram Protocol (UDP), was added to the

original suite in order to provide additional flexibility. UDP essentially allows applications or higher

level protocols to dictate transmission behavior. For example, a streaming video application may

wish to ignore transient packet losses in order to prevent large breaks in the video stream caused by

packet retransmissions.

Typically, the TCP and UDP transport protocols identify applications using 16-bit port num-

bers carried in the transport header as shown in Figure 1.2. In order to provide servicesto unknown

hosts, servers must have static “contact ports” for each application. Port numbers for widely-used

applications fall in the range of well-knownsystemports which are assigned by the Internet As-

signed Numbers Authority (IANA). Prior to 1993, the well-known port numbers were in therange

[0 . . . 255] while port numbers[256 . . . 1023] were used in Unix systems for Unix-specific services.

Since 1993, port numbers in the range[0 . . . 1023] form the set of well-knownsystemport num-

bers managed by IANA. A “living document” ofsystemport number assignments is available at

http://www.iana.org/assignments/port-numbers . For applications where either

TCP or UDP may be used, port number assignments are typically identical. Unlike servers, clients

only need to guarantee that running applications use free port numbers. The range of port numbers

that may be freely assigned by clients are referred to as ephemeraluserports due to their short-lived

and unmanaged nature. The set ofuserport numbers span the range[1024 . . . 65535]. IANA does

maintain a list ofregistereduser port numbers in the range[1024 . . . 49151] for popular applications

which do not have an assignedsystemport.

1.2 The “Next Generation” Internet

While the protocols produced by the Internet Architecture project achieved the original goals set

forth by DARPA and the pioneering group of researchers, the use of datagrams also presents chal-

lenges for those striving to deploy the next-generation of Internet services, particularly real-time

services such as Internet telephony and video conferencing. It is important to notethat the choice

of datagrams and packet-switching represents a significant departure from the circuit-switched net-

works originally developed and deployed by the telecommunications industry. While the Internet

protocols simplify the task of combining heterogeneous networks, the use of packet-switching com-

plicates the provision of bandwidth and quality of service guarantees. As mentionedabove, packets

flowing between a fixed set of hosts may take different paths through the network. Due to the

heterogeneous nature of the Internet, packets following different paths will likely experience dif-

ferent hop counts and congestion resulting in unpredictable latency and bottlenecklink capacity.

Circuit-switched networks allow data to flow along a fixed path, offering predictable performance.

The major drawback of circuit-switching is the need to negotiate an end-to-end path through the

network. In the case of the Internet, this would require coordination across many heterogeneous

networks operated by independent parties with potentially competing interests.
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Enabling quality of service and real-time performance guarantees are just a couple of the

challenges facing the community architecting the “next-generation” Internet. As the Internet be-

comes increasingly essential infrastructure for the global economy, security is a major concern. Due

to their roots in academic research, many network protocols were developed and implemented with

little if any consideration of security issues. As a result, many academic and commercial institutions

have suffered from destructive network intrusions by hackers, viruses, and worms. Those holding

a vested interest in the security of the Internet now find themselves in a perpetual “arms race” with

nefarious programmers. Furthermore, IP has essentially become a victim of its own popularity.

The amount of investment in the IP infrastructure by Internet Service Providers (ISPs) has yielded

significant resistance to changing the architecture. This hardening of the Internet architecture also

presents a significant challenge to realizing the “next-generation” Internet.

Despite concerns over security and ossification of the Internet protocols, many in the re-

search community have put forth grand visions of the “next-generation” Internet. While specifics

invariably differ, common goals include: retaining the flexibility provided by IP while enabling the

performance guarantees made available by circuit-switching, providing a level of security that war-

rants greater economic reliance, and enabling more rapid development and deployment of services.

Some go so far as to set forth the goal that the Internet become reliable enough to support the air

traffic control system [10].

1.3 The Packet Classifi cation Problem

In a circuit-switched network, the task of identifying the traffic associated with a particular appli-

cation session between two hosts or subnetworks is trivial from the router’s perspective.A simple,

fixed-length flow identifier can be prepended to each unit of data that identifies the established end-

to-end connection. For each unit of data, a router simply performs an exact match search over a table

containing the flow identifiers for established connections. The table entries for each flow identi-

fier contain the output link on which to forward the data and may also specify quality of service

guarantees or special processing the router should perform.

The flow identification task in a packet-switched network is significantly more challenging.

The primary task of routers is to forward packets from input links to the appropriate output links.

In order to do this, Internet routers must consult aroute tablecontaining a set of network addresses

and the output link ornext hopfor packets destined for each network. Entries in the route tables

change dynamically according to the state of the network and the information exchanged by routing

protocols. The task of resolving the next hop from the destination IP address is commonly referred

to asroute lookupor IP lookup. Finding the network address given a packet’s destination address

would not be overly difficult if the Internet Protocol (IP) address hierarchy were strictly maintained.

A simple lookup in three tables, one for each Class of networks, would be sufficient. Thewide

adoption of CIDR allows the network addresses in route tables to be any size. Performing asearch
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Search Key:
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Figure 1.4: Example of Longest Prefix Matching for a 12-bit search key; all shaded prefixes match
the key, but1000000011∗ is the longest matching prefix.

in 32 tables, one for each possible network address length, for every packet traversing the router is

not a viable option. If we store all the variable-length network addresses in a single table,a route

lookup requires finding the longest matching prefix (network address) in the table for the given

destination address.

Stated formally, a prefix is a subset of initial bits of a key value, the IP destination address

in the case of route lookups. By definition, key values that share a common prefix have the same

contiguous subset of bits starting at the most significant bit. Given a search keyx of sizeb bits,

Longest Prefix Matching (LPM) is a search technique which selects the prefixpi in the set of prefixes

P , such thatpi matchesx andpi has the most specified bits. Each prefixpi can be thought of as the

combination of ab-bit key and a correspondingb-bit mask which identifies the valid bits in the key.

By definition, the mask is contiguous in LPM; i.e. the most significant invalid bit in the mask must

be succeeded by invalid bits. Prefixes can be succinctly represented by simply using the∗ character

to denote the end of the valid bits in the prefix. An example of Longest Prefix Matching (LPM) for

a 12-bit search key is provided in Figure 1.4. Note that the four shaded prefixes match the search

key, but1000000011∗ is the longest matching prefix. The throughput of an Internet router largely

depends upon the speed at which it can perform Longest Prefix Matching (LPM).

If an Internet router is to provide more advanced services than packet forwarding,it must

perform finer grained flow identification. In the Internet context, the process of identifyingthe pack-

ets belonging to a specific application session or group of sessions between a source anddestination
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Table 1.1: Example filter set of 16 filters classifying on four fields; each filter has an associated flow
identifier (Flow ID) and priority tag (PT) where† denotes a non-exclusive filter; wildcard fields are
denoted with∗.

Filter Action
SA DA Prot DP FlowID PT
11010010 * TCP [3:15] 0 3
10011100 * * [1:1] 1 5
101101* 001110* * [0:15] 2 8†
10011100 01101010 UDP [5:5] 3 2
* * ICMP [0:15] 4 9†
100111* 011010* * [3:15] 5 6†
10010011 * TCP [3:15] 6 3
* * UDP [3:15] 7 9†
11101100 01111010 * [0:15] 8 2
111010* 01011000 UDP [6:6] 9 2
100110* 11011000 UDP [0:15] 10 2
010110* 11011000 UDP [0:15] 11 2
01110010 * TCP [3:15] 12 4†
10011100 01101010 TCP [0:1] 13 3
01110010 * * [3:3] 14 3
100111* 011010* UDP [1:1] 15 4

host or subnetwork is typically referred to as the packet classification problem. Note thatthe route

lookup problem may be viewed as a sub-problem of the more general packet classification problem.

Applications for Quality of Service, security, monitoring, and multimedia communications typically

operate on flows, thus each packet traversing a router must be classified in order to assigna flow

identifier,FlowID. Packet classification entails searching a table of filters for the highest priority fil-

ter or set of filters which match the packet. Filters bind a flow or set of flows to aFlowID. Note that

filters are also referred to as rules in some of the packet classification literature. At minimum, filters

contain multiple field values that specify an exact packet header or set of headers and the associated

FlowID for packets matching all the field values. The type of field values are typically prefixesfor

IP address fields, an exact value or wildcard for the transport protocol number andflags, and ranges

for port numbers. An example filter set is shown in Table 1.1. In this simple example, filters contain

field values for four packet headers fields: 8-bit source and destination addresses, transport protocol,

and a 4-bit destination port number. The packet fields most commonly used for packet classification

are referred to as the IP 5-tuple and include the 8-bit protocol, 32-bit source address, and32-bit

destination address in the IPv4 header as well as the 16-bit source port and 16-bit destination port

in the TCP and UDP transport protocol headers.

Note that the filters in Table 1.1 also contain an explicit priority tagPT and a non-exclusive

flag denoted by†. Priority tags allow filter priority to be independent of filter ordering, providing for

simple and efficient dynamic updates. Non-exclusive flags allow filters to be designated as either
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exclusive or non-exclusive. A search returns the single highest-priority exclusive filter,allowing

Quality of Service and security applications to specify a single action for the packet. Packets may

also match several non-exclusive filters, providing support for transparent monitoring and usage-

based accounting applications. Note that a parameter may control the number of non-exclusive

filters, r, returned by the packet classifier. Like exclusive filters, the priority tag is used to select

the r highest priority non-exclusive filters. We argue that packet classifiers should support these

additional filter values and point out that many existing algorithms preclude their use. The packet

classification problem may be stated formally as follows:

Given a packetP containing fieldsP j and a collection of filtersF with each filterFi

containing fieldsF j
i , select the highest priority exclusive filter andr highest priority

non-exclusive filters where for each filter∀j : F
j
i matchesP j .

Consider the example of searching Table 1.1 for the highest-priority exclusive filter and single

highest-priority non-exclusive filter,(r = 1), for a packet with the following header field values:

• SA: 1001 1100

• DA: 0110 1010

• Prot: UDP

• DP: 5

The exclusive filters withFlowIDs 3 and 15 match the packet, butFlowID 3 is the highest priority

filter (minimumPT value). The non-exclusive filters withFlowIDs 5 and 7 match the packet, but

FlowID 5 is the highest priority filter. The search would returnFlowIDs3 and 5.

1.3.1 Constraints

Computational complexity is not the only challenging aspect of the packet classification problem.

Increasingly, traffic in large ISP networks and the Internet backbone travels over links with transmis-

sion rates in excess of one billion bits per second (1 Gb/s). Current generation fiber opticlinks can

operate at over 40 Gb/s. The combination of transmission rate and packet size dictate the through-

put, the number of packets per second, routers must support. A majority of Internet traffic utilizes

the Transmission Control Protocol which transmits 40 byte acknowledgment packets. Inthe worst

case, a router could receive a long stream of TCP acknowledgments, therefore conservative router

architects set the throughput target based on the input link rate and 40 byte packet lengths. For

example, supporting 10 Gb/s links requires a throughput of 31 million packets persecond per port.

Modern Internet routers contain tens to thousands of ports. In such high-performance routers, route

lookup and packet classification is performed on a per-port basis.

Many algorithmic solutions to the route lookup and packet classification problems provide

sufficient performance on average. Most techniques suffer from poor performancefor a pathological
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search. For example, a technique might employ a decision tree where most pathsthrough the tree

are short, however one path is significantly long. If a sufficiently long sequence of packets that

follows the longest path through the tree arrives at the input port of the router, thenthe throughput

is determined by the worst-case search performance. It is this set of worst-case assumptions that

imposes the so-called “wire speed requirement” for route lookup and packet classification solutions.

In essence, solutions to these search problems are almost always evaluated based onthe time it takes

to perform a pathological search. In the context of networks that provide performance guarantees,

engineering for the worst case logically follows. In the context of the Internet, the protocols make no

performance guarantees and provide “best-effort” service to all traffic. Furthermore, theswitching

technology at the core of routers cannot handle pathological traffic. Imagine asufficiently long

sequence of packets in which all the packets arriving at the input ports are destined for the same

output port. When the buffers in the router ports fill up, it will begin dropping packets. Thus, the

“wire speed requirement” for Internet routers does not logically follow from the high-level protocols

or the underlying switching technology; it is largely driven by network management and marketing

concerns. Quite simply, it is easier to manage a network with one less source of packet losses and

it is easier to sell an expensive piece of network equipment when you don’t have to explain the

conditions under which the search engines in the router ports will begin backlogging. It is for these

reasons that solutions to the route lookup and packet classification problems are typically evaluated

by their worst-case performance.

Achieving tens of millions of lookups per second is not the only challenge for route lookup

and packet classification search engines. Due to the explosive growth of the Internet,backbone

route tables have swelled to over 100k entries. Likewise, the constant increase in the number of

security filters and network service applications causes packet classification filter sets to increase

in size. Currently, the largest filter sets contain a few thousand filters, however dynamic resource

reservation protocols could cause filter sets to swell into the tens of thousands. Scalability to larger

table sizes is a crucial property of route lookup and packet classification solutions; it is also a critical

concern for search techniques whose performance depends upon the numberof entries in the tables.

As routers achieve aggregate throughputs of trillions of bits per second, power consumption

becomes an increasingly critical concern. Both the power consumed by the router itself and the

infrastructure to dissipate the tremendous heat generated by the router components significantly

contribute to the operating costs. Given that each port of high-performance routers must contain

route lookup and packet classification devices, the power consumed by search engines is becoming

an increasingly important evaluation parameter. While we do not provide an explicit evaluation

of power consumption in this dissertation, we present solutions to the route lookup and packet

classification techniques that employ low-power memory technologies.
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1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. The next chapter providesan overview

of single field search techniques, including Longest Prefix Matching (LPM) techniques specifically

developed in response to the route lookup problem. The other types of searches covered in Chap-

ter 2 have relevance for the types of searches dictated by the packet classificationproblem. In order

to demonstrate the level of performance and efficiency achievable via high-performance implemen-

tations of algorithms, Chapter 3 provides a description of the Fast Internet Protocol Lookup (FIPL)

search engine. Targeted to open-platform research systems designed and developed at Washing-

ton University, FIPL is a high-performance hardware implementation of the Tree Bitmap algorithm

developed by Eatherton and Dittia [11].

Chapter 4 presents a survey of solutions to the packet classification problem using a taxon-

omy that frames each solution according to its high-level approach to the problem. Motivated by

recent packet classification algorithms that leverage properties of real filter sets in order to achieve

better performance, Chapter 5 contains a detailed analysis of 12 real filter sets collected from fellow

researchers, Internet Service Providers (ISPs), and a network equipment vendor. Unlike the field of

computer architecture, there are no standard filter sets or performance evaluation toolsthat provide

a uniform scale for comparing competing packet classification solutions. In response, we developed

a suite of benchmarking tools that includes aSynthetic Filter Set Generator. A description and anal-

ysis of theClassBenchtools is contained in Chapter 6. Based on the results of the analysis presented

in Chapter 5, we developed a new packet classification algorithm that leverages the structure of real

filter sets and the capabilities of modern hardware technology. Chapter 7 presents adescription

and performance analysis of the new technique,Distributed Crossproducting of Field Labels, which

provides favorable scaling properties for larger filter sets and more complex filters. We provide a

summary of the contributions in this dissertation and discussion of future work in Chapter 8.
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Chapter 2

Single-Field Search Techniques

Computers are useless. They can only give you answers.

Pablo Picasso

A variety of searching problems naturally arise in packet classification due to the structure ofpacket

filters. As discussed in Chapter 1, filter fields specify one of three different match conditions on

the corresponding packet header fields:(1) a fully specified value, or exact matching,(2) partially

specified value, or prefix matching,(3) a range of values, or range matching. In this chapter, we

provide a survey of the prominent solutions to these three types of search problems, focusing on the

most frequently used solutions and those solutions specifically tailored to networking applications.

We begin with a survey of solutions for exact matching in Section 2.1, followed by a discussion of

Longest Prefix Matching (LPM) techniques in Section 2.2. LPM has been the focus of intensive

study in recent years due to the fundamental role it plays in IP address lookups for packet forward-

ing. Note that LPM is a special case of the more general All Prefix Matching (APM) problem

discussed in Section 2.3. Various packet classification techniques require an efficientsolution to the

APM problem. Finally, we address the more challenging problem of range matching. Fortunately,

range matching is a problem that arises in many contexts. We provide a survey of range match-

ing solutions drawn from the fields of computational geometry, database design, andnetworking in

Section 2.4.

2.1 Exact Matching

The simplest form of exact matching is the set membership query: determine if keyx belongs to the

set of keysX. Often we wish to store associated information with each keyxi ∈ X such as unique

identifiers or processing directives. In such cases, a search wherex ∈ X returns not only a “yes”

for the membership query, but also the information associated with the matching entry. Exact match

search problems naturally arise in packet classification when filters examine packet fieldssuch as

the transport protocol identifier. Due to the constraints on exact match searches in thenetworking
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context, namely the size of the key sets and the speed at which the search must be performed, non-

trivial data structures must be used for this task. We provide a brief introduction to two classical

data structures that seek to minimize the number of memory accesses per search, B-trees and hash

tables. Both data structures are capable of supporting set membership queries as well as storing

additional information with each key. We also provide a brief introduction to Bloom filters, adata

structure designed to efficiently represent a set of keys. The space efficiency comes at the price of

allowing false positive matches, as well as not storing any additional information with the keys in

the set.

2.1.1 B-Trees

B-Trees were originally designed to limit the number of accesses to direct access storage units such

as disks and drums [12, 13]. The reduction in I/O operations is achieved by organizing keys in a

tree data structure where the nodes of the tree may have many children. The maximumnumber of

children a node may have is typically referred to as thedegreeof the tree. The number keys stored in

any tree node (except the root node) is bounded by theminimum degreeof the B-Tree. Specifically,

each node in the tree must contain at least(B − 1) keys and at most(2B − 1) keys, whereB ≥ 2.

An example of a B-Tree storing the integer multiples of three is shown in Figure 2.1. Note

that the keys stored in a node are arranged in non-decreasing order. Each internal node also stores

a set of pointers interspersed with the keys. Each pointer points to a child node storing keys greater

than the key to the “left” of the pointer and less than or equal to the key to the “right”of the pointer.

Note that each node may also store additional information for each key1 Finally, the heighth of a

B-Tree containingn keys is bounded by:

h ≤ logB

n + 1

2
(2.1)

Thus, given a maximum table size the value ofB can be selected to meet a given access budget. Note

that we assume a pointer to additional data may be stored along with each key. Another common

B-Tree organization stores all pointers to additional data in the leaves and only storeskeys and child

pointers in the internal nodes in order to maximize the branching factor of the internal nodes.

2.1.2 Hashing

Hashing is a technique that can provide excellent average performance when the number of keys,

n, in the setX is much less than the number of keys,|U |, in the universe of possible key values,U .

For example, assume thatX contains 100 keys where the keys may take on any value in the range

[0 : 65535], i.e. a 16-bit unsigned integer. We could simply allocate a table with 65,536 entries

and use the value of the keyx as an index into the table, but obviously this is very wasteful. This

1Each B-Tree node could also store a pointer to a table of information that could be indexed by the matching key’s
position in the node.
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Figure 2.1: Example of a B-Tree storing multiples of three, wheret = 3.

technique,direct addressing, is only viable when the number of keysn in the setX approaches the

number of possible key values|U |.

The classical solution to this problem is to map the key valuex to a narrower range of values

that can be used to index a smaller table. In order to perform the mapping function, ahash function,

h(x), is computed on the key value. The resulting value is used as an index into ahash tableof size

[0 : m − 1] wherem � |U |. Ideally, the hash function uniformly distributes alln keys across the

m slots in the hash table. This search method, calledhashing, has been extensively studied and is

given thorough treatment by a number of computer science textbooks [12, 13].

There is a variety of methods for constructing hash functions. Often, the low-order bits

of key values are sufficiently uniform in distribution such that thehash indexmay be constructed

by selecting low order bits of the key. Such hash functions are trivial to construct in hardware.

Figure 2.2 shows an example of using the four low-order bits of the key as a hash index for the same

integer multiples of three used in the B-Tree example in Figure 2.1. Note that whenn is greater than

m and/or the distribution of keys across the hash table is not uniform, thencollisionsoccur. In our

example, we use a common collision resolution technique calledchaining, where keys that map to

the samehash indexform a linked list. The ratio of keys to hash table slots is referred to as theload

factor, α = n
m , which specifies the average number of keys in a chain. Thus, the average search

time for a hash table where chaining is used for collision resolution isΘ(1 + α). There is a variety

of much more sophisticated hash functions and collision resolution techniques. We refer the reader

to the previously mentioned textbooks for a more complete discussion [12, 13].

2.1.3 Bloom Filters

A Bloom filter is a data structure used for efficiently representing a set of keys. Via implicit repre-

sentations of the keys in the set, the data structure supports membership queries but is not capable

of storing additional information for each stored key. This technique was formulated byBurton

H. Bloom in 1970 [14], and has received renewed attention in the research community for various

applications such as web caching, intrusion detection, and content based routing[15]. A Bloom

filter is essentially a bit-vector of lengthm where a keyx is represented by a subset of them bits.
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Figure 2.2: Example of hashing with chaining using the four low-order bits as a hash index.
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Figure 2.3: Example of inserting two keys,x andy, into a Bloom filter.

Given a set of keysX with n members, we insert a keyxi ∈ X into the Bloom filter as follows2.

We computek hash functions onxi, producingk values in the range[0 : m − 1]. Each of these

values addresses a single bit in them-bit vector, hence each keyxi causesk bits in them-bit vector

to be set to 1. Figure 2.3 provides an example of inserting two keys into a Bloom filter. Note that if

one of thek hash values addresses a bit that is already set to 1, that bit is not changed.

Querying the filter in order to determine if a given keyx belongs to the setX is similar

to the insertion process. Given keyx, we generatek hash indices using the same hash functions

2Inserting a key into a Bloom fi lter is also referred to as “programming” the fi lter in the literature.



16

1 1 1 0 0 11 0

query
x

h1(x) h2(x) h3(x) h1(x) h2(x) h3(x)

query
z

h1(x) h2(x) h3(x)

1 1 1 0 0 11 01 1 1 0 0 11 0

query
w

non-member member member
false positive

Figure 2.4: Example of querying a Bloom filter;w is a non-member,x is a correct match;z is a
false positive match.

used to insert keys into the filter. We check the bit locations corresponding to thek hash indices

in them-bit vector. If at least one of thek bits is 0, then we declare the key to be a non-member

of the set. If all the bits are found to be 1, then we claim that the key belongs to the setwith a

certain probability. If we find allk bits to be 1 andx is not a member ofX, then it is said to be a

false positive match. This ambiguity in membership comes from the fact that thek bits in them-bit

vector can be set by any of then members ofX. Thus, finding a bit set to 1 does not necessarily

imply that it was set by the particular key being queried. However, finding a 0 bitcertainly implies

that the key does not belong to the set, since if it were a member then allk-bits would have been set

to 1 when the key was inserted into the Bloom filter. Examples of a non-match, correctmatch, and

false positive match are shown in Figure 2.4.

The following is a derivation of the probability of a false positive match,f . The probability

that a random bit of them-bit vector is set to 1 by a hash function is simply1
m . The probability that

it is not set is1− 1
m . The probability that it is not set by any of then members ofX is (1− 1

m)nk.

Hence, the probability that this bit is found to be 1 is1 − (1 − 1
m)nk. For a key to be declared a

possible member of the set, allk bit locations generated by the hash functions need to be 1. The

probability that this happens,f , is given by

f =

(

1−

(

1−
1

m

)nk
)k

(2.2)

for large values ofm the above equation reduces to

f ≈
(

1− e
−nk
m

)k
(2.3)
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Since this probability is independent of the input key, it is termed thefalse positiveprobability. The

false positive probability can be reduced by choosing appropriate values form andk for a given

size of the member set,n. For a given ratio ofmn , the false positive probability can be reduced by

adjusting the number of hash functions,k. In the optimal case, when false positive probability is

minimized with respect tok, we get the following relationship

k =

{⌊

m

n
ln 2

⌋

,

⌈

m

n
ln 2

⌉}

(2.4)

The false positive probability at this optimal point is given by

f =

(

1

2

)k

(2.5)

It should be noted that if the false positive probability is to be fixed, then the size of the filter, m,

needs to scale linearly with the size of the key set,n.

One property of Bloom filters is that it is not possible to delete a key stored in the filter.

Deleting a particular entry requires that the correspondingk hashed bits in the bit vector be set to

zero, which would disturb other keys programmed into the filter which hash to any of these bits.

In order to solve this problem the idea of theCounting Bloom Filterwas proposed by Fan, et.

al. [16]. A Counting Bloom Filter maintains a vector of counters corresponding to each bit in the

bit-vector. Whenever a key is added to or deleted from the filter, the counters corresponding to the

k hash values are incremented or decremented, respectively. When a counter changes from zero to

one, the corresponding bit in the bit-vector is set. When a counter changes from one to zero, the

corresponding bit in the bit-vector is cleared. Note that maintaining counters significantly increases

the storage requirements. If updates to the set of stored keys arrive at a reasonable rate, then the

counters may be stored in slower, cheaper memory technology such as DRAM.

2.2 Longest Prefi x Matching (LPM)

Longest Prefix Matching (LPM) has received significant attention in the literature over the past ten

years. This is due to the fundamental role it plays in the performance of Internet routers.Due to

the explosive growth of the Internet, Classless Inter-Domain Routing (CIDR) was widely adopted

to prolong the life of Internet Protocol Version 4 (IPv4) [7]. Use of this protocol requires Internet

routers to search variable-length address prefixes in order to find the longest matching prefix of the

IP destination address and retrieve the corresponding forwarding information, or “next hop”, for

each packet traversing the router. This computationally intensive task, commonly referred to as IP

Lookup, is often the performance bottleneck in high-performance Internet routers. We will use IP

lookup as the example application for Longest Prefix Matching for the remainder of thesection. The
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Figure 2.5: Example of Longest Prefix Matching for a 12-bit address using linear search; prefixes
are sorted in decreasing order of prefix length; the first matching prefix is the longest.

following sections discuss the major developments in LPM techniques for IP lookup, categorized

by their general approach to the problem.

2.2.1 Linear Search

If the set of prefixes is small, a linear search through a list of the prefixes sorted in order ofdecreasing

length is sufficient. The sorting step guarantees that the first matching prefix in the list is the longest

matching prefix for the given search key. An example of Longest Prefix Matching (LPM) using

linear search is shown in Figure 2.5. Linear search is commonly touted as the most memory efficient

of all LPM techniques in that the memory requirements areO(N) whereN is the number of prefixes

in the table. Note that the search time is alsoO(N), thus linear search is not a viable approach for

IP lookup when the set of prefixes grows beyond a few dozen prefixes.

2.2.2 Content Addressable Memory (CAM)

Many commercial router designers have chosen to use Content Addressable Memory (CAM) for IP

address lookups in order to keep pace with optical link speeds despite their largersize, cost, and

power consumption relative to Static Random Access Memory (SRAM). CAMs minimize the num-

ber of memory accesses required to locate an entry by comparing the input key against all memory

words in parallel; hence, a lookup effectively requires one clock cycle. While binary CAMs perform
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well for exact match operations and can be used for route lookups in strictly hierarchical address-

ing schemes [17], the wide use of address aggregation techniques like CIDR requiresstoring and

searching entries with arbitrary prefix lengths. In response, Ternary Content Addressable Memories

(TCAMs) were developed with the ability to store an additional “Don’t Care” state thereby enabling

them to retain single clock cycle lookups for arbitrary prefix lengths. We believe that this “brute-

force” approach is no longer necessary for IP lookup due to the significant advances that have been

made in algorithmic LPM techniques. TCAMs remain competitive choices for packet classification

on multiple fields; therefore, we provide a more detailed analysis of these devices in Section 4.2.2.

2.2.3 Trie Based Schemes

Search techniques which build decision trees using the bits of prefixes to make branching decisions

allow the worst-case search time to be independent of the number of prefixes in the set.An example

of a binary trie3 constructed from the set of prefixes in Figure 1.4 is shown in Figure 2.6. Shaded

nodes denote a stored prefix; the corresponding next hop is shown adjacent to thenode. A search

is conducted by traversing the trie using the bits of the address, starting with the most significant

bit. As in the previous examples, the best matching prefix is1000000011∗ and the corresponding

next hop is seven. Note that the worst-case search time is nowO(W ), whereW is the length of the

address and maximum prefix size in bits.

One of the first IP lookup techniques to employtries is Sklower’s implementation of a

Patricia trie in the BSD kernel [18]. The Patricia trie is a binary radix tree that compresses paths

with one-way branching into a single node. The BSD kernel implementation was designed to be

general enough to support any hierarchical routing scheme or link layer addresstranslation such as

the Address Resolution Protocol (ARP). It assumes contiguous masks and bounds the worst case

lookup time toO(W ). While paths may be compressed, only one bit of the address is examined

at a time during a search resulting in search rates that do not meet the needs of high-performance

routers.

In order to speed up the lookup process, multi-bit trie schemes were developed which per-

form a search using multiple bits of the address at a time. Srinivasan and Varghese introduced

two important techniques for multi-bit trie searches,Controlled Prefix Expansion(CPE) andLeaf

Pushing[19]. Controlled Prefix Expansionrestricts the set of distinct prefix lengths by “expanding”

prefixes shorter than the next distinct length into multiple prefixes. This allows the lookup topro-

ceed as a direct index lookup into tables corresponding to the distinct prefix length, or stride length,

until the longest match is found. The technique ofLeaf Pushingreduces the amount of information

stored in each table entry by “pushing” information about the best matching prefix along the paths to

leaf nodes. As a result each leaf node need only store a pointer or next hop information. While this

technique reduces memory usage, it also increases incremental update overhead. The authors also

3A trie is an ordered tree in which the key stored at each node is specifi ed by its position in the tree.
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Figure 2.6: Example of Longest Prefix Matching using a binary trie.

discuss variable length stride lengths, optimal selection of stride lengths, and dynamic programming

techniques.

Gupta, Lin, and McKeown simultaneously developed a special case of CPE specifically

targeted to hardware implementation [20]. Arguing that DRAM is such a plentiful andinexpensive

resource, their technique sacrifices large amounts of memory in order to bound thenumber of off-

chip memory accesses to two or three. Their basic scheme is a two level “expanded” trie with an

initial stride length of 24 and second level tables of stride length eight. Given that random accesses

to DRAM may require up to eight clock cycles and current DRAMs operate at less than half the

speed of SRAMs, this technique can be out-performed by techniques utilizing SRAM andrequiring

fewer than 10 memory accesses.

Other techniques such asLulea [21] and Eatherton and Dittia’sTree Bitmap[11] employ

multi-bit tries with compressed nodes. In Chapter 3 we provide a detailed description and analysis

of a scalable hardware implementation ofTree Bitmap. We also provide an introduction to multi-bit

tries, a complete description of theTree Bitmapalgorithm, and a comparison betweenTree Bitmap

and other approaches such asLulea. TheLuleascheme essentially compresses an expanded, leaf-

pushed trie with stride lengths 16, 8, and 8. In the worst case, the scheme requires 12 memory

accesses; however, the data structure only requires a few bytes per entry. While extremely compact,
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the Lulea scheme’s update performance suffers from its implicit use of leaf pushing. TheTree

Bitmap technique avoids leaf pushing by maintaining compressed representations of the prefixes

stored in each multi-bit node. It also employs a clever indexing scheme to reduce pointer storage

to two pointers per multi-bit node. Storage requirements forTree Bitmapare on the order of six

to eight bytes per address prefix, worst-case memory accesses can be held to less thaneight with

optimizations, and updates require modifications to a few memory words resulting in excellent

incremental update performance [22].

The fundamental issue with trie-based techniques is that performance and scalability are

fundamentally tied to address length. As many in the Internet community are pushing towidely

adopt IPv6, it is not clear that trie-based solutions will be capable of meeting performance demands.

In the following sections, we discuss LPM algorithms that avoid this linear relationship with address

length.

2.2.4 Multiway and Multicolumn Search

Several other algorithms exist with attractive properties that are not based on tries. TheMultiway

and Multicolumn Searchtechniques presented by Lampson, Srinivasan, and Varghese are designed

to optimize performance for software implementations on general purpose processors [23]. The pri-

mary contribution of this work is mapping the longest matching prefix problem to a binarysearch

over the fixed-length endpoints of the ranges defined by the prefixes. By specifyinga set of con-

tiguous initial bits, prefixes define ranges of values. For example, if10∗ is a prefix for a four bit

field, then it defines the range[1000 : 1011]. Prefixes never define overlapping ranges, only nested

ranges. For example,[0 : 3] and[2 : 4] are overlapping ranges, whereas[0 : 3] and[1 : 2] are nested

ranges. The authors use this property to develop a binary search technique over the endpoints of the

ranges defined by the prefixes.

The authors also used a popular optimization, a precomputed index array. An example of a

precomputed index array4 for the first three bits of our example prefix set is shown in Figure 2.7. We

begin by storing the prefixes in a binary trie, then perform Controlled Prefix Expansion (CPE) for

a stride length equal to three [19]. The next hop associated with each node at level three is written

to the array slot addressed by the bits labeling the path from the root to the node. If the node has

children, then a pointer to a binary trie containing the children is stored. The structure is searched

by using the first three bits of the address to index into the array. If no pointer is stored, thenthe

next hop at the array index is returned as the next hop. If a pointer is stored, thenthe next hop at the

array index is remembered as the best match thus far and the search continues using the binary trie

identified by the pointer. Note that this data structure requires2a × q bits of memory wherea is the

number of bits used to index the array andq is the number of bits required for next hop and pointer

storage.

4Precomputed index arrays are also called “initial arrays”and “direct lookup arrays” in the literature
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Figure 2.7: Example of a direct lookup array for the first three bits.

Finally, the authors optimize their algorithm based on the memory hierarchy of modern

general purpose processors. The data structures are dimensioned to take advantage ofthe cache

line size of the target processor. Even though it is geared to software implementation, itmay not

be viable for current generation network processors that do not contain full memoryhierarchies. In

general, the approach requiresO(W + log N) time andO(2N) memory, whereN is the number

of prefixes andW is the length of the address. Again, the primary issue with this algorithm is its

linearly scaling relative to address length.

2.2.5 Binary Search on Prefi x Lengths

The most efficient lookup algorithm known, from a theoretical perspective, isBinary Search on

Prefix Lengthswhich was introduced by Waldvogel, et. al. [24]. The number of steps required by

this algorithm grows logarithmically in the length of the address, making it particularly attractive

for IPv6, where address lengths increase to 128 bits. However, the algorithm is relatively complex

to implement, making it more suitable for software implementation than hardware implementation.

It also does not readily support incremental updates.

This technique bounds the number of memory accesses via significant precomputation of the

route table. First, the prefixes are sorted into sets based on prefix length, resulting in a maximum of

W sets to examine for the best matching prefix. A hash table is built for each set, and it is assumed
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that examination of a set requires one hash probe. The basic scheme selects the sequence of sets to

probe using a binary search on the sets beginning with the median length set. For example: for an

IPv4 database with prefixes of all 32 lengths, the search begins by probing the set with length 16

prefixes. Prefixes of longer lengths direct the search to its set by placing “markers” in theshorter

sets along the binary search path. Going back to our example, a length 24 prefix would have a

“marker” in the length 16 set. Therefore, at each set the search selects the longer set on the binary

search path if there is a matching marker directing it lower. If there is no matching prefixor marker,

then the search continues at the shorter set on the binary search path.

Use of markers introduces the problem of “backtracking”: having to search the upper half

of the trie because the search followed a marker for which there is no matching prefix in alonger set

for the given address. In order to prevent this, the best-matching prefix for the marker iscomputed

and stored with the marker. If a search terminates without finding a match, the best-matching prefix

stored with the most recent marker is used to make the routing decision. The authors also propose

methods of optimizing the data structure based on the statistical characteristics of the route table.

For all versions of the algorithm, the worst case bounds areO(log Wdist) time andO(N×log Wdist)

space whereWdist is the number of unique prefix lengths. Empirical measurements using an IPv4

route table resulted in memory requirement of about 42 bytes per entry.

2.2.6 Longest Prefi x Matching using Bloom Filters

Dharmapurikar, Krishnamurthy, and Taylor introduced the first algorithmic Longest PrefixMatch-

ing (LPM) technique to employ Bloom filters [25]. This approach, which we will refer to asBloom

filter-based IP Lookup(BIPL), is a hardware-based IP lookup solution withaverageperformance

superior to TCAMs. Mitigating worst-case performance requires an initial index array andCon-

trolled Prefix Expansion(CPE) which causesBIPL to become less memory and update efficient.

The performance bottleneck in any longest prefix matching technique is the numberof sequential

memory accesses required per lookup. The key feature ofBIPL is that the performance, as deter-

mined by the expected number of sequential memory accesses required per lookup, can be held to a

constant regardless of address length and number of unique prefix lengths. The approach is equally

attractive for Internet Protocol Version 6 (IPv6) which uses 128-bit destination addresses, four times

longer than IPv4.

A basic configuration ofBIPL is shown in Figure 2.8. It begins by sorting the set of prefixes

into sets according to prefix length. The system employs a set ofW counting Bloom filters, where

W is the maximum number of unique prefix lengths in the prefix set, and associates one Bloom

filter with each unique prefix length. Each filter is “programmed” with the associated set ofprefixes

according to the previously procedure described in Section 2.1.3. It is important to note that while

the bit-vectors associated with each Bloom filter must be stored on-chip, the counters associated

with each filter can be maintained by a separate control processor responsible for route updates.

Separate control processors with ample memory are typical features of high-performance routers.
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Figure 2.8: Basic configuration of Longest Prefix Matching using Bloom filters, (BIPL).

A hash table is also constructed for each distinct prefix length. Each hash table is initialized with

the set of corresponding prefixes, where each hash entry is a (prefix, next hop) pair. The set of hash

tables is stored in off-chip memory. Given that the problem of constructing hash tablesto minimize

collisions with reasonable amounts of memory is well-studied, the authors assume that probing a

hash table stored in off-chip memory requires one memory access [24].

A search proceeds as follows. The input IP address is used to probe the set ofW on-chip

Bloom filters in parallel. The first bit of the address is used to probe the filter associated with length

one prefixes, the first and second bits of the address are used to probe the filter associated with

length two prefixes, etc. Each filter simply indicates match or no match. By examining the outputs

of all filters, we compose a vector of potentially matching prefix lengths for the givenaddress,

the match vector. Consider an IPv4 example where the input address produces matches in the

Bloom filters associated with prefix lengths 8, 17, 23, and 30; the resultingmatch vectorwould be

[8,17,23,30]. Remember that Bloom filters may produce false positives, but never produce false

negatives; therefore, if a matching prefix exists in the route table, it will be represented inthe match

vector. Note that the number of unique prefix lengths represented in the route table, Wdist, may be
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less thanW . In this case, the Bloom filters representing empty sets will never contribute a match to

thematch vector, valid or false positive. The search proceeds until a match is found or the vector is

exhausted.

The probability of a false positive is dependent upon the number of prefixes storedin a filter,

the size of the filter, and the number of hash functions used to probe the filter. The authors show that

with a modest amount of on-chip resources for Bloom filters, the average number ofhash probes

per lookup approaches one; therefore, this approach can achieve lookup rates equivalent to those

offered by TCAMs. Given that commodity SRAM devices are denser and cheaperthan TCAMs, this

approach potentially offers lower cost and more power efficient solution. The authors also introduce

asymmetric Bloom filters which dimension filters according to prefix length distribution. A system

configured to support 200,000 IPv4 prefixes with an average number of 1.003 off-chip memory

accesses per lookup, requires 4Mb of on-chip memory and is capable of 332 million lookups per

second using a commodity SRAM device operating at 333 MHz.

2.3 All Prefi x Matching (APM)

Longest Prefix Matching (LPM) is a special case of the general All Prefix Matching (APM) problem.

Instead of returning just the longest matching prefix, the APM problem requires that all matching

prefixes be returned. This problem arises when multi-field search techniques are decomposed into

several instances of single-field search techniques. We provide a survey of multi-field search tech-

niques in Chapter 4.

Note that most trie-based algorithms easily map to the APM problem. The algorithm can

simply return all matching prefixes along the path to the longest matching prefix. Similarly, the

Bloom filter technique can also be easily adapted to perform APM. Referring back to Figure 2.8, the

Priority Encoder can be removed and the Hash Interface simply queries every hash tableassociated

with matching prefix lengths in thematch vector. This does increase the number of hash probes

per lookup; however, as discussed in Chapter 5 the number of prefixes in multi-field search tables

which match an address is typically less than six.

While the trie-based and Bloom filter-based LPM algorithms easily map to APM, it is im-

portant to note that theBinary Search on Prefix LengthsandMultiway and Multicolumn Search

techniques do not readily support APM. The use of markers inBinary Search on Prefix Lengths

naturally directs searches to longer prefixes before examining shorter length prefixes. The same

consequence is experienced by theMultiway and Multicolumn Searchdue to the binary search over

range endpoints. In order to support APM searches using these techniques, we must usea general

technique that allows any LPM algorithm to perform APM. The idea is to perform an LPM search

where stored prefixes contain a pointer to a node in anesting tree, a separate tree of prefixes de-

fined by parent pointers. Figure 2.9 shows an example of anesting treefor the prefixes used in the

LPM example of Figure 1.4. All matching prefixes for a given longest matching prefixare found
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Figure 2.9:Nesting treetechnique for finding all matching prefixes for a given longest matching
prefix.

by simply following parent pointers until the root node is reached. This general technique can be

made memory and update efficient, but does require additional memory accesses to find all match-

ing prefixes. A second technique may be used that does not require additional memory accesses but

sacrifices memory and update efficiency. The idea is to precompute all matching prefixes associated

with each prefix in the set. The list of all matching prefixes is stored with each prefix in the LPM

data structure, thus locating the longest matching prefix returns the list of all matching prefixes.

Note that this suffers from memory and update inefficiency as many prefixes are storedredundantly

in lists and updating an entry in the prefix set may require many updates to lists of all matching

prefixes.

2.4 Range Matching

Range matching problems naturally arise in many searching problems in the areas of networking,

computational geometry, and database design, and there are several forms of range matching prob-

lems. In this section we provide a brief survey of approaches to address the following problem that

arises in packet classification: Given a setX of closed intervals[i, j] and a pointp, find all the inter-

vals inX that containp. This task is an essential part of packet classification, as packet filters may

specify ranges for the source and destination port numbers in packet headers in order to identify a

set of applications. Solutions to this problem typically employ a variant of one of two classical data

structures, the Segment Tree and the Interval Tree [26, 27]. Another option is to convert each closed

interval[i, j] into a set of prefixes, then employ one of the fast Longest Prefix Matching (LPM) algo-

rithms discussed in the previous section [28, 29]. Finally, we describe a recently proposed hardware

solution for range matching.
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Figure 6.4: Prefix pair length distribution for a synthetic filter set of 64000 filters generated witha
parameter filespecifying 16-bit prefix lengths for all addresses.

introduction of new prefix lengths in a structured manner. Injecting purely random address prefix

pair lengths during the generation process neglects the structure of the filter set used to generate the

parameter file. Using scope as a measure of distance, we expect that new address aggregateswill

emerge “near” an existing address aggregate. Consider the address prefix pair length distribution

shown in Figure 6.4. In this example, all filters in the filter set have 16-bit source and destination

address prefixes; thus, the distribution is a single “spike”. When injecting new address prefixpair

lengths into the distribution, we would like them to be clustered around the existing spike in the

distribution. This structured approach translates “spikes” in the distribution into smoother “hills”;

hence, we refer to the process as smoothing.

In order to control the injection of new prefix lengths, we define asmoothingparameter

which limits the maximum radius of deviation from the original prefix pair length, where radius

is measured in the number of bits specified by the prefix pair. Geometrically, this measurement

may be viewed as the Manhattan distance from one prefix pair length to another. Forconvenience,

let thesmoothingparameter be equal tor. We chose to model the clustering using a symmetric

binomial distribution. Given the parameterr, a symmetric binomial distribution is defined on the

range[0 : 2r], and the probability at each pointi in the range is given by:

pi =

(

2r

i

)

(

1

2

)2r

(6.1)

Note thatr is the median point in the range with probabilitypr, andr may assume values in the

range[0 : 64].
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Once we generate the symmetric binomial distribution from thesmoothingparameter, we

apply this distribution to each specified prefix pair length. The smoothing process involvesscaling

each “spike” in the distribution according to the median probabilitypr, and binomially distributing

the residue to the prefix pair lengths within ther-bit radius. When prefix lengths are at the “edges”

of the distribution, we simply truncate the binomial distribution. This requires us to normalize the

prefix pair length distribution as the last step in the smoothing process. Note that we must apply the

smoothing adjustment to each prefix pair length distribution associated with each Port Pair Class

in the parameter file. In order to demonstrate this process, we provide an example of smoothing

the prefix pair length distribution in Figure 6.4 using two different values ofr. Figure 6.5(a) and

Figure 6.5(b) show the prefix pair length distributions for a synthetic filter set generated with a

parameter filespecifying 16-bit prefix lengths for all addresses and a smoothing parameterr = 8.

With the exception of the fringe effects due to random number generation, the singlespike at 16-16

is binomially distributed to the prefix pair lengths within a Manhattan distance of 8. The same effect

is shown in Figure 6.5(a) and Figure 6.5(b) for a smoothing parameterr = 32.

In practice, we expect that thesmoothingparameter will be limited to at most 8. In order to

demonstrate the effect of smoothing in a realistic context, we generated a synthetic filter set using a

smoothingparameter of 4. Figure 6.6(a) and Figure 6.6(b) show the prefix pair length distribution

for a synthetic filter set of 64000 filters generated using the ipc1parameter fileand smoothing

parameterr = 0. Figure 6.6(c) and Figure 6.6(d) show the prefix pair length distribution for a

synthetic filter set of 64000 filters generated using the ipc1parameter fileand smoothing parameter

r = 4. Note that this synthetic filter set retains the structure of the original filter set while modeling

a realistic amount of address aggregation and segregation.

Recall that we choose to truncate and normalize to deal with the edge cases. As evident

in Figure 6.6, many of the most common address prefix pair lengths occur at the edges of the

distribution. As a result, applying the smoothing adjustment may affect the average scope of the

generated filter set. Consider the case of the spike at 32-32 (fully specified source and destination

addresses). Applying the smoothing adjustment to this point distributes some of the residue toless

specific prefix pair lengths, but the residue allocated to more specific prefix pair lengths is truncated

as there are not any more specific prefix pair lengths. In order to assess the effects of truncation and

normalization on the resulting filter sets, we generated several filter sets of the same size using three

differentparameter filesand various values of the smoothing parameter. The results are shown in

Figure 6.4.1. Note that as we increase the amount of smoothing applied to the prefixpair length

distributions, the effect on the 5-tuple scope and address pair scope is minimal. We observe a slight

drift toward the median scope value due to the aforementioned truncation of the distributions at the

edges.
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Figure 6.5: Prefix pair length distributions for a synthetic filter set of 64000 filters generated with
a parameter filespecifying 16-bit prefix lengths for all addresses and various values of smoothing
parameterr.

6.4.2 Scope Adjustment

As filter sets scale in size and new applications emerge, it is likely that the average scope of the

filter set will change. As the number of flow-specific filters in a filter sets increases, the specificity

of the filter set increases and the average scope decreases. If the number of explicitly blocked ports

for all packets in a firewall filter set increases, then the specificity of the filter set may decrease and

the average scope may increase4. In order to explore the effect of filter scope on the performance

4We are assuming a common practice of specifying an exact match on the blocked port number and wildcards for all
other fi lter fi elds
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Figure 6.6: Prefix pair length distribution for a synthetic filter set of 64000 filters generated withthe
ipc1parameter filewith smoothing parametersr = 0 andr = 4.

of algorithms and packet classification devices, we provide high-level adjustments of the average

scope of the synthetic filter set. Two input parameters,address scopeandport scope, allow the user

to bias theFilter Set Generatorto create more or less specific address prefix pairs and port pairs,

respectively.

In order to illustrate the effects of scope adjustments, consider the standard method of sam-

pling from a distribution using a uniformly distributed random variable. In Figure 6.8, we show

the cumulative distribution for the total prefix pair length associated with the WC-WC port pair

class of the acl2 filter set. In order to sample from this distribution, theFilter Set Generatorselects
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Figure 6.7: Average scope of synthetic filter sets consisting of 16000 filters generated withparame-
ter files extracted from filter setsacl3, fw5, andipc1, and various values of the smoothing parameter
r.

a random number between zero and one using a uniform random number generator, then chooses

the total prefix pair length covering that number in the cumulative distribution. Graphically, this

amounts to projecting a horizontal line from the random number on the y-axis. The x-coordinate

of the “step” which it intersects is the sampled total prefix pair length. In Figure 6.8, we shown an

example of sampling with a random variable equal to0.5 to choose the total prefix pair length of

44.

Theaddress scopeadjustment essentially biases the sampling process to select more or less

specific total prefix pair lengths. We can realize this in two ways: (1) apply the adjustmentto the

cumulative distribution, or (2) bias the random variable used to sample from the cumulative distribu-

tion. The first option requires that we recompute the cumulative density distribution to makelonger

or shorter prefix lengths more or less probable, as dictated by theaddress scopeparameter. The

second option provides a conceptually simpler alternative. Returning to the example in Figure 6.8,

if we want to bias theFilter Set Generatorto produce more specific address prefix pairs, then we

want the random variable used to sample from the distribution to be biased to values closer to1.

The reverse is true if we want less specific address prefix pairs. Thus, in order to apply the scope

adjustment we simply use a random number generator to choose a uniformly distributed random

variable,rvuni, apply a biasing function to generate a biased random variable,rvbias, and sample

from the cumulative distribution usingrvbias.

While there are many possible biasing functions, we limit ourselves to a particularly simple

class of functions. Our chosen biasing function may be viewed as applying a slope,s, to the uniform

distribution as shown in Figure 6.9(a). When the slopes = 0, the distribution is uniform. The biased

random variable corresponding to a uniform random variable on thex-axis is equal to the area of the
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Figure 6.8: Example of sampling from a cumulative distribution using a random variable. Distribu-
tion is for the total prefix pair length associated with the WC-WC port pair class of the acl2 filter
set. A random variable equal to 0.5 chooses 44 as the total prefix pair length.

rectangle defined by the value and a line intersecting they-axis at one with a slope of zero. Thus, the

biased random variable is equal to the uniform random variable. As shown in Figure 6.9(a), we can

bias the random variable by altering the slope of the line. Note that in order for the biasing function

to be defined for random variables in the range[0 : 1] and have a cumulative probability of 1 for a

random variable equal to 1, the slope adjustment must be in the range[−2 : 2]. Graphically, this

results in the line pivoting about the point(0.5, 1). For convenience, we define the scope adjustments

to be in the range[−1 : 1], thus the slope is equal to two times the scope adjustment. For non-zero

slope values, the biased random variable corresponding to a uniform random variable onthex-axis

is equal to the area of the trapezoid5 defined by the value and a line intersecting the point(0.5, 1)

with a slope ofs. The expression for the biased random variable,rvbias, given a uniform random

variable,rvuni, and ascopeparameter in the range[−1 : 1] is:

rvbias = rvuni(scope× rvuni − scope + 1) (6.2)

Figure 6.9(b) shows a plot of the biasing function forscopevalues of 0, -1, and 1. We also provide

a graphical example of computing the biased random variable given a uniform random variable of

0.5 and ascopeparameter of 1. In this case thervbias is 0.25. Let us return to the example of

choosing the total address prefix length from the cumulative distribution. In Figure 6.10, we show

examples of sampling the distribution using the unbiased uniform random variable,rvuni = 0.5,

5Recall that the area of a trapezoid is one half the product of the height and the sum of the lengths of the parallel
edges,A = 1

2
× h× (l1 + l2).
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Figure 6.9: Scope applies a biasing function to a uniform random variable.

and the biased random variable,rvbias = 0.25, resulting from applying the biasing function with

scope = 1. Note that the biasing results in the selection of a less specific address prefix pair, a total

length of 35 as opposed to 44.

Positive values ofaddress scopebias theFilter Set Generatorto choose less specific address

prefix pairs, thus increasing the average scope of the filter set. Likewise, negative values ofaddress

scopebias theFilter Set Generatorto choose more specific address prefix pairs, thus decreasing the

average scope of the filter set. The same effects are realized by theport scopeadjustment by biasing

the Filter Set Generatorto select more or less specific port range pairs. Note that the cumulative

distribution must be constructed in such a way that the distribution is computed over values sorted

from least specific to most specific.
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Finally, we report the results of tests assessing the effects of theaddress scopeandport

scopeparameters on the synthetic filter sets generated by theFilter Set Generator. Each data point

in the plots in Figure 6.4.2 is from a synthetic filter set containing 16000 filters generated froma

parameter filefrom filter sets acl3, fw5, or ipc1. Figure 6.11(a) shows the effect of theaddress scope

parameter on the average scope of the address prefix pairs in the resulting filter set. Overits range of

values, theaddress scopealters the average address pair scope by±4 to±6. Figure 6.11(b) shows

the effect of theport scopeparameter on the average scope of the port range pairs in the resulting

filter set. Over its range of values, theport scopealters the average port pair scope by±1.5 to

±2.5. Note that the magnitude of change in average scope for both parameters is approximately the

same relative to the range of possible scope values. Figure 6.11(c) shows the effect of both scope

parameters on the average scope of the filters in the resulting filter set. For these tests, both scope

parameters were set to the same value. Over their range of values, the scope parameters alter the

average filter scope by±6 to ±7.5. We assert that these scope adjustments provide a convenient

high-level mechanism for exploring the effects of filter specificity on the performance of packet

classification algorithms and devices.

6.4.3 Filter Redundancy & Priority

The final steps in synthetic filter set generation are removing redundant filters and orderingthe

remaining filters in order of increasing scope. The removal of redundant filters may berealized by

simply comparing each filter against all other filters in the set; however, this naı̈ve implementation
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Figure 6.11: Average scope of synthetic filter sets consisting of 16000 filters generated with param-
eter files extracted from filter setsacl3, fw5, andipc1, and various values of the scope parameters.

requiresO(N2) time, whereN is equal tosize. Such an approach makes execution times of the

Filter Set Generatorprohibitively long for filter sets in excess of a few thousand filters. In order to

accelerate this process, we first sort the filters into sets according to their tuple specification. Sorting

filters into tuple sets was introduced by Srinivasan, et. al. in the context of theTuple Space Search

packet classification algorithm discussed in Section 4.5 [66].

We perform this sorting efficiently by constructing a binary search tree of tuple set pointers,

using the scope of the tuple as the key for the node. When adding a filter to a tuple set,we search

the set for redundant filters. If no redundant filters exist in the set, then we add the filter to the

set. If a redundant filter exists in the set, we discard the filter. The time complexity of this search

technique depends on the number of tuples created by filters in the filter set and thedistribution of

filters across the tuples. In practice, we find that this technique provides acceptable performance.
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Generating a synthetic filter set of 10k filters requires approximately five seconds, while afilter set

of 100k filters requires approximately five minutes with a Sun Ultra 10 workstation.

In order to support the traditional linear search technique, filter priority is often inferred by

placement in an ordered list. In such cases, the first matching filter is the best matching filter.This

arrangement could obviate a filterfi if a less specific filterfj ⊃ fi occupies a higher position in the

list. To prevent this, we order the filters in the synthetic filter set according to scope, where filters

with minimum scope occur first. The binary search tree of tuple set pointers makes this ordering

task simple. Recall that we use scope as the node key. Thus, we simply perform an in-order walk of

the binary search tree, appending the filters in each tuple set to the output list of filters.

6.5 Trace Generation

When benchmarking a particular packet classification algorithm or device, many of the metrics of

interest such as storage efficiency and maximum decision tree depth may be garneredusing the

synthetic filter sets generated by theFilter Set Generator. In order to evaluate the throughput of

techniques employing caching or the power consumption of various devicesunder load, we must

exercise the algorithm or device using a sequence of synthetic packet headers. TheTrace Generator

produces a list of synthetic packet headers that probe filters in a given filter set. Notethat we do

not want to generate random packet headers. Rather, we want to ensure thata packet header is

covered by at least one filter in theFilterSet in order to exercise the packet classifier and avoid

default filter matches. We experimented with a number of techniques to generatesynthetic headers.

One possibility is to compute all thed-dimensional polyhedra defined by the intersections of the

filters in the filter set, then choose a point in thed-dimensional space covered by the polyhedra. The

point defines a packet header. The best-matching filter for the packet headeris simply the highest

priority filter associated with the polyhedra. If we generate at least one header corresponding to each

polyhedra, we fully exercise the filter set. The number of polyhedra defined by filter intersections

grows exponentially, and thus fully exercising the filter set quickly becomes intractable. As a result,

we chose a method that partially exercises the filter set and allows the user to vary the sizeand

composition of the headers in the trace using high-level input parameters. These parameters control

the scale of the header trace relative to the filter set, as well as the locality of referencein the

sequence of headers. As we did with theFilter Set Generator, we discuss theTrace Generator

using the pseudocode shown in Figure 6.12.

We begin by reading theFilterSetfrom an input file (line 1). Next, we get the input param-

etersscale, ParetoA, andParetoB(lines 2 through 4). Thescaleparameter is used to set a threshold

for the size of the list of headers relative to the size of theFilterSet(line 5). In this context,scale

specifies the ratio of the number of headers in the trace to the number of filters in the filterset.

After computing theThreshold , we allocate a list of headers,Headers (line 6). The next set



144

TraceGenerator ()
// Generate list of synthetic packet headers

1 read (FilterSet)
2 get (scale)
3 get (ParetoA)
4 get (ParetoB)
5 Threshold = scale× size (FilterSet)
6 HeaderList Headers()
7 While size(Headers) < Threshold
8 RandFilt = randint (0,size (FilterSet))
9 NewHeader = RandomCorner (RandFilt, FilterSet)
10 Copies = Pareto (ParetoA,ParetoB)
11 For i : 1 to Copies
12 Headers →append(NewHeader)
13 Headers →print

Figure 6.12: Pseudocode forTrace Generator.

of steps continue to generate synthetic headers as long as the size ofHeaders does not exceed the

Threshold .

Each iteration of the header generation loop begins by selecting a random filter in theFilter-

Set(line 8). Next, we must choose a packet header covered by the filter. In the interestof exercising

priority resolution mechanisms and providing conservative performance estimates for algorithms

relying on filter overlap properties, we would like to choose headers matching a large number of

filters. In the course of our analyses, we found the number of overlapping filters is largefor packet

headers representing the “corners” of filters. When we view a filter as defining ad-dimensional rect-

angle, the corners of this rectangle represent points in thed-dimensional space which correspond to

packet headers. Each field of a filter covers a range of values. Choosing a packet header correspond-

ing to a “corner” translates to choosing a value for each header field from one of the extrema of the

range specified by each filter field. TheRandomCorner function chooses a random “corner” of

the filter identified byRandFilt and stores the header inNewHeader .

The last steps in the header generation loop append a variable number of copiesof NewHeader

to the trace. The number of copies,Copies , is chosen by sampling from a Pareto distribution con-

trolled by the input parameters,ParetoAandParetoB(line 10). In doing so, we provide a simple

control point for the locality of reference in the header trace. The Pareto distribution6 is one of the

heavy-tailed distributions commonly used to model the burst size of Internet traffic flows as well as

the file size distribution for traffic using the TCP protocol [105]. For convenience, leta = ParetoA

andb = ParetoB. The probability density function for the Pareto distribution may be expressed

6The Pareto distribution, a power law distribution named after the Italian economist Vilfredo Pareto, is also known as
the Bradford distribution.
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as:

P (x) =
aba

xa+1
(6.3)

where the cumulative distribution is:

D(x) = 1−

(

b

x

)a

(6.4)

The Pareto distribution has a mean of:

µ =
ab

a− 1
(6.5)

Expressed in this way,a is typically called the shape parameter andb is typically called the scale

parameter, as the distribution is defined on values in the interval(b,∞). The following are some

examples of how the Pareto parameters are used to control locality of reference:

• Low locality of reference, short tail: (a = 10, b = 1) most headers will be inserted once

• Low locality of reference, long tail: (a = 1, b = 1) many headers will be inserted once, but

some could be inserted over 20 times

• High locality of reference, short tail: (a = 10, b = 4) most headers will be inserted four times

Once the size of the trace exceeds the threshold, the header generation loop terminates. Note that

a large burst near the end of the process will cause the trace to be larger thanThreshold . After

generating the list of headers, we write the trace to an output file (line 13).

6.6 Benchmarking with ClassBench

In order to provide value to the interested community, a packet classification benchmark must pro-

vide meaningful measurements that cover the broad spectrum of application environments. It is

with this in mind that we designed the suite ofClassBenchtools to be flexible while hiding the low-

level details of filter set structure. While it is unclear if real filter sets will vary as specified by the

smoothing and scope parameters, we assert that the tool provides a useful mechanismfor measuring

the effects of filter set composition on classifier performance. It is our hope thatClassBenchwill

enjoy broader use by researchers in need of realistic test vectors; it is also our intention toinitiate

and frame a broader discussion within the community that results in a larger set ofparameter files

that model real filter sets as well as the formulation of a standard benchmarking methodology.

Packet classification algorithms and devices range from purely conceptual, to softwareim-

plementations targeted to a variety of platforms, to state-of-the-art ASICs (Application Specific

Integrated Circuits). For the purpose of our discussion, we present a generic packet classifier model

as shown in Figure 6.13. In this model, the classifier consists of a search engine connected to mem-

ory which stores the filter set and any other data structures required for the search. For each packet

header passed to the classifier, the search engine queries the filter set and returns an associated flow
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Figure 6.13: Generic model of a packet classifier.

identifier or set of flow identifiers. Note that the set of possible flow identifiers is application depen-

dent. Firewalls may only specify two types of flows, admissible and inadmissible, whereas routers

implementing per-flow queuing may specify thousands of unique flow identifiers. The configuration

control is used to specify parameters such as the number of matching flow identifiers to return and

the format of incoming packet headers. In order to model application environments where per-flow

filters are dynamically created and deleted, the model includes a mechanism for dynamic filter set

updates.

There are three primary metrics of interest for packet classification algorithms and devices:

lookup throughput, memory requirements, and power consumption. Update performance is also a

consideration, but secondary to the other three metrics. For packet classification devices or fixed

implementations of algorithms, throughput can be directly measured using a synthetic filter set and

associated header trace. Throughput measurements for software implementations ofalgorithms

are not as straight-forward. In this case, the metric most directly influencing throughput is the

required number ofsequentialmemory accesses. Using parallel and pipelined design techniques,

non-sequential memory accesses can be masked. A suitable benchmarking methodology should

report both the total and sequential memory accesses in terms of average, worst observed, and best

observed. The second metric of vital interest is the amount of memory required to store the filter set

and supplemental data structures. For classification techniques employing random access memory,

garnering memory usage metrics is straight-forward using a synthetic filter set. For TCAM-based

devices, memory usage can be measured in terms of storage efficiency, which is defined to be the

ratio of the number of required TCAM slots and the number of filters in the filter set. TheFilter

Set Generatorallows us to analyze the effect of filter set size, scope, and smoothness on throughput

and memory usage can be measured.
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In the past, power consumption has not been a primary concern for those developing new

packet classification techniques. As discussed in Section 4.2.2, TCAM-based classifiers have be-

come the most popular solution for high performance routers, but they suffer from highpower con-

sumption. A typical TCAM consumes more than 100 times the power of state-of-the-art SRAMs

and can account for a large fraction of the power budget on a router interface card. Recent devel-

opments in TCAM technology provide for partitioning the device such that only a subset of the

available slots are activated at one time. IP lookup and packet classification techniques can take ad-

vantage of this capability to lower power consumption [106, 32]. The effect of filter set size, scope,

and smoothness on standard TCAMs and algorithms employing partitioning in order to lower power

consumption can be measured using theFilter Set Generator.

TheTrace Generatoris useful for evaluating algorithms and devices under realistic operat-

ing conditions. By providing control over the locality of reference in the sequence of packet header

queries, we also provide a convenient tool for measuring the performance of packet classifiers em-

ploying caching.

With the desire to refine theClassBenchtools suite and formalize a benchmarking method-

ology, we seek to initiate a broader discussion and solicit input from the community to helpguide

the remainder of this work. To facilitate this discussion, we make the tools publicly available at

the following site:http://www.arl.wustl.edu/˜det3/ClassBench/ . Input garnered

from the community will be used to refine the tools suite, assemble a standard set ofparameter files,

and formally specify a benchmarking methodology. While we have already foundClassBenchto be

very useful in our own research, it is our hope to promote its broader use in the research community.
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Chapter 7

Scalable Packet Classifi cation using

Distributed Crossproducting of Field

Labels

Follow the path of the unsafe, independent thinker. Expose your ideas to the dangers of

controversy.

Thomas J. Watson, IBM

Due to the complexity of the search, packet classification is often a performance bottleneck in

network infrastructure; therefore, it has received much attention in the research community and a

wide variety of algorithms and devices exist in the research literature and commercial market. The

existing solutions explore various design tradeoffs to provide high search rates, power and space ef-

ficiency, fast incremental updates, and the ability to scale to large numbers of filters. There remains

a need for techniques that achieve a favorable balance among these tradeoffs and scale to support

classification on additional fields beyond the standard 5-tuple. We introduceDistributed Crosspro-

ducting of Field Labels(DCFL), a novel combination of new and existing packet classification

techniques that leverages key observations of the structure of real filter sets and takes advantage of

the capabilities of modern hardware technology. Using a collection of 12 real filter sets and the

ClassBenchtools suite, we provide analyses ofDCFL performance and resource requirements on

filter sets of various sizes and compositions in Section 7.7. Based on these results, we showthat

an optimized implementation ofDCFL can provide over 100 million searches per second and stor-

age for over 200 thousand filters with current generation hardware technology. In Section 7.8, we

discuss algorithms related to our approach and highlight the distinctions and advantages ofDCFL

relative to the state-of-the-art.
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7.1 Description of DCFL

Distributed Crossproducting of Field Labels(DCFL) is a novel combination of new and existing

packet classification techniques that leverages key observations of filter set structureand takes ad-

vantage of the capabilities of modern hardware technology. We discuss the observed structure of

real filter sets in detail and provide motivation for packet classification on larger numbers of fields

in Chapter 5. Two key observations motivate our approach: the number of unique field values for a

given field in the filter set is small relative to the number of filters in the filter set, and the number of

unique field values matched by any packet is very small relative to the number of filters in the filter

set. We also draw from the encoding ideas highlighted in Section 4.2 in order to efficientlystore the

filter set and intermediate search results.

Using a high degree of parallelism,DCFL employs optimized search engines for each filter

field and an efficient technique for aggregating the results of each field search. By performing this

aggregation in a distributed fashion, we avoid the exponential increase in the time or space incurred

when performing this operation in a single step. Given that search techniques for singlepacket fields

are well-studied, the primary focus of this chapter is the development and analysis of an aggregation

mechanism that can make use of the embedded multi-port memory blocks in the current generation

of ASICs and FPGAs. We introduce several new concepts including field labeling,Meta-Labeling

unique field combinations,Field Splitting, and optimized data structures such asBloom Filter Arrays

that minimize the number of memory accesses to perform set membership queries. As aresult, our

technique provides fast lookup performance, efficient use of memory, supportfor dynamic updates

at high rates, and scalability to filters with additional fields.

DCFL may be described at a high-level using the following notation:

• Partition the filters in the filter set into fields

• Partition each packet header into corresponding fields

• Let Fi be the set of unique field values for filter fieldi that appear in one or more filters in the

filter set

• Let Fi(x) ⊆ Fi be the subset of filter field values inFi matched by a packet with the valuex

in header fieldi

• Let Fi,j be the set of unique filter field value pairs for fieldsi andj in the filter set; i.e. if

(u, v) ∈ Fi,j there is some filter or filters in the set withu in field i andv in field j

• Let Fi,j(x, y) ⊆ Fi,j be the subset of filter field value pairs inFi,j matched by a packet with

the valuex in header fieldi andy in header fieldj

• This can be extended to higher-order combinations, such as setFi,j,k and subsetFi,j,k(x, y, z),

etc.



150

The DCFL method can be structured in many different ways. In order to illustrate the lookup

process, assume that we are performing packet classification on four fields and a header arrives with

field values{w, x, y, z}. One possible configuration of aDCFL search is shown in Figure 7.1 and

proceeds as follows:

• In parallel, find subsetsF1(w), F2(x), F3(y), andF4(z)

• In parallel, find subsetsF1,2(w, x) andF3,4(y, z) as follows:

– Let Fquery(w, x) be the set of possible field value pairs formed from the crossproduct

of F1(w) andF2(x)

– For each field value pair inFquery(w, x), query for set membership inF1,2, if the field

value pair is in setF1,2 add it to setF1,2(w, x)

– Perform the symmetric operations to find subsetF3,4(y, z)

• Find subsetF1,2,3,4(w, x, y, z) by querying setF1,2,3,4 with the field value combinations

formed from the crossproduct ofF1,2(w, x) andF3,4(y, z)

• Select the highest priority exclusive filter andr highest priority non-exclusive filters in

F1,2,3,4(w, x, y, z)

Note that there are several variants which are not covered by this example. For instance, we could al-

ter the aggregation process to find the subsetF1,2,3(w, x, y) by queryingF1,2,3 using the crossprod-

uct of F1,2(w, x) andF3(y). We can then find the subsetF1,2,3,4(w, x, y, z) by queryingF1,2,3,4

using the crossproduct ofF1,2,3(w, x, y) andF4(z). A primary focus of this chapter is determining

subsets (F1,2(w, x), F3,4(y, z), etc.) via optimized set membership data structures.

As shown in Figure 7.1,DCFL employs three major components: a set of parallel search

engines, an aggregation network, and a priority resolution stage. Each search engineFi indepen-

dently searches for all filter fields matching the given header field using an algorithm or architecture

optimized for the type of search. For example, the search engines for the IP address fields may em-

ploy compressed multi-bit tries while the search engine for the protocol and flag fields use simple

hash tables. We provide a brief overview of options for performing the independentsearches on

packet fields in Section 7.5. As previously discussed in Chapter 5 and shown in Table5.9, each set

of matching labels for each header field is typically less than five for real filter tables.The sets of

matching labels generated by each search engine are fed to the aggregation network which computes

the set of all matching filters for the given packet in a multi-stage, distributed fashion. Finally, the

priority resolution stage selects the highest priority exclusive filter and ther highest priority non-

exclusive filters. The priority resolution stage may be realized by a number of efficient algorithms

and logic circuits; hence, we do not discuss it further.

The first key concept inDCFL is labeling unique field values with locally unique labels;

thus, sets of matching field values can be represented as sets of labels. Table 7.1 shows the sets of
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Fquery(w,x,y,z)

F3,4(y,z)

Fquery(y,z)Fquery(w,x)

F1 F2 F3 F4

F1,2(w,x)

w x y z

Priority
Resolution

Best Matching Filter(s)

Packet Fields

Independent
Field Searches

Aggregation
Network

F1,2

F1(w) F2(x) F3(y) F4(z)

F3,4

F1,2,3,4

F1,2,3,4(w,x,y,z)

payload

Figure 7.1: Example configuration ofDistributed Crossproducting of Field Labels(DCFL); field
search engines operate in parallel and may be locally optimized; aggregation nodes also operate in
parallel; aggregation network may be constructed in a variety of ways.

unique source and destination addresses specified by the filters in Table 1.1. Note that each unique

field value also has an associated “count” value which records the number of filters which specify

the field value. The “count” value is used to support dynamic updates; a data structurein a field

search engine or aggregation node only needs to be updated when the “count” value changes from

0 to 1 or 1 to 0. We identify unique combinations of field values by assigning either (1)a composite

label formed by concatenating the labels for each field value in the combination, or (2) a newmeta-

label which uniquely identifies the combination in the set of unique combinations1. Meta-Labeling

essentially compresses the size of the label used to uniquely identify the field combination.In addi-

tion to reducing the memory requirements for explicitly storing composite labels, this optimization

has another subtle benefit.Meta-Labelingcompresses the space addressed by the label, thus the

1Meta-labeling can be thought of as simply numbering the set of unique fi eld combinations
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Table 7.1: Sets of unique specifications for each field in the sample filter set.

SA Label Count
11010010 0 1
10011100 1 1
101101* 2 1
10011100 3 2
* 4 2
100111* 5 2
10010011 6 1
11101100 7 1
111010* 8 1
100110* 9 1
010110* 10 1
01110010 11 2

DA Label Count
* 0 7
001110* 1 1
01101010 2 2
011010* 3 2
01111010 4 1
01011000 5 1
11011000 6 2

PR Label Count
TCP 0 4
* 1 5
UDP 2 6
ICMP 3 1

DP Label Count
[3:15] 0 5
[1:1] 1 2
[0:15] 2 5
[5:5] 3 1
[6:6] 4 1
[0:1] 5 1
[3:3] 6 1

meta-labelmay be used as an index into a set membership data structure. The use of labels allows

us to use set membership data structures that only store labels corresponding to field valuesand

combinations of field values present in the filter table. While storage requirements depend on the

structure of the filter set, they scale linearly with the number of filters in the database. Furthermore,

at each aggregation node we need not perform set membership queries in any particular order. This

property allows us to take advantage of hardware parallelism and multi-port embedded memory

technology.

The second key concept inDCFL is employing a network of aggregation nodes to compute

the set of matching filters for a given packet. The aggregation network consists of a set of intercon-

nected aggregation nodes which perform set membership queries to the sets of unique field value

combinations,F1,2, F3,4,5, etc. By performing the aggregation in a multi-stage, distributed fashion,

the number of intermediate results operated on by each aggregation node remainssmall. Consider

the case of finding all matching address prefix pairs in the example filter set in Table 1.1for a packet

with address pair(x, y) = (10011100, 01101010). As shown in Figure 7.2, an aggregation node

takes as input the sets of matching field labels generated by the source and destination address search
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FSA

x
10011100

FDA

y
01101010

FSA(x)
{1,4,5}

FDA(y)
{0,2,3}

Fquery(x,y)
(1,0) (1,2) (1,3)
(4,0) (4,2) (4,3)
(5,0) (5,2) (5,3)

Aggregation Node

FSA,DA(x,y)
{(1,0), (4,0), (5,3)}

FSA,DA
(0,0) (1,0) (2,1) (3,2)
(4,0) (5,3) (6,0) (7,4)

(8,5) (9,6) (10,6) (11,0)

Figure 7.2: Example aggregation node for source and destination address fields.

engines,FSA(x) andFDA(y), respectively. Searching the tables of unique field values shown in

Table 7.1,FSA(x) contains labels{1,4,5} andFDA(y) contains labels{0,2,3}. The first step is

to form a query setFquery of aggregate labels corresponding to potential address prefix pairs. The

query set is formed from the crossproduct of the source and destination address label sets.Next,

each label inFquery is checked for membership in the set of labels stored at the aggregation node,

FSA,DA. Note that the set of composite labels corresponds to unique address prefix pairs specified

by filters in the example filter set shown in Table 1.1. Composite labels contained in the set are

added to the matching label setFSA,DA(x, y) and passed to the next aggregation node. Since the

number of unique field values and field value combinations is limited in real filter sets, the size of

the crossproduct at each aggregation node remains manageable. By performingcrossproducting in

a distributed fashion across a network of aggregation nodes, we avoid an exponential increase in

search time that occurs when aggregating the results from all field search engines in a single step.

Note that the aggregation nodes only store unique combinations of fields present inthe filter table;

therefore, we also avoid the exponential blowup in memory requirements suffered bythe original

Crossproductingtechnique [53] andRecursive Flow Classification[50]. In Section 7.3, we intro-

duceField Splittingwhich limits the size ofFquery at aggregation nodes, even when the number

matching labels generated by field search engines increases.

DCFL is amenable to various implementation platforms, and where possible, we will high-

light the various configurations of the technique that are most suitable for the most popular plat-

forms. In order to illustrate the value of our approach, we focus on the highest performance option

for the remainder of this paper. It is important to briefly describe this intended implementation plat-

form here, as it will guide the selection of data structures for aggregation nodes and optimizations in
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the following sections. Specifically, it is our goal to make full use of the high-degree ofparallelism

and numerous multi-port embedded memory blocks provided by the current generation of Applica-

tion Specific Integrated Circuit (ASIC) and Field-Programmable Gate Array (FPGA) technologies

discussed in Section 4.7. This requires that we maximize parallel computations and storage effi-

ciency. In Section 7.7 we show that an optimizedDCFL implementation can support hundreds of

thousands of filters in a current generation device without the need for external memory; however, a

limited number of high-performance off-chip memory devices such as Dual Data Rate (DDR) and

Quad Data Rate (QDR) SRAMs could be employed to support even larger filter sets.

7.2 Aggregation Network

Since all aggregation nodes operate in parallel, the performance bottleneck in the system is the

aggregation node with the largest worst-case query set size,|Fquery|. Query set size determines

the number of sequential memory accesses performed at the node. The size of query sets vary

for different constructions of the aggregation network. We refer to the worst-case queryset size,

|Fquery|, among all aggregation nodes,F1, . . . , F1,...,d, as the cost for network construction,Gi.

Selecting the most efficient arrangement of aggregation nodes into an aggregation network is a key

issue. We want to select the minimum cost aggregation networkGmin as follows:

Gmin = G : cost(G) = min {cost (Gi)∀i} (7.1)

where

cost (G) = max {|Fquery|∀F1, . . . , F1,...,d ∈ Gi} (7.2)

Consider an example for packet classification on three fields. Shown in Figure 7.3 are themaximum

sizes for the sets of matching field labels for the three fields and the maximum size for the sets of

matching labels for all possible field combinations. For example, label setF1,2(x, y) will contain at

most four labels for any values ofx andy. Also shown in Figure 7.3 are three possible aggregation

networks for aDCFL search; the cost varies between 3 and 6 depending on the construction.

In general, an aggregation node may operate on two or more input label sets. Given that we

seek to minimize|Fquery|, we limit the number of input label sets to two. The query set size for

aggregation nodes fed by field search engines is partly determined by the size of the matching field

label sets, which we have found to be small for real filter sets. Also, theField Splittingoptimization

provides a control point for the size of the query set at the aggregation nodes fedby the field search

engines; thus, we restrict the network structure by requiring that at least one of the inputsto each

aggregation node be a matching field label set from a field search engine. Figure 7.4 shows a

generic aggregation network for packet classification ond fields. Aggregation nodeF1,...,i operates

on matching field label setFi(x) and matching composite label setF1,...,i−1(a, . . . , w) generated by

upstream aggregation nodeF1,...,i−1. Note that the first aggregation node operates on label sets from
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|F1(x)| ≤ 3 |F1,2(x,y)| ≤ 4 |F1,2,3(x,y,z)| ≤ 1
|F2(y)| ≤ 2 |F1,3(x,z)| ≤ 2
|F3(z)| ≤ 1 |F2,3(y,z)| ≤ 1

|F1,2,3(x,y,z)| = 1
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cost(G3) = 3
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Figure 7.3: Example of variable aggregation network cost for different aggregationnetwork con-
structions for packet classification on three fields.

two field search engines,F1(a) andF2(b). We point out that this seemingly “serial” arrangement

of aggregation nodes does not preventDCFL from starting a new search on every pipeline cycle.

As shown in Figure 7.4, delay buffers allow field search engines to perform a new lookup on every

pipeline cycle. The matching field label sets are delayed by the appropriate numberof pipeline

cycles such that they arrive at the aggregation node synchronous to the matching label set from the
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Best Matching Filter(s)
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1,…,d-2

Figure 7.4: Generalized DCFL aggregation network for a search ond fields.

upstream aggregation node. Search engine results experience a maximum delay of(d− 2) pipeline

cycles which is tolerable given that the pipeline cycle time is on the order of 10ns.With such an

implementation,DCFL throughput is inversely proportional to the pipeline cycle time.

In this case, the problem is to choose the ordering of aggregation nodes which results inthe

minimum network cost. For example, do we first aggregate the source and destination field labels,

then aggregate the address pair labels with the protocol field labels? We can empiricallydetermine

the optimal arrangement of aggregation nodes for a given filter set by computing the maximum

query set size for each combination of field values in the filter set. While this computationis man-

ageable for real filter sets of moderate size, the computational complexity increasesexponentially

with filter set size. For our set of 12 real filter sets, the optimal network aggregated field labels in the

order of decreasing maximum matching filter label set size with few exceptions. This observation

can be used as a heuristic for constructing efficient aggregation networks for large filter sets and

filter sets with large numbers of filter fields. As previously discussed, we do not expect the filter set

properties leveraged byDCFL to change. We do point out that a static arrangement of aggregation

nodes might be subject to degraded performance if the filter set characteristics were dramatically

altered by a sequence of updates. Through the use of reconfigurable interconnectin the aggrega-

tion network and extra memory for storing off-line aggregation tables, aDCFL implementation can

minimize the time for restructuring the network for optimal performance. We defer this discussion

to future study.

7.3 Field Splitting

As discussed in Section 7.1, the size of the matching field label set,|Fi(x)|, affects the size of the

crossproduct,|Fquery|, at the following aggregation node. While we observe that|Fi(x)| remains

small for real filter sets, we would like to exert control over this value to both increase search speed
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for existing filter sets and maintain search speed for filter sets with increased address prefix nesting

and port range overlaps. Recall that|Fi(x)| ≤ 2 for all exact match fields such as the transport

protocol and protocol flags.

The number of address prefixes matching a given address can be reduced bysplitting the

address prefixes into a set of(c + 1) shorter address prefixes, wherec is the number of splits. An

example of splitting a 6-bit address field is shown in Figure 7.5. For the original 6-bit address field,

A(5:0), the maximum number of field labels matching any address is five. In order to reduce this

number, we split the 6-bit address field into a 2-bit address field,A(5:4), and a 4-bit address field,

A(3:0). Each original 6-bit prefix creates one entry in each of the new prefix fields as shown.If

an original prefix is less than three bits in length, then the entry in fieldA(3:0) is the wildcard. We

assign a label to each of the unique prefixes in the new fields and create data structuresto search

the new fields in parallel in separate search engines. In this example we use binary trees; regardless

of the data structure, the search engine must return all matching prefixes. The prefixes originally

in A(5:0) are now identified by the unique combination of labels corresponding to their entries in

A(5:4)andA(3:0). For example, the prefix000∗ in A(5:0) is now identified by the label combination

(3, 1). A search proceeds by searchingA(5:4) andA(3:0) with the first two bits and remaining 4

bits of the packet address, respectively. Note that the maximum number of field labels returned

by the new search engines is three. We point out that the sets of matching labels from A(5:4)

andA(3:0) may be aggregated in any order, with label sets from any other filter field; we need not

aggregate the labels fromA(5:4)andA(3:0) in the same aggregation node to ensure correctness. For

address prefixes,Field Splitting is similar to constructing a variable-stride multi-bit trie; however,

with Field Splittingwe only store one multi-bit node per stride. A matching prefix is denoted by the

combination of matching prefixes from the multi-bit nodes in each stride.

Given that the size of the matching field label sets is the property that most directly affects

DCFL performance, we would like to specify a maximum set size and split those fields that exceed

the threshold. Given a field overlap threshold, there is a simple algorithm for determining the

number of splits required for an address prefix field. For a given address prefix field, we begin by

forming a list of all unique address prefixes in the filter set, sorted in non-decreasing order of prefix

length. We simply add each prefix in the list to a binary trie, keeping track of the numberof prefixes

encountered along the path using a nesting counter. If there is a split at the current prefix length, we

reset the nesting counter. The splits for the trie may be stored in a list or an array indexed bythe

prefix length. If the number of prefixes along the path reaches the threshold, we create a split at that

prefix length and reset the nesting counter. It is important to note that the number ofsplits depends

upon the structure of the address trie. In the worst case, a threshold of two overlaps couldcreate

a split at every prefix length. We argue that given the structure of real filter sets and reasonable

threshold values (four or five), thatField Splittingprovides a highly useful control point for the size

of query sets in aggregation nodes.
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Figure 7.5: An example of splitting a 6-bit address field; maximum number of matching labels per
field is reduced from five to three.

Field Splitting for port ranges is much simpler. We simply compute the maximum field

overlap,m, for the given port field by adding the set of unique port ranges to a segment tree. Given

an overlap threshold,t, the number splits is simplyc = m−2
t−1 . We then create(c + 1) bins in which

to sort the set of unique port ranges. For each port range[i : j], we identify the bin,bi, containing

the minimum number of overlapping ranges using a segment tree constructed from theranges in the

bin. We insert[i : j] into bin bi and insert wildcards into the remaining bins. Once the sorting is

complete, we assign locally unique labels to the port ranges in each bin. Like addressfield splitting,

a range in the original filter field is now identified by a combination of labels corresponding to its

matching entry in each bin. Again, label aggregation may occur in any order with labels from any

other field.

Finally, we point out thatField Splitting is a precomputed optimization. It is possible that

the addition of new filters to the filter set could cause one the overlap threshold to be exceeded in

a particular field, and thus degrade the performance ofDCFL. While this is possible, our analysis

of real filter sets suggests that it is not probable. Currently most filter sets are manually configured,

thus updates are exceedingly rare relative to searches. Furthermore, the common structure of filters

in a filter set suggests that new filters will most likely be a new combination of fields alreadyin the

filter set. For example, a network administrator may add a filter matching all packets for application

A flowing between subnetsB andC, where specificationsA, B, C already exist in the filter set.
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7.4 Aggregation Nodes

Well-studied data structures such as hash tables and B-Trees are capable of efficiently representing

a set [13]. We focus on three options that minimize the number of sequential memory accesses,

SMA, required to identify the composite labels inFquery which are members of the setF1,...,i. The

first is a variant on the popular Bloom filter which has received renewed attention in the research

literature [15]. The second and third options leverage the compression provided by field labels

and meta-labels to index into an array of lists containing the composite labels for the field value

combinations inF1,...,i. These indexing schemes perform parallel comparisons in order to minimize

the requiredSMA; thus, the performance of these schemes depends on the word sizem of the

memory storing the data-structures. For all three options, we derive equations for theSMAand

number of memory wordsW required to store the data-structure.

7.4.1 Bloom Filter Arrays

A Bloom filter is an efficient data structure for set membership queries with tunable false positive

errors. In our context, a Bloom filter computesk hash functions on a labelL to producek bit

positions in a bit vector ofm bits. If all k bit positions are set to 1, then the label is declared to

be a member of the set. Broder and Mitzenmacher provide a nice introduction to Bloom filters and

their use in recent work [15]. We provide a brief introduction to Bloom filters and a derivation

of the equations governing false positive probability in Section 2.1.3. False positiveanswers to

membership queries causes the matching label set,F1,...,i(a, . . . , x), to contain labels that do not

correspond to field combinations in the filter set. These false positive errors can be “caught” at

downstream aggregation nodes using explicit representations of label sets. We discusstwo options

for such data-structures in the next section. This property does preclude use of Bloom filters in the

last aggregation node in the network. As we discuss in Section 7.7, this does not incur a performance

penalty in real filter sets.

Given that we want to minimize the number of sequential memory accesses at each aggre-

gation node, we want to avoid performing multiply memory accesses per set membership query. It

would be highly inefficient to performk separate memory accesses to check if a single bit is set

in the vector. In order to limit the number of memory accesses per membership query to one, we

propose the use of an array of Bloom filters as shown in Figure 7.6. ABloom Filter Array is a

set of Bloom filters indexed by the result of a pre-filter hash functionH(L). In order to perform

a set membership query for a labelL, we read the Bloom filter addressed byH(L) from memory

and store it in a register. We then check the bit positions specified by the results of hash functions

h1(L), . . . , hk(L). TheMatch Logicchecks if all bit positions are set to 1. If so, it adds labelL to

the set of matching labelsF1,...,i(a, . . . , x).

Set membership queries for the labels inFquery need not be performed in any order and may

be performed in parallel. Using an embedded memory block withP ports requiresP copies of the
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0011001010 … 011

Match Logic

x

Figure 7.6: Example of an aggregation node using aBloom Filter Arrayto aggregate field label set
Fi(x) with label setF1,...,i−1(a, . . . , w).

logic for the hash functions andMatch Logic. Given the ease of implementing these functions in

hardware and the fact thatP is rarely more than four, the additional hardware cost is tolerable. The

number of sequential memory accesses,SMA, required to perform set membership queries for all

labels inFquery is simply

SMA=
|Fquery|

P
(7.3)

The false positive probability is

f =

(

1

2

)k

(7.4)

when the following relationship holds

k =
m

n
ln 2 (7.5)

wheren is the number of labels|F1,...,i| stored in the Bloom filter. Settingk to four produces a

tolerable false positive probability of0.06. Assuming that we store one Bloom filter per memory

word, we can calculate the required memory resources given the memory word sizem. Let W be

the number of memory words. The hash functionH(L) uniformly distributes the labels inF1,...,i

across theW Bloom filters in theBloom Filter Array. Thus, the number of labels stored in each
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Bloom filter is

n =
|F1,...,i|

W
(7.6)

Using Equation 7.5 we can compute the number of memory words,W , required to maintain the

false positive probability given by Equation 7.4:

W =

⌈

k × |F1,...,i|

m× ln 2

⌉

(7.7)

The total memory requirement ism×W bits. Recent work has provided efficient mechanisms for

dynamically updating Bloom filters [16, 25].

7.4.2 Meta-Label Indexing

We can leverage the compression provided by meta-labels to construct aggregation nodes that ex-

plicitly represent the set of field value combinations,F1,...,i. The field value combinations inF1,...,i

can be identified by a composite label which is the concatenation of the meta-labelfor the combina-

tion of the first(i− 1) fields,L1,...,i−1, and the label for fieldi, Li. We sort these composite labels

into bins based on meta-labelL1,...,i−1. For each bin, we construct a list of the labelsLi, where each

entry storesLi and the new meta-label for the combination ofi fields,L1,...,i. We store these lists in

an arrayAi indexed by meta-labelL1,...,i−1 as shown in Figure 7.7.

UsingL1,...,i−1 as an index allows the total number of set membership queries to be limited

by the number of meta-labels received from the upstream aggregation node,|F1,...,i−1(a, . . . , w)|.

Note that the size of a list entry,s, is

s = lg |Fi|+ lg |F1,...,i| (7.8)

ands is typically much smaller than the memory word size,m. In order to limit the number of

memory accesses per set membership query, we storeN list entries in each memory word, where

N =
⌊

m
s

⌋

. This requiresN × |Fi(x)| way match logic to compare all of the field labels in the

memory word with the set of matching field labels from the field search engine,Fi(x). Since

set membership queries may be performed independently, the total number of sequential memory

accesses,SMA, depends on the size of the index meta-label set,|F1,...,i−1(a, . . . , w)|, the size of the

lists indexed by the labels inF1,...,i−1(a, . . . , w), and the number of memory portsP . In the worst

case, the labels index the|F1,...,i−1(a, . . . , w)| longest lists inAi. Let Length be an array storing

the lengths of the lists inAi in decreasing order. The worst-case sequential memory accesses is

SMA=

∑|F1,...,i−1(a,...,w)|
j=1

⌈

Length(j)
N

⌉

P
(7.9)

As with theBloom Filter Array, the use of multi-port memory blocks does require replication of the

multi-way match logic. Due to the limited number of memory ports, we argue that this represents
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Figure 7.7: Example of an aggregation node usingMeta-Label Indexingto aggregate field label set
Fi(x) with meta-label setF1,...,i−1(a, . . . , w).

a negligible increase in the resources required to implementDCFL. The number of memory words,

W , needed to store the data structure is

W =

|F1,...,i−1|
∑

j=1

⌈

Length(j)

N

⌉

(7.10)

The total memory requirement ism ×W bits. Adding or removing a label fromF1,...,i requires

an update to a single list entry. Packing multiple list entries on to a single memory word slightly

complicates the memory management; however, given that we seek to minimize the number of

memory words occupied by a list, the number of individual memory reads and writes per update is

small.

Finally, we point out that the data structure may be re-organized to useLi as the index. This

variant,Field Label Indexing, is effective when|Fx| approaches|F1,...,x|. When this is the case, the

number of composite labelsL1,...,i containing labelLi is small and the length of the lists indexed

by Fi(x) are short.
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7.5 Field Search Engines

A primary advantage ofDCFL is that it allows each filter field to be searched by a search engine

optimized for the particular type of search. We discuss a number of single field search techniques

in Chapter 2. While the focus of this chapter is the novel aggregation technique, we briefly discuss

single field search techniques suitable for use withDCFL in order to to highlight the potential

performance.

7.5.1 Prefi x Matching

Due to its use of decomposition,DCFL requires that the search engines for the IP source and desti-

nation addresses returnall matching prefixes for the given addresses. As discussed in Section 2.3,

any longest prefix matching technique can support All Prefix Matching (APM), but some more ef-

ficiently than others. The most computationally efficient technique for longest prefix matching is

Binary Search on Prefix Lengths[24]. When precomputation and marker optimizations are used,

the technique requires at most five hash probes per lookup for 32-bit IPv4 addresses. As reported in

Section 5.4, real filter sets contain a relatively small number of unique prefix lengths,thus the real-

ized performance should be better for real filter sets. Recall that markers direct the search to longer

prefixes that potentially match, thus skipping shorter prefixes that may match. In order to support

APM, Binary Search on Prefix Lengthsmust precompute all matching prefixes for each “leaf” in

the trie defined by the set of address prefixes. While computationally efficient for searches, this

technique does present several challenges for hardware implementation. Likewise, the significant

use of precomputation and markers degrades the dynamic update performance,as an update may

require many memory transactions.

As we demonstrated in Chapter 3, compressed multi-bit trie algorithms readily map to hard-

ware and provide excellent lookup and update performance with efficient memory and hardware uti-

lization. Specifically, our implementation of the Tree Bitmap technique requires at most 11 memory

accesses per lookup and approximately six bytes of memory per prefix. Each search engine con-

sumes less than 1% of the logic resources on a commodity FPGA2. As discussed in Section 3.6,

there are a number of optimizations to improve the performance of this particular implementation.

Use of an initial lookup array for the first 16 bits reduces the number of memory accesses to at

most seven. Coupled with a simple two-stage pipeline, the number of sequential memory accesses

per lookup can be reduced to at most four. Trie-based LPM techniques such as Tree Bitmap easily

support all prefix matching with trivial modifications to the search algorithm. For the purpose of

our discussion, we will assume an optimized Tree Bitmap implementation requiring at mostfour

memory accesses per lookup and six bytes per prefix of memory.

2If targeted to the low-cost Xilinx Spartan-3 family of FPGAs (less than $12 USD for a one milliongate device), each
engine would cost approximately $0.12 USD.
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Figure 7.8: Block diagram of range matching using parallel search engines for each port class.

7.5.2 Range Matching

Searching for all arbitrary ranges that overlap a given point presents a greater challenge than prefix

matching. We discuss a number of range matching techniques in Section 2.4. Based on the observa-

tions reported in Section 5.3.2, range matching can be made sufficiently fast for real filter sets using

a set of parallel search engines, one for each port class, as shown in Figure 7.8. Recall that three

port classes, WC, HI, and LO, consist of a single range specification. The search engine for the

first port class, wildcard (WC), simply consists of a flag specifying whether or not the wildcardis

specified by any filters in the filter set and a register for the label assigned to this range specification.

Similarly, the search engines for the HI and LO port classes also consist of flags specifying whether

or not the ranges are specified by any filters in the filter set and registers for the labels assigned to

those range specifications. We also add logic to check if the port is less than 1024; this checks for a

match on the HI and LO port ranges,[1024 : 65535] and[0 : 1023], respectively.

For the 12 real filter sets we studied, the number of exact port numbers specified by filters

was at most 183. The port ranges in the EM port class may be efficiently searched using any suf-

ficiently fast exact match data-structure. Entries in this data-structure are simply the port number

and the assigned label. A simple hash table could bound searches to at most two memory accesses.

Finally, the set of arbitrary ranges in the AR port class may be searched with any range matching

technique. Fortunately, the set of arbitrary ranges tends to be small; the 12 real filter sets specified at

most 27 arbitrary ranges. A simple balanced interval tree data-structure requires at mostO(k lg n)

accesses, wherek is the number of matching ranges andn is the number of ranges in the tree. Other

options for the AR search engine include theFat Inverted Segment Treediscussed in Section 2.4.1

and converting the arbitrary ranges to prefixes as discussed in Section 2.4.3 and employing an all

prefix matching search engine. Given the limited number of arbitrary ranges, addingmultiple pre-

fixes per range to the data-structure does not cause significant memory inefficiency.With sufficient
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optimization, we assume that range matching can be performed with at most four sequential mem-

ory accesses and the data-structures for the AR and EM port classes easily fit within a standard

embedded memory block of 18kb.

7.5.3 Exact Matching

The protocol and flag fields may be easily searched with a simple exact match data-structure such as

a hash table. Given the small number of unique protocol and flag specifications inthe real filter sets

(less than 9 unique protocols and 11 unique flags), the time per search and memory space required

is trivial. As we discuss in Section 5.8, we expect that additional filter fields will also require exact

match search engines. Given the ease of implementing hash functions in custom andreconfigurable

logic, we do not foresee any performance bottlenecks for the search engines for these fields.

7.6 Dynamic Updates

Another strength ofDCFL is its support of incremental updates. Adding or deleting a filter from

the filter set requires approximately the same amount of time as a search operation anddoes not

require that we flush the pipeline and update all data-structures in an atomic operation. An update

operation is treated as a search operation in that it propagates through theDCFL architecture in the

same manner. The query preceding the update in the pipeline operates on data-structures prior to

the update; the query following the update in the pipeline operates on data-structures following the

update.

Consider inserting a filter to the filter set. We partition the filter into fields (performing field

splits, if necessary) and insert each field into the appropriate input buffer of the field search engines.

In parallel, each field search engine performs the update operation just as it would perform searches

in parallel. As shown in Figure 7.9, an add operation entails a search of the data-structurefor the

given filter field. If the data-structure does not contain the field, then we add the field to the data-

structure and assign the next free label3. Finally, we increment the count value for the field entry.

Each field search engine returns the label for the filter field. At the next pipeline cycle,the field

search engines feed the update operation and field labels to the aggregation network. Logically, the

sameInsert operation is used by both field search engines and aggregation nodes, only the type

of itemandlabel is different for the two. Each aggregation node receives the “insert” command and

the labels from the upstream nodes. Theitem is the composite label formed from the labels from

the upstream nodes. Note that for an update operation, field search engines and aggregation nodes

only pass on one label, thus each aggregation node only operates on one composite label oritem. If

the composite label is not in the set, then the aggregation node adds it to the set. Notethat thelabel

returned by theSearch or Add operations may be a composite label or meta-label, depending on

3We assume that each data-structure keeps a simple list of free labels that is initialized with allavailable labels. When
labels are “freed”due to a delete operation, they are added to the end of the list.
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Insert (item)

1 label←Search (item)
2 If (label= NULL)
3 label←Add(item)
4 Count [label]++
5 return label

Figure 7.9: Pseudocode forDCFL update (add).

Remove(item)

1 label←Search (item)
2 Count [label]−−
3 If (Count [label] = 0)
4 Delete (item)
5 return label

Figure 7.10: Pseudocode forDCFL update (delete).

the type of aggregation nodes in use. Finally, the aggregation increments the count for the label

and passes it on to the next aggregation node. The final aggregation node passesthe label on to the

priority resolution stage which adds the field label to its data-structure according to its priority tag.

Removing a filter from the filter set proceeds in the same way. Both field search engines

and aggregation nodes perform the same logicalRemoveoperation shown in Figure 7.10. We first

find the label for the item, then decrement the count value for theitem. A Delete operation is

performed if the count value for theitem is zero. Thelabel is passed on to the next node in the

DCFL structure. The final aggregation node passes the filter label to the priority resolution stage

which removes the field label from its data-structure.

Note thatAdd andDelete operations on field search engine and aggregation node data-

structures are only performed when count values change from zero to one and oneto zero, respec-

tively. The limited number of unique field values in real filter sets suggests significant sharing of

unique field values among filters. We expect typical updates to only change a couple field search en-

gine data-structures and aggregation node data-structures. In the worst case, inserting or removing a

filter produces an update tod field search engine data-structures and(d− 1) updates to aggregation

node data-structures, whered is the number of filter fields.
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7.7 Performance Evaluation

In order to evaluate the performance ofDCFL, we used 12 real filter sets and theClassBenchtools

suite to perform simulations testing scalability and sensitivity to filter set properties. The real filter

sets were graciously provided from ISPs, a network equipment vendor, and other researchers in the

field. The filter sets range in size from 68 to 4557 filters and we discuss their relevant propertiesin

Chapter 5. As described in Chapter 6, we constructed aClassBench parameter filefor each filter

set and used these files to generate large synthetic filter sets that retain the structural properties of

the real filter sets. TheClassBench Trace Generatorwas used to generate input traffic for both the

real filter sets and the synthetic filter sets used in the performance evaluation. For all simulations,

header trace size is at least an order of magnitude larger than filter set size. The metrics of interest

for DCFL are the maximum number of sequential memory accesses per lookup at any aggregation

node,SMA, and the memory requirements. We choose to report the memory requirements in bytes

per filter,BpF, in order to better assess the scalability of our technique.

The type of embedded memory technology directly influences the achievable performance

and efficiency ofDCFL; thus, for each simulation run we compute theSMA and total memory

words required for various memory word sizes. Standard embedded memory blocks provide 36-

bit memory word widths [107, 74]; therefore, we computed results for memory word sizes of 36,

72, 144, 288, and 576 bits corresponding to using 1, 2, 4, 8, and 16 memory blocks per aggregation

node. All results are reported relative to memory word size. The choice of memory wordsize allows

us to explore the tradeoff between memory efficiency and lookup speed. We assert that the use of

16 embedded memory blocks to achieve a memory word size of 576 bits is reasonable given current

technology, but certainly near the practical limit. For simplicity, we assume all memory blocks are

single-port,(P = 1). Given that all set membership queries are independent, theSMAfor a given

implementation ofDCFL may be reduced by a factor ofP .

In order to demonstrate the achievable performance ofDCFL, each simulation performs

lookups on all possible aggregation network constructions. At the end of the simulation, we com-

pute the optimal aggregation network by choosing the optimal network structure and optimal node

type for each aggregation node in the graph. The three node types are discussed in Section 7.4

along with the derivation of the equations forSMAand memory requirements for each type:Bloom

Filter Array, Meta-Label Indexing, andField Label Indexing. In the case that two node types pro-

duce the sameSMAvalue, we choose the node type with the smaller memory requirements. Our

simulation also allows us to select the aggregation network structure and node types in order to

optimize worst-case or average-case performance. Worst-case optimal aggregation networks select

the structure and node types such that the value of the maximumSMAfor any aggregation node in

the network is minimized. Likewise, average-case optimal selects the structure and nodetypes such

that the maximum value of the averageSMAfor any aggregation node in the network is minimized.

Computing the optimal aggregation network at the end of the simulation allows us to observe trends
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in the optimal network structure and node type for filter sets of various type, structure, and size. We

observe that optimal network structure and node type largely depends on filter set structure. With

few exceptions, variables such as filter set size and memory word size do not affect the composition

of the optimal aggregation network. We observe that theBloom Filter Arraytechnique is commonly

selected as the optimal choice for the first one or two nodes in the aggregation network. With rare

exceptions,Meta-Label Indexingis chosen for aggregation nodes at the end of the aggregation net-

work. This is a convenient result, as the final aggregation node in the network cannot use theBloom

Filter Array technique in order to ensure correctness. We find this result to be somewhat intuitive

since the size of a meta-label increases with the number of unique combinations in the set which

typically increases with the number of fields in the combination. When using meta-labels to index

into an array of lists, a larger meta-label addresses a larger space which in turn “spreads” the labels

across a larger array and limits the length of the lists at each array index.

In the first set of tests we used the 12 real filter sets and generated header traces using the

ClassBench Trace Generator. The number of headers in the trace was 50 times the number of filters

in the filter set. As shown in Figure 7.11(a), the worst-caseSMAfor all 12 real filter sets is ten or

less for a worst-case optimal aggregation network using memory blocks with a word size of288

bits. Also note that the largest filter set,acl5, of 4557 filters achieves the best performance with

a worst-caseSMAof two for worst-case optimal aggregation network using memory blocks with

a word size of 144 bits. In order to translate these results into achievable lookup rates, assume

a current generation ASIC with dual-port memory blocks,(P = 2), operating at 500 MHz. The

worst-caseSMAfor all 12 filter sets is then five or less using a word size of 288 bits. Under these

assumptions, the pipeline cycle time can be 10ns allowing theDCFL implementation to achieve

100 million searches per second which is comparable to current TCAMs. Search performance can

be doubled by doubling the clock frequency or using quad-port memory blocks,both of which are

possible in current generation ASICs.

As shown in Figure 7.11(c), the averageSMA for all filter sets falls to four or less using

a memory word size of 288 bits. Filter setacl5 also achieves the best average performance with

an averageSMAof 1.2 for a word size of 288. As in many other packet classification techniques,

average performance is significantly better than worst-case performance.

Worst-case optimal memory consumption is shown in Figure 7.11(e). Most filter sets re-

quired at most 40 bytes per filter (BpF) for all word sizes; thus, 1MB of embedded memory would

be sufficient to store 200k filters. There are two notable exceptions. The results for filter setacl1

show a significant increase in memory requirements for larger word sizes. For memory word sizes

of 36, 72, and 144 bits,acl1 requires less than 11 bytes per filter; however, memory requirements

increase to 61 and 119 bytes per filter for word sizes 288 and 576, respectively. We also note that

increasing the memory word size foracl1 yields no appreciable reduction inSMA; all memory

word sizes yielded anSMAof five or six. These two pieces of data suggest that in the aggregation

node data-structures, the size of the lists at each index entry are short; thus, increasing the memory
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Figure 7.11: Performance results for 12 real filter sets; left-column shows worst-case sequential
memory accesses (SMA), average SMA, and memory requirements in bytes per filter (BpF) for ag-
gregation network optimized for worst-case SMA; right-column shows same results for aggregation
network optimized for average-case SMA; call-outs highlight three specific filter sets of various
sizes and types (filter set size given in parentheses).
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Figure 7.12: Performance results for synthetic filter sets containing 10k, 20k, and 50k filters, gener-
ated with parameter files from filter setsacl5 andfw5; call-outs highlight most pronounced effects
(number of filters given in parentheses).

word-size linearly increases the memory inefficiency without yielding any fewer memory accesses.

We believe that this is also the case with the optimal aggregation network foracl2 with memory

word size 288. Clearly, finding the optimum balance of lookup performance and memory efficiency

requires careful selection of memory word size.

Figure 7.11(b) shows the worst-caseSMAfor all 12 real filter sets for an average-case op-

timal aggregation network. Figure 7.11(d) shows the averageSMA for all 12 real filter sets for

an average-case optimal aggregation network. When optimizing for averageSMA, average perfor-

mance is improved by approximately 25%, but worst-case performance suffers by approximately

50%. With the exception of rare application environments, sacrificing worst-case performance for

average performance is unfavorable. For the remaining simulations, we only reportworst-case op-

timal results.

The second set of simulations investigates the scalability ofDCFL to larger filter sets. Re-

sults are shown in Figure 7.12. This set of simulations utilized theClassBenchtools suite to generate
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synthetic filter sets containing 10k, 20k, and 50k filters usingparameter filesextracted from filter

setsacl5 andfw5. As shown in Figure 7.12(a), the worst-caseSMA is ten or less for all filter sets

and memory word sizes. The most striking feature of each simulation is the flat response to memory

word size. For all filter sets generated with thefw5 parameter file, the worst-caseSMAperformance

remains constant for memory word sizes greater than or equal to 72 bits. For all filtersets generated

with theacl5 parameter file, the worst-caseSMAperformance remains constant for memory word

sizes greater than or equal to 144 bits. TheClassBench Synthetic Filter Set Generatormaintains the

field overlap properties specified in theparameter file. Coupled with the results in Figure 7.12, this

confirms that the property of filter set structure most influential onDCFL performance is the maxi-

mum number of unique field values matching any packet header field. As discussed in Chapter 5, we

expect this property to hold as filter sets scale in size. If field overlap does increase, theField Split-

ting optimization provides a way to reduce this to a desired threshold. As shown in Figure 7.12(c),

the memory requirements increase with memory word size. Given the favorableSMAperformance

there is no need to increase the word size beyond 144 bits, as it only results in a linear increase in

memory inefficiency. These results imply that tuning the memory word size is less critical forlarge

filter sets.

The third set of simulations investigates the effect of filter scope on the performance of

DCFL. Recall that scope is measure of the specificity of the filters in the filter set.ClassBench

provides high-level control over the average scope of the filters in the filter set via aninput parameter

s. We generated synthetic filter sets containing 16000 filters usingparameter filesfrom a variety of

filter sets.For eachparameter file, we generated filter sets using scope parameters−1, 0, and 1. Note

that these filter sets are used in the evaluation of theClassBenchtools suite in Figure 6.4.2. The

scope parameter had the most pronounced effects on worst-caseSMA for the filter sets generated

with theparameter filefrom ipc1. As shown in Figure 7.13(a), decreasing the average scope of the

filters in the filter set (s = −1) results in significantly better performance; thus, as filters become

more specific the performance ofDCFL improves. This is a favorable result given the generally

accepted conjecture the primary source of future filter set growth will be flow specific filters for

applying network services. If we increase the scope of the filters in the filter set,DCFL performance

suffers. This trend also holds for the averageSMA. As shown in Figure 7.13(c), filter set specificity

has little effect on memory requirements for memory word sizes of 144 bits or less. When using

larger memory word sizes, filter sets containing more specific filters require more memory perfilter;

as filters become less specific they become more memory efficient. We believe this resultis due to

the fact that less-specific filter fields are more likely to be used by several filters. For example, the

port range for all user ports is more likely to be used by multiple filters than a specific port number.

When we construct filters with less-specific fields, the sharing of filter fields among filters increases

and the memory efficiency of labeling is more apparent.

The fourth set of simulations investigate the efficacy and consequences of theField Splitting

optimization. We selected two of the worst-performing real filter sets and performed simulations
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Figure 7.13: Performance results for synthetic filter sets containing 16k filters, generated with the
ipc1 parameter filewith scope parameterss {-1,0,1}; call-outs highlight most pronounced effects
(scope parameter given in parentheses); note that these filter sets are used in the evaluation of the
ClassBenchtools suite in Figure 6.4.2.

with various field overlap thresholds. The performance results are summarized in Figure 7.14.For

acl2, Field Splitting reduces the worst-caseSMA from 16 to 10 for 36-bit memory words. For

fw1, Field Splitting reduces the worst-caseSMA from 9 to 5 for 36-bit memory words. In these

cases,Field Splittingprovides a 37% and 44% increase in performance, respectively. It is important

to note, however, that the impact ofField Splitting is reduced as we increase memory word size.

Clearly, the primary benefit ofField Splittingis that it allows us to achieve better performance using

smaller memory word sizes which improves the memory efficiency. As shown in Figure 7.14(c), the

memory utilization for all filter sets using memory word sizes of 74-bits or less remains well-below

40 bytes per filter. Consider the specific case ofacl2. In order to achieve a worst-caseSMAof eight

or less withoutField Splitting, we must use a memory word-size of 144 bits resulting in memory

requirements of 44 bytes per filter. UsingField Splittingwith a field overlap threshold of three, we
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Figure 7.14: Performance results for real filter sets (acl2 and fw1) using theField-Splittingopti-
mization; call-outs highlight most pronounced effects (field overlap threshold givenin parentheses).

achieve the desired worst-caseSMAperformance using a memory word-size of 72 bits resulting in

memory requirements of 35 bytes per filter. Recall thatField Splittingdoes increase the number of

aggregation nodes in the aggregation network, thus increasing the number of memory blocks and

logic required for implementation. However, these results show that the total memory requirements

are actually reduced for a particular performance target. It is important to note that we do reach a

point of diminishing returns withField Splitting. The aggregation network can grow too large if

too many splits are required to achieve a particularly low field overlap threshold. In this case,the

impact on worst-caseSMAis minimal while the memory resource requirements increase drastically

due to the additional overhead. This situation is reflected in Figure 7.14(c) for filter setfw1 with a

field overlap threshold of three and memory word size of 288 bits.

The fifth and final set of simulations investigate the scalability ofDCFL to additional filter

fields. Using theClassBenchtools suite, we generated four filter sets containing 16000 filters using
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Figure 7.15: Performance results for synthetic filter sets containing 16k filters, generated with pa-
rameter file from filter setacl5 with extra filter fields; call-outs highlight most pronounced effects
(number of filter fields given in parentheses).

theacl5 parameter file. No smoothingor scopeadjustments were applied. The first filter set was

generated such that half of the filters specifying the TCP or UDP protocols specified onenon-

wildcard field in addition to the standard six filter fields (the 5-tuple plus protocol flags). The

non-wildcard field value was selected from a set of 100 random values using a uniform random

variable. The remaining filter sets were generated in the same manner with two, three, and four

extra field values. As shown in Figure 7.15(a), extra filter fields have a negligible effect on worst-

caseSMAperformance. We believe that this is attributable to two impetuses: (1) the additional

filter fields allow filters to be more specific, and (2) the additional filter fields are exact matchfields

and the maximum fields overlap is at most two. As reflected in Figure 7.15(c), the increase in

memory requirements for an additional filter field is small for memory word sizes of 144 bits or

less. Specifically, when using 144-bit memory words the memory requirements increase by 14

bytes per filter when adding a seventh field and 16 bytes per filter when adding aneighth filter field.
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There is no observable increase when adding the ninth filter field. This is constitutes an average of

10 bytes per filter for each additional field. Given our reasonable assumptions regarding the nature

of additional filter fields in future filter sets, we assert that the performance and scalability ofDCFL

will make it an even more compelling solution for packet classification as filter sets scale insize and

the number of filter fields.

7.8 Related Work

In general, there have been two major threads of research efforts addressing the packet classification

problem: algorithmic and architectural. A few pioneering groups of researchers posedthe problem,

provided complexity bounds, and offered a collection of algorithmic solutions [50, 51, 52, 53].

Subsequently, the design space has been thoroughly explored by many offering new algorithms and

improvements upon existing algorithms [54, 27, 29]. Given the inability of early algorithms to meet

performance constraints imposed by high speed links, researchers in industry and academia devised

architectural solutions to the problem. This thread of research produced the most widely-used packet

classification device technology, Ternary Content Addressable Memory (TCAM) [55, 56,17, 57].

While they provide sufficient speed, current TCAM-based solutions consume exorbitantamounts of

power and hardware resources relative to implementations of efficient algorithms. Recent work has

addressed many of the unfavorable aspects of current TCAM-based solutions [108, 32]; however,

there remain fundamental limits to their scalability and efficiency.

The most promising algorithmic research embraces the practice of leveraging the statistical

structure of filter sets to improve average performance [50, 54, 58, 51, 59]. Several algorithms in

this class are amenable to high-performance hardware implementation. New architectural research

combines intelligent algorithms and novel architectures to eliminate many of the unfavorable char-

acteristics of current TCAMs [32]. We observe that the community appears to be converging on

a combined algorithmic and architectural approach to the problem [28]. Our solution,Distributed

Crossproducting of Field Labels(DCFL), employs this combined approach to provide a scalable,

high-performance packet classifier. Chapter 4 provides a thorough survey of packet classification

techniques using a taxonomy that frames each technique according to its high-level approach. In

this section, we highlight the sources of the key ideas and data structures which we distill and utilize

in DCFL. In order to demonstrate the value of our solution relative to the state of the art, we also

contrast it with two leading solutions which are arguably the top solutions from the algorithmic and

architectural threads.

As clearly indicated by the name,DCFL draws upon the seminalCrossproductingtechnique

introduced by Srinivasan, Varghese, Suri, and Waldvogel [53].DCFL avoids the exponential blowup

in memory requirements experienced byCrossproductingby only storing the labels for field values

and combinations of field values present in the filter table. It retains high-performanceby aggregat-

ing intermediate results in a distributed fashion. Gupta and McKeown introducedRecursive Flow
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Classification(RFC) which provides high lookup rates at the cost of memory inefficiency [50]. Sim-

ilar to theCrossproductingtechnique,RFCperforms independent, parallel searches on “chunks” of

the packet header, where “chunks” may or may not correspond to packetheader fields. The results

of the “chunk” searches are combined in multiple phases, rather than a single step asin Crosspro-

ducting. The result of each “chunk” lookup and aggregation step in (RFC) is an equivalence class

identifier,eqID, that represents the set of potentially matching filters for the packet. There is a sub-

tle, yet powerful difference between the use of equivalence classes inRFCand field labels inDCFL.

In essence, the number of labels inDCFL grows linearly with the number of unique field values in

the filter table. The number ofeqIDsin RFCdepends upon the number of distinct sets of filters that

can be matched by a packet. The number ofeqIDsin an aggregation step scales with the number of

unique overlapping regions formed by filter projections. Another major difference betweenDCFL

andRFC is the means of aggregating intermediate results.RFC lookups in “chunk” and aggrega-

tion tables utilize indexing, causingRFC to make very inefficient use of memory. The index tables

used for aggregation also require significant precomputation in order to assign the propereqID for

the combination of theeqIDs of the previous phases. Such extensive precomputation precludes dy-

namic updates at high rates. As we have shown,DCFL uses efficient set membership data structures

which can be engineered to provide fast lookup and update performance. Eachdata structure only

stores labels for unique field combinations present in the filter table; hence, they make efficient use

of memory and do not require significant precomputation. In order to illustrate the differences be-

tweenRFCandDCFL, we provide an example of anRFCsearch for two “chunks” of a search onn

“chunks” in Figure 7.16. The squares[a . . . l] represent the unique projections of the two “chunks”

x andy for all filters in a filter table. The number ofeqIDsfor the “chunk” lookups is 11 for each

dimensionx andy, as 11 unique sets of filters are formed by the projections onto thex andy axes.

SinceRFCutilizes indexing for lookups, each “chunk” table requires2b entries, whereb is the size

in bits of the “chunk”. Note that if the number of unique projections werelabeledas inDCFL, only

six labels for each dimension would be required, and the set membership data structure would only

need to store six entries. In order forRFC to aggregate theeqIDsfrom “chunks”x andy, it must

compute all of the unique sets of filters for the two-dimensional overlaps. As shown in Figure 7.16,

this results in 25eqIDs. The aggregation table requires24+4 = 256 entries, aseqID(x)andeqID(y)

are four bits in size andRFCutilizes indexing to findeqID(x,y). Note that inDCFL, a label would

simply be assigned to each unique 2-d projection[a . . . l] and stored in a set membership data struc-

ture. In general,DCFL can provide line-speed lookups, likeRFC, but with much more efficient use

of memory and support for dynamic updates at high rates.

Our approach also shares similarities with theParallel Packet Classification(P 2C) scheme

introduced by van Lunteren and Engbersen [28]. Specifically, bothDCFL andP 2C fall into the

class of techniques using independent field searches coupled with novel encoding and aggregation of

intermediate results. The primary advantage ofDCFL overP 2C is its use of SRAM and amenability

to implementation in commodity hardware technology;P 2C requires the use of a separate TCAM



177

3210 4 5 0

a
,b

,c,g,h,i

φ

a
b

c

y

x

a,b,d,e

φ
c,f

b,c,e,f
a,b,c,d,e,f

a,f

φ

RFC
eqID(y)

0
10
9
8
7
6

0

RFC
eqID(x)

φ a
,g

g
h

i

j
k

l

d
e

f

g,h,j,k

i,l
h,i,k,l

g,h,i,j,k,l

g,j

φ

5
4
3
2
1

0

a
,b

,g
,h

b
,c,h

,i
c,i

a
,b

,c,g,h,i

φa
,g

a
,b

,g
,h

b
,c,h

,i
c,i

876 9 10 0

φ
a
a,b
b
a,b,c
b,c
c
d
d,e
e
d,e,f
e,f
f

RFC eqID(x,y)
(list of unique 2-D overlaps)

0
1
2
3
4
5
6
7
8
9
10
11
12

g
g,h
h
g,h,i
h,i
i
j
j,k
k
j,k,l
k,l
l

13
14
15
16
17
18
19
20
21
22
23
24

DCFL
Fy

0
1

2

4
5

3

DCFL
Fx

0
1

2

3
4

5

DCFL Fxy
(list of unique 2-D projections)

a (0,2)
b (1,1)
c (2,0)
d (3,2)
e (4,1)
f (5,0)

g (0,5)
h (1,4)
i (2,3)
j (3,5)
k (4,4)
l (5,3)
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or a custom ASIC with embedded TCAM.DCFL also provides more efficient support of dynamic

updates.

Given the volume of work in packet classification, we must show how our technique adds

value to the state of the art. In our opinion,HyperCutsis one of the most promising new algorithmic

solutions [59]. Introduced by Singh, Baboescu, Varghese, and Wang, the algorithm improves upon

the HiCuts algorithm developed by Gupta and McKeown [51] and also shares similarities with

theModular Packet Classificationalgorithms introduced by Woo [29]. In essence,HyperCutsis a

decision tree algorithm that attempts to minimize the depth of the tree by selecting “cuts” in multi-

dimensional space that optimally segregate packet filters into lists of bounded size. According to

performance results given in [59], traversing theHyperCutsdecision tree required between 8 and 35

memory accesses, and memory requirements for the decision tree ranged from 5.4 to 145.9 bytes per

filter. We assert thatDCFL exhibits advantages in all metrics of interest: worst-caseSMA, memory

requirements, and dynamic update performance.DCFL also provides the opportunity to strike a
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favorable tradeoff between performance and memory requirements, as the various parameters may

be tuned to achieve the desired results. All new algorithmic approaches must make a strong case for

their advantage relative to Ternary Content Addressable Memory (TCAM). Due to its performance,

efficiency, scalability, and use of commodity hardware technology,DCFL has the ability to provide

equivalent lookup performance at much lower cost and power consumption.

7.9 Discussion

By transforming the problem of aggregating results from independent field search engines into a

distributed set membership query,Distributed Crossproducting of Field Labels(DCFL) avoids the

exponential increases in time and memory required by previous approaches. We introduced several

new concepts including field labeling,Meta-labelingunique field combinations, andField Splitting,

as well as optimized set membership data structures such asBloom Filter Arraysthat minimize the

number of memory accesses required to perform a set membership query. Using a combination of

real and synthetic filter sets, we demonstrated thatDCFL can achieve over 100 million searches per

second using existing hardware technology. Furthermore, we have also shown thatDCFL retains

its lookup performance and memory efficiency when the number of filters and number of fields

in the filters increases. Scalability to classify on additional fields is a distinct advantageDCFL

exhibits over existing decision tree algorithms and TCAM-based solutions. We continue to explore

optimizations to improve the search rate and memory efficiency ofDCFL. We also believe that

DCFL has potential value for other searching tasks beyond traditional packet classification.
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Chapter 8

Summary

Only the curious will learn and only the resolute overcome the obstacles to learning.

The quest quotient has always excited me more than the intelligence quotient.

Eugene S. Wilson, Dean of Admissions, Amherst

All grand visions of the “next-generation” Internet assume that route lookup and packet classifi-

cation search engines will scale to support fast links, larger route tables and filter sets, and more

complex packet classification filters. The work described in this dissertation provides several con-

tributions that help meet these challenges. While the fruits of our work have addresseda number

of the open problems in packet classification, there remain a number of enticing opportunities for

future work.

8.1 Contributions

As evidenced by the number of proposed solutions discussed in Chapters 2 and 4,the route lookup

and packet classification problems are well-studied problems. Despite the energetic attention of

the research community, there remain a number of ripe areas for contribution. Three of the most

pressing issues are efficient search engine implementations, standardized performance evaluation

tools, and viable alternatives to TCAMs for packet classification. While many search engine im-

plementations exist, many are targeted to general purpose processor systems or ASICsand most

are not open-source or otherwise available for study by the research community. Dueto the lack

of standard performance evaluation tools, researchers offering new solutions producetheir own test

vectors, thus comparison of competing solutions is exceedingly difficult. As clearly indicated by

recent search engine market dynamics, router designers are increasingly concerned with power con-

sumption and scalability, thus they are beginning to favor algorithmic packet classification solutions

over TCAMs. We addressed all three of these areas throughout the course of this dissertation.

Chapter 3 presented the design and analysis of a scalable implementation of Eathertonand

Dittia’s Tree Bitmap algorithm for route lookup. The Fast Internet Protocol Lookup (FIPL) search
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engine provides approximately one million lookups per second per engine andseveral engines may

be combined to provide even greater throughputs. Furthermore, each FIPL engine consumes less

than 1% of commodity reconfigurable logic device. We have made the VHDL code for the search

engine and evaluation environment publicly available. FIPL engines have already been incorpo-

rated in a System-on-Chip (SoC) packet processor for the Network Services Platform (NSP) [43]

which forms part of the infrastructure for the Open Network Laboratory (ONL) [109]. ONL al-

lows researchers to remotely configure and perform experiments on real networks comprised of

heterogeneous hosts, links, and open-platform extensible routers.

In Chapter 4, we provided a survey of packet classification techniques and developed a tax-

onomy which frames each technique according to its high-level approach to the problem. Through

the use of a limited set of running examples, the survey presents a more coherent viewof the state-

of-the-art and more clearly highlights potential areas for future contributions. We assert that the

taxonomy enables a better understanding of the packet classification algorithms, asopposed to sim-

ply reporting asymptotic performance bounds or reported performance results for eachtechnique.

Chapter 5 presented a detailed analysis of real filter sets as well as the forces influencing

their composition. This is the most comprehensive study of filter set structure that we are aware of.

The results of this analysis include an analysis of the storage inefficiency of standard TCAMs and

a novel study of thefield overlapin real filter sets. The latter findings led to the development of

Distributed Crossproducting of Field Labels, the new packet classification algorithm presented in

Chapter 7.

In response to the lack of publicly available filter sets and performance evaluation tools, we

developedClassBench. We presented the design and analysis of theClassBenchtools in Chapter 6.

The combination of theSynthetic Filter Set Generatorandparameter filesextracted from real filter

sets eliminates confidentiality concerns, and hence removes the access barrier to realistic test vec-

tors. In addition to providing high-level control of the composition of the filters in the synthetic filter

sets, theClassBenchtools also produce synthetic header traces with variable locality of reference.

We have made theClassBenchtools publicly available along withparameter filesfrom 12 real filter

sets and several research groups are already using the tools.

Chapter 7 presentedDistributed Crossproducting of Field Labels(DCFL), a novel combi-

nation of new and existing packet classification techniques that leverages key observations of filter

set structure and takes advantage of the capabilities of modern hardware technology. We introduced

several new concepts including field labeling,Meta-labelingunique field combinations, andField

Splitting. DCFL minimizes the number of sequential memory accesses required per lookup by trans-

forming the problem of aggregating results from independent field search engines into adistributed

set membership query. In order to support this novel approach, we developed three efficient data

structures includingBloom Filter Arrays. Using a set of 12 real filter sets and theClassBenchtools

suite, we demonstrated thatDCFL not only provides sufficient lookup performance, but also scales
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to larger filter sets and more complex filters. Given the anticipated effects of Internet growth and di-

versification on the size and composition of filter sets,DCFL will become an increasingly attractive

alternative to TCAMs for packet classification.

8.2 Future Directions

The contributions of this dissertation provide a solid foundation for further research. We planto

promote broader use ofClassBenchwith the hope of refining the tools and developing a formal

benchmarking methodology. If embraced by the research community, the consensus building and

standardizing effort could be taken up by the Internet Engineering Task Force (IETF), leading to

one or more Request for Comment (RFC) documents detailing a packet classification benchmarking

methodology.

In order to demonstrate the realizable performance, determine hardware resource consump-

tion, and measure dynamic power consumption, we would like to design and implement a prototype

of the Distributed Crossproducting of Field Labelsalgorithm. As shown in Figure 8.1, we en-

vision a scalable, modular design which would allow the use of various field search engines and

dynamic reconfiguration of the aggregation network. The Field-programmable Port eXtender or

similar open-platform research system with reconfigurable hardware and adequate memorywould

provide a suitable implementation platform. This design effort would require adequate research

funding and human resources to accomplish in a timely manner.

Independent of a hardware prototyping effort, we believeDCFL has the potential to provide

better performance for a variety of complex searching problems. Several researchersin the net-

working community have directed their attention to high-performance string matching techniques

due to their use in network intrusion detection systems. Some Internet worms and viruses contain a

known “signature” or sequence of characters. Searching packet payloads forthese signatures at the

edge of the network can prevent the spread of malicious programs. Intrusion detection is just one

of the applications falling under the broad heading of “deep packet inspection”. Other applications

include load-balancing for web server farms which requires inspection of the HTTP header in order

to direct the web-page request to the most lightly-loaded server containing the page.Given that the

scaling properties and performance ofDCFL is independent of the type of field search performed,

our approach could provide better performance for a variety of hybrid search techniques comprised

of exact, range, prefix, and string matching.
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Appendix A

Additional Data from Real Filter Sets

The following figures are a supplement to the data presented in Chapter 5.
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Figure A.1: Source address branching probability and skew for filter set ipc1.
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Figure A.2: Destination address branching probability and skew for filter set ipc1.
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Figure A.3: Source address branching probability and skew for filter set fw1.
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Figure A.4: Destination address branching probability and skew for filter set fw1.
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Figure A.5: Distribution of 5-tuple scope for filters in filter sets acl4 and ipc1.
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