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Preface

The Internet - a conglomeration of military, academic, and commercial compoit@munication
networks - is arguably the most pervasive technology in recent history. Startedeapexrimental
project by the Defense Advanced Research Projects Agency (DARPA) of thall&tédtes Depart-
ment of Defense in 1973, the Internet continues to expand and diversify [1]. ®pe etits use has
moved beyond ubiquitous communication and dissemination of information to encles com-
mercial, academic, and private-sector services. Originally the brainchild of the tresearmunity
and a novelty for the technology hobbyist, the Internet has radically transformedyhihevworld
communicates. It has become essential infrastructure for the global economgckattétself in
the cultures of industrialized nations, and penetrated the most remote locations on earth

While statistics regarding Internet size and use are notoriously difficult to pin down, even the
rough estimates are staggering. As of January 2004, there were approximatelijl@83 mernet
hosts [2]. A host refers to any device communicating over the Internet: personputens) work-
stations, servers, Personal Digital Assistants (PDAS), etc. At that time, the United States atcounte
for 144 million hosts with over seven thousand Internet Service Providers (ISPs). Roughmhl945
lion people use the Internet world-wide, and the number of users is projected &meixdebillion in
2005 [3]. Spending for online content increased to $1.56 billion in 2003 [4], ansutoers trans-
acted over $2.2 billion over the Internet in the one week period following the Hgérikg holiday
in 2003 [5]. These figures could easily double in the next few years as the Intermdtates the
two most populous countries in the world - India and China.

The growth and diversification of the Internet imposes increasing demands on the perfo
mance and functionality of network infrastructure. The Internet may be thought afghabal
postal system for delivering digital letters, or packets; thus, the task of packet forgygdikin to
sorting mail. In the context of the Internet, the challenge is that packets are transrhitbedlay
the speed of light and arrive at rates exceeding a hundred million packetspadsé&urthermore,
routers, the devices responsible for the switching and directing of traffic in the Interneherdy
to sort packets into thousands of different “bins” by consulting a complex directmtainiing tens
of thousands of entries. Routers are being called upon to not only handle intredsmes of
traffic at higher speeds, but also impose tighter security policies and provide suppanti¢dber
set of network services. A critical issue in realizing the latter set of goals is identifying tlfie traf
belonging to a particular flow or set of flows. A flow may be thought of as the camwation traffic

XX



generated by a specific application traveling between a specific set of hosts or sarkeet@ow
identification is computationally intensive and the task is complicated by the contimzigasing
volume and speed of traffic traversing routers.

In this dissertation, we address the packet forwarding and flow identification problems, more
commonly known as route lookup and packet classification. Due to their fumdahmele in the
functionality and performance of Internet routers, both problems are well-studied. Dibgpéteer-
getic attention of a broad community of researchers in industry and academia, thanesa need
for good solutions. In this context, a solution’s “goodness” is evaluated along tb&iazlhengi-
neering criteria of performance, size, cost, and power consumption. The contribotithns work
include a high-performance implementation of a route lookup search engine, aptmsiudy of
the filter sets used to classify packets, a suite of performance evaluation tools, and aaréthnalg
for packet classification that scales to larger filter sets and more complex filters.

The value of this work goes beyond prototypes, research tools, and algorithnesdehzic
interest. A number of companies are beginning to offer packet classification smagutes as
products, and the industry is also gaining interest and investing in algorithmic solutions sxiet p
classification problem. According to a leading market analyst, the search engine aevket grew
14% from $83 million in 2002 to $95 million in 2003 [6]. More profound than the total market
growth is that the leading company offering algorithmic search engines gainednhbtRét share
while the leading TCAM vendor lost 18% market share. Ternary Content Addredgainhery
(TCAM) is a memory technology that searches all entries in the filter set in a single cyde. Th
strategy results in fast packet classification, but the devices are extremely expamipewer
hungry.
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Chapter 1

Introduction

Computer Science is no more about computers than astronomy is abcediEhs.
Edsger W. Dijkstra

The world is in the midst of a major paradigm shift in the role and importance of comazunic
tions technology. Many contemporary historians have already dubbed this thertaifon Age”.
Codified by the protocols produced by the DARPA Internet Architecture projectrbeg1973,
the Internet has emerged as a global communications service of ever ingreagortance. The
expanding scope of Internet users and applications requires network infrastructareyttamer
volumes of traffic, tightening already challenging performance constraints. This dissegdtio
dresses the searching tasks performed by Internet routers in order to forward packapplgnd
network services to packets belonging to a particular traffic flows. As these searchmgiastibe
performed for each packet traversing the router, the speed and scalability of thersolatitbese
problems largely determine the realizable performance of the router, and henceedinet as a
whole.

1.1 State of the Internet

The Internet refers to the global “network of networks” that utilizes the suite of interinkitvgp
protocols developed by the DARPA Internet Architecture project initiated in 197& ofiginal
aim of this project was to enable communication across the original ARPANET andRirA
packet radio network, but the original architects were tasked with developingcpl®tio enable
communication across a wide variety of heterogeneous networks [1]. Due tatine obthe ARPA
packet radio network and the set of foreseeable applications, the protocols etafdgyams, or
packets, as the fundamental unit of communication, and thus the Internetieeotion-less packet-
switched network. The use of datagrams endowed the protocols with a simplicity abdifiethat

is largely responsible for the tremendous growth and development that the Irtasnetjoyed.
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The building blocks of the Internet are essentially networks, each consisting of cembina
tions of possibly heterogeneous hosts, links, and routers. Figure 1.1 provides a siampjaerf
the Internet architecture. Hosts produce and consume packets, or datagrarhg;ombédin chunks
of data - a piece of afile, a digitized voice sample, etc. Hosts may be personaliers) worksta-
tions, servers, Personal Digital Assistants (PDAs), IP-enabled mobile phones, or satellites. Packets
indicate the sender and receiver of the data similar to a letter in the postal system chmmiet
hosts to routers, and routers to routers. Links may be twisted-pair copper wire, fiber dyic ca
or a variety of wireless link technologies such as radio, microwave, or infrared. @regevariety
of strategies for allocating links in a network. These strategies often take into considegatmn b
width and latency requirements of applications, geographical location, depitdysnd operating
costs. The fundamental role of routers is to switch packets from incoming links to thepapgeo
outgoing links depending on the destination of the packets. Note that a paakdtaverse many
links, often called hops, in order to reach its destination. Due to the transient naturevoflne
links (failure, congestion, additions, removals), routing protocols allow the routers tmaaity
exchange information about the state of the network. Based on this informatiorrsrdetgde on
which link to forward packets destined for a particular host, network, or subnetwaiie. tNat the
dynamic nature of the routing protocols allows packets from a single host addresseononan
destination to follow different paths through the network.

The original Internet protocol suite was comprised of two protocols: the Internet Protocol
(IP) and the Transmission Control Protocol (TCP). The primary function of the Internet Protocol
(IP) is to provide an end-to-end packet delivery service. This task is accomplished!bdginy
information regarding the sender and receiver with each packet transmitted thheugbtwork,
much like the forwarding and return addresses on a letter. IP specifies the format of thisaitido
which is prepended to the content of each packet. The information prepenaedt protocol is
referred to as a packet header and the data content of the packet is refesrtitbtpayload. In order
to uniquely identify Internet hosts, each host is assigned an Internet Protocol (IP) addimesst|{;
the vast majority of Internet traffic utilizes Internet Protocol Version 4 (IPv4) which assighd# 32
addresses to Internet hosts. As shown in Figure 1.2, the IPv4 header prependéets ipatudes
the IP address of the source and destination host. For the purpose of our discussitmertiev4
header field of interest is thgrotocolfield which identifies the type of transport protocol used by the
sending application. The type of transport protocol determines the format of thedrapsmocol
header following the IP header in the packet.

Rather than individually assign addresses to every host, IPv4 addresses were allocated to
organizations in contiguous blocks with the intention that all hosts in the same rkettvare a
common set of initial bits. This common set of initial bits is referred to as the network ssldre
or prefix; the remaining set of bits is called the host address. This allocation strategyeprovid
decentralized control of address allocation; each organization was free taalftadation decisions
for the addresses within its assigned block. As shown in Figure 1.3, IPv4 addresses weadyrig
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Figure 1.1: Simple diagram of Internet architecture.

assigned in blocks of three sizes: Class A (16 million hosts), Class B (64 thousand hosts),sand Cla
C (254 hosts). Note that there are also blocks of Class D addresses for multicast (ong+to-man
transmission) and reserved Class E addresses. Most organizations which requiredaa thneges
space than Class C were allocated a block of Class B addresses, even thoughvbeircensumed
only a fraction of the addresses. This waste of available address space combined esxihldbie
growth of the Internet prompted concerns over the impending shortage of ureabityaddresses.
Classless Inter-Domain Routing (CIDR) was introduced in order to prolong the life of IPv4 [7].
CIDR essentially allows a network address to be an arbitrary length prefix of the IP address, thu
network’s address space may span multiple Class C networks. CIDR also allows routoup|sto
aggregate network addresses in order to reduce the amount of packet forviafiolimgtion stored
by each router. The wide adoption of CIDR by the Internet community has sloweateffioyment
of a more permanent solution, Internet Protocol Version 6 (IPv6) [8]. Among other isthiges,
designers of IPv6 addressed the address space issue via the use of 128-bit addresgegh®esp
relief provided by CIDR, adoption of IPv6 is probable given the continued incieabe number
of Internet hosts and deployment initiatives by influential research and comhuraui@s [9].

The second protocol produced by the original Internet Architecture project, theriiisn
sion Control Protocol (TCP), provides a reliable transmission service for IP packets. Through the
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Figure 1.3: Internet Protocol Version 4 (IPv4) address space allocation.

use of small acknowledgment packets transmitted from the destination host to thetsmirGeCP
detects packet loss and paces the transmission of packets in order to adjust & oetwgestion.
When the source host detects packet loss, it retransmits the lost packet or patkbesddstina-
tion host, TCP provides in-order delivery of packets to higher level protocolgmications. After
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initial development of TCP, a third protocol, the User Datagram Protocol (UDP), veBesdad the
original suite in order to provide additional flexibility. UDP essentially allows applicatiohsyher
level protocols to dictate transmission behavior. For example, a streaming vidézatapp may
wish to ignore transient packet losses in order to prevent large breaks in the video citesed by
packet retransmissions.

Typically, the TCP and UDP transport protocols identify applications using 16-bit port n
bers carried in the transport header as shown in Figure 1.2. In order to provide strvio&aown
hosts, servers must have static “contact ports” for each application. Port numbeiddty-used
applications fall in the range of well-knowsystemports which are assigned by the Internet As-
signed Numbers Authority (IANA). Prior to 1993, the well-known port numbers were inahge
[0...255] while port number$256 . . . 1023] were used in Unix systems for Unix-specific services.
Since 1993, port numbers in the ran@e .. 1023] form the set of well-knowrsystermport num-
bers managed by IANA. A “living document” cfystemport number assignments is available at
http://www.iana.org/assignments/port-numbers . For applications where either
TCP or UDP may be used, port number assignments are typically identical. Unlilsatents
only need to guarantee that running applications use free port numbers. The frangenombers
that may be freely assigned by clients are referred to as ephenseralorts due to their short-lived
and unmanaged nature. The setisérport numbers span the ranfj®24 . .. 65535]. IANA does
maintain a list ofegistereduser port numbers in the ranfg®24 . . . 49151] for popular applications
which do not have an assignsgstenport.

1.2 The “Next Generation” Internet

While the protocols produced by the Internet Architecture project achieved theabrggials set
forth by DARPA and the pioneering group of researchers, the use of datagrams aksatphal-
lenges for those striving to deploy the next-generation of Internet services, particukdrtinte

services such as Internet telephony and video conferencing. It is important tthabtbe choice
of datagrams and packet-switching represents a significant departure from the circuiedwigth
works originally developed and deployed by the telecommunications industrite ¥kl Internet
protocols simplify the task of combining heterogeneous networks, the use of pactattisgicom-

plicates the provision of bandwidth and quality of service guarantees. As mensiboed, packets
flowing between a fixed set of hosts may take different paths through the netwark.toCthe

heterogeneous nature of the Internet, packets following different paths will lixplgrience dif-

ferent hop counts and congestion resulting in unpredictable latency and bottlereckpacity.

Circuit-switched networks allow data to flow along a fixed path, offering predictable peaxfaen
The major drawback of circuit-switching is the need to negotiate an end-to-end patigtiice

network. In the case of the Internet, this would require coordination across manydgesteons
networks operated by independent parties with potentially competing interests.
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Enabling quality of service and real-time performance guarantees are just a coupge of th
challenges facing the community architecting the “next-generation” Internet. éAmtarnet be-
comes increasingly essential infrastructure for the global economy, security is a oragert. Due
to their roots in academic research, many network protocols were developed@acthented with
little if any consideration of security issues. As a result, many academic and commestiations
have suffered from destructive network intrusions by hackers, viruses, and worms. TDidiag h
a vested interest in the security of the Internet now find themselves in a perpetual “aethwith
nefarious programmers. Furthermore, IP has essentially become a victim of its owarjippu
The amount of investment in the IP infrastructure by Internet Service Providers (ISPs) had yielde
significant resistance to changing the architecture. This hardening of the Internetcanchitdso
presents a significant challenge to realizing the “next-generation” Internet.

Despite concerns over security and ossification of the Internet protocols, many in the re-
search community have put forth grand visions of the “next-generation” Interneie Bfecifics
invariably differ, common goals include: retaining the flexibility provided by IP whilal#ing the
performance guarantees made available by circuit-switching, providing a levelwitgehat war-
rants greater economic reliance, and enabling more rapid development@oyhadent of services.
Some go so far as to set forth the goal that the Internet become reliable enougpaa soup air
traffic control system [10].

1.3 The Packet Classifi cation Problem

In a circuit-switched network, the task of identifying the traffic associated with a particuléir app
cation session between two hosts or subnetworks is trivial from the router’s perspécsiveple,
fixed-length flow identifier can be prepended to each unit of data that identifiesttidighed end-
to-end connection. For each unit of data, a router simply performs an extott sgarch over atable
containing the flow identifiers for established connections. The table entries for each diutiv id
fier contain the output link on which to forward the data and may also specify qualitynd€se
guarantees or special processing the router should perform.

The flow identification task in a packet-switched network is significantly more challenging.
The primary task of routers is to forward packets from input links to the appropriate outksit lin
In order to do this, Internet routers must consuibate tablecontaining a set of network addresses
and the output link onext hopfor packets destined for each network. Entries in the route tables
change dynamically according to the state of the network and the informationngexhhy routing
protocols. The task of resolving the next hop from the destination IP address is comnfenigde
to asroute lookupor IP lookup Finding the network address given a packet’s destination address
would not be overly difficult if the Internet Protocol (IP) address hierarchy were strictlytenaed.
A simple lookup in three tables, one for each Class of networks, would be sufficientwidike
adoption of CIDR allows the network addresses in route tables to be any size. Perforseimgia



Search Key: Prefix
1000 0000 111% [ 109000000*

10*
110*
10000000001
100001*
0001*
01011*
10001*

*

00110*
01*
Longest MatchL.{ 1900000011

1011*

Figure 1.4: Example of Longest Prefix Matching for a 12-bit search key; all shadedegraiatch
the key, butt000000011:x is the longest matching prefix.

in 32 tables, one for each possible network address length, for every packet trgtieesiouter is
not a viable option. If we store all the variable-length network addresses in a singleaabige
lookup requires finding the longest matching prefix (network address) in the table foivére g
destination address.

Stated formally, a prefix is a subset of initial bits of a key value, the IP destination address
in the case of route lookups. By definition, key values that share a common predixHesame
contiguous subset of bits starting at the most significant bit. Given a search ddegize b bits,
Longest Prefix Matching (LPM) is a search technique which selects the préfixhe set of prefixes
P, such thap; matches: andp; has the most specified bits. Each prefjxcan be thought of as the
combination of &-bit key and a correspondirigbit mask which identifies the valid bits in the key.
By definition, the mask is contiguous in LPM; i.e. the most significant invalid bit in the mast m
be succeeded by invalid bits. Prefixes can be succinctly represented by simply usirupénacter
to denote the end of the valid bits in the prefix. An example of Longest Prefix Matching (LRM) fo
a 12-bit search key is provided in Figure 1.4. Note that the four shaded prefixds thnatsearch
key, but1000000011x is the longest matching prefix. The throughput of an Internet router largely
depends upon the speed at which it can perform Longest Prefix Matching (LPM).

If an Internet router is to provide more advanced services than packet forwaitdimgst
perform finer grained flow identification. In the Internet context, the process of identifyingack-
ets belonging to a specific application session or group of sessions between a sodestiaation
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Table 1.1: Example filter set of 16 filters classifying on four fields; each filter has an assbiboav
identifier Flow ID) and priority tag PT) wheret denotes a non-exclusive filter; wildcard fields are

denoted withk.

Filter Action
SA DA Prot DP FlowID | PT
11010010| * TCP |[3:15] || O 3
10011100 * * [1:1] 1 5
101101* | 001110* | * [0:15] || 2 8t
10011100{ 01101010 UDP | [5:5] 3 2
* * ICMP | [0:15] || 4 ot
100111* | 011010* | * [3:15] || 5 6t
10010011 * TCP |[3:15] || 6 3
* * UDP | [3:15] || 7 ot
11101100| 01111010] * [0:15] || 8 2
111010* | 01011000{ UDP | [6:6] 9 2
100110* | 11011000{ UDP | [0:15] || 10 2
010110* | 11011000{ UDP | [0:15] | 11 2
01110010 * TCP | [3:15] || 12 47
10011100 01101010 TCP | [0:1] 13 3
01110010| * * [3:3] || 14 3
100111* | 011010* | UDP | [1:1] 15 4

host or subnetwork is typically referred to as the packet classification problem. Notkahaute
lookup problem may be viewed as a sub-problem of the more general padsiicdion problem.
Applications for Quality of Service, security, monitoring, and multimedia communicsitigpically
operate on flows, thus each packet traversing a router must be classified in order tadksign
identifier,FlowlID. Packet classification entails searching a table of filters for the highest priority fil-
ter or set of filters which match the packet. Filters bind a flow or set of flows-lowalD. Note that
filters are also referred to as rules in some of the packet classification literature. At minimum, filters
contain multiple field values that specify an exact packet header or setadisesnd the associated
FlowlID for packets matching all the field values. The type of field values are typically prédixes
IP address fields, an exact value or wildcard for the transport protocol numb#agsdand ranges
for port numbers. An example filter set is shown in Table 1.1. In this simple examples &itiatain
field values for four packet headers fields: 8-bit source and destination addressgsrtrarotocol,
and a 4-bit destination port number. The packet fields most commonly usedkatgassification
are referred to as the IP 5-tuple and include the 8-bit protocol, 32-bit source addreS2-bmd
destination address in the IPv4 header as well as the 16-bit source port and 1€ibdataen port
in the TCP and UDP transport protocol headers.

Note that the filters in Table 1.1 also contain an explicit priorityRdgand a non-exclusive
flag denoted by. Priority tags allow filter priority to be independent of filter ordering, providing for
simple and efficient dynamic updates. Non-exclusive flags allow filters to be desigmatsther
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exclusive or non-exclusive. A search returns the single highest-priority exclusivediltawing
Quiality of Service and security applications to specify a single action for the packdetPatay
also match several non-exclusive filters, providing support for transparent monitodngsage-
based accounting applications. Note that a parameter may control the nufrimar-exclusive
filters, r, returned by the packet classifier. Like exclusive filters, the priority tag is used to select
ther highest priority non-exclusive filters. We argue that packet classifiers should sups@t the
additional filter values and point out that many existing algorithms preclude tbeirThe packet
classification problem may be stated formally as follows:

Given a packef containing fieldsP’ and a collection of filterd” with each filterF;
containing fieldsFij, select the highest priority exclusive filter andhighest priority
non-exclusive filters where for each filtéj : F/ matchesP.

Consider the example of searching Table 1.1 for the highest-priority exclusive filtesiagle
highest-priority non-exclusive filtef; = 1), for a packet with the following header field values:

e SA 1001 1100
e DA: 01101010
e Prot: UDP

e DP:5

The exclusive filters withrlowIDs 3 and 15 match the packet, eiowID 3 is the highest priority
filter (minimum PT value). The non-exclusive filters witlowIDs 5 and 7 match the packet, but
FlowlID 5 is the highest priority filter. The search would retiowlDs 3 and 5.

1.3.1 Constraints

Computational complexity is not the only challenging aspect of the packsifitation problem.
Increasingly, traffic in large ISP networks and the Internet backbone travels ovewlithikiransmis-
sion rates in excess of one billion bits per second (1 Gb/s). Current generation fibdindstizan
operate at over 40 Gb/s. The combination of transmission rate and packet size dectatetigh-
put, the number of packets per second, routers must support. A majority of iniexffie utilizes
the Transmission Control Protocol which transmits 40 byte acknowledgment packéie. viorst
case, a router could receive a long stream of TCP acknowledgments, therefeeevative router
architects set the throughput target based on the input link rate and 40 byt fmakhs. For
example, supporting 10 Gb/s links requires a throughput of 31 million packesepend per port.
Modern Internet routers contain tens to thousands of ports. In such high-performaters, naute
lookup and packet classification is performed on a per-port basis.
Many algorithmic solutions to the route lookup and packet classification problems provide

sufficient performance on average. Most techniques suffer from poor perforiieaageathological
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search. For example, a technique might employ a decision tree where mostipatigh the tree
are short, however one path is significantly long. If a sufficiently long sequenceckétgathat
follows the longest path through the tree arrives at the input port of the routethiénroughput
is determined by the worst-case search performance. It is this set of worst-case assumgttions th
imposes the so-called “wire speed requirement” for route lookup and packet clasgifsztitions.
In essence, solutions to these search problems are almost always evaluated bizsécerit takes
to perform a pathological search. In the context of networks that provide perfoengararantees,
engineering for the worst case logically follows. In the context of the Internet, the pistmake no
performance guarantees and provide “best-effort” service to all traffic. Furthermosayitiching
technology at the core of routers cannot handle pathological traffic. Imagsuéfiaiently long
sequence of packets in which all the packets arriving at the input ports areedefstinthe same
output port. When the buffers in the router ports fill up, it will begin dropping pckéhus, the
“wire speed requirement” for Internet routers does not logically follow from the highH{eetocols
or the underlying switching technology; it is largely driven by network managemnd marketing
concerns. Quite simply, it is easier to manage a network with one less source of lpasks and
it is easier to sell an expensive piece of network equipment when you davet to explain the
conditions under which the search engines in the router ports will begin baakipduis for these
reasons that solutions to the route lookup and packet classification problems aréytgpelaated
by their worst-case performance.

Achieving tens of millions of lookups per second is not the only challenge taerookup
and packet classification search engines. Due to the explosive growth of the Inbaidipne
route tables have swelled to over 100k entries. Likewise, the constant increase imtber rof
security filters and network service applications causes packet classification filter sets aséncre
in size. Currently, the largest filter sets contain a few thousand filters, however dynamicoe
reservation protocols could cause filter sets to swell into the tens of thousands. Scalabiligerto la
table sizes is a crucial property of route lookup and packet classification solutionssd #scitical
concern for search techniques whose performance depends upon the ntiettiges in the tables.

As routers achieve aggregate throughputs of trillions of bits per second, pomgraption
becomes an increasingly critical concern. Both the power consumed by the itealieand the
infrastructure to dissipate the tremendous heat generated by the router componéfitargign
contribute to the operating costs. Given that each port of high-performance routsr&onmtain
route lookup and packet classification devices, the power consumed by segiredtséa becoming
an increasingly important evaluation parameter. While we do not provide an iexgduation
of power consumption in this dissertation, we present solutions to the route lookupaeket p
classification techniques that employ low-power memory technologies.
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1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. The next chapter pravidegrview

of single field search techniques, including Longest Prefix Matching (LPM) techniques spigcifica
developed in response to the route lookup problem. The other types of searebexida Chap-

ter 2 have relevance for the types of searches dictated by the packet classificalti@m. In order

to demonstrate the level of performance and efficiency achievable via high-parfoermplemen-
tations of algorithms, Chapter 3 provides a description of the Fast Internet Protodalp_@elPL)
search engine. Targeted to open-platform research systems designed and deaxeldpshing-
ton University, FIPL is a high-performance hardware implementation of the Tree Bitmaxitiaig
developed by Eatherton and Dittia [11].

Chapter 4 presents a survey of solutions to the packet classification problem using-a taxo
omy that frames each solution according to its high-level approach to the probletivatdd by
recent packet classification algorithms that leverage properties of real filter setsritcoadieve
better performance, Chapter 5 contains a detailed analysis of 12 real filter setteciifern fellow
researchers, Internet Service Providers (ISPs), and a network equipment vendor. el thf
computer architecture, there are no standard filter sets or performance evaluatidiabpisvide
a uniform scale for comparing competing packet classification solutions. In responseyeleped
a suite of benchmarking tools that includeSymthetic Filter Set GeneratoA description and anal-
ysis of theClassBenchools is contained in Chapter 6. Based on the results of the analysis presented
in Chapter 5, we developed a new packet classification algorithm that leveragstauttture of real
filter sets and the capabilities of modern hardware technology. Chapter 7 preskgsrigtion
and performance analysis of the new technidpistributed Crossproducting of Field Labelshich
provides favorable scaling properties for larger filter sets and more complex filtersrowidepa
summary of the contributions in this dissertation and discussion of future work in Chapter 8.
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Chapter 2

Single-Field Search Techniques

Computers are useless. They can only give you answers.
Pablo Picasso

A variety of searching problems naturally arise in packet classification due to the strugbaicket
filters. As discussed in Chapter 1, filter fields specify one of three different match cosdition
the corresponding packet header fields): a fully specified value, or exact matchin@,) partially
specified value, or prefix matching}) a range of values, or range matching. In this chapter, we
provide a survey of the prominent solutions to these three types of search problams)dam the
most frequently used solutions and those solutions specifically tailored to networking apptica
We begin with a survey of solutions for exact matching in Section 2.1, followed liscagsion of
Longest Prefix Matching (LPM) techniques in Section 2.2. LPM has been the focus of ietensiv
study in recent years due to the fundamental role it plays in IP address lookupket forward-

ing. Note that LPM is a special case of the more general All Prefix Matching (APM) problem
discussed in Section 2.3. Various packet classification techniques require an estitigion to the
APM problem. Finally, we address the more challenging problem of range matchirtgnéately,
range matching is a problem that arises in many contexts. We provide a survey efmaich-

ing solutions drawn from the fields of computational geometry, database desigmetawaiking in
Section 2.4.

2.1 Exact Matching

The simplest form of exact matching is the set membership query: determinesifidedgngs to the
set of keysX . Often we wish to store associated information with eachakey X such as unique
identifiers or processing directives. In such cases, a search wher& returns not only a “yes”
for the membership query, but also the information associated with the matching entynizateh
search problems naturally arise in packet classification when filters examine packesdiethdss
the transport protocol identifier. Due to the constraints on exact match searchesavtioeking
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context, namely the size of the key sets and the speed at which the search mer$bbeqn, non-
trivial data structures must be used for this task. We provide a brief introduction to two alassic
data structures that seek to minimize the number of memory accesses per seareh,@Bdrbash
tables. Both data structures are capable of supporting set membership queries assiihg
additional information with each key. We also provide a brief introduction to Bloom filtellata
structure designed to efficiently represent a set of keys. The space efficiency ¢dheeprice of
allowing false positive matches, as well as not storing any additional information veitketys in
the set.

2.1.1 B-Trees

B-Trees were originally designed to limit the number of accesses to direct access staitaguch
as disks and drums [12, 13]. The reduction in I/O operations is achieved by argpkéys in a
tree data structure where the nodes of the tree may have many children. The maximmiver of
children a node may have is typically referred to asitbgreeof the tree. The number keys stored in
any tree node (except the root node) is bounded byrtindnum degreef the B-Tree. Specifically,
each node in the tree must contain at lédst- 1) keys and at mos2B — 1) keys, whereB > 2.

An example of a B-Tree storing the integer multiples of three is shown in Figure 2.1. Note
that the keys stored in a hode are arranged in non-decreasing order. Each iridenalso stores
a set of pointers interspersed with the keys. Each pointer points to a child node stosrgyéater
than the key to the “left” of the pointer and less than or equal to the key to the “mltie pointer.
Note that each node may also store additional information for eachFieglly, the height: of a
B-Tree containing: keys is bounded by:

1
hgloanJr

2.1)

Thus, given a maximum table size the valudofan be selected to meet a given access budget. Note
that we assume a pointer to additional data may be stored along with each kdfieAc@mmon
B-Tree organization stores all pointers to additional data in the leaves and onlykstgsesnd child
pointers in the internal nodes in order to maximize the branching factor of theahterdes.

2.1.2 Hashing

Hashing is a technique that can provide excellent average performance veheuntiber of keys,

n, in the setX is much less than the number of ke}g|, in the universe of possible key valués,

For example, assume that contains 100 keys where the keys may take on any value in the range
[0 : 65535], i.e. a 16-bit unsigned integer. We could simply allocate a table with 65,536 entries
and use the value of the kayas an index into the table, but obviously this is very wasteful. This

'Each B-Tree node could also store a pointer to a table of information that could bedruetiee matching key’s
position in the node.
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9 18

36 12 15 21 24 27 60 63

Figure 2.1: Example of a B-Tree storing multiples of three, whete3.

techniquegdirect addressingis only viable when the number of keysn the setX approaches the
number of possible key valugs|.

The classical solution to this problem is to map the key valteea narrower range of values
that can be used to index a smaller table. In order to perform the mapping fundtiash éunction
h(z), is computed on the key value. The resulting value is used as an indexiiaghdableof size
[0 : m — 1] wherem < |U]|. ldeally, the hash function uniformly distributes alkeys across the
m slots in the hash table. This search method, cdiegshing has been extensively studied and is
given thorough treatment by a number of computer science textbooks3JL2, 1

There is a variety of methods for constructing hash functions. Often, the low-order bits
of key values are sufficiently uniform in distribution such that ki@sh indexnay be constructed
by selecting low order bits of the key. Such hash functions are trivial to constructduvaee.
Figure 2.2 shows an example of using the four low-order bits of the key as a hasifindhe same
integer multiples of three used in the B-Tree example in Figure 2.1. Note thatwikereater than
m and/or the distribution of keys across the hash table is not uniform ablésionsoccur. In our
example, we use a common collision resolution technique callathing where keys that map to
the samérash indexXorm a linked list. The ratio of keys to hash table slots is referred to ade#ue
factor, = -, which specifies the average number of keys in a chain. Thus, the average searc
time for a hash table where chaining is used for collision resoluti®(is+ «). There is a variety
of much more sophisticated hash functions and collision resolution techniques. We eafeadier
to the previously mentioned textbooks for a more complete discussion [12, 13].

2.1.3 Bloom Filters

A Bloom filter is a data structure used for efficiently representing a set of keys. Via implicé-rep
sentations of the keys in the set, the data structure supports membership queries tocé = ble
of storing additional information for each stored key. This technique was formulat@&litign

H. Bloom in 1970 [14], and has received renewed attention in the research cotyfion various
applications such as web caching, intrusion detection, and content based [@&{ing Bloom
filter is essentially a bit-vector of length where a keyr is represented by a subset of thebits.
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Figure 2.2: Example of hashing with chaining using the four low-order bits as a hash ind
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Figure 2.3: Example of inserting two keysandy, into a Bloom filter.

Given a set of keys{ with n members, we insert a key; € X into the Bloom filter as follow&

We computek hash functions om;, producingk values in the rang® : m — 1]. Each of these

values addresses a single bit in thebit vector, hence each kay causes: bits in them-bit vector

to be set to 1. Figure 2.3 provides an example of inserting two keys into a Bloom fititer.th\at if

one of thek hash values addresses a bit that is already set to 1, that bit is not changed.
Querying the filter in order to determine if a given keybelongs to the sek is similar

to the insertion process. Given key we generaté hash indices using the same hash functions

2Inserting a key into a Bloom fi lter is also referred to as ‘programming”the fi lter in the literature.
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false positive

Figure 2.4: Example of querying a Bloom filter; is a non-membery is a correct matchz is a
false positive match.

used to insert keys into the filter. We check the bit locations corresponding iotiash indices

in the m-bit vector. If at least one of thk bits is 0, then we declare the key to be a non-member
of the set. If all the bits are found to be 1, then we claim that the key belongs to thétlset
certain probability. If we find alk bits to be 1 and: is not a member o, then it is said to be a
false positive match. This ambiguity in membership comes from the fact thatthe in them-bit
vector can be set by any of tmemembers ofX. Thus, finding a bit set to 1 does not necessarily
imply that it was set by the particular key being queried. However, finding adetinly implies
that the key does not belong to the set, since if it were a member theerbal would have been set
to 1 when the key was inserted into the Bloom filter. Examples of a non-match, coraét, and
false positive match are shown in Figure 2.4.

The following is a derivation of the probability of a false positive matthThe probability
that a random bit of the:-bit vector is set to 1 by a hash function is simp};ly The probability that
itis not setisl — -L. The probability that it is not set by any of themembers ofX is (1 — )",
Hence, the probability that this bit is found to be 1lis- (1 — %)”’“. For a key to be declared a
possible member of the set, &llbit locations generated by the hash functions need to be 1. The
probability that this happeng, is given by

1 nk\ F
(- (-5 ez
m
for large values ofn the above equation reduces to

f= (1 — e_Tnk)k (2.3)
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Since this probability is independent of the input key, it is termeddtse positivgprobability. The
false positive probability can be reduced by choosing appropriate values &d k& for a given
size of the member set, For a given ratio of’”, the false positive probability can be reduced by
adjusting the number of hash functiors, In the optimal case, when false positive probability is
minimized with respect té&, we get the following relationship

k= H%anJ , [%m” (2.4)

The false positive probability at this optimal point is given by

1\ k
1= (3) (25)

It should be noted that if the false positive probability is to be fixed, then the size of thierfilte

needs to scale linearly with the size of the key set,

One property of Bloom filters is that it is not possible to delete a key stored in the filter.
Deleting a particular entry requires that the correspondihgshed bits in the bit vector be set to
zero, which would disturb other keys programmed into the filter which hash to anesé thits.

In order to solve this problem the idea of tl®unting Bloom Filterwas proposed by Fan, et.
al. [16]. A Counting Bloom Filter maintains a vector of counters corresponding to leiam the
bit-vector. Whenever a key is added to or deleted from the filter, the counterspomnng to the
k hash values are incremented or decremented, respectively. When a chamges from zero to
one, the corresponding bit in the bit-vector is set. When a counter changes feota rero, the
corresponding bit in the bit-vector is cleared. Note that maintaining counters sigtlifizameases
the storage requirements. If updates to the set of stored keys arrive at a reasonatiteméatee
counters may be stored in slower, cheaper memory technology such as DRAM.

2.2 Longest Prefix Matching (LPM)

Longest Prefix Matching (LPM) has received significant attention in the literature over themast te
years. This is due to the fundamental role it plays in the performance of Internet roDterdo

the explosive growth of the Internet, Classless Inter-Domain Routing (CIDR) was wideptet

to prolong the life of Internet Protocol Version 4 (IPv4) [7]. Use of this protocol requires ktern
routers to search variable-length address prefixes in order to find the longest matcfiingfphe

IP destination address and retrieve the corresponding forwarding information, or ‘o@Extfor

each packet traversing the router. This computationally intensive task, commfarhedeto as IP
Lookup, is often the performance bottleneck in high-performance Internet routers.ilMisevP
lookup as the example application for Longest Prefix Matching for the remainderséttion. The
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Address: Prefix ~ Next Hop
1000 0000 1111 10000000001 12
First Match ~| 10000000111 7 Noxt Hom

10000000* | 54
100001* 33
10001* 6
00110* 3
01011* 51
1011* 1
0001* 68
110 9
01* 21
10* 7
* 35

Figure 2.5: Example of Longest Prefix Matching for a 12-bit address using linear seezfikep
are sorted in decreasing order of prefix length; the first matching prefix is the longest.

following sections discuss the major developments in LPM techniques for IP lookiggocaed
by their general approach to the problem.

2.2.1 Linear Search

If the set of prefixes is small, a linear search through a list of the prefixes sorted in odgereésing
length is sufficient. The sorting step guarantees that the first matching prefix in the list is testlong
matching prefix for the given search key. An example of Longest Prefix Matching (LPMJj usin
linear search is shown in Figure 2.5. Linear search is commonly touted as the mastynedfimient

of all LPM techniques in that the memory requirements{8’) whereN is the number of prefixes

in the table. Note that the search time is al@V), thus linear search is not a viable approach for
IP lookup when the set of prefixes grows beyond a few dozen prefixes.

2.2.2 Content Addressable Memory (CAM)

Many commercial router designers have chosen to use Content Addressable Me&d)foCIP
address lookups in order to keep pace with optical link speeds despite theirdemgecost, and
power consumption relative to Static Random Access Memory (SRAM). CAMs minimize the nu
ber of memory accesses required to locate an entry by comparing the inputdiegtadl memory
words in parallel; hence, a lookup effectively requires one clock cycle. Whiteyp CAMs perform
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well for exact match operations and can be used for route lookups in strictly hiesdratidress-
ing schemes [17], the wide use of address aggregation techniques like CIDR retoiineg and
searching entries with arbitrary prefix lengths. In response, Ternary Content Addressaliedgem
(TCAMSs) were developed with the ability to store an additional “Don’t Care” state themdiyliag
them to retain single clock cycle lookups for arbitrary prefix lengths. We believe thatithige*
force” approach is no longer necessary for IP lookup due to the significant avéirat have been
made in algorithmic LPM techniques. TCAMs remain competitive choices for paclesifotation
on multiple fields; therefore, we provide a more detailed analysis of these devices imS3e2tih

2.2.3 Trie Based Schemes

Search techniques which build decision trees using the bits of prefixes to makeibgaetisions

allow the worst-case search time to be independent of the number of prefixes in thie sgample

of a binary tri€ constructed from the set of prefixes in Figure 1.4 is shown in Figure 2.6. Shaded
nodes denote a stored prefix; the corresponding next hop is shown adjacenhtaléheA search

is conducted by traversing the trie using the bits of the address, starting with the most significant
bit. As in the previous examples, the best matching prefid0#000011+ and the corresponding

next hop is seven. Note that the worst-case search time ighél%), wherelV is the length of the
address and maximum prefix size in bits.

One of the first IP lookup techniques to emplimies is Sklower’'s implementation of a
Patricia trie in the BSD kernel [18]. The Patricia trie is a binary radix tree that compresses paths
with one-way branching into a single node. The BSD kernel implementation was déddigte
general enough to support any hierarchical routing scheme or link layer adidmesiation such as
the Address Resolution Protocol (ARP). It assumes contiguous masks and boundsshease
lookup time toO(WW'). While paths may be compressed, only one bit of the address is examined
at a time during a search resulting in search rates that do not meet the needs darfogimgnce
routers.

In order to speed up the lookup process, multi-bit trie schemes were developed which p
form a search using multiple bits of the address at a time. Srinivasan and Vargheseciedrodu
two important techniques for multi-bit trie search€qntrolled Prefix Expansio(CPE) and_eaf
Pushing[19]. Controlled Prefix Expansiorestricts the set of distinct prefix lengths by “expanding”
prefixes shorter than the next distinct length into multiple prefixes. This allows the lookurp-to
ceed as a direct index lookup into tables corresponding to the distinct prefix lengthide length,
until the longest match is found. The techniqud.e&f Pushingeduces the amount of information
stored in each table entry by “pushing” information about the best matching prefixthlepaths to
leaf nodes. As a result each leaf node need only store a pointer or next higpatitm. While this
technique reduces memory usage, it also increases incremental update civé&tieauthors also

3A trie is an ordered tree in which the key stored at each node is specifi ed by its positiertrieeth
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Address: 1000 0000 1111

P

Figure 2.6: Example of Longest Prefix Matching using a binary trie.

discuss variable length stride lengths, optimal selection of stride lengths, and dynaménpmagg
techniques.

Gupta, Lin, and McKeown simultaneously developed a special case of CPE specifically
targeted to hardware implementation [20]. Arguing that DRAM is such a plentifulrengbensive
resource, their technique sacrifices large amounts of memory in order to boumahtiber of off-
chip memory accesses to two or three. Their basic scheme is a two level “expéameledth an
initial stride length of 24 and second level tables of stride length eight. Given trddmaaccesses
to DRAM may require up to eight clock cycles and current DRAMs operate at leashidilathe
speed of SRAMS, this technique can be out-performed by techniques utilizing SRAMa@udng
fewer than 10 memory accesses.

Other techniques such &silea[21] and Eatherton and Dittiasree Bitmap[11] employ
multi-bit tries with compressed nodes. In Chapter 3 we provide a detailed descriptionapsis
of a scalable hardware implementatioriloée Bitmap We also provide an introduction to multi-bit
tries, a complete description of tAeee Bitmapalgorithm, and a comparison betwegme Bitmap
and other approaches suchlagdea ThelLuleascheme essentially compresses an expanded, leaf-
pushed trie with stride lengths 16, 8, and 8. In the worst case, the scheme requirem@8/me
accesses; however, the data structure only requires a few bytes per entry. Whiteebxt@mpact,
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the Lulea scheme’s update performance suffers from its implicit use of leaf pushing. Tigee
Bitmaptechnique avoids leaf pushing by maintaining compressed representations offtkespre
stored in each multi-bit node. It also employs a clever indexing scheme to redintergborage
to two pointers per multi-bit node. Storage requirementsTfee Bitmapare on the order of six
to eight bytes per address prefix, worst-case memory accesses can be held to legghthaith
optimizations, and updates require modifications to a few memory words resulting ikeakce
incremental update performance [22].

The fundamental issue with trie-based techniques is that performance and scalability are
fundamentally tied to address length. As many in the Internet community are pushiideiy
adopt IPv6, it is not clear that trie-based solutions will be capable of meeting parfoendemands.

In the following sections, we discuss LPM algorithms that avoid this linear relationship withssddre
length.

2.2.4 Multiway and Multicolumn Search

Several other algorithms exist with attractive properties that are not based on triesultiveay

and Multicolumn Searctechniques presented by Lampson, Srinivasan, and Varghese are designed
to optimize performance for software implementations on general purpose proceskorsiE28ri-

mary contribution of this work is mapping the longest matching prefix problem to a bseangh

over the fixed-length endpoints of the ranges defined by the prefixes. By spedafgieigof con-
tiguous initial bits, prefixes define ranges of values. For example)«ifis a prefix for a four bit

field, then it defines the rand€000 : 1011]. Prefixes never define overlapping ranges, only nested
ranges. For examplé) : 3] and[2 : 4] are overlapping ranges, wherd@s 3] and[1 : 2] are nested
ranges. The authors use this property to develop a binary search technique owelpihiats of the
ranges defined by the prefixes.

The authors also used a popular optimization, a precomputed index array. Aplexaira
precomputed index arr&yor the first three bits of our example prefix set is shown in Figure 2.7. We
begin by storing the prefixes in a binary trie, then perform Controlled Prefix Expansion (CPE) for
a stride length equal to three [19]. The next hop associated with each node atleedbtivritten
to the array slot addressed by the bits labeling the path from the root to the node. If theasd
children, then a pointer to a binary trie containing the children is stored. The structure isexkarc
by using the first three bits of the address to index into the array. If no pointer is storedhé¢hen
next hop at the array index is returned as the next hop. If a pointer is storedhé&eext hop at the
array index is remembered as the best match thus far and the search contingéisaukinary trie
identified by the pointer. Note that this data structure requites ¢ bits of memory where is the
number of bits used to index the array anid the number of bits required for next hop and pointer
storage.

“Precomputed index arrays are also called ‘initial arrays”and ‘direct lookup arrays Iitetature
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Address: 1000 0000 1111

000 001 010 011 100 101 110 111
35|35 21| 21| 7 7 135 9

}g\

s 0

12 7

Figure 2.7: Example of a direct lookup array for the first three bits.

Finally, the authors optimize their algorithm based on the memory hierarchy of modern
general purpose processors. The data structures are dimensioned to take advathagadie
line size of the target processor. Even though it is geared to software implementatiy, itot
be viable for current generation network processors that do not contain full méreoaychies. In
general, the approach requi@$V + log N) time andO(2N) memory, whereV is the number
of prefixes and¥V is the length of the address. Again, the primary issue with this algorithm is its
linearly scaling relative to address length.

2.2.5 Binary Search on Prefix Lengths

The most efficient lookup algorithm known, from a theoretical perspectivBjriary Search on
Prefix Lengthsvhich was introduced by Waldvogel, et. al. [24]. The number of steps required by
this algorithm grows logarithmically in the length of the address, making it particularly atacti
for IPv6, where address lengths increase to 128 bits. However, the algorithm is heledinglex
to implement, making it more suitable for software implementation than hardware impkgioan
It also does not readily support incremental updates.

This technigue bounds the number of memory accesses via significant preatiorpof the
route table. First, the prefixes are sorted into sets based on prefix length, resulting in a makimum o
W sets to examine for the best matching prefix. A hash table is built for each set, ansstiised
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that examination of a set requires one hash probe. The basic scheme selectsdheesefisets to
probe using a binary search on the sets beginning with the median length set. FpteeXaman
IPv4 database with prefixes of all 32 lengths, the search begins by probing the setngtth 16
prefixes. Prefixes of longer lengths direct the search to its set by placing “markers”shdtter
sets along the binary search path. Going back to our example, a length 24 prefik veve a
“marker” in the length 16 set. Therefore, at each set the search selects the longetirgebimary
search path if there is a matching marker directing it lower. If there is no matching prefiarker,
then the search continues at the shorter set on the binary search path.

Use of markers introduces the problem of “backtracking”: having to search tier balf
of the trie because the search followed a marker for which there is no matching preloniea set
for the given address. In order to prevent this, the best-matching prefix for the mackenpsited
and stored with the marker. If a search terminates without finding a match, the besingatetix
stored with the most recent marker is used to make the routing decision. The authom®ptsep
methods of optimizing the data structure based on the statistical characteristics of thebigute ta
For all versions of the algorithm, the worst case bound&xteg W ;) time andO(N x log Wy;s:)
space wheréVy;,; is the number of unique prefix lengths. Empirical measurements using an IPv4
route table resulted in memory requirement of about 42 bytes per entry.

2.2.6 Longest Prefi x Matching using Bloom Filters

Dharmapurikar, Krishnamurthy, and Taylor introduced the first algorithmic Longest Riafoh-
ing (LPM) technique to employ Bloom filters [25]. This approach, which we will refer tBlasm
filter-based IP LookugBIPL), is a hardware-based IP lookup solution wétverageperformance
superior to TCAMs. Mitigating worst-case performance requires an initial index arragand
trolled Prefix ExpansioifCPE) which causeBIPL to become less memory and update efficient.
The performance bottleneck in any longest prefix matching technique is the nofrdeuential
memory accesses required per lookup. The key featuBdRit is that the performance, as deter-
mined by the expected number of sequential memory accesses requiredko@r, lam be held to a
constant regardless of address length and number of unique prefix lengths precas equally
attractive for Internet Protocol Version 6 (IPv6) which uses 128-bit destination addressdsnis
longer than IPv4.

A basic configuration oBIPL is shown in Figure 2.8. It begins by sorting the set of prefixes
into sets according to prefix length. The system employs a 9ét obunting Bloom filters, where
W is the maximum number of unique prefix lengths in the prefix set, and associatesoome B
filter with each unique prefix length. Each filter is “programmed” with the associated petfofes
according to the previously procedure described in Section 2.1.3. It is importartetthad while
the bit-vectors associated with each Bloom filter must be stored on-chip, the counteiatadsoc
with each filter can be maintained by a separate control processor responsible forpdatesu
Separate control processors with ample memory are typical features of high-perferroaters.
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Figure 2.8: Basic configuration of Longest Prefix Matching using Bloom filt&i$L().

A hash table is also constructed for each distinct prefix length. Each hash table is initialized w
the set of corresponding prefixes, where each hash entrypigfx( next hop pair. The set of hash
tables is stored in off-chip memory. Given that the problem of constructing hash talolésimize
collisions with reasonable amounts of memory is well-studied, the authors assume that) f@o
hash table stored in off-chip memory requires one memory access [24].

A search proceeds as follows. The input IP address is used to probe thé/Babroichip
Bloom filters in parallel. The first bit of the address is used to probe the filter associated with length
one prefixes, the first and second bits of the address are used to probe the filter assattiated w
length two prefixes, etc. Each filter simply indicates match or no match. By examim@raythuts
of all filters, we compose a vector of potentially matching prefix lengths for the gadeiness,
the match vector Consider an IPv4 example where the input address produces matches in the
Bloom filters associated with prefix lengths 8, 17, 23, and 30; the resultaigh vectomwould be
[8,17,23,30]. Remember that Bloom filters may produce false positives, bat peoduce false
negatives; therefore, if a matching prefix exists in the route table, it will be represertedniratch
vector. Note that the number of unique prefix lengths represented in the routdtahle may be
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less thard¥/. In this case, the Bloom filters representing empty sets will never contribute a match to
thematch vectorvalid or false positive. The search proceeds until a match is found or the vector is
exhausted.

The probability of a false positive is dependent upon the number of prefixes siaéitter,
the size of the filter, and the number of hash functions used to probe the filter. Thesaahbw that
with a modest amount of on-chip resources for Bloom filters, the average numbasloforobes
per lookup approaches one; therefore, this approach can achieve loogsiggaivalent to those
offered by TCAMs. Given that commodity SRAM devices are denser and chiteref CAMs, this
approach potentially offers lower cost and more power efficient solution. Therawalso introduce
asymmetric Bloom filters which dimension filters according to prefix length distribution. A system
configured to support 200,000 IPv4 prefixes with an average number of 1fB6Bip memory
accesses per lookup, requires 4Mb of on-chip memory and is capable of 33Zrdbicups per
second using a commodity SRAM device operating at 333 MHz.

2.3 All Prefix Matching (APM)

Longest Prefix Matching (LPM) is a special case of the general All Prefix Matching (APM) problem.
Instead of returning just the longest matching prefix, the APM problem requires thattahinta
prefixes be returned. This problem arises when multi-field search techniques are deednmo
several instances of single-field search techniques. We provide a survey of multi-fiehl teefirc
niques in Chapter 4.

Note that most trie-based algorithms easily map to the APM problem. The algorithm can
simply return all matching prefixes along the path to the longest matching prefix. Similaly, th
Bloom filter technique can also be easily adapted to perform APM. Referring back to Figuitec?.
Priority Encoder can be removed and the Hash Interface simply queries every hasistaluiated
with matching prefix lengths in thematch vector This does increase the number of hash probes
per lookup; however, as discussed in Chapter 5 the number of prefixes in nidlsdarch tables
which match an address is typically less than six.

While the trie-based and Bloom filter-based LPM algorithms easily map to APM, it is im-
portant to note that thBinary Search on Prefix Lengtted Multiway and Multicolumn Search
techniques do not readily support APM. The use of markeBimary Search on Prefix Lengths
naturally directs searches to longer prefixes before examining shorter length prefixesarha
consequence is experienced by Megltiway and Multicolumn Searctiue to the binary search over
range endpoints. In order to support APM searches using these techniques, we naugéneel
technique that allows any LPM algorithm to perform APM. The idea is to perform an LPM search
where stored prefixes contain a pointer to a node liresting treg a separate tree of prefixes de-
fined by parent pointers. Figure 2.9 shows an examplenafséing tredor the prefixes used in the
LPM example of Figure 1.4. All matching prefixes for a given longest matching paedixound
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Figure 2.9:Nesting treetechnique for finding all matching prefixes for a given longest matching
prefix.

by simply following parent pointers until the root node is reached. This generalitgzhcan be
made memory and update efficient, but does require additional memory actefisd all match-

ing prefixes. A second technique may be used that does not require additionatyreccesses but
sacrifices memory and update efficiency. The idea is to precompute all matchimggessociated
with each prefix in the set. The list of all matching prefixes is stored with each prefix in the LPM
data structure, thus locating the longest matching prefix returns the list of all matchinggre
Note that this suffers from memory and update inefficiency as many prefixes arersuedantly

in lists and updating an entry in the prefix set may require many updates to lists of allimgatch
prefixes.

2.4 Range Matching

Range matching problems naturally arise in many searching problems in the aresawardking,
computational geometry, and database design, and there are several forngeahedohing prob-
lems. In this section we provide a brief survey of approaches to address the followbigrprhat
arises in packet classification: Given a Zeof closed interval$i, j| and a poinp, find all the inter-

vals in X that contairp. This task is an essential part of packet classification, as packet filters may
specify ranges for the source and destination port numbers in packet headermr itoddentify a

set of applications. Solutions to this problem typically employ a variant of one oflagsical data
structures, the Segment Tree and the Interval Tree [26, 27]. Another option is &rceash closed
intervall[i, 7] into a set of prefixes, then employ one of the fast Longest Prefix Matching (LPM) algo-
rithms discussed in the previous section [28, 29]. Finally, we describe a recently proposedie
solution for range matching.
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Figure 6.4: Prefix pair length distribution for a synthetic filter set of 64000 filters generatea with
parameter filespecifying 16-bit prefix lengths for all addresses.

introduction of new prefix lengths in a structured manner. Injecting purely randonessidrefix
pair lengths during the generation process neglects the structure of the filter set useeraigthe
parameter file Using scope as a measure of distance, we expect that new address aggvitigates
emerge “near” an existing address aggregate. Consider the address prefixgihidistribution
shown in Figure 6.4. In this example, all filters in the filter set have 16-bit source andadiestin
address prefixes; thus, the distribution is a single “spike”. When injecting new addressppiiefix
lengths into the distribution, we would like them to be clustered around the existing spike in the
distribution. This structured approach translates “spikes” in the distribution into smoother “hills”;
hence, we refer to the process as smoothing.

In order to control the injection of new prefix lengths, we definensothingparameter
which limits the maximum radius of deviation from the original prefix pair length, whedgisa
is measured in the number of bits specified by the prefix pair. Geometrically, this reeesu
may be viewed as the Manhattan distance from one prefix pair length to anotheprivenience,
let the smoothingparameter be equal ta We chose to model the clustering using a symmetric
binomial distribution. Given the parametera symmetric binomial distribution is defined on the
range[0 : 2r], and the probability at each poinin the range is given by:

i = < 2;’ ) <%)2r (6.1)

Note thatr is the median point in the range with probabilty, andr may assume values in the
range[0 : 64].
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Once we generate the symmetric binomial distribution fromsitm@othingparameter, we
apply this distribution to each specified prefix pair length. The smoothing process ingoblewy
each “spike” in the distribution according to the median probabiljtyand binomially distributing
the residue to the prefix pair lengths within thdit radius. When prefix lengths are at the “edges”
of the distribution, we simply truncate the binomial distribution. This requires us to normadize th
prefix pair length distribution as the last step in the smoothing process. Note that we myshapp
smoothing adjustment to each prefix pair length distribution associated with each Portaair C
in the parameter file In order to demonstrate this process, we provide an example of smoothing
the prefix pair length distribution in Figure 6.4 using two different values. ofigure 6.5(a) and
Figure 6.5(b) show the prefix pair length distributions for a synthetic filter set generated with a
parameter filespecifying 16-bit prefix lengths for all addresses and a smoothing paramete:

With the exception of the fringe effects due to random number generation, the Sjilggeat 16-16
is binomially distributed to the prefix pair lengths within a Manhattan distance of 8. The dtaTie e
is shown in Figure 6.5(a) and Figure 6.5(b) for a smoothing paramete32.

In practice, we expect that ttsenoothingparameter will be limited to at most 8. In order to
demonstrate the effect of smoothing in a realistic context, we generated a synthetictfilgngea
smoothingparameter of 4. Figure 6.6(a) and Figure 6.6(b) show the prefix pair length distribution
for a synthetic filter set of 64000 filters generated using the ahmeter fileand smoothing
parameter- = 0. Figure 6.6(c) and Figure 6.6(d) show the prefix pair length distribution for a
synthetic filter set of 64000 filters generated using the jparameter fileand smoothing parameter
r = 4. Note that this synthetic filter set retains the structure of the original filter set while modeling
a realistic amount of address aggregation and segregation.

Recall that we choose to truncate and normalize to deal with the edge casesidéys ev
in Figure 6.6, many of the most common address prefix pair lengths occur atigkes ef the
distribution. As a result, applying the smoothing adjustment may affect the avergue afcthe
generated filter set. Consider the case of the spike at 32-32 (fully specified sourcestinatioa
addresses). Applying the smoothing adjustment to this point distributes some of the redahise to
specific prefix pair lengths, but the residue allocated to more specific prefix pair lengthecet e
as there are not any more specific prefix pair lengths. In order to assess the effectsatidrusnd
normalization on the resulting filter sets, we generated several filter sets of the same sizerasing th
differentparameter filesand various values of the smoothing parameter. The results are shown in
Figure 6.4.1. Note that as we increase the amount of smoothing applied to thepaiefizngth
distributions, the effect on the 5-tuple scope and address pair scope is minimal. \Weabskght
drift toward the median scope value due to the aforementioned truncation of the dististaititne
edges.
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Figure 6.5: Prefix pair length distributions for a synthetic filter set of 64000 filters generéted w
a parameter filespecifying 16-bit prefix lengths for all addresses and various values of smoothing
parameter-.

6.4.2 Scope Adjustment

As filter sets scale in size and new applications emerge, it is likely that the avergge ofcihe
filter set will change. As the number of flow-specific filters in a filter sets increases, the specific
of the filter set increases and the average scope decreases. If the number fyebiolaked ports
for all packets in a firewall filter set increases, then the specificity of the filter set mayadeand
the average scope may increhstn order to explore the effect of filter scope on the performance

“We are assuming a common practice of specifying an exact match on the blarkedmber and wildcards for all
other fi lter fi elds
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Figure 6.6: Prefix pair length distribution for a synthetic filter set of 64000 filters generatetheith
ipcl parameter filawith smoothing parameters= 0 andr = 4.

of algorithms and packet classification devices, we provide high-level adjustnfethis average
scope of the synthetic filter set. Two input parametadsiress scopandport scopeallow the user

to bias theFilter Set Generatoto create more or less specific address prefix pairs and port pairs,
respectively.

In order to illustrate the effects of scope adjustments, consider the standard method of sam
pling from a distribution using a uniformly distributed random variable. In Figure 6.8, we show
the cumulative distribution for the total prefix pair length associated with the WC-WC puort pa
class of the acl2 filter set. In order to sample from this distributionFthier Set Generatoselects
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ter files extracted from filter set13, fw5, andipcl, and various values of the smoothing parameter
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a random number between zero and one using a uniform random numbertgeribes chooses
the total prefix pair length covering that number in the cumulative distribution. @alph this
amounts to projecting a horizontal line from the random number on the y-axis. Therditate
of the “step” which it intersects is the sampled total prefix pair length. In Figure 6.8, gwensan
example of sampling with a random variable equalto choose the total prefix pair length of
44,

Theaddress scopadjustment essentially biases the sampling process to select more or less
specific total prefix pair lengths. We can realize this in two ways: (1) apply the adjustontme
cumulative distribution, or (2) bias the random variable used to sample from the cwmualiatiribu-
tion. The first option requires that we recompute the cumulative density distribution tolomajes
or shorter prefix lengths more or less probable, as dictated bgdtieess scopparameter. The
second option provides a conceptually simpler alternative. Returning to the lexanfigure 6.8,
if we want to bias thd-ilter Set Generatoto produce more specific address prefix pairs, then we
want the random variable used to sample from the distribution to be biased to values clbser to
The reverse is true if we want less specific address prefix pairs. Thus, in order to apply the scop
adjustment we simply use a random number generator to choose a uniformly distrimdechra
variable,rv,.,;, apply a biasing function to generate a biased random variablg., and sample
from the cumulative distribution usingp;,s.

While there are many possible biasing functions, we limit ourselves to a particularly simple
class of functions. Our chosen biasing function may be viewed as applying aslap#e uniform
distribution as shown in Figure 6.9(a). When the slepe 0, the distribution is uniform. The biased
random variable corresponding to a uniform random variable on-eés is equal to the area of the
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Figure 6.8: Example of sampling from a cumulative distribution using a random variaiskeibD-
tion is for the total prefix pair length associated with the WC-WC port pair class of the act2 filte
set. A random variable equal to 0.5 chooses 44 as the total prefix pair length.

rectangle defined by the value and a line intersectingtaeis at one with a slope of zero. Thus, the
biased random variable is equal to the uniform random variable. As shown in Fig(ag &6 can
bias the random variable by altering the slope of the line. Note that in order for thegofasiztion

to be defined for random variables in the raf@e 1] and have a cumulative probability of 1 for a
random variable equal to 1, the slope adjustment must be in the fai2ge2]. Graphically, this
results in the line pivoting about the poiit5, 1). For convenience, we define the scope adjustments
to be in the rangé-1 : 1], thus the slope is equal to two times the scope adjustment. For non-zero
slope values, the biased random variable corresponding to a uniform random varitie:aaxis

is equal to the area of the trapezoidefined by the value and a line intersecting the p@ing, 1)

with a slope ofs. The expression for the biased random variablg;,,, given a uniform random
variable,rv,,;, and ascopeparameter in the rande-1 : 1] is:

TUbias = TUuni(SCOPE X TUyn; — scope + 1) (6.2)

Figure 6.9(b) shows a plot of the biasing function $oppevalues of 0, -1, and 1. We also provide
a graphical example of computing the biased random variable given a unifodomavariable of
0.5 and ascopeparameter of 1. In this case the;, is 0.25. Let us return to the example of
choosing the total address prefix length from the cumulative distribution. In Figure 6el§haw
examples of sampling the distribution using the unbiased uniform random varniahlg,= 0.5,

®Recall that the area of a trapezoid is one half the product of the height andrthefghe lengths of the parallel
edgesA = 1 x h x (i +12).
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Figure 6.9: Scope applies a biasing function to a uniform random variable.

and the biased random variabtey,,; = 0.25, resulting from applying the biasing function with
scope = 1. Note that the biasing results in the selection of a less specific address prefix pair, a total
length of 35 as opposed to 44.

Positive values ofiddress scopbias theFilter Set Generatoto choose less specific address
prefix pairs, thus increasing the average scope of the filter set. Likewise, negativeofadddress
scopebias theFilter Set Generatoto choose more specific address prefix pairs, thus decreasing the
average scope of the filter set. The same effects are realized pgrtrecopeadjustment by biasing
the Filter Set Generatoto select more or less specific port range pairs. Note that the cumulative
distribution must be constructed in such a way that the distribution is computed oves salted
from least specific to most specific.
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set. A random variable equal to 0.5 chooses 44 as the total prefix pair length.

Finally, we report the results of tests assessing the effects adddtress scopand port
scopeparameters on the synthetic filter sets generated bFittee Set GeneratarEach data point
in the plots in Figure 6.4.2 is from a synthetic filter set containing 16000 filters generatecfrom
parameter fildrom filter sets acl3, fw5, oripcl. Figure 6.11(a) shows the effect chtltress scope
parameter on the average scope of the address prefix pairs in the resulting filter sés Quge of
values, theaddress scopalters the average address pair scope-byo +6. Figure 6.11(b) shows
the effect of thegport scopegparameter on the average scope of the port range pairs in the resulting
filter set. Over its range of values, tipert scopealters the average port pair scope ©y.5 to
+2.5. Note that the magnitude of change in average scope for both parametenoismpgely the
same relative to the range of possible scope values. Figure 6.11(c) shows thefdffattt scope
parameters on the average scope of the filters in the resulting filter set. For these tests,dg@mth sco
parameters were set to the same value. Over their range of values, the scopetgraralter the
average filter scope by6 to +7.5. We assert that these scope adjustments provide a convenient
high-level mechanism for exploring the effects of filter specificity on the performahpaaket
classification algorithms and devices.

6.4.3 Filter Redundancy & Priority

The final steps in synthetic filter set generation are removing redundant filters and orttiering
remaining filters in order of increasing scope. The removal of redundant filters maglized by
simply comparing each filter against all other filters in the set; however, tlive maplementation
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requiresO(N?) time, whereN is equal tosize. Such an approach makes execution times of the
Filter Set Generatoprohibitively long for filter sets in excess of a few thousand filters. In order to
accelerate this process, we first sort the filters into sets according to their tuple specificatiog. Sortin
filters into tuple sets was introduced by Srinivasan, et. al. in the context diile Space Search
packet classification algorithm discussed in Section 4.5 [66].

We perform this sorting efficiently by constructing a binary search tree of tuple set pointers,
using the scope of the tuple as the key for the node. When adding a filter to a tuple setarch
the set for redundant filters. If no redundant filters exist in the set, then we add the filter to th
set. If a redundant filter exists in the set, we discard the filter. The time complexity of thisfsearc
technique depends on the number of tuples created by filters in the filter set afigttieition of
filters across the tuples. In practice, we find that this technique provides acceptdbienpace.
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Generating a synthetic filter set of 10k filters requires approximately five seconds, \iilide set
of 100k filters requires approximately five minutes with a Sun Ultra 10 workstation.

In order to support the traditional linear search technique, filter priority is often inferred by
placement in an ordered list. In such cases, the first matching filter is the best matchingHiker.
arrangement could obviate a filtérif a less specific filterf; > f; occupies a higher position in the
list. To prevent this, we order the filters in the synthetic filter set according to scope, wheee filte
with minimum scope occur first. The binary search tree of tuple set pointers makes thisgrde
task simple. Recall that we use scope as the node key. Thus, we simply perform aarinalidof
the binary search tree, appending the filters in each tuple set to the output list of filters.

6.5 Trace Generation

When benchmarking a particular packet classification algorithm or device, nfiding metrics of
interest such as storage efficiency and maximum decision tree depth may be gasiegethe
synthetic filter sets generated by thdter Set Generatar In order to evaluate the throughput of
techniques employing caching or the power consumption of various dewtks load, we must
exercise the algorithm or device using a sequence of synthetic packet headersmaceh&enerator
produces a list of synthetic packet headers that probe filters in a given filter setthidbtee do
not want to generate random packet headers. Rather, we want to ensumeptiktet header is
covered by at least one filter in ti@lterSetin order to exercise the packet classifier and avoid
default filter matches. We experimented with a number of techniques to gesgnétetic headers.
One possibility is to compute all thédimensional polyhedra defined by the intersections of the
filters in the filter set, then choose a point in thdimensional space covered by the polyhedra. The
point defines a packet header. The best-matching filter for the packet higathaply the highest
priority filter associated with the polyhedra. If we generate at least one header cadiegpto each
polyhedra, we fully exercise the filter set. The number of polyhedra defined by filteseéct®ons
grows exponentially, and thus fully exercising the filter set quickly becomes inttactaba result,
we chose a method that partially exercises the filter set and allows the user to vary thadsize
composition of the headers in the trace using high-level input parameters. Theseteasarantrol
the scale of the header trace relative to the filter set, as well as the locality of refémetee
sequence of headers. As we did with théier Set Generatgrwe discuss thdrace Generator
using the pseudocode shown in Figure 6.12.

We begin by reading thEilterSetfrom an input file (line 1). Next, we get the input param-
etersscale ParetoA andParetoB(lines 2 through 4). Thecaleparameter is used to set a threshold
for the size of the list of headers relative to the size ofRierSet(line 5). In this contextscale
specifies the ratio of the number of headers in the trace to the number of filters in thedilter
After computing theThreshold , we allocate a list of headersleaders (line 6). The next set
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TraceGenerator ()

/I Generate list of synthetic packet headers
read (FilterSe)

get (scalg

get (ParetoA

get (ParetoB

5 Threshold = scalex size (FilterSe)
6 HeaderList Headers()

7 While size(Headers) < Threshold

8

9

WN -

D

RandFilt = randint (O,size (FilterSe))
NewHeader = RandomCorner (RandFilt, FilterSe)

10 Copies = Pareto (ParetoAParetoB
11 For i:1to Copies
12 Headers —append(NewHeader)

13 Headers —print

Figure 6.12: Pseudocode férace Generatar

of steps continue to generate synthetic headers as long as the kiead#rs does not exceed the
Threshold

Each iteration of the header generation loop begins by selecting a random filteFitighe
Set(line 8). Next, we must choose a packet header covered by the filter. In the irtlee®stcising
priority resolution mechanisms and providing conservative performance estimatesdothahg
relying on filter overlap properties, we would like to choose headers matching a langgen of
filters. In the course of our analyses, we found the number of overlapping filters iddanggcket
headers representing the “corners” of filters. When we view a filter as definhtjraensional rect-
angle, the corners of this rectangle represent points id-tlienensional space which correspond to
packet headers. Each field of a filter covers a range of values. Choosing alpeadter correspond-
ing to a “corner” translates to choosing a value for each header field from one oftteme of the
range specified by each filter field. TRandomCorner function chooses a random “corner” of
the filter identified byRandFilt and stores the headeriNewHeader .

The last steps in the header generation loop append a variable number otbédfmesieader
to the trace. The number of copi€ppies , is chosen by sampling from a Pareto distribution con-
trolled by the input parameterBaretoAandParetoB(line 10). In doing so, we provide a simple
control point for the locality of reference in the header trace. The Pareto distribigione of the
heavy-tailed distributions commonly used to model the burst size of Internet traffic ffowslbas
the file size distribution for traffic using the TCP protocol [105]. For convenience,3etPareto A
andb = ParetoB. The probability density function for the Pareto distribution may be expressed

5The Pareto distribution, a power law distribution named after the Italian economist VilfredtmPa also known as
the Bradford distribution.
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as: "
a
Ple) = o (6.3)
where the cumulative distribution is:
D) =1- (b> (6.4)
X
The Pareto distribution has a mean of; ;
a
p= (6.5)
a—1

Expressed in this way, is typically called the shape parameter and typically called the scale
parameter, as the distribution is defined on values in the intébyab). The following are some
examples of how the Pareto parameters are used to control locality of reference:

e Low locality of reference, short taila(= 10, b = 1) most headers will be inserted once

e Low locality of reference, long tail:a = 1, b = 1) many headers will be inserted once, but
some could be inserted over 20 times

e High locality of reference, short taila(= 10, b = 4) most headers will be inserted four times

Once the size of the trace exceeds the threshold, the header generation looptésrniote that
a large burst near the end of the process will cause the trace to be largdihtieshold . After
generating the list of headers, we write the trace to an output file (line 13).

6.6 Benchmarking with ClassBench

In order to provide value to the interested community, a packet classification bemkcmust pro-
vide meaningful measurements that cover the broad spectrum of applicatioonements. It is
with this in mind that we designed the suite@iissBenchools to be flexible while hiding the low-
level details of filter set structure. While it is unclear if real filter sets will vary as specifigtido
smoothing and scope parameters, we assert that the tool provides a useful meébramisasuring
the effects of filter set composition on classifier performance. It is our hope&thasBenclwill
enjoy broader use by researchers in need of realistic test vectors; it is also our intermitiate
and frame a broader discussion within the community that results in a largerEataoheter files
that model real filter sets as well as the formulation of a standard benchmarkingdoletyy.

Packet classification algorithms and devices range from purely conceptual, to saftware
plementations targeted to a variety of platforms, to state-of-the-art ASICs (Application Specific
Integrated Circuits). For the purpose of our discussion, we present a generic paskiiec model
as shown in Figure 6.13. In this model, the classifier consists of a search enginetedrinenem-
ory which stores the filter set and any other data structures required for the searcaclirpaeket
header passed to the classifier, the search engine queries the filter set and returndaadfioo
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Figure 6.13: Generic model of a packet classifier.

identifier or set of flow identifiers. Note that the set of possible flow identifiers is applicatpmmee
dent. Firewalls may only specify two types of flows, admissible and inadmissible, whetdassro
implementing per-flow queuing may specify thousands of unique flow identifiers. Tfigemtion
control is used to specify parameters such as the number of matching flow identifiexs hoared
the format of incoming packet headers. In order to model application envirtsmdere per-flow
filters are dynamically created and deleted, the model includes a mechanisrméonidyfilter set
updates.

There are three primary metrics of interest for packet classification algorithms and devices:
lookup throughput, memory requirements, and power consumption. Updatenpanice is also a
consideration, but secondary to the other three metrics. For packet classificaticesdavfixed
implementations of algorithms, throughput can be directly measured using a synthetsefiked
associated header trace. Throughput measurements for software implementaatg@itdfms
are not as straight-forward. In this case, the metric most directly influencing throughpet is th
required number o$equentiamemory accesses. Using parallel and pipelined design techniques,
non-sequential memory accesses can be masked. A suitable benchmarkindategthshould
report both the total and sequential memory accesses in terms of average, wergedband best
observed. The second metric of vital interest is the amount of memory required to stfitetlset
and supplemental data structures. For classification techniques employing rarwiss memory,
garnering memory usage metrics is straight-forward using a synthetic filter set. For TCAM-based
devices, memory usage can be measured in terms of storage efficiency, whitihed te be the
ratio of the number of required TCAM slots and the number of filters in the filter set.Filtes
Set Generatoallows us to analyze the effect of filter set size, scope, and smoothness on fhubugh
and memory usage can be measured.
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In the past, power consumption has not been a primary concern for those deyeiep/
packet classification techniques. As discussed in Section 4.2.2, TCAM-based classifiebehav
come the most popular solution for high performance routers, but they suffer fronpdigdr con-
sumption. A typical TCAM consumes more than 100 times the power of state-of-the-AMISR
and can account for a large fraction of the power budget on a router irdesémd. Recent devel-
opments in TCAM technology provide for partitioning the device such that only a sobsee
available slots are activated at one time. IP lookup and packet classification teehoan take ad-
vantage of this capability to lower power consumption [106, 32]. The effect aof $iétesize, scope,
and smoothness on standard TCAMs and algorithms employing partitioning in order tqlmmer
consumption can be measured usingRher Set Generatar

The Trace Generators useful for evaluating algorithms and devices under realistic operat-
ing conditions. By providing control over the locality of reference in the sequeinuaciet header
queries, we also provide a convenient tool for measuring the performance eft jgéasdsifiers em-
ploying caching.

With the desire to refine thélassBenchools suite and formalize a benchmarking method-
ology, we seek to initiate a broader discussion and solicit input from the community tgjtnielkp
the remainder of this work. To facilitate this discussion, we make the tools publicilalaleaat
the following site: http://www.arl.wustl.edu/"det3/ClassBench/ . Input garnered
from the community will be used to refine the tools suite, assemble a standargaetiofeter files
and formally specify a benchmarking methodology. While we have already GlassBenctio be
very useful in our own research, it is our hope to promote its broader use in the resgammunity.
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Chapter 7

Scalable Packet Classifi cation using
Distributed Crossproducting of Field
Labels

Follow the path of the unsafe, independent thinker. Expose your ideas toriperdaf
controversy.
Thomas J. Watson, IBM

Due to the complexity of the search, packet classification is often a performance diktien
network infrastructure; therefore, it has received much attention in the research ndynend a
wide variety of algorithms and devices exist in the research literature and commeackatnThe
existing solutions explore various design tradeoffs to provide high search rates, povsgraae ef-
ficiency, fast incremental updates, and the ability to scale to large numbers of filters. fElmains

a need for techniques that achieve a favorable balance among thesefsradeodcale to support
classification on additional fields beyond the standard 5-tuple. We intrddistdbuted Crosspro-
ducting of Field Label{DCFL), a novel combination of new and existing packet classification
techniques that leverages key observations of the structure of real filter sets esmddakntage of
the capabilities of modern hardware technology. Using a collection of 12 real fiteasd the
ClassBenchools suite, we provide analyses DCFL performance and resource requirements on
filter sets of various sizes and compositions in Section 7.7. Based on these results, waahow
an optimized implementation @CFL can provide over 100 million searches per second and stor-
age for over 200 thousand filters with current generation hardware technologyctlarSe.8, we
discuss algorithms related to our approach and highlight the distinctions and aphsaofBCFL
relative to the state-of-the-art.
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7.1 Description of DCFL

Distributed Crossproducting of Field Labe{®CFL) is a novel combination of new and existing
packet classification techniques that leverages key observations of filter set stamntuedkes ad-
vantage of the capabilities of modern hardware technology. We discuss theambsenicture of
real filter sets in detail and provide motivation for packet classification on largebensnof fields
in Chapter 5. Two key observations motivate our approach: the numbeiaqfaifield values for a
given field in the filter set is small relative to the number of filters in the filter set, and thberuh
unique field values matched by any packet is very small relative to the nurhfilézrs in the filter
set. We also draw from the encoding ideas highlighted in Section 4.2 in order to effigtardythe
filter set and intermediate search results.

Using a high degree of parallelismCFL employs optimized search engines for each filter
field and an efficient technique for aggregating the results of each field searclerBynuing this
aggregation in a distributed fashion, we avoid the exponential increase in the timecerispurred
when performing this operation in a single step. Given that search techniques fopsiokg fields
are well-studied, the primary focus of this chapter is the development and andlgsiaggregation
mechanism that can make use of the embedded multi-port memory blocks it generation
of ASICs and FPGAs. We introduce several new concepts including field labMetg-Labeling
unique field combinationsg;ield Splitting and optimized data structures suclBésom Filter Arrays
that minimize the number of memory accesses to perform set membership queriggesal,aur
technique provides fast lookup performance, efficient use of memory, suppdstnamic updates
at high rates, and scalability to filters with additional fields.

DCFL may be described at a high-level using the following notation:

¢ Partition the filters in the filter set into fields
¢ Partition each packet header into corresponding fields

e Let F; be the set of unique field values for filter fielthat appear in one or more filters in the
filter set

e Let F;(x) C F; be the subset of filter field values i) matched by a packet with the value
in header field

e Let F; ; be the set of unique filter field value pairs for fieldandj in the filter set; i.e. if
(u,v) € F; j there is some filter or filters in the set within field i andwv in field j

o LetF j(z,y) C F;; be the subset of filter field value pairs i3 ; matched by a packet with
the valuer in header field andy in header field

e This can be extended to higher-order combinations, such &5 sgand subset; ; 1. (x, y, 2),
etc.
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The DCFL method can be structured in many different ways. In order to illustrate the lookup
process, assume that we are performing packet classification on four fields andraahnéeasewith
field values{w, z, y, z}. One possible configuration ofCFL search is shown in Figure 7.1 and
proceeds as follows:

e In parallel, find subsets’ (w), F»(x), F53(y), andFy(z)
e In parallel, find subset8’ »(w, x) andF3 4(y, z) as follows:

— Let Fuery(w, x) be the set of possible field value pairs formed from the crossproduct
of Fi(w) andFy(z)

— For each field value pair ithy,.-, (w, z), query for set membership i, , if the field
value pair is in sef’ 5 add it to setF; o(w, z)

— Perform the symmetric operations to find sub&ei(y, z)

e Find subsetF} 53 4(w, x,y, z) by querying setF 2 34 with the field value combinations
formed from the crossproduct & »(w, z) and F3 4(y, z)

e Select the highest priority exclusive filter andhighest priority non-exclusive filters in

Fipza(w,x,y,2)

Note that there are several variants which are not covered by this examplestaoci we could al-
ter the aggregation process to find the suldgets(w, x, y) by queryingF; 2 3 using the crossprod-
uct of 1 2(w, z) and F3(y). We can then find the subsét ;3 4(w, x,y, z) by queryingFi 2 3.4
using the crossproduct @ » 3(w, z,y) andFy(z). A primary focus of this chapter is determining
subsets £y »(w, z), F34(y, z), etc.) via optimized set membership data structures.

As shown in Figure 7.1DCFL employs three major components: a set of parallel search
engines, an aggregation network, and a priority resolution stage. Each search Enigicepen-
dently searches for all filter fields matching the given header field using an algorittwohitecture
optimized for the type of search. For example, the search engines for the IRafidids may em-
ploy compressed multi-bit tries while the search engine for the protocol and flag fields yde sim
hash tables. We provide a brief overview of options for performing the indepesdarnthes on
packet fields in Section 7.5. As previously discussed in Chapter 5 and shown irbTabdach set
of matching labels for each header field is typically less than five for real filter tablessets of
matching labels generated by each search engine are fed to the aggregatiok whialocomputes
the set of all matching filters for the given packet in a multi-stage, distributed fashioallyi-the
priority resolution stage selects the highest priority exclusive filter ana thighest priority non-
exclusive filters. The priority resolution stage may be realized by a number of efficiemitlaugs
and logic circuits; hence, we do not discuss it further.

The first key concept ilDCFL is labeling unique field values with locally unique labels;
thus, sets of matching field values can be represented as sets of labels. Tablevg.thehsets of
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Figure 7.1: Example configuration @fistributed Crossproducting of Field Labe{®CFL); field
search engines operate in parallel and may be locally optimized; aggregatiesmaled operate in
parallel; aggregation network may be constructed in a variety of ways.

unigue source and destination addresses specified by the filters in Table 1.1. Noaehhaigue

field value also has an associated “count” value which records the number of filiets specify

the field value. The “count” value is used to support dynamic updates; a data stinctufield
search engine or aggregation node only needs to be updated when the ‘@bua changes from

Oto 1 or1to 0. We identify unique combinations of field values by assigning eitharqdmposite

label formed by concatenating the labels for each field value in the combinatii#),anewmeta-
labelwhich uniquely identifies the combination in the set of unique combinatidvista-Labeling
essentially compresses the size of the label used to uniquely identify the field combitratiddi-

tion to reducing the memory requirements for explicitly storing composite labels, this ogtioniza
has another subtle benefitleta-Labelingcompresses the space addressed by the label, thus the

!Meta-labeling can be thought of as simply numbering the set of unique fi eld catitis
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Table 7.1: Sets of unique specifications for each field in the sample filter set.

SA Label | Count
11010010| O 1
10011100| 1 1
101101* | 2 1 LDA I(_)abel (730unt
30011100 i ; 001110* || 1 1 _I;EP I6abel Z:ount
01101010 2 2
100111* || 5 2 011010* | 3 5 * 1 5
10010011| 6 1 01111010 4 1 UDP | 2 6
11101100} 7 1 ICMP || 3 1
01011000|| 5 1
111010* | 8 1 11011000| 6 2
100110* | 9 1
010110* || 10 1
01110010 11 2
DP Label | Count
[3:15] || O 5
[1:1] 1 2
[0:15] || 2 5
[5:5] 3 1
[6:6] 4 1
[0:1] |5 1
[3:3] 6 1

meta-labelmay be used as an index into a set membership data structure. The use of labels allows
us to use set membership data structures that only store labels corresponding to fieldwdlues
combinations of field values present in the filter table. While storage requirementsddepehe
structure of the filter set, they scale linearly with the number of filters in the database. Funtermo

at each aggregation node we need not perform set membership queries imtexoygoarder. This
property allows us to take advantage of hardware parallelism and multi-port endbedoheory
technology.

The second key concept ICFL is employing a network of aggregation nodes to compute
the set of matching filters for a given packet. The aggregation network consiststaffargercon-
nected aggregation nodes which perform set membership queries to the sets effigithualue
combinations}i 2, F3 4 5, €tc. By performing the aggregation in a multi-stage, distributed fashion,
the number of intermediate results operated on by each aggregation node remainonsider
the case of finding all matching address prefix pairs in the example filter set in Talibe 4 facket
with address paifz,y) = (10011100,01101010). As shown in Figure 7.2, an aggregation node
takes as input the sets of matching field labels generated by the source and dasttiGrigss search
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Figure 7.2: Example aggregation node for source and destination address fields.

engines,F'gp(z) and Fpa (y), respectively. Searching the tables of unique field values shown in
Table 7.1,Fgp(x) contains labelg1,4,5 and Fpa(y) contains labeld0,2,3}. The first step is

to form a query set,,.., of aggregate labels corresponding to potential address prefix pairs. The
guery set is formed from the crossproduct of the source and destination address labdestts.
each label inF,.,, is checked for membership in the set of labels stored at the aggregation node,
Fsp pa Note that the set of composite labels corresponds to unique address prefix pafisdspec
by filters in the example filter set shown in Table 1.1. Composite labels contained inttaeese
added to the matching label SESA,DA(%Z/) and passed to the next aggregation node. Since the
number of unique field values and field value combinations is limited in real filter setsjzé of

the crossproduct at each aggregation node remains manageable. By perfossproducting in

a distributed fashion across a network of aggregation nodes, we avoid an eti@oinerease in
search time that occurs when aggregating the results from all field search engines ile atsing
Note that the aggregation nodes only store unique combinations of fields pretenfilter table;
therefore, we also avoid the exponential blowup in memory requirements suffetbd byiginal
Crossproductingechnique [53] andRecursive Flow Classificatiofp0]. In Section 7.3, we intro-
duceField Splittingwhich limits the size ofFy,., at aggregation nodes, even when the number
matching labels generated by field search engines increases.

DCFL is amenable to various implementation platforms, and where possible, we will high-
light the various configurations of the technique that are most suitable for the nmdapeplat-
forms. In order to illustrate the value of our approach, we focus on the highest penfteroption
for the remainder of this paper. It is important to briefly describe this intended imptatien plat-
form here, as it will guide the selection of data structures for aggregation nodeptanizations in
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the following sections. Specifically, it is our goal to make full use of the high-degrparaflelism
and numerous multi-port embedded memory blocks provided by the curregriagien of Applica-
tion Specific Integrated Circuit (ASIC) and Field-Programmable Gate Array (FPGA) technologies
discussed in Section 4.7. This requires that we maximize parallel computations ang sffira
ciency. In Section 7.7 we show that an optimiZe@FL implementation can support hundreds of
thousands of filters in a current generation device without the need for extermadmneénowever, a
limited number of high-performance off-chip memory devices such as Dual Data(RDR) and
Quad Data Rate (QDR) SRAMs could be employed to support even larger filter sets.

7.2 Aggregation Network

Since all aggregation nodes operate in parallel, the performance bottleneck in the sy/tte
aggregation node with the largest worst-case query set [dizg,,|. Query set size determines
the number of sequential memory accesses performed at the node. The sizryoseps vary
for different constructions of the aggregation network. We refer to the worst-case sptesize,

| Fquery|, @mong all aggregation nodek;, ..., F .4, as the cost for network constructio@;.
Selecting the most efficient arrangement of aggregation nodes into an aggregtiork is a key
issue. We want to select the minimum cost aggregation net@grk as follows:

Gumin = G : cost(G) = min {cost (G;) Vi} (7.1)

where
cost (G) = max {|Fyyery|VF1, ..., F1,. 4 € Gi} (7.2)

Consider an example for packet classification on three fields. Shown in Figure 7.3 aradingum
sizes for the sets of matching field labels for the three fields and the maximum size fotstloé se
matching labels for all possible field combinations. For example, labélisgtr, y) will contain at
most four labels for any values efandy. Also shown in Figure 7.3 are three possible aggregation
networks for @D CFL search; the cost varies between 3 and 6 depending on the construction.

In general, an aggregation node may operate on two or more input label seds.tk&v we
seek to minimizg F,.,,|, we limit the number of input label sets to two. The query set size for
aggregation nodes fed by field search engines is partly determined by the size aftthémfield
label sets, which we have found to be small for real filter sets. Alsd;igid Splittingoptimization
provides a control point for the size of the query set at the aggregation nodeg tleel field search
engines; thus, we restrict the network structure by requiring that at least one of thetmpath
aggregation node be a matching field label set from a field search engine. Figureows!ah
generic aggregation network for packet classification @ields. Aggregation nodé’, _; operates
on matching field label s€f;(z) and matching composite label 9ét ;1 (a, ..., w) generated by
upstream aggregation nodg _;_;. Note that the first aggregation node operates on label sets from
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Figure 7.3: Example of variable aggregation network cost for different aggregaisrork con-
structions for packet classification on three fields.

two field search engineg;; (a) and F»(b). We point out that this seemingly “serial” arrangement
of aggregation nodes does not prevBx@FL from starting a new search on every pipeline cycle.
As shown in Figure 7.4, delay buffers allow field search engines to perform a newplookevery
pipeline cycle. The matching field label sets are delayed by the appropriate nofrneeline
cycles such that they arrive at the aggregation node synchronous to the maatighset from the
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Figure 7.4: Generalized DCFL aggregation network for a searchfighds.

upstream aggregation node. Search engine results experience a maximum délay2opipeline
cycles which is tolerable given that the pipeline cycle time is on the order of Mfth.such an
implementationDCFL throughput is inversely proportional to the pipeline cycle time.

In this case, the problem is to choose the ordering of aggregation nodes which rethéts in
minimum network cost. For example, do we first aggregate the source and destinédidetbids,
then aggregate the address pair labels with the protocol field labels? We can empigtaliyine
the optimal arrangement of aggregation nodes for a given filter set by compgbhgnmaximum
guery set size for each combination of field values in the filter set. While this compuisatiten-
ageable for real filter sets of moderate size, the computational complexity incexgmagentially
with filter set size. For our set of 12 real filter sets, the optimal network aggregated field ia the
order of decreasing maximum matching filter label set size with few exceptions. Té¢esvalion
can be used as a heuristic for constructing efficient aggregation networks for langeditteand
filter sets with large numbers of filter fields. As previously discussed, we do not expditehset
properties leveraged HYCFL to change. We do point out that a static arrangement of aggregation
nodes might be subject to degraded performance if the filter set characteristicsramagically
altered by a sequence of updates. Through the use of reconfigurable interdarthecaggrega-
tion network and extra memory for storing off-line aggregation tabl&CEL implementation can
minimize the time for restructuring the network for optimal performance. We defer thissdiscu
to future study.

7.3 Field Splitting

As discussed in Section 7.1, the size of the matching field label/5¢t;)|, affects the size of the
crossproduct|F,.. |, at the following aggregation node. While we observe tidatz)| remains
small for real filter sets, we would like to exert control over this value to both increasshsgzeed
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for existing filter sets and maintain search speed for filter sets with increased address prefix nestin
and port range overlaps. Recall thai(z)| < 2 for all exact match fields such as the transport
protocol and protocol flags.

The number of address prefixes matching a given address can be redusgitting the
address prefixes into a set @f+ 1) shorter address prefixes, wheres the number of splits. An
example of splitting a 6-bit address field is shown in Figure 7.5. For the original 6-bitssltield,
A(5:0), the maximum number of field labels matching any address is five. In order toerdkiis
number, we split the 6-bit address field into a 2-bit address fg8.4), and a 4-bit address field,
A(3:0). Each original 6-bit prefix creates one entry in each of the new prefix fields as shbwn.
an original prefix is less than three bits in length, then the entry in A€Bd0) is the wildcard. We
assign a label to each of the unique prefixes in the new fields and create data stitocs@@sh
the new fields in parallel in separate search engines. In this example we use binary geaedess
of the data structure, the search engine must return all matching prefixes. The prefikeslprig
in A(5:0) are now identified by the unique combination of labels corresponding to their entries in
A(5:4)andA(3:0). For example, the prefid00« in A(5:0)is now identified by the label combination
(3,1). A search proceeds by searchiA(h:4) and A(3:0) with the first two bits and remaining 4
bits of the packet address, respectively. Note that the maximum number of beld lzturned
by the new search engines is three. We point out that the sets of matching labela(fct)
andA(3:0) may be aggregated in any order, with label sets from any other filter field; we oged n
aggregate the labels froA(5:4) andA(3:0)in the same aggregation node to ensure correctness. For
address prefixesield Splittingis similar to constructing a variable-stride multi-bit trie; however,
with Field Splittingwe only store one multi-bit node per stride. A matching prefix is denoted by the
combination of matching prefixes from the multi-bit nodes in each stride.

Given that the size of the matching field label sets is the property that most directtsaffe
DCFL performance, we would like to specify a maximum set size and split those fields thatlexce
the threshold. Given a field overlap threshold, there is a simple algorithm for determining the
number of splits required for an address prefix field. For a given address prefix feelubgin by
forming a list of all unique address prefixes in the filter set, sorted in non-decreasing Dpdefixo
length. We simply add each prefix in the list to a binary trie, keeping track of the nuwhpezfixes
encountered along the path using a nesting counter. If there is a split at the cuefenigmgth, we
reset the nesting counter. The splits for the trie may be stored in a list or an array indetked by
prefix length. If the number of prefixes along the path reaches the threshold,ate a@isplit at that
prefix length and reset the nesting counter. It is important to note that the nunditetiepends
upon the structure of the address trie. In the worst case, a threshold of two overlapsreai#d
a split at every prefix length. We argue that given the structure of real filter sets aswhedle
threshold values (four or five), thiteld Splittingprovides a highly useful control point for the size
of query sets in aggregation nodes.
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A(5:0) Label| A(5:4) Label | A(3:0) Label
* 0 * 0 * 0
0* 1 0* 1 * 0
01* 2 01 2 * 0
000* 3 00 3 0* 1
0110* 4 01 2 10 2
1010* 5 10 4 10 2
10100* 6 10 4 100* 3
011010 7 01 2 1010 4

ST

4 f
Figure 7.5: An example of splitting a 6-bit address field; maximum number of mattdiels per
field is reduced from five to three.

Field Splitting for port ranges is much simpler. We simply compute the maximum field
overlap,m, for the given port field by adding the set of unique port ranges to a segmenGives
an overlap threshold, the number splits is simply= 2=2. We then creatéc + 1) bins in which
to sort the set of unique port ranges. For each port réhgg|, we identify the binp;, containing
the minimum number of overlapping ranges using a segment tree constructed fr@mges in the
bin. We insert : j] into bin b; and insert wildcards into the remaining bins. Once the sorting is
complete, we assign locally unique labels to the port ranges in each bin. Like afielaksplitting,
a range in the original filter field is now identified by a combination of labels corresppmaliits
matching entry in each bin. Again, label aggregation may occur in any olitdefakels from any
other field.

Finally, we point out thaField Splittingis a precomputed optimization. It is possible that
the addition of new filters to the filter set could cause one the overlap threshold to lesledda
a particular field, and thus degrade the performande@FL. While this is possible, our analysis
of real filter sets suggests that it is not probable. Currently most filter sets are manudidyuoed,
thus updates are exceedingly rare relative to searches. Furthermore, the comntorestfdiiters
in a filter set suggests that new filters will most likely be a new combination of fields alne iy
filter set. For example, a network administrator may add a filter matching all packejgdlication
A flowing between subnet8 andC, where specificationd, B, C already exist in the filter set.
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7.4 Aggregation Nodes

Well-studied data structures such as hash tables and B-Trees are capable of effigessigting

a set [13]. We focus on three options that minimize the number of sequential mmeweesses,
SMA required to identify the composite labels,., which are members of the sé{ ;. The

first is a variant on the popular Bloom filter which has received renewed attentioe neskarch
literature [15]. The second and third options leverage the compression provided by figkl lab
and meta-labels to index into an array of lists containing the composite labels for thediaéd v
combinations inFy ;. These indexing schemes perform parallel comparisons in order to minimize
the requiredSMA thus, the performance of these schemes depends on the worgh Sife¢he
memory storing the data-structures. For all three options, we derive equations BkMikhand
number of memory word®’ required to store the data-structure.

7.4.1 Bloom Filter Arrays

A Bloom filter is an efficient data structure for set membership queries with tunable falgxeo
errors. In our context, a Bloom filter computéshash functions on a labdl to producek bit
positions in a bit vector ofn bits. If all & bit positions are set to 1, then the label is declared to
be a member of the set. Broder and Mitzenmacher provide a nice introductionam Bilters and
their use in recent work [15]. We provide a brief introduction to Bloom filters and a dienva
of the equations governing false positive probability in Section 2.1.3. False poaitswgers to
membership queries causes the matching label/set,;(a, . .., x), to contain labels that do not
correspond to field combinations in the filter set. These false positive errors can bet"catugh
downstream aggregation nodes using explicit representations of label sets. We wiscoggons
for such data-structures in the next section. This property does preclude use of Blommrfittes
last aggregation node in the network. As we discuss in Section 7.7, this doesurat performance
penalty in real filter sets.

Given that we want to minimize the number of sequential memory accessashahggre-
gation node, we want to avoid performing multiply memory accesses per set metipbguery. It
would be highly inefficient to perfornk separate memory accesses to check if a single bit is set
in the vector. In order to limit the number of memory accesses per membershiptqumne, we
propose the use of an array of Bloom filters as shown in Figure 7.&loAm Filter Arrayis a
set of Bloom filters indexed by the result of a pre-filter hash funcifd.). In order to perform
a set membership query for a labiel we read the Bloom filter addressed By L) from memory
and store it in a register. We then check the bit positions specified by the results of hetsbnfin
hi(L),...,ht(L). TheMatch Logicchecks if all bit positions are set to 1. If so, it adds labeb
the set of matching labels,; . ;(a,...,x).

Set membership queries for the labelgip.., need not be performed in any order and may
be performed in parallel. Using an embedded memory block Rigorts requires® copies of the
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Figure 7.6: Example of an aggregation node usijcm Filter Arrayto aggregate field label set
F;(x) with label setF ;_1(a,...,w).

logic for the hash functions andatch Logic Given the ease of implementing these functions in
hardware and the fact th&tis rarely more than four, the additional hardware cost is tolerable. The
number of sequential memory access®idlA required to perform set membership queries for all
labels inFyery is simply

o |Fquery|
SMA= 2 (7.3)
The false positive probability is
1 k
= (3) (7.)
when the following relationship holds
k="1n2 (7.5)
n

wheren is the number of label§F; ;| stored in the Bloom filter. Setting to four produces a
tolerable false positive probability ®£06. Assuming that we store one Bloom filter per memory
word, we can calculate the required memory resources given the memory word.sizg 1V be
the number of memory words. The hash functidL) uniformly distributes the labels i . ;
across thé? Bloom filters in theBloom Filter Array. Thus, the number of labels stored in each
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Bloom filter is F
1,....%
S Ll 7.6
= (7.6)
Using Equation 7.5 we can compute the number of memory wafdstequired to maintain the

false positive probability given by Equation 7.4:

kx |Fy,.
m X In 2

W = [ w (7.7)
The total memory requirementqis x W bits. Recent work has provided efficient mechanisms for
dynamically updating Bloom filters [16, 25].

7.4.2 Meta-Label Indexing

We can leverage the compression provided by meta-labels to construct aggregdtsriimat ex-
plicitly represent the set of field value combinatiofs, ;. The field value combinations if; _;
can be identified by a composite label which is the concatenation of the metdelathed combina-
tion of the first(; — 1) fields,L; . ,—1, and the label for field, L;. We sort these composite labels
into bins based on meta-labg| . ;_;. For each bin, we construct a list of the labgls where each
entry stored.; and the new meta-label for the combination @ields, L, . ;. We store these lists in
an arrayA; indexed by meta-labdl, . ;_; as shown in Figure 7.7.

Using L, .. ;—1 as anindex allows the total number of set membership queries to be limited
by the number of meta-labels received from the upstream aggregation|fgde; 1 (a, . .., w)|.
Note that the size of a list entry, is

s =1g|F;| + 1g|F1,. il (7.8)

and s is typically much smaller than the memory word size, In order to limit the number of
memory accesses per set membership query, we atdigt entries in each memory word, where
N = |Z]. This requiresN x |Fj(z)| way match logic to compare all of the field labels in the
memory word with the set of matching field labels from the field search endif{e,). Since
set membership queries may be performed independently, the total numbeuefigagnemory
accesseSMA depends on the size of the index meta-label|$&t, ;_1(q,...,w)|, the size of the
lists indexed by the labels ifi; . ;—1(a,...,w), and the number of memory pots In the worst
case, the labels index thé _;_1(a,...,w)| longest lists inA;. Let Length be an array storing
the lengths of the lists irl; in decreasing order. The worst-case sequential memory accesses is

F i—1(a,...,w en j
Eljzli”., 1( )l [L %h(g)—‘

SMA= (7.9)

P

As with theBloom Filter Array, the use of multi-port memory blocks does require replication of the
multi-way match logic. Due to the limited number of memory ports, we argue that hiesents
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Figure 7.7: Example of an aggregation node usitega-Label Indexingo aggregate field label set
F;(x) with meta-label sef’, _ ;_1(a,...,w).

a negligible increase in the resources required to imple@&ML. The number of memory words,
W, needed to store the data structure is

W= 3 - [%ﬂl@w (7.10)

The total memory requirement ia x W bits. Adding or removing a label frorf _; requires

an update to a single list entry. Packing multiple list entries on to a single memory word slightly

complicates the memory management; however, given that we seek to nartimizaumber of
memory words occupied by a list, the number of individual memory reads atebwer update is
small.

Finally, we point out that the data structure may be re-organized td uae the index. This
variant,Field Label Indexingis effective wherF, | approachesF; . |. When this is the case, the
number of composite labels; . ; containing label; is small and the length of the lists indexed
by F;(x) are short.
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7.5 Field Search Engines

A primary advantage dDCFL is that it allows each filter field to be searched by a search engine
optimized for the particular type of search. We discuss a number of single field sectroigtees

in Chapter 2. While the focus of this chapter is the novel aggregation techmiguariefly discuss
single field search techniques suitable for use MiBFL in order to to highlight the potential
performance.

7.5.1 Prefix Matching

Due to its use of decompositioBCFL requires that the search engines for the IP source and desti-
nation addresses retuafi matching prefixes for the given addresses. As discussed in Section 2.3,
any longest prefix matching technique can support All Prefix Matching (APM), but someefio
ficiently than others. The most computationally efficient technique for longest prefohing is
Binary Search on Prefix Lengtti2g4]. When precomputation and marker optimizations are used,
the technique requires at most five hash probes per lookup for 32-bit IPv4 addésseported in
Section 5.4, real filter sets contain a relatively small number of unique prefix letigtissthe real-

ized performance should be better for real filter sets. Recall that markers directritietedanger
prefixes that potentially match, thus skipping shorter prefixes that may match. Intorsigpoport
APM, Binary Search on Prefix Lengtimust precompute all matching prefixes for each “leaf” in
the trie defined by the set of address prefixes. While computationally efficient for esathls
technique does present several challenges for hardware implementation. Ljkéeisgnificant

use of precomputation and markers degrades the dynamic update perforamaoe,pdate may
require many memory transactions.

As we demonstrated in Chapter 3, compressed multi-bit trie algorithms readily map to hard-
ware and provide excellent lookup and update performance with efficient rpema hardware uti-
lization. Specifically, our implementation of the Tree Bitmap technique requiressatifionemory
accesses per lookup and approximately six bytes of memory per prefix. Each segige con-
sumes less than 1% of the logic resources on a commodity FP@sAdiscussed in Section 3.6,
there are a number of optimizations to improve the performance of this particulamiepiation.

Use of an initial lookup array for the first 16 bits reduces the number of memorgsexeo at
most seven. Coupled with a simple two-stage pipeline, the number of sequentiatyrernesses
per lookup can be reduced to at most four. Trie-based LPM techniques sucledBitimap easily
support all prefix matching with trivial modifications to the search algorithm. For theoparpf
our discussion, we will assume an optimized Tree Bitmap implementation requiring afauost
memory accesses per lookup and six bytes per prefix of memory.

2If targeted to the low-cost Xilinx Spartan-3 family of FPGAs (less than $12 USD for a one miliittndevice), each
engine would cost approximately $0.12 USD.
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Figure 7.8: Block diagram of range matching using parallel search engines fopedclass.

7.5.2 Range Matching

Searching for all arbitrary ranges that overlap a given point presents a grediengaahan prefix
matching. We discuss a number of range matching techniques in Section 2e#l @athe observa-
tions reported in Section 5.3.2, range matching can be made sufficiently fastlfilteeaets using

a set of parallel search engines, one for each port class, as shown in Figure Ga8.tlRe three
port classes, WC, HI, and LO, consist of a single range specification. The search emghe fo
first port class, wildcard (WC), simply consists of a flag specifying whether or not the wilikard
specified by any filters in the filter set and a register for the label assigned to this range atecific
Similarly, the search engines for the Hl and LO port classes also consist of flags speciftigew
or not the ranges are specified by any filters in the filter set and registers for the labelse@dssign
those range specifications. We also add logic to check if the port is less than 1024gttks tr a
match on the HI and LO port rangg$024 : 65535] and|0 : 1023], respectively.

For the 12 real filter sets we studied, the number of exact port numbers speyifiidris
was at most 183. The port ranges in the EM port class may be efficiently searchgdngisuf-
ficiently fast exact match data-structure. Entries in this data-structure are simply the podgrnumb
and the assigned label. A simple hash table could bound searches to at most twy mereeses.
Finally, the set of arbitrary ranges in the AR port class may be searched with any ratd@ng
technique. Fortunately, the set of arbitrary ranges tends to be small; the 12 realtfilspesdfied at
most 27 arbitrary ranges. A simple balanced interval tree data-structure requires (st )
accesses, whefeis the number of matching ranges and the number of ranges in the tree. Other
options for the AR search engine include ta Inverted Segment Trekiscussed in Section 2.4.1
and converting the arbitrary ranges to prefixes as discussed in Section 2.4.3 angiregrgahoall
prefix matching search engine. Given the limited number of arbitrary ranges, additigle pre-
fixes per range to the data-structure does not cause significant memory ineffisléticgufficient
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optimization, we assume that range matching can be performed with at most foansakjmem-
ory accesses and the data-structures for the AR and EM port classes easily fit within a standard
embedded memory block of 18kb.

7.5.3 Exact Matching

The protocol and flag fields may be easily searched with a simple exact match dataessuctuas
a hash table. Given the small number of unique protocol and flag specificatitresrizal filter sets
(less than 9 unique protocols and 11 unique flags), the time per search and menceryespéred
is trivial. As we discuss in Section 5.8, we expect that additional filter fields will alsginegxact
match search engines. Given the ease of implementing hash functions in custmoanfijurable
logic, we do not foresee any performance bottlenecks for the search enginesstofigids.

7.6 Dynamic Updates

Another strength oDCFL is its support of incremental updates. Adding or deleting a filter from
the filter set requires approximately the same amount of time as a search operatiiweantbt
require that we flush the pipeline and update all data-structures in an atomic operatiapdéte
operation is treated as a search operation in that it propagates throug@ fhearchitecture in the
same manner. The query preceding the update in the pipeline operates on d#eestiror to
the update; the query following the update in the pipeline operates on data-strucliosemgthe
update.

Consider inserting a filter to the filter set. We partition the filter into fields (performing field
splits, if necessary) and insert each field into the appropriate input buffer of the fielti segines.
In parallel, each field search engine performs the update operation just as it wouldpssfoches
in parallel. As shown in Figure 7.9, an add operation entails a search of the data-stfocthee
given filter field. If the data-structure does not contain the field, then we add the field tath-
structure and assign the next free labdtinally, we increment the count value for the field entry.
Each field search engine returns the label for the filter field. At the next pipeline ¢ieldeld
search engines feed the update operation and field labels to the aggregation nebgmly, the
samelnsert  operation is used by both field search engines and aggregation nodes, only the type
of itemandlabelis different for the two. Each aggregation node receives the “insert” commahd an
the labels from the upstream nodes. Tieenis the composite label formed from the labels from
the upstream nodes. Note that for an update operation, field search engineg@gaiign nodes
only pass on one label, thus each aggregation node only operates on gresiterabel oitem If
the composite label is not in the set, then the aggregation node adds it to the seéhaltielabel
returned by th&Search or Add operations may be a composite label or meta-label, depending on

3We assume that each data-structure keeps a simple list of free labels that is initialized avittilalile labels. When
labels are ‘freed”due to a delete operation, they are added to the end of the list.
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Insert (item)

1 labek—Search (item)
2 If (label=NULL

3 labek—Add(item)
4 Count [label]++

5 return label

Figure 7.9: Pseudocode fBICFL update (add).

Remove(item)

labek—Search (item)

Count [label]l——

If (Count [labell = 0)
Delete (item)

return label

a b wNPE

Figure 7.10: Pseudocode fDICFL update (delete).

the type of aggregation nodes in use. Finally, the aggregation increments thefamotive label
and passes it on to the next aggregation node. The final aggregation nodetipalsdes on to the
priority resolution stage which adds the field label to its data-structure according to its priority tag.

Removing a filter from the filter set proceeds in the same way. Both field search engines
and aggregation nodes perform the same lodReahove operation shown in Figure 7.10. We first
find thelabel for the item, then decrement the count value for iteem A Delete operation is
performed if the count value for thtemis zero. Thelabel is passed on to the next node in the
DCFL structure. The final aggregation node passes the filter label to the priority resolution stage
which removes the field label from its data-structure.

Note thatAdd andDelete operations on field search engine and aggregation node data-
structures are only performed when count values change from zero to one atudzene, respec-
tively. The limited number of unique field values in real filter sets suggests significaiimnglwd
unique field values among filters. We expect typical updates to only changgple ¢eld search en-
gine data-structures and aggregation node data-structures. In the worst case, insermiogiogrea
filter produces an update tbfield search engine data-structures &d- 1) updates to aggregation
node data-structures, whetés the number of filter fields.
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7.7 Performance Evaluation

In order to evaluate the performancel@EFL, we used 12 real filter sets and tB@&assBenchools

suite to perform simulations testing scalability and sensitivity to filter set properties. The real filter
sets were graciously provided from ISPs, a network equipment vendor, and othechiese@n the

field. The filter sets range in size from 68 to 4557 filters and we discuss their relevant projperties
Chapter 5. As described in Chapter 6, we construct€iasBench parameter fifer each filter

set and used these files to generate large synthetic filter sets that retain the structural prafpertie
the real filter sets. Th€lassBench Trace Generataas used to generate input traffic for both the
real filter sets and the synthetic filter sets used in the performance evaluation. For altisimyla
header trace size is at least an order of magnitude larger than filter set size. ffioe ofeénterest

for DCFL are the maximum number of sequential memory accesses per lookup atgregamn
node,SMA and the memory requirements. We choose to report the memory requirements in bytes
per filter,BpF, in order to better assess the scalability of our technique.

The type of embedded memory technology directly influences the achievabbenpence
and efficiency ofDCFL; thus, for each simulation run we compute tB®IA and total memory
words required for various memory word sizes. Standard embedded memory btoeldeB6-
bit memory word widths [107, 74]; therefore, we computed results for memory worsl 6fZ26,
72,144, 288, and 576 bits corresponding to using 1, 2, 4, 8, and 16 melnokg Iper aggregation
node. All results are reported relative to memory word size. The choice of memonrsizerallows
us to explore the tradeoff between memory efficiency and lookup speed. Wethas¢he use of
16 embedded memory blocks to achieve a memory word size of 576 bits is rbksgivan current
technology, but certainly near the practical limit. For simplicity, we assume all mebhtocks are
single-port,(P = 1). Given that all set membership queries are independengNh&for a given
implementation oDCFL may be reduced by a factor &f.

In order to demonstrate the achievable performancB@FL, each simulation performs
lookups on all possible aggregation network constructions. At the end of the simplagarom-
pute the optimal aggregation network by choosing the optimal network structurepéinthbnode
type for each aggregation node in the graph. The three node types are discussetibim 5é
along with the derivation of the equations f8MAand memory requirements for each tyBéoom
Filter Array, Meta-Label IndexingandField Label Indexing In the case that two node types pro-
duce the sam&8MAvalue, we choose the node type with the smaller memory requirements. Our
simulation also allows us to select the aggregation network structure and node typesritoord
optimize worst-case or average-case performance. Worst-case optimal aggregatwhansélect
the structure and node types such that the value of the maxi@M#Afor any aggregation node in
the network is minimized. Likewise, average-case optimal selects the structure angpesisuch
that the maximum value of the averag§®lAfor any aggregation node in the network is minimized.
Computing the optimal aggregation network at the end of the simulation allows bsé¢ove trends
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in the optimal network structure and node type for filter sets of various type, structdrsizen We
observe that optimal network structure and node type largely depends on filter sttrstriVith
few exceptions, variables such as filter set size and memory word size do not afectiposition
of the optimal aggregation network. We observe thaBlw®m Filter Arraytechnique is commonly
selected as the optimal choice for the first one or two nodes in the aggregationknet\th rare
exceptionsMeta-Label Indexings chosen for aggregation nodes at the end of the aggregation net-
work. This is a convenient result, as the final aggregation node in the networstassatheBloom
Filter Array technique in order to ensure correctness. We find this result to be somewhat intuitive
since the size of a meta-label increases with the number of unique combinatioessiet tivhich
typically increases with the number of fields in the combination. When using meta-tatindex
into an array of lists, a larger meta-label addresses a larger space which in turn §5pineddbels
across a larger array and limits the length of the lists at each array index.

In the first set of tests we used the 12 real filter sets and generated header traces using the
ClassBench Trace Generatorhe number of headers in the trace was 50 times the number of filters
in the filter set. As shown in Figure 7.11(a), the worst-c@sAfor all 12 real filter sets is ten or
less for a worst-case optimal aggregation network using memory blocks with a word €188 of
bits. Also note that the largest filter sei;I5, of 4557 filters achieves the best performance with
a worst-casé&SMA of two for worst-case optimal aggregation network using memory blocks with
a word size of 144 bits. In order to translate these results into achievable lookup rates, assume
a current generation ASIC with dual-port memory blockB, = 2), operating at 500 MHz. The
worst-caseSMAfor all 12 filter sets is then five or less using a word size of 288 bits. Under these
assumptions, the pipeline cycle time can be 10ns allowindGEL implementation to achieve
100 million searches per second which is comparable to current TCAMs. Search pedercasn
be doubled by doubling the clock frequency or using quad-port memory bloois of which are
possible in current generation ASICs.

As shown in Figure 7.11(c), the averag§®Afor all filter sets falls to four or less using
a memory word size of 288 bits. Filter s&tl5 also achieves the best average performance with
an average&SMAoof 1.2 for a word size of 288. As in many other packet classification techniques,
average performance is significantly better than worst-case performance.

Worst-case optimal memory consumption is shown in Figure 7.11(e). Most filter sets re-
quired at most 40 bytes per filtedBpF) for all word sizes; thus, 1MB of embedded memory would
be sufficient to store 200k filters. There are two notable exceptions. The results for filaetlset
show a significant increase in memory requirements for larger word sizes. For memargizes
of 36, 72, and 144 bitsacll requires less than 11 bytes per filter; however, memory requirements
increase to 61 and 119 bytes per filter for word sizes 288 and 576, respectiveblséhote that
increasing the memory word size facll yields no appreciable reduction BMA all memory
word sizes yielded aBMAoof five or six. These two pieces of data suggest that in the aggregation
node data-structures, the size of the lists at each index entry are short; thus, increasiegtng m
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ated with parameter files from filter setsl5 andfw5; call-outs highlight most pronounced effects
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word-size linearly increases the memory inefficiency without yielding any fewer meaccesses.
We believe that this is also the case with the optimal aggregation netwodcl®with memory
word size 288. Clearly, finding the optimum balance of lookup performance ambryefficiency
requires careful selection of memory word size.

Figure 7.11(b) shows the worst-caSMAfor all 12 real filter sets for an average-case op-
timal aggregation network. Figure 7.11(d) shows the avefigé for all 12 real filter sets for
an average-case optimal aggregation network. When optimizing for avBMg§eaverage perfor-
mance is improved by approximately 25%, but worst-case performance suffers foxiamdely
50%. With the exception of rare application environments, sacrificing worst-case perferfoanc
average performance is unfavorable. For the remaining simulations, we only wepsticase op-
timal results.

The second set of simulations investigates the scalabiliy@fL to larger filter sets. Re-
sults are shown in Figure 7.12. This set of simulations utilizedgsBencliools suite to generate
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synthetic filter sets containing 10k, 20k, and 50k filters ugiagameter fileextracted from filter
setsacl5 andfw5. As shown in Figure 7.12(a), the worst-c&@gAis ten or less for all filter sets
and memory word sizes. The most striking feature of each simulation is the flat responsedymem
word size. For all filter sets generated with fhié parameter filethe worst-cas&MAperformance
remains constant for memory word sizes greater than or equal to 72 bits. For adldtkerenerated
with the acl5 parameter filethe worst-cas&MA performance remains constant for memory word
sizes greater than or equal to 144 bits. ThassBench Synthetic Filter Set Generatmintains the
field overlap properties specified in tharameter file Coupled with the results in Figure 7.12, this
confirms that the property of filter set structure most influentiaD@#L performance is the maxi-
mum number of unique field values matching any packet header field. Assdstin Chapter 5, we
expect this property to hold as filter sets scale in size. If field overlap does increaBlth8plit-
ting optimization provides a way to reduce this to a desired threshold. As shown in Figue)7.12
the memory requirements increase with memory word size. Given the fav@mtA@erformance
there is no need to increase the word size beyond 144 bits, as it only results in a limeasénit
memory inefficiency. These results imply that tuning the memory word size is less criti¢atder
filter sets.

The third set of simulations investigates the effect of filter scope on the performance of
DCFL. Recall that scope is measure of the specificity of the filters in the filter GletssBench
provides high-level control over the average scope of the filters in the filter set wvip@rparameter
s. We generated synthetic filter sets containing 16000 filters ysangmeter filegrom a variety of
filter sets.For eacharameter filewe generated filter sets using scope parametér®, and 1. Note
that these filter sets are used in the evaluation ofQlassBenchiools suite in Figure 6.4.2. The
scope parameter had the most pronounced effects on worssSté&éor the filter sets generated
with the parameter fildfrom ipcl. As shown in Figure 7.13(a), decreasing the average scope of the
filters in the filter set{ = —1) results in significantly better performance; thus, as filters become
more specific the performance DICFL improves. This is a favorable result given the generally
accepted conjecture the primary source of future filter set growth will be flow specific filters for
applying network services. If we increase the scope of the filters in the filtdDG&l, performance
suffers. This trend also holds for the aver&MA As shown in Figure 7.13(c), filter set specificity
has little effect on memory requirements for memory word sizes of 144 bits or lessn Ugieg
larger memory word sizes, filter sets containing more specific filters require more meméhgper
as filters become less specific they become more memory efficient. We believe thissrdaalto
the fact that less-specific filter fields are more likely to be used by several filters. For exémple
port range for all user ports is more likely to be used by multiple filters than a specific pobtenu
When we construct filters with less-specific fields, the sharing of filter fields among filters increases
and the memory efficiency of labeling is more apparent.

The fourth set of simulations investigate the efficacy and consequencedélidh&plitting
optimization. We selected two of the worst-performing real filter sets and performed simulations
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Figure 7.13: Performance results for synthetic filter sets containing 16k filters, generatedewith th
ipcl parameter filavith scope parameters{-1,0,1}; call-outs highlight most pronounced effects
(scope parameter given in parentheses); note that these filter sets are used in thierewdltiee
ClassBencltools suite in Figure 6.4.2.

with various field overlap thresholds. The performance results are summarized in FigurEat.14.
acl2, Field Splitting reduces the worst-caseMA from 16 to 10 for 36-bit memory words. For
fwl, Field Splittingreduces the worst-cas&MAfrom 9 to 5 for 36-bit memory words. In these
casesField Splittingprovides a 37% and 44% increase in performance, respectively. It is important
to note, however, that the impact Bfeld Splittingis reduced as we increase memory word size.
Clearly, the primary benefit dfield Splittingis that it allows us to achieve better performance using
smaller memory word sizes which improves the memory efficiency. As shown in Figutéey, the
memory utilization for all filter sets using memory word sizes of 74-bits or less remains vel-be
40 bytes per filter. Consider the specific casaa?®. In order to achieve a worst-caSMAof eight

or less withoutField Splitting we must use a memory word-size of 144 bits resulting in memory
requirements of 44 bytes per filter. Usikggld Splittingwith a field overlap threshold of three, we
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Figure 7.14: Performance results for real filter setdZ andfwl) using theField-Splitting opti-
mization; call-outs highlight most pronounced effects (field overlap threshold giearentheses).

achieve the desired worst-caS®MAperformance using a memory word-size of 72 bits resulting in
memory requirements of 35 bytes per filter. Recall fiatd Splittingdoes increase the number of
aggregation nodes in the aggregation network, thus increasing the numbemofyrtdocks and
logic required for implementation. However, these results show that the total memaiseraents
are actually reduced for a particular performance target. It is important to note ehd weach a
point of diminishing returns witlField Splitting The aggregation network can grow too large if
too many splits are required to achieve a particularly low field overlap threshold. In thislase,
impact on worst-cas8MAis minimal while the memory resource requirements increase drastically
due to the additional overhead. This situation is reflected in Figure 7.14(c) for filtBvsetth a
field overlap threshold of three and memory word size of 288 bits.

The fifth and final set of simulations investigate the scalabilitipGfFL to additional filter
fields. Using theClassBenchools suite, we generated four filter sets containing 16000 filters using
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the acl5 parameter file No smoothingor scopeadjustments were applied. The first filter set was
generated such that half of the filters specifying the TCP or UDP protocols specifiedoane
wildcard field in addition to the standard six filter fields (the 5-tuple plus protocol flags). The
non-wildcard field value was selected from a set of 100 random values using a unifodonra
variable. The remaining filter sets were generated in the same manner with two, tiitdeulan
extra field values. As shown in Figure 7.15(a), extra filter fields have a negligible effeebist-
caseSMA performance. We believe that this is attributable to two impetuses: (1) the additional
filter fields allow filters to be more specific, and (2) the additional filter fields are exact rilttt

and the maximum fields overlap is at most two. As reflected in Figure 7.15(c), the Sadrea
memory requirements for an additional filter field is small for memory word sizes of itg4b
less. Specifically, when using 144-bit memory words the memory requirements incgedde b
bytes per filter when adding a seventh field and 16 bytes per filter when addaighdh filter field.
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There is no observable increase when adding the ninth filter field. This is constitutegageave
10 bytes per filter for each additional field. Given our reasonable assumpti@rdirggthe nature
of additional filter fields in future filter sets, we assert that the performance and scalabDiGrdf
will make it an even more compelling solution for packet classification as filter sets scée iand
the number of filter fields.

7.8 Related Work

In general, there have been two major threads of research efforts addressindg#telpasification
problem: algorithmic and architectural. A few pioneering groups of researchers thesgablem,
provided complexity bounds, and offered a collection of algorithmic solutions [b053, 53].
Subsequently, the design space has been thoroughly explored by many ofésviatgorithms and
improvements upon existing algorithms [54, 27, 29]. Given the inability of earlyridhmgas to meet
performance constraints imposed by high speed links, researchers in industry andiackaésed
architectural solutions to the problem. This thread of research produced the mostusiddipacket
classification device technology, Ternary Content Addressable Memory (TCAM) [58,756.7].
While they provide sufficient speed, current TCAM-based solutions consume exodritanhts of
power and hardware resources relative to implementations of efficient algoritteosniRvork has
addressed many of the unfavorable aspects of current TCAM-based solutions 2],d@&8ever,
there remain fundamental limits to their scalability and efficiency.

The most promising algorithmic research embraces the practice of leveraging the statistical
structure of filter sets to improve average performance [50, 54, 58, 51, 59]. Sdgerihms in
this class are amenable to high-performance hardware implementation. New arcilitestearch
combines intelligent algorithms and novel architectures to eliminate many of theowable char-
acteristics of current TCAMs [32]. We observe that the community appears to bergimgven
a combined algorithmic and architectural approach to the problem [28]. Our solDistriputed
Crossproducting of Field LabelCFL), employs this combined approach to provide a scalable,
high-performance packet classifier. Chapter 4 provides a thorough surveyket ptassification
techniques using a taxonomy that frames each technique according to its reghgpvoach. In
this section, we highlight the sources of the key ideas and data structures whitilvard utilize
in DCFL. In order to demonstrate the value of our solution relative to the state of the art, we also
contrast it with two leading solutions which are arguably the top solutions from the algaridimah
architectural threads.

As clearly indicated by the namBCFL draws upon the semin@lrossproductingechnique
introduced by Srinivasan, Varghese, Suri, and Waldvogel [B8JFL avoids the exponential blowup
in memory requirements experienced®ypssproductindy only storing the labels for field values
and combinations of field values present in the filter table. It retains high-perforrgraggregat-
ing intermediate results in a distributed fashion. Gupta and McKeown introdveedrsive Flow
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ClassificationRFC) which provides high lookup rates at the cost of memory inefficiency [50]. Sim-
ilar to theCrossproductingechniqueRFCperforms independent, parallel searches on “chunks” of
the packet header, where “chunks” may or may not correspond to paekder fields. The results
of the “chunk” searches are combined in multiple phases, rather than a single steprasspro-
ducting The result of each “chunk” lookup and aggregation stefRIRQ) is an equivalence class
identifier,eqlD, that represents the set of potentially matching filters for the packet. There is a sub-
tle, yet powerful difference between the use of equivalence class#sGand field labels ilDCFL.
In essence, the number of labeldDCFL grows linearly with the number of unique field values in
the filter table. The number @glDsin RFCdepends upon the number of distinct sets of filters that
can be matched by a packet. The numbezgiDsin an aggregation step scales with the number of
unigue overlapping regions formed by filter projections. Another major differeatvedenDCFL
andRFCis the means of aggregating intermediate resi®SC lookups in “chunk” and aggrega-
tion tables utilize indexing, causirigFCto make very inefficient use of memory. The index tables
used for aggregation also require significant precomputation in order to assign thequytipéor
the combination of theqIDs of the previous phases. Such extensive precomputation precludes dy-
namic updates at high rates. As we have shd@-L uses efficient set membership data structures
which can be engineered to provide fast lookup and update performanced&tacstructure only
stores labels for unique field combinations present in the filter table; hence, theyeffialent use
of memory and do not require significant precomputation. In order to illustrate the diffesde-
tweenRFCandDCFL, we provide an example of &FCsearch for two “chunks” of a search an
“chunks” in Figure 7.16. The squarés. . . [] represent the unique projections of the two “chunks”
x andy for all filters in a filter table. The number efglDsfor the “chunk” lookups is 11 for each
dimensionz andy, as 11 unique sets of filters are formed by the projections onto drely axes.
SinceRFC utilizes indexing for lookups, each “chunk” table requipdsentries, wheré is the size
in bits of the “chunk”. Note that if the number of unique projections wabeledas inDCFL, only
six labels for each dimension would be required, and the set membership data structigemly
need to store six entries. In order fARFCto aggregate theqlDsfrom “chunks”xz andy, it must
compute all of the unique sets of filters for the two-dimensional overlaps. As shownureFdlL6,
this results in 2%qIDs The aggregation table requirg§™ = 256 entries, agqlD(x)andeqID(y)
are four bits in size anBFCutilizes indexing to findeqID(x,y) Note that inDCFL, a label would
simply be assigned to each unique 2-d projection . (] and stored in a set membership data struc-
ture. In generalDCFL can provide line-speed lookups, likFC, but with much more efficient use
of memory and support for dynamic updates at high rates.

Our approach also shares similarities with Bagallel Packet ClassificatiogP2C) scheme
introduced by van Lunteren and Engbersen [28]. Specifically, B@FL and P2C fall into the
class of techniques using independent field searches coupled with noveirenand aggregation of
intermediate results. The primary advantagBGFL over P2C is its use of SRAM and amenability
to implementation in commodity hardware technolog,C requires the use of a separate TCAM
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Figure 7.16: Contrast between unique field value labelBistributed Crossproducting of Field
Labels(DCFL) and equivalence class identifieexj(D9 in Recursive Flow Classificatigexample
shows two fields of & field search. Squarés. . .[] represent the unique projections of two fields
x andy for all filters in a filter table.

or a custom ASIC with embedded TCANDCFL also provides more efficient support of dynamic
updates.

Given the volume of work in packet classification, we must show how our techrsEidds
value to the state of the art. In our opinidtyperCutdss one of the most promising new algorithmic
solutions [59]. Introduced by Singh, Baboescu, Varghese, and Wang, the atgorigroves upon
the HiCuts algorithm developed by Gupta and McKeown [51] and also shares similarities with
the Modular Packet Classificatioalgorithms introduced by Woo [29]. In essentlyperCutsis a
decision tree algorithm that attempts to minimize the depth of the tree by selecting “cutaftin m
dimensional space that optimally segregate packet filters into lists of bounded sizerdifig to
performance results given in [59], traversing thgperCutsdecision tree required between 8 and 35
memory accesses, and memory requirements for the decision tree ranged from 5.9 toyfels per
filter. We assert thdDCFL exhibits advantages in all metrics of interest: worst-cals&\ memory
requirements, and dynamic update performarR€FL also provides the opportunity to strike a
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favorable tradeoff between performance and memory requirements, as thes\garameters may
be tuned to achieve the desired results. All new algorithmic approaches must makeyaate for
their advantage relative to Ternary Content Addressable Memory (TCAM). Due to its parfoem
efficiency, scalability, and use of commodity hardware technolD@F L has the ability to provide
equivalent lookup performance at much lower cost and power consumption

7.9 Discussion

By transforming the problem of aggregating results from independent field searchseigme
distributed set membership queBjstributed Crossproducting of Field Label®CFL) avoids the
exponential increases in time and memory required by previous approachegraledéed several
new concepts including field labelingleta-labelingunique field combinations, artdeld Splitting
as well as optimized set membership data structures suBloam Filter Arraysthat minimize the
number of memory accesses required to perform a set membership query. Usinlgiaatiam of
real and synthetic filter sets, we demonstrated IH2FFL can achieve over 100 million searches per
second using existing hardware technology. Furthermore, we have also shoxCtHaretains
its lookup performance and memory efficiency when the number of filters anteruof fields
in the filters increases. Scalability to classify on additional fields is a distinct advabDi@ge
exhibits over existing decision tree algorithms and TCAM-based solutions. We continygdoeex
optimizations to improve the search rate and memory efficiendp@FL. We also believe that
DCFL has potential value for other searching tasks beyond traditional packet classificatio
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Chapter 8

Summary

Only the curious will learn and only the resolute overcome the obstacles to learning.
The quest quotient has always excited me more than the intelligence quotient.
Eugene S. Wilson, Dean of Admissions, Amherst

All grand visions of the “next-generation” Internet assume that route lookup ariepelassifi-
cation search engines will scale to support fast links, larger route tables and filtemsetapee
complex packet classification filters. The work described in this dissertation provides several ¢
tributions that help meet these challenges. While the fruits of our work have addeessetber

of the open problems in packet classification, there remain a number of entigogiwpties for
future work.

8.1 Contributions

As evidenced by the number of proposed solutions discussed in Chapters 2lamdotite lookup
and packet classification problems are well-studied problems. Despite the energetioratién
the research community, there remain a number of ripe areas for contribution. Thheenoost
pressing issues are efficient search engine implementations, standardized perforahratoe
tools, and viable alternatives to TCAMs for packet classification. While many searatedang
plementations exist, many are targeted to general purpose processor systems oambhsst
are not open-source or otherwise available for study by the research communityo eelack
of standard performance evaluation tools, researchers offering new solutions pitoeitiogvn test
vectors, thus comparison of competing solutions is exceedingly difficult. As clealiyaited by
recent search engine market dynamics, router designers are increasingly edegnrpower con-
sumption and scalability, thus they are beginning to favor algorithmic packet classifisalutions
over TCAMs. We addressed all three of these areas throughout the course of this digsertatio
Chapter 3 presented the design and analysis of a scalable implementation of Eathdrton
Dittia’s Tree Bitmap algorithm for route lookup. The Fast Internet Protocol Lookup (FIPL)lsearc
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engine provides approximately one million lookups per second per engirgegeachl engines may
be combined to provide even greater throughputs. Furthermore, each FIPL engsoenes less
than 1% of commaodity reconfigurable logic device. We have made the VHDe fadhe search
engine and evaluation environment publicly available. FIPL engines have \albegt incorpo-
rated in a System-on-Chip (SoC) packet processor for the Network Services Platform (NSP) [43]
which forms part of the infrastructure for the Open Network Laboratory (ONL) [109]. ONL al-
lows researchers to remotely configure and perform experiments on real netwongsseahof
heterogeneous hosts, links, and open-platform extensible routers.

In Chapter 4, we provided a survey of packet classification techniques andpEya tax-
onomy which frames each technique according to its high-level approach teodflem. Through
the use of a limited set of running examples, the survey presents a more cohereot trievgtate-
of-the-art and more clearly highlights potential areas for future contributions. We asgdtigha
taxonomy enables a better understanding of the packet classification algorittopppaed to sim-
ply reporting asymptotic performance bounds or reported performance results fdeelacigue.

Chapter 5 presented a detailed analysis of real filter sets as well as the forces infuenc
their composition. This is the most comprehensive study of filter set structure that weaasead.

The results of this analysis include an analysis of the storage inefficiency of standaidsT&

a novel study of thdield overlapin real filter sets. The latter findings led to the development of
Distributed Crossproducting of Field Labelhe new packet classification algorithm presented in
Chapter 7.

In response to the lack of publicly available filter sets and performance evaluation teols, w
developedClassBenchWe presented the design and analysis ofGlessBenctiools in Chapter 6.
The combination of th&ynthetic Filter Set Generatandparameter fileextracted from real filter
sets eliminates confidentiality concerns, and hence removes the access barriéstio test vec-
tors. In addition to providing high-level control of the composition of the filters in the syintfiéer
sets, theClassBenchools also produce synthetic header traces with variable locality of reference.
We have made th€lassBenchools publicly available along witharameter filegrom 12 real filter
sets and several research groups are already using the tools.

Chapter 7 presenteistributed Crossproducting of Field LabefBCFL), a novel combi-
nation of new and existing packet classification techniques that leveragesdeayations of filter
set structure and takes advantage of the capabilities of modern hardware tgghidégdantroduced
several new concepts including field labeliddeta-labelingunique field combinations, arfeleld
Splitting DCFL minimizes the number of sequential memory accesses required per lookupdy tran
forming the problem of aggregating results from independent field search engineslistotated
set membership query. In order to support this novel approach, we developecefficient data
structures includin@®loom Filter Arrays Using a set of 12 real filter sets and f@ssBencltools
suite, we demonstrated thaCFL not only provides sufficient lookup performance, but also scales
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to larger filter sets and more complex filters. Given the anticipated effects of Inteowehgand di-
versification on the size and composition of filter s&#€FL will become an increasingly attractive
alternative to TCAMSs for packet classification.

8.2 Future Directions

The contributions of this dissertation provide a solid foundation for further research. Weoplan
promote broader use @lassBenctwith the hope of refining the tools and developing a formal
benchmarking methodology. If embraced by the research community, thensosdeuilding and
standardizing effort could be taken up by the Internet Engineering Task Force (IETHhgead
one or more Request for Comment (RFC) documents detailing a packet classifitichmarking
methodology.

In order to demonstrate the realizable performance, determine hardware resourcepzonsu
tion, and measure dynamic power consumption, we would like to design and ieqleprototype
of the Distributed Crossproducting of Field Labetdgorithm. As shown in Figure 8.1, we en-
vision a scalable, modular design which would allow the use of various field searstesrmmnd
dynamic reconfiguration of the aggregation network. The Field-programmable PortdeXter
similar open-platform research system with reconfigurable hardware and adequate meuidry
provide a suitable implementation platform. This design effort would require adequatectese
funding and human resources to accomplish in a timely manner.

Independent of a hardware prototyping effort, we bellB@¥FL has the potential to provide
better performance for a variety of complex searching problems. Several reseanctinerset-
working community have directed their attention to high-performance string matchingiqees
due to their use in network intrusion detection systems. Some Internet worms and virusés @on
known “signature” or sequence of characters. Searching packet payloddsdersignatures at the
edge of the network can prevent the spread of malicious programs. Intrusion detegtist one
of the applications falling under the broad heading of “deep packet insp&c@iher applications
include load-balancing for web server farms which requires inspection of the HTadehim order
to direct the web-page request to the most lightly-loaded server containing theGiege that the
scaling properties and performancel@EFL is independent of the type of field search performed,
our approach could provide better performance for a variety of hybrid searatiqaels comprised
of exact, range, prefix, and string matching.
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Appendix A

Additional Data from Real Filter Sets

The following figures are a supplement to the data presented in Chapter 5.
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Figure A.2: Destination address branching probability and skew for filter set ipc1l.
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	Abstract: Abstract: The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switching and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined

traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets, and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of

packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields.
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