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Abstract

TCAMs are the most popular practical approach to high performance packet classifica-
tion, but they suffer from inefficient handling of range matches; the standard approach of
rule replication can result in a 2-6x increase in TCAM words needed, for typical firewall
databases. We describe three CMOS implementations of a range check circuit to address
this problem; the most efficient of these designs allows classification on the standard IPv4
5-tuple with only a 46% increase in transistor count, rather than relying on rule replication.
By avoiding replication, the overall transistor count required is only 24% to 78% of the stan-
dard TCAM design, for real filter databases used in this study; power dissipation is reduced
similarly. Also, range check support greatly simplifies creation and maintenance of the
TCAM contents, since there is now a one-to-one correspondence between filters and TCAM
entries. Additionally, we show how to construct a more versatile device using range-check
sub-fields that can be chained together as needed.
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1. Introduction

High performance packet classification is cruicial to a variety of new networking services. A number
of algorithmic techniques have been proposed [4], but TCAMs are still the most popular practical
approach, due to their deterministic high performance and simplicity of management. TCAMs, how-
ever, suffer from inefficient handling of range matches. The standard technique involves representing
each range as a set of prefixes, replicating rules as needed. For filter databases studied in [1], this
results in the ruleset increasing by a factor of two to six in size. In this report, we describe range
check circuits which avoid the need for rule replication. The most efficient of these designs allows
classification on the standard IPv4 5-tuple with 46% increase in transistor count, by using range
check hardware for the port fields. Also, since there is now a one-to-one correspondence between
filters and TCAM entries, the range check support greatly simplifies creation and maintenance of
the TCAM contents.

This is accomplished by using standard TCAM logic for the source and destination IP addresses,
transport protocol number, and transport protocol flags, and range match logic for the transport
layer port numbers. E.g. each Extended TCAM [1] word might have 88 bits of standard TCAM
logic, and two 16-bit wide range match fields. Using 44 transistors per bit of range match, and 16
per bit of standard TCAM matching, this comes out to 2816 transistors per word vs. a standard
TCAM’s 1920 transistors per word.

It is also worth noting that range matching can also be applied to other fields in certain cases.
For example, when using the third P 2C encoding scheme described in [5], efficient range match
hardware would eliminate the need for storing multiple ternary match conditions per rule (i.e. rule
replication), provided that the bits for each field are allocated in a contiguous fashion.

The implementations described in this report operate by storing the lower and upper bound for
each range match, and using dedicated range check circuitry that performs the comparison in a set
of stages. The difference in each design lies in how the range check sub-circuit is implemented.

Section 2 describes the most straightforward scheme, which uses four inter-stage signals. A
design using three inter-stage signals is given in Section 3; a more efficient refinement of this design
is described in Section 4. Finally, in Section 5 we show how to construct a more versatile device
using range-check sub-fields that can be chained together as needed.
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2. Implementation with four inter-stage signals

The first circuit presented is the most straightforward of the three designs. This circuit consists of a
separaste stage for each bit, and the comparison proceeds from the most significant bits to the least
significant bits.

... ...
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Figure 1: Iterative structure of range check circuit

The iterative structure of the circuit is shown in Figure 1, where hii, loi, and qi represent bit
i of the stored upper bound, the stored lower bound, and the query value, respectively. The four
inter-stage signals gehi, lehi, geli, and leli are used to represent the following, where W is the width
of a word:

gehi: The quantity represented by the first W − i bits of the query (i.e. qW−1 through qi) is greater
than or equal to the quantity represented by the first W − i bits of the stored upper bound hi.

lehi: The quantity represented by the first W − i bits of the query is less than or equal to the
quantity represented by the first W − i bits of the stored upper bound hi.

geli: The quantity represented by the first W − i bits of the query is greater than or equal to the
quantity represented by the first W − i bits of the stored lower bound lo.

leli: The quantity represented by the first W − i bits of the query is less than or equal to the
quantity represented by the first W − i bits of the stored lower bound lo.

The names are abbreviations indicating that, up to bit i, the query is greater (less) than or equal
to hi (lo).

The signals gehW , lehW , gelW , and lelW , which are inputs to the first stage, are always asserted.
At that point, we can think of it as having compared the first zero digits (i.e. an empty string)
from the query against the first zero digits of the upper and lower bounds (also empty strings.) The
empty strings are equal; therefore those four signals are asserted.

The assertion of both leh0 and gel0 at the same time happens if and only if the query value q

is within the range defined by hi and lo, inclusive; therefore, a “query is in range” singal can be
formed by taking the logical AND of signals leh0 and gel0.

The logic for the upper bound check of one stage is shown in Figure 2. If the query bits before
this stage are greater than hi (i.e. lehi+1 is not asserted), then the query value is still greater than
hi once this stage is included as well; therefore we ensure in this case that lehi is not asserted. If,
on the other hand, the query bits before this stage are not greater than hi, then there is only one
condition under which the query value including this bit can be greater than hi. That condition is
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Figure 2: Range-check sub-circuit for upper
bound comparison
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Figure 3: Range-check sub-circuit for lower
bound comparison

that the previous query bits equal hi (implied by gehi+1 and leh′
i+1, but we can omit leh′

i+1 since
that case already causes us to assert leh′

i
), qi is 1, and hii is 0; therefore in this other case we also

ensure lehi is not asserted. In all other cases we assert lehi.

Each AND gate and OR gate pairing in the sub-circuit can be implemented as a compound gate
using 8 transistors. Each inverter requires 2 transistors. Thus this part of the sub-circuit requires
20 transistors.

The logic for lower bound check is shown in Figure 3; its operation is the same as the upper
bound check, except that it uses loi (bit ith of the lower bound) instead of hii (bit i of the upper
bound.) This part of the sub-circuit also requires 20 transistors.

Each stage requires an upper bound check (20 transistors), a lower bound check (20 transistors),
and two SRAM storage cells (6 transistors each) for storing hii and loi. Thus 52 transistors are
requires for each bit in the query, using this design. The bounds checking logic for the first stage can
actually be simplified somewhat, since gehW , lehW , gelW , and lelW are always asserted. Similarly,
the final stage does not need to generate the signals geh0 and lel0. This can reduce the transistor
count of those particular stages, but the middle stages still need 52 transistors each.

3. Implementation with three inter-stage signals

Using three inter-stage signals instead of four can allow us to reduce the transitor count, if we are
sufficiently careful. This circuit also consists of a separate stage for each bit, similar to the previous
circuit. The overall structure of the new circuit is shown in Figure 4.

The three inter-stage signals are:

ehi: The quantity represented by the first W − i bits of the query (i.e. qW−1 through qi) is equal
to the quantity represented by the first W − i bits of the stored upper bound hi.

eli: The quantity represented by the first W−i bits of the query is equal to the quantity represented
by the first W − i bits of the stored lower bound lo.

oori: The quantity represented by the first W − i bits of the query is out of range (i.e. is above hi

or below lo.)
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Figure 4: Iterative structure of range check circuit

The names are abbreviations indicating that, up to bit i, the query is equal to hi, equal to lo, or
out of range.

Logic expressions for each inter-stage signal can be written as follows:

ehi ≡ ehi+1 ∧ (qi = hii)

eli ≡ eli+1 ∧ (qi = loi)

oori ≡ oori+1 ∨ (ehi+1 ∧ hi′
i
∧ qi) ∨ (eli+1 ∧ loi ∧ q′

i
)

And we use as initial conditions that ehW and elW are asserted, and oorW is not.

The final answer is determined simply by looking at the value of oor0. This signal is asserted if
and only if the query is out of range.

ehi+1’

qi’

hi i

qi

hi i hi i’

oor i+1’

el i+1’

loi’

qi qi’

loi

qi

ehi+1’
qi

hi i’ hi i

qi’

el i+1’

ehi+1’

hi i

loi’ qi

qi’ el i+1’
qi

loi’ loi

qi’

oor i+1’

el iehi

oor i

Figure 5: Range-check sub-circuit using three inter-stage signals

A circuit for generating the inter-stage signals is shown in Figure 5. This is the result of pulling
out common subexpressions in the circuit, after rewriting the logic expressions as follows:

ehi ≡ ehi+1 ∧ (qi = hii) ≡ ehi+1 ∧ ((qi ∧ hii) ∨ (q′i ∧ hi′i))
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eli ≡ eli+1 ∧ (qi = loi) ≡ eli+1 ∧ ((qi ∧ loi) ∨ (q′i ∧ lo′i))

Thus, this subcircuit requires only 36 transistors, including 6 for the inverters to generate eh′
i+1,

el′
i+1, and oor′

i+1. Adding in the 12 transistors for the two SRAM storage cells (for storing hii and
loi) brings the total to 48 transistors per bit. As before, the first stage circuitry can be somewhat
simplified, given that the values of ehW , elW , and oorW are fixed. And the last stage can be
simplified, because the signals eh0 and el0 need not be generated.

4. Revised implementation with three inter-stage signals

We can reduce the transistor count further by relaxing the constraints used to define two of the inter-
stage signals in the previous circuit. The top-level structure of the new circuit, shown in Figure 6,
is the same except for the labels of the inter-stage signals.

ehiii+1

hii+1

loi+1

eliii+1

qi+1

oori+1

ehiii

hii

loi

eliii

qi

oori

ehiii-1

hii-1

loi-1

eliii-1

qi-1

oori-1

... ...

Figure 6: Iterative structure of revised range check circuit

The basic idea is this: once the query value is determined to be out of range, we no longer need
the “equals hi” or “equals lo” signals. We can relax the constraints on the signals accordingly, as
follows:

ehiii ≡







0 if, up to and including bit i, q is less than hi

1 if, up to and including bit i, q is equal to hi

undefined if, up to and including bit i, q is greater than hi

eliii ≡







0 if, up to and including bit i, q is greater than lo

1 if, up to and including bit i, q is equal to lo

undefined if, up to and including bit i, q is less than lo

oori ≡

{

0 if, up to and including bit i, q is neither above hi nor below lo

1 if, up to and including bit i, q is either above hi or below lo

The inter-stage signal names are abbreviations as in Section 3, except eh and el have the string ii

appended as a reminder that those signals are only valid if the query is in range. We use as initial
conditions that ehiiW and eliiW are asserted, and oorW is not.

As before, the final answer is determined simply by looking at the value of oor0. This signal is
asserted if and only if the query is out of range.

Since ehiii and eliii are undefined in some cases, we have more freedom in the implementation of
this circuit than the previous one. The following set of logic expressions, for example, can be used:

ehiii ≡ ehiii+1 ∧ (qi ∨ hi′i)

eliii ≡ eliii+1 ∧ (q′i ∨ loi)
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oori ≡ oori+1 ∨ (ehi+1 ∧ hi′i ∧ qi) ∨ (eli+1 ∧ loi ∧ q′i)

The expression defining ehiii differs from the Section 3 definition of ehi by replacing the quantity
(qi = hii) with the quantity (qi ∨ hii). The value of these quantities differ only when qi = 1 and
hii = 0, and this difference is only relevant when ehiii+1 = 1. But in that case, the query will be
out of range (as detected by oori), which means that ehiii is undefined. Thus a value of 1 under
those conditions is acceptable. A similar analysis applies to the expression for eliii.

A circuit for generating oori is shown in Figure 7; it is essentially the portion of the previous
design (Figure 5) that computes oori. This requires 14 transistors, plus 6 for the inverters used to
generate ehii′

i+1, elii′
i+1, and oor′

i+1. Figure 8 shows the logic required to generate ehiii, which
requires 6 transistors. Figure 9 shows the logic required to generate eliii, which also requires 6
transistors. Adding the 12 transistors for the two SRAM storage cells (for hii and loi) brings the
total to 44 transistors per bit, using this design.

ehii i+1’

qi’

hi i

oor i+1’

elii i+1’

loi’

qi

elii i+1’

ehii i+1’ hi i

loi’ qi

qi’

oor i+1’

oor i

Figure 7: Sub-circuit for out-of-range signal

As in the previous design, the first stage circuitry can be simplified, given that the values of
ehiiW , eliiW , and oorW are fixed. The last stage can also be simplified, because the signals ehii0
and elii0 need not be generated.

5. Subfield Chaining

The aforementioned range match circuits are a good choice for a device that targets a particular
application, where the number and width of range fields are known in advance. For situations where
the manufacturer of a classification device does not know those parameters in advance, it would
be nice to have some flexibility. One approach to this is to implement range matching via a set of
smaller fields, chaining them together as needed. For example, if a device is built with subfields of
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qi’
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Figure 8: Sub-circuit for equals-hi-if-in-range

signal

ehii i+1’

hi i

ehii i+1’

hi i

ehii i

qi’

qi’

elii i+1’

loi’

elii i+1’

loi’

elii i

qi

qi

Figure 9: Sub-circuit for equals-lo-if-in-range

signal

8 bits in width, then two such subfields can be chained together to perform a 16-bit range match,
three can be chained to perform a 24-bit match, and so on.

This can be accomplished as follows: Consider a device with j subfields, each of width s and
numbered j − 1 through 0. Let the signal chi denote whether subfield i is chained to subfield i− 1.
Chaining subfield i involves an interaction between the stage for the least significant bit of subfield
i and the stage for the most significant bit of subfield i − 1. To accomplish this, each stage si − 1
(for each integer i, where 1 ≤ i ≤ j) uses signal chi to determine whether to use the inter-stage
signals from stage si as inputs or not; if not, then the normal initial conditions are used (e.g. for
the design in Section 4, use 1 in place of ehiisi and eliisi, and 0 in place of oorsi.) An example of
logic for generating oorsi for stage si − 1 is shown in Figure 10. Figure 11 and figure 12 show the
logic for ehiisi and eliisi respectively.

Whether all of the range fields in a word match can be determined by examining the oor signals
for all subfields (i.e. oorsi for all integers i where 0 ≤ i < j), regardless of how the subfields are
chained. A match is indicated when none of those signals are asserted. This works because, in a
multi-subfield match, the first s bits must match, the first 2s bits, and so on, if the entire quantity
matches.

There is a tradeoff between subfield width and versatility of the range matching device. A smaller
subfield requires more overhead (for the additional “chaining enable” signals and logic), but results
in finer granularity with respect to allocation of bits for range match fields; this can result in more
efficient use of the available bits.

In the extreme case where subfield width equals one, range match fields can be created of any
arbitrary width without wasting bits. Also in that case, range match bits can perform the same type
of matching as standard TCAM bits, thus providing even greater flexibilty. This style of matching
is accomplished by using fields of width 1 and using lower and upper bounds of (0, 0) to represent
0, (1, 1) to represent 1, and (0, 1) to represent “don’t care.”
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ehii si’
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elii si’
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Figure 10: Sub-circuit for out-of-range signal for input to stage si− 1

6. Conclusion

We have described three CMOS implementations of a range check circuit, the most efficient of which
requires 44 transitors per bit. For a IPv4 application, this means a 46% increase in transistor count
per word, but for the filter sets studies in [1], it also means using a sixth to half as many words;
in those cases, overall transistor count required is only 24% to 78% of the standard TCAM design,
and power dissipation is reduced similarly. Also, the range check support greatly simplifies creation
and maintenance of the TCAM contents, since there is now a one-to-one correspondence between
filters and TCAM entries. In addition, we describe a means of chaining small range match subfields
together; thus a range matching device can be configured for various numbers and sizes of range
match fields, by chaining subfields as needed. In the most extreme case where subfields are one bit
wide, the range match portion of a device can also perform standard TCAM-style matching.
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Figure 11: Sub-circuit for equals-hi-if-in-

range signal for input to stage si− 1
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Figure 12: Sub-circuit for equals-lo-if-in-

range signal for input to stage si− 1
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