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Abstract

Packet classification is a multi-field searching task performed by Internet routers in order to apply security
policies and network services to packets belonging to defined traffic flows. As this searching task must be
performed for every packet traversing a router, fast and scalable solutions are required in order to prevent
packet classification from becoming a performance bottleneck. A wide variety of packet classification al-
gorithms and devices exist in the research literature and commercial market. The existing solutions exploit
various design tradeoffs to provide high search rates, power and space efficiency, fast incremental updates,
or the ability to scale to large numbers of filters. Despite the energetic attention of the academic and cor-
porate research communities, there remains a need for techniques that achieve a favorable balance among
these tradeoffs and scale to support classification on additional fields beyond the standard 5-tuple. In re-
sponse, we introduce Distributed Crossproducting of Field Labels (DCFL), a novel combination of new and
existing packet classification techniques that leverages key observations of the structure of real filter sets and
takes advantage of the capabilities of modern hardware technology. Using a collection of real and synthetic
filter sets of various sizes and compositions, we provide analyses of DCFL performance and resource re-
quirements. An optimized implementation of DCFL can provide over 100 million searches per second and
storage for over 200 thousand filters in a current generation FPGA or ASIC without the need for external
memory devices.
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Table 1: Example filter set.

Filter Action
SA DA Prot DP FlowID PT
11010010 * TCP [3:15] 0 3
10011100 * * [1:1] 1 5
101101* 001110* * [0:15] 2 8†
10011100 01101010 UDP [5:5] 3 2
* * ICMP [0:15] 4 9†
100111* 011010* * [3:15] 5 6†
10010011 * TCP [3:15] 6 3
* * UDP [3:15] 7 9†
11101100 01111010 * [0:15] 8 2
111010* 01011000 UDP [6:6] 9 2
100110* 11011000 UDP [0:15] 10 2
010110* 11011000 UDP [0:15] 11 2
01110010 * TCP [3:15] 12 4†
10011100 01101010 TCP [0:1] 13 3
01110010 * * [3:3] 14 3
100111* 011010* UDP [1:1] 15 4

1 Introduction

Packet classification is an enabling function for a variety of applications including Quality of Service, secu-
rity, and monitoring. These applications typically operate on packet flows; therefore, network nodes must
classify individual packets traversing the node in order to assign a flow identifier, FlowID. Packet classifi-
cation entails searching a set of filters for the highest priority filter or set of filters that match the packet 1.
At minimum, filters contain match conditions on multiple fields that specify an exact packet header or set of
headers and the associated FlowID for packets matching the filter. The type of match conditions are typically
prefixes for IP address fields, an exact value or wildcard for the transport protocol number and flags, and
ranges for port numbers. An example filter set is shown in Table 1. In this simple example, filters specify
match conditions on four packet header fields: 8-bit source and destination addresses, transport protocol,
and a 4-bit destination port number.

Note that the filters in Table 1 also contain an explicit priority tag PT and a non-exclusive flag denoted
by †. These additional values allow for ease of maintenance and provide a supportive platform for a wider
variety of applications. Priority tags allow filter priority to be independent of filter ordering. Packets may
match only one exclusive filter, allowing Quality of Service and security applications to specify a single
action for the packet. Packets may also match several non-exclusive filters, providing support for transparent
monitoring and usage-based accounting applications. Note that a parameter may control the number of non-
exclusive filters, r, returned by the packet classifier. Like exclusive filters, the priority tag is used to select
the r highest priority non-exclusive filters.

Distributed Crossproducting of Field Labels (DCFL) is a novel packet classification technique that lever-
ages key observations of filter set structure and takes advantage of the capabilities of modern hardware
technology. We discuss the observed structure of real filter sets in detail and provide motivation for packet

1Note that filters are also referred to as rules in some of the packet classification literature.
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classification on larger numbers of fields in Section 2. Two key observations motivate our approach:

• Match Condition Redundancy: for each filter field, the number of unique match conditions specified
by filters in the filter set is significantly less than the number of filters in the filter set

• Matching Set Confinement: for each filter field, the number of unique match conditions that can be
matched by a single packet header field is small and remains small as filter sets scale in size

DCFL decomposes the multi-field searching problem and uses independent search engines to find the match-
ing conditions for each filter field. Field search engine operate in parallel and employ data structures opti-
mized for the type of match condition specified for the particular filter field. All decomposition techniques
must solve the problem of efficiently aggregating the results from the independent search engines. DCFL
transforms the result aggregation problem into a distributed set intersection problem. By employing a sim-
ple and efficient encoding technique for intermediate search results, DCFL computes the set of matching
filters using a network of efficient aggregation nodes. By performing aggregation in a distributed fashion,
we avoid the exponential increase in the time or space incurred when performing this operation in a single
step. Given that search techniques for single packet fields are well-studied, the primary focus of this paper
is the development and analysis of the aggregation technique that leverages the parallelism and embedded
multi-port memory blocks provided in the current generation of ASICs and FPGAs. We introduce several
new concepts including field labeling, Meta-Labeling unique combinations of fields, Field Splitting, and
optimized data structures such as Bloom Filter Arrays that minimize the number of memory accesses re-
quired to perform set intersections. As a result, our technique provides fast lookup performance, efficient
use of memory, support for dynamic updates at high rates, and scalability to large filter sets classifying on
additional fields.

Using a collection of 12 real filter sets and synthetic filter sets generated with the ClassBench tools [1],
we provide an evaluation of DCFL performance and resource requirements for filter sets of various sizes
and compositions in Section 9. We show that an optimized implementation of DCFL can provide over 100
million searches per second and storage for over 200 thousand filters in a current generation FPGA or ASIC
without the need for external memory devices. The source code for the performance evaluation is publicly
available at:
http://www.arl.wustl.edu/˜det3/
Finally, we provide a brief overview of related work in Section 10, focusing on algorithms most closely
related to our approach.

2 Key Observations

Recent efforts to identify better packet classification techniques have focused on leveraging the character-
istics of real filter sets for faster searches. While the lower bounds for the general multi-field searching
problem have been established, observations made in recent packet classification work offer enticing new
possibilities to provide significantly better performance. We begin by reviewing the results of previous ef-
forts to extract statistical characteristics of filter sets, followed by our own observations which led us to
develop the DCFL technique.

2.1 Previous Observations

Gupta and McKeown published a number of observations regarding the characteristics of real filter sets
which have been widely cited [2]. Others have performed analyses on real filter sets and published their
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observations [3, 4]. The following is a distillation of previous observations relevant to our work:

• Current filter set sizes are small, ranging from tens of filters to less than 5000 filters. It is unclear if the
size limitation is “natural” or a result of the limited performance and high expense of existing packet
classification solutions.

• The protocol field is restricted to a small set of match conditions. TCP, UDP, and the wildcard are the
most common specifications.

• Filters specify a limited number of unique transport port ranges. Specifications vary widely. Common
range specifications for port numbers such as ‘gt 1023’ (greater than 1023) suggest that the use of
range to prefix conversion techniques may be inefficient.

• The number of unique address prefixes matching a given address is typically five or less.

• The number of filters matching a given packet is typically five or less.

• Different filters often share a number of the same match conditions.

The final observation is pivotal. This characteristic arises due to the administrative policies that drive filter
construction. Consider a model of filter construction in which the administrator first specifies the commu-
nicating hosts or subnetworks (source and destination address prefix pair), then specifies the application
(transport-layer specifications). Administrators often must apply a policy regarding an application to a
number of distinct subnetwork pairs; hence, multiple filters will share the same transport-layer specifica-
tion. Likewise, administrators often apply multiple policies to a subnetwork pair; hence, multiple filters
will share the same source and destination prefix pair. In general, the observation suggests that the number
of intermediate results generated by independent searches on fields or collections of fields may be inher-
ently limited. This observation led to the general framework for packet classification in network processors
proposed by Kounavis, et. al. [5].

2.2 Our Observations

We performed a battery of analyses on 12 real filter sets provided by Internet Service Providers (ISPs), a
network equipment vendor, and other researchers working in the field. In general, our analyses agree with
previously published observations. We also performed an exhaustive analysis of the maximum number of
unique match conditions and unique combinations of match conditions that match any packet. A summary
of the single field statistics are given in Table 2. Note that the number of unique match conditions in each
field is significantly less than the number of filters. We refer to this property as match condition redundancy.
Also note that the maximum number of unique match conditions that match any packet remains relatively
constant for various filter set sizes. We refer to this property as matching set confinement. We also performed
the same analysis for every possible combination of fields (every possible combination of two fields, three
fields, etc.). There are

d
∑

i=1

(

d

i

)

(1)

unique combinations of d fields. We observed that the maximum number of unique combinations of match
conditions that match any packet is typically bounded by twice the maximum number of matching a single
field, and also remains relatively constant for various filter set sizes.

4



Table 2: Matching set confinement and match condition redundancy data from 12 real filter sets; number of
unique match conditions given in parentheses.

Filter Set Fields
Src Dest Src Dest

Name Size Addr Addr Port Port Prot Flag
fw2 68 3 (31) 3 (21) 2 (9) 1 (1) 2 (5)
fw5 160 5 (38) 4 (35) 3 (11) 3 (33) 2 (4) 2 (11)
fw3 184 4 (31) 3 (28) 3 (9) 3 (39) 2 (4) 2 (11)
ipc2 192 3 (29) 2 (32) 2 (3) 2 (3) 2 (4) 2 (8)
fw4 264 3 (30) 4 (43) 4 (28) 3 (49) 2 (9)
fw1 283 4 (57) 4 (66) 3 (13) 3 (43) 2 (5) 2 (11)
acl2 623 5 (182) 5 (207) 1 (1) 4 (27) 2 (5) 2 (6)
acl1 733 4 (97) 4 (205) 1 (1) 5 (108) 2 (4) 2 (3)
ipc1 1702 4 (152) 5 (128) 4 (34) 5 (54) 2 (7) 2 (11)
acl3 2400 6 (431) 4 (516) 2 (3) 6 (190) 2 (5) 2 (3)
acl4 3061 7 (574) 5 (557) 2 (3) 7 (235) 2 (7) 2 (3)
acl5 4557 3 (169) 2 (80) 1 (1) 4 (40) 1 (4) 2 (2)

Finally, an examination of real filter sets reveals that additional fields beyond the standard 5-tuple are
relevant. In nearly all filter sets that we studied, filters contain matches on TCP flags or ICMP type numbers.
In most filter sets, a small percentage of the filters specify a non-wildcard value for the flags, typically less
then two percent. There are notable exceptions, as approximately half the filters in filter set ipc1 contain non-
wildcard flags. We argue that new services and administrative policies will demand that packet classification
techniques scale to support additional fields (i.e. more “dimensions”) beyond the standard 5-tuple. It is not
difficult to identify applications that could benefit from packet classification on fields in higher level protocol
headers. Consider the following example: an ISP wants to deploy Voice over IP (VoIP) service running
over an IPv6/UDP/RTP stack for new IP-enabled handsets and mobile appliances. The ISP also wants to
make efficient use of expensive wireless links connecting Base Station Controllers (BSCs) to multiple Base
Station Transceivers (BSTs); hence, the ISP would like to use a header compression protocol like Robust
Header Compression (ROHC). ROHC is a robust protocol that compresses packet headers for efficient use
of wireless links with high loss rates [6]. In order to support this, the BSC must maintain a dynamic filter
set which binds packets to ROHC contexts based on fields in the IPv6, UDP, and RTP headers. A total of
seven header fields (352 bits) must be examined in order to classify such packets.

Matches on ICMP type number, RTP Synchronization Source Identifier (SSRC), and other higher-level
header fields are likely to be exact matches; therefore, the number of unique match conditions matching any
packet are at most two, an exact value and the wildcard if present. There may be other types of matches
that more naturally suit the application, such as arbitrary bit masks on TCP flags; however, we do not
foresee any reasons why the structure of filters with these additional fields will significantly deviate from
the observed structure in current filter sets. We believe that packet classification techniques must scale to
support additional fields while maintaining flexibility in the types of additional matches that may arise with
new applications.
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3 Description of DCFL

Distributed Crossproducting of Field Labels (DCFL) may be described at a high-level using the following
notation:

• Partition the filters in the filter set into fields

• Partition each packet header into corresponding fields

• Let Fi be the set of unique match conditions for filter field i that appear in one or more filters in the
filter set

• Let Fi(x) ⊆ Fi be the set of match conditions in Fi matched by a packet with the value x in header
field i

• Let Fi,j be the set of unique match condition pairs for fields i and j in the filter set; i.e. if (u, v) ∈ Fi,j

there is some filter or filters in the set with match condition u in field i and match condition v in field
j

• Let Fi,j(x, y) ⊆ Fi,j be the set of match condition pairs in Fi,j matched by a packet with the value x

in header field i and y in header field j

• This can be extended to higher-order combinations, such as set Fi,j,k and set Fi,j,k(x, y, z), etc.

The DCFL method can be structured in many different ways. In order to illustrate the lookup process,
assume that we are performing packet classification on four fields and a header arrives with field values
{w, x, y, z}. One possible configuration of a DCFL search is shown in Figure 1 and proceeds as follows:

• In parallel, compute sets F1(w), F2(x), F3(y), and F4(z) using a set of independent field search
engines

• In parallel, compute sets F1,2(w, x) and F3,4(y, z) using independent aggregation nodes as follows:

– Let Fquery(w, x) = F1(w) ⊗ F2(x) be the set of possible match condition pairs formed from
the crossproduct of F1(w) and F2(x)

– Compute F1,2(w, x) = Fquery(w, x) ∩ F1,2 by computing the intersection of the query set,
Fquery(w, x), and the set of match condition pairs specified by filters in the filter set, F1,2

– Perform the symmetric operations to find subset F3,4(y, z)

• Compute F1,2,3,4(w, x, y, z) = Fquery(w, x, y, z)∩F1,2,3,4 by computing the intersection of the query
set, Fquery(w, x, y, z) = F1,2(w, x)⊗ F3,4(y, z), and the set of match condition combinations speci-
fied by filters in the filter set, F1,2,3,4

• Select the highest priority exclusive filter and r highest priority non-exclusive filters in F1,2,3,4(w, x, y, z)

Note that there are several variants which are not covered by this example. For instance, we could alter the
aggregation process to find set F1,2,3(w, x, y) by computing the intersection of F1,2,3 and the crossproduct
of F1,2(w, x) and F3(y). We can then find the set F1,2,3,4(w, x, y, z) by computing the intersection of
F1,2,3,4 using the crossproduct of F1,2,3(w, x, y) and F4(z). In addition to the distributed result aggregation
architecture, the primary contributions of this paper include encoding techniques and data structures for
efficiently computing set intersections.
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Fquery(w,x,y,z)

F3,4(y,z)
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F1,2,3,4(w,x,y,z)

payload

Figure 1: Example configuration of Distributed Crossproducting of Field Labels (DCFL); independent field
search engines operate in parallel and may be locally optimized; aggregation nodes also operate in parallel
and the aggregation network may be constructed in a variety of ways.

As shown in Figure 1, DCFL employs three major components: a set of independent search engines,
an aggregation network, and a priority resolution stage. Each search engine Fi finds the unique matching
conditions for field i using an algorithm and data structure optimized for the type of match condition. For
example, the search engines for the IP address fields may employ compressed multi-bit tries while the search
engine for the protocol and flag fields may use simple hash tables. We provide a brief overview of options
for performing the independent searches on packet fields in Section 7. As shown in Table 2, the matching
sets for each header field typically contain less than five match conditions. The matching sets generated by
each search engine are fed to the aggregation network which computes the set of all matching filters for the
given packet in a multi-stage, distributed fashion. Finally, the priority resolution stage selects the highest
priority exclusive filter and the r highest priority non-exclusive filters. The priority resolution stage may be
realized by a number of efficient algorithms and logic circuits; hence, we do not discuss it further.

The first key concept in DCFL is labeling the unique match conditions for each field with locally unique
labels. By doing so, matching sets can be represented as sets of labels. Table 3 shows the sets of unique
match conditions (prefixes) for the source and destination addresses specified by the filters in Table 1. Note
that each unique match condition also has an associated “count” value which records the number of filters
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Table 3: Sets of unique specifications for each field in the sample filter set.

SA Label Count
11010010 0 1
10011100 1 1
101101* 2 1
10011100 3 2
* 4 2
100111* 5 2
10010011 6 1
11101100 7 1
111010* 8 1
100110* 9 1
010110* 10 1
01110010 11 2

DA Label Count
* 0 7
001110* 1 1
01101010 2 2
011010* 3 2
01111010 4 1
01011000 5 1
11011000 6 2

PR Label Count
TCP 0 4
* 1 5
UDP 2 6
ICMP 3 1

DP Label Count
[3:15] 0 5
[1:1] 1 2
[0:15] 2 5
[5:5] 3 1
[6:6] 4 1
[0:1] 5 1
[3:3] 6 1

which specify the match condition. The “count” value is used to support dynamic updates; a data structure in
a field search engine or aggregation node only needs to be updated when the “count” value changes from 0 to
1 or 1 to 0. As discussed in Section 8, DCFL readily supports dynamic updates. Label encoding can also be
applied to combinations of match conditions. We construct sets of unique combinations of match conditions
and identify unique combinations by assigning either (1) a composite label formed by concatenating the
labels for each match condition in the combination, or (2) a new meta-label which uniquely identifies the
combination in the set of unique combinations. As shown in Table 3, meta-labeling assigns a single label
to each unique combination, compressing the label used to uniquely identify it within the set. In addition
to reducing the memory requirements for explicitly storing composite labels, this optimization has another
subtle benefit. Meta-Labeling compresses the space addressed by the label and enables the use of fast,
efficient indexing data structures to compute set intersections.

The second key concept in DCFL is using a network of aggregation nodes to compute the set of matching
filters for a given packet in a distributed fashion. The aggregation network consists of a set of interconnected
aggregation nodes. Each node stores a set of labels representing a set of unique match condition combina-
tions. During a search, each node computes the query sets and the intersection of the query set and the set of
stored match condition combinations. By performing the aggregation in a multi-stage, distributed fashion,
the number of intermediate results operated on by each aggregation node remains small. Consider the case
of finding all matching address prefix pairs in the example filter set in Table 1 for a packet with address
pair (x, y) = (10011100, 01101010). As shown in Figure 2, an aggregation node takes as input the sets of
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Table 4: Example of meta-labeling unique field value combinations.
Prot DP Comp. Label Meta-Label Count
TCP [3 : 15] (0, 0) 0 3
∗ [1 : 1] (1, 1) 1 1
∗ [0 : 15] (1, 2) 2 2
...

...
...

...
...

∗ [3 : 3] (1, 6) 10 1
UDP [1 : 1] (2, 1) 11 1

FSA

x
10011100

FDA

y
01101010

FSA(x)
{1,4,5}

FDA(y)
{0,2,3}

Fquery(x,y)
(1,0) (1,2) (1,3)
(4,0) (4,2) (4,3)
(5,0) (5,2) (5,3)

Aggregation Node

FSA,DA(x,y)
{(1,0), (4,0), (5,3)}

FSA,DA
(0,0) (1,0) (2,1) (3,2)
(4,0) (5,3) (6,0) (7,4)

(8,5) (9,6) (10,6) (11,0)

Figure 2: Example aggregation node for source and destination address fields.

matching field labels generated by the source and destination address search engines, FSA(x) and FDA(y),
respectively. Searching the tables of unique match conditions shown in Table 3, FSA(x) contains labels
{1,4,5} and FDA(y) contains labels {0,2,3}. The first step is to form a query set, Fquery, of label com-
binations corresponding to the set of all possible match condition pairs matched by the packet. The query
set is formed from the crossproduct of the source and destination address label sets. Next, we compute the
intersection of the query set, Fquery, and the set of unique address prefix pairs in the filter set, FSA,DA. Note
that the set of composite labels in FSA,DA corresponds to the set of unique address prefix pairs specified
by filters in the example filter set shown in Table 1. The resulting set FSA,DA(x, y) is passed to the next
aggregation node in the network.

By performing crossproducting in a distributed fashion across a network of aggregation nodes, we avoid
an exponential increase in search time that occurs when aggregating the results from all field search engines
in a single step. The time required to compute a set intersection at an aggregation node is proportional to
the size of the query set. Due to the matching set confinement property for individual filter fields and com-
binations of filter fields, the size of the query set at each aggregation node remains manageable. We give
precise expressions for the number of memory accesses for several efficient data structures in Section 6. In
Section 5, we introduce the field splitting optimization which limits the query set size at aggregation nodes,
even when the structure of a filter set results in an increase in the size of matching sets generated by field
search engines. As a result of the match condition redundancy property and the use of label encoding, aggre-
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gation data structures only store labels corresponding to unique combinations of match conditions specified
by filters in the filter set. While the efficiency afforded by label encoding depends on the structure of the
filter set, in the worst case memory requirements scale linearly with the number of filters. We also avoid
the exponential blowup in memory requirements suffered by the original Crossproducting technique [7] and
Recursive Flow Classification [2].

The number of aggregation nodes scales linearly with the number of fields examined by the filters in
the filter set. Performing packet classification on d fields requires (d − 1) aggregation nodes2. A pipelined
implementation of the aggregation network allows additional aggregation nodes to be added to the network
without affecting the lookup throughput. As shown in Section 9, each aggregation node requires a modest
amount of resources; hence, DCFL easily scales to support packet classification on additional fields.

Finally, it is important to briefly describe the intended implementation platform, as it will guide the
selection of data structures for aggregation nodes and optimizations in the following sections. Thanks to the
endurance of Moore’s Law, Application Specific Integrated Circuits (ASICs) and Field-Programmable Gate
Arrays (FPGAs) provide millions of logic gates and millions of bits of memory distributed across many
multi-port embedded memory blocks. A current generation Xilinx FPGA operates at over 400 MHz and
contains 556 dual-port embedded memory blocks, 18Kb each with 36-bit wide data paths for a total of over
10Mb of embedded memory [8]. Current ASIC standard cell libraries offer dual- and quad-port embedded
SRAMs operating at 625 MHz [9]. We also point out that it is standard practice to utilize several embedded
memories in parallel in order to achieve the desired data path width. It is our goal to make full use of
the parallelism and high-performance embedded memory provided by the current generation of ASICs and
FPGAs. This requires that we maximize the number of parallel computations and storage efficiency.

4 Aggregation Network

Since all aggregation nodes operate in parallel, the performance bottleneck in the system is the aggregation
node requiring the most time to compute a set intersection. For the purpose of our discussion, assume that
the time to required to compute the set intersection is equivalent to the query set size. In practice, the type
of data structure used by the aggregation node also affects the worst-case computation time. We describe
several data structure options in Section 6. Let |Fquery| be the worst case query size for a given aggregation
node. The size of query sets vary for different constructions of the aggregation network. We refer to the
worst-case query set size, |Fquery|, among all aggregation nodes in the network, F1, . . . , F1,...,d, as the cost
for the given network construction, Gi. Selecting the most efficient network construction is a key issue. We
want to select the minimum cost aggregation network Gmin as follows:

Gmin = G : cost(G) = min {cost (Gi) ∀i} (2)

where
cost (G) = max {|Fquery|∀F1, . . . , F1,...,d ∈ Gi} (3)

Consider an example for packet classification on three fields. Shown in Figure 3 are the maximum sizes for
the sets of matching field labels for the three fields and the maximum size for the sets of matching labels
for all possible field combinations. For example, label set F1,2(x, y) will contain at most four labels for any
values of x and y. Also shown in Figure 3 are three possible aggregation networks for a DCFL search; the
cost varies between 3 and 6 depending on the construction.

In general, an aggregation node may operate on two or more input label sets. Given that we seek
to minimize |Fquery|, we limit the number of input label sets to two. The query set size for aggregation

2The field splitting optimization adds one aggregation node to the network for every “split” performed.
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Figure 3: Example of variable aggregation network cost for different aggregation network constructions for
packet classification on three fields.

nodes fed by field search engines is partly determined by the size of the sets returned by the field search
engines. The matching set confinement suggests that the matching sets will remain manageable as filter sets
scale in size. Also, the field splitting optimization provides a control point for the matching set size, and
hence the size of the query set at the aggregation node fed by the field search engine. To take advantage
of the matching set confinement property and field splitting optimization, we restrict the network structure
by requiring that at least one of the inputs to each aggregation node be a matching set from a field search
engine. Figure 4 shows a generic aggregation network for packet classification on d fields. Aggregation
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Figure 4: Generalized DCFL aggregation network for a search on d fields.

node F1,...,i operates on matching field label set Fi(x) and matching composite label set F1,...,i−1(a, . . . , w)
generated by upstream aggregation node F1,...,i−1. Note that the first aggregation node operates on label
sets from two field search engines, F1(a) and F2(b). We point out that this seemingly “serial” arrangement
of aggregation nodes does not prevent DCFL from starting a new search on every pipeline cycle. As shown
in Figure 4, delay buffers allow field search engines to perform a new lookup on every pipeline cycle. The
matching field label sets are delayed by the appropriate number of pipeline cycles such that they arrive at the
aggregation node synchronous to the matching label set from the upstream aggregation node. Search engine
results experience a maximum delay of (d − 2) pipeline cycles which is tolerable given that the pipeline
cycle time is on the order of 10ns. With such an implementation, DCFL throughput is inversely proportional
to the pipeline cycle time.

We can empirically determine the optimal arrangement of aggregation nodes for a given filter set by
computing the maximum query set size for every combination of fields in the filter set. While this computa-
tion is manageable for real filter sets of moderate size, the computational complexity increases exponentially
with filter set size. For our set of 12 real filter sets, the optimal network construction aggregated field la-
bels in the order of decreasing matching set size, with few exceptions. This observation can be used as a
heuristic for constructing efficient aggregation networks for large filter sets and filter sets with large num-
bers of filter fields. As previously discussed, we do not expect the filter set properties leveraged by DCFL to
change. We do point out that a static arrangement of aggregation nodes might be subject to degraded perfor-
mance if the filter set characteristics were dramatically altered by a sequence of updates. Through the use
of reconfigurable interconnect in the aggregation network and extra memory for storing offline aggregation
data structures, a DCFL implementation can minimize the time for restructuring the network for optimal
performance. We defer this discussion to future study.

5 Field Splitting

As discussed in the previous sections, the size of the matching set, |Fi(x)|, affects the time required to
compute the set intersection at the following aggregation node. Recall that the matching set confinement
property limits the maximum matching set size for each filter field to seven or less for the 12 real filter
sets that we studied. In order to we would like to increase search speed for existing filter sets and provide
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worst-case performance guarantees for all filter sets, we would like to ensure that no packet header results
in a matching set containing more labels (matching conditions) than a given threshold, t.

Field Splitting is a mechanism for placing a limit on the matching set size by partitioning the sets of
match conditions. Note that the maximum matching set size for exact match conditions is always less than
or equal to two; therefore, field splitting is applied to sets of prefix matching and range matching conditions
that generate matching set sizes that are greater than a threshold. For example, assume that we want to limit
the maximum matching set size to three labels. Assume that one set of range match conditions for 4-bit
port numbers contains the following ranges: [0 : 15], [0 : 3], [3 : 3], [2 : 14], [11 : 12], [14 : 14]. If a
packet contains the port number 3, then the matching set size would be four; thus, we must partition the set
of ranges. Let A be the set of ranges { [0 : 15], [0 : 3], [3 : 3], [11 : 12], [14 : 14] } and let B be set of ranges
{ [0 : 15], [2 : 14] }. The maximum matching set size is three for set A and two for set B. Note that we
included a default match, [0 : 15], in set B. By ensuring that every set of match conditions has a wildcard
entry, matching sets contain at least one label which simplifies the set intersection data structures.

We now describe an O(N log N) algorithm for computing the splits for arbitrary ranges that ensure a
maximum matching set size; N is the number of match conditions in the set and W is the length of the IP
address in bits. The idea is to create sets of ranges where the range overlap is less than or equal to t. Field
splitting only applies to prefix and range matching conditions, and since prefixes are just a special case of
arbitrary ranges, we can view prefix match conditions as arbitrary ranges on the address space. Consider the
construction of the sets of unique matching conditions for each filter field. We can compute the maximum
range overlap, m, for the given filter field by adding the set of unique match conditions (ranges) to a segment
tree. Given an overlap threshold, t, the number sets required is C = b m

t−1c. We then create C sets into which
we sort the set of unique match conditions. We start by adding wildcards to each of the C sets. For each
range [i : j], we identify the set, ci, containing the minimum number of overlapping ranges using a segment
tree constructed from the ranges in the set. We insert [i : j] into set ci. Once the sorting is complete, we
assign locally unique labels to the match conditions in each set. The original match condition specified by
the filter field is now identified by a combination of labels: the label for the condition (unique to its set) and
the labels for the wildcard conditions in the other sets.

Each new set of match conditions resulting from field splitting adds an additional label to the combi-
nation of labels that identify a filter. Consequently, an additional search engine and aggregation node must
be added to the system. This is trivial for software implementations, but presents challenges for hardware
implementations. Two techniques may be used to overcome this challenge. First, we can over-provision the
number of search engines and aggregation nodes in the implementation, activating them when needed. Sec-
ond, the use of embedded reconfigurable logic and reconfigurable interconnect provides the opportunity to
provision additional search engines and aggregation nodes without pre-selecting the type of match condition
search or set intersection data structure [10].

Finally, we point out that field splitting is a precomputed optimization. It is possible that the addition of
new filters to the filter set could cause the matching set size threshold to be exceeded in a particular field, and
thus degrade the performance of DCFL. While this is possible, our analysis of real filter sets suggests that it
is not probable. Currently most filter sets are manually configured, thus updates are exceedingly rare relative
to searches. Furthermore, the common structure of filters in a filter set suggests that new filters will most
likely be a new combination of fields already in the filter set. For example, a network administrator may add
a filter matching all packets for application A flowing between subnets B and C, where specifications A, B,
C already exist in the filter set.
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6 Aggregation Nodes

Aggregation nodes compute the intersection of two sets of labels: the query set, Fquery and the set of unique
match condition combinations specified by filters in the filter set, F1,...,i. We perform this computation by
using efficient data structures to store the set F1,...,i and issuing set membership queries for the label com-
binations in Fquery. Well-studied data structures such as hash tables and B-Trees are capable of efficiently
representing a set. We focus on three options that minimize the number of sequential memory accesses,
SMA, required to identify members of the set. The first is a variant on the popular Bloom filter which has
received renewed attention in the research literature [11]. The second and third options leverage the com-
pression provided by field labels and meta-labels to index into an array of lists containing the composite
labels for the match condition combinations in F1,...,i. These indexing schemes perform parallel compar-
isons in order to minimize the required SMA; thus, the performance of these schemes depends on the word
size m of the memory storing the data-structures. For all three options, we derive equations for SMA and
number of memory words W required to store the data-structure.

6.1 Bloom Filter Arrays

A Bloom filter is an efficient data structure for set membership queries with tunable false positive errors. In
our context, a Bloom filter computes k hash functions on a label L to produce k bit positions in a bit vector
of m bits. If all k bit positions are set to 1, then the label is declared to be a member of the set. Broder
and Mitzenmacher provide a nice introduction to Bloom filters and their use in recent work [11]. False
positive answers to membership queries causes the matching label set, F1,...,i(a, . . . , x), to contain labels
that do not correspond to field combinations in the filter set. These false positive errors can be “caught” at
downstream aggregation nodes using explicit representations of label sets. We discuss two options for such
data structures in the next section. This property does preclude use of Bloom filters in the last aggregation
node in the network. As we discuss in Section 9, this does not incur a performance penalty in real filter sets.

In order to limit the number of memory accesses per membership query to one, we propose the use of
an array of Bloom filters as shown in Figure 5. A Bloom Filter Array is a set of Bloom filters indexed by the
result of a pre-filter hash function H(L). In order to perform a set membership query for a label L, we read
the Bloom filter addressed by H(L) from memory and store it in a register. We then check the bit positions
specified by the results of hash functions h1(L), . . . , hk(L). The Match Logic checks if all bit positions are
set to 1. If so, it adds label L to the set of matching labels F1,...,i(a, . . . , x).

Set membership queries for the labels in Fquery need not be performed in any order and may be per-
formed in parallel. Using an embedded memory block with P ports requires P copies of the logic for the
hash functions and Match Logic. Given the ease of implementing these functions in hardware and the fact
that P is rarely more than four, the additional hardware cost is tolerable. The number of sequential memory
accesses, SMA, required to perform set membership queries for all labels in Fquery is simply

SMA =
|Fquery|

P
(4)

The false positive probability is f =
(

1
2

)k
when k = m

n
ln 2, where n is the number of labels |F1,...,i|

stored in the Bloom filter. Setting k to four produces a tolerable false positive probability of 0.06. Assuming
that we store one Bloom filter per memory word, we can calculate the required memory resources given
the memory word size m. Let W be the number of memory words. The hash function H(L) uniformly
distributes the labels in F1,...,i across the W Bloom filters in the Bloom Filter Array. Thus, the number of
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Figure 5: Example of an aggregation node using a Bloom Filter Array.

labels stored in each Bloom filter is

n =
|F1,...,i|

W
(5)

The number of memory words, W , required to maintain the false positive probability is

W =

⌈

k × |F1,...,i|

m× ln 2

⌉

(6)

The total memory requirement is m×W bits. Recent work has provided efficient mechanisms for dynami-
cally updating Bloom filters [12].

6.2 Meta-Label Indexing

We can leverage the compression provided by meta-labels to construct aggregation nodes that explicitly
represent the set of match condition combinations, F1,...,i. The match condition combinations in F1,...,i can
be identified by a composite label which is the concatenation of the meta-label for the combination of the
first (i − 1) fields, L1,...,i−1, and the label for field i, Li. We sort these composite labels into bins based on
the meta-label L1,...,i−1. For each bin, we construct a list of the labels Li, where each entry stores Li and
the new meta-label for the combination of i fields, L1,...,i. We store these lists in an array Ai indexed by
meta-label L1,...,i−1 as shown in Figure 6.

Using L1,...,i−1 as an index allows the total number of set membership queries to be limited by the
number of meta-labels received from the upstream aggregation node, |F1,...,i−1(a, . . . , w)|. Note that the

15



F1,…,i(a,…,x)
{(1,0), (4,0), (5,3)}

Fi

F1,…,i-1(a,…,w)
{1,4,5}

Fi(x)
{0,2,3}

Meta-Label Indexing
Aggregation Node

Match
Logic

x

0

| F1,…,i-1|-1

1

3

0

7

1

1 4

1 3

2

0

2

3

list size ≤ M

N ≤ max|Fi(x)|

Figure 6: Example of an aggregation node using Meta-Label Indexing.

size of a list entry, s, is
s = lg |Fi|+ lg |F1,...,i| (7)

and s is typically much smaller than the memory word size, m. In order to limit the number of memory
accesses per set membership query, we store N list entries in each memory word, where N =

⌊

m
s

⌋

. This
requires N × |Fi(x)| way match logic to compare all of the field labels in the memory word with the set of
matching field labels from the field search engine, Fi(x). Since set membership queries may be performed
independently, the total SMA depends on the size of the index meta-label set, |F1,...,i−1(a, . . . , w)|, the size
of the lists indexed by the labels in F1,...,i−1(a, . . . , w), and the number of memory ports P . In the worst
case, the labels index the |F1,...,i−1(a, . . . , w)| longest lists in Ai. Let Length be an array storing the lengths
of the lists in Ai in decreasing order. The worst-case sequential memory accesses is

SMA =

∑|F1,...,i−1(a,...,w)|
j=1

⌈

Length(j)
N

⌉

P
(8)

As with the Bloom Filter Array, the use of multi-port memory blocks does require replication of the multi-
way match logic. Due to the limited number of memory ports, we argue that this represents a negligible
increase in the resources required to implement DCFL. The number of memory words, W , needed to store
the data structure is

W =

|F1,...,i−1|
∑

j=1

⌈

Length(j)

N

⌉

(9)

The total memory requirement is m×W bits. Adding or removing a label from F1,...,i requires an update to
a single list entry. Packing multiple list entries on to a single memory word slightly complicates the memory
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management; however, given that we seek to minimize the number of memory words occupied by a list, the
number of individual memory reads and writes per update is small.

Finally, we point out that the data structure may be re-organized to use Li as the index. This variant,
Field Label Indexing, is effective when |Fx| approaches |F1,...,x|. When this is the case, the number of
composite labels L1,...,i containing label Li is small and the length of the lists indexed by Fi(x) are short.

7 Field Search Engines

A primary advantage of DCFL is that it allows each filter field to be searched by a search engine optimized
for the particular type of match condition. While the focus of this paper is the novel aggregation technique,
we briefly discuss single field search techniques suitable for use with DCFL in order to to highlight the
potential performance.

7.1 Prefix Matching

Due to its use of decomposition, DCFL requires that the search engines for the IP source and destination
addresses return all matching prefixes for the given addresses. Any longest prefix matching technique can
support All Prefix Matching (APM), but some more efficiently than others. The most computationally effi-
cient technique for longest prefix matching is Binary Search on Prefix Lengths [13]. When precomputation
and marker optimizations are used, the technique requires at most five hash probes per lookup for 32-bit
IPv4 addresses. Real filter sets contain a relatively small number of unique prefix lengths, thus the realized
performance should be better for real filter sets. Recall that markers direct the search to longer prefixes that
potentially match, thus skipping shorter prefixes that may match. In order to support APM, Binary Search
on Prefix Lengths must precompute all matching prefixes for each “leaf” in the trie defined by the set of ad-
dress prefixes. While computationally efficient for searches, this technique does present several challenges
for hardware implementation. Likewise, the significant use of precomputation and markers degrades the
dynamic update performance, as an update may require many memory transactions.

As demonstrated in [14], compressed multi-bit trie algorithms readily map to hardware and provide
excellent lookup and update performance with efficient memory and hardware utilization. Specifically,
our implementation of the Tree Bitmap technique requires at most 11 memory accesses per lookup and
approximately six bytes of memory per prefix. Each search engine consumes less than 1% of the logic
resources on a commodity FPGA. As discussed in [14], there are a number of optimizations to improve the
performance of this particular implementation. Use of an initial lookup array for the first 16 bits reduces
the number of memory accesses to at most seven. Coupled with a simple two-stage pipeline, the number of
sequential memory accesses per lookup can be reduced to at most four. Trie-based LPM techniques such
as Tree Bitmap easily support all prefix matching with trivial modifications to the search algorithm. For the
purpose of our discussion, we will assume an optimized Tree Bitmap implementation requiring at most four
memory accesses per lookup and six bytes per prefix of memory.

7.2 Range Matching

Searching for all arbitrary ranges that overlap a given point presents a greater challenge than prefix matching.
Based on the observations reported in Appendix B, range matching can be made sufficiently fast for real
filter sets using a set of parallel search engines, one for each port class, as shown in Figure 7. Recall that three
port classes, WC, HI, and LO, consist of a single range specification. The first port class, wildcard (WC),
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Figure 7: Block diagram of range matching using parallel search engines for each port class.

the search engine simply consists of flag specifying whether or not the wildcard is specified by any filters
in the filter set and a register for the label assigned to this range specification. Similarly, the search engines
for the HI and LO port classes also consist of flags specifying whether or not the ranges are specified by any
filters in the filter set and registers for the labels assigned to those range specifications. We also add logic to
check if the port is less than 1024; this checks for a match on the HI and LO port ranges, [1024 : 65535] and
[0 : 1023], respectively.

For the 12 real filter sets we studied, the number of exact port numbers specified by filters was at most
183. The port ranges in the EM port class may be efficiently searched using any sufficiently fast exact match
data-structure. Entries in this data-structure are simply the port number and the assigned label. A simple
hash table could bound searches to at most two memory accesses. Finally, the set of arbitrary ranges in the
AR port class may be searched with any range matching technique. Fortunately, the set of arbitrary ranges
tends to be small; the 12 real filter sets specified at most 27 arbitrary ranges. A simple balanced interval
tree data-structure requires at most O(k lg n) accesses, where k is the number of matching ranges and n is
the number of ranges in the tree. Other options for the AR search engine include the Fat Inverted Segment
Tree [15] and converting the arbitrary ranges to prefixes and employing an all prefix matching search engine.
Given the limited number of arbitrary ranges, adding multiple prefixes per range to the data-structure does
not cause significant memory inefficiency. With sufficient optimization, we assume that range matching can
be performed with at most four sequential memory accesses and the data-structures for the AR and EM port
classes easily fit within a standard embedded memory block of 18kb.

7.3 Exact Matching

The protocol and flag fields may be easily searched with a simple exact match data-structure such as a hash
table. Given the small number of unique protocol and flag specifications in the real filter sets (less than 9
unique protocols and 11 unique flags), the time per search and memory space required is trivial. As we
discuss in Section 2, we expect that additional filter fields will also require exact match search engines.
Given the ease of implementing hash functions in custom and reconfigurable logic, we do not foresee any
performance bottlenecks for the search engines for these fields.
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Insert(item)

1 label←Search(item)
2 If (label = NULL)
3 label←Add(item)
4 Count[label]++
5 return label

Figure 8: Pseudocode for DCFL update (add).

8 Dynamic Updates

Another of strength of DCFL is its support of incremental updates. Adding or deleting a filter from the filter
set requires approximately the same amount of time as a search operation and does not require that we flush
the pipeline and update all data-structures in an atomic operation. An update operation is treated as a search
operation in that it propagates through the DCFL architecture in the same manner. The query preceding the
update in the pipeline operates on data-structures prior to the update; the query following the update in the
pipeline operates on data-structures following the update.

Consider inserting a filter to the filter set. We partition the filter into fields (performing field splits,
if necessary) and insert each match condition update into the appropriate input buffer of the field search
engines. In parallel, each field search engine performs the update operation just as it would perform searches
in parallel. As shown in Figure 8, an add operation entails a search of the data-structure for the given match
condition. If the data-structure does not contain the match condition, then we add the match condition
to the data-structure and assign the next free label3. Finally, we increment the count value for the entry.
Each field search engine returns the label for the match condition. At the next pipeline cycle, the field
search engines feed the update command and field labels to the aggregation network. Logically, the same
Insert operation is used by both field search engines and aggregation nodes, only the type of item and
label is different for the two. Each aggregation node receives the “insert” command and the labels from the
upstream nodes. The item is the composite label formed from the labels from the upstream nodes. Note
that for an update operation, field search engines and aggregation nodes only pass on one label, thus each
aggregation node only operates on one composite label or item. If the composite label is not in the set, then
the aggregation node adds it to the set. Note that the label returned by the Search or Add operations may be
a composite label or meta-label, depending on the type of aggregation nodes in use. Finally, the aggregation
increments the count for the label and passes it on to the next aggregation node. The final aggregation node
passes the label on to the priority resolution stage which adds the field label to its data-structure according
to its priority tag.

Removing a filter from the filter set proceeds in the same way. Both field search engines and aggregation
nodes perform the same logical Remove operation shown in Figure 9. We first find the label for the item,
then decrement the count value for the item. A Delete operation is performed if the count value for the
item is zero. The label is passed on to the next node in the DCFL structure. The final aggregation node
passes the filter label to the priority resolution stage which removes the field label from its data-structure.

Note that Add and Delete operations on field search engine and aggregation node data-structures are
only performed when count values change from zero to one and one to zero, respectively. The limited

3We assume that each data-structure keeps a simple list of free labels that is initialized with all available labels. When labels are
“freed” due to a delete operation, they are added to the end of the list.
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Remove(item)

1 label←Search(item)
2 Count[label]−−
3 If (Count[label] = 0)
4 Delete(item)
5 return label

Figure 9: Pseudocode for DCFL update (delete).

number of unique match conditions in real filter sets suggests significant sharing of unique match conditions
among filters. We expect typical updates to only change a couple field search engine data-structures and
aggregation node data-structures. In the worst case, inserting or removing a filter produces an update to d

field search engine data-structures and (d − 1) updates to aggregation node data-structures, where d is the
number of filter fields.

9 Performance Evaluation

In order to evaluate the performance and scalability of DCFL, we used a combination of real and synthetic
filter sets of various sizes and compositions. The 12 real filter sets were graciously provided from ISPs, a
network equipment vendor, and other researchers in the field. ClassBench is a publicly available tools suite
for benchmarking packet classification algorithms and devices [16]. It includes a Filter Set Analyzer that
extracts the relevant statistics and probability distributions from a seed filter set and generates a parameter
file. The ClassBench Filter Set Generator takes as input a parameter file and a few high-level parameters
that provide high-level control over the composition of the filters in the resulting filter set. We constructed a
ClassBench parameter file for each of the 12 real filter sets and used these files to generate large synthetic
filter sets that retain the structural properties of the real filter sets. The ClassBench Trace Generator was
used to generate input traffic for both the real filter sets and the synthetic filter sets used in the performance
evaluation. For all simulations, header trace size is at least an order of magnitude larger than filter set size.
The metrics of interest for DCFL are the maximum number of sequential memory accesses per lookup at
any aggregation node, SMA, and the memory requirements. We choose to report the memory requirements
in bytes per filter, BpF, in order to better assess the scalability of our technique.

The type of embedded memory technology directly influences the achievable performance and efficiency
of DCFL; thus, for each simulation run we compute the SMA and total memory words required for various
memory word sizes. Standard embedded memory blocks provide 36-bit memory word widths [17, 9];
therefore, we computed results for memory word sizes of 36, 72, 144, 288, and 576 bits corresponding to
using 1, 2, 4, 8, and 16 memory blocks per aggregation node. All results are reported relative to memory
word size. The choice of memory word size allows us to explore the tradeoff between memory efficiency
and lookup speed. We assert that the use of 16 embedded memory blocks to achieve a memory word size
of 576 bits is reasonable given current technology, but certainly near the practical limit. For simplicity, we
assume all memory blocks are single-port, (P = 1). Given that all set membership queries are independent,
the SMA for a given implementation of DCFL may be reduced by a factor of P .

In order to demonstrate the achievable performance of DCFL, each simulation performs lookups on
all possible aggregation network constructions. At the end of the simulation, we compute the optimal
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aggregation network by choosing the optimal network structure and optimal node type for each aggregation
node in the graph. The three node types are discussed in Section 6 along with the derivation of the equations
for SMA and memory requirements for each type: Bloom Filter Array, Meta-Label Indexing, and Field
Label Indexing. In the case that two node types produce the same SMA value, we choose the node type
with the smaller memory requirements. Our simulation also allows us to select the aggregation network
structure and node types in order to optimize worst-case or average-case performance. Worst-case optimal
aggregation networks select the structure and node types such that the value of the maximum SMA for any
aggregation node in the network is minimized. Likewise, average-case optimal selects the structure and
node types such that the maximum value of the average SMA for any aggregation node in the network is
minimized. Computing the optimal aggregation network at the end of the simulation allows us to observe
trends in the optimal network structure and node type for filter sets of various type, structure, and size.
We observe that optimal network structure and node type largely depends on filter set structure. With few
exceptions, variables such as filter set size and memory word size do not affect the composition of the
optimal aggregation network. We observe that the Bloom Filter Array technique is commonly selected as
the optimal choice for the first one or two nodes in the aggregation network. With rare exceptions, Meta-
Label Indexing is chosen for aggregation nodes at the end of the aggregation network. This is a convenient
result, as the final aggregation node in the network cannot use the Bloom Filter Array technique in order
to ensure correctness. We find this result to be somewhat intuitive since the size of a meta-label increases
with the number of unique combinations in the set which typically increases with the number of fields in the
combination. When using meta-labels to index into an array of lists, a larger meta-label addresses a larger
space which in turn “spreads” the labels across a larger array and limits the length of the lists at each array
index.

In the first set of tests we used the 12 real filter sets and generated header traces using the ClassBench
Trace Generator. The number of headers in the trace was 50 times the number of filters in the filter set. As
shown in Figure 10(a), the worst-case SMA for all 12 real filter sets is ten or less for a worst-case optimal
aggregation network using memory blocks with a word size of 288 bits. Also note that the largest filter
set, acl5, of 4557 filters achieves the best performance with a worst-case SMA of two for worst-case optimal
aggregation network using memory blocks with a word size of 144 bits. In order to translate these results into
achievable lookup rates, assume a current generation logic device with dual-port memory blocks, (P = 2),
operating at 500 MHz. The worst-case SMA for all 12 filter sets is then five or less using a word size of 288
bits. Under these assumptions, the pipeline cycle time can be 10ns allowing the DCFL implementation to
achieve 100 million searches per second which is comparable to current TCAMs. Search performance can
be doubled by doubling the clock frequency or using quad-port memory blocks, both of which are possible
in current generation ASICs.

As shown in Figure 10(c), the average SMA for all filter sets falls to four or less using a memory word
size of 288 bits. Filter set acl5 also achieves the best average performance with an average SMA of 1.2 for
a word size of 288. As in many other packet classification techniques, average performance is significantly
better than worst-case performance.

Worst-case optimal memory consumption is shown in Figure 10(e). Most filter sets required at most 40
bytes per filter (BpF) for all word sizes; thus, 1MB of embedded memory would be sufficient to store 200k
filters. There are two notable exceptions. The results for filter set acl1 show a significant increase in memory
requirements for larger word sizes. For memory word sizes of 36, 72, and 144 bits, acl1 requires less than
11 bytes per filter; however, memory requirements increase to 61 and 119 bytes per filter for word sizes
288 and 576, respectively. We also note that increasing the memory word size for acl1 yields no appreciable
reduction in SMA; all memory word sizes yielded an SMA of five or six. These two pieces of data suggest that
in the aggregation node data-structures, the size of the lists at each index entry are short; thus, increasing the
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Figure 10: Performance results for 12 real filter sets; left-column shows worst-case sequential memory
accesses (SMA), average SMA, and memory requirements in bytes per filter (BpF) for aggregation network
optimized for worst-case SMA; right-column shows same results for aggregation network optimized for
average-case SMA; call-outs highlight three specific filter sets of various sizes and types (filter set size
given in parentheses).
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Figure 11: Performance results for synthetic filter sets containing 10k, 20k, and 50k filters, generated with
parameter files from filter sets acl5, fw1, and fw5; call-outs highlight most pronounced effects (number of
filters given in parentheses).

memory word-size linearly increases the memory inefficiency without yielding any fewer memory accesses.
We believe that this is also the case with the optimal aggregation network for acl2 with memory word size
288.

Figure 10(b) shows the worst-case SMA for all 12 real filter sets for an average-case optimal aggregation
network. Figure 10(d) shows the average SMA for all 12 real filter sets for an average-case optimal aggre-
gation network. When optimizing for average SMA, average performance is improved by approximately
25%, but worst-case performance suffers by approximately 50%. With the exception of rare application en-
vironments, sacrificing worst-case performance for average performance is unfavorable. For the remaining
simulations, we only report worst-case optimal results.

The second set of simulations investigates the scalability of DCFL to larger filter sets. Results are shown
in Figure 11. This set of simulations utilized the ClassBench tools suite to generate synthetic filter sets
containing 10k, 20k, and 50k filters using parameter files extracted from filter sets acl5, fw1, and fw5. As
shown in Figure 11(a), the worst-case SMA is eight or less for all filter sets using memory word sizes of 72
bits or more. The most striking feature of these results is the indistinguishable difference between filter set
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Figure 12: Performance results for synthetic filter sets containing 16k filters, generated with the ipc1 pa-
rameter file with scope parameters s {-1,0,1}; call-outs highlight most pronounced effects (scope parameter
given in parentheses).

sizes of 20k and 50k. The ClassBench Synthetic Filter Set Generator maintains the field overlap properties
specified in the parameter file. Coupled with the results in Figure 11, this confirms that the property of filter
set structure most influential on DCFL performance is the maximum number of unique match conditions
matching any packet header field. As discussed in Section 2, we expect this property to hold as filter sets
scale in size. If field overlap does increase, the Field Splitting optimization provides a way to reduce this to
a desired threshold. As shown in Figure 11(c), the memory requirements increase with memory word size.
Given the favorable SMA performance there is no need to increase the word size beyond 72, as it only results
in a linear increase in memory inefficiency. Clearly, finding the optimum balance of lookup performance
and memory efficiency requires careful selection of memory word size.

The third set of simulations investigates the effect of filter scope on the performance of DCFL. Recall
that scope is measure of the specificity of the filters in the filter set. ClassBench provides high-level control
over the average scope of the filters in the filter set via an input parameter s. We generated synthetic filter
sets containing 16000 filters using parameter files from a variety of filter sets.For each parameter file, we
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Figure 13: Performance results for four real filter sets (acl2, fw1, fw4, and fw5) using the Field-Splitting
optimization; call-outs highlight most pronounced effects (field overlap threshold given in parentheses).

generated filter sets using scope parameters −1, 0, and 1. The scope parameter had the most pronounced
effects on worst-case SMA for the filter sets generated with the parameter file from ipc1. As shown in
Figure 12(a), decreasing the average scope of the filters in the filter set (s = −1) results in significantly
better performance; thus, as filters become more specific the performance of DCFL improves. This is a
favorable result given the generally accepted conjecture the primary source of future filter set growth will
be flow specific filters for applying network services. If we increase the scope of the filters in the filter set,
DCFL performance suffers. This trend also holds for the average SMA. As shown in Figure 12(c), filter set
specificity has little effect on memory requirements for memory word sizes of 144 bits or less. When using
larger memory word sizes, the results diverge but no clear trend is evident.

The fourth set of simulations investigate the efficacy and consequences of the Field Splitting optimiza-
tion. We selected two of the worst-performing real filter sets and performed simulations with various field
overlap thresholds. The performance results are summarized in Figure 13. For acl2, Field Splitting reduces
the worst-case SMA from 16 to 12 for 36-bit memory words and 11 to 8 for 74-bit memory words. This
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amounts to a 33% performance increase; however, the impact of Field Splitting is reduced as we increase
memory word size. Clearly, the primary benefit of Field Splitting is that it allows us to achieve better perfor-
mance using smaller memory word sizes which improves the memory efficiency. As shown in Figure 13(c),
the memory utilization for all filter sets using memory word sizes of 74-bits or less remains well-below 40
bytes per filter. Consider the specific case of acl2. In order to achieve a worst-case SMA of eight or less
without Field Splitting, we must use a memory word-size of 144 bits resulting in memory requirements
of 44 bytes per filter. Using Field Splitting with a field overlap threshold of four, we achieve the desired
worst-case SMA performance using a memory word-size of 72 bits resulting in memory requirements of 32
bytes per filter. Recall that Field Splitting does increase the number of aggregation nodes in the aggregation
network, thus increasing the number of memory blocks and logic required for implementation. However,
these results show that the total memory requirements are actually reduced for a particular performance
target. It is important to note that we do reach a point of diminishing returns with Field Splitting. The aggre-
gation network can grow too large if too many splits are required to achieve a particularly low field overlap
threshold. In this case, the impact on worst-case SMA is minimal while the memory resource requirements
increase drastically due to the additional overhead. This situation is reflected in Figure 13(c) for filter set
fw5 with a field overlap threshold of three and memory word size of 288 bits.

The fifth and final set of simulations investigate the scalability of DCFL to additional filter fields. Using
the ClassBench tools suite, we generated three filter sets containing 16000 filters using the acl5 parameter
file. No smoothing or scope adjustments were applied. The first filter set was generated such that half of
the filters specifying the TCP or UDP protocols specified one non-wildcard field in addition to the standard
six filter fields (the 5-tuple plus protocol flags). The non-wildcard match condition was selected from a set
of 100 random values using a uniform random variable. The second and third filter sets were generated in
the same manner with two and four extra fields, respectively. Results from simulation runs are shown in
Figure 14. The slight improvement in worst-case SMA is attributable to two impetuses: (1) the additional
filter fields allow filters to be more specific, and (2) the additional filter fields are exact match fields and the
maximum fields overlap is at most two. As reflected in Figure 14(c), the increase in memory requirements
for an additional filter field is small for memory word sizes of 144 bits or less. Specifically, when using
144-bit memory words the memory requirements increase by 18 bytes per filter when adding a seventh
field, 17 bytes per filter when adding an eighth filter field, and 3 bytes per filter when adding the ninth filter
field. This is constitutes an average of 12.5 bytes per filter for each additional field. Given our reasonable
assumptions regarding the nature of additional filter fields in future filter sets, we assert that the performance
and scalability of DCFL will make it an even more compelling solution for packet classification as filter sets
scale in size and the number of filter fields.

10 Related Work

In general, there have been two major threads of research efforts addressing the packet classification prob-
lem: algorithmic and architectural. A few pioneering groups of researchers posed the problem, provided
complexity bounds, and offered a collection of algorithmic solutions [2, 18, 19, 7]. Subsequently, the de-
sign space has been thoroughly explored by many offering new algorithms and improvements upon existing
algorithms [20, 15, 4]. Given the inability of early algorithms to meet performance constraints imposed by
high speed links, researchers in industry and academia devised architectural solutions to the problem. This
thread of research produced the most widely-used packet classification device technology, Ternary Content
Addressable Memory (TCAM) [21, 22, 23, 24]. While they provide sufficient speed, current TCAM-based
solutions consume exorbitant amounts of power and hardware resources relative to implementations of ef-
ficient algorithms. Recent work has addressed many of the unfavorable aspects of current TCAM-based
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Figure 14: Performance results for synthetic filter sets containing 16k filters, generated with parameter file
from filter set acl5 with extra filter fields; call-outs highlight most pronounced effects (number of filter fields
given in parentheses).

solutions [25, 26]; however, there remain fundamental limits to their scalability and efficiency.

The most promising algorithmic research embraces the practice of leveraging the statistical structure of
filter sets to improve average performance [2, 20, 3, 18, 27]. Several algorithms in this class are amenable
to high-performance hardware implementation. New architectural research combines intelligent algorithms
and novel architectures to eliminate many of the unfavorable characteristics of current TCAMs [26]. We
observe that the community appears to be converging on a combined algorithmic and architectural approach
to the problem [28]. Our solution, Distributed Crossproducting of Field Labels (DCFL), employs this com-
bined approach to provide a scalable, high-performance packet classifier. [29] provides a thorough survey
of packet classification techniques using a taxonomy that frames each technique according to its high-level
approach. In this section, we highlight the sources of the key ideas and data structures which we distill
and utilize in DCFL. In order to demonstrate the value of our solution relative to the state of the art, we
also contrast it with two leading solutions which are arguably the top solutions from the algorithmic and
architectural threads.
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As clearly indicated by the name, DCFL draws upon the seminal Crossproducting technique introduced
by Srinivasan, Varghese, Suri, and Waldvogel [7]. DCFL avoids the exponential blowup in memory require-
ments experienced by Crossproducting by only storing the labels for unique match conditions and combina-
tions of match conditions present in the filter set. It retains high-performance by aggregating intermediate
results in a distributed fashion. Gupta and McKeown introduced Recursive Flow Classification (RFC) which
provides high lookup rates at the cost of memory inefficiency [2]. Similar to the Crossproducting technique,
RFC performs independent, parallel searches on “chunks” of the packet header, where “chunks” may or may
not correspond to packet header fields. The results of the “chunk” searches are combined in multiple phases,
rather than a single step as in Crossproducting. The result of each “chunk” lookup and aggregation step in
(RFC) is an equivalence class identifier, eqID, that represents the set of potentially matching filters for the
packet. There is a subtle, yet powerful difference between the use of equivalence classes in RFC and field
labels in DCFL. In essence, the number of labels in DCFL grows linearly with the number of unique match
conditions in the filter set. The number of eqIDs in RFC depends upon the number of distinct sets of filters
that can be matched by a packet. The number of eqIDs in an aggregation step scales with the number of
unique overlapping regions formed by filter projections. Another major difference between DCFL and RFC
is the means of aggregating intermediate results. RFC lookups in “chunk” and aggregation tables utilize
indexing, causing RFC to make very inefficient use of memory. The index tables used for aggregation also
require significant precomputation in order to assign the proper eqID for the combination of the eqIDs of
the previous phases. Such extensive precomputation precludes dynamic updates at high rates. As we have
shown, DCFL uses efficient set membership data structures which can be engineered to provide fast lookup
and update performance. Each data structure only stores labels for unique field combinations present in
the filter set; hence, they make efficient use of memory and do not require significant precomputation. In
order to illustrate the differences between RFC and DCFL, we provide an example of an RFC search for
two “chunks” of a search on n “chunks” in Figure 15. The squares [a . . . l] represent the unique projections
of the two “chunks” x and y for all filters in a filter set. The number of eqIDs for the “chunk” lookups is 11
for each dimension x and y, as 11 unique sets of filters are formed by the projections onto the x and y axes.
Since RFC utilizes indexing for lookups, each “chunk” table requires 2b entries, where b is the size in bits of
the “chunk”. Note that if the number of unique projections were labeled as in DCFL, only six labels for each
dimension would be required, and the set membership data structure would only need to store six entries.
In order for RFC to aggregate the eqIDs from “chunks” x and y, it must compute all of the unique sets of
filters for the two-dimensional overlaps. As shown in Figure 15, this results in 25 eqIDs. The aggregation
table requires 24+4 = 256 entries, as eqID(x) and eqID(y) are four bits in size and RFC utilizes indexing to
find eqID(x,y). Note that in DCFL, a label would simply be assigned to each unique 2-d projection [a . . . l]
and stored in a set membership data structure. In general, DCFL can provide line-speed lookups, like RFC,
but with much more efficient use of memory and support for dynamic updates at high rates.

Our approach also shares similarities with the Parallel Packet Classification (P 2C) scheme introduced
by van Lunteren and Engbersen [28]. Specifically, both DCFL and P 2C fall into the class of techniques
using independent field searches coupled with novel encoding and aggregation of intermediate results. The
primary advantage of DCFL over P 2C is its use of SRAM and amenability to implementation in commodity
hardware technology; P 2C requires the use of a separate TCAM or a custom ASIC with embedded TCAM.
DCFL also provides more efficient support of dynamic updates.

Given the volume of work in packet classification, we must show how our technique adds value to the
state of the art. In our opinion, HyperCuts is one of the most promising new algorithmic solutions [27].
Introduced by Singh, Baboescu, Varghese, and Wang, the algorithm improves upon the HiCuts algorithm
developed by Gupta and McKeown [18] and also shares similarities with the Modular Packet Classification
algorithms introduced by Woo [4]. In essence, HyperCuts is a decision tree algorithm that attempts to min-
imize the depth of the tree by selecting “cuts” in multi-dimensional space that optimally segregate packet
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Figure 15: Contrast between unique match condition labels in Distributed Crossproducting of Field Labels
(DCFL) and equivalence class identifiers (eqIDs) in Recursive Flow Classification; example shows two
fields of a d field search. Squares [a . . . l] represent the unique projections of two fields x and y for all filters
in a filter set.

filters into lists of bounded size. According to performance results given in [27], traversing the HyperCuts
decision tree required between 8 and 35 memory accesses, and memory requirements for the decision tree
ranged from 5.4 to 145.9 bytes per filter. We assert that DCFL exhibits advantages in all metrics of interest:
worst-case SMA, memory requirements, and dynamic update performance. DCFL also provides the opportu-
nity to strike a favorable tradeoff between performance and memory requirements, as the various parameters
may be tuned to achieve the desired results. All new algorithmic approaches must make a strong case for
their advantage relative to Ternary Content Addressable Memory (TCAM). Due to its performance, effi-
ciency, scalability, and use of commodity hardware technology, DCFL has the ability to provide equivalent
lookup performance at much lower cost and power consumption.

11 Conclusions

By transforming the problem of aggregating results from independent field search engines into a distributed
set membership query, Distributed Crossproducting of Field Labels (DCFL) avoids the exponential increases
in time and memory required by previous approaches. We introduced several new concepts including field
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labeling, Meta-labeling unique field combinations, and Field Splitting, as well as optimized set membership
data structures such as Bloom Filter Arrays that minimize the number of memory accesses required to
perform a set membership query. Using a combination of real and synthetic filter sets, we demonstrated that
DCFL can achieve over 100 million searches per second using existing hardware technology. Furthermore,
we have also shown that DCFL retains its lookup performance and memory efficiency when the number of
filters and number of fields in the filters increases. Scalability to classify on additional fields is a distinct
advantage DCFL exhibits over existing decision tree algorithms and TCAM-based solutions. We continue
to explore optimizations to improve the search rate and memory efficiency of DCFL. We also believe that
DCFL has potential value for other searching tasks beyond traditional packet classification.
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A Introduction to Bloom Filters

A Bloom filter is essentially a bit-vector of length m used to efficiently represent a set of messages. Given
a set of messages X with n members, the Bloom filter is “programmed” as follows. For each message xi

in X , k hash functions are computed on xi producing k values each ranging from 1 to m. Each of these
values address a single bit in the m-bit vector, hence each message xi causes k bits in the m-bit vector to be
set to 1. Note that if one of the k hash values addresses a bit that is already set to 1, that bit is not changed.
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Querying the filter for set membership of a given message x is similar to the programming process. Given
message x, k hash values are generated using the same hash functions used to program the filter. The bits
in the m-bit long vector at the locations corresponding to the k hash values are checked. If at least one of
the k bits is 0, then the message is declared to be a non-member of the set. If all the bits are found to be 1,
then the message is said to belong to the set with a certain probability. If all the k bits are found to be 1 and
x is not a member of X , then it is said to be a false positive. This ambiguity in membership comes from the
fact that the k bits in the m-bit vector can be set by any of the n members of X . Thus, finding a bit set to 1
does not necessarily imply that it was set by the particular message being queried. However, finding a 0 bit
certainly implies that the the message does not belong to the set, since if it were a member then all k-bits
would have been set to 1 when the Bloom filter was programmed.

The following is a derivation of the false positive probability. The probability that a random bit of the m-
bit vector is set to 1 by a hash function is simply 1

m
. The probability that it is not set is 1− 1

m
. The probability

that it is not set by any of the n members of X is (1 − 1
m

)n. Since each of the messages sets k bits in the
vector, it becomes (1 − 1

m
)nk. Hence, the probability that this bit is found to be 1 is 1 − (1 − 1

m
)nk. For a

message to be detected as a possible member of the set, all k bit locations generated by the hash functions
need to be 1. The probability that this happens, f , is given by

f =

(

1−

(

1−
1

m

)nk
)k

(10)

for large values of m the above equation reduces to

f ≈
(

1− e
−nk
m

)k
(11)

Since this probability is independent of the input message, it is termed the false positive probability. The
false positive probability can be reduced by choosing appropriate values for m and k for a given size of
the member set, n. For a given ratio of m

n
, the false positive probability can be reduced by increasing the

number of hash functions, k. In the optimal case, when false positive probability is minimized with respect
to k, we get the following relationship

k =
m

n
ln 2 (12)

The false positive probability at this optimal point is given by

f =

(

1

2

)k

(13)

It should be noted that if the false positive probability is to be fixed, then the size of the filter, m, needs to
scale linearly with the size of the message set, n.

B Port Range Analysis

We examined the port ranges specified by filters in the 12 real filter sets and the distribution of filters over
the unique values. In order to observe trends among the various filter sets, we define five classes of port
ranges:

• WC, wildcard

• HI, ephemeral user port range [1023 : 65535]
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Table 5: Distribution of filters over the five port classes for source and destination port range specifications;
values given as percentage (%) of filters in the filter set.

Set Source Port Destination Port
WC HI LO AR EM WC HI LO AR EM

acl1 100.0 0.00 0.00 0.00 0.00 30.42 0.00 0.00 11.60 57.98
acl2 100.0 0.00 0.00 0.00 0.00 69.34 0.64 0.00 7.06 22.95
acl3 99.92 0.00 0.00 0.00 0.08 9.25 13.96 0.00 11.04 65.75
acl4 99.93 0.00 0.00 0.00 0.07 8.56 12.15 0.00 11.21 68.08
acl5 100.0 0.00 0.00 0.00 0.00 30.00 4.08 0.00 5.20 60.72
fw1 77.74 8.13 0.00 0.35 13.78 31.10 8.13 0.00 0.35 60.42
fw2 38.24 17.65 0.00 0.00 44.12 100.0 0.00 0.00 0.00 0.00
fw3 77.72 5.98 0.00 0.54 15.76 27.72 5.98 0.00 0.54 65.76
fw4 10.98 42.05 10.98 1.52 34.47 13.26 18.94 0.76 1.14 65.91
fw5 75.62 5.00 0.00 0.62 18.75 35.62 3.75 0.00 1.25 59.38
ipc1 82.84 0.35 0.00 2.00 14.81 55.46 6.52 0.00 2.53 35.49
ipc2 73.96 0.00 0.00 0.00 26.04 73.96 0.00 0.00 0.00 26.04
AVG 78.08 6.60 0.92 0.42 13.99 40.39 6.18 0.06 4.33 49.04

• LO, well-known system port range [0 : 1023]

• AR, arbitrary range

• EM, exact match

Motivated by the allocation of port numbers, the first three classes represent common specifications for a
port range. The last two classes may be viewed as partitioning the remaining specifications based on whether
or not an exact port number is specified. Table 5 shows the distribution of filters over the five port classes
for both source and destination ports. We observe some interesting trends in the data. With rare exception,
the filters in the ACL filter sets specify the wildcard for the source port. A majority of filters in the ACL
filters specify an exact port number for the destination port. Source port specifications in the other filter sets
are also dominated by the wildcard, but a considerable portion of the filters specify an exact port number.
Destination port specifications in the other filter sets share the same trend, however the distribution between
the wildcard and exact match is a bit more even. After the wildcard and exact match, the HI port class is
the most common specification. A small portion of the filters specify an arbitrary range, 4% on average
and at most 12%. Only one filter set contained filters specifying the LO port class for either the source or
destination port range.

In the interest of designing efficient data structures, we now examine the number of unique specifications
in the AR and EM classes. Checking for matches in the first three classes is trivial. As shown in Table 6, the
number of unique specifications in the AR class is small relative to the size of the filter set. Consisting of 50
ranges, the largest set of arbitrary ranges may be efficiently searched using a simple interval tree. Likewise
the number of specifications in the EM class is also small, thus a simple hash table would be sufficient to
search this set of ranges.

The combination of source and destination port range specifications has a significant effect on several
packet classification techniques. This is especially true of TCAM due to the need to convert arbitrary range
pairs into pairs of prefixes. In order to assess the effect of this conversion, we computed the number of
TCAM entries required to store each filter set. We refer to the Expansion Factor as the ratio of TCAM
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Table 6: Number of unique specifications in the Arbitrary Range (AR) and Exact Match (EM) port classes
for source and destination port ranges.

Set Size Source Port Destination Port
AR EM AR EM

acl1 733 0 0 34 73
acl2 623 0 0 1 24
acl3 2400 0 2 36 152
acl4 3061 0 2 50 183
acl5 4557 0 0 3 35
fw1 283 1 10 1 40
fw2 68 0 7 0 0
fw3 184 1 6 1 36
fw4 264 3 22 3 44
fw5 160 1 8 2 29
ipc1 1702 5 27 7 45
ipc2 192 0 2 0 2

entries to filter set size, which can be thought of as the average number of TCAM entries required by each
filter in the filter set. As shown in Table 7, a filter set may require that a TCAM provide more than six entries
for every filter. On average, the filter sets required 2.25 entries per filter. While this is considerably less than
the worst case of 900 entries per filter, yet it remains a large source of inefficiency. The magnitude of the
Expansion Factor is not the only challenge. Note the high variance in the Expansion Factor among the filter
sets; this presents a challenge in designing systems, as the filter storage capacity varies widely with filter set
composition.
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Table 7: Number of entries required to store filter set in a standard TCAM.

Set Size TCAM Expansion
Entries Factor

acl1 733 997 1.3602
acl2 623 1259 2.0209
acl3 2400 4421 1.8421
acl4 3061 5368 1.7537
acl5 4557 5726 1.2565
fw1 283 998 3.5265
fw2 68 128 1.8824
fw3 184 554 3.0109
fw4 264 1638 6.2045
fw5 160 420 2.6250
ipc1 1702 2332 1.3702
ipc2 192 192 1.0000
Average 2.3211
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