
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-35

2004-06-21

Supporting Generalized Context Interactions Supporting Generalized Context Interactions

Gregory Hackmann, Christine Julien, Jamie Payton, and Gruia-Catalin Roman

Context-awareness refers to a computing model where ap-plication behavior is driven by a

continually-changing environment. Mobile computing poses unique challenges to context-

sensitive applications and middleware, including the ability to run on resource-poor devices like

PDAs and the necessity to limit assumptions about the underlying network. Though middleware

exists to provide context-awareness to applications, they have not been designed with the

limitations inherent in dynamic mobile environments in mind. This paper discusses a

lightweight approach to context-sensitivity that takes into account these considera-tions. We

explore the use of modularization to tailor service discovery policies for specific applications, as

well as... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Hackmann, Gregory; Julien, Christine; Payton, Jamie; and Roman, Gruia-Catalin, "Supporting Generalized
Context Interactions" Report Number: WUCSE-2004-35 (2004). All Computer Science and Engineering
Research.
https://openscholarship.wustl.edu/cse_research/1008

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1008?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1008

Supporting Generalized Context Interactions Supporting Generalized Context Interactions

Gregory Hackmann, Christine Julien, Jamie Payton, and Gruia-Catalin Roman

Complete Abstract: Complete Abstract:

Context-awareness refers to a computing model where ap-plication behavior is driven by a continually-
changing environment. Mobile computing poses unique challenges to context-sensitive applications and
middleware, including the ability to run on resource-poor devices like PDAs and the necessity to limit
assumptions about the underlying network. Though middleware exists to provide context-awareness to
applications, they have not been designed with the limitations inherent in dynamic mobile environments in
mind. This paper discusses a lightweight approach to context-sensitivity that takes into account these
considera-tions. We explore the use of modularization to tailor service discovery policies for specific
applications, as well as leveraging existing language constructs for simplifying the creation and
aggregation of different con-text types. We also discuss a Java implementation of these concepts, along
with three sample applications that can automatically propagate changes in context to clients running on
devices varying from mobile phones to desktop computers.

https://openscholarship.wustl.edu/cse_research/1008?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1008?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages

Supporting Generalized Context Interactions

Greg Hackmann, Christine Julien, Jamie Payton, and Gruia-Catalin Roman

Department of Computer Science and Engineering
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA

{ghackmann, julien, payton, roman}@wustl.edu

Abstract. Context-awareness refers to a computing model where ap-
plication behavior is driven by a continually-changing environment. Mo-
bile computing poses unique challenges to context-sensitive applications
and middleware, including the ability to run on resource-poor devices
like PDAs and the necessity to limit assumptions about the underlying
network. Though middleware exists to provide context-awareness to ap-
plications, they have not been designed with the limitations inherent in
dynamic mobile environments in mind. This paper discusses a lightweight
approach to context-sensitivity that takes into account these considera-
tions. We explore the use of modularization to tailor service discovery
policies for specific applications, as well as leveraging existing language
constructs for simplifying the creation and aggregation of different con-
text types. We also discuss a Java implementation of these concepts,
along with three sample applications that can automatically propagate
changes in context to clients running on devices varying from mobile
phones to desktop computers.

1 Introduction

Traditionally, context-aware computing refers to an application’s ability to adapt
to changes in its environment. For example, calendar or reminder programs [1]
use time to display pertinent notifications to users. Tour guide applications [2, 3]
display different information based on the user’s current physical location. Still
other programs implicitly attach context information to data, e.g., to research
notes taken in the field [4]. Each of these applications independently gathers con-
text information from the required sensors and tailors the provision of context.

With the increasing popularity of communicating mobile devices, context-
aware computing has moved from a target environment of an autonomous device
gathering information single-handedly to a sophisticated network of connected
devices, all providing context information to each other. This enables powerful
context-aware applications that allow complex interactions across a dynamic net-
work of heterogeneous devices. Presenting this context information to software
engineers, however, has received little attention. Building existing context-aware
applications like those mentioned above required each developer to individualize

his treatment of context information and independently construct mechanisms
to monitor and collect the necessary context information.

In this paper, we introduce CONSUL, a middleware solution that simplifies
access to context information. By providing abstractions, we allow novice pro-
grammers to build applications that utilize context information collected from
a heterogeneous environment. We significantly simplify the development task
by removing the need to handle the intricate network programming necessary
to collect the information and instead present an accessible yet expressive and
extensible interface for using context information.

In the next section, we outline the requirements of a context monitoring
middleware for dynamic mobile environments. Section 3 examines existing so-
lutions and evaluates them for use in our target environment. Section 4 details
the architecture and implementation of CONSUL, and Section 5 discusses three
sample applications developed with the middleware. Finally, conclusions appear
in Section 6.

2 Problem Definition

Context items are pieces of data sensed about the environment e.g., location,
temperature, link latency, etc. The environment is open, meaning hosts con-
tributing context information can join or leave the network at any time. We as-
sume a heterogeneous and dynamic environment containing resource constrained
devices such as environmental sensors, cellphones, PDAs, and laptops.

The programming tasks associated with collecting and monitoring context
in such an environment can be burdensome. A programmer must identify the
desired source, contact the provider and collect the context items, and interpret
the information. Typically, these tasks are achieved through the use of network
programming mechanisms that require the programmer to know the identity and
location of the context provider. In open and dynamic environments, it is often
infeasible to rely on such a priori knowledge. Mobility compounds the problem
since the movement of context providers requires the programmer to manage
network disconnections. In addition, given the wide array of devices available and
the multitude of applications that run on them, the collected pieces of context
are likely to be captured in diverse formats that require unification. Finally, the
set of available context items available is not static; applications continuously
inject context items into the operational environment.

We aim to simplify application development by reducing the complexity of
handling context collection and monitoring in dynamic environments. We achieve
this goal through a middleware that hides the details of these tasks. The following
are requirements of such a middleware infrastructure.

– Decoupled communication. We must assume no advance knowledge of
communication partners.

– Transparent monitoring of context. Issues associated with distribution,
mobility, and unpredictable connectivity between users and providers of con-
text should be hidden. Moreover, the process of determining how context

changes are presented to an application should be relegated to the infras-
tructure.

– Generalized treatment of context. Context should be generalized so
that applications interact with different types of context information in a
similar manner.

– Extensibility. Given the openness of the environment, the infrastructure
should adapt to the inclusion of new context users and providers with little
or no intervention from a system administrator.

– Scalability. To scale to large networks, a decentralized solution is necessary.
– Accommodate small devices. The middleware primitives must have a

lightweight implementation to account for resource-constrained participants.

In the remainder of the paper, we examine how current solutions fall short
of meeting these requirements and propose a new middleware infrastructure
designed to facilitate rapid development of context-aware applications.

3 Related Work

Though current approaches to context-aware middleware contain weaknesses
that limit their applicability to dynamic environments, they also contain many
desirable characteristics. It is important to identify these beneficial features so
that they may be preserved in CONSUL, while at the same time noting their
shortcomings so that they can be rectified. In this section, we review examples
of systems which support context-aware application development. We do not
attempt an exhaustive review, focusing instead on three well-known systems
that have interesting features: Stick-e Notes, CALAIS, and the Context Toolkit.
For brevity, other such context-aware support systems such as CoolTown [5],
Gaia [6], and Confab [7] are not discussed here; the interested reader is referred
to their references.

3.1 Stick-e Notes

Stick-e Notes [8, 9] serves as a precursor for many context-sensitive middlewares.
Notably, its approach favors ease-of-use, which differentiates it from many other
models. In Stick-e Notes, virtual “sticky notes” are attached to physical phe-
nomenon like times, places, and events. The decision of when a note is in context
is included within the note itself; the SGML structure of the Stick-e Note in-
cludes a section to semantically describe when a note is to be triggered. Exactly
what it means to trigger a note, and what that note’s contents describe, is left
to the discretion of the client application.

This model is unique in that end-users need only basic knowledge of SGML
and no programming knowledge to create notes. However, significant trade-offs
are made for the sake of ease-of-use. First, the context is determined by the
note itself and not the client, which limits flexibility. For example, a note may
be triggered when the user enters a certain range of locations. However a user

traveling in a car may wish to trigger notes within a greater range of distances
than a user on foot; this is not possible under the Stick-e Notes model, since
this decision is not made by the client. In addition, the model provides no way
to disseminate these notes; it is simply assumed that the client either has them
in local storage or can obtain them using some external mechanism. This limits
the applicability of this model to dynamic environments.

3.2 CALAIS

CALAIS [10] offers an alternative for providing location-based context. It pro-
vides a platform-independent way for applications to register themselves with
sensors, which in turn use callbacks to notify applications of changes in their
state. Location information is stored in a central database, which tracks physical
objects (like Active Badges [11]) and uses spatial algorithms to determine which
room contains these objects. This location information can be automatically de-
livered to registered applications. A simple language allows individual contexts
to be aggregated into more-complex contexts. The use of callback and context
aggregation addresses the most serious shortcomings of the Stick-e Notes design
by allowing the client to determine context from a number of sources, which
automatically notify the client of any change in state.

CALAIS relies extensively on CORBA, which is heavyweight and thus poorly-
suited for many mobile devices. Additionally, it is geared for a specific type of
contextual information. Finally, the design of the location service necessitates a
central server capable of processing complex spatial relationships, which places
extra requirements on the network and raises issues of performance in an envi-
ronment where many objects are being simultaneously tracked.

3.3 Context Toolkit

The Context Toolkit [12] expands on the idea of context-sensitivity while avoid-
ing many of the shortcomings of the Stick-e Notes and CALAIS models. Hooks
are provided for automatically discovering varied kinds of resources (known as
“widgets”) that provide context, and these contexts can be aggregated within the
middleware to form more complex contexts. Unlike CALAIS, Context Toolkit
does not depend on any specific back-end for communication between devices;
by default it uses XML over HTTP for communication, but this can be swapped
out to accommodate networks where this is not feasible.

This model is not without its own shortcomings. First, the Context Toolkit
middleware is extremely large and complex, which restricts its use to devices
capable of handling such a large code library. As noted in [13], this complexity
also hinders the task of creating new widgets. Finally, the movement of context
aggregation functionality away from the client and into the middleware unnec-
essarily limits the type of aggregations that can be performed.

3.4 Observations

Despite their shortcomings, these systems identify several desirable character-
istics of context-sensitive middleware. These characteristics, further refined in
[14], form a list of challenges that must be met when writing such a middleware.
First, the context providing infrastructure must work independently of platform
and programming language. Second, the system should adapt to the addition,
replacement, or removal of resources providing context. Moreover, the system
should be able amenable to mobile, dynamic environments, providing the ability
to adapt to changing contexts and a mechanism to propagate context changes to
applications. Third, the infrastructure must require minimal administration to
be able to scale to large numbers of devices. Fourth, context should be treated
universally to promote code reuse. Finally, to allow incorporation of resource-
constrained devices, the middleware must remain lightweight.

4 A Middleware for Environmental Monitoring

From the above review, we can see that existing solutions fall short of meet-
ing application needs, most specifically in handling the needs of applications on
resource-constrained devices operating in highly dynamic networks. To address
these concerns, we have developed CONSUL (CONtext Sensing User Library).
In the creation of this middleware, the overarching goal was to provide applica-
tion developers access to context information through a simplified interface that
eases the programming task and places the ability to build context-aware appli-
cations in the hands of novice programmers. The architecture of the resulting
middleware is shown in Figure 1. In the figure, the solid gray components de-

Sensor Monitoring

Discovery Message Sensing

Physical Network

Application

Fig. 1. The architecture of an application using the sensor monitoring and sensing
capabilities.

fine CONSUL. The white components we assume to exist, and the cross-hatched
component is what an application developer provides. Throughout this section,
we will discuss the implementation of the components of this middleware and
show how application programmers use the infrastructure to build expressive
and flexible context-aware applications.

4.1 Foundational Components

In building a middleware for sensing information from a dynamically changing
network, we assumed the existence of several service components. As shown in
Figure 1, CONSUL builds on a physical network. This layer of the architecture
includes the physical hosts and the connections (wired or wireless) that allow the
hosts to communicate. On top of this, our middleware also relies on an existing
message passing mechanism.

The final component in Figure 1 that we assume to exist is a component for
network discovery that allows a host to find its neighbors. For the remainder
of this paper, unless otherwise explicitly specified, we are relying on the sim-
plest discovery mechanism: one that keeps a host informed of all of its one-hop
neighbors, i.e., all other hosts in the network that the host can directly commu-
nicate with. We have intentionally separated the choice of discovery mechanism
from the sensing functionality because different application domains will require
different definitions of network neighborhoods. By allowing each application to
select its own discovery mechanism, CONSUL remains as flexible and general as
possible.

4.2 CONSUL

As shown in Figure 1, two components contribute to providing the environmen-
tal monitoring functionality: the sensing component and the sensor monitoring
component. Figure 2 shows the internal class diagrams for these two components
and how they interact with each other and the application.

Sensing. The sensing component allows software to interface with sensing de-
vices connected to a host. Each of these sensing devices has a corresponding piece
of software, a monitor. In CONSUL, each monitor extends an AbstractMonitor
base class that provides unified functionality. In general, each monitor contains
its current value in a variable (e.g., the value of a location monitor might be
represented by a variable of type Location) and contains a method that al-
lows applications to access the value (through the getMonitorValue() method).
An application can also react to changes in the values by implementing the
MonitorListener interface and registering itself with the particular monitor.
When a programmer extends the sensing functionality to add a new monitor, he
must extend the AbstractMonitor base class. The extending class must ensure
that the monitor’s value is kept consistent with the current state of the envi-
ronment. Changes to this variable should be performed through the setValue()
method in the base class to ensure that any listeners registered for changes to
the variable are notified.

Figure 3 demonstrates the programming task through an example class that
extends AbstractMonitor to collect information from a GPS device. From the
perspective of our package, the important pieces are how the extending class
interacts with the base class. The details of communicating with a particular
GPS device are omitted; their complexity is directly dependent on the particular
device and its programming interface.

Sensor Monitoring Sensing

Monitor
Registry

Abstract
Monitor

0..* Monitor
Listener

0..*

Monitor
Value

getM
onitor

addM
onitorListener

m
on
ito
rE
ve
nt
R
ec
ei
ve
d

Im
plem

ents

getM
onitorV

alue

getR
em
oteM

onitor

Application

Remote
Monitor

Extends

Fig. 2. The internal class diagrams of the sensor monitoring and sensing components
of CONSUL

public class GPSMonitor extends AbstractMonitor{
public GPSMonitor(...){
//call the AbstractMonitor constructor

super("GPSLocation");

//set up serial connection to GPS receiver

...

}
public void serialEvent(SerialPortEvent event){
//handle periodic events from GPS receiver

...

//turn GPS event into a GPSLocation object

...

//set local value variable, notify listeners

setValue(gpsLocation);

}
}

Fig. 3. The GPSMonitor Class

To assist application developers with the use of the sensing component of the
architecture, we provide several MonitorValues that they can use when building
their software monitors or when constructing more complex MonitorValues.
These values reside in a library that application developers can add new types
to as they create them. For example, the library contains an IntValue that can
be used for sensors whose state can be represented as a single integer value.
There are also aggregate values in the library, e.g., DateValue, that build on

public class GPSLocation extends ArrayValue {
public GPSLocation(double latitude, double longitude) {
super(new IMonitorValue [] {
new DoubleValue(latitude), new DoubleValue(longitude)

});
});
public double getLatitude() {
return ((DoubleValue)getValues()[0]).getValue();

}
public double getLongitude() {
return ((DoubleValue)getValues()[1]).getValue();

}
}

Fig. 4. The GPSLocation Class

the simple value types. In addition to being available for developers to use, they
also serve as examples for defining new values for new monitors. Figure 4 shows
a class that extends ArrayValue to aggregate GPS coordinates (represented by
DoubleValues).

Sensor Monitoring. The higher-level sensor monitoring component we pro-
vide maintains a registry of monitors available on the local hosts and hosts within
the neighborhood (as determined by the discovery package). The former are re-
ferred to as local monitors and the latter as remote monitors. As described above,
the former are created to make the services available on a host accessible to appli-
cations. To monitor context information on hosts in the network neighborhood,
the monitor registry creates RemoteMonitors that connect to concrete monitors
on remote hosts. These RemoteMonitors serve as proxies to the actual monitors;
when the values change on the monitor on the remote host, the RemoteMonitor’s
value is also updated. This is accomplished within the sensor monitoring com-
ponent using the MonitorListener interface. To gain access to local monitors,
the application requests them by name (e.g., “Location”) from the registry. The
registry returns a handle to the local monitor to the application. To access re-
mote monitors, the application must also provide the ID of the host (which can
be retrieved from the particular discovery package in use) and the name of the
monitor. When this request occurs (through the getRemoteMonitor() method
in the registry), the monitor registry creates the proxy on the local host, connects
it to the remote monitor, and returns a handle of the proxy to the application.
The application can then interact with the remote monitor as if it was a local
monitor.

The next section shows how developers use CONSUL by creating monitors,
registering them, and interacting with both local and remote monitors.

5 Example Applications

In this section, we present three applications including a stock viewer, a smart
room, and support of a mobile communication protocol. For each of these ap-
plications we show how using CONSUL extensively simplified the programming
task.

5.1 Stock Viewer

In our first example, an application provides stock quotes to handheld devices.
Behind the scenes, one or more central servers advertise stock information by
acting as monitors. A client running on J2ME-enabled devices automatically
discovers these advertised stocks and displays them to the user. The user can
then select a stock from the list of monitors and view its current value. As
discussed below, implementing the stock ticker using the CONSUL middleware
is fairly straightforward and requires minimal “from scratch” coding.

Fig. 5. Left: the client stock ticker on a mobile phone emulator, displaying a list of
discovered stock monitors. Right: the client displaying the value of a selected stock.

A stock’s value consists of its ticker symbol; current, low, and high dollar
values; trading volume; and company name. Creating a custom StockValue
class simply requires aggregating the predefined StringValue, IntValue, and
DoubleValue classes in an ArrayValue.

The stock monitor inherits its ability to automatically notify clients of
changes from the existing AbstractMonitor class. The implementation of the
StockMonitor class requires only a call to AbstractMonitor’s setValue()
method to update its value and propagate the updated value to clients. The
server benefits from similar substantial code re-use. As shown in Figure 6, the

server is implemented using only a few calls to existing classes in CONSUL. The
simple code snippet shown assembles a fully-functioning context server from the
CONSUL components and the two classes mentioned above. In the code shown,
the first three lines start a device-discovery server. Then, a registry is created on
a particular port (p) using a simple constructor to allow remote hosts to query lo-
cal monitors on port p. The final lines are specific to the stock ticker application;
they create local monitors for the MSFT, YHOO, and T stock tickers.

DiscoveryServer discovery = DiscoveryServer.getServer();

discovery.setProxy(true);

discovery.start();

MonitorRegistry registry = new MonitorRegistry(p);

registry.addMonitor(new StockMonitor("MSFT"));

registry.addMonitor(new StockMonitor("YHOO"));

registry.addMonitor(new StockMonitor("T"));

Fig. 6. A Stock Ticker Server

The client application gains most of its functionality from the predefined
discovery server and monitor registry components. Once the code for the user
interface (UI) has been written, adding all of the functionality to find and update
stock context information is almost trivial: four lines of code to begin finding
stock servers, six lines to listen to monitors on discovered servers, and two lines
to receive updated stock values. The extensive code re-use illustrated above
allows rapid development of context-aware applications, shifting development
effort away from the back-end and allowing more development time to be focused
on the UI.

Though this sample application only includes one client application, the use
of CONSUL means that the server is not tied to any specific client. This allows
for a wide variety of custom clients that can present stock information in different
ways, such as a client that runs in the background and pops up a notification
when a specific stock reaches a certain price.

Since CONSUL is extremely lightweight, the client can easily be run on
resource-poor devices like mobile phones, provided they have a J2ME runtime
and are network-enabled. The stock viewer application bundled with all of the
required libraries consumes only 48 kilobytes of storage space. This small size
also means that it is feasible to send the application to mobile devices over-the-
air and discard it when the user is done.

The use of context-aware middleware places one restriction on the devices
being used as clients: they need full IP networking support. In this sample appli-
cation, the server obtains its stock information from a Web service. Web services
have one distinct advantage over full-scale context-aware middleware: the clients

only need basic HTTP networking support as opposed to full IP support. This
drawback does not necessarily reflect a general shortcoming of our middleware,
but rather raises the issue of how useful context-sensitivity is in this scenario;
stock information is widely available from multiple well-known sources on the In-
ternet. Despite our middleware’s small footprint, from a practical point-of-view
it may still be overkill for retrieving stock quotes. The need for context-sensitive
middleware is more pressing when the sources of contextual information are not
public or must be discovered at runtime, as in the next example.

5.2 RFID-Activated Smart Room

In our second sample application, a server uses an attached RFID scanner to
provide information about who is currently in a room. Information about the
presence of users is provided to the server through the use of wearable RFID tags
that interact with an RFID scanner. A separate client computer has predefined
playlists for each person who might enter the room. This computer uses the
continuously-updated list of people in the room to play music using the freely
available Winamp media player; it selects music from a “master” playlist made
by intersecting the playlists of everyone in the room.

This client computer in turn has a monitor that provides information about
the current song being played, which can be displayed on a handheld computer.
Another computer combines the MP3 player’s context with the RFID context
information to serve a Web page with a list of people currently in the room and
the music currently playing.

Fig. 7. Left: a client running on a PocketPC showing the current song being played.
Right: a Web page showing the current song being played and the people in the room.

Unlike the previous example, these contexts are not publicly available on the
Internet nor available from well-known sources, so the use of device discovery
is integral to this application. We also expect the playlist to be updated in
real time as people enter and leave the room. This means that the client requires
“push” service, which CONSUL provides; Web services inherently provide “pull”
information only.

The code to add context-sensitivity to the smart room application is very
similar to that in the previous section. Thus, for the sake of space we will not
reiterate the implementation in detail. Interestingly, the computer running the
MP3 player acts both as a recipient of context information (a list of people in
the room) and as a provider (the current song being played). Once the RFID
client was written, extending it to serve the MP3 player’s contextual information
required only a single line of code to instantiate a WinampMonitor and add it to
the same MonitorRegistry that was already being used to receive contextual
information from the RFID server.

Since all of the context monitors in the room are re-usable components,
extending this application is straightforward and transparent to the application.
For example, a computer connected to an X10 controller could use the RFID
context to automatically turn the lights off when the room is empty.

This application demonstrates that the monitors and values constructed us-
ing CONSUL are re-usable components just as CONSUL itself is. Multiple clients
use the contextual information provided by the RFID monitor and MP3 player
monitor for different purposes, and the Web server drew context from multi-
ple services. The MonitorRegistry class handles this transparently to the pro-
grammer, so the programmer is simply assembling applications from re-usable
components.

Currently, the device discovery mechanism does not allow programmers to
search for specific types of devices. Instead, clients interested in context infor-
mation are given a list of all the devices in the room. They must then collect a
list of monitors running on the devices and select one or more monitors based
on their names. This requires us to make the assumption that the names of the
monitors reflect their function. For example, the clients interested in RFID infor-
mation search for monitors named “RFID” on discovered devices. This problem
can be avoided by replacing the existing device discovery mechanism with a
more-sophisticated method of discovering devices.

5.3 Ad Hoc Mobile Communication Protocol

The Network Abstractions protocol [15] provides context-sensitive routing in ad
hoc networks. To accomplish this, the protocol requires monitoring the values
of sensors on the local host and on hosts that are directly connected in an ad
hoc wireless network. This protocol allows an individual application to limit
its operating context to a neighborhood within the ad hoc network. To allow
the size and scope of this neighborhood (or context) to be determined by the
application-specific needs, each application can specify an abstract metric over
arbitrary properties of hosts and links in the network. This metric calculates

a logical distance from the application’s local host to any other host in the
network. The metric includes a bound on allowable distances that restricts the
hosts belonging to the neighborhood. As a simple example, an application might
want to communicate with all other hosts within three miles.

An implementation of this protocol can benefit from the use of CONSUL in
providing access to the properties of hosts and links that define the protocol’s
metrics. Coupled with a network discovery component that maintains a list of
exactly the one-hop neighbors, CONSUL relieves the protocol implementer and
user from concerns associated with maintaining a consistent view of the values
of the relevant sensors on the local host and remote hosts. For example, when
the protocol wants to build a new context that it maintains over time, even as
the properties of the network changes, it can use the code in Figure 8 to register
itself as a listener for the appropriate monitors. When changes in the monitor
values occur, the protocol is automatically notified and can change the structure
of the routing paths as needed.

ContextMonitorListener cml = new ContextMonitorListener(...);

AbstractMonitor m = registry.getMonitor("GPSLocation");

m.addMonitorListener(cml);

for(int i=0; i<neighbors.length; i++){
AbstractMonitor m2

= registry.getRemoteMonitor("GPSLocation", neighbors[i]);

m2.addMonitorListener(cml);

}

Fig. 8. A Portion of the Network Abstractions Protocol using CONSUL

The code in the figure explains how, on behalf of a single application, the
protocol uses CONSUL to provide the information needed to build a network ab-
straction based on relative physical locations. The first line of the displayed code
simply creates an instance of a monitor listener (the ContextMonitorListener).
The protocol then retrieves the local instance of the GPSMonitor and adds the
created listener to the monitor. This allows the protocol to be notified when the
local host’s location changes. Because the network abstractions metric is based
on the physical distance between hosts in the network, the protocol must also
register as a listener for changes in all of the one-hop neighbor’s locations. This
functionality is contained in the second portion of the code that, for each neigh-
bor (in a list retrieved from a neighbor discovery component), the application
adds its listener to the remote location monitor on the neighbor. Not shown in
this code snippet is the fact that, when new neighbors are discovered, a listener
must be added to their location monitors, and when neighbors move away, the
listeners must be removed. Additional code within the listener also handles the

reception of monitor events to adjust the metric values with the locations of the
involved hosts change.

5.4 Comparisons and Lessons Learned

These sample applications demonstrate the flexibility of CONSUL. They include
components running on desktops with a full J2SE runtime, a PocketPC equipped
with a J2ME Personal Profile runtime, an emulated mobile phone with support
for J2ME MIDP, and a variety of other mobile devices. This flexibility comes
from its small footprint as well as the fact that it relies on no language-dependent
features. In comparison, CALAIS and Context Toolkit have large footprints and
would very likely not run on smaller devices like PocketPCs or mobile phones.

The applications presented in this section required little programming effort
to transform a stand-alone utility or viewer into a context-aware application.
This is because CONSUL encapsulates all the functionality needed to find and
propagate contextual information across a network. To implement the same ap-
plications in Stick-e Notes, additional code would be required to propagate con-
text to clients, since no such mechanism is included in the Stick-e Notes library.

The second sample application demonstrates that CONSUL promotes sepa-
ration of concerns, modularity, and code reuse. In the smart room application im-
plementation presented here, custom-made monitors and values were effectively
separated into re-usable components. A relatively complex smart room was built
using simple components, such as an RFID monitor and an MP3 player that used
the RFID context to select a playlist. This application also demonstrates that
CONSUL promotes the development of extensible context-aware systems.

6 Conclusions

The applications described above highlight the ways that CONSUL fits the re-
quirements outlined previously: portability, adaptability, scalability, and appli-
cability to small devices. Since CONSUL does not rely on any features specific to
any version of Java, it has been implemented on platforms ranging from desktop
computers to mobile phones. Though only a Java implementation is discussed
in this paper, CONSUL could also be re-implemented in any programming lan-
guage with support for IP networking and threading.

The smart room example highlights CONSUL’s use of device discovery to find
and replace sources of contextual information. Should the RFID server suddenly
disconnect from the network and be replaced, the MP3 player would automat-
ically discover the new server and register itself to begin receiving RFID con-
text from the new source. Though CONSUL provides extensive context-sensitive
functionality to its users, its underlying communication mechanism is very sim-
ple. Messages and context values are passed between hosts using small packets
sent over standard TCP/IP sockets. If we assume that the device discovery
mechanism used scales well, then CONSUL scales no worse than any standard
client/server application. Finally, CONSUL has an extremely small footprint. We

have even created applications for an emulated mobile phone, whose resources
and feature set are even more limited than PDAs.

Nevertheless, CONSUL still has room for further development. Permitting
two-way communication between clients and servers would allow clients to take
advantage of a wider range of services; for example, monitors can currently
advertise the status of a printer but not allow clients to send documents to the
printer. A CONSUL interface to Web services would also greatly increase the
range of services immediately available to a system. Finally, using information
available about the network at runtime (like bandwidth and number of devices)
to select between multiple device discovery mechanisms could eliminate even the
minimal manual administration involved in selecting a mechanism appropriate
for the underlying network.

References

1. Dey, A.K., Abowd, G.D.: Cybreminder: A context-aware system for supporting
reminders. In: Proceedings of the 2nd International Symposium on Handheld and
Ubiquitous Computing. (2000) 172–186

2. Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cy-
berguide: A mobile context-aware tour guide. ACM Wireless Networks 3 (1997)
421–433

3. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Experiences of
developing and deploying a context-aware tourist guide: The GUIDE project. In:
Proceedings of MobiCom, ACM Press (2000) 20–31

4. Pascoe, J.: Adding generic contextual capabilities to wearable computers. In:
Proceedings of the 2nd International Symposium on Wearable Computers. (1998)
92–99

5. Kindberg, T., Barton, J.: A Web-based nomadic computing system. Computer
Networks (Amsterdam, Netherlands: 1999) 35 (2001) 443–456

6. Romn, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt,
K.: A middleware infrastructure for active spaces. IEEE Pervasive Computing 1
(2002) 74–83

7. Hong, J.I., Landay, J.A.: An architecture for privacy-sensitive ubiquitous com-
puting. In: Proceedings of the 2nd international conference on Mobile systems,
applications, and services, ACM Press (2004) 177–189

8. Brown, P.J.: The stick-e document: a framework for creating context-aware ap-
plications. In: Proceedings of EP’96, Palo Alto, also published in EP–odd (1996)
259–272

9. Brown, P.J., Bovey, J.D., Chen, X.: Context-aware applications: from the labora-
tory to the marketplace. IEEE Personal Communications 4 (1997) 58–64

10. Nelson, G.J.: Context-Aware and Location Systems. PhD thesis, University of
Cambridge (1998)

11. Want, R., Hopper, A., Falcão, V., Gibbons, J.: The active badge location system.
Technical Report 92.1, Olivetti Research Ltd. (ORL), 24a Trumpington Street,
Cambridge CB2 1QA (1992)

12. Dey, A.K.: Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, Georgia Institute of Technology (2000)

13. Yellin, D.M.: Stuck in the middle: Challenges and trends in optimizing middleware.
SIGPLAN Not. 36 (2001) 175–180

14. Hong, J., Landay, J.: An infrastructure approach to context-aware computing
(2001)

15. Roman, G.C., Julien, C., Huang, Q.: Network abstractions for context-aware mo-
bile computing. In: Proceedings of the 24th International Conference on Software
Engineering. (2002) 363–373

	Supporting Generalized Context Interactions
	Recommended Citation
	Supporting Generalized Context Interactions

	tmp.1470340445.pdf.kfPEc

	Abstract: Abstract: Context-awareness refers to a computing model where application behavior is driven by a continually-changing environment. Mobile computing poses unique challenges to context-sensitive applications and middleware, including the ability to run on resource-poor devices like PDAs and the necessity to limit assumptions about the underlying network. Though middleware exists to provide context-awareness to applications, they have not been designed with the limitations inherent in dynamic mobile environments in mind. This paper discusses a lightweight approach to context-sensitivity that takes into account these considerations. We explore the use of modularization to tailor service discovery policies for specific applications, as well as leveraging existing language constructs for simplifying the creation and aggregation of different context types. We also discuss a Java implementation of these concepts, along with three sample applications that can automatically propagate changes in context to clients running on devices varying from mobile phones to desktop computers.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: June 21, 2004
	Author: Authors: Hackmann, Greg; Julien, Christine; Payton, Jamie; Roman, Gruia-Catalin
	Title: Supporting Generalized Context Interactions
	ReportNumber: 2004-35
	DepartmentName: Department of Computer Science & Engineering

