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ABSTRACT
Service oriented computing, with its aim of unhindered in-
teroperability, is an appropriate paradigm for ad hoc net-
works, which are characterized by physical mobility of het-
erogenous hosts and by the absence of standardized appli-
cation level protocols. The decoupled nature of computing
in ad hoc networks can result in disconnections at inoppor-
tune times during the client-service interaction process. We
introduce the notion of a priori selection of services to re-
duce the likelihood of disconnection during service usage.
A client may specify the times when it requires certain ser-
vices. A knowledge base of the physical motion profiles of
various service providers is used to select instances of a ser-
vice that are co-located with the client at the required time
and least likely to disconnect. A system for constructing
the knowledge base is presented in this paper, along with
the implementation details and the algorithm used to deter-
mine the service usage pattern.

1. INTRODUCTION
The increasing ubiquity of mobile devices presents new and
unique opportunities for electronic collaboration. A major-
ity of such mobile devices are equipped with wireless LAN
cards that enable them to communicate with other devices
in proximity. A collection of wireless-enabled mobile de-
vices within communication range can join together to form
an ad-hoc network–a dynamic, peer-to-peer network whose
infrastructure is supported by the hosts that comprise it.
Ad hoc networks, characterized by the physical mobility of
hosts, demand a decoupled style of interaction.

A key purpose of ad hoc networking is to facilitate op-
portunistic interactions among heterogenous hosts that en-
counter each other in both predictable and unpredictable
ways. This requires the participants in an ad hoc network
to be able to interact with each other in a uniform fash-

ion. Service oriented computing (SOC) is a promising can-
didate for solving this problem because of its emphasis on
flexible architectures and unhindered interoperability. How-
ever, most service oriented architectures, such as the Service
Location Protocol (SLP) [9], Jini [17], Salutation [13], and
those employed for Web Services [1, 11] are designed for
infrastructure-rich wired networks where disconnections are
rare. In ad hoc networks, where hosts are resource poor, and
the likelihood of disconnection is high, the above mentioned
architectures cannot function correctly [15]. The environ-
ment of an ad hoc network requires new approaches to de-
signing SOC architectures that can withstand the dynamism
of the ad hoc network. Our previous studies [5] focussed on
the development of a SOC system that was able to with-
stand the rigors of an ad hoc network. For that system,
we chose a proxy-based architecture, originally proposed in
Jini. In proxy-based SOC systems, a service provider offers
a service, which is a program running on the provider host.
The service provider advertises a proxy which is retrieved
by interested clients and used as a handle to the service. In
most proxy-based systems (including Jini), the connectivity
between the proxy and the service must be maintained for
the duration of the interaction for the client to be able to
effectively exploit the service.

Maintaining connectivity between the proxy and the ser-
vice for the duration of their interaction is challenging in
ad hoc networks due to the unpredictable mobility patterns
of hosts. This combined with the relatively modest range
of current 802.11b wireless cards result in short and spo-
radic windows of communication between clients and ser-
vice providers. However, premature termination of the in-
teraction between the client and the service provider can
cause undesirable behavior or abnormal program termina-
tion. This problem is further exacerbated when the service
being used is part of a larger client application, since the
failure of the proxy-service interaction can cause the entire
client application behavior to become unstable and unpre-
dictable. Current solutions to this problem involve elimi-
nating the possibility of disconnection. For example, in a
hoarding strategy, the code for the entire service is copied
to the client machine and is used locally so that disconnec-
tions cease to be a factor. However this strategy cannot be
employed in cases when the software footprint is very large
or when the code is proprietary. Nomadic strategies have
assured connectivity because they assume that mobile hosts



will stay within communication range of access points that
are attached to the wired infrastructure. Such strategies are
limiting as they imposes bounds on the physical mobility of
hosts in a manner which is most often neither practical nor
desirable.

The approaches described illustrate that eliminating the pos-
sibility of disconnection is expensive, and usually impacts
other aspects of program execution. Hence, our approach
does not seek to eliminate the possibility of disconnection.
Instead, we focus on trying to plan so that the disconnection
does not occur at an inopportune time. In this paper, we
introduce knowledge-driven interactions between the client
and service provider as a strategy that leverages the tempo-
ral aspect of service requirement and availability to carefully
select service providers that are likely to remain in commu-
nication range for the duration of the service requirement,
thereby reducing the likelihood of a disconnection at a cru-
cial juncture without compromising other aspects of pro-
gram execution such as resource usage. The essential idea is
to exploit knowledge about other hosts’ physical motion to
compute the time at which two hosts are likely to be within
communication range for a reasonable interval of time. This
information is then matched with the client application’s
service requirement profile, which is a list of services, and
the instances in time that they are required. The result is a
pro-actively planned satisfying set, a list of specific instances
of services that are most likely to be co-located with the
client at the times that they are required, and which will
remain co-located for the projected duration of the need.
More specifically, our contribution in this paper can be split
in two distinct parts:

• An algorithm that computes the satisfying set for
a service requirement profile given a knowledge base
of the behavior patterns of other hosts in the ad hoc
network.

• A software architecture that is responsible for build-
ing a knowledge base by gathering all the required in-
formation from other hosts in the ad hoc network.

We will also show how traditional SOC operations are af-
fected by the introduction of knowledge-based interactions
between clients and service providers.

The remainder of the paper is organized as follows. Section 2
provides background information on proxy-based services in
ad hoc networks as well as related work. Section 3 describes
a motivating example and formally defines the problem. The
algorithm used to compute the satisfying set is described in
Section 4 and our architecture to construct a knowledge base
is described in Section 5. Section 6 describes our implemen-
tation of the proposed architecture. We present a discussion
of our approach in Section 7 and conclude in Section 8.

2. BACKGROUND
In this section, we present the case for using proxy-based
architectures for service oriented computing in ad hoc net-
works. We discuss the advantages of this approach along
with some of our previous work that improves on the basic
proxy concept. We also show the context in which informa-
tion exploitation in proxy-based SOC can be used to give

stronger guarantees and more desirable results. We follow
this with a coverage of related work in the field.

2.1 Proxy-Based Services in Ad Hoc Networks
The idea of proxy-based service oriented architectures was
first proposed in Jini. It has since been adapted for use in
ad hoc networks as shown in [5]. Proxy-based architectures
are especially effective in ad hoc networks for two reasons
– a) They help reduce the amount of software required on
the client side, thereby making thin clients possible and b)
They abstract details of the protocol to be used between
the client and the service provider. Since the proxy is a
self contained piece of code that can communicate with the
provider host, the client is not required to be aware of the
communication protocol or possess any code to communi-
cate with the provider. The client is required to only carry
the code that allows it to browse for services and discover
proxies. This results in a small footprint for the client soft-
ware, which is useful when running such software on mo-
bile devices. The fact that proxies abstract the communica-
tion protocol is especially useful in ad hoc networks, where
standardized application level protocols are not prevalent.
Hence, the abstraction of a heterogenous set of protocols
by proxies allows a large set of hosts to communicate with
multiple service providers without the overhead of needing
to know the specific protocol for each provider.

Though proxies are a solution to certain problems associated
with SOC in ad hoc networks, their usage does raise certain
issues, some of which we attempted to solve in our previous
work. In [6], we proposed an automatic code management
system which transparently ships and installs proxy code on
the client host (once the client has declared an interest in the
service) as a solution to the problem of distributing the bi-
nary code required by clients to execute proxies. A proxy up-
grade system described in [14] ensures that these proxies are
upgraded transparently at run-time with very little impact
on the client application so that the proxy software is kept
consistent with upgrades on the software on the provider
host without the client application having to explicitly han-
dle this procedure. These mechanisms, which are portions
of a larger system supporting SOC in ad hoc networks solve
some of the issues associated with proxy-based SOC archi-
tectures. One of the remaining problems–that of ensuring
that interactions between the proxy and the service are in-
terrupted to the least possible extent–is the subject of this
paper.

2.2 Related Work
Our work in this paper encompasses various topics such as
meta information management, information gathering and
dissemination, information semantics, and planned behav-
ior. As such, we present a selection of related work from
each of these topic areas.

Our overarching goal for introducing knowledge driven in-
teractions to SOC in ad hoc networks was to establish a
sense of order in a chaotic environment. In [16], the au-
thors describe the Task Control Architecture (TCA), de-
signed for autonomous agents that control robots. Among
other things, the task control architecture uses the notion of
perception of the environment to make decisions. The TCA
uses information about the environment to ensure that the



robot is not in any physical danger. We perform the same
kind of knowledge aggregation, though it is used to protect
us from the “danger” of unexpected disconnection.

All the knowledge aggregation and dissemination that must
be done to support knowledge driven architectures happen
at the meta-level, in the sense that all knowledge that is
traded has little to do with the applications that are run-
ning on the individual hosts. Costa et al. propose a meta
information management system in [2] that uses a central-
ized type repository that maintains the meta data related to
a base object. However, the centralized repository creates
a single point of failure. Because of this, we chose to have
multiple decentralized repositories called knowledge bases
on each host so that there would be a lesser chance of fail-
ure.

Another issue that relates to our work is information dis-
semination. Essentially, to support knowledge driven inter-
actions, each host must disseminate knowledge about them-
selves so that others may react to it. In [8], the authors
propose three schemes for information dissemination that
are especially tailored to mobile ad hoc networks. The strat-
egy described focusses on rapid dissemination of information
without duplication. Three strategies - select then eliminate
(STE), eliminate then select (ETS), and a hybrid of the
two are described as ways to ensure that only the relevant
hosts get the information. While this is a relevant concern,
we chose to design a less complex system in the interest of
saving computational resources and also because the tuple
space paradigm we adopt (described in detail later) ensures
that information is distributed to all connected hosts, which
is exactly the set of hosts that we want to disseminate our
knowledge to. Perry et al. [12] describe the usage of ontolo-
gies to extract semantic information from the information
that is being distributed. However, ontologies are cumber-
some in that every host in the network is required to be
aware of the ontology, which is unreasonable in an ad hoc
network, with no centralized repository that can distribute
such an ontology. Hence, we adopted alternate ways to give
semantics to knowledge that we gather and distribute.

Finally, in [7], the authors describe planned scheduling for
the DECAF architecture. Essentially, the scheduler is able
to take in functions that enable it to do planning. Two
strategies are suggested. The first is contingency planning,
where every possibility is evaluated and the best one chosen,
and if that fails for some reason, the next best option is
chosen. The second strategy is to give the scheduler a utility
function, which it can then use as a metric to choose among
options.

3. FORMAL PROBLEM SPECIFICATION
In this section, we use a motivating example to show how
knowledge management can improve the quality of interac-
tions among clients and service providers in an ad hoc net-
work. We follow this with a formal definition of the problem.

3.1 Motivating Example
We consider a scenario involving cars travelling on a high-
way. The occupants of the cars carry PDA’s which offer
various kinds of services. In one of the cars, Robert is cur-
rently reading a book, but would like to listen to some music

in 30 minutes time, when he would have finished reading the
book. His PDA does not have the resources to play music,
hence it must discover this functionality at run time.

Robert instructs his PDA to have an MP3 music service
discovered and ready to use at 4:30 PM, which is 30 minutes
from now. The PDA queries PDA’s in other cars that are
surrounding the car that Robert is in for an MP3 music
service. When the replies come back, it turns out that there
are three cars that offer the service. This is shown pictorially
in Figure 1. Robert has also indicated that he would like to
listen to the music for an hour and a half, so the service must
be available for that duration. From the figure it is clear that
the service offered by Car A will not remain connected for
the required duration. Car B will remain connected for the
duration, but it is farther away from Robert’s car than Car
C, which could result in signal degradation. Hence, Robert’s
PDA chooses the service on Car C as the service that it will
use. It stores this information until it is time to invoke the
service.

The determination of the correct candidate is done by ex-
ploiting knowledge about the other hosts in the network
such as current location, velocity, and intended motion pro-
file, which gives the host’s projected location as a function
of time. These parameters are collected by the client host.

Time
4:30
PM

5:00
PM

5:30
PM

6:00
PM

4:00
PM

6:30
PM

Robert

Car A

Car B

Car C

Service
Availabilities

Service
Request

Figure 1: A client host obtaining information from
two hosts with the purpose of planning interaction
patterns

The client feeds the parameters it collects to an algorithm
that helps it choose the satisfying set of services, which in
this case has just one element since there is only one host
that offers the service that is currently connected. On a high
level, the computation of the satisfying set can be described
as follows:

• The motion profile of each of the service providers is
evaluated to check if the service provider is going to be
within communication range of the client at the time
that the service is required.

• The location parameter is used to determine how
much a host has deviated from its motion profile by
comparing the current reported location with the lo-
cation computed by the motion profile. This figure is
used to adjust the estimated location at the time of
requirement of the service.

• The velocity of the service provider’s host is simi-
larly used to check whether the duration of time that
the provider will remain has deviated from what is



promised by the motion profile. This is to ensure that
the connection is available for as long as it is required.

Once the algorithm returns the satisfying set, the client con-
nects to the service that is in the satisfying set at the time
that it needs it. The service chosen is the one that is likely
to be co-located for the longest interval of time (based on
the criteria of the above algorithm). It should be noted that
in this example, the client had only one service requirement,
hence the service set had only one service in it. We expect
a client application to have more than one requirement dur-
ing normal operation, in which case the satisfying set would
have one service corresponding to each requirement.

3.2 Problem Definition
The problem we solve is to match the set of needs for a
client application with a set of available services such that
the services chosen satisfy the needs of the client and are
unlikely to disconnect in the interval that they are required.
In this subsection, we formally describe representations for
service description, service request and knowledge gathering
and maintenance. We follow this with a formal problem def-
inition. However, we start by introducing some fundamental
definitions and notation.

• Every host in the ad hoc network is characterized by a
motion profile function λ(τ) which gives the location
of the host as a function of time.

• A service is intuitively described by the capabilities it
offers. We consider the external interface exhibited by
a service to be representative of its capabilities. In ad-
dition to its capabilities, a service is characterized by a
motion profile (aiding knowledge driven interactions),
which is the motion profile of the host that it resides
on. Thus a service σ having an external interface ψ
and resident on some host θ inherits the host’s motion
profile λθ(τ) and can be written as σ = (ψ, λθ(τ)).

• A service request is traditionally a description of
capabilities desired in the service. We specify our
needs by providing a desired interface, letting the in-
heritance mechanism of the programming language de-
cide whether one interface can be satisfied by another.
Also, in addition to specifying the interface, we intro-
duce a temporal aspect to service requests as part of
our knowledge driven interaction scheme. A service
request thus includes an interval of time during which
the service is desired. Thus a service request ρ for a
service implementing interface ψ from time τs to time
τe can be written as ρ = (ψ, τs, τe)

• The Service Requirement Profile denoted by P is
a list of service requests, e.g., P = (ρ1, ρ2, ρ3, ..., ρn)
Figure 2 shows a service requirement profile.

• A Satisfying Set denoted by S is a set of services
whose external interfaces are a superset of the inter-
faces specified in service requests that comprise a ser-
vice requirement profile, e.g., S = (σ1, σ2, σ3, ..., σn)

• The current location function Loc(H) gives the cur-
rent location of host H. τ c is used to indicate current
time.

• The ' operator is used to denote that an interface
is the same as or a subset of another interface. For
example, if ψi ' ψj , then ψi is an interface that is the
same as or a subset of interface ψj

• The ∼ operator is used to indicate that two locations
are within communication range. For example λi(τ) ∼
λj(τ) means that λi(τ) is in communication range of
λj(τ)

• Finally, the · operator is used to denote a property of a
service or service request, e.g., ρ ·ψ is used to indicate
the interface ψ of the service that is desired as part of
the service requirement ρ = (ψ, τs, τe).

Time

Svc A

Svc B

Svc C

Svc D

2 4 6 8 10 12

Figure 2: A given client’s service requirement profile
with the shaded regions showing each service and
the time interval for which that service is required

The problem of finding a set of services that match a service
requirement profile given a knowledge base can be defined as
follows: Given a client application A resident on some host
H, characterized by a service requirement profile P, find a
service set S such that S satisfies P. A service set is said to
satisfy P if ∀ρi ∈ P , ∃σj ∈ S offered by some host θ such
that

• ρi · ψ ' σj · ψj and

• ∀τ ∈ [ρi · τs, ρi · τe], λθ(τ) ∼ λH(τ)

In this paper we will show how gathering knowledge about
the physical mobility of hosts over a period of time can facil-
itate the process of computing a satisfying set that meets the
service requirement profile for a given client application.

4. COMPUTING THE SATISFYING SET
Having defined the problem, we now present our algorithm
for computing the satisfying set, shown in Figure 3. Rather
than focus on a detailed explanation of the algorithm, we
show how the algorithm uses the knowledge base to calculate
the satisfying set.

The implementation of the algorithm is available locally as a
library that can be accessed by all processes on a host. The
algorithm is invoked via a programmatic call, and the client



SatisfyingSet S = NULL 
∀ ρi ∈ ServiceRequirementProfile P 
of client application A on Host C { 
    Service candidateService = NULL 
    Double closestService = ∞ 
    ∀ Hosts Hi in communication range { 
        ∀ σi offered on Hi { 
            if(ρi . ψ  matches σi . ψ) { 
                distanceToService = checkForLocation() 
                if(distanceToService >= 0) { 
                    if(distanceToService < closestService) { 
                        candidateService = σi 
                    } 
                } 
            } 
        } 
    } 
    Add candidate to S 
} 
Return S 
 
checkForLocation() { 
    clientLocation = λC(ρi . τs) 
    serviceLocation = λH(ρi . τs) 
 
    clientDelta = loc(C) - λC(τc) 
    serviceDelta = loc(H) - λH(τc) 
 
    totalDistance = 0 
 
    for(τ = ρi . τs, τ < ρi . τe, τ++) { 
        if(EuclidianDistanceBetween 
  (λC(ρi . τ) + clientDelta,  

λH(ρi . τ) + serviceDelta) > THRESHOLD) { 
            totalDistance = -1 
            break 
        } 
        totalDistance = totalDistance +  

EuclidianDistanceBetween 
  (λC(ρi . τ) + clientDelta,  

λH(ρi . τ) + serviceDelta) 
    } 
    averageDistance = totalDistance / ((ρi . τe) - (ρi . τs)) 
    return averageDistance; 
} 

Figure 3: Algorithm for Computing the Satisfying
Set

application’s service requirement profile is passed in as a pa-
rameter. For each service request in the service requirement
profile, the class implementing the algorithm searches the
list of available services (maintained by the traditional SOC
middleware) for services that match the service request un-
der consideration. For each of the services that match the
client’s request, a request is made for all available knowledge
about the host that offers the service. This results in the
current location, current velocity, and reported motion pro-

file being returned for the host that offers the service. The
current reported location of the host is cross checked with
the location for the current time using the motion profile
function to check for any deviations. If any deviations exist,
they are factored into the algorithm. The values from each
host are then used to determine if the host is going to be
within communication range at the times that a service is
required. This is repeated for each service that matches the
client’s request. Eventually, the service that is offered by
the host that is the smallest distance away from the client
host on average during the duration of the requirement is
chosen as the service that is to be added to the satisfying
set. The process continues until each service request in the
client’s service requirement profile has a corresponding ser-
vice in the satisfying set. If a client request was not satisfied,
an exception is raised indicating the failure to find a match-
ing service. If no exception is raised, the satisfying set is
returned to the calling entity.

Observe that for the algorithm to function as intended, it
requires knowledge about the hosts that offer services. This
knowledge is stored in a knowledge base that is maintained
on each host in the ad hoc network. The next section shows
how such a knowledge base is constructed and maintained.

5. BUILDING A KNOWLEDGE BASE
To build a knowledge base, a host must gather knowledge
about the motion of other hosts in the ad hoc network.
In addition to gathering knowledge about other hosts, it
must also distribute knowledge about its own motion to
other hosts on demand so that they may construct their
own knowledge bases. Both these activities must be carried
out in the demanding and unstable environment of an ad
hoc network. We present our architecture for knowledge ex-
change among hosts followed by a brief description of the
effort to make it robust for ad hoc networks.

5.1 Defining Knowledge
We define knowledge as any parameter or characteristic about
a host that gives an insight into the current or intended be-
havior of the host. Knowledge can encompass parameters
like location, security credentials, power availability, motion
profile among others. Knowledge can be divided into two
subclasses– static knowledge and dynamic knowledge. Static
knowledge is knowledge that does not change over time. For
example, the motion profile of a train travelling between two
stations is static knowledge since it travels the same route
at the same time everyday, and hence the motion can be
represented by a static equation. Dynamic knowledge is
knowledge that changes over time, for example, the loca-
tion of the train as it travels between stations is considered
dynamic knowledge.

For the purposes of this paper, we consider only three pa-
rameters from each host as knowledge: current location,
current velocity, and motion profile. Each host maintains
a knowledge base, which is a list of all other hosts that are
connected to it, and the three parameters listed above that
are associated with each host. The knowledge is stored in
the knowledge manager, the details of which are presented
later in the section.



5.2 Exchanging Knowledge Among Hosts
To support knowledge-driven interactions between client and
service, each host in the ad hoc network must support two
functionalities– a) Aggregation of knowledge from other hosts
in the network to build a local knowledge base and b) Dis-
semination of local data to other hosts in the network so that
they may build their own knowledge base. These functional-
ities are encapsulated by the knowledge manager, shown in
Figure 4, which sits between a coordination layer that han-
dles communication in the ad hoc network and a traditional
SOC layer that offers SOC primitives and operations such
as advertisement, discovery, invocation, composition, etc.

Knowledge Aggregator

Traditional SOC Middleware

Ad Hoc Coordination Middleware

Knowledge Manager

Knowledge Disseminator

Communication Handler Communication Handler

Figure 4: The Knowledge Manager

The knowledge manager is the component that represents
the knowledge base on a host. There is one knowledge man-
ager per host. All knowledge about other hosts collected by
the knowledge manager is available to processes on the host
via a common API. Though our emphasis in this paper is
on gathering spatiotemporal knowledge about other hosts,
we designed the knowledge manager to be generic enough
to support the aggregation and dissemination of other kinds
of knowledge. As such, the knowledge manager is highly
customizable. Customization features include being able to
specify which knowledge parameters are to be gathered or
disseminated and the hosts from which they are to be gath-
ered. The customization can be done at startup via com-
mand line flags or at any point during the execution of an
application via a programmatic call. It should be noted that
the customization can be mutated at any point in time via
simple programmatic calls to the knowledge manager.

We now show how the knowledge manager performs its two
activities at a high level, followed by a more detailed discus-
sion of each of the activities.

• Knowledge Aggregation is the gathering of knowl-
edge from other hosts that comprise the ad hoc net-
work. The knowledge manager takes requests to col-
lect knowledge related to certain parameters on certain
hosts in the ad hoc network. It channels each request
to a subcomponent called the aggregator which actu-
ally services the request.

• Knowledge Dissemination is the distribution of
knowledge related to the local host to other hosts in the
ad hoc network The knowledge manager takes requests
from both local applications as well as other hosts in
the network to disseminate knowledge about the host
it is resident on. It delegates this request to another

subcomponent, the disseminator, which services such
requests.

5.2.1 The Knowledge Aggregator
The knowledge aggregator performs the aggregation func-
tions for the knowledge manager. It aggregates the knowl-
edge disseminated by knowledge disseminators on other hosts
and adds them to the local knowledge base. It can also up-
date knowledge that exists in the local knowledge base with
more recently gathered knowledge. In the case that a host
is not disseminating some knowledge that is required by the
local host, the knowledge aggregator can send a request to
the relevant host to begin disseminating that knowledge.
The main components of the aggregator are – a) The com-
munication handler, b) An array of host level aggregators,
and c) The aggregation manager. This is shown in Figure
5. The communication handler reads data that is sent to it
from disseminators on other hosts via the ad hoc network.
Depending on the host that the data came from, the commu-
nication handler sends the data to the host level aggregator
assigned to that host (If none exists, then one is created.)
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Figure 5: The Knowledge Aggregator

Within the main knowledge aggregator, there is one host
level aggregator for every host in the ad hoc network that
the local host is connected to. Each host level aggregator
contains three parameter aggregators–for current host loca-
tion, current host velocity, and intended motion profile. Ad-
ditional parameter aggregators may be added to support the
aggregation of parameters other than the three specified, if
required but we focus on just three for the purposes of this
paper. The location and the velocity parameter aggrega-
tor are updated periodically to track the latest position and
velocity of the host associated with their parent host level
aggregator. The motion profile parameter aggregator is usu-
ally static (i.e., not updated regularly) unless the host it is
tracking changes its motion profile. The host level aggre-
gators combined with the parameter aggregators that they
encapsulate form the knowledge base on a given host. The
values inside the parameter aggregators can be accessed by
external entities by making programmatic requests to the
knowledge manager, which delegates the request to the ag-
gregation manager. The aggregation manager oversees the
correct functioning of the knowledge aggregator by ensur-
ing the correct parameter aggregator is updated when an
updated value is reported to the host. It also services local
requests made to the knowledge base. Once it is determined
(by inspecting the motion profile), that a host is going to
disconnect permanently, the knowledge aggregator removes
the host level aggregator corresponding to the host. This



ensures that unnecessary knowledge is not maintained on
any host.

5.2.2 The Knowledge Disseminator
The dissemination of knowledge related to a host is per-
formed by the knowledge disseminator, which is split into
three main components – a) The dissemination manager,
b) An array of parameter disseminators, and c) The com-
munication handler. This is illustrated in Figure 6. The
dissemination manager acts as a controller for the dissemi-
nator, dispatching data to other hosts as required. To per-
form the data dissemination, the knowledge disseminator
employs three parameter disseminators for location, veloc-
ity and motion profile (though like parameter aggregators,
there can be more than just three).

Dissemination Manager

Communication Handler

Location
Param

Disseminator

Velocity
Param
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(single use)

Knowledge Dissemination Directives Knowledge Dissemination Directives

Knowledge Knowledge

Figure 6: The Knowledge Disseminator

A parameter disseminator is a process that gathers a spe-
cific type of knowledge, e.g., GPS location from a knowledge
generator, which may be a hardware entity, e.g., a GPS de-
vice, a software process, e.g., a random number generator,
or simply some knowledge stored locally. The parameter
disseminator stores the knowledge obtained as a member
variable and is responsible for ensuring the value it stores
is kept up to date. The dissemination manager dissemi-
nates knowledge periodically (by default at a rate of once
per second) by sending the values in each of the parame-
ter disseminators to every host in the ad hoc network. The
only exception to this rule is if a parameter disseminator is
tagged as single use, in which case it sends the data in that
parameter disseminator only once per host. For example,
the motion profile parameter disseminator may be a single
use one if the motion profile is never expected to change.
The actual transmission of the values is the responsibility
of the communication handler, which packages the values in
a manner appropriate for transmission, and hands it off to
the coordination model which is responsible for getting it to
its destination knowledge aggregator.

5.2.3 Robustness for Ad Hoc Networks
Both the knowledge aggregator and the knowledge dissem-
inator are heavily dependent on communication across the
ad hoc network to distribute or gather knowledge. As such,
they must be designed to work effectively in ad hoc net-
works given the constraints described in earlier sections of
this paper. The repeated, periodic dissemination of knowl-
edge ensures that even though the topology of the network
changes at a rapid rate, all hosts have up to date knowledge
available. Correspondingly, the aggregation manager en-
sures that values in the parameter aggregators are replaced

by more current knowledge as it is received. The aggregator
supports fine granularity during the data gathering process
through the use of separate host-level aggregators to ensure
that no unnecessary data is gathered, thereby saving pre-
cious computational resources. Finally, to protect against
disconnection, the dissemination and aggregation managers
use coordination models targeted to ad hoc settings, allow-
ing them to communicate as effectively as possible in the ad
hoc network, allowing efficient dissemination and aggrega-
tion of knowledge.

6. IMPLEMENTATION
Our knowledge manager is used in conjunction with a tradi-
tional SOC architecture for ad hoc networks that we devel-
oped as part of our previous work. The SOC architecture is
implemented on top of Lime [10], a coordination model for
physical and logical mobility. We present a brief overview
of Lime and follow that with implementation details of the
knowledge manager.

6.1 LIME & SOC Implementation Overview
Lime is a Java implementation of the Linda [3]coordination
model and is tailored for use in ad hoc networks. Lime
masks details associated with coordination and communica-
tion from the application programmer. A host offering Lime
runs a LimeServer which supports one or more Lime agents,
analogous to services or client applications.

Coordination in Lime occurs via transiently shared tuple
spaces. Every tuple space in Lime is identified by a name.
Tuple spaces having the same name can be merged to form
a federated tuple space when their hosts are within commu-
nication range. The service directory is modelled as a tuple
space. Tuple spaces are containers for tuples. Tuples are
ordered sequences of Java objects which have a type and a
value. An agent places a tuple in the tuple space, making it
available to all other agents that are sharing the same tuple
space. To read a tuple from the tuple space, an agent needs
to provide a template, which is a pattern describing the tu-
ple that the agent is interested in. A template is a sequence
of fields, each of which can contain a formal (wildcard) rep-
resenting the required type for that field or an actual value
that identifies the type and value of the corresponding field.
A template is said to match a tuple if all the correspond-
ing fields match pairwise. Service advertisements are in the
form of tuples that contain a description of the service’s ca-
pabilities while service requests are in the form of templates.

An agent can access the tuple space via standard Linda op-
erations (rd (read a tuple), in (remove a tuple), out (write
a tuple)). The in and rd operations take a template as
a parameter and return a tuple as the result or block un-
til a match is found (the operations are synchronous). To
provide asynchronous interactions, Lime offers a reaction
mechanism. An agent can declare interest in a tuple by reg-
istering a reaction on a tuple space using an appropriate
template and by providing a callback function to be called
when a matching tuple becomes available. If multiple candi-
date tuples exist for a given reaction template, one is chosen
non-deterministically from the set.

We wrapped the Lime tuple space class with a
ServiceDirectory class which represents the service direc-



tory. It provides standard SOC operations such as advertise,
request, and invoke. A service is advertised by placing a tu-
ple in the tuple space using the out operation. A request
is implemented as a rd operation, with the interface of the
desired service being passed as the template. Invocation is
done by doing a targeted out operation where the tuple is
stamped to indicate its destination host.

6.2 Implementation of the Knowledge Man-
ager

We implemented the knowledge manager in Java, and inte-
grated it into our existing Java-based middleware for SOC
in ad hoc networks. On startup, the knowledge manager
starts a Lime agent which we call the knowledge agent. This
agent is the interface between the knowledge manager and
Lime, which it uses to disseminate and aggregate knowl-
edge. When the knowledge manager wants to disseminate
some knowledge, it instructs the knowledge agent to place
a tuple into the federated tuple space. For example, to dis-
seminate location knowledge it places a tuple of the form
<“Knowledge”, “Location”, [19.32N, 23.45W], Host1> in
the tuple space. The first field indicates that the tuple
contains knowledge, the second the type of knowledge, the
third the actual knowledge, which in this case is a latitude-
longitude pair, and the fourth indicates the host that placed
the tuple in the tuple space.

To aggregate knowledge, the knowledge manager registers
reactions on the tuple space (via the knowledge agent
since no class other than a Lime agent may perform tu-
ple space operations). The reactions are registered for each
type of knowledge that the knowledge manager wants to
aggregate. For example, to aggregate location informa-
tion, the knowledge manager registers a reaction with a
template of the form <“Knowledge”, “Location”, Loca-
tion.class, Host.class>. The first two fields indicate that we
are interested in knowledge tuples and more specifically loca-
tion knowledge tuples. The third field is a formal for a class
that encapsulates location information, while the fourth is a
class that encapsulates the Host ID. Formals are used since
we want any location value that corresponds to any host.

Within the knowledge manager, whenever a reaction fires,
indicating that new knowledge of the type we are interested
in has been placed in the tuple space, a reactive program
runs to retrieve a copy of the tuple from the tuple space
of the form <“Knowledge”, “Location”, [19.32N, 23.45W],
Host1>. Once it is retrieved the third field in the tuple is
used to update the value in the parameter aggregator that
stores the type of knowledge indicated in the second field
within the appropriate host aggregator, the host name being
given by the fourth field in the tuple. Note that a copy is
retrieved so that other hosts in the network may also avail
of the same knowledge. It is the responsibility of the host
that disseminates the knowledge to remove any old tuples
using the in operation before outing a tuple with updated
knowledge.

When a client wants to discover a service, it makes a request
to a new KnowledgeManagedServiceDirectory (KMSD)
class, which wraps the traditional ServiceDirectory class.
This class, instead of channelling the request directly to the
Lime tuple space as in the traditional architecture, chan-

nels the request to the knowledge manager. The request is
of the form <DesiredInterface, StartTime, EndTime>. The
knowledge manager then searches the Lime tuple space for
all services that match the required interface using the rdg

operation of Lime, which is similar to the rd operation ex-
cept that it can return more than one match. The template
used is of the form <DesiredInterface, Host.class>. Once a
list of services has been returned, the knowledge manager
executes the algorithm described in Section 4 to determine
which service is the best, and returns a handle for that ser-
vice to the client.

6.3 The Influence of Knowledge on Traditional
SOC Operations

The use of knowledge to pro-actively compute the satisfying
set of services influences the way standard SOC operations
are implemented. In this subsection, we show which opera-
tions are affected and the manner in which they are affected.

6.3.1 Service Discovery
As described above, we implemented service directories as
tuple spaces [3], a data structure that comprises of local
tuple spaces on hosts that logically combine to form a fed-
erated tuple space when hosts are co-located. A host that
wishes to advertise a service places an advertisement in its
local tuple space. Since the local tuple space is part of a
federated tuple space, this advertisement is viewable by all
hosts that are within communication range of the advertis-
ing host. This also ensures consistency of the directory, i.e.,
there are no orphan advertisements. Thus at any given point
in time the list of advertisements mirrors the list of avail-
able services exactly. Interested clients browse the directory
for the kinds of services that they require, and when the
first match is found, begin using that service immediately
without consideration to other options.

In the knowledge-driven architecture, we retain the use of
tuple spaces as service directories. Service providers place
their service advertisements in these directories as in tradi-
tional SOC architectures. However, clients are not permit-
ted to access these directories directly. Instead, they provide
their requirements to the KMSD. The KMSD takes the re-
quest for some service, and searches the service directory
for candidate services. Once a list of such candidate ser-
vices is returned, it uses the algorithm mentioned earlier in
the section to choose the one instance of the service that is
most suitable for the requirement. It then returns this ser-
vice to the client that requested it. It should be noted that
requirements may consist of more than one service, at dif-
ferent points in time. In this case, the knowledge manager
returns a set of services rather than a single service.

6.3.2 Service Invocation
The traditional manner in which clients have interacted with
services is via a client-side service proxy. The service proxy
communicates with the service on the provider host via any
available communication mechanism. We use federated tu-
ple spaces as a means of communication between proxies and
service providers. Proxies can place tuples containing data
in tuple spaces which are then retrieved by the provider. The
provider uses a similar procedure to communicate with the
proxy. The traditional invocation procedure does not crash



the system in face of unanticipated disconnections but may
cause deadlock.

In our architecture, when the client interacts with the ser-
vice (via a service proxy), the duration of time for which the
client host is likely to remain connected with the provider’s
host is known a priori because the knowledge manager can
provide such information in the form of coordination knowl-
edge. This helps solve two critical problems. The first is
the orphan call problem, where the client sends a message
to the service, which disconnects before it can reply. The
client is then potentially blocked waiting for the reply. In
our architecture, this is averted because if the time to dis-
connection is less than the time that it would take to service
the call and get a reply, the call is not allowed to go through
and an exception is propagated which allows the client to
handle it and continue processing. It should be noted that
we assume a static value for the time taken to process a call
and send a reply, and that if the actual time taken is greater
than the static value, the call is broken into two or more
smaller calls. The second problem occurs when the proxy
places a tuple destined for the provider in the tuple space,
but the provider is disconnected. In our architecture, knowl-
edge about the behavior of hosts can be used to determine if
the disconnection is permanent or not. If the disconnection
is not permanent, then the request can be held in until the
provider reconnects, else an exception is raised on the client
to indicate that the provider is no longer connected.

6.3.3 Service Composition
Service composition refers to building a single composite
service from several smaller independent services. Ignoring
the interoperability issues involved to carry out such a task,
service composition in ad hoc networks remains a challenge.
This is because in a dynamic ad hoc network, a composed
service has points of failure equal in number to the number
of smaller services that it is made up of. In other words, if a
composed service is made up of N different smaller services,
and if any one of those services get disconnected, then the
composed service as a whole fails. Hence it is very difficult
to maintain a composed service for extended periods of time.

In our architecture, some of the problems associated with
maintaining a composed service can be alleviated. The
knowledge manager can provide coordination knowledge
about the behavior of each host that contributes a service
towards the composed service. If it is determined that a host
is going to get disconnected at some point in the future, a
discovery protocol can be launched to find a substitute for
that service well before the disconnection actually occurs.
The service that is about to get disconnected can then be
replaced with the newly discovered service, allowing for the
continuous operation of the composed service. (The contin-
uous operation can be achieved due to previous work on the
topic, described in [14].)

The knowledge managed architecture supporting the three
operations described can be seen in Figure 7.

7. DISCUSSION
Our vision of SOC in ad hoc networks is similar to, yet differ-
ent from, that of SOC for wired networks. It is similar in the
sense that we too have unhindered interoperability of het-
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Figure 7: Contrasting traditional and knowledge
managed SOC architectures

erogenous entities as a core goal and we employ architectures
that are closely related to the SOC paradigm. The difference
lies in the kinds of applications and users we target. We see
SOC as a means of letting people collaborate with each other
in the course of their daily lives. In other words we focus on
personalized services involving interactions among small mo-
bile devices rather than large, enterprise-scale B2B type in-
teractions that are being envisaged for wired networks. Our
current work makes the assumption that users of our SOC
software for ad hoc networks will have patterns of behavior
that can be represented by relatively simple mathematical
equations. Our future work involves studying whether this
is indeed a reasonable assumption; if not, then we plan to
devote effort to making our knowledge managed architecture
capable of handling random and complex motion.

Turning to the work presented in this paper, we mentioned
at various points in time that clients may specify require-
ments, which can be combined with the knowledge base to
compute a satisfying set a priori. This seems to eliminate
the on-the-fly immediate nature of service discovery and us-
age. However, this is not true since clients can specify a
service requirement with the time for the requirement being
the present time. In this case, any service that is currently
available is returned as the satisfying set. A related issue is
a mismatch in the time that the client specified for the re-
quirement of the service and the actual time of requirement.
In the case that the actual time was earlier, the system per-
forms a search for immediately available results as described
above. In the case that it is later, the system monitors the
service that was to be used, and performs evaluations to
check if it is still the best instance, replacing it if it is not.

Another issue is that of proactive searching. If a client needs
some service at a point in the future, how can we discover
its existence even though it is not in communication range?
A solution to this problem can be found by using discon-
nected message delivery [4] which uses disconnected routes
to inform a client about the existence of a service that it is
not within communication range of. Alternatively, ad hoc
routing can be used. Both these approaches are outside the
scope of this paper, but are part of our future work. For
now, we assume that services go in and out of communica-
tion range. Thus, when a service is first in communication
range, it leaves its motion profile and advertisement which
can be used to deduce whether it will be in range at the
required time.



The final issue we discuss is determining the length of an
interaction between client and service. In this paper, we
have claimed that knowledge can be used to determine if
the connectivity is going to last longer than the duration of
the interaction. For this version of our software, we assumed
a static bound on how long an interaction would take. In
the case that an interaction were to take longer than the
static length of time, we assumed that it would be split into
two. We intend to investigate whether one can calculate the
duration of an interaction dynamically. For example, one
might consider the number of bytes to be sent across, the
bandwidth and protocol level details to obtain an average
case estimation. If we are successful, we intend to modify
this version of the software to be compatible with dynamic
calculation of the length of interaction. We expect to add
some software that does the calculation.

8. CONCLUSIONS
Using knowledge about other hosts in ad hoc networks to
plan interactions between clients and service providers can
yield benefits in terms of predictability and stability of ap-
plications that expand their capability via the opportunistic
use of external services. In this paper, we have described
a software architecture for building a knowledge base which
aggregates knowledge as well as an algorithm that uses the
knowledge base to facilitate proactive planning of interac-
tions. We have also described how traditional SOC oper-
ations and their semantics change in an knowledge driven
SOC architecture. We have shown that such an architec-
ture is more reliable that traditional SOC architectures in
ad hoc networks. This is a first step towards introducing
a new concept, which we believe can play a role in achiev-
ing wired network-like quality of service in ad hoc networks.
Much work and analysis remains to be done towards opti-
mizing such a system.
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