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Abstract 

An increasing number of distributed real-time systems face the critical challenge of provid-

ing quality of service guarantees in open and unpredictable environments.  In particular, such 

systems often need to enforce utilization bounds on multiple processors in order to avoid over-

load and meet end-to-end deadlines even when task execution times are unpredictable.  While 

recent feedback control real-time scheduling algorithms have shown promise, they cannot han-

dle the common end-to-end task model where each task is comprised of a chain of subtasks dis-

tributed on multiple processors.  This paper presents the End-to-end Utilization CONtrol (EU-

CON) algorithm that adaptively maintains desired CPU utilization through performance feed-

backs loops.  EUCON is based on a model predictive control approach that models utilization 

control on a distributed platform as a multi-variable constrained optimization problem.  A 

multi-input-multi-output model predictive controller is designed based on a difference equation 

model that describes the dynamic behavior of distributed real-time systems.  Both control theo-

retic analysis and simulations demonstrate that EUCON can provide robust utilization guaran-

tees when task execution times deviate from estimation or vary significantly at run-time.   

Index terms—real-time systems, embedded systems, distributed systems, feedback control 
real-time scheduling, end-to-end task, Quality of Service, model predictive control 

                                                 

1 This is an extended version of a conference paper [15].  This work is funded, in part, by DARPA under grant 
NBCHC030140, and by NSF under grant CCR-0325529. 



I. INTRODUCTION 

In recent years, a category of performance-critical distributed systems executing in open 

and unpredictable environment has been rapidly growing [2].  Examples of such systems in-

clude distributed real-time embedded (DRE) systems such as avionics mission computing, 

autonomous aerial surveillance, disaster recovery systems, and on-line trading servers.  A key 

challenge faced by such systems is providing critical quality of service (QoS) guarantees while 

the workload cannot be accurately characterized a priori.  For example, the execution times of 

visual tracking applications can vary significantly as a function of the number of potential tar-

gets in a set of received camera images.  Similarly, the resource requirements and the arrival 

rate of service requests in an on-line trading server can fluctuate dramatically.  However, QoS 

guarantees are required in these systems despite their unpredictable environments.  In particu-

lar, such systems often need to guarantee the CPU utilization on multiple processors in order to 

achieve overload protection and meet end-to-end deadlines.  Failure to meet critical QoS guar-

antees may result in loss of mission failures or severe financial damage. 

These new systems require a paradigm shift from classical real-time computing that relies 

on accurate characterization of workloads and platform.  Recently, control theoretic approaches 

that we call QoS control have shown promise in providing QoS guarantees in unpredictable 

environments.  While classical real-time scheduling approaches are concerned with statically 

assured avoidance of undesirable effects such as overload and deadline misses, the QoS control 

approach handles such effects dynamically via performance feedback loops.  However, existing 

work on QoS control has focused on providing guarantees on a single processor based on the 

assumption that tasks on different processors are independent from each other.  Unfortunately, 

solutions for a single processor are not applicable to distributed systems that employ the end-
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to-end task model [9][22].  In such systems, a task is comprised of a chain of subtasks execut-

ing on different processors.  The execution of a task involves the execution of multiple subtasks 

under precedence constraints.  Since the end-to-end task model is common in DRE systems, it 

is important to extend the QoS control framework to end-to-end tasks.  QoS control of end-to-

end tasks on a distributed platform introduces several new research challenges.  First, QoS con-

trol in distributed systems is a multi-input-multi-output (MIMO) control problem where the sys-

tem performance on multiple processors must be guaranteed simultaneously.  Second, the 

MIMO control problem in distributed systems is complicated by the fact that the performance 

on different processors is coupled to each other due to the correlation among subtasks belong-

ing to a same task.  Changing the rate of a task will affect the utilization of all the processors 

where its subtasks are located.  Hence the CPU utilization of a processor cannot be controlled 

independently.  Furthermore, QoS control is often subject to constraints.  Examples include 

desired bounds on CPU utilization and limits on acceptable task rates. 

As a step toward QoS control for the end-to-end task model, this paper proposes the End-

to-end Utilization CONtrol (EUCON) algorithm.  EUCON can maintain desired CPU utiliza-

tion in distributed systems with end-to-end tasks in unpredictable environments through online 

adaptation.  The primary contributions of this paper are three-fold: 1) derivation of a dynamic 

model that captures the coupling among processors and constraints in DRE systems executing 

end-to-end tasks; 2) development of a Model Predictive Control (MPC) approach for QoS con-

trol in DRE systems; and 3) design and control analysis of a distributed MIMO feedback con-

trol loop in EUCON that provide robust utilization guarantees when task execution times devi-

ate from their estimation and vary significantly at run-time.   
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II. RELATED WORK 

Traditional approaches for handling end-to-end tasks are based on the end-to-end schedul-

ing [22] or distributed priority ceiling [19].  Both are open-loop approaches that rely on sched-

ulability analysis that require a priori knowledge about worst-case execution times.  When task 

execution times are highly unpredictable, such open-loop approaches may severely underutilize 

the system.  An approach for dealing with unpredictable task execution times is resource re-

claiming [6][18].  A drawback of existing resource reclaiming techniques is that they often re-

quire modifications to specific scheduling algorithms in operating systems, which is often un-

desirable in COTS platforms.  In contrast, the feedback control approach adopted in this paper 

can be easily implemented at the middleware layer on top of COTS platforms. 

A survey of feedback performance control in computing systems is presented in [2].  Re-

cent research that applied control theory to real-time scheduling and utilization control is di-

rectly related to this paper.  Steere et al., developed a feedback scheduler [21] that coordinated 

the CPU allocation to consumer and supplier threads.  Abeni et al., presented control analysis 

of a reservation-based feedback scheduler [3].  Cervin et al. presented a feedback scheduler for 

digital control systems [7].  In [1], a feedback-based admission controller was designed to 

maintain desired utilization of an Apache web server.  A Feedback Control real-time Schedul-

ing (FCS) framework [13] was proposed to provide performance guarantees for real-time sys-

tems with unknown task execution times.  The proposed FCS algorithms have been imple-

mented as a middleware service [14].  All the aforementioned projects focused on controlling 

the performance of a single processor.  In addition, their control designs are based on single-

input-single-output linear control techniques.  This control approach cannot be easily extended 

to end-to-end utilization control due to the coupling among multiple processors and practical 
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constraints in DRE systems.  FCS has been extended to handle distributed systems [20].  How-

ever, FCS for distributed systems assumes, in contrast with the work presented in this paper, 

that tasks on different processors are independent from each other.   

III. PROBLEM FORMULATION 

We now formulate the utilization control problem in DRE systems.   

A. A Flexible End-to-End Task Model 

A system is comprised of m end-to-end periodic tasks {Ti | 1 ≤ i ≤ m} executing on n proc-

essors {Pi | 1 ≤ i ≤ n}.  Task Ti is composed of a chain of subtasks {Tij | 1 ≤ j ≤ ni} that may be 

allocated to multiple processors. A subtask Tij (1 < j ≤ ni) cannot be released for execution until 

its predecessor Tij-1 is completed. We assume that a non-greedy synchronization protocol (e.g., 

release guard [22]) is used to enforce the precedence constraints between subsequent subtasks.  

Hence each subtask Tij of a periodic task Ti is also periodic and shares the same rate as Ti [22].  

Each task Ti is subject to an end-to-end relative deadline related to its period.  In this work, we 

assume deadlines are soft, i.e., applications can tolerate a small number of deadline misses.  

Each subtask Tij has an estimated execution time cij known at design time.  However, the actual 

execution time of a task may be significantly different from cij and may vary at run time.   

We assume that the rate of Ti can be dynamically adjusted within a range [Rmin,i, Rmax,i].  

Earlier research has shown that task rates in many DRE applications (e.g., digital feedback con-

trol [7], sensor data update, and multimedia [5]) can be adjusted without causing application 

failure.  A task running at a higher rate contributes a higher value to the application at the cost 

of higher utilization.  Rate adjustment is an example of an adaptation mechanism that can be 

used to control utilization.  Other adaptation mechanisms such as admission control and task 

reallocation may also be incorporated into the control framework.   
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EUCON is not designed to control network delays.  Network delay may be handled by 

treating each network link as a processor [22], or by considering the impact of worst-case net-

work delay in subdeadline assignment.  EUCON can also be integrated with network-layer ser-

vices such as IntServ [23] and DiffServ [4] to provide end-to-end delay guarantees. 

B. Problem Formulation 

Before formulating the utilization control problem, we introduce several notations.   

• Ts: The sampling period.   

• ui(k): The CPU utilization (or utilization for simplicity) of processor Pi in the kth sampling 

period, i.e., the fraction of time that Pi is not idle during time interval [(k-1)Ts, kTs].   

• Bi: The utilization set point of Pi.  Bi is the desired utilization of Pi specified by the user.  

• ri(k): The invocation rate of task Ti in the (k+1)th sampling period.  The sampling period Ts 

is selected so that multiple instances of each task may be invoked during a sampling period.  

• wi: The weight of Pi.  A higher weight wi assigns higher importance to controlling ui(k). 

Utilization control can be formulated as a constrained optimization problem.  The goal is to 

minimize the difference between the utilization set points and the utilization 

∑
=

≤≤
−

n
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iiinjkr

kuBw
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}1|)({
))((min  subject to two sets of constraints: 

ui(k) ≤  Bi, (1 ≤ i ≤ n)            (1) 
Rmin,i ≤ ri(k) ≤ Rmax,i, (1 ≤ i ≤ m)                                             (2) 

The utilization constraints (1) ensure that no processor exceeds its utilization set point.  At 

the same time, the optimization goal avoids underutilizing the system by making the utilization 

of each processor as close to its set point as possible.  The latter is important because CPU un-

derutilization usually causes poor system performance.  In our task model underutilization 
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leads to low task rates, which corresponds to poor application performance such as low quality 

video or higher control cost in digital control systems.   

C. Applications 

EUCON has several important applications in a broad range of QoS-critical systems.   

Meeting end-to-end deadlines: Real-time tasks must meet their end-to-end deadlines in DRE 

systems.  In the end-to-end scheduling approach [22], the deadline of an end-to-end task is di-

vided into subdeadlines of its subtasks, and the problem of meeting the deadline is transformed 

to the problem of meeting the subdeadline of each subtask.  A well known approach for meet-

ing the subdeadlines on a processor is by enforcing the schedulable utilization bound [12].  The 

subdeadlines of all the subtasks on a processor are guaranteed if the utilization of the processor 

remains below its schedulable utilization bound.  To guarantee end-to-end deadlines, a user 

only needs to specify the utilization set point of each processor to a value below its schedulable 

utilization bound.  EUCON can work with various subdeadline assignment algorithms [9][17] 

and schedulable utilization bounds for different task models [10][12] presented in the literature.   

QoS portability: EUCON can also be deployed in a middleware to support QoS portability [14].  

When an application is deployed on a faster platform, the task rates will be automatically in-

creased to take advantage of the additional resource.  On the other hand, when an application is 

deployed to a slower platform, task rates will be automatically reduced to maintain the same 

CPU utilization guarantees.  EUCON’s self-tuning capability can significantly reduce the cost 

of porting DRE software across platforms. 

Overload protection:  Many distributed systems (including non-real-time systems) must avoid 

saturation of processors, which may cause system crash or severe service degradation [1].  On 

COTS operating systems that support real-time priorities, high utilization by real-time threads 
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may cause kernel starvation [14].  EUCON allows a user to enforce desired utilization bounds 

for all the processors in a distributed system.  Moreover, the utilization set point can be 

changed online.  For example, a user may lower the utilization set point on a particular proces-

sor in anticipation of additional workload, and EUCON will dynamically readjust task rates to 

enforce the new set point.   

DRE systems span a wide spectrum in terms of scale and network support.  In this paper, 

we focus on server clusters in which several processors connected through a high speed com-

munication interface (e.g., a VME bus backplane).  Many DRE systems (e.g., avionics systems, 

shipboard computing, and process control systems) fall into this category.  A centralized QoS 

control architecture is usually sufficient to this class of DRE systems.  Decentralized control 

for large-scale systems is part of our future work. 
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Figure 1. The MIMO feedback control loop in EUCON 

IV. OVERVIEW OF EUCON  

EUCON features a MIMO feedback control loop (see Figure 1) that dynamically adjusts 

task rates to enforce the utilization set points.  The DRE system is controlled by a centralized 

MIMO controller.  The controller may be located on a separate processor, or share a processor 

with some applications.  EUCON must be scheduled as the highest-priority task in order to ef-

fectively control utilization under overload conditions.  Each processor has a utilization moni-

tor and a rate modulator.  A separate TCP connection (called feedback lane in [14]) connects 
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the controller with the pair of utilization monitor and rate modulator on each processor.  The 

user inputs to the controller include the utilization set points, B = [B1 ... Bn]T and the rate con-

straints on each task.  The controlled variables are the utilization of all processors, u(k) = [u1(k) 

... un(k)]T.  The control inputs from the controller are the change to task rates ∆r(k) = [∆r1(k) ... 

∆rm(k)]T, where ∆ri(k) = ri(k) - ri(k-1) (1 ≤ i ≤ m).  The following feedback control loops are 

invoked in the end of every sampling period:   

1. The utilization monitor on each processor sends the utilization ui(k) in the last sampling pe-

riod to the controller through its feedback lane.  

2. The controller collects the utilization vector u(k), computes ∆r(k), and sends new task rates 

r(k) = r(k-1) + ∆r(k) to the rate modulator on each processor through its feedback lane.  

3. The rate modulator on each processor changes the task rates according to r(k).   

Since the core of EUCON is the controller, we will focus on its design in the rest of the pa-

per.  The design of the other components is similar to FCS/nORB [14], a feedback control 

scheduling service on an Object Request Broker middleware. 

V. DYNAMIC MODEL OF END-TO-END TASKS 

Following a control theoretic methodology, we must establish a dynamic model that charac-

terizes the relationship between the control input ∆r(k) and the controlled variable u(k).  First, 

we model the utilization ui(k) of one processor Pi.  Let ∆rj(k) denote the change to task rate, 

∆rj(k) = rj(k) – rj(k-1).  We define the estimated change to utilization, ∆bi(k), as 

∑
∈

∆=∆
ijl ST

jjli krckb )()(               (3) 
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where Si represents the set of subtasks located at processor Pi.  Note ∆bi(k) is based on the es-

timated execution time.  Since the actual execution times may be different from their estima-

tion, we model the utilization u(k) as 

ui(k) = ui(k-1) + gi∆bi(k-1)              (4) 

where the utilization gain gi represents the ratio between the change to the actual utilization 

and its estimation ∆bi(k-1).  For example, gi = 2 means that the actual change to utilization is 

twice of the estimated change.  Note that the exact value of gi is unknown due to the unpredict-

ability of subtasks’ execution times.  Equation (4) models a single processor.  A system with m 

processors is described by the following MIMO model.  

u(k) = u(k-1) + G∆b(k-1)        (5) 

where ∆b(k) is a vector including the estimated change to utilization of each processor, and G 

is a diagonal matrix where gii = gi (1 ≤ i ≤ n) and gij = 0 (i ≠ j).  The relationship between the 

utilization and task rates is characterized as follows. 

∆b(k) = F∆r(k)         (6) 

The subtask allocation matrix, F, is an n×m-order matrix, where fij = cjl if subtask Tjl (the lth 

subtask of task Tj) is allocated to processor i, and fij = 0 if no subtask of task Tj is allocated to 

processor i.  Note that F captures the coupling among processors due to end-to-end tasks. 

Equations (5-6) give a dynamic model of a distributed system with m tasks and n processors. 

Example: Suppose a system has two processors and three tasks.  T1 has only one subtask T11 on 

processor P1. T2 has two subtasks T21 and T22 on processors P1 and P2, respectively.  T3 has one 

subtask T31 allocated to processors P2. We have 
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VI. DESIGN AND ANALYSIS OF A MODEL PREDICTIVE CONTROLLER 

We present the design and analysis of a model predictive controller for EUCON. We first 

derive a mathematical formulation of EUCON in the model predictive control framework. Next 

this formulation is transformed to a constrained least-squares problem, which allows us to de-

sign the control algorithm based on an existing least squares solver. Finally, we prove the sta-

bility of our controller through control analysis. 

A. A Formulation for Model Predictive Control 

Based on the system model, a MIMO predictive controller can be designed to guarantee the 

utilization set points on multiple processors.  The single-input-single-output (SISO), linear con-

trol approach adopted in earlier works on feedback control real-time scheduling [13][20] is not 

suitable for DRE systems due to the coupling among multiple processors and the constraints.  

To solve this control problem, we adopt a Model Predictive Control (MPC) [16] approach.  

MPC is an advanced control technique used extensively in industrial process control.  Its major 

advantage is that it can deal with coupled MIMO control problems with constraints on the plant 

and the actuators.  This characteristic makes MPC very suitable for end-to-end utilization con-

trol in DRE systems where the performance measures and the coupling between processors can 

be expressed by constraints and MIMO system models.  The basic idea of MPC is to optimize 

an appropriate cost function defined over a time interval in the future.  The controller employs 

a model of the system which is used to predict the behavior over P sampling periods called the 

prediction horizon.  The control objective is to select an input trajectory that minimizes the cost 

while satisfying the constraints.  An input trajectory includes the control inputs in the following 
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M sampling periods, e.g., ∆r(k), ∆r(k+1|k), ... ∆r(k+M-1|k), where M is called the control hori-

zon.  The notation x(k+i|k) means that the vector signal x depends on the conditions at time k.  

Once the input trajectory is computed, only the first element (∆r(k)) is applied as the input sig-

nal to the system.  In the next step, the prediction horizon slides one sampling period and the 

input is computed again as a solution to a constrained optimization problem based on perform-

ance feedbacks (u(k)).  MPC combines performance prediction, optimization, constraint satis-

faction, and feedback control into a single algorithm.  Details of MPC can be found in [16]. 

We now design a controller for EUCON.  The controller includes a least squares solver, a 

cost function, a reference trajectory, and an approximate system model under the rate con-

straints.   In the end of every sampling period, the controller computes the control input ∆r(k) 

that minimizes the cost function under the utilization and rate constraints based on an approxi-

mate system model.  The cost function to be minimized by our controller is 

∑∑
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where P is the prediction horizon, M is the control horizon, Q(i) is the tracking error weight, 

and R(i) is the control penalty weight.  The first term in the cost function represents the track-

ing error, i.e., the difference between the utilization vector u(k+i|k) and a reference trajectory 

ref(k+i|k).  The reference trajectory defines an ideal trajectory along which the utilization vec-

tor u(k+i|k) should change from the current utilizations u(k) to the utilization set points B.  Our 

controller is designed to track the following exponential reference trajectory so that the closed-

loop system behaves like a linear system.  

))(()|( kuBeBkikref
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                (8) 
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Tref is the time constant that specifies the speed of system response.  A larger Tref causes the 

system to converge faster to the set point.  By minimizing the tracking error, the closed-loop 

system will converge to the utilization set point if the system is stable.  The weight matrix Q(i) 

can be tuned to represent preferences between processors.  For example, a higher weight may 

be assigned to a processor if it executes more important applications.  The second term in the 

cost function represents the control penalty.  The control penalty term ensures that the control-

ler will minimize the changes in the control input.  

We have established a system model for DRE systems in Section IV.  However, the model 

cannot be directly used by the controller because the system gains G are unknown.  Therefore, 

the controller needs to use an approximate model.  Our controller assumes G = [1 ... 1]T in (5), 

i.e., the controller assumes the actual utilization will be the same as the utilization predicted 

based on estimated ones.  Hence our controller solves the constrained optimization based on an 

approximate system model described by (6) and 

u(k) = u(k-1) + ∆b(k-1)                 (9) 

Although this approximate model may behave differently from the real system, as we prove 

in Section V.C, the closed loop system under our controller can still maintain stability and 

guarantee desired utilization set points as long as G is within a certain range.  Furthermore, this 

range can be established using stability analysis of the closed-loop system.  The controller must 

minimize the cost function (7) under the utilization and rate constraints (1-2) based on the ap-

proximate system model described by (6) and (9).  This constrained optimization problem can 

be transformed to a standard constrained least-squares problem [16]. The controller can then 

use a standard least-squares solver to solve this problem on-line.  In the following subsection 

we present this transformation. 
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B. Transformation to Least-Squares Problem 

A standard constrained least-squares problem is in the form of 
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s(k) denotes the vector of change to the control input in the control horizon.  In EUCON,  
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To transform our control problem to a least-squares problem, we re-write our cost function 

in (7) and constraints (1-2) in the form (10).  Since the control penalty terms in (7) is consistent 

with (10), we only need to transform the tracking error term in (7) and the constraints (1-2) to 

formulations in terms of s(k).  First we work on the tracking error term in (7).  From the plant 

model (6) and (9), the predicted utilization for given prediction horizon can be written as: 
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We can rewrite (11) as: 
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In addition, we define 

E(k) = ref′(k) – u(k) – Γ∆r(k-1)      (14) 

where ref′(k) represents the reference trajectory for specified prediction horizon: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
=′

)|(

)|1(
)(

kPkref

kkref
kfre M  

Given Θ and E(k) in (12) and (13), our cost function (7) is equivalent to the one in the 

least-squares problem (10).  We now transform the constraints (1-2) to the linear inequality 

constraint form as Ωs(k) ≤ ω.  Firstly the rate constraint (1) in control horizon M as: 
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From r(k) = r(k-1) + ∆r(k), the above inequality is equivalent to 
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From ∆r(k) = ∆r(k-1) + (∆r(k)- ∆r(k-1)), we can transform the rate constraints to the fol-

lowing linear inequality constraints: 
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Now we consider the utilization bound constraints (1).  From (1) and (12) the utilization 

bound constraints are equivalent to the following linear inequality 

Θs(k) ≤ -u(k) - Γ∆r(k-1) + B            (16) 

We have transformed our MPC formulation to a constrained least-square formulation de-

scribed by (10, 12-15).  Since the constraints (15-16) depend on u(k), ∆r(k-1), and r(k-1), both 

of them are known at time k.  We can use any standard least-squares solver to solve this control 

problem now.  In our simulator, we implement the controller based on the lsqlin solver in 

Matlab, which uses an active set method similar to that described in [8].  The computational 

complexity of lsqlin is polynomial to the product of the number of tasks, the number of 

processors, and the control and prediction horizons.  While our controller is capable of han-

dling medium-scale systems which are the focus of this paper, more efficient control algorithm 

may be needed by large systems.  A preliminary overhead measurement in the MATLAB envi-

ronment is presented in Section VII.F. 

C. Stability Analysis 

A dynamic system is stable iff for every initial condition it will converge to the equilibrium 

point [16].  In our case, the equilibrium points of the system are the utilization set points B.  

Hence a stable DRE system guarantees that the utilization on every processor converge to its 
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set point.  We first outline a general approach for analyzing the stability for a DRE system con-

trolled by EUCON and then give an example. 

1. Derive the control inputs ∆r(k) that minimize the cost function based on the approximate 

system model described by (6) and (9).   

2. Derive the closed-loop system model by substituting the derived control inputs ∆r(k) into 

the actual system model described by (5-6).  The closed-loop system model is in the form  

u(k+1) = Au(k) + C             (17) 

where A is a matrix whose eigenvalues depend on the system gains {gi | 1 ≤ i ≤ n}. 

3. Derive the stability condition of the closed-loop system described by (11).  According to 

control theory, the closed-loop system is stable if all the eigenvalues of matrix A locate in-

side the unit circle in the complex space.  Solving this stability condition will give the range 

of gi (1 ≤ i ≤ n) where the system will guarantee stability. 

In our stability analysis we assume the constrained optimization problem is feasible, i.e., 

there exists a set of task rates within their acceptable ranges that can make the utilization on 

every processor equal to its set point.  If the problem is infeasible, no controller can guarantee 

the set point through rate adaptation.  In this case, the system may switch to a different control 

adaptation mechanism (e.g., admission control or task reallocation).  The integration of multi-

ple adaptation mechanisms is part of our future work.  The model-predictive control formula-

tion facilitates this integrated solution because the infeasibility of an adaptation mechanism can 

be detected by least-square solver and, in turn, triggers a new adaptation mechanism. 

Example: We now apply the stability analysis approach to the example system described in 

the end of Section V.  The system has 3 tasks and 2 processors.  We set the prediction horizon 

P = 2 and the control horizon M = 1.  According to the MPC theory, the system is also stable 
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with any longer prediction horizon and control horizon if it is stable with shorter horizons.  The 

time constant of the reference trajectory is Tref/Ts = 4.  The weights on all terms are 1.  The cost 

function can be transformed to the following formula in scalar form  
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Substituting the model parameters to (6) and (9), we have 
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After we substitute (19) and the reference trajectory (7) to (18), the cost function becomes a 

function of ∆r(k).  We then derive the control input vector ∆r(k) that minimize the cost function 

through partial differentiation.  Following Step 2, we establish the closed-loop model by substi-

tuting ∆r(k) derived in the last step into the actual system model (5-6).  The closed-loop model 

is a function of the system gains (g1, g2).  Following Step 3, we can derive the conditions in 

terms of (g1, g2) under which the closed-loop system will remain stable.  For example, in the 

special case when g1 = g2, the example system is guaranteed to be stable if 0 < g1 = g2 < 5.95.  

That is, EUCON can maintain stability even if the execution time of every subtask becomes 

close to 5.95 times its estimated one.  The details of the stability analysis on this example are 

not shown here due to the page limit.   

D. Control Tuning 

For a stable system, controller tuning involves a tradeoff between utilization oscillation and 

the speed of convergence.  Severe oscillation in utilization is undesirable even if the average 

utilization remains close to the set point.  In practice, this may lead to oscillation in application 
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performance such as video frame rate and the frequency of control in process control systems.  

The speed of converge is also important because it represents how quickly a system can recover 

from utilization variations and regain the desired utilization.  If the gains used in the controller 

(1 in EUCON) is lower than the actual one (gi), the real effect of the control input is going to be 

larger than what the controller has predicted and the system will oscillate.  Using pessimistic 

estimation on execution times will reduce system oscillation because the system gains are less 

than 1 when execution times are overestimated.  It should be noted that using pessimistic esti-

mated execution times under EUCON does not cause underutilization.  This key difference 

from open-loop scheduling is because EUCON dynamically adjusts rates based on measured 

utilization rather than the estimated execution times.  However, more pessimistic estimation on 

execution times leads to smaller gains, which cause slower convergence to the set points.   

The choice of the sampling period must balance convergence time, overhead, and oscilla-

tion.  A short sampling period speeds up convergence by enabling the system to adapt to varia-

tions at a higher frequency.  However, a short sampling period also increases the run-time 

overhead of EUCON because its feedback control loop is invoked once per sampling period.  

Moreover, since EUCON measures the average utilization over a sampling period, a longer 

sampling period may filter out noise in the utilization input to the controller and hence reduce 

oscillation. 

VII. EXPERIMENTATION 

A. Experimental Setup 

Our simulation environment is composed of an event-driven simulator implemented in C++ 

and a controller implemented in MATLAB (R12).  The simulator implements the distributed 

real-time system controlled by EUCON, the utilization monitor and rate modulator.  The sub-
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tasks on each processor are scheduled by the Rate Monotonic (RMS) scheduling algorithm [12].  

The precedence constraints among subtasks are enforced by the release guard protocol [22].  

The controller is based on the lsqlin least squares solver in MATLAB.  The simulator opens 

a MATLAB process and initializes the controller at start time.  In the end of each sampling pe-

riod, the simulator collects the CPU utilization on each processor from the utilization monitors, 

and calls the controller in MATLAB with the utilization vector u(k) as parameters.   The con-

troller computes the control input, ∆r(k), and return it to the simulator.  The simulator then calls 

the rate modulator on each processor to adjust the task rates.   

Each task’s end-to-end deadline di = ni/ri(k), where ni is the number of subtasks in task Ti.  

Each end-to-end deadline is evenly divided into subdeadlines for its subtasks.  The resultant 

subdeadline of each subtask Tij equals its period, 1/ri(k).  Hence the schedulable utilization 

bound of RMS [12] is used as the utilization set point on each processor:  

)12( /1 −= im
ii mB          (20)  

where mi is the number of subtasks on Pi.  All (sub)tasks meet their (sub)deadlines if the utili-

zation set point on every processor is enforced.  As discussed in Section III.C, other subdead-

line assignment algorithms [9] and utilization bounds [10] may also be used with EUCON.  

Network delay is ignored in the simulations.   

Table 1: Task parameters in SIMPLE (Proc represents the processor where a subtask is located)   
Tij Proc cij 1/Rmax, i 1/Rmin, i 1/ri(0) 
T11 P1   35 35 700 60 
T21 P1  35 
T22 P2  35 35 700 90 

T31 P2   45 45 900 100 
Two different workload/system configurations were used in our experiments.  SIMPLE (see 

Table 1) is the example used in the stability analysis in Section VI.C.  The second configura-

tion, MEDIUM, simulates a more complex workload.  MEDIUM includes 12 tasks (with a total 

of 25 subtasks) executing on 4 processors.  There are eight end-to-end tasks running on multi-
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ple processors and four local tasks (tasks T8 to T12).  The execution time of every subtask Tij in 

MEDIUM follows a uniform distribution.  The parameters of MEDIUM are available in Ap-

pendix B. 

Table 2: Controller parameters 
System P M Tref/Ts Ts 
SIMPLE 2  1 

MEDIUM 4  2 4 1000 time unit 

To evaluate the robustness of EUCON when execution times deviate from the estimation, 

the average execution time of each subtask Tij can be changed by tuning a parameter called the 

execution-time factor, etfij(k) = aij(k)/cij, where aij is the average execution time of Tij.  The 

execution time factor represents how much the actual execution time of a subtask deviates from 

the estimated one.  The execution-time factor (and hence the average execution times) may be 

kept constant or changed dynamically in a run.  When all subtasks share a same constant 

execution time factor etf, etf equals to the system gain on every processor in the model, i.e., etf 

= gi (1 ≤ i ≤ m).  The controller parameters are listed in Table 2.  The controller for MEDIUM 

has higher control and prediction horizons to guarantee stability in a larger system.   

B. Baselines 

We compare EUCON against two baseline algorithms, OPEN and FC-U-E2E.  OPEN is an 

open-loop algorithm that uses fixed task rates.  It assigns task rates a priori based on estimated 

execution times so that B = Fr', where F is the subtask allocation matrix defined in Section IV, 

and r' is the vector of task rates assigned by OPEN.  From the definition of etf(k) we have  

u(k) = etf(k)B         (21)   

Although OPEN can result in desired utilization when estimated execution times are accu-

rate (i.e., etf(k) = 1), it causes underutilization when execution times are overestimated (i.e., 

etf(k) < 1), and CPU over-utilization when execution times are underestimated (i.e., etf(k) > 1).  
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Unfortunately, it is often difficult to establish tight bound on task execution times – especially 

in open and unpredictable environments where task execution times are heavily influenced by 

the value of sensor data or user input at run time. 

FC-U-E2E is an extension of the FC-U [13] algorithm.  Similarly to EUCON, FC-U fea-

tures a feedback control loop that controls utilization by dynamically adjusting task rates.  

However, FC-U is a single-processor algorithm, i.e., it only controls the utilization of a single 

processor.  It uses a SISO Proportional controller to compute the changes to task rates based on 

measured utilization.  A simple approach for utilization control in a distributed system is exe-

cuting a FC-U algorithm on each processor.  Each FC-U algorithm controls the utilization of its 

own processor by computing task rates independently from others.  However, this approach 

cannot handle the end-to-end task model due to its constraint that all the subtasks of an end-to-

end task must execute at the same rate.  In contrast, FC-U algorithms on those processors may 

decide to assign different rates to the same task based on the states of their own processors.  

For example, the FC-U controller on a heavily loaded processor may assign a lower rate to a 

task than that assigned by a lightly loaded processor that shares the same task.  Therefore con-

flicts among the desired rates by multiple processors must be resolved.  To guarantee the utili-

zation bound constraints on all processors, a conservative approach can be adopted to assign 

the lowest rate given by any processors to a task.  This mechanism can be implemented by add-

ing a min component to the rate modulator on each processor.  In the end of every sampling 

period, the rate modulator on each processor Pi receives the rates assigned to each of its tasks 

from all the FC-U controllers on processors that share tasks with Pi, and change the rate of each 

of its task to the minimum one among all the received rates for this task.  We refer to this ex-

tended algorithm FC-U-E2E.  A fundamental difference between EUCON and FC-U-E2E is 
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that EUCON explicitly incorporates the inter-processor coupling in a distributed system in its 

the design of a MIMO MPC, while FC-U-E2E implicitly handles the coupling by resolving the 

conflict among multiple SISO Proportional controllers through a min operator.  As a baseline 

FC-U-E2E allows us to study the benefit of MPC compared to simple linear control. 

In the following, we present three sets of simulations.  In Experiment I, execution times are 

steady but deviate from the estimation.  In Experiment II, task execution times vary dynami-

cally at run-time.  Experiment III compares EUCON with FC-U-E2E.   
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        (a) execution-time factor = 0.5                (b) execution-time factor = 7 

Figure 2: Utilization under different execution time factors (SIMPLE) 

C. Experiment I: Steady Execution Times 

In this set of experiments, all subtasks share a constant execution-time factor in each run.  

Since the system gains g1 and g2 equal the execution-time factor under this setup, we can com-

pare the results of our stability analysis to the simulation results through these experiments.  

Figure 2(a) shows the system performance when the average execution time of every subtask is 

only half of the estimated one.  In the beginning of the run, both processors are underutilized.  

EUCON then increases the task rates until the utilization of both processors converges to the 

utilization set points.  As predicted by our control analysis, the system remains stable in this 

case.  In contrast, Figure 2(b) shows the situation when the average execution time of every 
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subtask is seven times its estimation.  In the beginning, the processors were fully utilized be-

cause of the long task execution times.  At around time 30Ts, the utilization drops sharply to 

almost zero and starts to oscillate.  The utilization on P2 also oscillates significantly.  The sys-

tem fails to converge to the utilization set point.  This result is also consistent with our stability 

analysis that predicts the system will be unstable when the system gains exceed 5.95. 
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Figure 3: Average utilization on P1 

Courier, 24

We plot the mean and standard deviation of utilization on P1 during each run in Figure 3(a).  

Every data point is based on the measured utilization u(k) from time 100Ts to 300Ts to exclude 

the transient response in the beginning of each run.  The system performance is considered ac-

ceptable if the average utilization is within ±0.02 to the utilization set point, and the standard 

deviation is less than 0.05.  Satisfying the requirement on average utilization ensures that the 

system achieves the desired utilization.  Satisfying the requirement on standard deviation en-

sures that the utilization does not oscillate significantly.  While the thresholds for acceptable 

performance depend on specific applications, the general conclusions drawn in this section are 

applicable to many applications.  As shown in Figure 3(a), the average utilization remains close 

to the set point for execution-time factors between 0.20 and 5.95, and it starts deviating from 

the set point and increases linearly when the execution-time factor exceeds 6.00.  When execu-
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tion-time factor = 5.95, the average utilizations on P1 and P2 are 0.828 and 0.829, respectively.  

When execution-time factor increases to 6.00, however, the average utilization on P1 and P2 

become 0.828 and 0.833, respectively.  Based on the set point of 0.828 on both processors, the 

system becomes unstable (on P2) when execution-time factor is in the range [5.95, 6.00] in the 

run.  This empirical result is close to the analysis which shows the system should remain stable 

when the gain is below 5.95 (see Section V).   

The standard deviation of utilization indicates the intensity of oscillation.  As the execution-

time factor increases from 0.2 to 3, the standard deviation remains less than 0.05 and the aver-

age utilization remains within ±0.02 to the set point.  These results demonstrate that EUCON 

can enforce the same utilization guarantees when execution times deviate from the estimates as 

long as the execution-time factor remains below 3.  However, the standard deviation is higher 

than 0.05 for execution-time factors between 4 and 6, although the system is analytically stable 

in this range.  This result is consistent with our analysis in Section V that pessimistic estimation 

on execution times will reduce oscillation without underutilizing the CPUs.   

We then repeat our experiments under MEDIUM in order to evaluate the system perform-

ance under more complex settings.  Figure 3(b) plots the mean and standard deviation of utili-

zation on processor P1 under different execution-time factors (the performance on other proces-

sors is similar to P1 and is not shown due space limit).  For comparison, the expected utilization 

under OPEN (computed based on (21)) is also plotted.  OPEN causes underutilization when 

execution times are overestimated (etf < 1), and causes overload when execution times are un-

derestimated (etf > 1).  In contrast, EUCON provides acceptable utilization guarantees for any 

tested execution-time factor within the range [0.1, 1].  In this range, the average utilization un-

der EUCON remains within ±0.02 to the utilization set point and the standard deviation re-
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mains below 0.05.  For example, when etf = 0.1, the utilization under OPEN is only 0.073, 

while the average utilization under EUCON is 0.729 – the same as the utilization set point – 

with an standard deviation of 0.003.  This result demonstrates EUCON can achieve desired 

utilization even when execution times are significantly overestimated.  Similar to SIMPLE, the 

oscillation of utilization under MEDIUM also increases as execution times are underestimated.  

This result re-confirms our observation that pessimistic estimation of execution times should be 

used in the predictive controller in EUCON.   
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Figure 4 Utilization and task rates when execution times fluctuate at run time 

D. Experiment II: Varying Execution Times 

In Experiment II, execution times vary dynamically at run-time under the MEDIUM con-

figuration.  To investigate the robustness of EUCON we tested two scenarios of workload fluc-

tuation.  In the first set of runs, the average execution times on all processors change uniformly.  
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In the second set of runs, only the average execution times on P1 change dynamically.  The first 

scenario represents global load fluctuation in the whole system, while the second scenario 

represents local fluctuation on a part of the system.   

In each run with global workload fluctuation, the execution time factor is initially 0.5.  At 

time 100Ts, it increases to 0.9 causing an 80% increase in the execution times of all subtasks.  

At time 200Ts, the execution-time factor drops to 0.33 causing a 67% decrease in execution 

times.  Such instantaneous variation in workload stress tests the system capability of handling 

workload fluctuations [13].  As shown in Figure 4(a), EUCON enforces the utilization set 

points on all processors despite significant variations in execution times.  At time 100Ts, all 

processors are suddenly overloaded due to the increase in execution times.  EUCON responds 

to the deviation from the utilization set points by decreasing task rates.  The utilization on all 

processors re-converges to their set points within 20Ts.  At time 200Ts, the utilization dropped 

dramatically causing EUCON to increase task rates until the utilization on all processors regain 

to their set points.  The system settling time after 200Ts is longer than that follows 100Ts.  As 

discussed in Section V this is because the system gain is smaller during interval [200Ts, 300Ts] 

than [100Ts, 200Ts].  The system maintains stability and avoids significant oscillation through-

out the run despite variations in execution times.  In contrast, Figure 4(c) shows that the utiliza-

tion under OPEN fluctuates significantly because it cannot adapt to the workload variations.   

In each run with local workload fluctuation, the execution-time factor on P1 follows the 

same variation as that in global fluctuation, but all the other processors have a fixed execution-

time factor of 0.5.  As shown in Figure 4(b), the utilization of P1 converges to its set point after 

the significant variation of execution times at 120Ts and 250Ts, respectively.  The settling times 

under local workload fluctuation are close to those under global workload fluctuation.  We also 

27 



observe that the other processors experience only slight utilization fluctuation after the execu-

tion times change on P1.  This result demonstrates that EUCON effectively handles the cou-

pling among processors during rate adaptation.  In contrast, OPEN fails to maintain steady 

utilization on P1 in face of local workload fluctuation (as shown in Figure 4(d)). 
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Figure 5 Utilization under EUCON and FC-U-E2E (etf = 0.2, MEDIUM) 

E. Experiment III: Comparison with FC-U-E2E 

A premise of this work is that the MIMO approach adopted by EUCON can outperform the 

SISO control approach.  SISO control cannot handle the coupling among processors effectively 

- especially when the utilization on different processors are unbalanced.  In this situation, the 

task rates computed by different controllers may become inconsistent with each other due to 

the unbalanced utilization on different processors.  We now compare the performance of EU-

CON and FC-U-E2E under an unbalanced workload.  The workload used in this experiment is 

the same as MEDIUM except that the execution times on processor P1 are higher.  The execu-

tion time factor remains at 0.2 in each run.  As shown in Figure 5(a), the utilization on all 

processors converge to their set points despite the difference in initial values when EUCON is 

used.  The performance of FC-U-E2E is shown in Figure 5(b).  The utilization on P1 follows a 

similar trajectory as under EUCON.  However, all the other three processors suffer from sig-

nificantly longer settling times.  For instance, while it only takes about 60Ts for P4 to reach its 

set point under EUCON, it fails to reach its set point in the end of the run (300Ts).  Long 
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under EUCON, it fails to reach its set point in the end of the run (300Ts).  Long settling times 

are undesirable because systems need to quickly recover from load variation.   

We now analyze what causes the poor performance of FC-U-E2E.  After P1 reaches the set 

point at time 50Ts, its Proportional controller stops increasing the rates of all tasks with sub-

tasks on this processor.  Because all tasks must execute at the lowest rate given by any control-

lers in FC-U-E2E, their rates will stop increasing, even if the controllers on the other proces-

sors need them to do so in order to reach their set points.  This effectively slows down the 

convergence of processors P2-4 to their set points.  Actually, FC-U-E2E can eventually reach 

the set points only because every processor has a local task whose rate can be changed 

independently from other processors.  P2 has the longest settling time because it shares four 

end-to-end tasks P1, while each of P3 and P4 only shares two with P1.  Hence the utilization of 

P2 is particularly affected by the controller on P1.  After P3 and P4 both reach their set points, 

the utilization increase of P2 becomes even slower since only its local task can increase its rate 

in this case.  Compared with FC-U-E2E, a key advantage of EUCON lies in its capability to 

handle the coupling among multiple processors.  Furthermore, MPC provides a theoretic 

framework to analyze system stability under a wide range of execution-time factors.  

F. Overhead 

To estimate the run-time overhead of the controller, we measure the execution time of the 

least squares solver which dominates the computation cost of the controller.  In the simulations 

with the MEDIUM configuration on a 1.99GHz Pentium 4 PC with 256MB RAM, each invoca-

tion of the solver in MATLAB takes less than 9ms (corresponding to less than 1% CPU utiliza-

tion when the sampling period is 1 sec).  This result indicates the overhead of the controller is 

acceptable for a range of applications.  Since this preliminary result is based on the solver in 
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the MATLAB environment, it is not a precise benchmark for a controller implemented in na-

tive code.  Evaluation of EUCON in a real middleware environment is part of our future work. 

VIII. CONCLUSIONS 

EUCON features a model predictive controller to handle the coupling among multiple 

processors and constraints based a mathematical model that characterizes the dynamics of dis-

tributed systems with end-to-end tasks.  Both stability analysis and simulation results demon-

strate that EUCON can maintain desired utilization on multiple processors when task execution 

times are significantly overestimated and change dynamically at run-time.  EUCON also out-

performs both open-loop scheduling and a FCS algorithm based on SISO linear control.   
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APPENDIX A. DETAILED STABILITY ANALYSIS OF THE EXAMPLE IN SECTION VI.C   

Example: We now apply the stability analysis approach to the example system described in the 

end of Section V.  The system has 3 tasks and 2 processors.  We set the prediction horizon P = 

2 and the control horizon M = 1.  According to the MPC theory, the system is also stable with 

any longer prediction horizon and control horizon if it is stable with shorter horizons.  The time 

constant of the reference trajectory is Tref/Ts = 4.  The weights assigned to all terms are 1.  The 

cost function can be transformed to the following formula in scalar form:  
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Substituting the model parameters to (6) and (9), we have 
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For simplicity, we use ui and ∆ri to represent ui(k) and ∆ri(k), respectively, in the rest of this 

section.  Substitute (A-2) and the reference trajectory (8) in (A-1), the cost function becomes 
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where .  We then perform partial differentiation on V(k) with respect to ∆r1, ∆r2 and 

∆r3, respectively.  The derivatives are set to zero to compute the control input vector ∆r(k) that 

minimize the cost function.  This gives us the following equations: 
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We compute ∆r(k) by solving (A-4), and then substitute it to the actual system model (5-6).  

The closed-loop model is a function of the system gains (g1, g2). 
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M, N are independent of u1(k) or u2(k).  Hence the matrix A in (17) is 
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Since A is not a function of c11 or c31, the stability of the closed-loop system only depends 

on the values of c21 and c22.  This is because both T1 and T3 are local tasks, i.e., each of them 

only has one subtask and hence only runs on a single processor.  The controller can adjust the 

rates of T1 and T3 to control the utilization on a processor without affecting the other one.  

Therefore, only the parameters of the end-to-end task, T2, affect system stability. 

The closed-loop system is stable if the eigenvalues of A locate inside the unit circle in the 

complex space. The eigenvalues of A are 
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Following Step 3, we can establish the condition in terms of (g1, g2) that guarantees the sta-

bility of the closed-loop system.  For example, in the special case when g1= g2 = g,  
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To guarantee stability, we need to guarantee -1 < ρ1, ρ2 < 1.  Substituting the values of λ, 

Ts, and Tref, the stability condition of the closed-loop system is 0 < g < 5.95.  Therefore, EU-

CON can maintain stability even if the execution time of every subtask becomes as high as 5.95 

times its estimated one.   
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APPENDIX B. PARAMETERS OF THE MEDIUM TASK SET IN SECTION VII.A 

The execution time of every subtask Tij in MEDIUM follows a uniform distribution in a 

range [Minij, Maxij]*etf, where etf is the current execution time factor used in the experiment.  

The second column (Proc) represents the processor where a subtask is located.   

Tij Proc Minij Maxij 1/Rmax, i 1/Rmin, i 1/ri(0) phase 
T11 P1   25 35 
T12 P2   45 55 
T13 P3   45 55 
T14 P4   35 45 

55 3000 300 0 

T21 P4   45 55 
T22 P2   35 45 

55 5000 500 100 

T31 P1   55 65 
T32 P3   35 45 

65 4000 400 0 

T41 P1   25 35 
T42 P4   35 45 
T43 P2   15 25 

45 6000 600 200 

T51 P4   105 115 
T52 P2   65 75 
T53 P3   55 65 

115 10000 1000 200 

T61 P1   25 35 
T62 P2   45 55 
T63 P1   35 45 

55 4000 400 0 

T71 P4   55 65 
T72 P3   95 105 

105 6000 600 100 

T81 P2  65 75 
T82 P1  35 45 

75 5000 500 0 

T91 P1   35 45 45 5000 500 0 
T10,1 P2   35 45 45 6000 600 0 
T11,1 P3   35 45 45 4000 400 0 
T12,1 P4   35 45 45 6500 650 0 
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