
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-31

2004-05-01

Feedback Utilization Control in Distributed Real-Time Systems Feedback Utilization Control in Distributed Real-Time Systems

with End-to-End Tasks with End-to-End Tasks

Chenyang Lu, Xiaorui Wang, and Xenofon Koutsoukos

An increasing number of distributed real-time systems face the critical challenge of provid-ing

quality of service guarantees in open and unpredictable environments. In particular, such

systems often need to enforce utilization bounds on multiple processors in order to avoid over-

load and meet end-to-end deadlines even when task execution times are unpredictable. While

recent feedback control real-time scheduling algorithms have shown promise, they cannot han-

dle the common end-to-end task model where each task is comprised of a chain of subtasks

dis-tributed on multiple processors. This paper presents the End-to-end Utilization CONtrol (EU-

CON) algorithm that adaptively maintains desired CPU utilization through... Read complete Read complete

abstract on page 2. abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Lu, Chenyang; Wang, Xiaorui; and Koutsoukos, Xenofon, "Feedback Utilization Control in Distributed Real-
Time Systems with End-to-End Tasks" Report Number: WUCSE-2004-31 (2004). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/1004

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1004?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1004

Feedback Utilization Control in Distributed Real-Time Systems with End-to-End Feedback Utilization Control in Distributed Real-Time Systems with End-to-End
Tasks Tasks

Chenyang Lu, Xiaorui Wang, and Xenofon Koutsoukos

Complete Abstract: Complete Abstract:

An increasing number of distributed real-time systems face the critical challenge of provid-ing quality of
service guarantees in open and unpredictable environments. In particular, such systems often need to
enforce utilization bounds on multiple processors in order to avoid over-load and meet end-to-end
deadlines even when task execution times are unpredictable. While recent feedback control real-time
scheduling algorithms have shown promise, they cannot han-dle the common end-to-end task model
where each task is comprised of a chain of subtasks dis-tributed on multiple processors. This paper
presents the End-to-end Utilization CONtrol (EU-CON) algorithm that adaptively maintains desired CPU
utilization through performance feed-backs loops. EUCON is based on a model predictive control
approach that models utilization control on a distributed platform as a multi-variable constrained
optimization problem. A multi-input-multi-output model predictive controller is designed based on a
difference equation model that describes the dynamic behavior of distributed real-time systems. Both
control theo-retic analysis and simulations demonstrate that EUCON can provide robust utilization
guaran-tees when task execution times deviate from estimation or vary significantly at run-time.

https://openscholarship.wustl.edu/cse_research/1004?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1004?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages

Feedback Utilization Control in Distributed Real-Time Systems with
End-to-End Tasks1

Chenyang Lu Xiaorui Wang Xenofon Koutsoukos

Department of Computer Science and
Engineering

Washington University in St. Louis
{lu, wang}@cse.wustl.edu

Department of Electrical Engineering and
 Computer Science

Vanderbilt University
xenofon.koutsoukos@vanderbilt.edu

Abstract

An increasing number of distributed real-time systems face the critical challenge of provid-

ing quality of service guarantees in open and unpredictable environments. In particular, such

systems often need to enforce utilization bounds on multiple processors in order to avoid over-

load and meet end-to-end deadlines even when task execution times are unpredictable. While

recent feedback control real-time scheduling algorithms have shown promise, they cannot han-

dle the common end-to-end task model where each task is comprised of a chain of subtasks dis-

tributed on multiple processors. This paper presents the End-to-end Utilization CONtrol (EU-

CON) algorithm that adaptively maintains desired CPU utilization through performance feed-

backs loops. EUCON is based on a model predictive control approach that models utilization

control on a distributed platform as a multi-variable constrained optimization problem. A

multi-input-multi-output model predictive controller is designed based on a difference equation

model that describes the dynamic behavior of distributed real-time systems. Both control theo-

retic analysis and simulations demonstrate that EUCON can provide robust utilization guaran-

tees when task execution times deviate from estimation or vary significantly at run-time.

Index terms—real-time systems, embedded systems, distributed systems, feedback control
real-time scheduling, end-to-end task, Quality of Service, model predictive control

1 This is an extended version of a conference paper [15]. This work is funded, in part, by DARPA under grant
NBCHC030140, and by NSF under grant CCR-0325529.

I. INTRODUCTION

In recent years, a category of performance-critical distributed systems executing in open

and unpredictable environment has been rapidly growing [2]. Examples of such systems in-

clude distributed real-time embedded (DRE) systems such as avionics mission computing,

autonomous aerial surveillance, disaster recovery systems, and on-line trading servers. A key

challenge faced by such systems is providing critical quality of service (QoS) guarantees while

the workload cannot be accurately characterized a priori. For example, the execution times of

visual tracking applications can vary significantly as a function of the number of potential tar-

gets in a set of received camera images. Similarly, the resource requirements and the arrival

rate of service requests in an on-line trading server can fluctuate dramatically. However, QoS

guarantees are required in these systems despite their unpredictable environments. In particu-

lar, such systems often need to guarantee the CPU utilization on multiple processors in order to

achieve overload protection and meet end-to-end deadlines. Failure to meet critical QoS guar-

antees may result in loss of mission failures or severe financial damage.

These new systems require a paradigm shift from classical real-time computing that relies

on accurate characterization of workloads and platform. Recently, control theoretic approaches

that we call QoS control have shown promise in providing QoS guarantees in unpredictable

environments. While classical real-time scheduling approaches are concerned with statically

assured avoidance of undesirable effects such as overload and deadline misses, the QoS control

approach handles such effects dynamically via performance feedback loops. However, existing

work on QoS control has focused on providing guarantees on a single processor based on the

assumption that tasks on different processors are independent from each other. Unfortunately,

solutions for a single processor are not applicable to distributed systems that employ the end-

2

to-end task model [9][22]. In such systems, a task is comprised of a chain of subtasks execut-

ing on different processors. The execution of a task involves the execution of multiple subtasks

under precedence constraints. Since the end-to-end task model is common in DRE systems, it

is important to extend the QoS control framework to end-to-end tasks. QoS control of end-to-

end tasks on a distributed platform introduces several new research challenges. First, QoS con-

trol in distributed systems is a multi-input-multi-output (MIMO) control problem where the sys-

tem performance on multiple processors must be guaranteed simultaneously. Second, the

MIMO control problem in distributed systems is complicated by the fact that the performance

on different processors is coupled to each other due to the correlation among subtasks belong-

ing to a same task. Changing the rate of a task will affect the utilization of all the processors

where its subtasks are located. Hence the CPU utilization of a processor cannot be controlled

independently. Furthermore, QoS control is often subject to constraints. Examples include

desired bounds on CPU utilization and limits on acceptable task rates.

As a step toward QoS control for the end-to-end task model, this paper proposes the End-

to-end Utilization CONtrol (EUCON) algorithm. EUCON can maintain desired CPU utiliza-

tion in distributed systems with end-to-end tasks in unpredictable environments through online

adaptation. The primary contributions of this paper are three-fold: 1) derivation of a dynamic

model that captures the coupling among processors and constraints in DRE systems executing

end-to-end tasks; 2) development of a Model Predictive Control (MPC) approach for QoS con-

trol in DRE systems; and 3) design and control analysis of a distributed MIMO feedback con-

trol loop in EUCON that provide robust utilization guarantees when task execution times devi-

ate from their estimation and vary significantly at run-time.

3

II. RELATED WORK

Traditional approaches for handling end-to-end tasks are based on the end-to-end schedul-

ing [22] or distributed priority ceiling [19]. Both are open-loop approaches that rely on sched-

ulability analysis that require a priori knowledge about worst-case execution times. When task

execution times are highly unpredictable, such open-loop approaches may severely underutilize

the system. An approach for dealing with unpredictable task execution times is resource re-

claiming [6][18]. A drawback of existing resource reclaiming techniques is that they often re-

quire modifications to specific scheduling algorithms in operating systems, which is often un-

desirable in COTS platforms. In contrast, the feedback control approach adopted in this paper

can be easily implemented at the middleware layer on top of COTS platforms.

A survey of feedback performance control in computing systems is presented in [2]. Re-

cent research that applied control theory to real-time scheduling and utilization control is di-

rectly related to this paper. Steere et al., developed a feedback scheduler [21] that coordinated

the CPU allocation to consumer and supplier threads. Abeni et al., presented control analysis

of a reservation-based feedback scheduler [3]. Cervin et al. presented a feedback scheduler for

digital control systems [7]. In [1], a feedback-based admission controller was designed to

maintain desired utilization of an Apache web server. A Feedback Control real-time Schedul-

ing (FCS) framework [13] was proposed to provide performance guarantees for real-time sys-

tems with unknown task execution times. The proposed FCS algorithms have been imple-

mented as a middleware service [14]. All the aforementioned projects focused on controlling

the performance of a single processor. In addition, their control designs are based on single-

input-single-output linear control techniques. This control approach cannot be easily extended

to end-to-end utilization control due to the coupling among multiple processors and practical

4

constraints in DRE systems. FCS has been extended to handle distributed systems [20]. How-

ever, FCS for distributed systems assumes, in contrast with the work presented in this paper,

that tasks on different processors are independent from each other.

III. PROBLEM FORMULATION

We now formulate the utilization control problem in DRE systems.

A. A Flexible End-to-End Task Model

A system is comprised of m end-to-end periodic tasks {Ti | 1 ≤ i ≤ m} executing on n proc-

essors {Pi | 1 ≤ i ≤ n}. Task Ti is composed of a chain of subtasks {Tij | 1 ≤ j ≤ ni} that may be

allocated to multiple processors. A subtask Tij (1 < j ≤ ni) cannot be released for execution until

its predecessor Tij-1 is completed. We assume that a non-greedy synchronization protocol (e.g.,

release guard [22]) is used to enforce the precedence constraints between subsequent subtasks.

Hence each subtask Tij of a periodic task Ti is also periodic and shares the same rate as Ti [22].

Each task Ti is subject to an end-to-end relative deadline related to its period. In this work, we

assume deadlines are soft, i.e., applications can tolerate a small number of deadline misses.

Each subtask Tij has an estimated execution time cij known at design time. However, the actual

execution time of a task may be significantly different from cij and may vary at run time.

We assume that the rate of Ti can be dynamically adjusted within a range [Rmin,i, Rmax,i].

Earlier research has shown that task rates in many DRE applications (e.g., digital feedback con-

trol [7], sensor data update, and multimedia [5]) can be adjusted without causing application

failure. A task running at a higher rate contributes a higher value to the application at the cost

of higher utilization. Rate adjustment is an example of an adaptation mechanism that can be

used to control utilization. Other adaptation mechanisms such as admission control and task

reallocation may also be incorporated into the control framework.

5

EUCON is not designed to control network delays. Network delay may be handled by

treating each network link as a processor [22], or by considering the impact of worst-case net-

work delay in subdeadline assignment. EUCON can also be integrated with network-layer ser-

vices such as IntServ [23] and DiffServ [4] to provide end-to-end delay guarantees.

B. Problem Formulation

Before formulating the utilization control problem, we introduce several notations.

• Ts: The sampling period.

• ui(k): The CPU utilization (or utilization for simplicity) of processor Pi in the kth sampling

period, i.e., the fraction of time that Pi is not idle during time interval [(k-1)Ts, kTs].

• Bi: The utilization set point of Pi. Bi is the desired utilization of Pi specified by the user.

• ri(k): The invocation rate of task Ti in the (k+1)th sampling period. The sampling period Ts

is selected so that multiple instances of each task may be invoked during a sampling period.

• wi: The weight of Pi. A higher weight wi assigns higher importance to controlling ui(k).

Utilization control can be formulated as a constrained optimization problem. The goal is to

minimize the difference between the utilization set points and the utilization

∑
=

≤≤
−

n

i
iiinjkr

kuBw
j 1

2

}1|)({
))((min subject to two sets of constraints:

ui(k) ≤ Bi, (1 ≤ i ≤ n) (1)
Rmin,i ≤ ri(k) ≤ Rmax,i, (1 ≤ i ≤ m) (2)

The utilization constraints (1) ensure that no processor exceeds its utilization set point. At

the same time, the optimization goal avoids underutilizing the system by making the utilization

of each processor as close to its set point as possible. The latter is important because CPU un-

derutilization usually causes poor system performance. In our task model underutilization

6

leads to low task rates, which corresponds to poor application performance such as low quality

video or higher control cost in digital control systems.

C. Applications

EUCON has several important applications in a broad range of QoS-critical systems.

Meeting end-to-end deadlines: Real-time tasks must meet their end-to-end deadlines in DRE

systems. In the end-to-end scheduling approach [22], the deadline of an end-to-end task is di-

vided into subdeadlines of its subtasks, and the problem of meeting the deadline is transformed

to the problem of meeting the subdeadline of each subtask. A well known approach for meet-

ing the subdeadlines on a processor is by enforcing the schedulable utilization bound [12]. The

subdeadlines of all the subtasks on a processor are guaranteed if the utilization of the processor

remains below its schedulable utilization bound. To guarantee end-to-end deadlines, a user

only needs to specify the utilization set point of each processor to a value below its schedulable

utilization bound. EUCON can work with various subdeadline assignment algorithms [9][17]

and schedulable utilization bounds for different task models [10][12] presented in the literature.

QoS portability: EUCON can also be deployed in a middleware to support QoS portability [14].

When an application is deployed on a faster platform, the task rates will be automatically in-

creased to take advantage of the additional resource. On the other hand, when an application is

deployed to a slower platform, task rates will be automatically reduced to maintain the same

CPU utilization guarantees. EUCON’s self-tuning capability can significantly reduce the cost

of porting DRE software across platforms.

Overload protection: Many distributed systems (including non-real-time systems) must avoid

saturation of processors, which may cause system crash or severe service degradation [1]. On

COTS operating systems that support real-time priorities, high utilization by real-time threads

7

may cause kernel starvation [14]. EUCON allows a user to enforce desired utilization bounds

for all the processors in a distributed system. Moreover, the utilization set point can be

changed online. For example, a user may lower the utilization set point on a particular proces-

sor in anticipation of additional workload, and EUCON will dynamically readjust task rates to

enforce the new set point.

DRE systems span a wide spectrum in terms of scale and network support. In this paper,

we focus on server clusters in which several processors connected through a high speed com-

munication interface (e.g., a VME bus backplane). Many DRE systems (e.g., avionics systems,

shipboard computing, and process control systems) fall into this category. A centralized QoS

control architecture is usually sufficient to this class of DRE systems. Decentralized control

for large-scale systems is part of our future work.

Model
Predictive
Controller⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

mmn R

R

R

R

B

B

max,

1max,

min,

1min,1

MMM

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(

)(1

ku

ku

n

M

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(

)(1

kr

kr

m

M

DRE System
(m tasks, n processors)

Utilization
Monitor

Rate
Modulator RM

UM UM

RM

Feedback Loop

Precedence Constraints

Subtask

Model
Predictive
Controller⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

mmn R

R

R

R

B

B

max,

1max,

min,

1min,1

MMM

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(

)(1

ku

ku

n

M

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(

)(1

kr

kr

m

M

DRE System
(m tasks, n processors)

Utilization
Monitor

Rate
Modulator RM

UM UM

RM

Feedback Loop

Precedence Constraints

Subtask
Figure 1. The MIMO feedback control loop in EUCON

IV. OVERVIEW OF EUCON

EUCON features a MIMO feedback control loop (see Figure 1) that dynamically adjusts

task rates to enforce the utilization set points. The DRE system is controlled by a centralized

MIMO controller. The controller may be located on a separate processor, or share a processor

with some applications. EUCON must be scheduled as the highest-priority task in order to ef-

fectively control utilization under overload conditions. Each processor has a utilization moni-

tor and a rate modulator. A separate TCP connection (called feedback lane in [14]) connects

8

the controller with the pair of utilization monitor and rate modulator on each processor. The

user inputs to the controller include the utilization set points, B = [B1 ... Bn]T and the rate con-

straints on each task. The controlled variables are the utilization of all processors, u(k) = [u1(k)

... un(k)]T. The control inputs from the controller are the change to task rates ∆r(k) = [∆r1(k) ...

∆rm(k)]T, where ∆ri(k) = ri(k) - ri(k-1) (1 ≤ i ≤ m). The following feedback control loops are

invoked in the end of every sampling period:

1. The utilization monitor on each processor sends the utilization ui(k) in the last sampling pe-

riod to the controller through its feedback lane.

2. The controller collects the utilization vector u(k), computes ∆r(k), and sends new task rates

r(k) = r(k-1) + ∆r(k) to the rate modulator on each processor through its feedback lane.

3. The rate modulator on each processor changes the task rates according to r(k).

Since the core of EUCON is the controller, we will focus on its design in the rest of the pa-

per. The design of the other components is similar to FCS/nORB [14], a feedback control

scheduling service on an Object Request Broker middleware.

V. DYNAMIC MODEL OF END-TO-END TASKS

Following a control theoretic methodology, we must establish a dynamic model that charac-

terizes the relationship between the control input ∆r(k) and the controlled variable u(k). First,

we model the utilization ui(k) of one processor Pi. Let ∆rj(k) denote the change to task rate,

∆rj(k) = rj(k) – rj(k-1). We define the estimated change to utilization, ∆bi(k), as

∑
∈

∆=∆
ijl ST

jjli krckb)()((3)

9

where Si represents the set of subtasks located at processor Pi. Note ∆bi(k) is based on the es-

timated execution time. Since the actual execution times may be different from their estima-

tion, we model the utilization u(k) as

ui(k) = ui(k-1) + gi∆bi(k-1) (4)

where the utilization gain gi represents the ratio between the change to the actual utilization

and its estimation ∆bi(k-1). For example, gi = 2 means that the actual change to utilization is

twice of the estimated change. Note that the exact value of gi is unknown due to the unpredict-

ability of subtasks’ execution times. Equation (4) models a single processor. A system with m

processors is described by the following MIMO model.

u(k) = u(k-1) + G∆b(k-1) (5)

where ∆b(k) is a vector including the estimated change to utilization of each processor, and G

is a diagonal matrix where gii = gi (1 ≤ i ≤ n) and gij = 0 (i ≠ j). The relationship between the

utilization and task rates is characterized as follows.

∆b(k) = F∆r(k) (6)

The subtask allocation matrix, F, is an n×m-order matrix, where fij = cjl if subtask Tjl (the lth

subtask of task Tj) is allocated to processor i, and fij = 0 if no subtask of task Tj is allocated to

processor i. Note that F captures the coupling among processors due to end-to-end tasks.

Equations (5-6) give a dynamic model of a distributed system with m tasks and n processors.

Example: Suppose a system has two processors and three tasks. T1 has only one subtask T11 on

processor P1. T2 has two subtasks T21 and T22 on processors P1 and P2, respectively. T3 has one

subtask T31 allocated to processors P2. We have

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

=∆⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
∆
∆

=∆⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

)(
)(
)(

)(,
0

0
,

)(
)(

)(,
0

0
,

)(
)(

)(

3

2

1

3122

2111

2

1

2

1

2

1

kr
kr
kr

kr
cc

cc
F

kb
kb

kb
g

g
G

ku
ku

ku

From (5-6), the system model is

10

))()(()1()(
))()(()1()(

331222222

221111111

krckrcgkuku
krckrcgkuku

∆+∆+−=
∆+∆+−=

VI. DESIGN AND ANALYSIS OF A MODEL PREDICTIVE CONTROLLER

We present the design and analysis of a model predictive controller for EUCON. We first

derive a mathematical formulation of EUCON in the model predictive control framework. Next

this formulation is transformed to a constrained least-squares problem, which allows us to de-

sign the control algorithm based on an existing least squares solver. Finally, we prove the sta-

bility of our controller through control analysis.

A. A Formulation for Model Predictive Control

Based on the system model, a MIMO predictive controller can be designed to guarantee the

utilization set points on multiple processors. The single-input-single-output (SISO), linear con-

trol approach adopted in earlier works on feedback control real-time scheduling [13][20] is not

suitable for DRE systems due to the coupling among multiple processors and the constraints.

To solve this control problem, we adopt a Model Predictive Control (MPC) [16] approach.

MPC is an advanced control technique used extensively in industrial process control. Its major

advantage is that it can deal with coupled MIMO control problems with constraints on the plant

and the actuators. This characteristic makes MPC very suitable for end-to-end utilization con-

trol in DRE systems where the performance measures and the coupling between processors can

be expressed by constraints and MIMO system models. The basic idea of MPC is to optimize

an appropriate cost function defined over a time interval in the future. The controller employs

a model of the system which is used to predict the behavior over P sampling periods called the

prediction horizon. The control objective is to select an input trajectory that minimizes the cost

while satisfying the constraints. An input trajectory includes the control inputs in the following

11

M sampling periods, e.g., ∆r(k), ∆r(k+1|k), ... ∆r(k+M-1|k), where M is called the control hori-

zon. The notation x(k+i|k) means that the vector signal x depends on the conditions at time k.

Once the input trajectory is computed, only the first element (∆r(k)) is applied as the input sig-

nal to the system. In the next step, the prediction horizon slides one sampling period and the

input is computed again as a solution to a constrained optimization problem based on perform-

ance feedbacks (u(k)). MPC combines performance prediction, optimization, constraint satis-

faction, and feedback control into a single algorithm. Details of MPC can be found in [16].

We now design a controller for EUCON. The controller includes a least squares solver, a

cost function, a reference trajectory, and an approximate system model under the rate con-

straints. In the end of every sampling period, the controller computes the control input ∆r(k)

that minimizes the cost function under the utilization and rate constraints based on an approxi-

mate system model. The cost function to be minimized by our controller is

∑∑
−

==

−+∆−+∆++−+=
1

0

2

)(
1

2

)(
)|1()|()|()|()(

M

i
iR

P

i
iQ

kikrkikrkikrefkikukV (7)

where P is the prediction horizon, M is the control horizon, Q(i) is the tracking error weight,

and R(i) is the control penalty weight. The first term in the cost function represents the track-

ing error, i.e., the difference between the utilization vector u(k+i|k) and a reference trajectory

ref(k+i|k). The reference trajectory defines an ideal trajectory along which the utilization vec-

tor u(k+i|k) should change from the current utilizations u(k) to the utilization set points B. Our

controller is designed to track the following exponential reference trajectory so that the closed-

loop system behaves like a linear system.

))(()|(kuBeBkikref
i

T
T

ref

s

−−=+
−

 (8)

12

Tref is the time constant that specifies the speed of system response. A larger Tref causes the

system to converge faster to the set point. By minimizing the tracking error, the closed-loop

system will converge to the utilization set point if the system is stable. The weight matrix Q(i)

can be tuned to represent preferences between processors. For example, a higher weight may

be assigned to a processor if it executes more important applications. The second term in the

cost function represents the control penalty. The control penalty term ensures that the control-

ler will minimize the changes in the control input.

We have established a system model for DRE systems in Section IV. However, the model

cannot be directly used by the controller because the system gains G are unknown. Therefore,

the controller needs to use an approximate model. Our controller assumes G = [1 ... 1]T in (5),

i.e., the controller assumes the actual utilization will be the same as the utilization predicted

based on estimated ones. Hence our controller solves the constrained optimization based on an

approximate system model described by (6) and

u(k) = u(k-1) + ∆b(k-1) (9)

Although this approximate model may behave differently from the real system, as we prove

in Section V.C, the closed loop system under our controller can still maintain stability and

guarantee desired utilization set points as long as G is within a certain range. Furthermore, this

range can be established using stability analysis of the closed-loop system. The controller must

minimize the cost function (7) under the utilization and rate constraints (1-2) based on the ap-

proximate system model described by (6) and (9). This constrained optimization problem can

be transformed to a standard constrained least-squares problem [16]. The controller can then

use a standard least-squares solver to solve this problem on-line. In the following subsection

we present this transformation.

13

B. Transformation to Least-Squares Problem

A standard constrained least-squares problem is in the form of

∑∑
−

==

+−Θ
1

0

2
)(

1

2

)()(
))()()((min

M

i
iR

P

i
iQks

kskEks subject to constraints Ωs(k) ≤ ω (10)

s(k) denotes the vector of change to the control input in the control horizon. In EUCON,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+∆−−+∆

−∆−∆
=

)|2()|1(

)1()|(
)(

kMkrkMkr

krkkr
ks M

To transform our control problem to a least-squares problem, we re-write our cost function

in (7) and constraints (1-2) in the form (10). Since the control penalty terms in (7) is consistent

with (10), we only need to transform the tracking error term in (7) and the constraints (1-2) to

formulations in terms of s(k). First we work on the tracking error term in (7). From the plant

model (6) and (9), the predicted utilization for given prediction horizon can be written as:

)(

0
00

)1(

)(

)(
)(

)(

)|(

)|1(
)|(

)|1(

0

2

0

1

0

2

0

1

0

0

0

1

0 ks

FFF

FFF

FFF
F

kr

F

F

F

F

ku

ku
ku

ku

kPku

kMku
kMku

kku

MP

i

P

i

P

i

M

i

M

i

P

i

M

i

M

i

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
+

+−∆

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

++
+

+

∑∑∑

∑∑

∑

∑
∑

−

=

−

=

−

=

−

=

−

=

=

=

−

=

L

MOMM

L

MOMM

L

L

M

M

M

M

M

M

 (11)

We can rewrite (11) as:

)()1()()(kskrkuku Θ+−Γ∆+=′ (12)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Γ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

++
+

+

=′

∑

∑
∑

=

=

−

=

P

i

M

i

M

i

F

F

F

F

kPku

kMku
kMku

kku

ku

0

0

1

0,

)|(

)|1(
)|(

)|1(

)(

M

M

M

M

, (13)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
+

=Θ

∑∑∑

∑∑
−

=

−

=

−

=

−

=

−

=

MP

i

P

i

P

i

M

i

M

i

FFF

FFF

FFF
F

0

2

0

1

0

2

0

1

0

0
00

L

MOMM

L

MOMM

L

L

14

In addition, we define

E(k) = ref′(k) – u(k) – Γ∆r(k-1) (14)

where ref′(k) represents the reference trajectory for specified prediction horizon:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
=′

)|(

)|1(
)(

kPkref

kkref
kfre M

Given Θ and E(k) in (12) and (13), our cost function (7) is equivalent to the one in the

least-squares problem (10). We now transform the constraints (1-2) to the linear inequality

constraint form as Ωs(k) ≤ ω. Firstly the rate constraint (1) in control horizon M as:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

≤

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

min

min

min

max

max

max

)1(

)1(
)(

100

010
001
100

010
001

R

R
R

R

R
R

Mkr

kr
kr

M

M

M

L

MOMM

L

L

L

MOMM

L

L

From r(k) = r(k-1) + ∆r(k), the above inequality is equivalent to

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

+−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−≤

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+∆

+∆
∆

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−
−

min

min

min

max

max

max

)1(

1

1
1

1

1
1

)1(

)1(
)(

111

011
001
111

011
001

R

R
R

R

R
R

kr

Mkr

kr
kr

M

M

M

M

M

L

MOMM

L

L

L

MOMM

L

L

From ∆r(k) = ∆r(k-1) + (∆r(k)- ∆r(k-1)), we can transform the rate constraints to the fol-

lowing linear inequality constraints:

15

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

+−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−−∆

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−≤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−
−

−

min

min

min

max

max

max

)1(

1

1
1

1

1
1

)1(

2
1

2
1

)(

1)1(

012
001
11

012
001

R

R
R

R

R
R

krkr

M

M
ks

MM

MM

M

M

M

M

M

M

L

MOMM

L

L

L

MOMM

L

L

 (15)

Now we consider the utilization bound constraints (1). From (1) and (12) the utilization

bound constraints are equivalent to the following linear inequality

Θs(k) ≤ -u(k) - Γ∆r(k-1) + B (16)

We have transformed our MPC formulation to a constrained least-square formulation de-

scribed by (10, 12-15). Since the constraints (15-16) depend on u(k), ∆r(k-1), and r(k-1), both

of them are known at time k. We can use any standard least-squares solver to solve this control

problem now. In our simulator, we implement the controller based on the lsqlin solver in

Matlab, which uses an active set method similar to that described in [8]. The computational

complexity of lsqlin is polynomial to the product of the number of tasks, the number of

processors, and the control and prediction horizons. While our controller is capable of han-

dling medium-scale systems which are the focus of this paper, more efficient control algorithm

may be needed by large systems. A preliminary overhead measurement in the MATLAB envi-

ronment is presented in Section VII.F.

C. Stability Analysis

A dynamic system is stable iff for every initial condition it will converge to the equilibrium

point [16]. In our case, the equilibrium points of the system are the utilization set points B.

Hence a stable DRE system guarantees that the utilization on every processor converge to its

16

set point. We first outline a general approach for analyzing the stability for a DRE system con-

trolled by EUCON and then give an example.

1. Derive the control inputs ∆r(k) that minimize the cost function based on the approximate

system model described by (6) and (9).

2. Derive the closed-loop system model by substituting the derived control inputs ∆r(k) into

the actual system model described by (5-6). The closed-loop system model is in the form

u(k+1) = Au(k) + C (17)

where A is a matrix whose eigenvalues depend on the system gains {gi | 1 ≤ i ≤ n}.

3. Derive the stability condition of the closed-loop system described by (11). According to

control theory, the closed-loop system is stable if all the eigenvalues of matrix A locate in-

side the unit circle in the complex space. Solving this stability condition will give the range

of gi (1 ≤ i ≤ n) where the system will guarantee stability.

In our stability analysis we assume the constrained optimization problem is feasible, i.e.,

there exists a set of task rates within their acceptable ranges that can make the utilization on

every processor equal to its set point. If the problem is infeasible, no controller can guarantee

the set point through rate adaptation. In this case, the system may switch to a different control

adaptation mechanism (e.g., admission control or task reallocation). The integration of multi-

ple adaptation mechanisms is part of our future work. The model-predictive control formula-

tion facilitates this integrated solution because the infeasibility of an adaptation mechanism can

be detected by least-square solver and, in turn, triggers a new adaptation mechanism.

Example: We now apply the stability analysis approach to the example system described in

the end of Section V. The system has 3 tasks and 2 processors. We set the prediction horizon

P = 2 and the control horizon M = 1. According to the MPC theory, the system is also stable

17

with any longer prediction horizon and control horizon if it is stable with shorter horizons. The

time constant of the reference trajectory is Tref/Ts = 4. The weights on all terms are 1. The cost

function can be transformed to the following formula in scalar form

∑∑∑
== =

−∆−∆++−+=
3

1

2
2

1

2

1

2))1()(())|()|(()(
j

jj
j i

jj krkrkikrefkikukV (18)

Substituting the model parameters to (6) and (9), we have

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

)(
)(
)(

0
0

0
0

)1(
)1(

)(
)(

)2(
)2(
)1(
)1(

3

2

1

3122

2111

3122

2111

2

1

2

1

2

1

2

1

kr
kr
kr

cc
cc

cc
cc

ku
ku

ku
ku

ku
ku
ku
ku

 (19)

After we substitute (19) and the reference trajectory (7) to (18), the cost function becomes a

function of ∆r(k). We then derive the control input vector ∆r(k) that minimize the cost function

through partial differentiation. Following Step 2, we establish the closed-loop model by substi-

tuting ∆r(k) derived in the last step into the actual system model (5-6). The closed-loop model

is a function of the system gains (g1, g2). Following Step 3, we can derive the conditions in

terms of (g1, g2) under which the closed-loop system will remain stable. For example, in the

special case when g1 = g2, the example system is guaranteed to be stable if 0 < g1 = g2 < 5.95.

That is, EUCON can maintain stability even if the execution time of every subtask becomes

close to 5.95 times its estimated one. The details of the stability analysis on this example are

not shown here due to the page limit.

D. Control Tuning

For a stable system, controller tuning involves a tradeoff between utilization oscillation and

the speed of convergence. Severe oscillation in utilization is undesirable even if the average

utilization remains close to the set point. In practice, this may lead to oscillation in application

18

performance such as video frame rate and the frequency of control in process control systems.

The speed of converge is also important because it represents how quickly a system can recover

from utilization variations and regain the desired utilization. If the gains used in the controller

(1 in EUCON) is lower than the actual one (gi), the real effect of the control input is going to be

larger than what the controller has predicted and the system will oscillate. Using pessimistic

estimation on execution times will reduce system oscillation because the system gains are less

than 1 when execution times are overestimated. It should be noted that using pessimistic esti-

mated execution times under EUCON does not cause underutilization. This key difference

from open-loop scheduling is because EUCON dynamically adjusts rates based on measured

utilization rather than the estimated execution times. However, more pessimistic estimation on

execution times leads to smaller gains, which cause slower convergence to the set points.

The choice of the sampling period must balance convergence time, overhead, and oscilla-

tion. A short sampling period speeds up convergence by enabling the system to adapt to varia-

tions at a higher frequency. However, a short sampling period also increases the run-time

overhead of EUCON because its feedback control loop is invoked once per sampling period.

Moreover, since EUCON measures the average utilization over a sampling period, a longer

sampling period may filter out noise in the utilization input to the controller and hence reduce

oscillation.

VII. EXPERIMENTATION

A. Experimental Setup

Our simulation environment is composed of an event-driven simulator implemented in C++

and a controller implemented in MATLAB (R12). The simulator implements the distributed

real-time system controlled by EUCON, the utilization monitor and rate modulator. The sub-

19

tasks on each processor are scheduled by the Rate Monotonic (RMS) scheduling algorithm [12].

The precedence constraints among subtasks are enforced by the release guard protocol [22].

The controller is based on the lsqlin least squares solver in MATLAB. The simulator opens

a MATLAB process and initializes the controller at start time. In the end of each sampling pe-

riod, the simulator collects the CPU utilization on each processor from the utilization monitors,

and calls the controller in MATLAB with the utilization vector u(k) as parameters. The con-

troller computes the control input, ∆r(k), and return it to the simulator. The simulator then calls

the rate modulator on each processor to adjust the task rates.

Each task’s end-to-end deadline di = ni/ri(k), where ni is the number of subtasks in task Ti.

Each end-to-end deadline is evenly divided into subdeadlines for its subtasks. The resultant

subdeadline of each subtask Tij equals its period, 1/ri(k). Hence the schedulable utilization

bound of RMS [12] is used as the utilization set point on each processor:

)12(/1 −= im
ii mB (20)

where mi is the number of subtasks on Pi. All (sub)tasks meet their (sub)deadlines if the utili-

zation set point on every processor is enforced. As discussed in Section III.C, other subdead-

line assignment algorithms [9] and utilization bounds [10] may also be used with EUCON.

Network delay is ignored in the simulations.

Table 1: Task parameters in SIMPLE (Proc represents the processor where a subtask is located)
Tij Proc cij 1/Rmax, i 1/Rmin, i 1/ri(0)
T11 P1 35 35 700 60
T21 P1 35
T22 P2 35 35 700 90

T31 P2 45 45 900 100
Two different workload/system configurations were used in our experiments. SIMPLE (see

Table 1) is the example used in the stability analysis in Section VI.C. The second configura-

tion, MEDIUM, simulates a more complex workload. MEDIUM includes 12 tasks (with a total

of 25 subtasks) executing on 4 processors. There are eight end-to-end tasks running on multi-

20

ple processors and four local tasks (tasks T8 to T12). The execution time of every subtask Tij in

MEDIUM follows a uniform distribution. The parameters of MEDIUM are available in Ap-

pendix B.

Table 2: Controller parameters
System P M Tref/Ts Ts
SIMPLE 2 1

MEDIUM 4 2 4 1000 time unit

To evaluate the robustness of EUCON when execution times deviate from the estimation,

the average execution time of each subtask Tij can be changed by tuning a parameter called the

execution-time factor, etfij(k) = aij(k)/cij, where aij is the average execution time of Tij. The

execution time factor represents how much the actual execution time of a subtask deviates from

the estimated one. The execution-time factor (and hence the average execution times) may be

kept constant or changed dynamically in a run. When all subtasks share a same constant

execution time factor etf, etf equals to the system gain on every processor in the model, i.e., etf

= gi (1 ≤ i ≤ m). The controller parameters are listed in Table 2. The controller for MEDIUM

has higher control and prediction horizons to guarantee stability in a larger system.

B. Baselines

We compare EUCON against two baseline algorithms, OPEN and FC-U-E2E. OPEN is an

open-loop algorithm that uses fixed task rates. It assigns task rates a priori based on estimated

execution times so that B = Fr', where F is the subtask allocation matrix defined in Section IV,

and r' is the vector of task rates assigned by OPEN. From the definition of etf(k) we have

u(k) = etf(k)B (21)

Although OPEN can result in desired utilization when estimated execution times are accu-

rate (i.e., etf(k) = 1), it causes underutilization when execution times are overestimated (i.e.,

etf(k) < 1), and CPU over-utilization when execution times are underestimated (i.e., etf(k) > 1).

21

Unfortunately, it is often difficult to establish tight bound on task execution times – especially

in open and unpredictable environments where task execution times are heavily influenced by

the value of sensor data or user input at run time.

FC-U-E2E is an extension of the FC-U [13] algorithm. Similarly to EUCON, FC-U fea-

tures a feedback control loop that controls utilization by dynamically adjusting task rates.

However, FC-U is a single-processor algorithm, i.e., it only controls the utilization of a single

processor. It uses a SISO Proportional controller to compute the changes to task rates based on

measured utilization. A simple approach for utilization control in a distributed system is exe-

cuting a FC-U algorithm on each processor. Each FC-U algorithm controls the utilization of its

own processor by computing task rates independently from others. However, this approach

cannot handle the end-to-end task model due to its constraint that all the subtasks of an end-to-

end task must execute at the same rate. In contrast, FC-U algorithms on those processors may

decide to assign different rates to the same task based on the states of their own processors.

For example, the FC-U controller on a heavily loaded processor may assign a lower rate to a

task than that assigned by a lightly loaded processor that shares the same task. Therefore con-

flicts among the desired rates by multiple processors must be resolved. To guarantee the utili-

zation bound constraints on all processors, a conservative approach can be adopted to assign

the lowest rate given by any processors to a task. This mechanism can be implemented by add-

ing a min component to the rate modulator on each processor. In the end of every sampling

period, the rate modulator on each processor Pi receives the rates assigned to each of its tasks

from all the FC-U controllers on processors that share tasks with Pi, and change the rate of each

of its task to the minimum one among all the received rates for this task. We refer to this ex-

tended algorithm FC-U-E2E. A fundamental difference between EUCON and FC-U-E2E is

22

that EUCON explicitly incorporates the inter-processor coupling in a distributed system in its

the design of a MIMO MPC, while FC-U-E2E implicitly handles the coupling by resolving the

conflict among multiple SISO Proportional controllers through a min operator. As a baseline

FC-U-E2E allows us to study the benefit of MPC compared to simple linear control.

In the following, we present three sets of simulations. In Experiment I, execution times are

steady but deviate from the estimation. In Experiment II, task execution times vary dynami-

cally at run-time. Experiment III compares EUCON with FC-U-E2E.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Time (sampling period)

C
PU

 u
til

iz
at

io
n

P1 P2 Set Point

0

0.2

0.4

0.6

0.8

1

0 100 200 300

Tim e (sam pling period)

C
PU

 u
til

iz
at

io
n

P1 P2 Set Point

 (a) execution-time factor = 0.5 (b) execution-time factor = 7

Figure 2: Utilization under different execution time factors (SIMPLE)

C. Experiment I: Steady Execution Times

In this set of experiments, all subtasks share a constant execution-time factor in each run.

Since the system gains g1 and g2 equal the execution-time factor under this setup, we can com-

pare the results of our stability analysis to the simulation results through these experiments.

Figure 2(a) shows the system performance when the average execution time of every subtask is

only half of the estimated one. In the beginning of the run, both processors are underutilized.

EUCON then increases the task rates until the utilization of both processors converges to the

utilization set points. As predicted by our control analysis, the system remains stable in this

case. In contrast, Figure 2(b) shows the situation when the average execution time of every

23

subtask is seven times its estimation. In the beginning, the processors were fully utilized be-

cause of the long task execution times. At around time 30Ts, the utilization drops sharply to

almost zero and starts to oscillate. The utilization on P2 also oscillates significantly. The sys-

tem fails to converge to the utilization set point. This result is also consistent with our stability

analysis that predicts the system will be unstable when the system gains exceed 5.95.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

C
P
U

u
i
l
i
z
a
t
i
o
n

Execution-time factor

Deviation
Average
Set point

OPEN

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
P
U

u
i
l
i
z
a
t
i
o
n

Execution-time factor

Deviation
Average
Set point

(a) SIMPLE (b) MEDIUM

Figure 3: Average utilization on P1

Courier, 24

We plot the mean and standard deviation of utilization on P1 during each run in Figure 3(a).

Every data point is based on the measured utilization u(k) from time 100Ts to 300Ts to exclude

the transient response in the beginning of each run. The system performance is considered ac-

ceptable if the average utilization is within ±0.02 to the utilization set point, and the standard

deviation is less than 0.05. Satisfying the requirement on average utilization ensures that the

system achieves the desired utilization. Satisfying the requirement on standard deviation en-

sures that the utilization does not oscillate significantly. While the thresholds for acceptable

performance depend on specific applications, the general conclusions drawn in this section are

applicable to many applications. As shown in Figure 3(a), the average utilization remains close

to the set point for execution-time factors between 0.20 and 5.95, and it starts deviating from

the set point and increases linearly when the execution-time factor exceeds 6.00. When execu-

24

tion-time factor = 5.95, the average utilizations on P1 and P2 are 0.828 and 0.829, respectively.

When execution-time factor increases to 6.00, however, the average utilization on P1 and P2

become 0.828 and 0.833, respectively. Based on the set point of 0.828 on both processors, the

system becomes unstable (on P2) when execution-time factor is in the range [5.95, 6.00] in the

run. This empirical result is close to the analysis which shows the system should remain stable

when the gain is below 5.95 (see Section V).

The standard deviation of utilization indicates the intensity of oscillation. As the execution-

time factor increases from 0.2 to 3, the standard deviation remains less than 0.05 and the aver-

age utilization remains within ±0.02 to the set point. These results demonstrate that EUCON

can enforce the same utilization guarantees when execution times deviate from the estimates as

long as the execution-time factor remains below 3. However, the standard deviation is higher

than 0.05 for execution-time factors between 4 and 6, although the system is analytically stable

in this range. This result is consistent with our analysis in Section V that pessimistic estimation

on execution times will reduce oscillation without underutilizing the CPUs.

We then repeat our experiments under MEDIUM in order to evaluate the system perform-

ance under more complex settings. Figure 3(b) plots the mean and standard deviation of utili-

zation on processor P1 under different execution-time factors (the performance on other proces-

sors is similar to P1 and is not shown due space limit). For comparison, the expected utilization

under OPEN (computed based on (21)) is also plotted. OPEN causes underutilization when

execution times are overestimated (etf < 1), and causes overload when execution times are un-

derestimated (etf > 1). In contrast, EUCON provides acceptable utilization guarantees for any

tested execution-time factor within the range [0.1, 1]. In this range, the average utilization un-

der EUCON remains within ±0.02 to the utilization set point and the standard deviation re-

25

mains below 0.05. For example, when etf = 0.1, the utilization under OPEN is only 0.073,

while the average utilization under EUCON is 0.729 – the same as the utilization set point –

with an standard deviation of 0.003. This result demonstrates EUCON can achieve desired

utilization even when execution times are significantly overestimated. Similar to SIMPLE, the

oscillation of utilization under MEDIUM also increases as execution times are underestimated.

This result re-confirms our observation that pessimistic estimation of execution times should be

used in the predictive controller in EUCON.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Tim e (sam pling period)

C
PU

 u
til

iz
at

io
n

P1 P2 P3 P4

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
Tim e (sam pling period)

C
PU

 u
til

iz
at

io
n

P1 P2 P3 P4

 (a) Global fluctuation (EUCON) (b) Local fluctuation on P1 (EUCON)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Time (sampling period)

C
P
U

u
t
i
l
i
z
a
t
i
o
n

P1 P2 P3 P4

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Time (sampling period)`

C
P
U

u
t
i
l
i
z
a
t
i
o
n

P1 P2 P3 P4

 (c) Global fluctuation (OPEN) (d) Local fluctuation on P1 (OPEN)

Figure 4 Utilization and task rates when execution times fluctuate at run time

D. Experiment II: Varying Execution Times

In Experiment II, execution times vary dynamically at run-time under the MEDIUM con-

figuration. To investigate the robustness of EUCON we tested two scenarios of workload fluc-

tuation. In the first set of runs, the average execution times on all processors change uniformly.

26

In the second set of runs, only the average execution times on P1 change dynamically. The first

scenario represents global load fluctuation in the whole system, while the second scenario

represents local fluctuation on a part of the system.

In each run with global workload fluctuation, the execution time factor is initially 0.5. At

time 100Ts, it increases to 0.9 causing an 80% increase in the execution times of all subtasks.

At time 200Ts, the execution-time factor drops to 0.33 causing a 67% decrease in execution

times. Such instantaneous variation in workload stress tests the system capability of handling

workload fluctuations [13]. As shown in Figure 4(a), EUCON enforces the utilization set

points on all processors despite significant variations in execution times. At time 100Ts, all

processors are suddenly overloaded due to the increase in execution times. EUCON responds

to the deviation from the utilization set points by decreasing task rates. The utilization on all

processors re-converges to their set points within 20Ts. At time 200Ts, the utilization dropped

dramatically causing EUCON to increase task rates until the utilization on all processors regain

to their set points. The system settling time after 200Ts is longer than that follows 100Ts. As

discussed in Section V this is because the system gain is smaller during interval [200Ts, 300Ts]

than [100Ts, 200Ts]. The system maintains stability and avoids significant oscillation through-

out the run despite variations in execution times. In contrast, Figure 4(c) shows that the utiliza-

tion under OPEN fluctuates significantly because it cannot adapt to the workload variations.

In each run with local workload fluctuation, the execution-time factor on P1 follows the

same variation as that in global fluctuation, but all the other processors have a fixed execution-

time factor of 0.5. As shown in Figure 4(b), the utilization of P1 converges to its set point after

the significant variation of execution times at 120Ts and 250Ts, respectively. The settling times

under local workload fluctuation are close to those under global workload fluctuation. We also

27

observe that the other processors experience only slight utilization fluctuation after the execu-

tion times change on P1. This result demonstrates that EUCON effectively handles the cou-

pling among processors during rate adaptation. In contrast, OPEN fails to maintain steady

utilization on P1 in face of local workload fluctuation (as shown in Figure 4(d)).

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Tim e (sam pling period)

C
PU

 u
til

iz
at

io
n

P1 P2 P3 P4

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Tim e (sam pling period)

C
PU

 u
til

iz
at

io
n

P1 P2 P3 P4

 (a) EUCON (b) FC-U-E2E

Figure 5 Utilization under EUCON and FC-U-E2E (etf = 0.2, MEDIUM)

E. Experiment III: Comparison with FC-U-E2E

A premise of this work is that the MIMO approach adopted by EUCON can outperform the

SISO control approach. SISO control cannot handle the coupling among processors effectively

- especially when the utilization on different processors are unbalanced. In this situation, the

task rates computed by different controllers may become inconsistent with each other due to

the unbalanced utilization on different processors. We now compare the performance of EU-

CON and FC-U-E2E under an unbalanced workload. The workload used in this experiment is

the same as MEDIUM except that the execution times on processor P1 are higher. The execu-

tion time factor remains at 0.2 in each run. As shown in Figure 5(a), the utilization on all

processors converge to their set points despite the difference in initial values when EUCON is

used. The performance of FC-U-E2E is shown in Figure 5(b). The utilization on P1 follows a

similar trajectory as under EUCON. However, all the other three processors suffer from sig-

nificantly longer settling times. For instance, while it only takes about 60Ts for P4 to reach its

set point under EUCON, it fails to reach its set point in the end of the run (300Ts). Long

28

under EUCON, it fails to reach its set point in the end of the run (300Ts). Long settling times

are undesirable because systems need to quickly recover from load variation.

We now analyze what causes the poor performance of FC-U-E2E. After P1 reaches the set

point at time 50Ts, its Proportional controller stops increasing the rates of all tasks with sub-

tasks on this processor. Because all tasks must execute at the lowest rate given by any control-

lers in FC-U-E2E, their rates will stop increasing, even if the controllers on the other proces-

sors need them to do so in order to reach their set points. This effectively slows down the

convergence of processors P2-4 to their set points. Actually, FC-U-E2E can eventually reach

the set points only because every processor has a local task whose rate can be changed

independently from other processors. P2 has the longest settling time because it shares four

end-to-end tasks P1, while each of P3 and P4 only shares two with P1. Hence the utilization of

P2 is particularly affected by the controller on P1. After P3 and P4 both reach their set points,

the utilization increase of P2 becomes even slower since only its local task can increase its rate

in this case. Compared with FC-U-E2E, a key advantage of EUCON lies in its capability to

handle the coupling among multiple processors. Furthermore, MPC provides a theoretic

framework to analyze system stability under a wide range of execution-time factors.

F. Overhead

To estimate the run-time overhead of the controller, we measure the execution time of the

least squares solver which dominates the computation cost of the controller. In the simulations

with the MEDIUM configuration on a 1.99GHz Pentium 4 PC with 256MB RAM, each invoca-

tion of the solver in MATLAB takes less than 9ms (corresponding to less than 1% CPU utiliza-

tion when the sampling period is 1 sec). This result indicates the overhead of the controller is

acceptable for a range of applications. Since this preliminary result is based on the solver in

29

the MATLAB environment, it is not a precise benchmark for a controller implemented in na-

tive code. Evaluation of EUCON in a real middleware environment is part of our future work.

VIII. CONCLUSIONS

EUCON features a model predictive controller to handle the coupling among multiple

processors and constraints based a mathematical model that characterizes the dynamics of dis-

tributed systems with end-to-end tasks. Both stability analysis and simulation results demon-

strate that EUCON can maintain desired utilization on multiple processors when task execution

times are significantly overestimated and change dynamically at run-time. EUCON also out-

performs both open-loop scheduling and a FCS algorithm based on SISO linear control.

REFERENCES
[1] T.F. Abdelzaher, K.G. Shin, and N. Bhatti, "Performance Guarantees for Web Server End-Systems: A Control-

Theoretical Approach," IEEE Transactions on Parallel and Distributed Systems, 13(1), Jan 2002.
[2] T.F. Abdelzaher, J.A. Stankovic, C. Lu, R. Zhang, and Y. Lu, "Feedback Performance Control in Software Services,"

IEEE Control Systems, 23(3), June 2003.
[3] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, "Analysis of a Reservation-based Feedback Scheduler," RTSS, 2002.
[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An Architecture for Differentiated Services," IETF

RFC 2475, 1998.
[5] S. Brandt and G.J. Nutt, "Flexible Soft Real-Time Processing in Middleware," Real-Time Systems 22(1-2), 2002.
[6] M. Caccamo, G. Buttazzo and L. Sha, "Handling Execution Overruns in Hard Real-Time Control Systems," IEEE Trans-

actions on Computers, 51(7): 835-849, July 2002.
[7] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén, "Feedback-Feedforward Scheduling of LQG-Control Tasks,"

Real-time Systems Journal, 23, 2002.
[8] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization, Academic Press, London, UK, 1981.
[9] B. Kao and H. Garcia-Molina, "Deadline Assignment in a Distributed Soft Real-Time System," IEEE Transactions on

Parallel and Distributed Systems, Dec. 1997.
[10] J.P. Lehoczky, "Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines," RTSS, 1990.
[11] B. Li and K. Nahrstedt, “A Control-based Middleware Framework for QoS Adaptations,” IEEE JSAC, 17, Sept. 1999.
[12] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment,” JACM,

20(1): 46-61, 1973.
[13] C. Lu, J.A. Stankovic, G. Tao and S.H. Son, "Feedback Control Real-Time Scheduling: Framework, Modeling, and Al-

gorithms," Real-Time Systems Journal, 23(1/2): 85-126, 2002.
[14] C. Lu, X. Wang and C.D. Gill, "Feedback Control Real-Time Scheduling in ORB Middleware," RTAS, 2003.
[15] C. Lu, X. Wang, and X. Koutsoukos, "End-to-End Utilization Control in Distributed Real-Time Systems," ICDCS, 2004.
[16] J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, 2002.
[17] M.D. Natale and J.A. Stankovic, "Dynamic End-to-End Guarantees in Distributed Real Time Systems," RTSS, 1994.
[18] C. Shen, K. Ramamritham and J.A. Stankovic, "Resource Reclaiming in Multiprocessor Real-Time Systems." IEEE

Transactions on Parallel and Distributed Systems 4(4), 1993.
[19] L. Sha, R. Rajkumar and J. Lehoczky, "Real-Time Synchronization Protocol for Multiprocessors," RTSS, 1988.
[20] J.A. Stankovic, T. He, T.F. Abdelzaher, M. Marley, G. Tao, S.H. Son, and C. Lu, "Feedback Control Real-Time Sched-

uling in Distributed Real-Time Systems," RTSS, 2001.
[21] D.C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole, "A Feedback-driven Proportion Allocator for

Real-Rate Scheduling," OSDI, Feb 1999.
[22] J. Sun and J.W.S. Liu, "Synchronization Protocols in Distributed Real-Time Systems," ICDCS, 1996.
[23] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, "RSVP: A New Resource ReSerVation Protocol," IEEE

Network, September 1993.

30

APPENDIX A. DETAILED STABILITY ANALYSIS OF THE EXAMPLE IN SECTION VI.C

Example: We now apply the stability analysis approach to the example system described in the

end of Section V. The system has 3 tasks and 2 processors. We set the prediction horizon P =

2 and the control horizon M = 1. According to the MPC theory, the system is also stable with

any longer prediction horizon and control horizon if it is stable with shorter horizons. The time

constant of the reference trajectory is Tref/Ts = 4. The weights assigned to all terms are 1. The

cost function can be transformed to the following formula in scalar form:

∑∑∑
== =

−∆−∆++−+=
3

1

2
2

1

2

1

2))1()(())|()|(()(
j

jj
j i

jj krkrkikrefkikukV (A-1)

Substituting the model parameters to (6) and (9), we have

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

)(
)(
)(

0
0

0
0

)1(
)1(

)(
)(

)2(
)2(
)1(
)1(

3

2

1

3122

2111

3122

2111

2

1

2

1

2

1

2

1

kr
kr
kr

cc
cc

cc
cc

ku
ku

ku
ku

ku
ku
ku
ku

 (A-2)

For simplicity, we use ui and ∆ri to represent ui(k) and ∆ri(k), respectively, in the rest of this

section. Substitute (A-2) and the reference trajectory (8) in (A-1), the cost function becomes

[]
[]
[]
[]

2
33

2
22

2
11

2
22

2
23312222

2
11

2
12211111

2
2223312222

2
1112211111

)]1([)]1([)]1([

))((22

))((22

))((

))(()(

−∆−∆+−∆−∆+−∆−∆+

−−−∆+∆++

−−−∆+∆++

−−−∆+∆++

−−−∆+∆+=

krrkrrkrr

uBBrcrcu

uBBrcrcu

uBBrcrcu

uBBrcrcukV

λ

λ

λ

λ

 (A-3)

where . We then perform partial differentiation on V(k) with respect to ∆r1, ∆r2 and

∆r3, respectively. The derivatives are set to zero to compute the control input vector ∆r(k) that

minimize the cost function. This gives us the following equations:

refs TTe /−=λ

⎪
⎩

⎪
⎨

⎧

=+∆+∆+++∆
=+∆+∆+
=+∆+∆+

010)21010(10
010)210(
010)210(

331222
2

22
2

2112111

231223
2

31

221111
2

11

Qrccrccrcc
Prccrc
Orccrc

 (A-4)

31

where

)1(2))(42())(42(6666

)1(2))(42(66

)1(2))(42(66

222
2

222211
2

2121222121222121

322
2

3131231231

111
2

1111111111

−∆−−++−++−−+=

−∆−−++−=

−∆−−++−=

kruBccuBccBcBcucucQ

kruBccBcucP

kruBccBcucO

λλλλ

λλ

λλ

We compute ∆r(k) by solving (A-4), and then substitute it to the actual system model (5-6).

The closed-loop model is a function of the system gains (g1, g2).

Mku
cc

ccc
g

ku
cc

ccc
gku

+
+

+−
+

+−
+

+−
+

+
=+

)(
3232

))42(212(
3

2

)(]1)1
3232

))42(212(
3

2
6

42([)1(

22
22

2
21

2
222221

1

12
22

2
21

2
212121

2

11

λλ

λλλλ

Nku
cc

ccc
g

ku
cc

ccc
gku

++−
+

+−
+

+
+

+

+−
=+

)(]1)1
3232

))42(212(
3

2
6

42([

)(
3232

))42(212(
3

2
)1(

22
22

2
21

2
222222

2

2

12
22

2
21

2
212122

22

λλλλ

λλ

M, N are independent of u1(k) or u2(k). Hence the matrix A in (17) is

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−+

+−+
=

1)1
3

2
6

(
3

2
3

2
1)1

3
2

6
(

22
2

22
2

21
1

22
1

bccg
ac

g

bc
g

accg
A (A-5)

where 2
22

2
21

2121

3232
)212(

cc
ccc

a
+

−
= , 2

22
2

21

2222

3232
)212(

cc
ccc

b
+

−
= , and . 242 λλ +=c

Since A is not a function of c11 or c31, the stability of the closed-loop system only depends

on the values of c21 and c22. This is because both T1 and T3 are local tasks, i.e., each of them

only has one subtask and hence only runs on a single processor. The controller can adjust the

rates of T1 and T3 to control the utilization on a processor without affecting the other one.

Therefore, only the parameters of the end-to-end task, T2, affect system stability.

The closed-loop system is stable if the eigenvalues of A locate inside the unit circle in the

complex space. The eigenvalues of A are

32

2

2)(
3
2)(

6
2/1

2122212121 wggbgcagcggc
±+−−+++

=ρ

where

2
22212121222121

2
21)(

9
4))(

6
6)((

3
4))(

6
6(bgcagcggcbgcagcggcw ++−

−
−+−

−
=

Following Step 3, we can establish the condition in terms of (g1, g2) that guarantees the sta-

bility of the closed-loop system. For example, in the special case when g1= g2 = g,

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−+

=

+
−+

=

1
4

32

1
3

32

2

2

2

1

g

g

λλρ

λλρ (A-6)

To guarantee stability, we need to guarantee -1 < ρ1, ρ2 < 1. Substituting the values of λ,

Ts, and Tref, the stability condition of the closed-loop system is 0 < g < 5.95. Therefore, EU-

CON can maintain stability even if the execution time of every subtask becomes as high as 5.95

times its estimated one.

33

APPENDIX B. PARAMETERS OF THE MEDIUM TASK SET IN SECTION VII.A

The execution time of every subtask Tij in MEDIUM follows a uniform distribution in a

range [Minij, Maxij]*etf, where etf is the current execution time factor used in the experiment.

The second column (Proc) represents the processor where a subtask is located.

Tij Proc Minij Maxij 1/Rmax, i 1/Rmin, i 1/ri(0) phase
T11 P1 25 35
T12 P2 45 55
T13 P3 45 55
T14 P4 35 45

55 3000 300 0

T21 P4 45 55
T22 P2 35 45

55 5000 500 100

T31 P1 55 65
T32 P3 35 45

65 4000 400 0

T41 P1 25 35
T42 P4 35 45
T43 P2 15 25

45 6000 600 200

T51 P4 105 115
T52 P2 65 75
T53 P3 55 65

115 10000 1000 200

T61 P1 25 35
T62 P2 45 55
T63 P1 35 45

55 4000 400 0

T71 P4 55 65
T72 P3 95 105

105 6000 600 100

T81 P2 65 75
T82 P1 35 45

75 5000 500 0

T91 P1 35 45 45 5000 500 0
T10,1 P2 35 45 45 6000 600 0
T11,1 P3 35 45 45 4000 400 0
T12,1 P4 35 45 45 6500 650 0

34

	Feedback Utilization Control in Distributed Real-Time Systems with End-to-End Tasks
	Recommended Citation
	Feedback Utilization Control in Distributed Real-Time Systems with End-to-End Tasks

	Introduction
	Related Work
	Problem Formulation
	A Flexible End-to-End Task Model
	Problem Formulation
	Applications

	Overview of EUCON
	Dynamic Model of End-to-End Tasks
	Design and Analysis of a Model Predictive Controller
	A Formulation for Model Predictive Control
	Transformation to Least-Squares Problem
	Stability Analysis
	Control Tuning

	Experimentation
	Experimental Setup
	Baselines
	Experiment I: Steady Execution Times
	Experiment II: Varying Execution Times
	Experiment III: Comparison with FC-U-E2E
	Overhead

	Conclusions
	References
	Appendix A. Detailed Stability Analysis of the Example in Se
	Appendix B. Parameters of the MEDIUM Task Set in Section VII

	Abstract: Abstract: An increasing number of distributed real-time systems face the critical challenge of providing quality of service guarantees in open and unpredictable environments. In particular, such systems often need to enforce utilization bounds on multiple processors in order to avoid overload and meet end-to-end deadlines even when task execution times are unpredictable. While recent feedback control real-time scheduling algorithms have shown promise, they cannot handle the common end-to-end task model where each task is comprised of a chain of subtasks distributed on multiple processors. This paper presents the End-to-end Utilization CONtrol (EUCON) algorithm that adaptively maintains desired CPU utilization through performance feedbacks loops. EUCON is based on a model predictive control approach that models utilization control on a distributed platform as a multi-variable constrained optimization problem. A multi-input-multi-output model predictive controller is designed based on a difference equation model that describes the dynamic behavior of distributed real-time systems. Both control theoretic analysis and simulations demonstrate that EUCON can provide robust utilization guarantees when task execution times deviate from estimation or vary significantly at run-time.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: May 1, 2004
	Author: Authors: Lu, Chenyang; Wang, Xiaorui; Koutsoukos, Xenofon
	Title: Feedback Utilization Control in Distributed Real-Time Systems with End-to-End Tasks
	ReportNumber: 2004-31
	DepartmentName: Department of Computer Science & Engineering

