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Abstract

This paper presents MobiQuery, a spatiotemporal query
service that allows mobile users to periodically gather in-
formation from their surrounding areas through a wire-
less sensor network. A key advantage of MobiQuery lies
in its capability to meet stringent spatiotemporal perfor-
mance constraints crucial to many applications. These con-
straints include query latency, data freshness and fidelity,
and changing query areas due to user mobility. A novel just-
in-time prefetching algorithm enables MobiQuery to main-
tain robust spatiotemporal guarantees even when nodes op-
erate under extremely low duty cycles. Furthermore, it sig-
nificantly reduces the storage cost and network contention
caused by continuous queries from mobile users. We val-
idate our approach through both theoretical analysis and
simulation results under a range of realistic settings.

1 Introduction

As large-scale wireless sensor networks make it possi-
ble to monitor physical environments at unprecedented spa-
tial and temporal granularities, a key research challenge is
to develop data services that deliver information to mobile
users at the right time and right location. In this paper, we
propose a new data service for mobile users in sensor net-
works called spatiotemporal query. In contrast to existing
data services that generally assume fixed areas of interest
[9, 14, 20, 10, 19], spatiotemporal query is motivated by a
class of mission-critical applications in which mobile users
need to continuously gather real-time information within
their vicinities. For example, a fireman fighting a wild
fire may request a periodic update of a temperature map
within one mile around his current location to remain alert
to the surrounding fire conditions. As the fireman moves,
the query area changes accordingly. As another example, a
robot in a search and rescue operation needs to continuously
query surrounding sensors for information about the terrain
and survivors as it moves in a unknown dynamic environ-

ment. Based on the query results, the robot can locate sur-
vivors and find the best rescue route through motion plan-
ning [13]. The queries in the above applications are subject
to a common set of constraints.

• Spatial constraints: Only the nodes inside the query
area corresponding to the user’s current position
should contribute to the query result. Involving more
nodes wastes precious energy without improving the
quality of service as their data are not interesting to the
user at this point of time. In addition, it is desirable to
aggregate data from enough nodes in the current query
area to improve the fidelity of the query result.

• Temporal constraints: Meanwhile, a query is also sub-
ject to temporal constraints in terms of query deadlines
and data freshness. A new query result must be deliv-
ered to the user by the end of each query period. Fur-
thermore, each query result must be aggregated from
fresh sensor data, where the freshness of a sensor da-
tum is defined by its maximum validity interval after it
is read from the sensor.

Meeting these constraints is crucial for the mission-
critical applications that rely on surrounding sensor data to
maintain spatiotemporal context awareness. In the exam-
ples discussed earlier, a fireman may be endangered by a
quickly evolving wild fire if the query results are aggregated
from old sensor readings, are delivered too late, are aggre-
gated from sources at wrong locations, or if too few nodes
in the current query area contribute to the results. Similarly,
a search and rescue robot may fail to locate survivors in time
and to find the best rescue route in a dynamic environment
if any of these constraints are violated.

Meeting all the spatiotemporal constraints is especially
challenging in wireless sensor networks due to their severe
power and resource constraints. For example, although the
temporal constraints require the nodes to respond to a query
in a timely fashion, the low node duty cycles forced by the
power constraint can significantly increase the communica-
tion delay. Compared to traditional ad hoc networks, sensor



networks often require much lower duty cycles due to their
significant longer lifetime requirement. For instance, for a
MICA2 mote to remain operational for 450 days, the duty
cycle needs to be lower than 1% [16], which corresponds to
an active window of 150 milliseconds in every 15 seconds.
Consequently, the delay in communicating with sleeping
nodes can be as high as 14.85 seconds. Such a long latency
is intolerable to mobile users that must maintain real-time
context awareness in response to rapidly changing environ-
ments. In addition, a spatiotemporal query service faces the
challenge of reducing storage cost and network contention
caused by the continuous queries from mobile users since
nodes in sensor networks typically have very limited mem-
ory and bandwidth. For example, MICA2 motes only have
4KB data memory and a 38.4 KBaud radio.

We make the following contributions in this paper. (1)
We design a new spatiotemporal query service called Mo-
biQuery that allows a mobile user to periodically query a
surrounding area under spatiotemporal constraints (see Sec-
tion 4). (2) We develop a novel just-in-time prefetching
scheme that can meet stringent spatiotemporal constraints
despite the long communication delays caused by low node
duty cycles. Furthermore, our analysis shows that an ad-
vantage of just-in-time prefetching is that it significantly re-
duces storage cost and network contention caused by con-
tinuous queries from mobile users (see Section 5). (3) We
validate the design of MobiQuery through extensive simu-
lations with realistic settings. The results show that Mo-
biQuery can deal with considerable location errors and in-
accurate/late knowledge of user’s motion. Over 85% of
queries under MobiQuery achieve a data fidelity above 95%
even when the user motion pattern changes every 70s and
the location error is as large as 10m (see Section 6).

2 Related Work

Several data query service have been developed for sen-
sor networks [9, 14, 20, 10]. Directed Diffusion [9] is a
data-centric communication paradigm that allows for in-
network data aggregation. TinyDB [14] is a energy-efficient
query service for sensor networks. Unlike MobiQuery ,
both TinyDB and Directed Diffusion assume fixed query
areas and are not designed to handle moving users or query
areas. [10] shows that Directed Diffusion is not optimized
for mobile users. TTDD [20] and SEAD [10] are data ser-
vices that allow mobile users to collect data from fixed ar-
eas. TTDD builds a virtual grid to deliver the data to mo-
bile sinks. SEAD maintains a routing tree for mobile users
and uses data caches to balance latency and energy con-
sumption. Unlike these protocols, MobiQuery is designed
to query an area that moves with an user. Dealing with both
user mobility and time-varying data sources introduces new
challenges to the design of data services.

DCTC [22] is an object tracking protocol that maintains
a tree around a moving target. DCTC wakes up the nodes
ahead of the target based on motion prediction schemes.
However, while DCTC only provides a best effort scheme
for waking up nodes, MobiQuery achieves predictable sap-
tiotemporal performance by waking up nodes just-in-time.

Our earlier work on Mobicast [8] is also related to this
work. Mobicast is a spatiotemporal multicast protocol de-
signed for disseminating data to a changing area just in
time. Although both MobiQuery and Mobicast deal with
spatiotemporal constraints in sensor networks, they differ in
the following important aspects. First, they provide differ-
ent types of data services. Mobicast deals only with dissem-
inating (pushing) a message to an evolving area, while Mo-
biQuery pulls data from a moving area to a mobile user in
addition to disseminating the query. Second, Mobicast does
not consider the duty cycles of nodes. In contrast, Mobi-
Query employs a novel data prefetching scheme to achieve
spatiotemporal guarantees despite the long communication
delays introduced by node duty cycles and hence can work
effectively with existing power management protocols. Fur-
thermore, we provide extensive analysis and simulations on
storage cost, network contention and warmup cost intro-
duced by node duty cycles. These issues were not system-
atically studied in previous work on Mobicast.

3 Problem Formulation

A spatiotemporal query consists of a mobile user
traveling through a sensor field, periodically collect-
ing data from all sensors in a query area. A spa-
tiotemporal query is specified with six parameters:
(α, F, A(Pu(t)), Tperiod, Tfresh, Td) where α is the type
of sensor data being queried. F is an aggregation function
that is applied to the results inside the network. In-network
aggregation is a well-investigated technique utilized by ex-
isting data services [9, 14] to reduce bandwidth consump-
tion. A(Pu(t)) is a function defining the query area rel-
ative to the user’s position Pu(t). A(Pu(t)) specifies a
spatial constraint that requires all and only sensors within
A(Pu(t)) to contribute to the query result. For simplic-
ity, we assume A(Pu(t)) is a circle with radius Rq centered
around the user in the rest of the paper, although our design
can be easily extended to other types of query areas.

Tperiod and Tfresh define the temporal constraints of the
query. Tperiod specifies the rate at which the user expects to
receive query results. A new query result must be delivered
to the user by the end of each period. Tfresh specifies the
data freshness constraint, i.e., a query result is acceptable
only if it is aggregated from sensor readings no more than
Tfresh seconds old. Hence the kth result must be received
at or before k · Tperiod, and the data in the result can be at
most Tfresh old. Td is the lifetime of the query.
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Figure 1. The architecture of MobiQuery (Mo-
biQuery components are highlighted in gray)

We make several assumptions about the underlying sen-
sor network. First, all nodes have synchronized clocks. Sec-
ond, we assume each node knows its own location through
a localization service. Third, we assume the network runs
a power management protocol that selects a small subset of
nodes to keep active while the remaining nodes operate in a
duty cycle. The active nodes form a backbone network that
allows the communication delay between any two nodes to
remain in the order of one duty cycle. A number of existing
power management protocols like SPAN [3], CCP [17], and
GAF [18] maintain such backbones 1.

4 System Architecture

As shown in Figure 1, MobiQuery is spread across two
types of devices: a proxy and nodes of the sensor network.
A proxy is a mobile device ( such as a PDA or laptop) car-
ried by the user as he moves through a sensor field. The
query gateway in the proxy serves as the interface between
the proxy and the nodes in the network. Three components
of MobiQuery reside in the nodes: prefetching, query dis-
semination and data collection. In addition, MobiQuery
also works with a motion predictor on the proxy and power
management protocols on nodes.

Prefetching is a key component of our design that en-
ables MobiQuery to meet the spatiotemporal constraints of
a query despite the extremely low node duty cycles forced
by power constraint of sensor networks. To understand why
prefetching is necessary for spatiotemporal queries, we con-
sider the following simple example. Assume nodes in a net-
work keep active (turn on the radios) for 150ms in every
15 seconds. The user needs to query the nodes around him
every 5 seconds. If the user disseminates the query to the
network at the beginning of each query period, due to the
sleep schedule, on average only 1/3 nodes can be woken up
in time to respond to the query by the end of the query pe-
riod. Prefetching accounts for this by waking up the sleep-
ing nodes at the right time to participate in the query.

1Our design and analysis can be extended to the case where no back-
bone is present and all nodes operate in a duty cycle. Only the analysis
on the latency of query tree setup in Section 5.1 needs to be modified to
consider the communication delay due to the duty cycle. For example, an
analysis on the delay of S-MAC protocol is provided in [21].

A spatiotemporal query works as follows. The user is-
sues the query through the query gateway which appends
a motion profile (from the motion predictor) describing the
predicted user path to the query and sends the aggregate
to the network. The network then sends a prefetch mes-
sage to forewarn nodes in future query areas (specified by
the motion profile). Sleeping nodes receiving the prefetch
message reconfigure their sleep schedules to wake up at the
right time to participate in the query. Each node then takes
a sensor reading before the query deadline and delivers the
result to a collector node that sends the aggregated data to
the user when he arrives.

In the rest of this section, we first discuss how motion
profiles can be acquired in practice and then discuss the de-
tails of MobiQuery components.

4.1 Motion Profile

MobiQuery relies on motion profiles that specify the
user’s movement to predict future query areas and alert the
nodes in them before the user arrives.

4.1.1 Generation of Motion Profiles

We discuss two ways of generating motion profiles.
Motion Predictor based on History. A motion profile can
be generated based on the recent movement history of the
user obtained from GPS in the proxy or a location service
[12]. As a simple example, a motion profile P includes a ve-
locity −→v , assuming the user moves at −→v in future. −→v can
be estimated based on two previous user positions (p1, t1)
and (p2, t2), where pi (i = 1, 2) is the user position at time
ti. Let δ = t2− t1. Then −→v can be estimated as −→v =

−−→p1p2
δ .

δ represents the sampling period of user positions. δ affects
the accuracy of the motion prediction and is a system pa-
rameter of the motion predictor. Intuitively, when there are
location errors in GPS readings ( e.g., p1 and p2), a small δ
may result in high prediction error. The proxy periodically
monitors the user’s position and issues a new motion profile
whenever the user diverges from the path predicted by the
motion profile, by a system threshold. Our experiments (see
Section 6.3) demonstrate that MobiQuery can achieve sat-
isfactory performance when working with this simple and
efficient motion prediction technique. We note that more
complex techniques [1] can be used to improve the accu-
racy of the motion prediction. Further discussion on this
topic is beyond the scope of this paper.
Motion Planner. Autonomous robots usually generate mo-
tion profiles based on motion planning [11] and control their
future movement accordingly. In such cases, the motion
planner can provide the motion profiles to MobiQuery .
Hence MobiQuery does not introduce additional overhead
for acquiring the motion profiles as they are already needed



for the motion planning of the robot. We also note the mo-
tion profiles are generated by the proxy carried by the user,
which typically has more processing power than the sensor
network nodes.

tg1 ts1 Tv1
tg2 ts2 Tv2

T
a

Motion
Profile 1

tT
a

Motion
Profile 2

Figure 2. The motion profile model.

4.1.2 Motion Profile Model

Each motion profile P is associated with three timing pa-
rameters (ts, Tv, tg), as shown in Fig. 2. ts specifies when
P takes effect. Tv is the validity interval of P , i.e., the user
is predicted to travel according to P within [ts, ts + Tv]. tg
specifies when P is generated. Let Ta = ts − tg . Ta repre-
sents how early the proxy receives P before P takes effect
and is referred to as the advance time of P .

The above model can accommodate both methods of
generating P discussed in Section 4.1.1. When P is gen-
erated by a motion planner, Ta is positive since P is always
created before the user takes the planned path. In contrast,
when P is generated by a motion predictor, Ta is negative
because the motion profile is available only after one sam-
pling period (as discussed in Section 4.1.1). In this case,
the part of P within [ts + Ta, ts] (Ta ≤ 0) has expired
by the time the proxy receives P . The sampling period
is lower bounded by the delay in acquiring user locations.
For example, obtaining an initial GPS reading takes about
8s [15]. The experiments on Leadtek GPS with Berkeley
motes show that the lag of GPS readings is about 2 ∼ 3s
when the user walks briskly [6]. We evaluate the effect of
Ta on the performance of MobiQuery in Section 6.3.

4.2 Prefetching

After receiving the query and the motion profile from
the proxy, the network uses the motion profile to predict
a location, called pickup point, where the user expects to
receive the next query result. A prefetch message with the
query specification and the motion profile is then relayed
by the network to each future pickup point using an area
anycast [7]. The area anycast delivers the prefetch message
to a node within a certain distance, Rp, of the pickup point.
To guarantee the delivery of the prefetch message, Rp may
vary depending on the density of the sensor network. The
node receiving the prefetch message is called a collector
node. It is responsible for relaying the prefetch message to
the next pickup point, distributing the query to the current
query area, and aggregating the results in time for delivery.
We present the following two prefetching schemes.

Greedy Prefetching. In greedy prefetching, each collec-
tor node forwards the prefetch message to the next collec-
tor node immediately after receiving the message. Conse-
quently, the query is distributed to all future query areas
along the predicted user path as soon as possible. One ad-
vantage of this approach is that it maximizes the slack time
of following query areas in order to meet query deadlines.
Just-In-Time Prefetching. Different from greedy prefetch-
ing that forwards the prefetch message immediately, just-
in-time prefetching holds the message for a certain amount
of time before forwarding it to the next collector node. The
right time to forward the prefetch message without violating
the temporal constraints of the query is a key design param-
eter and will be analytically determined in Section 5.1.

Just-in-time prefetching has several key advantages over
greedy prefetching. First, it reduces the likelihood of dis-
tributing query to multiple query areas concurrently, result-
ing in lower network contention. The network contention is
formally analyzed in Section 5.4. Second, distributing the
query to each query area just-in-time reduces the storage
cost of query states. We formally analyze the storage cost
in Section 5.2. Third, just-in-time prefetching can reduce
the cost caused by motion changes of the user. When the
user diverges from the path specified by the motion profile,
the proxy can send a cancel message along the abandoned
path to stop the previous prefetching process. However, this
mechanism is not effective for greedy prefetching. Since
the prefetch message is forwarded in an as-fast-as-possible
fashion in greedy prefetching, due to which the query is dis-
tributed to most of the query areas on the abandoned path
by the time a motion change occurs.

4.3 Query Dissemination

The query dissemination phase is responsible for dis-
tributing the query specification to a query area, and build-
ing a query tree rooted at the collector node for data col-
lection. A query tree is built as follows. Upon receiving the
prefetch message, the collector node floods a setup message
with the query specification to all the nodes in the query
area. Each backbone node sets the first node from which it
receives the message as its parent. The backbone nodes de-
liver the message to the sleeping nodes when they wake up.
Upon receiving the message, the sleeping nodes reconfigure
their sleep schedule to wake up at Tperiod − Tfresh, which
is the earliest time any node can perform a sensor measure-
ment without violating the data freshness constraint. Sleep-
ing nodes are purposely restricted to be leaves to allow them
to quickly resume sleep after performing a single sensor
reading and transmission. This minimizes their energy con-
sumption. If a sleeping node is allowed to be parent node,
it would have to remain awake for a long time in order to
receive and route the results from its children.



4.4 Data Collection

Data collection is the process by which the nodes in
a query area perform a measurement and send their data
through the tree back to the collector node. To enable in-
network aggregation and reduce contention, each parent
waits for its children before sending the aggregated data.
In case a child fails to respond, a parent times out at a
sub-deadline and sends the data to its parent regardless of
whether all children have responded. This sub-deadline
must be chosen such that the results can still be delivered
to the collector in time. We use the following heuristic
to assign sub-deadlines. Leaf nodes set their deadline to
k · Tperiod − Tfresh for the kth query. Each parent node u
sets its deadline du as follows:

du = k · Tperiod − |up|
Rp + Rq

· Tfresh (1)

where |up| is the distance between u and the collector node
p. Rp + Rq represents the maximum distance between a
node in the query area and the collector node, since the col-
lector node resides within Rp range of the pickup point. (1)
ensures that the further a node is from the pickup point, the
quicker it will timeout and forward the result to its parent.
This sub-deadline assignment scheme increases the likeli-
hood of effective in-network aggregation and timely deliv-
ery of query results to the user.

We note that more sophisticated protocols [14, 9] could
be used to disseminate the query and collect data. However,
these protocols are designed for stationary users to query re-
peatedly and incur greater overhead. In contrast, each query
area in MobiQuery is only queried once by the mobile user,
which motivates the lightweight approach we adopted.

5 Analysis

In this section, we first derive the key design parameter
of just-in-time prefetching – the right time a prefetch mes-
sage should be forwarded in order to meet the spatiotempo-
ral constraints. We then analyze several important practical
issues which include storage cost, network contention and
the warmup cost caused by low duty cycles.

5.1 Prefetch Forwarding Time

A collector node must receive the prefetch message early
enough to ensure that query dissemination and data collec-
tion can be completed before the query deadline. We derive
an upper bound on the time at which the prefetch message
should be forwarded to the next pickup point such that the
query deadline is met, which is referred as the prefetch for-
warding time. We first make the following assumptions:

Tcollect ≤ Tfresh (2)

Tsetup ≤ Tfresh (3)

vuser < vprfh (4)

Tcollect is the time it takes the data collection process to
complete. Tcollect ≤ Tfresh is necessary for a network to
meet both the freshness and the deadline constraints. Other-
wise it is impossible for the network to deliver a query result
to the user before the data becomes too old. This condi-
tion is enforced by the timeout scheme discussed in Section
4.4. Similarly, we assume Tsetup ≤ Tfresh where Tsetup

is the time it takes to create the partial query tree composed
of only backbone nodes in a query area. This assumption
is made because Tsetup is usually shorter than Tcollect due
to the following two facts: (1) Unlike data collection, the
query tree is set up as soon as possible and does not incur
any in-network aggregation delay. (2) During Tsetup, only
backbone nodes communicate, involving fewer hops than in
data collection.

vuser and vprfh in (4) denote the user speed and the
speed of the prefetch message, respectively. vprfh is de-
fined as the ratio of the distance between two consecutive
collector nodes to the communication delay between them.
Intuitively, (4) is necessary for the network communication
to be able to catch up with the user movement.

Our goal is to derive the time tsend(k−1) when the (k−
1)th collector node should forward the prefetch message to
the kth collector node such that the deadline of kth query
result (k · Tperiod) is met. We first derive the time (denoted
by trecv(k)) by when the kth collector node should receive
the prefetch message in order to meet the deadline. Upon
receiving the prefetch message, the kth collector node needs
to set up the query tree and to collect the data before the
deadline k · Tperiod. Hence the query deadline will be met
if the following inequality holds:

trecv(k) ≤ k · Tperiod − Ttree − Tcollect (5)

where Ttree denotes the time it takes to create the query tree
composed of all nodes in the query area. Ttree equals the
sum of Tsetup and the delay of waking up all sleeping nodes
which is upper bounded by the sleep period Tsleep:

Ttree ≤ Tsetup + Tsleep (6)

From (6) and (3), we have:

Ttree ≤ Tsetup + Tsleep ≤ Tfresh + Tsleep (7)

Based on (7), (2) and (5), the deadline k · Tperiod will be
met if the following condition holds:

trecv(k) ≤ k · Tperiod − Tsleep − 2 · Tfresh (8)

The time it takes the prefetch message to be transmitted be-
tween the two considered collector nodes is vuser ·Tperiod

vprfh
.

Based on (4), vuser·Tperiod

vprfh
< Tperiod. Hence, the prefetch



message will be received before trecv(k) by the kth collec-
tor node, if the following inequality holds:

tsend(k − 1) ≤ trecv(k) − Tperiod (9)

Based on (9) and (8), the deadline k · Tperiod will be met if
the prefetch forwarding time of the (k−1)th collector node
satisfies the following condition:

tsend(k − 1) ≤ (k − 1) · Tperiod − Tsleep − 2 · Tfresh (10)

A collector node in MobiQuery forwards the prefetch
message to the next pickup point according to the upper
bound of tsend(k − 1) in (10). Consequently, the prefetch
message is forwarded between pickup points at an interval
of Tperiod. As we show in the rest of this section, by delay-
ing the forwarding of prefetch messages, MobiQuery can
effectively reduce the storage cost and network contention
caused by continuous queries from the mobile user.

5.2 Storage Cost

In this section, we analyze the storage cost of a query.
The information related to a query that the network needs
to remember depends the storage cost of a query tree ( e.g.,
parental information and query parameters), and the num-
ber of query trees set up ahead of the user by the prefetch-
ing process which we refer to as prefetch length. Since the
storage cost of a tree is fixed for a given query, we focus on
the analysis of prefetch length in the rest of this section.

Suppose the user moves at a constant velocity vuser . The
query session lasts Td seconds. We now derive the worst-
case prefetch length under greedy prefetching and just-in-
time prefetching, denoted by PLgp and PLjit, respectively.
When greedy prefetching has set up all query trees in the
query session, the number of pickup points the user has vis-

ited is
⌊

vuser ·Td

vprfh·Tperiod

⌋
. Hence we have:

PLgp =

⌊
Td

Tperiod

⌋
−

⌊
Td

Tperiod

· vuser

vprfh

⌋
(11)

(11) shows that the worst-case storage cost of greedy
prefetching increases with the duration of the query. We
now derive PLjit. Let tsend(k−1) denote the time instance
when the (k − 1)th collector node forwards the prefetch
message to the kth collector node. At tsend(k−1), the user
is traveling between the ith and the (i + 1)th pickup points

where i =
⌊

tsend(k−1)
Tperiod

⌋
. All the query trees between the ith

and the kth query areas have been set up. Hence we have:

PLjit = k −
⌊

tsend(k − 1)

Tperiod

⌋
=

⌈
Tsleep + 2 · Tfresh

Tperiod

⌉
+ 1 (12)

where tsend(k − 1) takes the upper bound in (10). (12)
shows that the storage cost of just-in-time prefetching is

constant for given query parameters. From (11) and (12),
it can be easily seen that PLjit < PLgp when

Td >
Tsleep + 2 · Tfresh + Tperiod

1 − vuser
vprfh

(13)

where the rounding in (11) and (12) is ignored. All quanti-
ties in (13) are known for a given senor network and query
specification except user

vprfh
.

As an quantitative estimation on vuser

vprfh
, let us consider

the following simple example on MICA2 motes [5]. Sup-
pose two consecutive collector nodes are 100m apart and
there are 5 hops between them 2. The size of a prefetch mes-
sage is 60 bytes. The bandwidth of a mote is 38.4 Kbps[5].
To account for routing/MAC overhead and contention de-
lay, we assume the effective bandwidth of a mote is 5 Kbps.
Then vprfh can be calculated as follows:

vprfh =
100m

5 × (60 bytes × 8)/5000 bps
× 3600s

1000 × 1.6
≈ 469 mph

Obviously, vprfh is much larger than the velocity of a
human or a vehicle. Hence, according to (13), greedy
prefetching has a higher worst-case storage cost than just-
in-time prefetch for queries with reasonable lifetime. We
consider the following concrete example. The user is a hu-
man walking at 4m/s, who issues a query every 10s in
a duration of 600s. The data freshness constraint is 5s
and the sleep period of nodes is 15s. Under these set-
tings, the number of trees set up ahead of the user is 4 in
just-in-time prefetching. However, it can be as high as 58
in greedy prefetching, which indicates a storage cost 14.5
times higher than in just-in-time prefetching. The analysis
in this section shows that just-in-time prefetching is prefer-
able since sensor nodes usually have very limited memory.

5.3 The Warmup Interval

The accuracy of motion profiles affects the effectiveness
of prefetching. The user may diverge from a motion pro-
file due to change of motion pattern ( e.g., turns, acceler-
ations/decelerations) or error in the motion profiles. We
refer to these cases as unexpected motion changes. The
motion predictor issues a new motion profile whenever an
unexpected motion change occurs. However, the first few
queries after a new motion profile is issued may suffer from
poor data fidelity because some sleeping nodes cannot be
woken up before query deadlines due to delayed prefetch-
ing ((10) does not hold). In this case, MobiQuery attempts
to catch up by using greedy prefetching and resumes just-in-
time prefetching once (10) holds. We refer to this transient
phase as warmup interval, denoted by Tw. We derive an up-
per bound on Tw. This bound quantifies the robustness of
MobiQuery in presence of unexpected user motion changes.

2The radio range of a MICA2 mote is 1000ft in datasheets [5]. The
actual range varies with the environment.



Suppose MobiQuery receives a new motion profile Ta

seconds before the motion change occurs and the warmup
interval lasts k query periods since the motion profile is is-
sued. Let pk denote the pickup point where the warmup in-
terval ends. The user needs to travel a distance of vuser · (k ·
Tperiod + Ta) to reach pk from the point where he receives
the motion profile. We approximate the locations of col-
lector nodes with those of the corresponding pickup points.
Then, the time it takes the prefetch message to reach the kth

collector node, Tp, is as follows:

Tp =
vuser · (k · Tperiod + Ta)

vprfh
(14)

In the worst case, a query deadline in the warmup interval
cannot be met, i.e., the user reaches pk before the comple-
tion of the data collection:

k · Tperiod + Ta ≤ Tp + Ttree + Tfresh (15)

Solving k using (15), (14) and (7):

k ≤
 Tsleep + 2Tfresh − (1 − vuser

vprfh
) · Ta

Tperiod · (1 − vuser
vprfh

)

 (16)

Thus, Tw = k · Tperiod. Tw becomes zero when Ta =
(2Tfresh + Tsleep)/(1 − vuser

vprfh
). That is, when the mo-

tion of the user can be predicted early enough, the query
does not incur any warmup interval. In addition, since
vprfh � vuser in practice as discussed in Section 5.2,
Tw ≈ (Tsleep + 2Tfresh − Ta). This result is confirmed
by the simulation results in Section 6.3.

5.4 Network Contention

In this section, we analyze the cause of network con-
tention and show that just-in-time prefetching can effec-
tively reduce network contention. Network contention may
be caused by the communication with sleeping nodes dur-
ing query dissemination since it must occur within short
active windows. Moreover, due to low node duty cycles,
the setup of a query tree may last multiple query periods
resulting in interference among adjacent query areas. Con-
sequently, a query may suffer from packet loss or deadline
misses. In contrast, data collection incurs lower contention
since it completes within the current period (to meet the
freshness constraint) avoiding interference with other query
areas. Hence, we focus on analyzing the network contention
caused by the tree setups in query dissemination.

Since the contention level caused by a single tree is fixed,
in order to quantify the network contention, it suffices to
analyze how many trees may interfere with a tree T dur-
ing its setup, which is referred to as interference length.
We now derive the interference length of greedy prefetch-
ing and just-in-time prefetching, denoted by Mgp and Mjit,
respectively. To simplify our analysis, we assume that the
nodes in the network have a communication range of Rc

Rq

<2R
q
+R

c

R
c

Contention area

Figure 3. Two trees interfere with each other

meters (note that the design of MobiQuery does not depend
on this assumption). We also assume the user moves in a
straight line. As shown in Fig. 3, for a tree to interfere with
T , its root must be located within 2Rq + Rc meters from
the root of T . Let Ms denote the number of such trees. We
approximate the locations of collector nodes with those of
corresponding pickup points. Since the distance between
two consecutive pickup points is vuser · Tperiod, we have:

Ms =

⌈
4Rq + 2Rc

vuser · Tperiod

⌉
(17)

Meanwhile, the setup of an interfering tree must overlap
with the setup of T . Let Mt−jit and Mt−gp denote the num-
ber of such trees under two prefetching schemes. Clearly,
Mgp = min(Mt−gp, Ms) and Mjit = min(Mt−jit, Ms).
A prefetch message in greedy prefetching takes ∆t =
vuser ·Tperiod

vprfh
to travel between two consecutive pickup

points, i.e., trees are set up at an interval of ∆t. We have:

Mt−gp ≤
⌈

Ttree

∆t

⌉
≤

⌈
(Tsleep + Tfresh) · vprfh

Tperiod · vuser

⌉
(18)

On the other hand, the query trees are set up in just-in-
time prefetching at an interval of Tperiod. Hence Mt−jit =⌈

Ttree

Tperiod

⌉
. The following cases can be derived on the rela-

tionship between Mgp and Mjit (rounding is ignored):




Mjit = Ms = Mgp, vprfh > vuser > v∗

Mjit = Mt−jit < Ms = Mgp vprfh > v∗ > vuser

Mjit = Mt−jit < Mt−gp = Mgp, v∗ > vprfh > vuser

where v∗ = 2Rc+4Rq

Tsleep+Tfresh
. We can see that the network

contention of just-in-time prefetching is lower than that of
greedy prefetching as long as the user speed remains be-
low v∗. On the other hand, the contention level of the
two prefetching schemes becomes the same when the user
speed exceeds v∗. This is because the prefetch messages un-
der just-in-time prefetching must be forwarded very quickly
in such a case, resulting in a behavior similar to greedy
prefetching. As a concrete example, when Rc = 50m and
the query radius is 150m, v∗ approximates 131 mph if the
sleep period is 9s and data freshness constraint is 3s. We
note the user is unlikely to travel at such a high speed in
practice. In contrast, if the user is a human walking at a
speed of 4m/s, and a query is issued every 5s, the number



of interfering trees is about 4 under just-in-time prefetch-
ing while it is 35 under greedy prefetching! The analysis in
this section clearly shows that just-in-time prefetching can
significantly reduce the network contention.

6 Simulation Results

We implemented MobiQuery in ns2. Coverage Config-
uration Protocol (CCP) [17] based on IEEE 802.11 Power
Saving Mode (PSM) extended by [3] is used as the power
management protocol. CCP maintains network connectiv-
ity and sensing coverage through a backbone. MobiQuery
has also been implemented on MICA2 motes and demon-
strated at a conference [2]. In this paper, we only present
the simulation results. Evaluating the performance of Mo-
biQuery on a mote testbed in real-world environment is our
ongoing work and is not included here.

We use the following metrics in our performance evalu-
ation: (1) Data fidelity, defined as the ratio of the number
of nodes that contribute to a query result to the total num-
ber of nodes in a query area. (2) Success ratio, defined as
the ratio of the number of queries that meet deadlines and
have data fidelity above a threshold, to the total number of
queries. Success ratio indicates the overall quality of ser-
vice received by the user. We set the threshold of data fi-
delity to 95%. (3) Power consumption. We measure the av-
erage power consumption per sleeping node during a query.

6.1 Experimental Settings

In each simulation, 200 nodes are randomly distributed
in a 450m × 450m region. The active window in IEEE
802.11 PSM is 100ms. The sleep period varies from 3s
to 15s, which results in duty cycles from 3.2% to 0.67%
for sleeping nodes. The radius of a query area is 150m.
The communication and sensing range in CCP are set to
105m and 50m, respectively. Under these settings, a query
tree has about 2 ∼ 4 levels. Query period is 2s and data
freshness constraint is 1s. The node bandwidth is 2 Mbps.

6.2 Performance under Accurate Motion Profiles

In this section, we evaluate the performance of Mobi-
Query with the accurate knowledge about the user’s mo-
tion. In each simulation of 400s, the user starts from a cor-
ner of the region and moves in a random direction with a
speed randomly chosen from a range. The user changes its
direction and speed every 50 seconds. We simulate users
moving at three speed ranges, 3 ∼ 5m/s, 6 ∼ 10m/s and
16 ∼ 20m/s, corresponding to a walking human, a running
human and a vehicle with moderate speed, respectively. The
motion profile that specifies the complete user path is pro-
vided to MobiQuery at the beginning of each simulation.
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Figure 4. Performance comparison

For performance comparison, we implemented a base-
line algorithm called No-Prefetching (NP). In NP, the user
broadcasts a query to the network at the beginning of each
query period. Fig 4 shows the average success ratios Mo-
biQuery and NP over 3 runs with different network topolo-
gies. The implementations of MobiQuery with greedy and
just-in-time prefetching are denoted as MQ-GP and MQ-
JIT, respectively. Fig. (4) shows that the success ratio of
MQ-JIT achieves near 100% in all settings, even when the
sleeping period is as long as 15s, i.e., 7.5 times the query
period. In sharp contrast, the success ratio of NP remains
below 35% and decreases when the sleep period or user
speed increases. This result indicates that prefetching is cru-
cial and highly effective to meet spatiotemporal constraints
in sensor networks with low duty cycles. The success ratio
of MQ-GP reaches about 90% when sleep period is shorter
than 9s and decreases when sleep period becomes longer.
MQ-GP performs consistently worse than MQ-JIT due to
packet loss caused by high network congestion.

To examine the dynamic behavior of MobiQuery , we
plot the data fidelity at each pickup point in Fig. 5. The
sleep period is 15s and the user speed is 3 ∼ 5m/s. Both
MQ-JIT and MQ-GP suffer from an initial warmup phase
in which about 5 queries have relatively low data fidelity,
which conforms to the prediction of (16) in Section 5.3.
MQ-JIT achieves a data fidelity of 100% in most periods af-
ter the warmup phase. In contrast, the performance of MQ-
GP incurs a significant variance due to packet loss caused
by network congestion, which conforms to our analysis on
network contention in Section 5.4. This behavior of MQ-GP
makes it inappropriate for critical applications that require
reliable performance. Our results also show that the latency
of query results under MQ-GP also has a high variance, al-
though all query deadlines are met (at the price of low data
fidelity) due to the timeout scheme discussed in Section 4.4.
These results are not shown due to space limitation.

6.3 Effects of Imperfect Motion Prediction

In this section, we evaluate the impact of motion pro-
file settings including advance times, unexpected motion
changes, and location errors. The results are the average of
5 runs (with 95% confidence interval) under different net-
work topologies.
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Advance Time: We first test the effect of the advance
time of motion profiles. The user changes the direction and
speed every 70s in a simulation of 500s. The range of the
user’s speed is 3 ∼ 5m/s. MobiQuery receives a new mo-
tion profile Ta seconds before a motion change occurs 3.
We vary Ta from −6s to 18s in the simulations, model-
ing different motion profile generation scheme, e.g., from
a motion planner or a history-based motion predictor. Fig.
6 shows the success ratio of MQ-JIT under different sleep
periods. When the sleep period decreases, the warmup in-
terval becomes shorter and hence more queries succeed. For
each sleep period, the success ratio increases with Ta. As
predicted by (16) in Section 5.3, the warmup interval ap-
proaches zero when Ta reaches a threshold ( e.g., about 11
seconds for a sleep period of 9 seconds). In such a case, the
success ratio converges to a level close to 100%. The dif-
ference with 100% is due to the occasional packet loss and
initial warmup interval at the beginning of a simulation.

Unexpected Motion Changes: We now evaluate the ef-
fect of motion changes. The motion pattern of the user is the
same as described earlier except that the interval between
motion changes varies from 42s to 210s. Fig. 7 shows the
success ratio of MQ-JIT with sleep period of 9s. As ex-
pected, motion changes have no impact on MQ-JIT when
Ta is large. When Ta is negative, the performance drops
due to longer warmup intervals, as the user changes the mo-
tion more frequently. However, MQ-JIT still achieves sat-
isfactory performance even when the user changes motion
very frequently. For example, MQ-JIT returns about 78.8%
of the requested results even when the user changes his mo-
tion pattern every 42s (even though such a high frequency
of motion changes is unlikely in practice).

Location Errors: We now evaluate the effect of location
errors. Every time a motion change occurs, the motion pre-

3Recall that, when Ta is negative, the motion profile is provided to
MobiQuery after a motion change occurs.

dictor generates a new motion profile based on two GPS
readings, as discussed in Section 4.1.1. The sampling pe-
riod is 8s. That is, a new motion profile is provided to MQ-
JIT 8s after a motion change occurs. Each GPS reading has
a random location error within 0 ∼ ∆ meters. ∆ takes 5m
or 10m, modeling the typical accuracy of GPS with/without
differential correction, respectively [4]. As shown in Fig. 7
(dotted curves), MQ-JIT performs slightly worse when the
location error increases. Furthermore, in both error settings,
the success ratio increases as the user’s motion changes less
frequently and approaches the performance without loca-
tion error when the interval between motion changes ex-
ceeds 70s. For example, when the location error is 10m,
over 85% of queries succeed even when the user changes his
motion pattern every 70s. This result indicates that Mobi-
Query can work with practical motion prediction techniques
and achieve satisfactory performance despite considerable
delays and location errors in the motion profiles.

In summary, our results in this section demonstrate the
robustness of MQ-JIT when operating with inaccurate/late
motion profiles. MQ-JIT can take advantage of a small ad-
vance time of motion profiles to maintain perfect spatiotem-
poral services. Moreover, it can also tolerate motion predic-
tion techniques with considerable delays, location errors, as
well as high frequency of motion changes by the user.

6.4 Power Consumption

In MobiQuery, active nodes never turn off their radios
before running out of energy and hence their power con-
sumption is not effected by the settings of sleep schedules.
In this section, we investigate the power consumption of
sleeping nodes. The user changes its motion every 70s in
a simulation of 400s. For comparison, we also measured
the power consumption of CCP without any query. In ac-
cordance with the measurement of Cabletron 802.11 net-
work card in [3], the power consumption of transmitting, re-
ceiving, idle and sleeping modes of the radio are 1400mW,
1000mW, 830mW and 130mW, respectively.
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Fig. 8 shows the average power consumption per sleep-
ing node of 5 runs. As expected, both CCP and MQ-JIT
consume less power as the sleep period increases. The in-
crease in power consumption due to MobiQuery remains
below 0.05w under all settings. MobiQuery consumes
slightly less power when Ta decrease from 9s to −3s. In
the latter case, as analyzed in section 5.3, MobiQuery incurs
a warmup interval for each motion change and hence fewer
nodes were woken up to participate in the query, resulting
in lower energy consumption. The result of this section in-
dicates that MobiQuery conserves the power consumption
of the network by taking advantage of the sleep schedule.

7 Conclusions

We presented a novel spatiotemporal query service
called MobiQuery in this paper. A key feature of Mobi-
Query is its analytical performance guarantees under spa-
tiotemporal constraints despite a set of unique challenges in
sensor networks including 1) extremely low duty cycles for
conserving energy, 2) high storage cost and network con-
tention due to continuous queries from mobile users, and
3) erroneous/late knowledge about user motion. Our re-
sults demonstrate that just-in-time prefetching enables Mo-
biQuery to maintain desired spatiotemporal performance
under various network and motion settings. The results also
show that MobiQuery can tolerate imperfect motion profiles
with considerable delays and location errors.
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