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Abstract

Packet classification is an enabling function for a variety of Internet applications including Quality of Ser-
vice, security, monitoring, and multimedia communications. In order to classify a packet as belonging to a
particular flow or set of flows, network nodes must perform a search over a set of filters using multiple fields
of the packet as the search key. In general, there have been two major threads of research addressing packet
classification: algorithmic and architectural. A few pioneering groups of researchers posed the problem,
provided complexity bounds, and offered a collection of algorithmic solutions. Subsequently, the design
space has been vigorously explored by many offering new algorithms and improvements upon existing al-
gorithms. Given the inability of early algorithms to meet performance constraints imposed by high speed
links, researchers in industry and academia devised architectural solutions to the problem. This thread of
research produced the most widely-used packet classification device technology, Ternary Content Address-
able Memory (TCAM). New architectural research combines intelligent algorithms and novel architectures
to eliminate many of the unfavorable characteristics of current TCAMs. We observe that the community
appears to be converging on a combined algorithmic and architectural approach to the problem. Using a tax-
onomy based on the high-level approach to the problem and a minimal set of running examples, we provide
a survey of the seminal and recent solutions to the problem. It is our hope to foster a deeper understanding of
the various packet classification techniques while providing a useful framework for discerning relationships
and distinctions.
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Table 1: Example filter set of 16 filters classifying on four fields; each filter has an associated flow identifier
(Flow ID) and priority tag (PT) where † denotes a non-exclusive filter; wildcard fields are denoted with ∗.

Filter Action
SA DA Prot DP FlowID PT
11010010 * TCP [3:15] 0 3
10011100 * * [1:1] 1 5
101101* 001110* * [0:15] 2 8†
10011100 01101010 UDP [5:5] 3 2
* * ICMP [0:15] 4 9†
100111* 011010* * [3:15] 5 6†
10010011 * TCP [3:15] 6 3
* * UDP [3:15] 7 9†
11101100 01111010 * [0:15] 8 2
111010* 01011000 UDP [6:6] 9 2
100110* 11011000 UDP [0:15] 10 2
010110* 11011000 UDP [0:15] 11 2
01110010 * TCP [3:15] 12 4†
10011100 01101010 TCP [0:1] 13 3
01110010 * * [3:3] 14 3
100111* 011010* UDP [1:1] 15 4

1 Introduction

Packet classification is an enabling function for a variety of Internet applications including Quality of Ser-
vice, security, monitoring, and multimedia communications. Such applications typically operate on packet
flows or sets of flows; therefore, network nodes must classify individual packets traversing the node in order
to assign a flow identifier, FlowID. Packet classification entails searching a table of filters which binds a
packet to a flow or set of flows and returning the FlowID for the highest priority filter or set of filters which
match the packet. Note that filters are also referred to as rules in some of the packet classification literature.
Likewise, a FlowID is synonymous with the action applied to the packet. At minimum, filters contain mul-
tiple field values that specify an exact packet header or set of headers and the associated FlowID for packets
matching all the field values. The type of field values are typically prefixes for IP address fields, an exact
value or wildcard for the transport protocol number and flags, and ranges for port numbers. An example
filter table is shown in Table 1. In this simple example, filters contain field values for four packet headers
fields: 8-bit source and destination addresses, transport protocol, and a 4-bit destination port number.

Filter priority may be implied by the order of filters in the filter set. Note that the filters in Table 1 contain
an explicit priority tag PT and a non-exclusive flag denoted by †. Priority tags allow filter priority to be
independent of filter ordering. Non-exclusive flags allow filters to be designated as either exclusive or non-
exclusive. Packets may match only one exclusive filter, allowing Quality of Service and security applications
to specify a single action for the packet. Packets may also match several non-exclusive filters, providing
support for transparent monitoring and usage-based accounting applications. Note that a parameter may
control the number of non-exclusive filters, r, returned by the packet classifier. Like exclusive filters, the
priority tag is used to select the r highest priority non-exclusive filters. Consider an example search through
the filter set in Table 1 for a packet with the following header fields: source address 10011100, destination
address 01101010, protocol UDP, destination port 1. This packet matches the filters with FlowID 5 and
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15 with priority tags 5 and 4, respectively. Since both are exclusive filters, FlowID 15 is applied to the
packet, assuming that the highest priority level is 0. Given that no non-exclusive filters match the packet,
we return only one FlowID. Any packet classification technique that supports multiple matches can support
non-exclusive filters; however, techniques which employ precomputation to encode priority into the search
may preclude their use.

Due to the complexity of the search, packet classification is often a performance bottleneck in network
infrastructure; therefore, it has received much attention in the research community. In general, there have
been two major threads of research addressing this problem: algorithmic and architectural. A few pioneering
groups of researchers posed the problem, provided complexity bounds, and offered a collection of algorith-
mic solutions [1, 2, 3, 4]. Subsequently, the design space has been vigorously explored by many offering
new algorithms and improvements upon existing algorithms [5, 6, 7]. Given the inability of early algorithms
to meet the performance constraints discussed in Section 1.1, researchers in industry and academia devised
architectural solutions to the problem. This thread of research produced the most widely-used packet clas-
sification device technology, Ternary Content Addressable Memory (TCAM) [8, 9, 10, 11].

Some of the most promising algorithmic research embraces the practice of leveraging the statistical
structure of filter sets to improve average performance [1, 5, 12, 2, 13]. Several algorithms in this class
are amenable to high-performance hardware implementation. We discuss these observations in more detail
and provide motivation for packet classification on larger numbers of fields in Section 2. New architectural
research combines intelligent algorithms and novel architectures to eliminate many of the unfavorable char-
acteristics of current TCAMs [14]. We observe that the community appears to be converging on a combined
algorithmic and architectural approach to the problem [14, 15, 16]. In order to lend structure to our discus-
sion, we develop a taxonomy in Section 3 that frames each technique according to its high-level approach
to the problem. The presentation of this taxonomy is followed by a survey of the seminal and recent solu-
tions to the packet classification problem. Throughout our presentation we attempt to use a minimal set of
running examples to provide continuity to the presentation and highlight the distinctions among the various
solutions.

1.1 Constraints

Computational complexity is not the only challenging aspect of the packet classification problem. Increas-
ingly, traffic in large ISP networks and the Internet backbone travels over links with transmission rates in
excess of one billion bits per second (1 Gb/s). Current generation fiber optic links can operate at over 40
Gb/s. The combination of transmission rate and packet size dictate the throughput, the number of packets
per second, routers must support. A majority of Internet traffic utilizes the Transmission Control Protocol
which transmits 40 byte acknowledgment packets. In the worst case, a router could receive a long stream of
TCP acknowledgments, therefore conservative router architects set the throughput target based on the input
link rate and 40 byte packet lengths. For example, supporting 10 Gb/s links requires a throughput of 31
million packets per second per port. Modern Internet routers contain tens to thousands of ports. In such
high-performance routers, route lookup and packet classification is performed on a per-port basis.

Many algorithmic solutions to the route lookup and packet classification problems provide sufficient
performance on average. Most techniques suffer from poor performance for a pathological search. For
example, a technique might employ a decision tree where most paths through the tree are short, however
one path is significantly long. If a sufficiently long sequence of packets that follows the longest path through
the tree arrives at the input port of the router, then the throughput is determined by the worst-case search
performance. It is this set of worst-case assumptions that imposes the so-called “wire speed requirement” for
route lookup and packet classification solutions. In essence, solutions to these search problems are almost
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always evaluated based on the time it takes to perform a pathological search. In the context of networks
that provide performance guarantees, engineering for the worst case logically follows. In the context of
the Internet, the protocols make no performance guarantees and provide “best-effort” service to all traffic.
Furthermore, the switching technology at the core of routers cannot handle pathological traffic. Imagine
a sufficiently long sequence of packets in which all the packets arriving at the input ports are destined for
the same output port. When the buffers in the router ports fill up, it will begin dropping packets. Thus,
the “wire speed requirement” for Internet routers does not logically follow from the high-level protocols or
the underlying switching technology; it is largely driven by network management and marketing concerns.
Quite simply, it is easier to manage a network with one less source of packet losses and it is easier to sell
an expensive piece of network equipment when you don’t have to explain the conditions under which the
search engines in the router ports will begin backlogging. It is for these reasons that solutions to the route
lookup and packet classification problems are typically evaluated by their worst-case performance.

Achieving tens of millions of lookups per second is not the only challenge for route lookup and packet
classification search engines. Due to the explosive growth of the Internet, backbone route tables have swelled
to over 100k entries. Likewise, the constant increase in the number of security filters and network service
applications causes packet classification filter sets to increase in size. Currently, the largest filter sets contain
a few thousand filters, however dynamic resource reservation protocols could cause filter sets to swell into
the tens of thousands. Scalability to larger table sizes is a crucial property of route lookup and packet
classification solutions; it is also a critical concern for search techniques whose performance depends upon
the number of entries in the tables.

As routers achieve aggregate throughputs of trillions of bits per second, power consumption becomes
an increasingly critical concern. Both the power consumed by the router itself and the infrastructure to
dissipate the tremendous heat generated by the router components significantly contribute to the operating
costs. Given that each port of high-performance routers must contain route lookup and packet classification
devices, the power consumed by search engines is becoming an increasingly important evaluation parameter.

2 Observations of Filter Set Characteristics

Recent efforts to identify better packet classification techniques have focused on leveraging the character-
istics of real filter sets for faster searches. While the lower bounds for the general multi-field searching
problem have been established, observations made in recent packet classification work offer enticing new
possibilities to provide significantly better average performance.

Gupta and McKeown published a number of observations regarding the characteristics of real filter sets
which have been widely cited [1]. Others have performed analyses on real filter sets and published their
observations [12, 5, 16, 7]. The following is a distillation of observations relevant to our discussion:

• Current filter set sizes are small, ranging from tens of filters to less than 5000 filters. It is unclear if the
size limitation is “natural” or a result of the limited performance and high expense of existing packet
classification solutions.

• The protocol field is restricted to a small set of values. In most filter sets, TCP, UDP, and the wildcard
are the most common specifications; other specifications include ICMP, IGMP, (E)IGRP, GRE and
IPINIP.

• Transport-layer specifications vary widely. Common range specifications for port numbers such as
‘gt 1023’ (greater than 1023) suggest that the use of range to prefix conversion techniques may be
inefficient.
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• The number of unique address prefixes matching a given address is typically five or less.

• The number of filters matching a given packet is typically five or less.

• Different filters often share a number of the same field values.

The final observation has been a source of deeper insight and a springboard for several recent contribu-
tions in the area. This characteristic arises due to the administrative policies that drive filter construction.
Consider a model of filter construction in which the administrator first specifies the communicating hosts
or subnetworks (source and destination address prefix pair), then specifies the application (transport-layer
specifications). Administrators often must apply a policy regarding an application to a number of distinct
subnetwork pairs; hence, multiple filters will share the same transport-layer specification. Likewise, admin-
istrators often apply multiple policies to a subnetwork pair; hence, multiple filters will share the same source
and destination prefix pair. In general, the observation suggests that the number of intermediate results gen-
erated by independent searches on fields or collections of fields may be inherently limited. This observation
led to a recently proposed framework for packet classification in network processors [17]. For example, in
the filter table of 16 filters shown in Table 1, there are 12 unique address prefix pairs. For any given packet, a
maximum of four unique address pairs will match. Likewise, there are 14 unique application specifications
(source port, destination port, and protocol) and a maximum of five match any given packet.

Taylor and Turner also performed a battery of analyses on real filter sets, focusing on the maximum
number of unique field values and unique combinations of field values which match any packet [15]. They
found that the number of unique field values is less than the number of filters and the maximum number
of unique field values matching any packet remains relatively constant for various filter set sizes. They
also performed the same analysis for every possible combination of fields (every possible combination of
two fields, three fields, etc.) and observed that the maximum number of unique combinations of field values
which match any packet is typically bounded by twice the maximum number of matching single field values,
and also remains relatively constant for various filter set sizes. Taylor and Turner also argue that additional
fields beyond the standard 5-tuple are relevant and new services and administrative policies will demand
that packet classification techniques scale to support additional fields (i.e. more “dimensions”) beyond the
standard 5-tuple. They assert that packet classification techniques must scale to support additional fields
while maintaining flexibility in the types of additional matches that may arise with new applications.

It is not difficult to identify applications that could benefit from packet classification on fields in higher
level protocol headers. Consider the following example: an ISP wants to deploy Voice over IP (VoIP)
service running over an IPv6/UDP/RTP stack for new IP-enabled handsets and mobile appliances. The ISP
also wants to make efficient use of expensive wireless links connecting Base Station Controllers (BSCs) to
multiple Base Station Transceivers (BSTs); hence, the ISP would like to use a header compression protocol
like Robust Header Compression (ROHC). ROHC is a robust protocol that compresses packet headers for
efficient use of wireless links with high loss rates [18]. In order to support this, the BSC must maintain a
dynamic filter set which binds packets to ROHC contexts based on fields in the IPv6, UDP, and RTP headers.
A total of seven header fields (352 bits) must be examined in order to classify such packets. Matches on
ICMP type number, RTP Synchronization Source Identifier (SSRC), and other higher-level header fields are
likely to be exact matches; therefore, the number of unique field values matching any packet are at most
two, an exact value and the wildcard if present. There may be other types of matches that more naturally
suit the application, such as arbitrary bit masks on TCP flags; however, we do not foresee any reasons why
the structure of filters with these additional fields will significantly deviate from the observed structure in
current filter tables.
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Figure 1: Taxonomy of multiple field search techniques for packet classification; adjacent techniques are
related; hybrid techniques overlap quadrant boundaries; ∗ denotes a seminal technique.

3 Taxonomy

Given the subtle differences in formalizing the problem and the enormous need for good solutions, numerous
algorithms and architectures for packet classification have been proposed. Rather than categorize techniques
based on their performance, memory requirements, or scaling properties, we present a taxonomy that breaks
the design space into four regions based on the high-level approach to the problem. We feel that such a
taxonomy is useful, as a number of the salient features and properties of a packet classification technique
are consequences of the high-level approach. We frame each technique as employing one or a blend of the
following high-level approaches to finding the best matching filter or filters for a given packet:

• Exhaustive Search: examine all entries in the filter set

• Decision Tree: construct a decision tree from the filters in the filter set and use the packet fields to
traverse the decision tree

• Decomposition: decompose the multiple field search into instances of single field searches, perform
independent searches on each packet field, then combine the results

• Tuple Space: partition the filter set according to the number of specified bits in the filters, probe the
partitions or a subset of the partitions using simple exact match searches

Figure 1 presents a visualization of our taxonomy. Several techniques, including a few of the most promising
ones, employ more than one approach. This is reflected in Figure 1 by overlapping quadrant boundaries.
Relationships among techniques are reflected by proximity.

In the following sections, we discuss each high-level approach in more detail along with the performance
consequences of each. We also present a survey of the specific techniques using each approach. We note that
the choice of high-level approach largely dictates the optimal architecture for high-performance implemen-
tation and a number of the scaling properties. Commonly, papers introducing new search techniques focus
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on clearly describing the algorithm, extracting scaling properties, and presenting some form of simulation
results to reinforce baseline performance claims. Seldom is paper “real estate” devoted to flushing out the
details of a high-performance implementation; thus, our taxonomy provides valuable insight into the poten-
tial of these techniques. In general, the choice of high-level approach does not preclude a technique from
taking advantage of the statistical structure of the filter set; thus, we address this aspect of each technique
individually.

4 Exhaustive Search

The most rudimentary solution to any searching problem is simply to search through all entries in the set.
For the purpose of our discussion, assume that the set may be divided into a number of subsets to be searched
independently. The two most common embodiments of the exhaustive search approach for packet classi-
fication are a linear search through a list of filters or a massively parallel search over the set of filters.
Interestingly, these two solutions represent the extremes of the performance spectrum, where the lowest
performance option, linear search, does not divide the set into subsets and the highest performance option,
Ternary Content Addressable Memory (TCAM), completely divides the set such that each subset contains
only one entry. We discuss both of these solutions in more detail below. The intermediate option of exhaus-
tively searching subsets containing more than one entry is not a common solution, thus we do not discuss
it directly. It is important to note that a number of recent solutions using the decision tree approach use a
linear search over a bounded subset of filters as the final step. These solutions are discussed in Section 5.

Computational resource requirements for exhaustive search generally scale linearly with the degree of
parallelism. Likewise, the realized throughput of the solution is proportional to the degree of parallelism.
Linear search requires the minimum amount of computation resources while TCAMs require the maximum,
thus linear search and TCAM provide the lowest and highest performance exhaustive search techniques,
respectively.

Given that each filter is explicitly stored once, exhaustive search techniques enjoy a favorable linear
memory requirement, O(N), where N is the number of filters in the filter set. Here we seek to challenge
a commonly held view that the O(N) storage requirement enjoyed by these techniques is optimal. We
address this issue by considering the redundancy among filter fields and the number of fields in a filter.
These are vital parameters when considering a third dimension of scaling: filter size. By filter size we mean
the number of bits required to specify a filter. A filter using the standard IPv4 5-tuple requires about 168 bits
to specify explicitly. With that number of bits, we can specify 2168 distinct filters. Typical filter sets contain
fewer than 220 filters, suggesting that there is potential for a factor of eight savings in memory.

Here we illustrate a simple encoding scheme that represents filters in a filter set more efficiently than
explicitly storing them. Let a filter be defined by fields f1 . . . fd where each field fi requires bi bits to
specify. For example, a filter may be defined by a source address prefix requiring 64 bits1, a destination
address prefix requiring 64 bits, a protocol number requiring 8 bits, etc. By this definition, the memory
requirement for the exhaustive search approach is

N

d∑

i=1

bi (1)

Now let u1 . . . ud be the number of unique field values in the filter set for each filter field i. If each filter in
the filter set contained a unique value in each field, then exhaustive search would have an optimal storage

1We are assuming a 32-bit address where an additional 32 bits are used to specify a mask. There are more efficient ways to
represent a prefix, but this is tangential to our argument.
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Figure 2: Example of encoding filters by unique field values to reduce storage requirements.

requirement. Note that in order for a filter to be unique, it only must differ from each filter in the filter set
by one bit. As we discuss in Section 2, there is significant redundancy among filter fields. Through efficient
encoding, the storage requirement can be reduced from linear in the number of filters to logarithmic in the
number of unique fields. Consider the example shown in Figure 2. Note that all 8 filters are unique, however
there are only two unique values for each field for all filters in the filter set. In order to represent the filter
set, we only need to store the unique values for each field once. As shown in Figure 2, we assign a locally
unique label to each unique field value. The number of bits required for each label is lg(ui), only one bit in
our example. Note that each filter in the filter set can now be represented using the labels for its constituent
fields. Using this encoding technique, the memory requirement becomes

d∑

i=1

(ui × bi) + N

d∑

i=1

lg ui (2)

The first term accounts for the storage of unique fields and the second term accounts for the storage of the
encoded filters. The savings factor for a given filter set is simply the ratio of Equation 1 and Equation 2. For
simplicity, let bi = b∀i and let ui = u∀i ; the savings factor is:

Nb

ub + N lg u
(3)

In order for the savings factor to be greater than one, the following relationship must hold:

u

N
+

lg u

b
< 1 (4)

Note that u ≤ 2b and u ≤ N . Thus, the savings factor increases as the number of filters in the filter set
and the size (number of bits) of filter fields increases relative to the number of unique filter fields. For our
simple example in Figure 2, this encoding technique reduces the storage requirement from 1088 bits to 296
bits, or a factor of 3.7. As discussed in Section 2, we anticipate that future filter sets will include filters
with more fields. It is also likely that the additional fields will contain a handful of unique values. As this
occurs, the linear memory requirement of techniques explicitly storing the filter set will become increasingly
sub-optimal.

4.1 Linear Search

Performing a linear search through a list of filters has O(N) storage requirements, but it also requires O(N)
memory accesses per lookup. For even modest sized filter sets, linear search becomes prohibitively slow. It
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Table 2: Number of entries required to store filter set in a standard TCAM.

Set Size TCAM Expansion
Entries Factor

acl1 733 997 1.3602
acl2 623 1259 2.0209
acl3 2400 4421 1.8421
acl4 3061 5368 1.7537
acl5 4557 5726 1.2565
fw1 283 998 3.5265
fw2 68 128 1.8824
fw3 184 554 3.0109
fw4 264 1638 6.2045
fw5 160 420 2.6250
ipc1 1702 2332 1.3702
ipc2 192 192 1.0000
Average 2.3211

is possible to reduce the number of memory accesses per lookup by a small constant factor by partitioning
the list into sub-lists and pipelining the search where each stage searches a sub-list. If p is the number of
pipeline stages, then the number of memory accesses per lookup is reduced to O( N

p ) but the computational
resource requirement increases by a factor of p. While one could argue that a hardware device with many
small embedded memory blocks could provide reasonable performance and capacity, latency increasingly
becomes an issue with deeper pipelines and higher link rates. Linear search is a popular solution for the final
stage of a lookup when the set of possible matching filters has been reduced to a bounded constant [2, 7, 13].

4.2 Ternary Content Addressable Memory (TCAM)

Taking a cue from fully-associative cache memories, Ternary Content Addressable Memory (TCAM) de-
vices perform a parallel search over all filters in the filter set [11]. TCAMs were developed with the ability
to store a “Don’t Care” state in addition to a binary digit. Input keys are compared against every TCAM
entry, thereby enabling them to retain single clock cycle lookups for arbitrary bit mask matches. TCAMs
do suffer from four primary deficiencies: (1) high cost per bit relative to other memory technologies, (2)
storage inefficiency, (3) high power consumption, (4) limited scalability to long input keys. With respect
to cost, a current price check revealed that TCAM costs about 30 times more per bit of storage than DDR
SRAM. While it is likely that TCAM prices will fall in the future, it is unlikely that they will be able to
leverage the economy of scale enjoyed by SRAM and DRAM technology.

The storage inefficiency comes from two sources. First, arbitrary ranges must be converted into prefixes.
In the worst case, a range covering w-bit port numbers may require 2(w−1) prefixes. Note that a single filter
including two port ranges could require 2(w− 1)2 entries, or 900 entries for 16-bit port numbers. As shown
in Table 2, we performed an analysis of 12 real filter sets and found that the Expansion Factor, or ratio of
the number of required TCAM entries to the number of filters, ranged from 1.0 to 6.2 with an average of
2.32. This suggests that designers should budget at least seven TCAM entries per filter, compounding the
hardware and power inefficiencies described below. The second source of storage inefficiency stems from
the additional hardware required to implement the third “Don’t Care” state. In addition to the six transistors
required for binary digit storage, a typical TCAM cell requires an additional six transistors to store the mask
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bit and four transistors for the match logic, resulting in a total of 16 transistors and a cell 2.7 times larger
than a standard SRAM cell [11]. A circuit diagram of a standard TCAM cell is shown in Figure 3. Some
proprietary architectures allow TCAM cells to require as few as 14 transistors [8] [9].

The massive parallelism inherent in TCAM architecture is the source of high power consumption. Each
“bit” of TCAM match logic must drive a match word line which signals a match for the given key. The
extra logic and capacitive loading result in access times approximately three times longer than SRAM [19].
Additionally, power consumption per bit of storage is on the order of 3 micro-Watts per “bit” [20] compared
to 20 to 30 nano-Watts per bit for SRAM [21]. In summary, TCAMs consume 150 times more power per bit
than SRAM.

Spitznagel, Taylor, and Turner recently introduced Extended TCAM (E-TCAM) which implements range
matching directly in hardware and reduces power consumption by over 90% relative to standard TCAM [14].
We discuss E-TCAM in more detail in Section 5.6. While this represents promising new work in the archi-
tectural thread of research, it does not address the high cost per bit or scalability issues inherent in TCAMs
for longer search keys. TCAM suffers from limited scalability to longer search keys due to its use of the
exhaustive search approach. As previously discussed, the explicit storage of each filter becomes more in-
efficient as filter sizes increase and the number of unique field values remains limited. If the additional
filter fields require range matches, this effect is compounded due to the previously described inefficiency of
mapping arbitrary ranges to prefixes.

5 Decision Tree

Another popular approach to packet classification on multiple fields is to construct a decision tree where
the leaves of the tree contain filters or subsets of filters. In order to perform a search using a decision tree,
we construct a search key from the packet header fields. We traverse the decision tree by using individual
bits or subsets of bits from the search key to make branching decisions at each node of the tree. The
search continues until we reach a leaf node storing the best matching filter or subset of filters. Decision
tree construction is complicated by the fact that a filter may specify several different types of searches. The
mix of Longest Prefix Match, arbitrary range match, and exact match filter fields significantly complicates
the branching decisions at each node of the decision tree. A common solution to this problem is to convert
filter fields to a single type of match. Several techniques convert all filter fields to bit vectors with arbitrary
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bit masks, i.e. bit vectors where each bit may be a 1, 0, or ∗ (“Don’t Care”). Recall that filters containing
arbitrary ranges do not readily map to arbitrary bit masks; therefore, this conversion process results in filter
replication. Likewise, the use of wildcards may cause a filter to be stored at many leaves of the decision
tree.

To better illustrate these issues, we provide an example of a naı̈ve construction of a decision tree in
Figure 4. The five filters in the example set contain three fields: 3-bit address prefix, an arbitrary range
covering 3-bit port numbers, and an exact 2-bit value or wildcard. We first convert the five filters into bit
vectors with arbitrary bit masks which increases the number of filters to eight. Viewing the construction
process as progressing in a depth-first manner, a decision tree path is expanded until the node covers only
one filter or the bit vector is exhausted. Nodes at the last level may cover more than one filter if filters
overlap. We assume that leaf nodes contain the action to be applied to packets matching the filter or subset
of filters covered by the node. Due to the size of the full decision tree, we show a portion of the data
structure in Figure 4. If we evaluate this data structure by its ability to distinguish between potentially
matching filters for a given packet, we see that this naı̈ve construction is not highly effective. As the reader
has most likely observed already, there are numerous optimizations that could allow a decision tree to more
effectively distinguish between potentially matching filters. The algorithms and architectures discussed in
the following subsections explore these optimizations.

Several of the algorithms that we classify as using a decision tree approach are more commonly referred
to as “cutting” algorithms. These algorithms view filters with d fields as defining d-dimensional rectangles
in d-dimensional space; thus, a “cut” in multi-dimensional space is isomorphic to a branch in a decision
tree. The branching decision in a cutting algorithm is typically more complex than examining a single bit
in a bit vector. Note that the E-TCAM approach discussed in Section 5.6 employs a variant on the cutting
algorithms that may be viewed as a parallel search of several decision trees containing different parts of the
filter set. Thus, we view some cutting algorithms as relaxing the constraints on classical decision trees.

Due to the many degrees of freedom in decision tree approaches, the performance characteristics and
resource requirements vary significantly among algorithms. In general, lookup time is O(W ), where W is
the number of bits used to specify the filter. Given that filters classifying on the standard 5-tuple require a
minimum of 104 bits, viable approaches must employ some optimizations in order to meet throughput con-
straints. The memory requirement for our naı̈ve construction is O(2W+1). In general, memory requirements
vary widely depending upon the complexity of the branching decisions employed by the data structure. One
common feature of algorithms employing the decision tree approach is memory access dependency. Stated
another way, the decision tree searches are inherently serial; a matching filter is found by traversing the
tree from root to leaf. The serial nature of the decision tree approach precludes fully parallel implementa-
tions. If an algorithm places a bound on the depth of the decision tree, then implementing the algorithm in
a pipelined architecture can yield high throughput. This does require an independent memory interfaces for
each pipeline stage.

5.1 Grid-of-Tries

Srinivasan, Varghese, Suri, and Waldvogel introduced the seminal Grid-of-Tries and Crossproducting algo-
rithms for packet classification [4]. In this section we focus on Grid-of-Tries which applies a decision tree
approach to the problem of packet classification on source and destination address prefixes. Crossproducting
was one of the first techniques to employ decomposition and we discuss it in Section 6.3. For filters defined
by source and destination prefixes, Grid-of-Tries improves upon the directed acyclic graph (DAG) technique
introduced by Decasper, Dittia, Parulkar, and Plattner [22]. This technique is also called set pruning trees
because redundant subtrees can be “pruned” from the tree by allowing multiple incoming edges at a node.
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Figure 4: Example of a naı̈ve construction of a decision tree for packet classification on three fields; all filter
fields are converted to bit vectors with arbitrary bit masks.

While this optimization does eliminate redundant subtrees, it does not completely eliminate replication as
filters may be stored at multiple nodes in the tree. Grid-of-Tries eliminates this replication by storing filters
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Table 3: Example filter set; port numbers are restricted to be an exact value or wildcard.

Filter DA SA DP SP PR
F1 0∗ 10∗ ∗ 80 TCP
F2 0∗ 01∗ ∗ 80 TCP
F3 0∗ 1∗ 17 17 UDP
F4 00∗ 1∗ ∗ ∗ ∗
F5 00∗ 11∗ ∗ ∗ TCP
F6 10∗ 1∗ 17 17 UDP
F7 ∗ 00∗ ∗ ∗ ∗
F8 0∗ 10∗ ∗ 100 TCP
F9 0∗ 1∗ 17 44 UDP
F10 0∗ 10∗ 80 ∗ TCP
F11 111∗ 000∗ ∗ 44 UDP

at a single node and using switch pointers to direct searches to potentially matching filters.

Figure 5 highlights the differences between set pruning trees and Grid-of-Tries using the example filter
set shown in Table 3. Note that we have restricted the classification to two fields, destination address prefix
followed by source address prefix. Assume we are searching for the best matching filter for a packet with
destination and source addresses equal to 0011. In the Grid-of-Tries structure, we find the longest matching
destination address prefix 00∗ and follow the pointer to the source address tree. Since there is no 0 branch at
the root node, we follow the switch pointer to the 0∗ node in the source address tree for destination address
prefix 0∗. Since there is no branch for 00∗ in this tree, we follow the switch pointer to the 00∗ node in
the source address tree for destination address prefix ∗. Here we find a stored filter F7 which is the best
matching filter for the packet.

Grid-of-Tries bounds memory usage to O(NW ) while achieving a search time of O(W ), where N is
the number of filters and W is the maximum number of bits specified in the source or destination fields. For
the case of searching on IPv4 source and destination address prefixes, the measured implementation used
multi-bit tries sampling 8 bits at a time for the destination trie; each of the source tries started with a 12 bit
node, followed by 5 bit trie nodes. This yields a worst case of 9 memory accesses; the authors claim that this
could be reduced to 8 with an increase in storage. Memory requirements for 20k filters was around 2MB.

While Grid-of-Tries is an efficient technique for classifying on address prefix pairs, it does not directly
extend to searches with additional filter fields. Consider searching the filter set in Table 3 using the following
header fields: destination address 0000, source address 1101, destination port 17, source port 17, protocol
UDP. Using the Grid-of-Tries structure in Figure 5, we find the longest matching prefix for the destination
address, 00∗, followed by the longest matching prefix for the source address, 11∗. Filter F5 is stored at this
node and there are no switch pointers to continue the search. Since the remaining three fields of F5 match
the packet header, we declare F5 is the best matching filter. Note that F3, F4, and F9 also match. F3 and F9

also have more specific matches on the port number fields. Clearly, Grid-of-Tries does not directly extend
to multiple field searches beyond address prefix matching.

The authors do propose a technique using multiple instances of the Grid-of-Tries structure for packet
classification on the standard 5-tuple. The general approach is to partition the filter set into classes based on
the tuple defined by the port number fields and protocol fields. An example is shown in Figure 6. Operating
under the restriction that port numbers must either be an exact port number or wildcard2, we first partition

2Note that this restriction can be prohibitive for filter sets specifying arbitrary ranges. While filters could be replicated, typical
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Figure 5: Example of set pruning trees and Grid-of-Tries classifying on the destination and source address
prefixes for the example filter set in Table 3.

the filter set into three classes according to protocol: TCP, UDP, and “other”. Filters with a wildcard are
replicated and placed into each class. We then partition the filters in the “other” class into sub-classes by
protocol specification. For each “other” sub-class, we construct a Grid-of-Tries. The construction for the
TCP and UDP classes are slightly different due to the use of port numbers. For both the UDP and TCP
classes, we partition the constituent filters into four sub-classes according to the port number tuple: both
ports specified; destination port specified, source port wildcard; destination port wildcard, source port spec-
ified; both ports wildcard. For each sub-class, we construct a hash table storing the unique combinations of
port number specifications. Each entry contains a pointer to a Grid-of-Tries constructed from the constituent
filters. Ignoring the draconian restriction on port number specifications, this approach may require O(N)

ranges cover thousands of port numbers which induces an unmanageable expansion in the size of the filter set.

14



17,14

TCP UDP
Other

*,* DP,* *,SP DP,SP

80,* *,80

*,100

F4

F5

1

1 F7

0

0

0
0

F10

1

0

0

F1

1

0

0

0

1

F2

F8

1

0

0

*,* DP,* *,SP DP,SP

*,44

17,17

F4

1

F7

0

0

0
0

1

F11

0

1

1

1

0

0

F3

1

0

0

1

F6

1

1

0

F9

F4

1

F7

0

0

0
0

*

Figure 6: Example of 5-tuple packet classification using Grid-of-Tries, pre-filtering on protocol and port
number classes, for the example filter set in Table 3.

separate data-structures and filters with a wildcard protocol specification are replicated across many of them.
It is generally agreed that the great value of the Grid-of-Tries technique lies in its ability to efficiently handle
filters classifying on address prefixes.

5.2 Extended Grid-of-Tries (EGT)

Baboescu, Singh, and Varghese proposed Extended Grid-of-Tries (EGT) that supports multiple fields searches
without the need for many instances of the data structure [12]. EGT essentially alters the switch pointers to
be jump pointers that direct the search to all possible matching filters, rather than the filters with the longest
matching destination and source address prefixes. As shown in Figure 7, EGT begins by constructing a
standard Grid-of-Tries using the destination and source address prefixes of all the filters in the filters set.
Rather than storing matching filters at source address prefix nodes, EGT stores a pointer to a list of filters
that specify the destination and source address prefixes, along with the remaining three fields of the filters.
The authors observe that the size of these lists is small for typical core router filter sets3, thus a linear search
through the list of filters is a viable option. Note that the jump pointers between source tries direct the search
to all possible matching filters. In the worst case, EGT requires O(W 2) memory accesses where W is the
address length. Simulated results with core router filter sets show that EGT requires 84 to 137 memory ac-
cesses per lookup for filter sets ranging in size from 85 to 2799 filters. Simulated results with synthetically
generated filter sets resulted in 121 to 213 memory accesses for filter sets ranging in size from 5k to 10k
filters. Memory requirements ranged from 33 bytes per filter to 57 bytes per filter.

3This property does not necessarily hold for filter sets in other application environments such as firewalls and edge routers.
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Figure 7: Example of 5-tuple packet classification using Extended Grid-of-Tries (EGT) for the example filter
set in Table 3.

5.3 Hierarchical Intelligent Cuttings (HiCuts)

Gupta and McKeown introduced a seminal technique called Hierarchical Intelligent Cuttings (HiCuts) [2].
The concept of “cutting” comes from viewing the packet classification problem geometrically. Each filter
in the filter set defines a d-dimensional rectangle in d-dimensional space, where d is the number of fields
in the filter. Selecting a decision criteria is analogous to choosing a partitioning, or “cutting”, of the space.
Consider the example filter set in Table 4 consisting of filters with two fields: a 4-bit address prefix and a
port range covering 4-bit port numbers. This filter set is shown geometrically in Figure 8.

HiCuts preprocesses the filter set in order to build a decision tree with leaves containing a small number
of filters bounded by a threshold. Packet header fields are used to traverse the decision tree until a leaf
is reached. The filters stored in that leaf are then linearly searched for a match. HiCuts converts all filter
fields to arbitrary ranges, avoiding filter replication. The algorithm uses various heuristics to select decision
criteria at each node that minimizes the depth of the tree while controlling the amount of memory used.

A HiCuts data structure for the example filter set in Table 4 is shown in Figure 9. Each tree node covers
a portion of the d-dimensional space and the root node covers the entire space. In order to keep the decisions
at each node simple, each node is cut into equal sized partitions along a single dimension. For example, the
root node in Figure 9 is cut into four partitions along the Address dimension. In this example, we have set
the thresholds such that a leaf contains at most two filters and a node may contain at most four children. A
geometric representation of the partitions created by the search tree are shown in Figure 10. The authors
describe a number of more sophisticated heuristics and optimizations for minimizing the depth of the tree
and the memory resource requirement.
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Table 4: Example filter set; address field is 4-bits and port ranges cover 4-bit port numbers.

Filter Address Port
a 1010 2 : 2
b 1100 5 : 5
c 0101 8 : 8
d ∗ 6 : 6
e 111∗ 0 : 15
f 001∗ 9 : 15
g 00∗ 0 : 4
h 0∗ 0 : 3
i 0110 0 : 15
j 1∗ 7 : 15
k 0∗ 11 : 11
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Figure 8: Geometric representation of the example filter set shown in Table 4.

Experimental results in the two-dimensional case show that a filter set of 20k filters requires 1.3MB
with a tree depth of 4 in the worst case and 2.3 on average. Experiments with four-dimensional classifiers
used filter sets ranging in size from approximately 100 to 2000 filters. Memory consumption ranged from
less than 10KB to 1MB, with associated worst case tree depths of 12 (20 memory accesses). Due to the
considerable preprocessing required, this scheme does not readily support incremental updates. Measured
update times ranged from 1ms to 70ms.
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Figure 9: Example HiCuts data structure for example filter set in Table 4.

5.4 Modular Packet Classification

Woo independently applied the same approach as HiCuts and introduced a flexible framework for packet
classification based on a multi-stage search over ternary strings representing the filters [7]. The framework
contains three stages: an index jump table, search trees, and filter buckets. An example data structure for the
filter set in Table 4 is shown in Figure 11. A search begins by using selected bits of the input packet fields
to address the index jump table. If the entry contains a valid pointer to a search tree, the search continues
starting at the root of the search tree. Entries without a search tree pointer store the action to apply to
matching packets. Each search tree node specifies the bits of the input packet fields to use in order to make a
branching decision. When a filter bucket is reached, the matching filter is selected from the set in the bucket
via linear search, binary search, or CAM. A key assumption is that every filter can be expressed as a ternary
string of 1’s, 0’s, and ∗’s which represent “don’t care” bits. A filter containing prefix matches on each field
is easily expressed as a ternary string by concatenating the fields of the filter; however, a filter containing
arbitrary ranges may require replication. Recall that standard 5-tuple filters may contain arbitrary ranges for
each of the two 16-bit transport port numbers; hence, a single filter may yield 900 filter strings in the worst
case.

The first step in constructing the data structures is to convert the filters in the filter into ternary strings and
organize them in an n × m array where the number of rows n is equal to the number of ternary strings and
the number of columns m is equal to the number of bits in each string. Each string has an associated weight
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Figure 10: Geometric representation of partitioning created by HiCuts data structure shown in Figure 9.

Wi which is proportional to its frequency of use relative to the other strings; more frequently matching filter
strings will have a larger weight. Next, the bits used to address the index jump table are selected. For our
example in Figure 11, we create a 3-bit index concatenate from bits 7, 3, and 2 of the ternary search strings.
Typically, the bits used for the jump table address are selected such that every filter specifies those bits.
When filters contain “don’t cares” in jump table address bits, it must be stored in all search trees associated
with the addresses covered by the jump index. For each entry in the index jump table that is addressed
by at least one filter, a search tree is constructed. In the general framework, the search trees may examine
any number of bits at each node in order to make a branching decision. Selection of bits is made based on
a weighted average of the search path length where weights are derived from the filter weights Wi. This
attempts to balance the search tree while placing more frequently accessed filter buckets nearer to the root
of the search tree. Note that our example in Figure 11 does not reflect this weighting scheme. Search tree
construction is performed recursively until the number of filters at each node falls below a threshold for filter
bucket size, usually 128 filters or less. We set the threshold to two filters in our example. The construction
algorithm is “greedy” in that it performs local optimizations.

Simulation results with synthetically generated filter sets show that memory scales linearly with the
number of filters. For 512k filters and a filter bucket size of 16, the depth of the search tree ranged from 11
levels to 35 levels and the number of filter buckets ranged from 76k to 350k depending on the size of the
index jump table. Note that larger index jump tables decrease tree depth at the cost of increasing the number
of filter buckets due to filter replication.
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Figure 11: Modular packet classification using ternary strings and a three-stage search architecture.

5.5 HyperCuts

Introduced by Singh, Baboescu, Varghese, and Wang, the HyperCuts algorithm [13] improves upon the
HiCuts algorithm developed by Gupta and McKeown [2] and also shares similarities with the Modular
Packet Classification algorithms introduced by Woo [7]. In essence, HyperCuts is a decision tree algorithm
that attempts to minimize the depth of the tree by selecting multiple “cuts” in multi-dimensional space
that partition the filter set into lists of bounded size. By forcing cuts to create uniform regions, HyperCuts
efficiently encodes pointers using indexing, which allows the data structure to make multiple cuts in multiple
dimensions without a significant memory penalty.

According to reported simulation results, traversing the HyperCuts decision tree required between 8
and 32 memory accesses for real filter sets ranging in size from 85 to 4740 filters, respectively. Memory
requirements for the decision tree ranged from 5.4 bytes per filter to 145.9 bytes per filter. For synthetic filter
sets ranging in size from 5000 to 20000 filters, traversing the HyperCuts decision tree required between 8
and 35 memory accesses, while memory requirements for the decision tree ranged from 11.8 to 30.1 bytes
per filter. The number of filters and encoding of filters in the final lists are not provided; hence, it is difficult
to assess the additional time and space requirements for searching the lists at the leaves of the decision tree.
HyperCuts’s support for incremental updates are not specifically addressed. While it is conceivable that the
data structure can easily support a moderate rate of randomized updates, it appears that an adversarial worst-
case stream of updates can either create an arbitrarily deep decision tree or force a significant restructuring
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of the tree.

5.6 Extended TCAM (E-TCAM)

Spitznagel, Taylor, and Turner recently introduced Extended TCAM (E-TCAM) to address two of the pri-
mary inefficiencies of Ternary Content-Addressable Memory (TCAM): power consumption and storage in-
efficiency. Recall that in standard TCAM, a single filter including two port ranges requires up to 2(w − 1)2

entries where w is the number of bits required to specify a point in the range. Thus, a single filter with two
fields specifying ranges on 16-bit port numbers requires 900 entries in the worst case. The authors found
that storage efficiency of TCAMs for real filter sets ranges from 16% to 53%; thus, the average filter occu-
pies between 1.8 and 6.2 TCAM entries. By implementing range matching directly in hardware, E-TCAM
avoids this storage inefficiency at the cost of a small increase in hardware resources. When implemented in
standard CMOS technology, a range matching circuit requires 44w transistors. This is considerably more
than the 16w transistors required for prefix matching; however, the total hardware resources saved by elimi-
nating the expansion factor for typical packet filter sets far outweighs the additional cost per bit for hardware
range matching. Storing a filter for the standard IPv4 5-tuple requires approximately 18% more transistors
per entry. This is a small increase relative to the 180% to 620% incurred by filter replication.

Given a query word, TCAMs compare the query word against every entry word in the device. This
massively parallel operation results in high power consumption. E-TCAM reduces power consumption by
limiting the number of active regions of the device during a search. The second architectural extension of
E-TCAM is to partition the device into blocks that may be independently activated during a query. Realistic
implementations would partition the device into blocks capable of storing hundreds of filters. In order
to group filters into blocks, E-TCAM uses a multi-phase partitioning algorithm similar to the previously
discussed “cutting” algorithms. The key differences in E-TCAM are that the depth of the “decision tree”
used for the search is strictly limited by the hardware architecture and a query may search several “branches”
of the decision tree in parallel. Figure 12 shows an example of an E-TCAM architecture and search using
the example filter set in Table 4.

In this simple example, filter blocks may store up to four filters and the “decision tree” depth is limited
to two levels. The first stage of the search queries the index block which contains one entry for each group
created by the partitioning algorithm. For each phase of the partitioning algorithm except the last phase, a
group is defined which completely contains at most b filters where b is the block size. Filters “overlapping”
the group boundaries are not included in the group. The final phase of the algorithm includes such “over-
lapping” filters in the group. The number of phases determines the number of index entries that may match
a query, and hence the number of filter blocks that need to be searched. A geometric representation of the
groupings created for our example is shown in Figure 13. Returning to our example in Figure 12, the match-
ing entries in the index block activate the associated filter blocks for the next stage of the search. In this case,
two filter blocks are active. Note that all active filter blocks are searched in parallel; thus, with a pipelined
implementation E-TCAM can retain single-cycle lookups. Simulations show that E-TCAM requires less
than five percent of the power required by regular TCAM. Also note that multi-stage index blocks can be
used to further reduce power consumption and provide finer partitioning of the filter set.

5.7 Fat Inverted Segment (FIS) Trees

Feldman and Muthukrishnan introduced another framework for packet classification using independent field
searches on Fat Inverted Segment (FIS) Trees [6]. Like the previously discussed “cutting” algorithms, FIS
Trees utilize a geometric view of the filter set and map filters into d-dimensional space. As shown in Fig-
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Figure 12: Example of searching the filter set in Table 4 using an Extended TCAM (E-TCAM) using a
two-stage search and a filter block size of four.

ure 14, projections from the “edges” of the d-dimensional rectangles specified by the filters define elemen-
tary intervals on the axes; in this case, we form elementary intervals on the Address axis. Note that we are
using the example filter set shown in Table 4 where filters contain two fields: a 4-bit address prefix and a
range covering 4-bit port numbers. N filters will define a maximum of I = (2N + 1) elementary intervals
on each axis. An FIS Tree is a balanced t-ary tree with l levels that stores a set of segments, or ranges.
Note that t = (2I + 1)1/l is the maximum number of children a node may have. The leaf nodes of the tree
correspond to the elementary intervals on the axis. Each node in the tree stores a canonical set of ranges
such that the union of the canonical sets at the nodes visited on the path from the leaf node associated with
the elementary interval covering a point p to the root node is the set of ranges containing p.

As shown in Figure 14, the framework starts by building an FIS Tree on one axis. For each node with
a non-empty canonical set of filters, we construct an FIS Tree for the elementary intervals formed by the
projections of the filters in the canonical set on the next axis (filter field) in the search. Note that an FIS
Tree is not necessary for the last packet field. In this case, we only need to store the left-endpoints of the
elementary intervals and the highest priority filter covering the elementary interval. The authors propose a
method to use a Longest Prefix Matching technique to locate the elementary interval covering a given point.
This method requires at most 2I prefixes.

Figure 14 also provides an example search for a packet with address 2, and port number 11. A search
begins by locating the elementary interval covering the first packet field; interval [2 : 3] on the Address axis
in our example. The search proceeds by following the parent pointers in the FIS Tree from leaf to root node.
Along the path, we follow pointers to the sets of elementary intervals formed by the Port projections and
search for the covering interval. Throughout the search, we remember the highest priority matching filter.
Note that the basic framework requires a significant amount of precomputation due to its use of elementary
intervals. This property does not readily support dynamic updates at high rates. The authors propose several
data structure augmentations to allow dynamic updates. We do not discuss these sophisticated augmentations
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Figure 13: Example of partitioning the filter set in Table 4 for an Extended TCAM (E-TCAM) with a two-
stage search and a filter block size of four.

but do point out that they incur a performance penalty. The authors performed simulations with real and
synthetic filter sets containing filters classifying on source and destination address prefixes. For filter sets
ranging in size from 1k to 1M filters, memory requirements ranged from 100 to 60 bytes per filter. Lookups
required between 10 and 21 cache-line accesses which amounts to 80 to 168 word accesses, assuming 8
words per cache line.

6 Decomposition

Given the wealth of efficient single field search techniques, decomposing a multiple field search problem into
several instances of a single field search problem is a viable approach. Employing this high-level approach
has several advantages. First, each single field search engine operates independently, thus we have the
opportunity to leverage the parallelism offered by modern hardware. Performing each search independently
also offers more degrees of freedom in optimizing each type of search on the packet fields. While these are
compelling advantages, decomposing a multi-field search problem raises subtle issues.

The primary challenge in taking this high-level approach lies in efficiently aggregating the results of the
single field searches. Many of the techniques discussed in this section use an encoding of the filters to facil-
itate result aggregation. Due to the freedom in choosing single field search techniques and filter encodings,
the resource requirements and achievable performance vary drastically among the constituent techniques –
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Figure 14: Example of Fat Inverted Segment (FIS) Trees for the filter set in Table 4.

even more so than with decision tree techniques. Limiting and managing the number of intermediate results
returned by single field search engines is also a crucial design issue for decomposition techniques. Single
field search engines often must return more than one result because packets may match more than one filter.
As was highlighted by the previous discussion of using Grid-of-Tries for filters with additional port and
protocol fields, it is not sufficient for single field search engines to simply return the longest matching prefix
for a given filter field. The best matching filter may contain a field which is not necessarily the longest
matching prefix relative to other filters; it may be more specific or higher priority in other fields. As a result,
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techniques employing decomposition tend to leverage filter set characteristics that allow them to limit the
number of intermediate results. In general, solutions using decomposition tend to provide the high through-
put due to their amenability to parallel hardware implementations. The high level of lookup performance
often comes at the cost of memory inefficiency and, hence, capacity constraints.

6.1 Parallel Bit-Vectors (BV)

Lakshman and Stiliadis introduced one of the first multiple field packet classification algorithms targeted to a
hardware implementation. Their seminal technique is commonly referred to as the Lucent bit-vector scheme
or Parallel Bit-Vectors (BV) [3]. The authors make the initial assumption that the filters may be sorted
according to priority. Like the previously discussed “cutting” algorithms, Parallel BV utilizes a geometric
view of the filter set and maps filters into d-dimensional space. As shown in Figure 15, projections from the
“edges” of the d-dimensional rectangles specified by the filters define elementary intervals on the axes. Note
that we are using the example filter set shown in Table 4 where filters contain two fields: a 4-bit address
prefix and a range covering 4-bit port numbers. N filters will define a maximum of (2N + 1) elementary
intervals on each axis.

For each elementary interval on each axis, we define an N -bit bit-vector. Each bit position corresponds
to a filter in the filter set, sorted by priority. All bit-vectors are initialized to all ‘0’s. For each bit-vector,
we set the bits corresponding to the filters that overlap the associated elementary interval. Consider the
interval [12 : 15] on the Port axis in Figure 15. Assume that sorting the filters according to priority places
them in alphabetical order. Filters e, f , i, and j overlap this elementary interval; therefore, the bit-vector
for that elementary interval is 00001100110 where the bits correspond to filters a through k in alphabetical
order. For each dimension d, we construct an independent data structure that locates the elementary interval
covering a given point, then returns the bit-vector associated with that interval. The authors utilize binary
search, but any range location algorithm is suitable.

Once we compute all the bit-vectors and construct the d data structures, searches are relatively simple.
We search the d data structures with the corresponding packet fields independently. Once we have all d bit
vectors from the field searches, we simply perform the bit-wise AND of all the vectors. The most significant
‘1’ bit in the result denotes the highest priority matching filter. Multiple matches are easily supported by
examining the most significant set of bits in the resulting bit vector.

The authors implemented a five field version in an FPGA operating at 33MHz with five 128Kbyte
SRAMs. This configuration supports 512 filters and performs one million lookups per second. Assuming a
binary search technique over the elementary intervals, the general Parallel BV approach has O(lg N) search
time and a rather unfavorable O(N 2) memory requirement. The authors propose an algorithm to reduce the
memory requirement to O(N log N) using incremental reads. The main idea behind this approach is to store
a single bit vector for each dimension and a set of N pointers of size log N that record the bits that change
between elementary intervals. This technique increases the number of memory accesses by O(N log N).
The authors also propose a technique optimized for classification on source and destination address prefixes
only, which we do not discuss here.

6.2 Aggregated Bit-Vector (ABV)

Baboescu and Varghese introduced the Aggregated Bit-Vector (ABV ) algorithm which seeks to improve
the performance of the Parallel BV technique by leveraging statistical observations of real filter sets [5].
ABV converts all filter fields to prefixes, hence it incurs the same replication penalty as TCAMs which we
described in Section 4.2. Conceptually, ABV starts with d sets of N -bit vectors constructed in the same
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Figure 15: Example of bit-vector construction for the Parallel Bit-Vectors technique using the filter set
shown in Table 4.

manner as in Parallel BV. The authors leverage the widely known property that the maximum number of
filters matching a packet is inherently limited in real filter sets. This property causes the N -bit vectors to
be sparse. In order to reduce the number of memory accesses, ABV essentially partitions the N -bit vectors
into A chunks and only retrieves chunks containing ‘1’ bits. Each chunk is dN

A e bits in size. Each chunk
has an associated bit in an A-bit aggregate bit-vector. If any of the bits in the chunk are set to ‘1’, then the
corresponding bit in the aggregate bit-vector is set to ‘1’. Figure 16 provides an example using the filter set
in Table 4.

Each independent search on the d packet fields returns an A-bit aggregate bit-vector. We perform the bit-
wise AND on the aggregate bit-vectors. For each ‘1’ bit in the resulting bit-vector, we retrieve the d chunks
of the original N -bit bit-vectors from memory and perform a bit-wise AND. Each ‘1’ bit in the resulting
bit-vector denotes a matching filter for the packet. ABV also removes the strict priority ordering of filters
by storing each filter’s priority in an array. This allows us to reorder the filters in order to cluster ‘1’ bits in
the bit-vectors. This in turn reduces the number of memory accesses. Simulations with real filter sets show
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Figure 16: Example of bit-vector and aggregate bit-vector construction for the Aggregated Bit-Vectors tech-
nique using the filter set shown in Table 4.

that ABV reduced the number of memory accesses relative to Parallel BV by a factor of a four. Simulations
with synthetic filter sets show more dramatic reductions of a factor of 20 or more when the filter sets do not
contain any wildcards. As wildcards increase, the reductions become much more modest.

6.3 Crossproducting

In addition to the previously described Grid-of-Tries algorithm, Srinivasan, Varghese, Suri, and Waldvogel
also introduced the seminal Crossproducting technique [4]. Motivated by the observation that the number
of unique field specifications is significantly less than the number of filters in the filter set, Crossproducting
utilizes independent field searches then combines the results in a single step. For example, a filter set
containing 100 filters may contain only 22 unique source address prefixes, 17 unique destination address
prefixes, 11 unique source port ranges, etc. Crossproducting begins by constructing d sets of unique field
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specifications. For example, all of the destination address prefixes from all the filters in the filter set comprise
a set, all the source address prefixes comprise a set, etc. Next, we construct independent data structures
for each set that return a single best matching entry for a given packet field. In order to resolve the best
matching filter for the given packet from the set of best matching entries for each field, we construct a table of
crossproducts. In essence, we precompute the best matching filter for every possible combination of results
from the d field searches. We locate the best matching filter for a given packet by using the concatenation of
results from the independent lookups as a hash probe into the crossproduct table; thus, 5-tuple classification
only requires five independent field searches and a single probe to a table of crossproducts. We provide a
simple example for a filter set with three fields in Figure 17. Note that the full crossproduct table is not
shown due to space constraints.

Given a parallel implementation, Crossproducting can provide high throughput, however it suffers from
exponential memory requirements. For a set of N filters containing d fields each, the size of the crossproduct
table can grow to O(Nd). To keep a bound on the table size, the authors propose On-demand Crossproduct-
ing which places a limit on the size of the crossproduct table and treats it like a cache. If the field lookups
produce a result without an entry in the crossproduct table of limited size, then we compute the crossproduct
from the filter set and store it in the table4. The performance of this scheme largely depends upon locality
of reference.

Finally the authors propose a combined scheme that seeks to leverage the strengths of both Grid-of-
Tries and Crossproducting. The scheme utilizes Grid-of-Tries to perform the destination then source prefix
matches and Crossproducting for ports and flags. The search terminates as soon as a matching filter is found.
This assumes that the most specific filters are the highest priority and that a non-overlapping filter set can
be constructed. Using optimistic assumptions regarding caching, the authors claim that a full filter match
requires a worst case of 12 memory accesses.

6.4 Recursive Flow Classification (RFC)

Leveraging many of the same observations, Gupta and McKeown introduced Recursive Flow Classification
(RFC) which provides high lookup rates at the cost of memory inefficiency [1]. The authors introduced a
unique high-level view of the packet classification problem. Essentially, packet classification can be viewed
as the reduction of an m-bit string defined by the packet fields to a k-bit string specifying the set of matching
filters for the packet or action to apply to the packet. For classification on the IPv4 5-tuple, m is 104 bits and
k is typically on the order of 10 bits. The authors also performed a rather comprehensive and widely cited
study of real filter sets and extracted several useful properties. Specifically, they noted that filter overlap
and the associated number of distinct regions created in multi-dimensional space is much smaller than the
worst case of O(nd). For a filter set with 1734 filters the number of distinct overlapping regions in four-
dimensional space was found to be 4316, as compared to the worst case which is approximately 1013.

Similar to the Crossproducting technique, RFC performs independent, parallel searches on “chunks” of
the packet header, where “chunks” may or may not correspond to packet header fields. The results of the
“chunk” searches are combined in multiple phases, rather than a single step as in Crossproducting. The result
of each “chunk” lookup and aggregation step in RFC is an equivalence class identifier, eqID, that represents
the set of potentially matching filters for the packet. The number of eqIDs in RFC depends upon the number
of distinct sets of filters that can be matched by a packet. The number of eqIDs in an aggregation step scales
with the number of unique overlapping regions formed by filter projections. An example of assigning eqIDs
is shown in Figure 18. In this example, the rectangles a, . . . , k are defined by the two fields of the filters in
our running example filter set in Table 4. In general, these could be rectangles defined by the projections of

4Cache entry replacement algorithms can be used to decide which entry to overwrite in the on-demand crossproduct table.
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Figure 17: Example of Crossproducting technique for filter set with three fields; full crossproduct table is
not shown due to space constraints.

two “chunks” of the filters in the filter set. Note that the fields create nine equivalence classes in the port
field and eight equivalence classes in the address field requiring 4-bit and 3-bit eqIDs, respectively.

RFC lookups in “chunk” and aggregation tables utilize indexing; the address for the table lookup is
formed by concatenating the eqIDs from the previous stages. The resulting eqID is smaller (fewer number
of bits) than the address; thus, RFC performs a multi-stage reduction to a final eqID that specifies the action
to apply to the packet. The use of indexing simplifies the lookup process at each stage and allows RFC to
provide high throughput. This simplicity and performance comes at the cost of memory inefficiency. Mem-
ory usage for less than 1000 filters ranged from a few hundred kilobytes to over one gigabyte of memory
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Figure 18: Example of Recursive Flow Classification (RFC) using the filter set in Table 4.

depending on the number of stages. The authors discuss a hardware architecture using two 64MB SDRAMs
and two 4Mb SRAMs that could perform 30 million lookups per second when operating at 125MHz. The
index tables used for aggregation also require significant precomputation in order to assign the proper eqID
for the combination of the eqIDs of the previous phases. Such extensive precomputation precludes dynamic
updates at high rates.

6.5 Parallel Packet Classification (P 2
C)

The Parallel Packet Classification (P 2C) scheme introduced by van Lunteren and Engbersen also falls into
the class of techniques using decomposition [16]. The key novelties of P 2C are its encoding and aggregation
of intermediate results. Similar to the Parallel Bit-Vector and RFC techniques, P 2C performs parallel
searches in order to identify the elementary interval covering each packet field. The authors introduce three
techniques for encoding the elementary intervals formed by the projections of filter fields. These techniques
explore the design tradeoffs between update speed, space efficiency, and lookup complexity. For each field
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of each filter, P 2C computes the common bits of all the encodings for the elementary intervals covered by
the given filter field. This computation produces a ternary search string for each filter field. The ternary
strings for each field are concatenated and stored in a TCAM according to the filter priority.

Figure 19 shows an example of the first, and most update efficient, P 2C encoding technique for the port
fields of the filters in Table 4. In this encoding technique, we organize the ranges defined by the filters in the
filter set into a multi-layer hierarchy such that the ranges at each layer are non-overlapping and the number
of layers is minimized. Note that the number of layers is equal to the maximum number of overlapping
ranges for any port number. At each layer, we assign a unique label to the ranges using the minimum
number of bits. Within each layer, regions not covered by a range may share the same label. Next, we
compute an intermediate bit-vector for each elementary interval X1, . . . , X11 defined by the filter fields. We
form an intermediate bit-vector by concatenating the labels for the covering ranges in each layer. Consider
elementary interval X2 which is covered by range h(01) in layer 3, g(01) in layer 2, and a(001) in layer 1;
its intermediate bit vector is 0101001. Finally, we compute the ternary match condition for each filter by
computing the common bits of the intermediate bit-vectors for the set of elementary intervals covered by
each filter. For each bit position in the intermediate bit-vectors, if all elementary intervals share the same bit
value, then we assign that bit value to the corresponding bit position of the ternary match string; otherwise,
we assign a “don’t care”, ∗, to the bit position in the ternary match string. Consider filter g which covers
elementary intervals X1, X2, X3, and X4. For all bit-vectors, the most significant bit is ‘0’ but they differ
in the next bit position; thus, the ternary match string for g begins with 0∗.

Once we construct the table of ternary match strings for each filter field, we concatenate the field strings
associated with each filter and store it in a TCAM. Strings are stored in order of filter priority. We also
construct a data structure for each filter field which returns the intermediate bit-vector for the elementary
interval covering the given packet field. A search locates the best-matching filter for a packet by searching
these data structures in parallel, concatenating the intermediate bit-vectors to form a search key, and querying
the TCAM with the search key. For the single field searches, the authors employ the BARTs technique
which restricts independent field searches to be either prefix or exact match [23]. Arbitrary ranges must be
converted to prefixes, increasing the number of unique field specifications. The primary deficiency of P 2C

is its use of elementary intervals, as a single filter update may add or remove several elementary intervals
for each field. When using the most space efficient encoding techniques, it is possible for one filter update
to require updates to every primitive range encoding. Using the most update efficient encoding, the number
and size of intermediate results grows super-linearly with the number of filters. For a sample filter set of
1733 filters, P 2C required 2k bytes of SRAM and 5.1k bytes of TCAM. The same filter set requires 24k
bytes using a standard TCAM exclusively, thus P 2C reduced TCAM storage requirements by a factor of
4.7 and required only 1.2 bytes of SRAM per filter.

6.6 Distributed Crossproducting of Field Labels (DCFL)

Introduced by Taylor and Turner, Distributed Crossproducting of Field Labels (DCFL) leverages filter set
characteristics, decomposition, and a novel labeling technique to construct a packet classification technique
targeted to high-performance hardware implementation. Two observations motivated the development of
DCFL: the structure of real filter sets and advancements in integrated circuit technology. As we discuss in
Section 2, Taylor and Turner found that the number of unique filter field values matching a given packet
are inherently limited in real filter sets. Likewise, the number of combinations of unique filter field values
matching a given packet are also limited. As we discuss in Section 9, modern Application Specific Inte-
grated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs) provide millions of logic gates and
hundreds of large embedded memory blocks in a single device. Using a high degree of parallelism, DCFL
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Figure 19: Example of Parallel Packet Classification (P 2C) using the most update-efficient encoding style
for the port ranges defined in the filter set in Table 4.

employs independent search engines for each filter field and aggregates the results of each field search in a
distributed fashion; thus, DCFL avoids the exponential increase in time or space incurred when performing
this operation in a single step as in the original Crossproducting technique discussed in Section 6.3.

The first key concept in DCFL is labeling unique field values with locally unique labels. In Figure 20,
we show the labeling step for the same example filter set used in Figure 17. As in Crossproducting, DCFL
begins by creating sets of unique filter field values. Note that DCFL assigns a locally unique label to each
field value and records the number of filters specifying the field value in the “count” value. The count values
are incremented and decremented as filters specifying the corresponding fields are added and removed from
the filter set. A data structure in a field search engine or aggregation node only needs to be updated when the
“count” value changes from 0 to 1 or 1 to 0. Given the sets of labels for each field, we can construct a unique
label for each filter by simply concatenating the labels for each field value in the filter. For example, filter
j may be uniquely labeled by (5, 3, 1), where the order of field labels is (Address, Port, Protocol). The use
of labels allows DCFL to aggregate the results from independent field searches using set membership data
structures that only store labels corresponding to field values and combinations of field values present in the
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Figure 20: Example of encoding filters with field labels in Distributed Crossproducting of Field Labels
(DCFL) using same filter table as Figure 17; count values support dynamic updates.

filter table. As shown in the Port-Protocol Label Set in the first aggregation node in Figure 21, we represent
the unique combinations of port and protocol values specified by filters in the filter set by concatenating the
labels for the individual field values5.

We provide an example of a DCFL search in Figure 21 using the filter set and labeling shown in Fig-
ure 20 and a packet with the following header fields: address 0011, port 1, and protocol TCP. We begin by

5Count values are maintained for the sets of unique field value combinations, like the sets of unique field values shown in
Figure 20. We do not show the count values in the example in Figure 21.
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Figure 21: Example of search using Distributed Crossproducting of Field Labels (DCFL)

performing parallel searches on the individual packet fields and returning all matching results. In Figure 21
we employ a range tree for the port ranges, a direct lookup table for the protocol fields, and a binary trie for
the address prefixes. Note that various options exist for each type of search and DCFL allows each search
engine to apply local optimizations. DCFL allows intermediate result aggregation to occur in any order. In
our example, we first aggregate the results from the port and protocol field searches. We form the set of
all possible matching port-protocol pairs, Fquery(y, z), by computing the crossproduct of the results from
the field searches. Since the field searches returned three port range labels and two protocol field labels,
Fquery(y, z) contains six port-protocol labels. For each label in Fquery(y, z), we perform a set membership
query in the Port-Protocol Label Set. Labels that are members of the set are passed on to the next aggrega-
tion node. The authors introduce several efficient data structures for performing set membership queries in
aggregation nodes. Note that three port-protocol labels are passed on to the second aggregation node. We
perform the same steps to form the set of possible matching filter labels, Fquery(x, y, z), and probe the Filter
Label Set. In this example, three filters match the packet. The labels for the matching filters are passed on
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to a final priority resolution stage that selects the highest priority filter or set of filters.

In addition to the labeling concepts and efficient set membership data structures, the authors also intro-
duce the concept of Meta-Labeling which reduces the memory requirements for aggregation nodes. They
also provide techniques for minimizing the number of set membership queries at each aggregation node by
computing the optimal ordering of aggregation nodes and limiting the number of labels returned by field
search engines. The latter is achieved by a novel technique called Field Splitting which we do not discuss in
this survey.

Using a collection of 12 real filter sets and the ClassBench tools suite [24], the authors provide analyses
of DCFL performance and resource requirements on filter sets of various sizes and compositions. For the
12 real filter sets, they show that the worst-case number of sequential memory accesses is at most ten and
memory requirements are at most 40 bytes per filter. Based on these results, an optimized implementation
of DCFL can provide over 100 million searches per second and storage for over 200 thousand filters with
current generation hardware technology. Using the ClassBench Filter Set Generator, the authors show that
DCFL may be configured to maintain this performance for filter sets as large as 50 thousand filters. They
also show that adding an additional aggregation node increases memory requirements by a modest 12.5
bytes per filter. Based on this observation, they assert that DCFL demonstrates scalability to additional filter
fields.

7 Tuple Space

We have discussed three high-level approaches to the packet classification problem thus far. The last high-
level approach in our taxonomy attempts to quickly narrow the scope of a multiple field search by partition-
ing the filter set by “tuples”. A tuple defines the number of specified bits in each field of the filter. Motivated
by the observation that the number of distinct tuples is much less than the number of filters in the filter set,
Srinivasan, Suri, and Varghese introduced the tuple space approach and a collection of Tuple Space Search
algorithms in a seminal paper [25].

In order to illustrate the concept of tuples, we provide an example filter set of filters classifying on five
fields in Table 5. Address prefixes cover 4-bit addresses and port ranges cover 4-bit port numbers. For
address prefix fields, the number of specified bits is simply the number of non-wildcard bits in the prefix.
For the protocol field, the value is simply a Boolean: ‘1’ if a protocol is specified, ‘0’ if the wildcard is
specified. The number of specified bits in a port range is not as straightforward to define. The authors
introduce the concepts of Nesting Level and Range ID to define the tuple values for port ranges. Similar to
the P 2C encoding technique discussed in Section 6.5, all ranges on a given port field are placed into a non-
overlapping hierarchy. The Nesting Level specifies the “layer” of the hierarchy and the Range ID uniquely
labels the range within its “layer”. In this way, we convert all port ranges to a (Nesting Level, Range ID)
pair. The Nesting Level is used as the tuple value for the range, and the Range ID is used to identify the
specific range within the tuple. We show an example of assigning Nesting Level and Range ID for the source
port ranges of Table 5 in Figure 22. Given these definitions of tuple values, we list the tuple of each filter in
Table 5 in the last column.

Since the tuple specifies the valid bits of its constituent filters, we can probe tuples for matching filters
using a fast exact match technique like hashing. We probe a tuple for a matching filter by using the bits
of the packet field specified by the tuple as the search key. For example, we construct a search key for the
tuple [1, 3, 2, 0, 1] by concatenating the first bit of the packet source address, the first three bits of the packet
destination address, the Range ID of the source port range at Nesting Level 2 covering the packet source port
number, the Range ID of the destination port range at Nesting Level 0 covering the packet destination port
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Table 5: Example filter set; address fields are 4-bits and port ranges cover 4-bit port numbers.

Filter SA DA SP DP Prot Tuple
a 0∗ 001∗ 2 : 2 0 : 15 TCP [1, 3, 2, 0, 1]
b 01∗ 0∗ 0 : 15 0 : 4 UDP [2, 1, 0, 1, 1]
c 0110 0011 0 : 4 5 : 15 TCP [4, 4, 1, 1, 1]
d 1100 ∗ 5 : 15 2 : 2 UDP [4, 0, 1, 2, 1]
e 1∗ 110∗ 2 : 2 0 : 15 UDP [1, 3, 2, 0, 1]
f 10∗ 1∗ 0 : 15 0 : 4 TCP [2, 1, 0, 1, 1]
g 1001 1100 0 : 4 5 : 15 UDP [4, 4, 1, 1, 1]
h 0011 ∗ 5 : 15 2 : 2 TCP [4, 0, 1, 2, 1]
i 0∗ 110∗ 2 : 2 0 : 15 UDP [1, 3, 2, 0, 1]
j 10∗ 0∗ 2 : 2 2 : 2 TCP [2, 1, 2, 2, 1]
k 0110 1100 0 : 15 0 : 15 ICMP [4, 4, 0, 0, 1]
l 1110 ∗ 2 : 2 0 : 15 ∗ [4, 0, 2, 0, 0]

130 1 2 3 4 5 6 7 8 9 10 1211 14 15

Nesting Level

0

1

2

0

0

0 1

Range ID

Figure 22: Example of assigning tuple values for ranges based on Nesting Level and Range ID.

number, and the protocol field.

All algorithms using the tuple space approach involve a search of the tuple space or a subset of the tuples
in the space. Probes to separate tuples may be performed independently, thus tuple space techniques can take
advantage of parallelism. The challenge in designing a parallel implementation lies in the unpredictability
of the size of the tuple space or subset to be searched. As a result the realizable lookup performance for
tuple space techniques varies widely. Implementations of tuple space techniques can also be made memory
efficient due to the effective compression of the filters. The masks or specification of valid bits for filters in
the same tuple only needs to be stored once; likewise, only the valid bits of those filters need to be stored
in memory. For filter sets with many fields and many wildcards within fields, tuple space techniques can be
more space efficient than the O(N) exhaustive techniques discussed in Section 4.

7.1 Tuple Space Search & Tuple Pruning

The basic Tuple Space Search technique introduced by Srinivasan, Suri, and Varghese performs an exhaus-
tive search of the tuple space [25]. For our example filter set in Table 5, a search would have to probe seven
tuples instead of searching all 12 filters. Using a modest set of real filter sets, the authors found that Tuple
Space Search reduced the number of searches by a factor of four to seven relative to an exhaustive search
over the set of filters6. The basic technique can provide adequate performance for large filter sets given
favorable filter set properties and a massively parallel implementation.

6We make a simplifying assumption that a probe to a tuple is equivalent to examining one filter in an exhaustive search.
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Motivated by the observation that no address has more than six matching prefixes in backbone route
tables, the authors introduced techniques to limit the number of tuples that need to be searched exhaustively.
Pruned Tuple Space Search reduces the scope of the exhaustive search by performing searches on individual
filter fields to find a subset of candidate tuples. While any field or combinations of fields may be used for
pruning, the authors found that pruning on the source and destination address strikes a favorable balance
between the reduction in candidate tuples and overhead for the pruning steps. We provide an example of
pruning on the source and destination addresses in Figure 23. In this case, we begin by constructing tries
for the source and destination address prefixes in the filter set in Table 5. Nodes representing valid prefixes
store a list of tuples containing filters that specify the prefix7. We begin a Pruned Tuple Space Search by
performing independent searches of the source and destination tries. The result of each search is a list of
all possible candidate tuples for each field. In order to construct the list of candidate tuples for the packet,
we compute the intersection of the tuple lists returned by each search. Note that this is very similar to
the Parallel Bit-Vector technique discussed in Section 6.1. The key difference is that Pruned Tuple Space
Search computes the candidate tuples rather than the overlapping filters. In our example in Figure 23, we
demonstrate pruning for a packet with source address 1001 and destination address 1101. In this case, we
only have to probe two tuples instead of seven in the basic search. Using a modest set of real filter sets, the
authors found that Pruned Tuple Space Search reduced the number of searches by a factor of three to five
relative to the basic Tuple Space Search, and a factor of 13 to 26 relative to an exhaustive search over the set
of filters.

Srinivasan expanded this set of algorithms with Entry Pruned Tuple Search (EPTS) [26]. This technique
seeks to optimize the Pruned Tuple Search algorithm by eliminating the need to store a search data structure
for each dimension by storing pruning information with matches in the tuples. The tuple pruning information
is stored with each filter in the form of a bitmap of tuples containing non-conflicting filters. These bitmaps
may be precomputed for each filter in the filter set. The author presents an algorithm to compute the tuple
bitmaps in O(TN), where T is the number of tuples and N is the number of filters.

7.2 Rectangle Search

In their seminal paper, Srinivasan, Suri, and Varghese also present the Rectangle Search algorithm that pro-
vides theoretically optimal performance for packet classification on two fields without making assumptions
about the structure of the filter set. Rectangle Search employs the concepts of markers and precomputation
introduced by the Binary Search on Prefix Lengths technique for longest prefix matching [27]. As shown
in Figure 24, the tuple space for filters with two prefix fields may be viewed as a grid of rectangles where
each rectangle is a tuple. For this example, we use the source and destination addresses of the filters in the
example filter set shown in Table 58. Implementing an exhaustive search over the grid of tuples requires W 2

probes in the worst case.

The strategy of Rectangle Search is to leverage precomputation and markers to limit the number of
probes to at most (2W − 1) where W is the address length. Each filter mapping to a tuple [i, j] leaves a
marker in each tuple to its left in its row. For example, a filter (110∗, 0111) stored in tuple [3, 4] leaves
markers (11∗, 0111) in [2, 4] and (1∗, 0111) in [1, 4]. For all filters and markers in a tuple [i, j], we can
precompute the best matching filter from among the filters stored in less specific tuples. Consider tuple
[2, 2], labeled T in Figure 24. Graphically, less specific tuples are those in the shaded quadrant above and
left of T in Figure 24. For example, if a marker [01∗, 00∗] were stored in T , then we would precompute the
best matching filter b and store it with the marker in T .

7Note that the list of tuples may also be represented as a bitmap as in the Parallel BV technique.
8Note that filters containing a wildcard are not included; these filters may be searched by maintaining separate search tries.
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Figure 24: Example of Rectangle Search on source and destination prefixes of filters in Table 5.

Rectangle Search begins at tuple [1, W ], the bottom-left tuple. If a matching filter is found, then we
need not search any tuples above and left of this tuple due to precomputation. The search moves one tuple
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to the right to the next tuple in the row. If no matching filter is found in the tuple, then we need not search
search any tuples below and right of this tuple due to markers. The search moves one tuple up to the next
tuple in the column. Note that the worst-case search path follows a staircase pattern from tuple [1, W ] to
tuple [W, 1] probing a total of (2W − 1) tuples. Rectangle Search requires O(NW ) memory as each filter
may leave a marker in at most W tuples to its left in its row. The authors proved that (2W − 1) probes is the
theoretical lower bound for two fields and extend this bound to show that for d fields the lower bound is:

W (d−1)

d!
(5)

7.3 Conflict-Free Rectangle Search

Warkhede, Suri, and Varghese provide an optimized version of Rectangle Search for the special case of
packet classification on a conflict-free filter set [28]. A filter set is defined to be conflict-free if there is no pair
of overlapping filters in the filter set such that one filter is more specific than the other in one field and less
specific in another field. The authors observe that in real filter sets conflicts are rare; furthermore, techniques
exist to resolve filter conflicts by inserting a small set of resolving filters that resolve filter conflicts [29].

Conflict-Free Rectangle Search begins by mapping the filter set to the W × W tuple space. Using
precomputation and markers, the authors prove that a binary search can be performed on the columns of the
grid due to the conflict-free nature of the filter set. This provides an O(log2 w) bound on the number of tuple
probes and an O(n log2 w) bound on memory.

8 Caching

Finally, we briefly discuss caching, a general technique that can be combined with any search technique
to improve average performance. A cache is a fast storage buffer for commonly referenced data. If data
requests contain sufficient locality, the average time to access data is significantly reduced when the time to
access the cache is significantly less than the time to access other storage media [30]. In the context of packet
classification, the lookup time is significantly reduced if the time to perform a cache query is significantly
less than the time to perform a full lookup. The efficacy of caching schemes largely depends on the data
request patterns of the application.

Caching techniques have met with much skepticism from the research community due to the “wire-
speed requirement” discussed in Section 1.1. In short, improving average case performance is irrelevant if
we we evaluate packet classification techniques based on worst-case performance. Another argument against
caching is the perception that packet flows on high-speed links lack locality of reference. As link speeds
have increased, caching schemes have also met with increasing skepticism due to the question of sufficient
temporal locality. This question arises due to the fact that the bandwidth requirement of the average packet
flow has not increased at the same rate as link capacity. To put it simply: as link bandwidth increases, the
number of flows sharing the link also increases. In order for a caching scheme to retain its effectiveness,
we must scale the size of the cache with the link speed. Consider the example of a 10 Gb/s link supporting
individual flows with peak rates of at most 1 Mb/s. The packet of a given flow will appear at most once in
ten thousand packets, thus the cache must have a minimum capacity of ten thousand entries.

Despite the skepticism, a number of cache designs for packet classification have emerged [31, 32, 33].
One intriguing design utilizes Bloom filters and allows for a small probability of misclassification [31].
Holding the misclassification probability to approximately one in a billion, the authors measured an average
cache hit-rate of approximately 95 percent using 4KB of memory and real packet traces collected from an
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OC-3 link; thus, only five percent of the traffic required a full classification lookup. While these results
are compelling for low-speed links, the viability of caching for OC-192 (10 Gb/s) links remains an open
question. It is a difficult one to answer due to the technical challenges of collecting packet traces from such
high-speed links. If we simply scale the size of the cache with link speed, this Bloom filter approach would
require 256k bytes of cache memory which is prohibitively large.

9 Discussion

We have presented a survey of packet classification techniques. Using a taxonomy based on the high-level
approach to the problem and a minimal set of running examples, we attempted to provide the reader with
a deeper understanding of the seminal and recent algorithms and architectures, as well as a useful frame-
work for discerning the relationships and distinctions. While we mentioned the simulation results reported
by the authors of the literature introducing each technique, we consciously avoided a direct comparison
of the techniques based on throughput, memory requirements, or update performance. Given the various
implementation options and variability in simulation parameters, a fair comparison using those metrics is
difficult. We believe that future high-performance packet classifiers will invariably be implementations of
hybrid techniques that borrow ideas from a number of the previously described techniques. In closing, we
would like to briefly highlight the implementation platforms for current and future packet classifiers.

Thanks to the endurance of Moore’s Law, integrated circuits continue to provide better performance at
lower cost. Application Specific Integrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs)
provide millions of logic gates and millions of bits of memory distributed across many multi-port embedded
memory blocks. For example, a current generation Xilinx FPGA operates at over 400 MHz and contains
556 dual-port embedded memory blocks, 18Kb each with 36-bit wide data paths for a total of over 10Mb of
embedded memory [34]. Current ASIC standard cell libraries offer dual- and quad-port embedded SRAMs
operating at 625MHz [35]. It is standard practice to utilize several embedded memories in parallel in order
to achieve wide data paths. Dual Data Rate (DDR) and Quad Data Rate (QDR) SRAM technologies provide
high bandwidth interfaces to several mega-bytes of off-chip memory [21, 36]. Network processors also
provide a flexible platform for implementing packet classification techniques [37, 17, 38]. A number of
current generation processors provide hardware assists for packet classification, interfaces to TCAM, and/or
special instructions for search applications such as hash functions.
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