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ABSTRACT OF THE DISSERTATION 

New Methods for the Construction and Characterization of Molecules on an 

Addressable Array 

By 

Bo Bi 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2012 

Professor Kevin D. Moeller, Chairperson 

      Microelectrode array has great potential as a platform for building "addressable" molecular 

libraries and being utilized to probe the ligand-receptor binding events in ―real-time‖.  To 

achieve this objective, a complete study would generally include three phases: 1) to enable and 

expand site-selective chemistry on the array; 2) to understand structural information of the 

molecules loaded; and 3) to develop research protocols of electrochemical analysis on the device 

to monitor those molecular interactions. While 2), quality-control analysis, is a core task of this 

thesis, the studies in other phases that drove this work or derived from it, are also discussed in 

detail. 

      In Chapter 2, the thesis starts with the effort towards expanding site-selective reaction 

methodologies by using electrodes to tune Lewis-acid (Sc (III)) catalyzed reactions. A confining 

strategy that involves redox cycle of the catalyst is introduced, as well as three types of reactions 

presented. A new challenge arises when the structures resulted from Diels-Alder reactions and 

Povarov-type multi-component reactions on the array are only confirmed by a careful design of 

the controlled experiments and the fluorescent tags at the moment. In addition, the important 
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information regarding stereochemistry of those structures is missing. A new method to enable the 

complete characterization of the molecules on the array is required.  

      The new quality-control handle is derived from ―safe-catch‖ linker. The linkers are attached 

to the array by means of an ester and contain either a protected amine or protected alcohol 

nucleophile that can be released using acid generated at the microelectrodes. By placing the 

substitutions on those linkers, it is allowed to collect the compounds generated from the site-

selective chemistries and characterize with HPLC, LC-MS. Moreover, the arrays are kept intact 

during this procedure and could be recycled for reactions and analysis. In Chapter 3, a full story 

of the design, make and use of these linkers is to be discussed. The stereochemical question with 

respect to the reaction is thus answered and the role of the array in the reaction is revealed for the 

first time.  

      The work continues in Chapter 4 with a goal of developing a versatile tool to enable the 

quality control of not only the molecules but also the device before the signaling experiments. 

An amino-acid derived fluorescent linker is hereby prepared to replace the role of the tags used 

in the previous studies. The chemical reliability and compatibility of this fluorescent linker 

makes the first check possible before constructing libraries. Furthermore, it leads to a successful 

proof-of-principle signaling experiment in monitoring biotin-strepavidin interaction and a 

protocol to collect and analyze data from the Microelectrode Array. Lastly, the most recent 

efforts in combining features of chemically cleavable linkers and fluorescent linkers are 

introduced to conclude the chapter.  

      In the end, all progress and accomplishments are summarized in Chapter 5, followed by a 

couple of experiments proposed upon the linkers towards the construction of molecule libraries 
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and assessment of ligand-receptor bindings on the array.     

 

 

 



 1 

Chapter One 

Introduction 

 

1.1 Small Molecule Microarrays 

1.1.1 Molecule libraries 

      An understanding of ligand-receptor interactions is critical for the design and development of 

small molecule-drug candidates. However, gaining that understanding can require tremendous 

effort.  

      How does one find appropriate ligands for targeting a desired protein? One method is to 

assemble a library of molecules that can be used to probe the preferences of a protein receptor. 

The molecules in the library can be natural-product derivatives, small peptides, DNA fragments, 

etc. Such libraries can be studied in solution (micro-well plates), or on solid supports (molecular 

arrays).
1-4

 In the later case, molecules are attached to a surface and screened for binding to the 

protein of interest.
5,6

 The advantage of having so many different types of entities available within 

a compact surface is that it provides an efficient means for parallel screening of the library 

against multiple targets of choice, while consuming low quantities of both precious samples and 

analytes. The result is a high-throughput approach to the screening of molecular libraries that 

enables the rapid identification of compounds with the potential for further optimization as drug 

candidates.  

1.1.2 Small molecule microarray       

      One application of microarray technology is the small molecule microarray (SSM), in which 
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thousands of small molecules are organized across a small planar surface.
7
 Small molecule 

microarrays are increasingly used to identify specific chemical compounds that bind to a given 

receptor. A large number of review articles have been published in this area.
5,8-10

  

      One among many challenges facing the construction of a small-molecule array is the 

placement of the molecules in the library onto a uniform surface in a spatially isolated manner. 

This is done so that the binding of individual members of the library to a receptor of interest can 

be detected. Generally, there are two strategies for accomplishing this goal:
11

  

1) The molecules in the library are printed onto a functionalized glass slide with a robotic 

spotter; 

2) The molecules in the library are built on the surface.  

      The next challenge is to identify binding events. Typically, a screening method is needed to 

tell which molecules (sites) in the library bind to the receptor. The available screening methods 

generally fall into one of two groups based on the detection technique.
12

 

      Labeling methods: In these methods, the receptors (e.g. target proteins) are usually tagged 

with ―reporter groups‖ such as fluorescent dyes and radioactive groups. In this way, the 

microarrays are incubated with the receptor of interest, often engineered to present a handle such 

as a His tag or GST. The binding event is marked with a fluorescence-labeled antibody to the 

handle. However, one of the major drawbacks of this type of signal is that it typically involves 

multiple washing steps that remove nonspecifically bound receptor and antibodies from the 

library. The washing steps can lead to the loss of potentially important information about the 

nature of the receptor being targeted because they wash away data associated with weaker 

binding events 

      Label-free detection methods: These methods include techniques like surface plasmon 
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resonance (SPR),
13-15

 grating couplers, reflectometry, mass spectrometry, etc. The idea behind 

the methods is to avoid the loss of data by watching binding interactions occur in ―real-time‖. 

The methods do have limitations when it comes to the construction, manipulation, and analysis 

of an addressable library. For example, surface plasmon resonance probes the binding event on 

surface by detecting the changes in the metal surface properties. To build the libraries for 

examination the molecules are assembled remotely and then placed on a surface. After that, there 

is no ability to synthetically further modify the molecules or recover them from the surface. This 

makes the technique time consuming with respect to the screening of larger libraries. The later 

method also puts an additional question upfront. With the tremendous effort often required to 

assemble a spatially addressed molecular library, we would ideally be able to recycle them for 

long-term use and multiple applications. How can we make sure an array-based small molecule 

library remains good over time? An answer to this question requires full characterization of the 

molecules in the library with respect to structure, stereochemistry, and purity. Such quality-

control issues are a common concern with array-based small molecule libraries. If one cannot 

fully characterize the molecules in a library, then can one really trust the information gathered 

from its use?  

      With all of these things in mind, the potential use of microelectrode arrays as a platform for 

the evaluation of small-molecule libraries caught our group‘s attention.  

 

1.2 Combimatrix Microelectrode Arrays and Setups 

1.2.1 Combimatrix Microelectrode Arrays 

      Our lab works with two different microelectrode array formats that are available from 
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CustomArray, Inc. (formally CombiMatrix. Co.).
16,17

 Photos of the arrays are shown below in 

Figure 1.1. These arrays are fabricated using complementary metal-oxide-semiconductor 

(CMOS) technology in order to afford collections of electrodes that are wired in parallel. The 

arrays are simple in design and consist of binary addressable X,Y-grid of wires. If a vertical wire 

and a horizontal wire are both employed at the same time, then the electrode located at the 

intersection is addressed.  

 

  

 

 

a)                                                            b) 

Figure 1.1 Two types of Microelectrode Arrays: a) 1K-array and its enlarged picture; b) 12K-

array and its enlarged picture. 

  

      The simpler of the two arrays used in the group is a 1K-array containing 1,024 individually 

addressable microelectrodes per cm
2
, Figure 1.1a.

17
 The electrodes in these arrays are ~95 µm in 

diameter and range between 200-300 µm apart. These arrays are primarily used as a practice 

arrays. They are inexpensive, can be inserted into regular reaction vials, and have electrodes 

more geographically isolated from each other. Hence, the 1K-arrays provide an ideal platform 

for the discovery and optimization of new array-based reactions. One simply varies the reaction 

conditions employed in the same manner as any electrolysis reaction. However, the circuitry on 

the 1K-arrays do not allow for varying potentials. Hence, the arrays are not useful for the 

collection of analytical data.  

      For analytical experiments, the more modern 12K-arrays are required. These arrays are 

imbedded into a ceramic slide so that they can be slipped into the hardware required for 
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conducting cyclic voltammetry experiments on the arrays. The 12K-arrays contain 12,544 

microelectrodes per cm
2
, Figure 1.1b. The diameter of each electrode in a 12K-array is ~45 µm. 

The electrodes are 33 µm apart, or about 1/10 the distance between the electrodes found on a 1K 

array.
 
Like the 1K-array, each electrode is individually addressable.  

1.2.2 Electrochemical setups for the arrays 

      For the 1K-array, the ceramic chip that holds the array contains a pin system for addressing 

the electrodes. The pins are plugged into a socket board, Figure 1.2, leaving a free-standing 

array that can be inserted into reaction vessels. 

 

 

Figure 1.2: 1K-Microelectrode array inserted into a reaction vessel 

  

       

      Reaction solutions are typically made in an Eppendorf tube and then the array simply 

inserted into this tube.  To pass current, a Pt counter-electrode is added to the tube. In this way, 

preparative reactions on a 1K-array are run like any other preparative electrolysis reaction with 

one of the electrodes in a typical experiment being replaced by the array. A computer program is 

then used to address the individual microelectrodes. The software allows us to ―map‖ the pattern 

electrodes to be used in the experiment, as well as to modify both the current that is passed at the 

electrodes and the duration of the reaction. To run an oxidation versus reduction on the array is a 

simple matter of reversing the wiring of the cell.  
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      Unlike the 1K-array, the electronics (ElectraSense reader, Figure 1.3) that addresses the 

12K-arrays are compatible with sweeping a range of potentials, a capability that allows cyclic 

voltammetry experiments to be run on selected microelectrodes within the array.
18,19

 Hence, the 

12K-arrays are the ones used to probe ligand-receptor interactions. These experiments will be 

discussed further in the next section.  

 

 

Figure 1.3: ElectraSense reader 

       

      For the 12K-arrays, the counter-electrode is platinum that is sputtered onto the cap (called the 

hyb-cap) that covers the surface (Figure 1.4). The Pt is located in a recessed area of the cap 

(0.75 cm
2
) that is surrounded by an O ring that separates the Pt-electrode from the array. When 

the cap is placed over the array, it creates a space that can hold about 100 μL of solution. The 

distance between the array and the counter electrode can range from 650-800 μm. The cap is 

secured to the array using two plastic clips. A thin wire, epoxyed to the top of the hyb-cap, 

connects the sputtered platinum on the cap to the ElectraSense reader. 
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Figure 1.4: Hyb-cap as counter electrode for 12K-array 

 

      A newer version of the 12K-array surrounds the electrodes with a platinum grid. The grid can 

be used as the counter-electrode for electrochemical synthesis and voltammetry with these arrays. 

The grid can also be independently addressed using the reader. These arrays give much cleaner 

analytical data because the distance between the counter and working electrodes is rigorously 

maintained, and hence the resistance across the array is consistent.  

      Directly beside the electrode array are contact pads for a set of gold pins that are part of the 

ElectraSense Reader. The pins are then used to control the electrodes in the array with the use of 

a proprietary software package (available from CustomArray).  Since the pads on the array are 

essential for addressing the array, they are protected from reaction solutions. For coating the 

array with a porous reaction layer (see below), the pads are covered with tape so that they are not 

exposed to the polymer solution during spin-coating of the polymer onto the array. After this step 

the tape is removed. For reactions on the array, the contact pads lie outside of the O-ring used to 

create space between the array and the cap and provide walls for the resulting reaction vessel 

above the microelectrode array.  

      As mentioned above, the ElectraSense reader allows the user to address the electrodes in the 

array using a personal computer. The reader contains an internal voltage source that can be used 

to set the potential drop across the cell. This source is used for electrochemical synthesis. The 

array is set either negative (reductions) or positive (oxidations) relative to the Pt-electrode on the 
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cap. For voltammetric measurements, the reader is used to activate selected electrodes on the 

array while an external potentiostat varies the potential drop across the cell. Unlike a ―normal‖ 

CV with a reference electrode, the potential in this case does not represent an ―absolute‖ number. 

Instead, the CV records the relative potential drop across the cell that leads to current flow. For 

this reason, the potentials measured on an array cannot be compared to literature potentials 

measured against an independent reference electrode. 

      The ElectraSense reader has six colored terminals that are used to make connections with the 

12K-array and the Pt-counter electrode Figure 1.5a. For the purpose of this discussion, the white 

and orange ports will not be addressed since they are not employed for any of the reactions 

conducted in this thesis. As for the remaining ports, the blue one is connected to a positive 

potentiostat. It is used to apply a positive potential to the electrodes. Conversely, the black port is 

the ground. It is connected to the cathode and applies a negative potential (relative to the blue 

port). The last two terminals make connections with the array and the counter-electrode. The 

yellow terminal is connected to the Pt-cap while the red terminal is connected to the 

microelectrode array. Reduction and 
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Figure 1.5 a) the terminals on the 12-K array; b) functions of those terminals; c) connections for 

a reduction; d) connections for an oxidation 

       

oxidation reactions on the array are then controlled by how the terminals are connected. For a 

reduction reaction of the array, Figure 1.5c, the yellow and blue ports are connected, as are the 

red and black. This makes the counter electrode positive and the array negative. When an 

oxidation reaction on the array is desired, a connection is made between the black and yellow 

terminals, as well as between the blue and red terminals, Figure 1.5d. 

      To use the ElectraSense reader for electrochemical detection via cyclic voltammetry (CV), 

the reader is connected to an external potentiostat. A wire is used to connect the ground on the 

ElectraSense reader with the ground on the CV apparatus used. This provides a common ground 

for the two instruments. (Figure 1.6) 

 

a)  b)  

c)  d)  
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Figure 1.6: The terminal connections for the impedance experiments 

      

       The leads for the counter and the reference electrodes associated with the CV potentiostat 

are then both connected to the cap (yellow terminal) and the working electrode from the CV is 

connected to the array (red terminal). This leads to the CV potentiostat being ―tricked‖ into 

recognizing the Pt-cap as both the counter and reference electrodes. The result is that the 

instrument sweeps potentials that represent the difference between the working electrodes in the 

array and the cap. Using the proprietary software to run the array, selected electrodes in the array 

are chosen to serve as working electrodes. The voltammogram is recorded using the CV-

apparatus that measures the current that flows through the working electrodes relative to the 

potential at the electrode surface. With the newer version of the 12K arrays with the Pt-grid on 

the surface, the counter and the reference electrodes are both connected the grid on the array. The 

cap is then connected to ground, while working electrode for the CV-apparatus remains 

connected to the electrodes in the array.  

1.3 Site-Selective Chemistry on Microelectrode Array 

1.3.1 Surface coatings 

      In order to run a reaction on an array, the array must first be coated with a porous polymer 

layer—typically agarose, sucrose, or a diblock copolymer by Dr. Libo Hu.
20

 The porous reaction 
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layer provides attachment sites so that molecules can be fixed to the surface of the electrodes in 

the array. The porous reaction layer must be stable, inert with respect to the preparative and 

analytical chemistry conducted on the array, porous enough for small molecule reagents to 

migrate through the layer to the electrodes below, and relatively unreactive with respect to non-

specific binding events with biological receptors.  

      All of the polymers used in the studies below were spin-coated onto the surface of the arrays. 

This was accomplished by pre-dissolving the polymers into solutions that would evaporate from 

the surface of the array and then dropping the resulting mixtures into the center of the spinning 

array.  The array was spun with the use of a Laurell 400B-6NPP-400/LITE spin coater that was 

equipped with adapters to fit the arrays. Scheme 1.1 shows two most common porous reaction 

layers used in our group.  

      Of the two, agarose is the least stable. It delaminates from the surface of the array with time, 

dissolves in a variety of solvents, and reacts with a number of the reagents used for site-selective 

synthesis. For this reason, agarose is mainly used as a ―practice-polymer‖ for studying new 

reactions on the arrays. As a practice polymer, agarose is ideal since it can be removed easily 

from the arrays. That allows for recycle use of the arrays. In addition, the poly-hydroxylated 

surface limits the use of microelectrode arrays for monitoring the behavior of small molecules 

that are synthesized by using protected amine- and alcohol- functional groups, and the use of 

agarose has at times proven incompatible with biological studies.
21
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Scheme 1.1 Polymer layers on Microelectrode Array 

 

       

      In 2009, Dr. Libo Hu et al. reported a more stable alternative to agarose that was constructed 

from a diblock copolymer. The polymer was comprised of a hydrophilic cinnamoyl-substituted 

polymethacrylate block for attachment to the surface of the array and a p-bromo-substituted 

polystyrene block for selective functionalization of the surface. Once the polymer was spin-

coated onto an array, it was cross-linked by photochemically dimerizing the cinnamoyl groups in 

order to provide stability to the coating. 

1.3.2 Confining strategy 

      Perhaps the major challenge associated with the construction or placement of molecules on a 

microelectrode array is the confinement of reactions to selected electrodes in the array. How 

does one conduct a chemical reaction at one electrode in an array without disturbing the 
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neighboring electrodes when there are over 12,000 of the electrodes in a 1 cm
2
 area?  

 

Scheme 1.2 General scheme of reaction confinement on Microelectrode Array 

  

 

      One solution to this problem is highlighted in Scheme 1.2. The illustration in the scheme 

shows two neighboring electrodes that can be individually manipulated: one being turned on 

while the other one left off. The array is immersed in a solution containing a chemical substrate 

for placement (Substrate A), a pre-catalyst or pre-reagent, and a ―confining agent‖. Like most 

preparative electrolysis reactions, the reaction solution also contains an electrolyte that is used to 

lower the resistance of the cell. When the reaction starts, selected electrodes in the array are used 

to convert the pre-catalyst or pre-reagent into an active form that in turn will facilitate a reaction 

between the substrate and the porous reaction layer coating the electrodes. This is done by either 

oxidizing or reducing the pre-catalyst or reagent in order to reverse its chemical behavior. The 

new species generated in this fashion can be an acid, base, oxidant, reductant, transition-metal 

catalyst, Lewis-acid, nucleophile, electrophile, etc. By making the required catalyst or reagent at 

the electrode, it is generated exactly where it is needed on the array. The confining agent placed 

in solution is used to localize the active catalyst or reagent. It accomplishes this task by reacting 

with any of the electrochemically generated catalyst or reagent in solution before it migrates to a 

neighboring electrode. The reaction takes the catalyst or reagent back to its original inactive state 
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by either re-reducing or re-oxidizing it. This sets up a competition on the array between 

generation of the active catalyst or reagent at the electrodes and destruction of that same catalyst 

or reagent in solution. By repeating the same strategy with the different combinations of 

substrates (e.g. Substrate B) and confining agents (e.g. Confining Agent-2), a variety of 

compounds can be placed (or constructed) on the same array.   

      On the 1K arrays, the reactions are run by cycling the potential at the electrodes between on 

and off modes. This helps to control the rate of the reagent or catalyst being generated at the 

electrodes and thus aids the site-selectivity of the reactions. On the 12K-arrays, a similar level of 

control is obtained by pulsing the electrodes.    

      New efforts to apply this general strategy to the development of new microelectrode array-

based synthetic methodologies will be further discussed in detail in Chapter 2.  

1.3.3 Examples of site-selective reactions on Microelectrode Arrays 

      Our group has made a number of breakthroughs in the construction of addressable libraries as 

platforms for biological assays on microelectrode arrays.
22

 Early work illustrates how acyl-

transfer reactions,
23

 Heck reactions,
24

 Wacker oxidations,
25

 Suzuki reactions,
26

 ―click‖ 

reactions,
27

 hetero-Michael reactions,
23

 and reductive amination reactions
28

 could be successfully 

accomplished on the arrays. The methods took advantage of the electrochemical generation of 

bases, Pd(0)-catalysts, Pd(II)-catalysts, oxidants, and Cu(I)-catalysts.  

      As an example, a site-selective Suzuki-reaction was conducted between either an aryl iodide 

attached to the surface of the array and an aryl boronic acid in solution or an aryl boronic acid 

attached to the surface of the array and an aryl bromide in solution. Both allyl acetate and air 

served as effective confining agents to quench the newly generated Pd(0) by oxidation before it 

could migrate away from the electrode of its origin.
28

 (Scheme 1.3) This work was accomplished 
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by Dr. Libo Hu in our group.  

 

Scheme 1.3 The site-selective Suzuki reaction on Microelectrode Array 

  

 

 

 

 

       

 

      Another more recent example is the site-selective ―Click-chemistry‖ developed by Dr. 

Jennifer Bartels.
29

 As shown in Scheme 1.4, copper sulfate (CuSO4) was added to the solution 

above an array. Selected electrodes were then used as cathodes in order to reduce the Cu(II) to 

Cu(I) and generate the catalyst needed for triggering a [3+2]-cycloaddition between an acetylene 

on the surface of the array and a solution-phase azide.  In this case, the solution above the array 

contained oxygen. The oxygen oxidized the Cu(I)-catalyst in solution back to the inactive Cu(II) 

before it could diffuse away from the electrodes used for its generation. In this way, the 

dissolved oxygen served as the confining reagent for the reaction.    

 

Scheme 1.4 The site-selective ―Click chemistry‖ on Microelectrode Array 
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1.4 Probing Ligand-Receptor Interactions via Impedance Experiment 

      As discussed above, our motivation for developing microelectrode arrays as platforms for the 

analysis of molecular libraries stems from a need to detect weak-binding interactions in ―real-

time‖. To this end, the use of electrochemical impedance experiments to measure the binding 

interactions appears ideal.
30,31

 In this experiment, the binding event is signaled by a redox couple 

in solution rather than a redox probe attached to the surface or one of the interacting partners. 

This is accomplished by treating a functionalized array (each unique member of a library by a 

unique addressable electrode in the array) with both the targeted receptor and a redox couple 

(illustrated with iron species in Scheme 1.5).  The array is then used as an anode and the remote 

wire as a cathode. The reduced species in the redox couple then migrates through the porous 

reaction layer on the array to the electrodes below where it is oxidized. The oxidized species in 

the redox couple migrates to the cathode wire and is reduced, maintaining the initial balance of 

reduced and oxidized species. The result is a current that can be measured at each electrode in 

the array. When a binding event occurs between the receptor in solution and a ligand on the 
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surface of the array, the resulting complex impedes the redox couple from reaching the 

underlying electrode. This results in a measurable drop in current at the neighboring electrode. 

      The pioneering progress in probing ligand-receptor interactions via impedance experiment 

will be explicated in Chapter 4.      

 

Scheme 1.5 General scheme of impedance experiment on Microelectrode Array 

 

 

1.5 Quality Control Tools on Microelectrode Array 

      As discussed previously, one of the key issues that raise concerns about both this work and 

the use of any small-molecule library is the quality of the molecular library over time. How does 

one know that a small-molecule library contains the structures that we think it does? To solve 

this problem, a method for the characterization of molecules located by any electrode in a 

microelectrode array is needed.  
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      Initial efforts along these lines took advantage of Time of Flight-Secondary Ion Mass 

Spectrometry (TOF-SIMS). This effort required the use of a linker to connect the molecule to be 

studied to the surface of the array that cleaved under the mass-spectrometry conditions faster 

than the polymer coating the array. Without the linker, only fragmentation of the polymer could 

be detected in the mass spectrometer. To this point, three such linkers have been developed in 

our lab.
29,32,33

 One was designed to undergo a McLafferty fragmentation, one took advantage of a 

pyrene group as a cleavage-site, and in the most recent case one took advantage of a retro [3+2]-

cycloaddition reaction. (Figure 1.7) While all of the linkers proved useful, they all suffered from 

two major disadvantages. 

 

 

 

 

Figure 1.7: Illustrate three types of Mass Spectrometry cleavable linkers 

       

      First and foremost, TOF-SIMS as a characterization technique requires destruction of the 

array and its surface. This disallows the technique as a method for conducting quality control 

studies on a molecular library that one wants to reuse. Secondly, molecular weight information 

collected by mass spectrometry is not useful for characterizing either the stereochemistry or 

purity of a molecule. Both are necessary for taking full advantage of an observed ligand-receptor 

interaction.   

      With this in mind, we sought a mild, yet powerful tool for reclaiming molecules from the 
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surface of an array. This work will be discussed in detail in Chapter 3. 

      In addition, quality-control methods on an array must also allow us to check the quality of 

the microelectrode array itself. Microelectrode arrays address individual electrodes by 

simultaneously turning on two wires that meet at the electrode. Each individual wire addresses 

either a row or a column of electrodes on the array. When the arrays develop problems they 

typically arise because wires on the array become short circuited with other wires. With such a 

damaged array, attempts to use one wire lead to a number of wires being activated with each new 

wire addressing either a whole row or whole column of electrodes on the array. The result is that 

whole regions of the array are activated. Since the software that tests the quality of an array 

indicates the number of electrodes that are active, it does not identify this problem where all of 

the electrodes become active. Hence, linkers used on the array must be fluorescently active so 

that they can be used to assess the quality of the array. For example, with a fluorescent linker, the 

placement of a building block by every electrode in the array can be done in two steps each one 

using a checkerboard pattern. After the first, the array can be examined to show that the array is 

working uniformly well across its entire surface. Efforts to build a cleavable, fluorescent linker 

will be discussed in Chapter 4.  

1.6 Scope of the Thesis 

      As mentioned earlier, our overall goal is to develop microelectrode arrays as a platform for 

monitoring ligand-receptor interactions in ―real-time‖. The work has focused on the development 

of synthetic methods for building addressable molecule libraries on an array and then detecting 

binding events that involve the molecules in the library.  

       With that backdrop, the primary focus of the research work highlighted in this thesis has 

been the development of new tools that will allow for quality control assessment of a molecular 
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library on an array. This primary effort has led to a number of supplemental studies as well.   

       In Chapter 2, a class of array-based reactions that utilize a site-selectively generated Lewis 

acid is described. The method allows for an array-based Diels-Alder reaction, a reaction that 

requires one to characterize both the structure and stereochemistry of the product generated.  The 

reaction fueled efforts to build cleavable linkers on the arrays.  

       In Chapter 3, a new strategy based upon the Kenner ―safety-catch‖ linker model will be 

discussed. The design and preparation of linker prototypes, experimental attempts to use various 

linkers, and the application of the linkers for solving structural questions on the arrays will be 

discussed.  

       In Chapter 4, a fluorescent label with modifiable functionalities will be discussed along with 

the efforts to use it in labeled linkers. Chemistry will show how the resulting linkers can be used 

to functionalize arrays in good quality prior to subsequent signaling experiments. The linkers are 

compatible with electrochemical-impedance experiments, an observation that allows us to 

effectively conduct proof-of-principle experiments that verify the utility of the arrays for probing 

molecular interactions in real-time. To conclude the chapter, ongoing efforts to build 

synthetically accessible, cleavable fluorescent linkers will be described.  

        In Chapter 5, a summary of the research accomplished is provided along with proposals that 

outline the potential use for the methodology discovered.  
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Chapter Two 

Site-Selective, Lewis-Acid Catalyzed Reactions on  

Microelectrode Arrays 

 

2.1 Lewis-Acid Catalyzed Reactions 

      As discussed in Chapter 1, microelectrode arrays are potentially powerful tools for 

monitoring the binding of molecular libraries to biological receptors in ―real-time‖. However, in 

order to capitalize on this potential, we must be able to synthesize the members of the molecular 

library in a manner that places each unique member of the library proximal to a unique, 

individually addressable microelectrode in the array. This is a daunting challenge since the arrays 

used for signaling contain up to 12,544 microelectrodes/cm
-2
. Our group‘s initial studies along 

these lines were outlined in Chapter 1. These efforts focused on moving reactions like Pd-

catalyzed Heck and Suzuki transformantions, Cu-catalyzed cycloaddition and coupling reactions, 

acid and base reactions, etc. These reactions can primarily be characterized as methods that 

allowed us to add things to the electrodes above an array. They are ideal for transferring a small 

library to the array, or adding newly synthesized molecules to an array-supported library of 

molecules. However, in an ideal scenario, we would also be able to build a library of molecules 

directly on the array in order to avoid the inefficiency associated with transferring even a 

moderate sized library to an array one member at a time. In connection with this idea, we sought 

to develop synthetic methods that would allow us to build the cyclic structures that typically 

form the core scaffold of a molecular library. To this end, the ability to employ a Lewis-acid 
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catalyst in a site-selective fashion was particularly intriguing. Lewis-acid catalysts are used to 

accelerate reactions, trigger cycloadditions, introduce stereocontrol elements into reaction 

transition states, and assemble reagents for multicomponent synthetic strategies. They have been 

used frequently to build functionalized ring skeletons. As an example, Sc(III)OTf3 has been used 

to conduct the multicomponent synthesis of tetrahydrofuran derivatives (Scheme 2.1).
1
 The 

products have three potential sites (R1, R2, R3) for diversification, 

 

Scheme 2.1 Sc(III) catalyzed multicomponent reaction  

 

 

a situation that would allow the product to be built into a small to medium size molecular library. 

In a similar manner, Sc(III)OTf3 can be used as a Lewis acid to catalyze the Diels-Alder reaction. 

Once again, the method is compatible with the construction of a central core-ring skeleton with 

sites that allow for diversification and the synthesis of a molecular library. But how can such 

Lewis-acid catalyzed reactions be run site-selectively on a microelectrode array?  

2.2 Confining Strategies 

The Sc(III)-catalyzed reaction illustrated in Scheme 2.1 provided an excellent starting point for 

developing an array-based Lewis acid catalyst. As with any microelectrode-array-based method, 

the key questions that needed to be addressed were 1) how to site-selectively synthesize the 

desired reagent using the microelectrodes, and 2) how to confine the reagent to the area 
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surrounding a selected electrode once it had been generated. For the reaction illustrated in 

Scheme 2.1, this meant that we needed a method of generating an active Sc(III) catalyst at 

desired microelectrodes, and then a method for destroying the Sc(III) in the solution above the 

array. In principle, this scenario could be accomplished by using the microelectrodes to juggle 

Sc-oxidation states. If an inactive Sc(I)-reagent was introduced into the solution above a 

microelectrode array, then the desired Sc(III)-catalyst could be generated at selected 

microelectrodes in an array by using the electrodes as anodes to oxidize Sc(I) to Sc(III). In 

solution, a reducing agent would be needed to convert the Sc(III)-catalyst back to the inactive 

Sc(I), and in so doing keep the newly generated active Sc(III) from migrating to neighboring 

electrodes. The chemistry outlined in Scheme 2.2 suggested that 2-phenylbenzthiazole might 

serve nicely as this solution-phase reducing agent.  

 

Scheme 2.2 A strategy for confinement 

 

 

      In the experiment illustrated, Sc(III) was used to mediate the oxidation of 2-

arylbenzothiazole by oxygen.
2
 Without the presence of the oxygen, the oxidation proceeds until 

the Sc(III) is consumed and then stops. The reaction completely converts the original Sc(III)-

reagent to a Sc(I)-derivative. Hence for a microelectrode-array-based reaction, one could in 

principle run the reaction outlined in Scheme 2.2 above an array and then use microelectrodes in 

the array in place of the oxygen in order to regenerate Sc(III) only where needed. 
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2.3 Site-Selective Lewis-Acid (Sc((III)) Catalyzed Reactions 

      In order to test whether such an approach can be used to site-selectively initiate reactions on 

a microelectrode array, a multicomponent reaction analogous to the chemistry illustrated in 

Scheme 2.1 was designed (Scheme 2.3). In this reaction, the agarose coating on a microelectrode 

array was used as the alcohol component in the reaction. The aryl aldehyde to be used was a 

pyrene derivative. Hence, a successful multicomponent reaction would place a fluorescent group 

onto the surface of the array. 

 

Scheme 2.3 Sc(III)-catalyzed tetrahydropyran synthesis 

 

 

      The reaction began by premixing a catalytic amount of Sc(OTf)3 with an excess of 2-

arylbenzothiazole in acetonitrile for 30 min. This was done to insure that all of the Sc(III) was 

reduced to Sc(I) prior to the start of the reaction. To this solution was then added the pyrene 

aldehyde, dihydrofuran, and m-nitroaniline along with tetramethylammonium nitrate as an 

electrolyte. A microelectrode array spin-coated with agarose was then submerged in the solution 

along with a remote Pt-wire that served as an auxiliary cathode. The Sc(III)-catalyst needed for 

triggering the multicomponent reaction was then produced at selected electrodes by cycling the 

electrodes on at a potential of +3.0 V vs. the remote Pt-wire cathode for a period of 0.7 s and 
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then off again for a period of 0.1 s. To generate the left image shown below in Figure 2.1, 800 

such cycles were used in a checkerboard pattern on an array having containing 1024 electrodes 

in a 1cm
2
 area (a 1K-array). The image was obtained by washing any excess pyrene aldehyde off 

of the chip following the reaction with excess amount of water and ethanol and then examining 

the array using a fluorescence microscope. In the image shown, the microelectrodes have a 

diameter of 95 microns. Clearly, the strategy for generating and confining a Sc(III) Lewis-acid 

catalyst on the 1K-array worked very well. In a similar manner (the operational differences were 

explicated in Chapter 1), the reaction was conducted on a 12K-array by pulsing current on 

selected electrodes. In this case, a checkerboard in a box pattern of electrodes was used as anodes. 

Once again, a high level of confinement was observed for the reaction (the right image in Figure 

2.1).  

      Unlike one-step site-selective chemistry developed before, these fluorescent patterns were 

not enough for us to claim success due to the complex nature of the reaction. A couple of control 

experiments were thus conducted. First of all, on 1K-array, when the same conditions were 

applied with either dihydrofuran or m-nitroaniline being removed, there was no fluorescence 

observed on the array after the washing steps. It indicated 1) the pyrene aldehyde could not be 

coupled to the surface directly under the condition and 2) each of the other reagents did play a 

role to produce the final pattern.  

 

 

 

 

Figure 2.1 Povarov-type multicomponent reactions on Microelectrode Arrays (Left: 1K-array; 

Right: 12K-array) 
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      Secondly, a parallel reaction was run in solution phase following the procedures reported. In 

this case, methanol was used to replace the role of agarose layer on the array.  It generated the 

target products with 3 diastereomers and a combined yield of 63%. It is worth pointing out that 1 

equivalent of Sc(III)OTf3 was used in solution to shorten the reaction time to 18 hours. (A 

typical reaction time length in the literature was 48 hours with only 20% Sc(III)) On the array, 

the actual concentration of catalyst generated in situ was even much larger than that in solution. 

The reaction would be accelerated significantly. It is the reason why it usually requires a lot less 

time to finish reaction on the array. Above all, with that couple of experiments, we gained 

confidence in that the fluorescent pattern was actually produced by the site-selective multi-

component reaction on the array.   

      With a successful confinement strategy for Sc(III) in place, attention was turned toward 

exploring the generality of the reaction. As mentioned above, Diels-Alder reactions have also 

been successfully catalyzed with Sc(III).
3
 To determine the feasibility of a site-selective Diels-

Alder reaction, a pyrene-labeled diene (Scheme 2.4) was prepared in four steps from 1-

pyrenebutanol. As a control, the diene was treated with N-methylmaleimide and 10 mole% 

Sc(OTf)3 in dichloromethane. The reaction afforded a 90% yield of the Diels-Alder adduct after 

12 h at room temperature. The details of the reaction are presented in the experimental section.  

      The microelectrode array-based reaction started with the placement of the dienophile onto the 

array proximal to each of the microelectrodes. This was accomplished by first synthesizing an 

NHS-activated ester from a maleimide-functionalized hexanoic acid and then placing the 

resulting molecule onto the surface of an array using the Vitamin B12  

 

Scheme 2.4 Preparation of the diene and test of the Diels-Alder reaction in solution  
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Reagents and Conditions: a) PCC, CH2Cl2, RT, 95%. b) Isopropenylmagnesium bromide, THF, 

0ºC-RT, 84%. c) PCC, CH2Cl2, RT, 90%. d) CH3PPh3Br, Sodium bis(trimethylsilyl)amide, THF, 

0ºC-RT, 74%. e) N-methylmaleimide, Sc(OTf)3, CH2Cl2, RT, 77%. 

 

mediated esterification chemistry developed previously. The dienophile was placed by every 

electrode in the array. The array was then treated with a premixed solution of Sc(OTf)3 and 2-

arylbenzothiozole in the same manner as described above. Into this mixture was added the 

pyrene-labeled diene and tetramethylammonium nitrate as an electrolyte.(Scheme 2.5) The 

reaction was conducted at selected electrodes in the array by turning the electrodes on at a 

potential of +3.0 V vs. a remote Pt wire for 0.5 s and then off again for 0.1 second. Three 

hundred such cycles were used. 

      Both a 1K- and a 12K-arrays were used. On the 1 K-array, a checkerboard pattern of 

microelectrodes was selected for the generation of the Sc(III)-catalyst. On the 12K-array, a 

checkerboard in a box pattern was selected (in a 12K-array the microelectrodes have a diameter 

of approximately 45 microns). Both arrays were imaged using a fluorescence  

 

Scheme 2.5 Sc(III) catalyzed Diels-Alder reaction on Microelectrode Array 
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microscope following the reaction and washing of the array. The images are shown in Figure 2.2. 

In both cases, the Diels-Alder reaction was beautifully confined to the selected microelectrodes 

demonstrating that the conditions developed for the multicomponent reaction are also applicable 

to the Diels-Alder reaction. 

 

 

 

 

 

 

 

 

Figure 2.2 The Diels-Alder reactions on Microelectrode Arrays (Left: 1K-array; Right: 12K-

array) 

 

      In principle, many other types of Lewis-acid catalyzed reactions can be performed in this 

manner. For example, consider the esterification reaction illustrated in Scheme 2.6, With the 

above Lewis-acid confining strategy, this acid-catalyzed esterification reaction would provide a 

complimentary approach to the base-catalyzed methods (see above) used previously for making 

ester linkages between a molecule and the surface of the array. 
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Scheme 2.6 A Sc(III)-catalyzed acyl-transfer reaction
4
 

 

 

      Prior to the moving this reaction to a microelectrode array, the same Sc(III)-catalyzed acyl-

transfer reaction was tested on a pyrene-labeled carboxylic acid and ethanol in dichloromethane 

solution. With the presence of both Sc(OTf)3 (10% equivalent) and para-nitrobenzoic anhydride, 

the desired ester was generated with 50% yield in only 2 hours. The control experiments were 

conducted by removing either Sc(OTf)3 or para-nitrobenzoic anhydride from the reaction system, 

no new product was generated given the same length of time. Again, considering one main 

difference between the reactions on array and in solution is that the active metal species 

generated on the array is formed in much higher concentrations than typically seen in solution-

phase reactions. In fact, on the array an excess of the ―catalyst‖ is generated at any given 

electrode. As a result, it would take a lot less time for starting materials on the surface to reach 

―maximum conversion‖. (The maximum conversion would be assumed when extending reaction 

time would no longer increase the fluorescence intensity observed.)    

   

Scheme 2.7 A Sc(III)-catalyzed acyl-transfer reaction on the array 
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      Accordingly, a catalytic amount of Sc(OTf)3 was premixed with excess 2-arylbenzothiazole 

in a dichloromethane solution for 30 minutes,  followed by the addition of 1-pyrenebutyric acid 

and p-nitrobenzoic anhydride. A microelectrode array was spin-coated with agarose, dried, and 

then submerged in the solution. Sc(III) was produced at selected electrodes in the array by using 

them as anodes. On the 1K-array, this was accomplished by setting the electrodes to a potential 

of + 3.0 V relative to the remote Pt-counter electrode for 0.5 s followed by 0.1 s with the 

electrode off. This cycling was repeated 600 times. For 12K-microelectrode array, 0.1 mL 

solution was used to cover the whole chip, followed by imposing +2.4V for 60s in a boxed 

check-board pattern. The success of the reactions is shown in Figure 2.3. Clearly, a 

checkerboard pattern of electrodes was used on the 1K-array and a checkerboard in a box pattern 

used on the 12K- array. The Sc(III)-catalyzed acylation reaction was well confined in both cases. 

Two different filters (specifications of those filters are detailed in experimental section) were 

chosen for 1K-array and 12K-array because varies in the density of pyrene-derivatives on the 

area could lead to shift in wavelengths of excitation and emission. Our experience tells us a 

bright red pattern usually indicates a larger amount of pyrene-derivatives loaded on certain area 

than a blue one. It means that placing more material onto the 12K-array by increasing the length 

of the experiment would lead to a bright pattern under the same filter used for observing 1K-

array. But such optimization does not make sense without a move to a more stable surface and 

away from our proof-of-principle practice coating (agarose).  
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Figure 2.3 The esterification on Microelectrode Arrays (Left: 1K-array; Right: 12K-array) 

 

2.4 A New Challenge 

      While the site-selective Sc(III)-catalyzed reactions appear to be very successful, they do lead 

to a very important question. The reaction products were only confirmed in two ways. First, one 

of the key components of the reaction was labeled with a fluorescent tag so that if the product 

formed it could be observed. Second, the surface reactions were repeated in solution by replacing 

the functional groups on surface with small molecules so that the product from the solution-

phase reaction could be fully characterized.  However, those methods do not address whether the 

presence of the surface alters the reaction. Does the surface reaction really give the same 

products as the solution-phase reaction?  

      For example, in the case of the multicomponent reaction the solution-phase reaction gives 

rise to a mixture of diastereomers. Is this true of the solid phase reaction, and if so was the ratio 

of products observed the same?  The same question can be asked about the Diels-Alder reaction. 

Are endo/exo ratios obtained for a reaction on the surface of an array really the same as those 

obtained in solution, especially when it is well known that the use of a sterically bulky 

dienophile can influence the Diels-Alder reaction? In the initial experiments, we avoided this 

issue with the use of a simple substrate. However, if we are going to be building molecular 

scaffolds for use in molecular libraries, then stereochemistry of the products generated will be a 

critical issue. While mass spectrometry data (TOF-SIMS) can help verify the overall structure of 
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the product, stereochemical questions of this nature remained out of reach.  

      A second problem arises from the use of the fluorescent tag. While we certainly want a 

fluorescent group for quality control of the array surface, it is problematic to place that 

fluorescent group into the molecule being constructed. Will the presence of the fluorescent tag 

either influence the reaction used to assemble the scaffold, or the biological binding properties of 

the ligands being assembled? Clearly, characterization of product formation by tagging the 

product is not desirable. A better method for characterization is needed.  

      Third, neither method addresses the purity of the product obtained. A fluorescent spot does 

not tell us about percent conversion or yield. For quality control of a library, this information is 

essential.  

      In short, more accomplished synthetic methods that lead to the assembly of more complex 

molecules increases our need to fully characterize the molecules synthesized. The success of the 

Sc(III)-catalyzed reactions drove the next phase of the project.  

2.5 Conclusion 

      In conclusion, Sc(III)-catalyzed reactions can be conveniently performed site-selectively on 

microelectrode arrays with the use of 2-arylbenzothiazole as a confining-agent.  Three different 

reactions were shown to be compatible with the method developed. The reactions represent a 

new, general class of site-selective reactions that involve Lewis-acid catalysis, and their 

existence dramatically expands our synthetic capabilities on the arrays. For example, the ability 

to conduct cyclo-addition reactions on the arrays provides us with the technology needed to 

rapidly assemble functionalized, cyclic structures by any electrode in an array.   

2.6 Experimental Procedures 
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2.6.1 General information of reagents and instruments 

      Chemical reagents and solvents were purchased from Sigma-Aldrich, Alfa Aesar, 

Mallinckrodt Baker, EMD Chemicals (Merck KGaA), and used without further purification 

unless otherwise noted. Dichloromethane (CH2Cl2) was distilled over calcium hydride. 

Anhydrous tetrahydrofuran (THF) was distilled over sodium benzophenone ketyl. 

Tetraethylammonium p-toluenesulfonate (Et4NOTs) was dried in an oven before use. Flash 

chromatography was carried out by using the silica gel (200-400 mesh) purchased from Dynamic 

Adsorbent, Inc.  

      All proton and carbon-13 nuclear magnetic resonance (
1
H and 

13
C NMR) spectra were 

recorded by a Varian Inova 600, a Varian Inova 500, or a Varian Mercury 300 in a deuterated 

chloroform (CDCl3) solvent with tetramethylsilane (TMS) as an internal standard unless 

otherwise noted. Infrared (IR) spectra were recorded by a Perkin Elmer Spectrum BS FT-IR 

instrument. High resolution electrospray ionization (ESI) mass spectra were obtained at the 

NIH/NCRR Mass Spectrometry Resource Facility at Washington University in St. Louis. 

      Fluorescence images were taken with a Nikon Eclipse E200 microscope connected to a 

Boyce Scientific, M-100 burner and a Nikon D5000 camera. CFW-BP01-Clinical-000 (Semrock) 

filter cube excitation 380-395 nm/emission 420-470 nm, ET-GFP (FITC/Cy2) (Chroma) filter 

cube excitation 450-490 nm, emission 500-550 nm and TxRed-A-Basic-000 (Semrock) filter 

cube excitation 540-580 nm, emission 590-670.  

      Microelectrode arrays were spin coated with a spin coater spin-coater MODEL WS-400B-

6NPP/LITE. 
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2.6.2 Syntheses and compounds 

 

4-(pyren-1-yl)butanal (2a) 

      Pyridinium chlorochoromate 1.292 g (1.5 equiv.) was suspended in 20mL methylene chloride 

and 1.097 g (4 mmol) 1-pyrenebutanol in 20 mL methylene chloride was rapidly added at room 

temperature. Black insoluble reduced reagent deposited out. After 2-3 hours‘ the oxidation, 

followed by TLC was complete, the black reaction mixture was dilluted with 5 volumes of 

anhydrous ether. The solvent was decanted, and the black solid was washed twice with ether. 

Product was isolated simply by filtration of the organic extracts with silica gel, and evaporation 

of the solvent at reduced pressure. The crude material was then further purified with a silica gel 

column using an eluant of 10% ethyl acetate in hexane to afford 1.03 g (95%) of desired product 

as pale yellow needle-like crystal. 
1
H NMR (CDCl3/300MHz) δ 9.80 (t, J=1.2 Hz, 1H), 8.30 (d, 

J=9.6 Hz, 1H), 8.15 (m, 7H), 7.84 (d, J=7.8 Hz, 1H), 3.38 (t, J=7.2 Hz, 2H), 2.57 (t, J=8.4 Hz, 

2H), 2.20 (m, 2H), 
13

C NMR (CDCl3/300MHz) δ 202.3, 135.6, 131.6, 131.0, 130.2, 128.9, 127.6, 

127.4, 126.9, 126.0, 125.2, 125.1, 125.0, 123.3, 43.5, 32.7, 24.1, IR (KBr) 3040, 2941, 2876, 

2821, 2721, 1722, 1603, 1182, 844, 759, 721, 682 cm
-1

. HRESI MS m/z calculated for (M+H)
+
 

273.1274, found 273.1276.  

 

2-methyl-6(pyren-1-yl)hex-1-en-3-ol (2b) 

O

H

OH
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      Isopropenylmagnesium bromide (21 mL of 0.5 M 3 equiv.) in tetrahydrofuran was cooled to 

0℃ before dropwise addition of a dry tetrahydrofuran solution of 0.960 g (3.5 mmol) 2a. The 

icebath was removed and stirring was continued at room temperature for 4 hours. The resulting 

mixture was cooled to 0 
o
C again and quenched with a saturated aqueous solution of ammonium 

chloride. The aqueous mixture was extracted three times with anhydrous ether (50 mL for each). 

The collected organic phase was dried over anhydrous sodium sulfate. Sillica gel column was 

utilized to isolate the crude product with 5% ethyl acetate in hexane. 0.924 g orange red oil was 

obtained with the yield of 84% after getting rid of solvent at reduced pressure. 
1
H NMR 

(CDCl3/300MHz) δ 8.27 (d, J=9.3 Hz, 1H), 8.02 (m, 7H), 7.86 (d, J=7.5 Hz, 1H), 4.94 (s, 1H), 

4.84(s, 1H), 4.12 (t, J=6.0 Hz, 1H), 3.36 (t, J=7.5 Hz, 2H), 1.90 (m, 2H), 1.75 (t, J=6.6 Hz, 2H), 

1.70 (s, 3H), 
13

C NMR (CDCl3/300MHz) δ 147.6, 136.9, 131.6, 131.1, 130.0, 128.8, 127.7, 

127.4, 127.4, 126.7, 125.9, 125.2, 125.2, 125.0, 124.9, 124.8, 123.6, 111.3, 76.0, 35.0, 33.5, 28.0, 

17.66, IR (KBr) 3390, 3039, 2938, 2862, 1416, 1182, 898, 842, 756, 718, 680 cm
-1

 HRESI MS 

m/z calculated for (M+Na)
+
 337.1568, found 337.1567, calculated for (M+K)

+
 353.1308, found 

353.1306. 

 

2-methyl-6-(pyren-1-yl)hex-1-en-3-one (2c) 

      Pyridinium chlorochoromate 0.808 g (1.5 equiv.) was suspended in 10mL methylene chloride 

and 0.781g (2.5 mmol) 2b in 20 mL methylene chloride was rapidly added at room temperature. 

Black insoluble reduced reagent deposited out. After 1-2 hours‘ the oxidation, followed by TLC 
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was complete, the black reaction mixture was dilluted with 5 volumes of anhydrous ether. The 

solvent was decanted, and the black solid was washed twice with ether. Product was isolated 

simply by filtration of the organic extracts with silica gel, and evaporation of the solvent at 

reduced pressure. The crude material was then further purified with a silica gel column using an 

eluant of 2.5% ethyl acetate in hexane to afford 0.702 g (90%) of desired product as white solid. 

1
H NMR (CDCl3/300MHz) δ8.33 (d, J=9.3 Hz, 1H), 8.12 (m, 7H), 7.86 (d, J=7.5 Hz, 1H), 5.90 

(s, 1H), 5.73 (s, 1H), 3.38 (t, J=7.5 Hz, 2H), 2.83 (t, J=6.0 Hz, 2H), 2.20 (m, 2H), 1.89 (s, 3H), 

13
C NMR (CDCl3/300MHz) δ 202.1, 144.8, 136.5, 131.2, 130.2, 129.1, 127.8, 127.6, 127.6, 

127.0, 126.1, 125.3, 125.2, 125.1, 125.0, 124.8, 123.8, 37.1, 33.1, 26.5, 18.0, IR (KBr) 3055, 

2950, 2921, 1681, 1601, 1508, 1427, 1310, 1090, 917, 847, 756, 678 cm
-1

 HRESI MS m/z 

calculated for (M+H)
+
 313.1592, found 313.1591, calculated for (M+Na)

+
 335.1412, found 

335.1411. 

 

1-(5-methyl-4-methylenehex-5-enyl)pyrene (2d) 

      Into the tetrahydrofuran solution of 2.14 g methyltriphenylphosphonium bromide (3 equiv.), 

6 mL of 1.0 M Sodium bis(trimethylsilyl)amide (3 equiv.) in tetrahydrofuran was added 

dropwise with the argon. The mixture solution was stirred for 30 minutes under the room 

temperature. The white sand-like solid suspended solution turned into orange clear one. 0.624 g 

(2.0 mmol) 2c in 20 mL tetrahydrofuran was added into the system slowly with the argon. The 

stirring was continued for another 4 hours. 50 mL saturated ammonium chloride solution was 



 41 

used to quench the reaction, followed by extracting the organic staffs with methylene chloride 

three times (30 mL for each time). The solution was dried with magnesium sulfate. Sillica gel 

column was utilized to isolate the crude product with hexane. 0.459 g pale orange oil was 

obtained with the yield of 74% after getting rid of solvent at reduced pressure. 
1
H NMR 

(CDCl3/300MHz) δ 8.27 (d, J=9.3Hz, 1H), 8.10 (m, 7H), 7.87 (d, J=7.8 Hz, 1H), 5.15 (s, 1H), 

5.07 (s, 1H), 5.03 (s, 1H), 4.97 (s, 1H), 3.36 (t, J=7.8 Hz, 2H), 2.48 (t, J=7.8 Hz, 2H), 2.05 (m, 

2H), 1.93 (s, 3H), 
13

C NMR (CDCl3/300MHz) δ 147.9, 142.9, 137.1, 131.7, 131.2, 130.0, 128.9, 

127.8, 127.5, 127.4, 126.8, 126.0, 125.4, 125.3, 125.0, 124.9, 123.7, 112.9, 112.6, 34.0, 33.6, 

31.1, 21.4, IR (KBr) 3039, 2937, 2937, 1596, 1488, 1457, 1416, 1181, 890, 841, 755, 707, 680 

cm
-1

 HRESI MS m/z calculated for (M+H)
+
 311.1794, found 311.1795. 

N
O

O

 

2,5-dimethyl-6-(3-(pyren-1-yl)propyl-3a,4,7,7a-tetrahydro-2H-isoindole-1,3-dione (2e) 

      Scandium triflate 0.492 g (0.1 equiv.) powder was added into 40mL anhydrous methylene 

chloride solution containing 0.310 g 2d. Dissolve 0.333 g N-methylmaleimide (3 equiv.) into 10 

mL anhydrous methylene chloride, which was transferred into diene solution with syringe drop 

by drop at the room temperature. The mixture solution was stirred for 12 hours. After being 

quenched by 50 mL brine, the aqueous layer was washed with 20 mL methylene chloride for 

three times, followed by being dried over anhydrous magnesium sulfate. The crude mixture was 

isolated by 20% ethyl acetate in hexane to afford 0.32 g target product with yield of 77%.  
1
H 
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NMR (CDCl3/300MHz) δ 8.12 (m, 8H), 7.83 (d, J=7.5 Hz, 1H), 3.21 (t, J=7.8 Hz, 2H), 2.95 (m, 

2H), 2.88 (s, 3H), 2.46 (t, J=14.1 Hz, 2H), 2.18 (m, 4H), 1.83 (m, 2H), 1.67 (s, 3H) δ 180.5, 

180.4, 136.7, 131.7, 131.1, 131.1, 130.0, 128.8, 128.2, 127.8, 127.5, 127.2, 126.8, 126.0, 125.3, 

125.2, 125.1, 124.9, 123.5, 40.2, 40.0, 33.3, 33.2, 30.8, 29.9, 29.2, 25.1, 19.52, IR (KBr) 3041, 

2940, 2857, 1698, 1433, 1382, 1283, 1182, 1150, 1020, 844, 722 cm
-1

 HRESI MS m/z calculated 

for (M+H)
+
 421.2036, found 421.2042 

2.6.3 Chemistry on Microelectrode Arrays 

O

O

 

Example site-selective Sc(III) catalyzed esterification reaction on agarose coated 1K- and 

12K- microelectrode arrays 

      A microelectrode array containing 1024 micro electrodes was spin coated at 2000rpm for 45 

seconds with 4.5% agarose in the solvent of 90% N,N-Dimethylformamide and 10% water. After 

drying the polymer for 1 hour, the microelectrode array placed with a circuit was inserted into 

the methylene chloride solution containing the mixture of 0.0144 g (0.005 mmol) 1-pyrenebuyric 

acid, 0.0049 g Sc(OTf)3 (0.2 equiv.), 0.0043 g 2-arylbenzothiolzole (0.4 equiv.), and 0.0047 g p-

nitrobenzoic anhydride (3 equiv.), which had been premixed sealed for 30 minutes. A platinum 

wire was also inserted into the solution as counter electrode. A checkboard pattern was 

programmed with 600 potential cycles, +3.0V for 0.5 s and 0 V for 0.1 s for each. After being 

washed with de-ionized water and 95% ethanol, the picture was obtained with a fluorescence 
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microscope.  

      Onto 12K- chips, 0.1 mL of the above solution was added. The voltage was set to +2.4 V for 

180 s in a small checkboard pattern.    

 

O

O

N4

O

O

 

Example coupling of the succinimide to agarose polymer on 1K-microelectrode arrays 

      A microelectrode array containing 1024 microelectrodes was spin-coated with 4% agarose at 

3000 rpm for 45 seconds and allowed to dry for 1 hour. Then 7.8 mg of N-succinmidyl-6-

maleimidocaproate was dissolved in DMF 100 μL. This was combined in a 1.5 mL Eppendorf 

tube with 3 mg of vitamin B12, and 6 mg of tetramethylammmonium nitrate and 1.4 mL of 

methanol. The microelectrode array was immersed in this solution and a reduction was 

performed on every electrode on the microelectrode array (a wholeboard pattern). The potential 

was set to -2.4 V for 0.5 s and 0 V for 0.1 s, 300 cycles. The microelectrode array was removed 

from solution and washed by de-ionized water, and ethanol. The array was immediately carried 

on to the following oxidation reaction. 

      On 12K-chips, 0.1mL of the above solution was added to cover all electrodes. A small check-

board pattern was imposed with -1.5 V for 60 s. 
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O

O

 

Example site-selective Sc(III) catalyzed Diels-Alder reaction on an agarose coated 1K- 

microelectrode array 

      A solution containing 0.0025 g Sc(OTf)3 (0.1 equiv.), 0.0022 g 2-arylbenzothiolzole (0.2 

equiv.) in 2.0 mL methylene chloride was premixed sealed for 30 minutes to let Sc(III) be 

reduced completely. 0.0016 g 4-(5-methyl-4-methylenehex-5-enyl)pyrene was added into the 

solution. The microelectrode array from the previous coupling reaction was immersed in this 

solution, being activated as anodes in a checkboard manner. The electrical potential cycle was set 

as: +3.0 V for 0.5 s and 0 V for 0.1 s. The cycle number was 300. The microelectrode array was 

washed following the previous procedures and visualized by the fluorescence microscopy. 

      For 12K-microelectrode array, 0.1 mL solution was used to cover the whole chip, followed 

by imposing +2.4 V for 60 s in a small check-board pattern. 
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Chapter Three 

Chemically Cleavable Linkers on Microelectrode Arrays 

 

3.1 Quality Control of an Addressable Molecular Library 

      The mission of turning microelectrode arrays into platforms that support addressable libraries 

requires a number of key steps. For example, site-selective reactions using a variety of mediators 

are needed in order to place or build molecules by individual microelectrodes in the array,
1-7

 a 

stable porous reaction layer for attaching molecules to the surface of the electrodes in an array is 

needed,
8
 and experiments that show the capability of the arrays for monitoring small molecule – 

receptor binding are needed (and will be discussed in details in the following chapter). In 

addition, there is the challenging task of quality control that is central to the use of any small-

molecule library. Simply put, how does one know that the molecule built or placed on a 

microelectrode array is really the molecule one thinks it is? 

      When our effort was started, the group had shown that the use of a mass-spectrometry 

cleavable linker allows TOF-SIMS experiments to be used for this purpose.
9-11

 Yet while this 

work was effective, it is also severely limited. First, the use of TOF-SIMS "sacrifices" the array, 

and second the use of mass spectrometry in general does not provide us with a handle to examine 

the purity or stereochemistry of molecules made on the arrays. Since we hope to use the arrays to 

probe the three-dimensional binding preferences of biological receptors, the inability to 

determine the stereochemistry of molecules on the arrays is particularly bothersome. Hence, an 

alternative approach that allows us to both fully characterize molecules on the array and retain 

the array for further biological studies is of utmost importance.  
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      One approach to this problem would be to develop a strategy that allows us to site-selectively 

recover molecules located on the surface of any microelectrode in the array. To accomplish this 

requires a linker between a molecule and the surface of the electrode that can be cleaved using 

the microelectrode itself. Such a linker would require two main features: 1) it needs to be stable 

to the chemistry used to build molecules libraries, but readily cleavable under mild conditions 

when needed, and 2) since each microelectrode in the array has only 20-50 fmole of material on 

the polymer coating its surface, it is best if the linker contains a label to aid in detection of the 

product by instruments like HPLC. The same label can be used to quantify the relative amounts 

of material at the various microelectrodes in the array. Molecules obtained from the array using a 

linker that can be characterized by independent synthesis. Because reactions on microelectrode 

arrays can be run at larger scales either in solution, or on solid supports, using identical 

conditions, the independently synthesized molecules needed for the characterization can be 

prepared in a straightforward fashion.  

3.2 “Safety-Catch” Linkers and Selective Cleavage Strategies  

      Our strategy capitalized on the use Kenner‘s ―safety-catch‖ linker method used for 

biomolecules on solid surfaces.
12

 In this approach, latent functionality (an alcohol or an amine) 

in a linker is masked while a desired target molecule is built on a solid support. The linker is 

tethered to the solid support with the use of an ester linkage. When the synthesis is complete, the 

functionality in the linker is unmasked using chemistry that is orthogonal to the methods used to 

synthesize the molecule. The newly released functional group reacts with the ester that attaches 

the linker to the solid support to form either a lactone or lactam, a transformation that cleaves the 

linker and the target molecule from the solid support. The strategy is illustrated for a potential 

array application in Scheme 3.1. In this example, the cleavage reaction was designed to form a 
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five-membered ring, a scenario that is consistent with rapid ring formation and hence rapid 

cleavage from the polymer coating the array.  

 

Scheme 3.1 ―Safety-Catch‖ strategy 

    

       

       

 

For this scenario to work, the linker needs to be functionalized with a substituent (R1) on the -

carbon of the ester. The substituent will provide a handle for attaching fluorescence active 

groups, the small molecules that will serve as members of a targeted molecular library, or both. 

The use of a protected amine in this position would be particularly attractive because it would 

provide a second site (R2) for locating a biological substrate or fluorescence label. 

      With a strategy in place, the search for protecting groups that can be removed with the site-

selective array chemistry available began.  Our first plan was to take advantage of the chemistry 

developed by Dr. Kesselring during his time in the group.
6
 Dr. Kesselring showed that ceric 

ammonium nitrate (CAN) can be manipulated on an array by changing the oxidation states of the 

cerium ion between Ce(IV) and Ce(III). An example of this chemistry is shown in Scheme 3.2. 

In this chemistry, a site-selectively generated Ce(IV)-oxidant was used to trigger the formation 

of an N-acyliminium ion intermediate from a silyl-substituted amide on an array. The reactive 

intermediate was then trapped with a pyrene-labeled alcohol. The oxidant was confined to the 
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electrodes selected for the oxidation by simply placing some of the same substrate use on the 

array into solution to serve as a confining agent.  

 

Scheme 3.2 Site-selective chemistry initiated by CAN on Microelectrode Array  

  

      In an attempt to capitalize on this chemistry, an alcohol group in a safety-catch linker was 

protected as a para-methoxylbenzyl ether moiety. A trial experiment to test the viability of this 

approach is shown in Scheme 3.3. In this case, oxidative cleavage of the protecting group would 

release the linker from the array.  A pyrene group was placed on the linker so that the cleavage 

reaction could be monitored by fluorescence. This pyrene group was installed with the use of a 

Heck reaction
3
 that took advantage of an olefin at the position alpha to the ester. 
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Scheme 3.3 Proposed PMB-type linker cleaved by CAN 

 

 

       

 

       

 

Unfortunately, this first approach failed.  The first two steps were successful, and led to a ―full- 

board‖ pattern of fluorescence on the array when each electrode in the array was used.  

Alternatively, a chosen pattern of fluorescence could be obtained by selecting electrodes in the 

array. However, the cleavage reaction did not selectively remove molecules from the array. 

Instead, all of the fluorescent spots on the array faded.  Fluorescence was lost even with very 

short reaction times. There clearly was a competing, uncontrolled reaction operating on the array 

that reduced fluorescence everywhere on the array. There were two possibilities for the 

observation. The first is that the Ce(III) is a good enough Lewis-acid to catalyze oxonium ion 

formation from the agarose polymer used to coat the array. A similar problem has been observed 

with both Pd(II) and Cu(II) reagents on the arrays.
11,13

 A second possibility was that the pyrene 

itself was sensitive to oxidation – even with a Ce(III) reagent. If that were the case, then the 

pyrene would get oxidized everywhere without any need for the electrolysis required to generate 

Ce(IV). To investigate this suggestion, cyclic voltammetry was used to assess the relative 

oxidation potentials of the 4-methoxybenzyl group and the pyrene.  The results are shown below 

in Figure 3.1.  
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Figure 3.1 Cyclic Voltammetry of the PMB-linker structures  

 

      The linkers with and without the pyrene attached were compared. Both CV‘s were run using  

a Pt-disk working electrode, a Pt-wire auxiliary electrode, Ag/AgCl as reference electrode, 0.1 M 

LiClO4 in CH3CN as the medium, and a sweep rate of 100 mV/s. The data showed that the peaks 

for the two groups overlapped. Hence, the oxidation would struggle to differentiate the groups. 

While this data did not explain the non-selectivity of what was happening on the array, it did not 

bode well for the synthetic step being proposed. While the potential difference is large enough 

that one might be able to selectively oxidize the 4-methoxybenzyl ether with a very careful 

electrolysis, the chance of accomplishing the task with a Ce(IV) reagent was remote. This data 

exposed a ―fatal‖ flaw with the strategy being taken. While an issue with Lewis-acid stability of 

the polymer can be readily fixed with the use of a more stable surface
8
, a lack of selectivity in the 

oxidation cannot be easily addressed.  
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      To address the above problem, one can consider two general possibilities. One is to change 

the fluorescent group being used. However, fluorescence tags typically are highly conjugated 

systems. Hence, the same problem with selectivity in the oxidation reaction might arise again.  

      The second option is to seek for an alternative protecting-group strategy that does not rely on 

an oxidation. A number of possibilities were available. Base, acid, Pd(0), and Cu(I) catalysts had 

all been used site-selectively on the arrays. Of these, base is typically used to make the ester that 

attaches the linker to the array, and Pd(0) and Cu(I) catalysts are commonly used in the 

construction of the small molecule libraries being assembled. That suggested the use of an acid-

cleavable protecting group on the linker.  

      To this end, our collaborators at Combimatrix Company had found that 1,2-

diphenylhydrazine is a great precursor for generating acid site selectively at electrodes in an 

array. This is done by oxidizing the hydrazine at the electrode in order to generate azobenzene 

and two equivalents of acid (Scheme 3.4).
5
 Confinement of the acid to the microelectrodes 

selected for the reaction was accomplished by using excess 1,2-diphenylhydrazine in the reaction. 

The excess hydrazine served as a base to neutralize any acid escaping from the region of the 

array surrounding the selected microelectrodes. They took advantage of this reagent and realized 

a short peptide synthesis by selectively removing a t-Boc from the N-terminus of the chain. 

Scheme 3.4 Protons generated site-selectively on Microelectrode Array  
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      By directly incorporating this scheme into our linker strategy, we set out to determine if the 

cleavage reaction could be accomplished in a site-selective fashion. A Boc-protected linker 

(Scheme 3.5) was selected as an initial substrate. Pyrene was used as the fluorescent group for 

monitoring the reactions on the array, and an amine chosen as the masked nucleophile for release 

on the array. The experiment was begun by placing the activated-ester proximal to every 

microelectrode in an agarose-coated 1K-array. 

Scheme 3.5 A Boc-protected chemistry cleavable linker on Microelectrode Array  

  

 

 

 

 

 

(1024 microelectrodes/cm
2
). This was accomplished using the previously developed 

electrogenerated-base procedure.
4
 The cleavage reaction was then performed by site-selectively 

generating acid on the array.
14

 
 
To this end, the array was submerged along with a remote Pt-wire 

into 1.5 mL of a methanol solution containing both 1,2-diphenylhydrazine and 

tetrabutylhexafluorophosphate electrolyte. A checkerboard-pattern of microelectrodes was then 

used as anodes to oxidize the diphenylhydrazine to form the desired acid. The oxidation was run 

by applying a potential of + 3.0 V to the selected microelectrodes relative to a remote Pt-wire in 

solution. The selected microelectrodes were turned on for a period of 0.5 s and off for a period of 

0.1 s for a total of 900 cycles. The success of the reaction was determined by a loss of 
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fluorescence by the selected microelectrodes. As can be seen in the image, a small amount of 

fluorescence did remain by the selected electrodes, but most of the substrate on the surface of the 

electrode was removed. No reaction was evident at the non-selected electrodes.  

      Of course, it is no longer adequate to simply say the reaction is working based upon a 

fluorescence-microscope image. The reason for the cleavable linker is so that we can obtain 

structural information. To prove that the molecule being released from the array was the 

expected lactam derivative, the compound was independently synthesized by mimicking the 

chemistry on the array in solution. This was done by treating the methyl ester derivative of the 

linker with trifluoroacetic acid to remove the t-Boc group and then triethylamine to trigger the 

cyclization. HPLC analysis was then used to compare the independently prepared standard with 

the material being removed from the array  

a)                                                                     b) 

 

 

 

 

 

c)                                                                        d)       
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Figure 3.2 HPLC test results. The chromatograms were obtained using a Discovery® HS C18, 

5µm; 25cm X 4.6mm column with a flow rate of 1mL/min. 70% methanol; 30% water was used 

as eluant with a 10.0 uL injection. A UV detector was used at 254nm. a) Independently 

synthesized lactam; b) The reaction solution prior to the electrochemical reactions; c) The 

reaction solution following the electrochemical reactions; d) Co-injection of c) and a). 

 

(Figure 3.2). Four HPLC chromatograms are shown. Figure 3.2b shows the HPLC trace 

obtained for the reaction solution prior to the electrochemical cleavage reaction. The two peaks 

observed arise from the electrolyte used for the reaction (retention time = 7.05 min) and the 

excess 1,2-diphenylhydrazine (retention time = 29.5 min) used as the confining agent for the 

electrolysis. Clearly, the peak with a retention time of 20.6 min in Figure 3.2c is the lactam 

indicating that the electrochemical cleavage reaction on the array did give rise to the expected 

lactam. The peak at 10.7 min in Figure 3.2c is thought to be a side-product derived from 

hydrolysis of the agarose surface coating the array.  

      With the success of the nitrogen-nucleophile-based system, attention was turned back toward 

examining the use of the oxygen-nucleophile-based system and establishing the generality of the 

method, both in terms of the nucleophile and the type of microelectrode array used. As in the 

failed case before, I wanted to put the linker onto the array and then demonstrate that the linker 

was compatible with conducting reactions by the electrodes prior to releasing the molecule from 

the surface. The plan started by placing 4-t-butyldimethylsiloxy-2-methylidene butanoic acid by 

each of the microelectrodes in an agarose-coated 12-K (12,544 microelectrodes/ cm
2
) array 

(Scheme 3.6).  This was accomplished by again capitalizing on a base-catalyzed coupling 

reaction between an activated ester and the agarose surface coating the array. As in the earlier 

experiments, the potential was held constant relative to the counter electrode. Each enoate on the 

array was then used as a substrate for a Heck reaction with bromopyrene. This placed a 
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fluorescent group by each of the microelectrodes in the array. The strategy was intriguing 

because the same strategy could be used for adding a variety different fluorescent groups and/ or 

biological probes to the linker. Using this chemistry, the nature of the linker on the array can be 

varied without building each linker independently and then transferring them one at a time to the 

array. Instead, they can be built directly on the array.  

 

Scheme 3.6 A lactone-based system 

 

 

 

 

 

 

 

 

 

       

      Cleavage of the linker from the array was accomplished using reaction conditions that were 

identical to those employed in the lactam case. In this case, an L-pattern (L for Linker) of 

electrodes was used to cleave the linker from the surface. The success of the reaction was 

monitored using a fluorescence microscope and can clearly be seen in the image provided. On 

the 12K-array, it does appear that the reaction did remove some of the groups on neighboring 

electrodes to the L-pattern. This problem can be addressed in the future by either further 
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optimization of the confinement conditions, or by spacing the members of a library on the array 

sufficiently far apart. For now, the latter strategy is considered fine since the libraries to be 

placed or made on the array will be smaller. Hence, there are a lot of extra electrodes.  

      To conclude this part of work, a "safety-catch" linker strategy has been used to site-

selectively cleave molecules from pre-selected, individual microelectrodes in a microelectrode 

array. Both amine and alcohol nucleophile strategies work well. The chemistry is compatible 

with arrays having either 1024 or 12,544 microelectrodes/ cm
2
. The use of the "safety-catch" 

linkers will allow for characterization of the molecules built by the electrodes in the array, and in 

this way opens door for doing quality-control analysis of the molecules in addressable molecular 

libraries. 

3.3 Characterization of Small Molecules Using “Safety-Catch” Linkers   

      The success of ―safety-catch‖ with the simple model system suggested that the technique 

would prove useful for characterizing reaction products generated on an array.  That suggestion 

refocused our attention on the array-based Diels-Alder reactions described in Chapter 2. The 

reactions are run by generating Sc(III) at selected electrodes in an array.
7
 The Sc(III) serves as a 

Lewis-acid catalyst for the cycloaddition reaction. It is confined to the selected electrodes with 

the use of a 2-arylbenzothiozole in solution. The reaction led to beautiful fluorescence patterns 

on the arrays. But did the pretty spots really represent the product suggested, and if so what was 

the stereochemical outcome of the reaction? Typically, Lewis-acid catalyzed Diels-Alder 

reactions predominately lead to endo-product, but does the surface of the array alter this result?  

Since we hope to build libraries on the arrays and not just transfer molecules to the arrays 

following their synthesis, answers to questions of this nature are critical. 
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      In order to answer questions about the Diels-Alder reaction, the linker needed to be modified 

with either a diene or a dienophile. The best way to make this change was to develop a synthetic 

approach to the linkers that would allow for the rapid incorporation of a variety of reactive 

groups. To this end, the chemistry outlined in Scheme 3.7 was pursued. Based on the model 

systems highlighted in Scheme 3.5, a protected amine was selected as the masked nucleophile 

for the linker. In the earlier model systems, the use of a masked amine led to a cleaner cleavage 

reaction. The synthesis started with an alkylation of the t-Boc protected lactam. The alkylation 

proceeded best when a more reactive allylic bromide electrophile was used. The alkylated lactam 

was hydrolyzed, the acid converted into an activated N-hydroxy succinimide ester, and the olefin 

hydrogenated. The TBS protecting group was removed by methanolysis during the 

hydrogenation step. The dienophile needed for the Diels-Alder reaction was then added using a 

Mitsunobu reaction.   

 

Scheme 3.7 Preparation of the dienophile 

      

 

 

 

 

 

Reagents and Conditions: a) LDA, BrCH2CH=CHCH2OTBS, -78 
o
C, 84%. B) LiOH, 
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THF/H2O (5:1), RT, 89%. c. N-hydroxysuccinimide, DCC, DMF, RT, 81%. d) H2/ Pd-C, MeOH, 

RT, 76%. e) DEAD, PPh3, neopentyl alcohol, maleimide, RT, 79%. 

       

      The diene needed for the array-based Diels-Alder reactions was prepared as outlined in 

Scheme 3.8. The diene was designed so that it contained the substituent needed to generate exo- 

and endo-products in the Diels-Alder reaction, the substituent to help populate the substrate 

conformation needed for the cycloaddition, and a fluorescent group for monitoring the progress 

of the reaction on an array.  

 

 Scheme 3.8 Preparation of the diene 

 

Reagents and Conditions: f) PCC, CH2Cl2, RT. g) (Z)-but-2-en-2-yllithium, THF, -78 
o
C. h) 

Dess-Martin Periodiane, CH2Cl2, RT. i) Ph3P=CH2, THF, RT, 46% from the alcohol. 

       

      The substrates for the Diels-Alder were used to conduct two solution-phase reactions 

(Scheme 3.9). The first utilized Sc(III) to catalyze the reaction. To this end, the activated ester 

containing the dienophile was treated with diene and 30 mole% of scandium(III) triflate in 

dichloromethane at room temperature. The mixture was stirred overnight. After washing the 

reaction with water, the reaction was dried over sodium sulfate, concentrated, and then treated 
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with a 7:3 dichloromethane and trifluoroacetic acid solution. Following this deprotection step, 

the reaction product was treated with triethylamine in order to deprotonate the ammonium salt 

and trigger lactam formation. 

      The reaction led to products that were isomeric with respect to the stereogenic atom on the 

lactam ring. Both products had endo-stereochemistry with respect to the Diels-Alder reaction. 

This stereochemistry was established using a NOESY experiment (Figure 3.3). By LC-MS, a 

single large peak was observed having the correct mass of the product. 

Scheme 3.9 Diels-Alder reactions with different conditions in solution 

 

Reagents and Conditions: j) Sc(OTf)3, CH2Cl2, RT, TFA, CH2Cl2, Et3N, RT, 71%. k) toluene,  

Reflux, TFA, CH2Cl2, Et3N, RT, 68%. 
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Figure 3.3 NOESY cross-peaks for assigning the endo-product 

       

      In the second solution-phase experiment, the Diels-Alder reaction was conducted thermally 

in the absence of the Lewis-acid. The rest of the conditions remained the same. This experiment 

was performed in order to generate a mixture of endo- and exo-stereoisomers and identify the 

exo-product. By LC-MS, two peaks having the correct mass for the product were observed in a 

ratio of 0.09:1 (Figure 3.3). Co-injection with the product from the Sc(OTf)3 catalyzed reaction 

showed that the major isomer formed was the endo-product. 

      With the independently synthesized products in place, attention was turned to the 

microelectrode-array reaction (Scheme 3.10). The process was started by using a solution of 6 in 

methanol/ DMF solvent to place the dienophile by each microelectrode in an array having 1024 

microelectrodes
.
cm

-2
. The reaction between the activated ester and the agarose polymer coating 

the surface of the array was catalyzed by base generated at the electrodes by the reduction of 

vitamin-B12.
15

 The Diels-Alder reaction was then conducted by treating the array with a Sc(I)-

reagent solution made by premixing Sc(OTf)3 and 2-arylbenzothiozole. To this mixture was 

added the diene and tetramethylammonium nitrate (electrolyte). The Diels-Alder reaction was 

then conducted at all of the microelectrodes in the array by setting each at a potential of +3.5 V 

vs. a remote Pt wire for 0.5 s and then turning each off again for 0.1 s. This was repeated for 600 

cycles. Cycling the electrodes in this manner was done in order to control the rate at which Sc(III) 
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was generated. Faster generation of Sc(III) damaged the agarose surface. The success of the 

Diels-Alder reaction at each of the electrodes was ascertained with the use of a fluorescence 

microscope. The image of the array following the Diels-Alder reaction is shown on the left in 

Scheme 3.10.  

Scheme 3.10 Diels-Alder reactions with a ―Safety-Catch‖ linker on Microelectrode Array 

 

 

  

 

 

 

 

 

      

      Characterization of the Diels-Alder product generated on the array then commenced by 

cleaving the product from one half of the electrodes. To do this, the array was submerged along 

with a remote Pt-wire into 1.5 mL of a methanol solution containing both 1,2-diphenylhydrazine 

and tetrabutylhexafluorophophate (electrolyte). As in the earlier reactions,
5
 excess hydrazine was 

used as a confining agent for the acid generated at the electrodes. A checkerboard pattern of 



 63 

electrodes was set at +3.0 V relative to the Pt-wire in solution for a period of 0.5 s and then off 

again for 0.1 s. The reaction was conducted for 900 such cycles. The solution above the array 

was then collected and the array imaged using a fluorescence microscope. The fluorescence 

image for the array following the cleavage reaction is shown on the right in Scheme 3.10.  

      The solution removed from the array was compared with the independently synthesized 

material using LC-MS. As in the case of the thermal solution-phase reaction, the array-based 

Diels-Alder led to both endo- and exo-products. The endo-product was again the major 

stereoisomer formed.  

 

 

 

Extracted Ion Chromotogram 

of [M+Na]
+ 

of 583.3 

[M+Na]
+

 

[M+H]
+

 

[M+Na]
+

 

[2M+Na]
+

 

Extracted Ion Chromotogram 

of [M+Na]
+ 

of 583.3 



 64 

 

Figure 3.4 a) Diels-Alder product from the solution-phase reaction with Sc(OTf)3 catalyst. b) 

Diels-Alder product from the solution-phase thermal reaction. c) Diels-Alder product removed 

from the microelectrode array as illustrated in Scheme 3.10 

 

 

      As can be seen in Figure 3.4, the ratio of exo- to endo-product was a little smaller 

(approximate ratio: 0.04/1) than that obtained for the thermal solution-phase reaction. However, 

the presence of the array did alter the stereochemical outcome of the Sc(III)-catalyzed reaction. 

The difference between the array-based reaction and the Sc(III)-catalyzed reaction in solution 

can be explained by noting that the stereochemistry of Diels-Alder reactions is typically 

controlled by two factors – stereoelectronic effects that favor the endo-product and steric effects 

that favor the exo-product. In the absence of the array, the current Sc(III)-catalyzed reaction is 

dominated by stereoelectronics leading to exclusively endo-product. However, when the array is 

present, the dienophile is larger. This increases the steric component of the reaction leading to 

some of the exo-product. In principle, the effect of the array can be reduced by increasing the 

length of the chain connecting the dienophile and the array. With the availability of a site-

selectively cleavable linker, such an experiment is now possible.  

3.4 Conclusion 

      One of the key challenges for any small molecule library is quality control. How do you 

know that the molecules in the library are what you think they are? This question is particularly 
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important for small molecule libraries that contain conformational probes. In such cases, both the 

composition and stereochemistry of the molecules need to be characterized. With the 

development of site-selectively cleavable ―safety-catch‖ linkers reported here, we now have the 

ability to carry out such characterization studies for small molecule libraries that are placed on 

microelectrode arrays. This ability has been demonstrated with the characterization of a Diels-

Alder reaction product synthesized on an array.  

      In addition, two features of the linker design are particularly attractive. First, the use of an 

electrochemically cleavable linker on a microelectrode array is extremely attractive because the 

same electrode used to monitor the binding properties of a molecule can also be used to isolate it 

for characterization. Second, the core structure of the linkers enables grafting a variety of 

functionalities on the side chain and thus great compatibility with reaction methodologies.    

      In this way, quality control efforts can be focused on the exact molecules giving rise to a 

biological signal of interest.         

3.5 Experimental Procedures 

3.5.1 General information of reagents and instruments 

      Chemical reagents and solvents were purchased from Sigma-Aldrich, Alfa Aesar, 

Mallinckrodt Baker, EMD Chemicals (Merck KGaA), and used without further purification 

unless otherwise noted. Dichloromethane (CH2Cl2) was distilled over calcium hydride. 

Anhydrous tetrahydrofuran (THF) was distilled over sodium benzophenone ketyl. 

Tetraethylammonium p-toluenesulfonate (Et4NOTs) was dried in an oven before use. Flash 

chromatography was carried out by using silica gel (200-400 mesh) purchased from Dynamic 

Adsorbent, Inc.  
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      All proton and carbon-13 nuclear magnetic resonance (
1
H and 

13
C NMR) spectra were 

recorded by a Varian Inova 600, a Varian Inova 500, or a Varian Mercury 300 in a deuterated 

chloroform (CDCl3) solvent with tetramethylsilane (TMS) as an internal standard unless 

otherwise noted. Infrared (IR) spectra were recorded by a Perkin Elmer Spectrum BS FT-IR 

instrument. High resolution electrospray ionization (ESI) mass spectra were obtained at the 

NIH/NCRR Mass Spectrometry Resource Facility at Washington University in St. Louis. 

      Fluorescence images were taken with a Nikon Eclipse E200 microscope connected to a 

Boyce Scientific, M-100 burner and a Nikon D5000 camera. CFW-BP01-Clinical-000 (Semrock) 

filter cube excitation 380-395 nm/emission 420-470 nm, ET-GFP (FITC/Cy2) (Chroma) filter 

cube excitation 450-490 nm, emission 500-550 nm and TxRed-A-Basic-000 (Semrock) filter 

cube excitation 540-580 nm, emission 590-670.  

      Analytical HPLC was performed on a HP 1100 instrument with a UV detector setting the 

working wavelength at 254nm. A Discovery® HS C18, 5µm, 25cm * 4.6mm column was 

employed. HPLC-Grade methanol and water were all purchased from Sigma-Aldrich USA and 

used as received. LC-MS samples were analyzed on a Thermo LTQ-FT hybrid mass 

spectrometer (Thermo Fisher, San Jose, CA). The instrument settings were: spray voltage, 3.5 

kV; sheath gas flow rate, 8 arb; capillary temperature, 275 °C; capillary voltage, 35 V; and tube 

lens, 110 V.  

      Microelectrode arrays were spin coated with a spin coater spin-coater MODEL WS-400B-

6NPP/LITE. 
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3.5.2 Synthesis of the chemically cleavable linkers  

 

4-(tert-butyldimethylsilyloxy)-2-methylenebutanal (3a) 

      In a flask, 2.63 g (0.013 mol) of 4-(tert-butyldimethylsilyl)oxy-1-butanol was dissolved in 50 

mL of DMSO and 11 mL (0.078 mol) of  triethyamine under an atmosphere of argon. Sulfur 

trioxide pyridine complex (4.20 g, 0.026 mol) was added as a solid over 20 min with the solution 

being stirred at the room temperature. After stirring for another 2h, 1.54 g (0.016 mol) of N,N- 

dimethylmethyleneiminium chloride was added in one portion. After stirring overnight at rt, the 

reaction mixture was poured into a stirred biphasic mixture of cold saturated aqueous NaHCO3 

and diethyl ether. Once the bubbling stopped, the organic layer was separated and then washed 

with water and brine. The product was purified by chromatography through silica gel using 5% 

diethyl ether in hexane as eluant to afford 2.06 g (74%) of a yellow oil. 
1
H NMR 

(CDCl3/300MHz) δ 9.53 (s, 1H), 6.21 (AB q, 2H, ∆γ=0.30 Hz, J=0.90 Hz), 3.70 (t, J=6.3 Hz, 

2H), 2.47 (t, J=6.3 Hz, 2H), 0.87 (s, 9H), 0.02 (s, 6H), 
13

C NMR (CDCl3/300MHz) δ 194.5, 

147.1, 135.8, 61.0, 31.6, 25.9, 22.6, 14.1, -5.4, IR (KBr) 2955, 2928, 2885, 2857, 2341, 1693, 

1472, 1255, 1101, 925, 835, 776, 668 cm
-1

. HRESI MS m/z calculated for (M+Na)
+
 237.1287, 

found 237.1285. 

 

4-(tert-butyldimethylsilyloxy)-2-methylenebutanoic acid (3b) 
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      In a flask, 2.06 g (9.6 mmol) of 3a was dissolved in 10 mL of t-butanol and 4 mL of 2-

methyl-2-butene. The solution was gently stirred and maintained below 20 
o
C with an ice-water 

bath, another solution of 80% sodium chlorite and NaH2PO4 in 7 mL water was added dropwise 

over O.5 h. After 18h, the t-butanol was evaporated and the residue diluted with water. The 

solution was acidified with 50% H3PO4 in water from pH=7 to pH=3, and then the product 

extracted with dichloromethane and washed with 2 N aqueous citric acid and brine. The 

compound was further purified by chromatography using silica gel as the stationary phase and 20% 

diethyl ether in hexane as the eluant. 1.92g (87%) yellow crystal was collected. 
1
H NMR 

(CDCl3/300MHz) δ 6.04 (AB q, 2H, ∆γ=0.62 Hz, J=1.5 Hz), 3.75 (t, J=6.6 Hz, 2H), 2.53 (t, 

J=6.6 Hz, 2H), 0.88 (s, 9H), 0.04 (s, 6H), 
13

C NMR (CDCl3/300MHz) δ 172.6, 137.0, 129.3, 

61.9, 35.0, 25.9, 18.3, -5.4, IR (KBr) 3000, 2955, 2887, 2885, 2739, 1697, 1628, 1439, 1256, 

1101, 930, 836, 776 cm
-1

. HRESI MS m/z calculated for (M+Na)
+
  253.1236, found 253.1239. 

 

Methyl 4-(tert-butyldimethylsilyloxy)-2-methylenebutanoate (3c) 

      Compound 3b (230.38 mg, 1 mmol) and 167 mg (2 mmol) sodium bicarbonate were 

dissolved into 10 mL of DMF. Iodomethane (0.25mL, 4 mmol) was added dropwisely at room 

temperature. After being stirred overnight, the reaction was quenched with saturated ammonium 

chloride  and then extracted with ethyl acetate and washed with water and brine. 222.36 mg 

(91%) product was chromatographed through silica gel. The column was eluted with 5% diethyl 

ether in hexane. 
1
H NMR (CDCl3/300MHz) δ 5.90 (AB q, 2H, ∆γ=0.58 Hz, J=0.90 Hz), 3.73 

(s, 3H), 3.71 (t, J=6.6 Hz, 2H), 2.51 (t, J=6.6 Hz, 2H), 0.86 (s, 9H), 0.01 (s, 6H), 
13

C NMR 
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(CDCl3/300MHz) δ 167.7, 137.5, 127.1, 62.0, 51.9, 35.7, 26.1, 18.5, -5.2, IR (KBr) 2954, 2929, 

2857, 1724, 1631, 1439, 1256, 1156, 1100, 929, 835, 776 cm
-1

. HRESI MS m/z calculated for 

(M+Na)
+
  267.1393, found 267.1381. 

 

(E)-methyl 4-(tert-butyldimethylsilyloxy)-2-(pyren-1-ylmethylene)butanoate (3d) 

      Pd(OAc)2 (33.6 mg, 0.15 mmol), 322.4 mg of Bu4NBr (1.0 mmol) and 157.4 mg of triphenyl 

phosphine (0.6 mmol) were mixed in a pre-dried and argon-filled 50 mL flask equipped with a 

condenser. Compound 1 c (122.18 mg, 0.5mmol) was dissolved into a mixture of 9 mL DMF, 1 

mL triethyl amine, and 1 ml water in a second flask. The solution was degassed by bubbling 

argon though it for 5 min, and then immediately transferred into the pre-mixed solids. After 

being stirred overnight at 70 
o
C, the reaction was quenched with 1 M HCl that was added 

dropwise until the pH of the solution was around 4. The organic compounds were extracted with 

dichloromethane three times and washed with brine. The solution was concentrated and then 

chromatographed through a silica gel column using a gradient eluant of 1%, 2% and 3% ethyl 

acetate in hexane to afford 133.9 mg (60%) of the pure product. 
1
H NMR (CDCl3/300MHz) δ 

8.59 (s, 1H), 8.22-7.99 (m, 9H), 3.94 (s, 3H), 3.84 (t, J=6.6 Hz, 2H), 2.79 (t, J=6.6 Hz, 2H), 0.84 

(s, 9H), -0.017 (s, 6H), 
13

C NMR (CDCl3/300MHz) δ 169.1, 140.8, 132.5, 132.0, 131.9, 131.5, 

130.7, 129.7, 128.5, 128.3, 127.9, 127.5, 126.7, 126.1, 126.1, 125.3, 125.1, 124.6, 62.6, 52.7, 
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32.0, 26.5, 19.0, -4.8, IR (KBr) 2952, 2927, 2854, 1711, 1434, 1259, 1118, 1092, 837, 776 cm
-1

. 

HRESI MS m/z calculated for (M+Na)
+
 467.2019, found 467.2009. 

 

 (E)-3-(pyren-1-ylmethylene) dihydrofuran-2(3H)-one (3e) 

      Compound 3d (89.27 mg,0.2 mmol) was dissolved in 5 mL of methanol. One drop of HCl 

was added at room temperature. After being stirred for 8 h, the reaction was quenched with 

CaCO3, and stirred until the bubbling stopped. The reaction mixture was filtered, the solvent 

removed by evaporation, and then the resulting residue diluted with ether and washed with 1% 

Na2CO3, water and brine. The organic layer was concentrated in vacuo and then 

chromatographed through silica gel using 20% ethyl acetate in hexane as eluant to afford 38.8 

mg (65%) of the desired product. 
1
H NMR (CDCl3/300MHz) δ8.64 (t, J=2.7 Hz, 1H), 8.44 (d, 

J=9 Hz, 1H), 8.27-8.03 (m, 8H), 4.52 (t, J=7.2 Hz, 2H), 3.36 (dt, J=2.7 Hz, 7.2Hz, 2H), 
13

C 

NMR (CDCl3/300MHz) δ 172.4, 137.6, 133.9, 132.2, 131.2, 130.7, 130.2, 128.8, 128.7, 127.2, 

126.4, 126.0, 125.1, 125.6, 125.6, 124.6, 122.9, 65.6, 27.7, NOESY (CDCl3 /600MHz)  cross 

peaks between δ 3.56 and 4.52, 3.56 and 8.19, and 8.42 and 8.64 confirmed the configuration 

of the tri-substituted vinyl group, IR (KBr) 3400, 2916, 1743, 1636, 1559, 1540, 1218, 1183, 

1028, 844, 668 cm
-1

. HRESI MS m/z calculated for (M+Na)
+
 321.0886, found 321.0886.   
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Tert-butyl 2-oxo-3-(pyren-1-ylmethyl) pyrrolidine-1-carboxylate (3f) 

      Diisopropyl amine (0.3 mL, 2.2 mmol) was dissolved in 20 mL of anhydrous THF. The 

solution was cooled to -78
o
C and 1.25 mL (2 mmol) of a 1.6 M n-BuLi in hexane solution was 

added dropwisely. The mixture was stirred for 30 min before adding 370.4 mg (2 mmol) of 1-

(tert-butoxycarbonyl)-2-pyrrolidinone. The reaction was stirred at -78
o
C for another 30 minutes 

before slowly adding a solution of 1.18 g (4 mmol) 1-(bromomethyl)pyrene in 10 mL of cold 

anhydrous THF. The mixture was stirred at -78 
o
C for 7 h and then quenched with saturated 

ammonium chloride. The reaction was diluted with ethyl acetate and washed with water. The 

organic phase was concentrated in vacuo and then chromatographed through silica gel using a a 

gradient eluant from 15% to 20% ethyl acetate in hexane to afford 695.1 mg (87%) of the 

alkylated product. 
1
H NMR (CDCl3/300MHz) δ 8.32-7.85 (m, 9H), 4.22 (A in ABX, JAB=13.8 

Hz, JAX=3.6 Hz, 1H), 3.73 (m, 1H), 3.47 (m, 1H), 3.18 (B in ABX, JAB=13.8 Hz, JBX=10.5 Hz, 

1H), 3.06 (m, 1H), 1.84 (m, 2H), 1.56 (s, 9H),  
13

C NMR (CDCl3/300MHz) δ 175.7, 150.6, 

133.3, 131.6, 131.0, 130.6, 129.2, 129.0, 128.0, 127.9, 127.6, 127.2, 126.2, 125.4, 125.2, 125.0, 

124.6, 123.2, 83.2, 46.1, 44.7, 34.2, 28.3, 24.7, IR (KBr) 3468, 3041, 2977, 2930, 1779, 1744, 

1712, 1366, 1314, 1249, 1151, 844, 722 cm
-1

. HRESI MS m/z calculated for (M+H)
+
 400.4872, 

found 400.4868, calculated for (M+Na)
+
 422.4698, found 422.4691.   
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Methyl 4-(tert-butoxycarbonylamino)-2-(pyren-1-ylmethyl)butanoic acid (3g) 

      To a solution of 360 mg (0.9 mmol) 3f in a mixture of 10 mL THF and 2 mL of water was 

added 60 mg (2.25 mmol) of LiOH. After stirring overnight, the reaction solution was 

concentrated in vacou and diluted with water. The aqueous solution was acidified with 

CH3COOH to pH=4~5 and then extracted with ethyl acetate. The combined organic layers were 

washed with brine and dried over sodium sulfate. The solvent was removed by distillation under 

reduced pressure to afford 345.3 mg (92%) of the crude product.  
1
H NMR (CDCl3/300MHz) δ 

8.30-7.80 (m, 9H), 4.66 (bs, 1H), 3.87-3.71 (m, 1H), 3.50-3.32 (m, 1H), 3.26-2.87 (m, 3H), 1.94-

1.83 (m, 1H), 1.60-1.50 (m, 1H), 
13

C NMR (CDCl3/300MHz) δ 179.9, 156.6, 133.3, 131.7, 

131.5, 131.1, 131.0, 130.5, 129.2, 128.3, 127.8, 127.6, 127.1, 126.1, 125.2, 125.1, 124.9, 123.3, 

79.8, 36.8, 36.1, 36.0, 32.6, 28.5, IR (KBr) 3338, 3041, 2930, 2975, 1702, 1508, 1366, 1247, 

1167, 844, 731cm
-1

. HRESI MS m/z calculated for (M+H)
+
 418.5076, found 418.5075, 

calculated for (M+Na)
+
 440.4896, found 440.4891.   
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3-(pyren-1-ylmethyl) pyrrolidin-2-one (3h) 

This compound was prepared in one of two ways: 

1) 3g 41.9 mg was dissolved in 10 mL of DMF and then 150 mg (>2 equiv.) of sodium 

bicarbonate added. Iodomethane (0.23 mL, >4 equiv.) was added into the stirred suspended 

solution and the reaction stirred overnight. The reaction was quenched with saturated ammonium 

chloride, the layers separated, and the aqueous phase extracted with ethyl acetate. The combined 

organic layers were washed with water and brine, dried over MgSO4, and concentrated in vacuo . 

The crude product was purified by chromatography through silica gel using 20% diethyl ether in 

hexane as eluant. The purified product was dissolved in a mixed solution of CH2Cl2: CF3COOH 

(7:3), stirred for 30 min at room temperature, and an excess of triethylamine added. The mixture 

was stirred for an hour before being quenched with a mixture of saturated ammonium chloride 

and ethyl acetate. The pH of the solution was found to be about 5~6.  This product was 

chromatographed through silica gel using ethyl acetate as eluant to afford 25.3 mg (85%) of the 

desired product.  

2) Compound 3f (40 mg, 0.1 mmol) was de-protected by treating it with a solution of 

CH2Cl2:CF3COOH (7:3) for 30 min. The reaction was quenched with ice water, the layers 

separated, and the organic phase washed with sodium bicarbonate. The aqueous layers were 

extracted with ethyl acetate. The combined organic layers were concentrated in vacuo and the 

resulting residue chromatographed through a silica gel column to afford 27.8mg (93%) of the 

pure product. 

1
H NMR (CDCl3/300MHz) δ 8.40-7.88 (m, 9H), 6.40 (bs, 1H), 4.17 (A in ABX, JAB=14.1 Hz, 

JAX=3.9 Hz, 1H), 3.25 (m, 3H), 2.95 (m, 1H), 1.96 (m, 2H) 
13

C NMR (CDCl3/300MHz) δ 
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179.8, 134.0, 131.6, 131.1, 130.4, 129.1, 127.9, 127.8, 127.7, 127.1, 126.2, 125.4, 125.3, 125.2, 

125.1, 125.0, 123.4, 43.2, 40.6, 34.3, 27.7, IR (KBr) 3219, 2998, 2987, 2875, 2874, 2778, 1644, 

1504, 1438, 1422, 1332, 1258, 1119, 1073, 836, 779 cm
-1

. HRESI MS m/z calculated for 

(M+H)
+
 300.1382, found 300.1383, calculated for  (M+Na)

+
  322.1208, found 322.1202. 

Preparation of the chemically cleavable linker with the dienophile attached 

 

(Z)-tert-butyl 3-(4-(tert-butyldimethylsilyloxy)but-2-enyl)-2-oxopyrrolidine-1-carboxylate 

(3i)  

      Diisopropyl amine (0.6 mL, 4.4 mmol) was dissolved in 20 mL of anhydrous THF. The 

solution was cooled to -78
o
C and 2.5 mL (4 mmol) of a 1.6 M n-BuLi in hexane solution was 

added dropwisely. The mixture was stirred for 30 min before adding 740.8 mg (4 mmol) of 1-

(tert-butoxycarbonyl)-2-pyrrolidinone. The reaction was stirred at -78
o
C for another 30 minutes 

before slowly adding a solution of 1.06 g (4 mmol) (Z)-(4-bromobut-2-enyloxy)(tert-

butyl)dimethylsilane in 10 mL of cold anhydrous THF. The mixture was stirred at -78 
o
C for 7 h 

and then quenched with saturated ammonium chloride. The reaction was diluted with ethyl 

acetate and washed with water. The organic phase was concentrated in vacuo and then 

chromatographed through silica gel using a an eluant of 15% ethyl acetate in hexane to afford 

1.24 g (84%) product. 
1
H NMR (CDCl3/300MHz) δ 5.65-5.56 (m, 1H), 5.42-5.33 (m, 1H), 

4.18 (d, J= 6.0 Hz, 2H), 3.75-3.68 (m, 1H), 3.57-3.48 (m, 1H), 2.63-2.40 (m, 2H), 2.28-1.98 (m, 

2H), 1.75-1.57 (m, 1H), 1.49 (s, 9H), 0.85 (s, 9H), 0.02 (s, 6H) ppm; 
13

C NMR (CDCl3/300MHz) 
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δ 175.0, 150.2, 132.2, 126.4, 82.7, 59.1, 44.3, 43.5, 28.1, 27.9, 25.8, 23.5, 18.2, -5.2 ppm; IR 

(KBr) 2930, 2856, 1786, 1749, 1715, 1472, 1367, 1318, 1253, 1153, 1088, 837, 777 cm
-1

. 

HRESI MS m/z calculated for (M+Na)
+
 392.2229, found 392.2229.   

 

(Z)-2-(2-(tert-butoxycarbonylamino)ethyl)-6-(tert-butyldimethylsilyloxy)hex-4-enoic acid 

(3j)
16

 

      To a solution of 1.11 g (3 mmol) 3i in a mixture of 20 mL THF and 5 mL of water was added 

0.21 g (9 mmol) of LiOH. After stirring overnight, the reaction solution was concentrated in 

vacuo and diluted with water. The aqueous solution was acidified with CH3COOH to pH=4~5 

and then extracted with ethyl acetate. The combined organic layers were washed with brine and 

dried over sodium sulfate. The solvent was removed by distillation under reduced pressure to 

afford 1.03 g (89%) of the crude product.  
1
H NMR (CDCl3/300MHz) δ 10.60-9.50 (bs, 1H), 

6.50- 6.09 (bs, 0.5H), 5.59 (m, 1H), 5.39 (m, 1H), 4.96-4.68 (bs, 0.5H), 4.21 (d, J= 6.0 Hz, 2H), 

3.16 (m, 2H), 2.40 (m, 2H), 2.26 (m, 1H), 1.71 (m, 2H), 1.43 (s, 9H), 0.86 (s, 9H), 0.06 (s, 9H) 

ppm, 
13

C NMR (CDCl3/300MHz) 180.0, 132.4, 126.8, 79.6, 59.6, 43.0, 38.8, 32.0, 30.3, 28.6, 

26.1, 25.8, 18.5, -4.9 ppm, IR (KBr) 3334, 2930, 2857, 1710, 1519, 1471, 1409, 1367, 1252, 

1171, 1089, 837, 777, 667 cm
-1

. HRESI MS m/z [M+H]
+
 found 388.2506, within 2 ppm of the 

theoretical value. 
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(Z)-2,5-dioxopyrrolidin-1-yl 2-(2-(tert-butoxycarbonylamino)ethyl)-6-

(tertbutyldimthylsilyoxy) hex-4-enoate (3k) 

      A round bottom flask was charged with 968 mg 3j (2.5 mmol), 316 mg N-hydroxyl 

succinimide (2.75 mmol), and 619 mg DCC (3 mmol). 7 mL DMF was then added into the flask 

to dissolve the solid mixture. After being stirred at room temperature overnight, the reaction 

mixture was poured into 5 % LiCl aqueous solution, followed by being extracted with EtOAc. 

The collected organic layer was further washed with saturated NaCl aqueous solution to get rid 

of most of DMF. The concentrated organic stuff was then loaded onto the chromatography. A 

solution of 30 % EtOAc in Hexane was employed to separate the crude products. 981 mg (81 %) 

pure product was yielded.  
1
H NMR (CDCl3/300MHz) δ 5.64 (m, 1H), 5.40 (m, 1H), 4.98 (bs, 

1H), 4.18 (m, 1H), 3.18 (m, 2H), 2.79 (s, 4H), 2.73 (m, 1H), 2.41 (m, 2H), 1.84 (m, 2H), 1.38 (s, 

9H), 0.85 (s, 9H), 0.02 (s, 6H) ppm,  
13

C NMR (CDCl3/300MHz) 170.6, 169.2, 156.2, 133.2, 

125.6, 79.4, 59.4, 40.8, 38.3, 32.1, 30.0, 28.6, 26.1, 25.8, 18.5, -5.0 ppm, IR (KBr) 3305, 2730, 

2657, 1749, 1701, 1456, 1409, 1297, 1202, 1089, 839, 734, 657 cm
 -1

. HRESI MS m/z of 

[M+Na]
+
 found 507.2489, within 2 ppm of the theoretical value. 
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2,5-dioxopyrrolidin-1-yl 2-(2-(tert-butoxycarbonylamino)ethyl)-6-hydroxyhexanoate (3l)
17

 

      A 25 mL pear-shaped flask was pre-dried before being charged with 960 mg 3k (2 mmol) 

and 10 mL anhydrous Methanol. The solution mixture was bubbled with Argon for 5 minutes. In 

another 25 mL round bottom flask, 780 mg Palladium, 10 % wt. on activated carbon was 

weighed under being protected with Argon. Then, the bubbled solution above was carefully 

transferred into the flask with Pd/C in it, under Argon as well. After being de-gassed, Hydrogen 

gas was slowly added into the system with a balloon attached. The mixture with the hydrogen-

filled balloon was stirred for 5 hours before being filtered with celite pad, and washed with 

EtOAc. A chromotography with silica gel was used to purify the product. A solvent mixture of 

50 % EtOAc in Hexane was used to wash 566 mg (76 %) pure compound off.  
1
H NMR 

(CDCl3/300MHz) δ 4.97 (bs, 1H), 3.64 (t, J= 6.0 Hz, 2H), 3.36-3.08 (m, 2H), 2.83 (s, 4H), 

2.75 (m, 1H), 1.97-1.46 (m, 9H), 1.42 (s, 9H) ppm, 
13

C NMR (CDCl3/300MHz) 171.3, 169.6, 

156.3, 79.4, 62.3, 40.7, 38.3, 32.5, 32.3, 31.8, 28.6, 25.8, 23.2 ppm, IR (KBr) 3385, 2976, 2939, 

2868, 1810, 1780, 1738, 1697, 1520, 1366, 1208, 1170, 1067, 733, 647 cm
-1

. HRESI MS m/z of 

[M+Na]
+
, found 395.1784, within 2 ppm of the theoretical value. 

 

2,5-dioxopyrrolidin-1-yl 2-(2-(tert-butoxycarbonylamino)ethyl)-6-(2,5-dioxo-2,5-dihydro-

1H-pyrrol-1-yl)hexanoate (3m)
18
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      0.45 mL solution of 40 % Diethyl azodicarboxylate (1 mmol) in Toluene was mixed with 260 

mg PPh3 in 10 mL THF at room temperature, followed by being added in 372.4 mg (1 mmol) 3l. 

96 mg (1 mmol) and 44.5 mg (0.5 mmol) neopentyl alcohol were then poured into the mixture. 

The solution was left stirred overnight before being concentrated under reduced pressure. The 

mixture was separated by silica chromatography with 50 % EtOAc in Hexane. The pure 

compound was afforded as 357 mg (79 %). 
1
H NMR (CDCl3/300MHz) δ 6.68 (s, 2H), 4.92 (bs, 

1H), 3.53 (t, J= 6.0 Hz, 2H), 3.33-3.12 (m, 2H), 2.83 (s, 4H), 2.71 (m, 1H), 1.94-1.56 (m, 7H), 

1.43 (s, 9H) ppm, 
13

C NMR (CDCl3/300MHz) 171.1, 171.0, 169.0, 156.2, 134.2, 79.4, 40.8, 38.4, 

37.6, 32.7, 31.7, 28.6, 28.4, 25.8, 24.2 ppm, IR (KBr) 3385, 2977, 2941, 2868, 1739, 1705, 1517, 

1410, 1366, 1207, 1170, 1066, 829, 732, 695cm
-1

. HRESI MS m/z of [M+Na]
+
 found 474.1829, 

within 4 ppm of the theoretical value. 

Preparation of the pyrene labeled diene 

 

4-(pyren-4-yl)butanal (2a) 

      The spectra of the compound were in accordance with the one reported before.
7
 

 

(E)-3-methyl-7-(pyren-1-yl)hept-2-en-4-ol (3n) 

      270 mg (2 mmol) (E)-2-bromobut-2-ene was dissolved into 10 mL THF under Argon, 
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followed by being cooled down to -78
o
C. 2.4 mL t-BuLi in Pentane (4 mmol) was added in 

dropwise. After being reacted for 30 minutes, all 2a prepared above in 2 mL THF was injected 

into the solution at -78
o
C under argon. The reaction was kept at this temperature for 10 more 

minutes, then warmed up to the room temperature. In 3 hours, several drops of water was firstly 

added in to quench the rest of t-BuLi before 5 % NaHCO3  aqueous solution was poured in to 

quench the reaction. The organic stuff was extracted with EtOAc three times, followed by dried 

with Na2SO4.  The solution was evacuated under reduced pressure to afford the crude product 

that was carried into the next step without purification.  

 

(E)-3-methyl-7-(pyren-1-yl)hept-2-en-4-one (3o)    

      The crude product above was dissolved into 5 mL CH2Cl2. 12 mL Dess Martin Periodinane 

(0.3M) in CH2Cl2 was added in at the room temperature. The reaction mixture was left stirred for 

2 hours before being quenched with 5 % Na2S2O3 and 5 % NaHCO3 aqueous solution, followed 

by being extracted with EtOAc. The organic layers were combined, dried with Na2SO4, and 

concentrated. The mixture was purified with a short column which was washed with 5% EtOAc 

in Hexane to elute the product (449 mg) off with a yield of 68 % from 2a. 
1
H NMR 

(CDCl3/300MHz) δ 8.40-7.84 (m, 9H), 6.66 (q, J= 6.0 Hz, 1H), 3.37 (t, J= 9.0 Hz, 2H), 2.78 (t, 

J=6.0 Hz, 2H), 2.19 (m, 2H), 1.81 (d, J= 9.0 Hz, 3H), 1.79 (s, 3H),  
13

C NMR (CDCl3/300MHz) 

202.1, 144.8, 136.5, 131.2, 130.8, 130.2, 129.1, 128.3, 127.8, 127.7, 127.6, 127.0, 126.1, 125.3, 

125.2, 125.1, 125.0, 124.8, 123.8, 37.1, 33.4, 26.6, 17.9, 17.7, IR (KBr) 3056, 2950, 2922, 1681, 

1602, 1508, 1428, 1310, 1090, 918, 848, 756 cm
-1

. HRESI MS m/z of (M+H)
+
 found 327.1666, 
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within 4 ppm of the theoretical value.  

 

(E)-1-(5-methyl-4-methylenehept-5-en-1-yl)pyrene (3p) 

      Into the tetrahydrofuran solution of 1.07g methyltriphenylphosphonium bromide (3 equiv.), 

3mL of 1.0M sodium bis(trimethylsilyl)amide (3 equiv.) in tetrahydrofuran was added dropwise 

with the argon. The mixture solution was stirred for 30 minutes under the room temperature. The 

white sand-like solid suspended solution turned into orange clear one. 326 mg (1.0mmol) 3o in 

10mL tetrahydrofuran was added into the system slowly under the argon. The stirring was 

continued for another 4 hours. 25mL saturated ammonium chloride solution was used to quench 

the reaction, followed by extracting the organic staffs with methylene chloride three times. The 

solution was dried with magnesium sulfate. Sillica gel column was utilized to isolate the crude 

product with Hexane. 230 mg pale orange oil was obtained with the yield of 71% after getting rid 

of solvent at reduced pressure. 
1
H NMR (CDCl3/300MHz) δ 8.30-7.80 (m, 9H), 5.66 (q, J= 6.0 

Hz, 1H), 5.04 (s, 1H), 4.92 (s, 1H), 3.34 (t, J= 9.0 Hz, 2H), 2.47 (t, J= 9.0 Hz, 2H), 2.02 (m, 2H), 

1.81 (s, 3H), 1.71 (d, J=6.0 Hz, 3H) ppm, 
13

C NMR (CDCl3/300MHz) 149.6, 137.3, 135.3, 134.1, 

133.9, 131.7, 131.2, 130.0, 129.0, 128.7, 127.8, 127.3, 126.8, 126.0, 125.3, 125.0, 124.9, 123.7, 

121.9, 110.3, 34.2, 33.6, 31.1, 14.4, 14.2 ppm, IR (KBr) 3435, 3042, 2936, 2862, 1602, 1586, 

1433, 1181, 842, 743, 696, 501 cm
-1

. HRESI MS m/z of [M+H]
+
 found 325.1937, within 5 ppm 

of the theoretical value.  

The Diels-Alder reactions between 3p and 3m 
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4,5-dimethyl-2-(4-(2-oxopyrrolidin-3-yl)butyl)-6-(3-(pyren-1-yl)propyl)-3a,4,7,7a-

tetrahydro-1H-isoindole-1,3(2H)-dione (3q) 

a. The Sc(OTf)3 catalyzed route 

45.2 mg (0.1 mmol) 3p, 32.4 mg (0.1 mmol) 3m, and 14.8 mg Sc(OTf)3 were mixed together in 

a 25 mL round bottom flask. After being dissolved into 7 mL methylene chloride at room 

temperature, the reaction mixture was stirred overnight, followed by being quenched with water. 

The organic stuffs were extracted with methylene chloride three times. The combined organic 

layer was dried with sodium sulfate before getting rid of solvent at reduced pressure. The crude 

product was re-dissolved in a mixed solution of CH2Cl2: CF3COOH (7:3), stirred for 30 min at 

room temperature, and an excess triethylamine added. The mixture was stirred for an hour before 

being quenched with a mixture of saturated ammonium chloride and ethyl acetate. The pH of the 

solution was found to be about 5~6.  This product was chromatographed through silica gel using  

as eluant to afford 39.8 mg (71%) of the desired product. 

b. The thermo-condition route 

As reported above, 45.2 mg (0.1 mmol) 3p, and 32.4 mg (0.1 mmol) 3m were mixed together in 

a 25 mL round bottom flask. After being dissolved into 4 mL Toluene at room temperature, the 

reaction mixture was heated up to reflux with stirring being continued overnight. After being 

cooled down, the reaction solution was then evacuated to get rid of most of toluene. The mixture 

was diluted with water, followed by being extracted with methylene chloride three times. The 
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combined organic layer was dried with sodium sulfate before getting rid of solvent at reduced 

pressure. Again, the same as above, the crude product was re-dissolved in a mixed solution of 

CH2Cl2: CF3COOH (7:3), stirred for 30 min at room temperature, and an excess triethylamine 

added. The mixture was stirred for an hour before being quenched with a mixture of saturated 

ammonium chloride and ethyl acetate. The pH of the solution was found to be about 5~6.  This 

product was chromatographed through silica gel using 10 % methanol in ethyl acetate as eluant 

to afford 38.1 mg (68%) of the desired product. 

1
H NMR (CDCl3/300MHz) δ 8.22-7.84 (m, 9H), 3.38 (t, J= 6.0 Hz, 2H), 3.28 (t, J= 6.0 Hz, 

2H), 3.18, (m, 2H), 2.98 (m, 1H), 2.89 (m, 1H), 2.49 (m, 2H), 2.30-2.16 (m, 4H), 2.11 (m, 1H), 

1.87 (m, 2H), 1.73 (m, 2H), 1.65 (s, 3H), 1.58 (m, 1H), 1.45 (m, 2H), 1.25-1.21 (m, 5H) ppm, 

13
C NMR (CDCl3/300MHz) δ 182.9, 182.8, 181.3, 139.2, 134.7, 134.0, 133.5, 133.2, 133.1, 

132.4, 131.2, 130.2, 129.9, 129.7, 129.2, 128.4, 127.7, 127.6, 127.5, 127.3, 125.9, 47.4, 43.2, 

42.8, 42.6, 41.0, 40.9, 37.8, 36.2, 35.9, 32.9, 32.8, 31.1, 30.4, 30.1, 30.0, 27.2 ppm, COSY, 

HMQC, and  TOCSY confirmed the structure, NOESY showed interactions among protons on 

newly built cyclic part, confirming the stereochemistry, IR (KBr) 3368, 2934, 2911, 1810, 1790, 

1693, 1434, 1401, 1243, 1161, 846, 724 cm
-1

. HRESI MS m/z calculated for (M+H)
+
 561.3117, 

found 561.3119. The theoretical value of (M+H)
+
 13C isotopic m/z 562.3145, found 562.3154, 

(M+Na)
+
 583.2939, found 583.2930. 
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3.5.3 Chemistry on Microelectrode Arrays 

 
                                     

                                                   

 

Figure 3.5 Example constructing the linkers on agarose coated 1K-microelectrode arrays 

       

      A microelectrode array containing 1024 electrodes cm
-1

 was spin coated at 2000 rpm for 45 

seconds with 4% agarose in 90% N,N-dimethylformamide and 10% water. After drying the 

polymer for 1 hour, the microelectrode array was plugged into a circuit allowing the 

microelectrodes to be addressed and then inserted into a 1.5 mL Eppendorf tube containing 3 mg 

of vitamin B12, 6 mg of tetramethylammonium nitrate, and 8 mg of the activated ester in 1.5 mL 

of methanol. A platinum wire was inserted into the solution as the counter electrode. A whole-

board pattern was programmed with 600 potential cycles, -2.4 V relative to the Pt-wire for 0.5 s 

and 0 V for 0.1 s for each. When the reaction was complete, the array was removed from the 

solution and then washed with de-ionized water and 95% ethanol. The array was then imaged 

using a fluorescence microscope.  
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Figure 3.6 Example cleavage of the linkers off agarose coated 1K-microelectrode arrays 

 

      The microelectrode array with the linker built on the surface using the chemistry described 

above was inserted into the solution consisting of 50 mg 1, 2-diphenyhydrazine, 100 mg 

tetrabutyl-ammonium hexafluorophosphate, and 1.5 mL methanol.  A platinum wire was inserted 

into the solution as counter electrode. A checker-board pattern of electrodes was then 

programmed for 900 potential cycles of on for 0.5 s at +3.0 V and off (0 V) for 0.1 s. After the 

reaction was complete, the array was removed from the solution and washed with de-ionized 

water and 95% ethanol. An image of the array was then obtained with a fluorescence microscope. 

The solution in the Eppendorf tube was analyzed utilizing HPLC. 

Example constructing lactone-based linker on agarose-coated 12K-microelectrode arrays 

      A microelectrode array containing 12468 microelectrodes cm
-1

 was spin coated at 2000rpm 

for 45 s with 3% agarose in 90% N,N-dimethylformamide and 10% water. After drying the 

polymer for 1 h, the microelectrode array was placed in a circuit to address the electrodes and 

then treated with a thin film of solution taken from a stock solution of 3 mg of vitamin B12, 6 mg 

of tetramethylammonium nitrate, and 8mg of the activated ester in 1.5 mL of methanol. A 
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volume of 0.1 mL of above solution was used to cover the surface of the array.  A whole-board 

pattern of electrodes was utilized for 600 s at -1.7 V vs a remote Pt-electrode. When the reaction 

was complete, the array was washed with de-ionized water and 95% ethanol. The array was then 

treated with 0.1 mL of a second solution derived from 20 mg 1-bromopyrene, 1 mg Pd(OAc)2 , 

100 uL allyl acetate, 28 uL Et3N, 1.5 mL acetonitrile, and several drops of DMF. The electrodes 

were turned on for 900 seconds at -2.0 V relative to the remote Pt-electrode. After being washed 

with deionized water and 95% ethanol, an image of the array was taken with a fluorescence 

microscope.  

Example cleavage of the Linker off agarose-coated 12K-microelectrode arrays 

  

      The microelectrode array with the linker built on the surface was treated with 0.1 mL of a 

solution made from 1.5 mL of acetonitrile, 50 mg of 1,2-diphenyhydrazine, and 100 mg of 

tetrabutylammonium hexafluorophosphate. An ―L (inker)‖-pattern was turned on for 120 

seconds at +2.4 V relative to a remote Pt-electrode. After being washed with de-ionized water 

and 95% ethanol, the array was imaged using a fluorescence microscope. 

Example characterize complex structures on microelectrode arrays using chemically 

cleavable linkers with LC-MS 

 

 

      The Microelectrode Array that had been prepared as reported above was insterted into a 1.5 
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mL Eppendorf tube containing 3 mg of vitamin B12, 6 mg of tetramethylammonium nitrate, and 

8 mg 3m in 1.5 mL of methanol. A whole-board pattern was programmed with 600 potential 

cycles, -2.4 V relative to the Pt-wire for 0.5 s and 0 V for 0.1 s for each. When the reaction was 

complete, the array was removed from the solution and then washed with de-ionized water and 

95% ethanol. 

 

      The array with the dienophile mounted linker loaded was immersed in a solution containing 

7.5 mg Sc(OTf)3, 6.6 mg 2-arylbenzothiolzole and 10 mg 3p in 2.0mL Methylene chloride, 

which was premixed sealed for 30 minutes to let Sc(III) be reduced completely. The array was 

then activated as anodes in a whole-board manner. The electrical potential cycle was set as: +3.5 

V for 0.5 s and 0 V for 0.1 s. The cycle number was 900. The microelectrode array was washed 

following the previous procedures and visualized by the fluorescence microscopy. 

 

      The Microelectrode Array with the structure built by using the chemistry described above 

was inserted into the solution consisting of 50 mg 1, 2-diphenyhydrazine, 100 mg tetrabutyl-



 87 

ammonium hexafluorophosphate, and 1.5 mL methanol. A checker-board pattern of electrodes 

was then programmed for 900 potential cycles of on for 0.5 s at +3.0 V and off (0 V) for 0.1 s. 

After the reaction was complete, the array was removed from the solution and washed with de-

ionized water and 95% ethanol. An image of the array was then obtained with a fluorescence 

microscope. The solution in the Eppendorf tube was collected for LC- MS tests.                    

3.5.4 General procedures of characterizing compounds using HPLC and LC-MS 

Characterization of cleaved linkers using HPLC 

Lactone: 10 uL of the solution collected from the cleavage was injected. The column was eluted 

with 50% methanol/ water for 60 min at a rate of 0.5 mL per minute. The lactone was 

characterized by coinjection with a known sample made from 1.0 mg of independently 

synthesized lactone and 1 mL of methanol. 10 uL of this solution was coinjected with the 

material from the array reaction.  

Lactam: 10 uL of the solution collected from the cleavage was injected. The column was eluted 

with 70% methanol/ water for 60 minutes at a rate of 1.0 mL per minute. The lactam was 

characterized by coinjection with a known sample made from 1.0 mg of independently 

synthesized lactam and 1 mL of methanol. 10 uL of this solution was coinected with the material 

from the array reaction.  

Characterization of cleaved linkers using LC-MS 

Samples were diluted in 85 % MeOH, 15% H2O and loaded onto a C18 column (Gemini C18, 5 

μm, 110 A, 4.6 mm x 250 mm) (Phenomenex, Torrance, CA) followed by an isocratic elution at 

85 % MeOH, 15% H2O via an Agilent 1200 HPLC (Santa Clara, CA) with flow rate of 1 
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mL/min. The flow was split for a final flow rate of 200 μL/min prior to the ESI source. 
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Chapter Four 

Linkers and Signaling Studies 

 

4.1 Introduction 

      In Chapter 3, the development of chemically cleavable linkers was discussed, as a method for 

determining the structure of molecules placed or synthesized on a microelectrode array. The 

linkers are structurally simple and compatible with a wide variety of chemical reactions that one 

might utilize on an array. However, there are two more features that are needed for such a linker 

to serve as an effective tool for use on a microelectrode array. It must be fluorescent, and it must 

be compatible with electrochemical signaling studies.  

      As introduced in Chapter 1, fluorescent linkers are important because they provide a means 

to assess the quality of not only molecules on an array, but also the array itself. Microelectrode 

arrays typically fail when a short circuit in their wiring permanently turns on all of the electrodes 

in a region of the array. When this occurs, a reaction on the array can no longer be confined in 

that region. It occurs at both the electrodes selected for generating the reagent of choice and 

every electrode accidently activated by the short-circuit. Since the software used to assess 

whether an array is working properly simply checks to see if all of the electrodes are active, it 

does not detect this problem. Hence, the placement of the initial substrate (and linker) on the 

array is the first opportunity one has to check to see if the array is working properly.  A 

fluorescent linker is particularly useful in this regard. First, if places the linker by each electrode 

in the array by using two successive checkerboard patterns, then one can assess the quality of the 

array following the first step. Second, no analysis of the relative binding between molecules on 
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the surface of the array and a receptor in solution will be valid without knowing the quantity 

material placed by each electrode in the array. This is especially important since reactions rarely 

yield 100% conversion and the coating placed on the array will not be completely uniform. 

Hence, one cannot simply time the length of a reaction on an array and make the assumption that 

there is a direct correlation between reaction time and surface coverage. A fluorescent linker 

helps resolve these issues by allowing for quantification of the material placed by any electrode 

in the array.  

      With this in mind, an ―ideal linker‖ for use on the arrays will contain sites for the attachment 

of both a fluorescent tag and the molecules to be monitored for biological activity. 

4.2 Design of an “Ideal Linkers” 

      The first plan for a fluorescent label was to simply take advantage of the pyrene groups we 

had used on several previous occasions. As shown on the left of Figure 4.1, the first plan called 

for an approach nearly identical to the linker used in Chapter 3. In this case, a disubstituted 

pyrene would be placed in the chain connecting the linker and the molecule to be studied.
1-3

 

However, from the start this plan was worrisome.  Construction of the disubsituted pyrene core 

of the linker required the bromination of a pyrenyl butanoic acid derivative, a reaction that led to 

a complex mixture of products, generated only low yields of those products, and could not be 

scaled-up.
4
 Because of these synthetic problems, the compatibility of the linker with 

electrochemical signaling experiments on the arrays was not determined. 
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Figure 4.1 Designs of the ideal linkers: a) pyrene derivatives (left) and b) amino-acid derivatives 

(right)  

       

      A better approach was needed. It appears that a fluorescent amino acid derivative might 

provide a solution to this synthetic challenge (Figure 4.1b). In this case the fluorescent group 

does not need to serve as a bridge between groups, and the C- and N- terminuses of the amino 

acid can be used to attach the chemically cleavable linker to the ligand of interests. The 

fluorescent label would remain unchanged through those reactions. The approach was intriguing 

because it would allow for variations in the fluorescent group to be made without requiring a 

change in the overall strategy. One more advantage about this fluorescence-tagged amino acid 

derivative is that it could also be utilized independent of the cleavable-linker strategy by directly 

attaching the C- terminus of the labeled amino acid to the array. This increases the versatility of 

the fluorescent label and provides an opportunity to quickly test of the compatibility of the label 

with the electrochemical signaling experiments. For this thesis, the fluorescent amino acid 

derivative will be referred to as the ―fluorescent linker‖ whenever it is used independently from 

the cleavable linker portion of the ―ideal linker‖ (―ultimate linker‖).  

4.3 The Fluorescent Linker 

      The development of a fluorescent linker was faced with two key questions: first, what should 

the fluorescent group be, and second, is the fluorescent group and the amino-acid linker 
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compatible with the electrochemical impedance experiments employed for monitoring binding 

events on the arrays? 

      The choice of a fluorescent tag was based on the availability of the amino acid starting 

material and the simplicity of the synthetic route needed for its construction. With this in mind, 

we elected to take advantage of an oxidative strategy for synthesizing fluorescent groups from 

hydroxylated indole rings.
5
 The synthesis started with 5-hydroxytryptophan (Scheme 4.1).

  
 

 

Scheme 4.1 Synthesis of the fluorescent linker 

  

 

         

             

   

            

 

 

 

 

Reagents and Conditions: a) SOCl2, MeOH, RT. b) Boc2O, Na2CO3, Dioxane/H2O, RT. 

c) MnO2, Benzyl amine, dry THF, 0
o
C-RT, 31% in three steps. d) LiOH, THF/MeOH/H2O, RT, 

92%. e) LiAlH4, THF, 45
o
C, 84%. f) DCC, DMAP, DMF, RT, 63%. 

       

      Following protection of the C-terminus and N-terminus of the amino acid, the fluorescent 

label was constructed from the hydroxyindol with the use of an oxidative cycloaddition. While 
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the yield of the cycloaddition was low, it provided a readily scalable, one-step synthesis of the 

fluorescent group that could be varied by simply changing the arylamine used. The skeleton of 

the fluorescent linker 1 was thus completed.   

       To test the chemistry and biology compatibilities of this structure, biotin was attached to the 

C-terminus of the amino acid derivative so that biotin/streptavidin interactions could be used to 

determine the compatibility of the linker with electrochemical-impedance experiments on the 

arrays. This was accomplished by saponification followed by esterification of the resulting acid 

with the alcohol.
6
 

       The compound 2 was then placed onto an array having 12,544 microelectrodes
.
cm

-1 

(Scheme 4.2). The array was coated with a diblock copolymer containing a cinnamoyl-

functionalized methacrylate block and a poly-p-bromostyrene block.
7
 The cinammoyl groups 

were photochemically crosslinked to provide the necessary stability for the surface. At this point, 

the t-Boc-protected amine in compound 2 was directly coupled to the poly-p-bromostyrene block 

of the polymer proximal to selected electrodes in the array by using a previously developed 

Cu(I)-coupling strategy.
7-10

 To this end, the array was treated with a CH3CN/DMF/H2O solution 

containing 2, copper sulfate, triphenylphosphine, and tetrabutylammonium bromide. The 

electrodes selected for the reaction were set at a potential of – 1.7 V vs. the Pt-counter electrode 

for 180 s in order to reduce the copper sulfate to Cu(I) exactly where the catalyst was needed.
 
 

Oxygen was used as a solution-phase oxidant in order to destroy the Cu(I)-catalyst before it 

could migrate to remote sites on the array. Initially, the electrolysis reaction was conducted at 

ten-separate sites on the array each containing a block of 12 microelectrodes. When the reaction 

was complete, the array was washed with water and ethanol. The reaction was then repeated, but 

in this second case compound 1 was used as the substrate along with a new set of electrodes. 
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Again, the reaction was run at ten-separate sites on the array each containing a block of 12 

microelectrodes. The result was an array that contained both blocks of electrodes that were 

functionalized with 2 and blocks of electrodes that were functionalized with 1. When the 

reactions were complete, the array was washed with water and ethanol and then imaged with a 

fluorescence microscope.  

 

Scheme 4.2 Placing the fluorescent linker onto Microelectrode Array 

 

 

  

 

 

 

 

 

 

       

       

      The picture provided in Scheme 4.2 shows two of the electrode blocks functionalized with 

the linker that had been attached to biotin. The image clearly shows that the array worked 

perfectly. The reaction was nicely confined to the selected electrodes, and roughly equal amounts 

of material were placed at each of the electrodes. 
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      Interestingly, solution-phase experiments using these same reaction conditions showed that 

Cu(I) did not catalyze the addition of either a t-Boc protected nitrogen or an indole ring to an 

arylbromide. Only the amine could be coupled. It appears that the array reaction initially leads to 

removal of the t-Boc group and then a subsequent coupling between the amine and then the 

arylbromide polymer. The deprotection is not unexpected since the reaction on the array is an 

undivided cell electrolysis that generates acid at the anode and we have seen the result of acid 

catalyzed reactions previously.  

4.4 Signaling Studies      

      With the functionalized array in hand, signaling experiments were conducted by randomly 

selecting three of the ten-electrode blocks functionalized with the linker plus biotin, three of the 

ten-electrode blocks functionalized with only the linker, and three unfunctionalized blocks of 12 

electrodes each from the remainder of the array. The array was then submerged in a series of 

solutions containing streptavidin and 8 mM K4[Fe(CN)4]2/K3[Fe(CN)4]3  in 1X phosphate buffer 

saline (PBS). The solutions ranged in concentration of streptavidin from 10
-6

 to 10
-20 

M. The first 

solution used was the 10
-20 

M streptavidin solution. After submerging the array in this solution, a 

cyclic voltammogram was recorded for the iron in solution at each of the nine selected blocks of 

electrodes by sweeping the potential at the electrodes from -700 to 700 mV relative to the 

counter electrode.
11

 A sweep rate of 400 mV/s was used. Following this experiment, the array 

was washed three times with a 10
-19

 M streptavidin solution and inserted into the next solution 

having 10
-19 

M streptavidin. This was done to insure a consistent concentration of 10
-19

 M 

streptavidin across the surface of the array. The cyclic voltammetry experiment was then 

repeated at all nine blocks of electrodes. The array was then washed three times with a 10
-18

 M 

streptavidin solution and inserted into the solution having 10
-18

 M streptavidin. The cyclic 
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voltammetry experiment was again repeated at all nine blocks of electrodes. This process was 

continued until a cyclic voltammogram for the iron in solution had been recorded at all nine 

blocks of electrodes for every concentration of streptavidin. The data recorded at one of the 

blocks of electrodes having biotin on the surface are shown in Figure 4.2. If one examines the 

current measured for iron at a potential of 25, mV, then it can be seen how the current at the 

block of electrodes dropped as the concentration of streptavidin increased. The presence of 

streptavidin causes a drop in current because it binds the biotin on the surface of the array and 

blocks iron from reaching the electrode below. 

  

 

Figure 4.2 Sample voltammograms for one block of electrodes 

      The current measured at this potential was then used to compare all of the cyclic 

voltammograms measured at each concentration of streptavidin used. This data is summarized in 

Figure 4.3. Each data point in the figure is the average of the current measured for the three 

blocks of electrodes used at 25 mV. For example, the data point on the red line at a concentration 
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of 10
-14

 M streptavidin represents the average current measured at 25 mV for this concentration 

of receptor at the three blocks of electrodes 

  

Figure 4.3 Summary of the CV data for all nine blocks of electrodes. Normalized curves are 

shown for the impedance measured electrodes functionalized with the fluorescent linker and 

biotin (red), electrodes functionalized with the fluorescent linker and no biotin (green), and 

unfunctionalized electrodes (black) 

 

with the linker plus biotin on the surface. The point on the green line at this concentration 

represents the average current measured at 25 mV for the three blocks of electrodes with only the 

linker on the surface. The data has been normalized and the largest change in current (greatest 

impedance) observed scaled from zero to one. The largest current measured for each set of data 

was given a value of zero. In this way, the data directly reflects the binding of streptavidin to the 

surface of the array. The larger number on the vertical axis, the greater the binding of the 

receptor to the surface.  

      The black line in Figure 4.3 summarizes the data for the three blocks of unfunctionalized 
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electrodes taken at random places on the array. This data shows that the streptavidin has no 

binding to the un-functionalized polymer coating the array. The green line in the Figure shows 

the data for the three blocks of electrodes functionalized with the linker (1) and no biotin. It 

indicates that the streptavidin does bind the surface once it has been functionalized. The red line 

shows the binding of streptavidin to the surface of the electrodes functionalized with the linker 

and biotin (2). The difference between the green and red lines shows that the presence of the 

biotin causes a significant increase in the binding of the streptavidin to the surface of the 

electrodes.
12

 The nature of this difference can be seen clearly by taking the difference between 

the lines (Figure 4.4). Initially, the binding of streptavidin to the surface of the electrodes 

functionalized with biotin increases much more rapidly with increasing protein concentration 

than it does to the surface of the electrodes that are functionalized with only the linker. At higher 

concentrations of streptavidin this difference falls off and the rate of change at the two electrodes 

with increasing streptavidin concentration becomes almost equal (parallel slopes in Figure 4.3). 

 

Figure 4.4 Difference data for the current drops associated with the electrodes functionalized 

with the linker plus biotin (red line in Figure 4.3) and the electrodes functionalized with only the 

linker (green line in Figure 4.3) 
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      Since there is only about 20-50 fmole of material by each electrode in the array, at high 

concentrations of streptavidin the biotin becomes completely bound. Hence, any further binding 

of streptavidin at these sites results from non-specific binding of the streptavidin to the surface. 

The fact that at these concentrations the rate of change in the impedance at sites with biotin is the 

same as the rate of change for sites without the biotin indicates that the non-specific binding of 

streptavidin to the surface is roughly the same in both places. Hence, the difference in impedance 

between electrodes functionalized with biotin and electrodes functionalized with only the linker 

at low concentrations shows the binding of streptavidin to the biotin. Clearly, both the polymer 

surface coating the electrodes and the fluorescent linker are compatible with the electrochemical 

impedance experiments needed to monitor binding events on the arrays. 

      To this end, the use of an amino-acid-derived fluorescent linker has proven to be an effective 

and practical method for the placement of molecules onto the surface of a microelectrode array. 

The fluorescent linker itself is easy to synthesize and can be rapidly functionalized with different 

biological probes to be studied or substrates to be developed on the array‘s surface. It enables 

quality-control assessment of the array itself, is compatible with the analytical experiments used 

to probe binding events on the surface of the array, and is stable enough to allow for the multiple 

analytical experiments needed to evaluate binding events in a quantitative manner.
13

  

4.5 Efforts toward an “Ultimate Linker” 

      The success of making a biocompatible fluorescent structure clears a big obstacle on the way 

towards constructing an ideal linker that enables quality control of both the array and the 

molecules placed on its surface.  

      However, other lessons have been learned that suggested a change in strategy from the 
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simple design illustrated above in Figure 4.1. That design simply planned on incorporating the 

fluorescent-labeled amino acid into the cleavable linker strategy into the R1 position shown in 

Scheme 4.3.    

 

Scheme 4.3 Revisit of the chemically cleavable linker
14,15

     

 

 

       

      

      However, the long-term plan for the linker requires the linker to be versatile enough to 

accommodate a wide-range of receptor ligands attached to the end of R1 in addition to the 

fluorescent group.  For a larger library, these ligands would ideally be assembled on the array 

rather than synthesized independently and then transferred to the array one at a time. Hence, the 

linker must be compatible with multiple reaction methodologies. While the amino acid part of 

the fluorescent linker developed above should not be problematic in this regard, the same cannot 

be said of the fluorescent label itself. For example, we have already shown that the groups are 

not compatible with oxidation chemistry. Hence, if the fluorescent label is grafted onto the linker 

before the ligands are constructed, then it will limit the chemistry available for building the 

ligands.
10

  

      Moreover, we have shown in previous studies that the distance between the surface of 

electrodes and the molecule being studied can influence the subsequent signaling experiment run 
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on the array. Hence, in an ideal scenario we would be able to add a fluorescent label to the linker 

without increasing the distance between the molecule to be studied and the surface of the array.  

Based upon the above considerations, a design of an ―ultimate linker‖ is shown in  

  

Figure 4.5 ―Ultimate Linker‖ 

 

Figure 4.5. In this example, an aromatic ring would be used as a central attachment point for the 

cleavable linker, the molecule to be monitored, and the fluorescent tag. Alternatively, the 

molecule to be studied could be added to the fluorescent group at site c in analogy to the initial 

fluorescent linker design. One of the major benefits of this linker design is that the fluorescent 

group can be added to site b of the linker after construction of a molecule to be studied at site a. 

In this way, the fluorescent tag can be introduced after any potentially incompatible chemistry is 

accomplished.  

 

Scheme 4.4 Synthesis of the ―Ultimate Linker‖ 



 105 

 

Reagents and Conditions: a) LiAlH4, THF, 0
o
C-RT, 91%. b) NaH, TBDMSCl, THF, 0

o
C-RT, 

CBr4, PPh3, CH2Cl2, 0
o
C, 84% in two steps. c) Isopropylamine, n-butyllithium, 1-(tert-

butoxycarbonyl)-2-pyrrolidinone, THF, -78
o
C, 87%. d) LiOH, THF/H2O, 0

o
C-RT, TBAF, THF, 

0
o
C-RT, 71% in two steps. e) 3 in Scheme 4.1, EDC, DMAP, DMF, 0

o
C-RT, diastereomer ratio: 

1:1, 38% combined. 

 

      The preparation of a prototype linker began with 5-bromobenzen-1,3-dicarboxylic acid. The 

acids were reduced to form a diol with LiAlH4. Protection of one of the two hydroxyl groups, 

followed by exchange of the remaining hydrodroxy group with a bromine led to a substrate for 

the same lactam-alkylation reaction used previously. The alkylation led to lactam 4e. The lactam 

was saponified, and then the silyl protecting group removed from the benzylic alcohol. The acid 

alcohol was then coupled to the fluorescent linker synthesized in Scheme 4.1 with the used of an 

EDC-based esterification reaction. The yield of the reaction was only 38%. The difficulty was 

perhaps the presence of the acid in the linker substrate that might compete with the acid of the 

fluorescent linker in the coupling reaction. The order of steps was undertaken in order to avoid 

problems with the ester linking the fluorescent group to the linker during opening of the lactam. 

Clearly, a different strategy will be needed in order to optimize the yield of the ultimate linker in 

the future. For example, it is possible that the acid of the linker can be attached to the solid 
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support coating the array before the TBS protecting group is removed from the benzyl alcohol 

and the fluorescent group added. However, for the present we wanted to be able to fully 

characterize the molecule to be placed on the array. So, the current synthetic route was followed. 

This route will conclude by converting the acid of the linker to a succinimide ester that can be 

used for placing the entire ensemble onto an array (Scheme 4.4). For these studies, the molecule 

to be examined for binding to a receptor can be added to the linker with the remaining aryl 

bromide either before or after the linker is placed onto the array.  

      The array-chemistry to be used will not be new.
14,15

 The process will start by coating an array 

having 1024 microelectrodes
.
cm

-2
 with a di-block copolymer that contains hydroxyl functional 

groups.
7
 The reaction between the activated ester and the polymer will be catalyzed by base 

generated by the reduction of vitamin-B12 at selected electrodes in the array. (Scheme 4.5) 

      To test the utility of the array for signaling studies, a penta-peptide with an imbedded RGD 

sequence and a thiol nucleophile will be added to the aryl bromide in the linker with the use of a 

Cu(I)-catalyzed addition.  The method is related to the approach used to test the compatibility of 

the initial fluorescent linker with electrochemically signaling studies. In the original paper, the 

feasibility of the signaling experiment was determined by examining an RGD-peptide–integrin 

interaction.  In this case, the linker used with hopefully allow for the binding study and then 

provide a handle for characterization of the molecule at the end in order to make sure that it has 

not changed. In terms of the detailed plans for the test, peptide RGD-DTyr-K(COCH2CH2SH) 

will be placed by  

 

Scheme 4.5 Proof-of-principle study of ―Ultimate Linker‖ on Microelectrode Array 
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submerging the functionalized 1-K array in a 7:2:1 acetonitrile to dimethylformade to water 

solution  that contains the peptide, copper sulfate, a 1,3-dicarbonyl ligand for the copper, and 

tetrabutylammonium bromide as an electrolyte. All electrodes in the array will then be used as 

cathodes by setting them to a potential of -2.4 V relative to a remote Pt-anode. The electrodes are 

programmed for 600 cycles, each of which consists of 0.5s on and 0.1s off. Oxygen will be used 

in solution as a ‗confining-agent‖ (oxidant for Cu(I)) in order to destroy the catalyst before it can 

migrate to electrodes not selected for the reaction.  

      After the signaling studies, the last step showed in Scheme 4.5 will be conducted in order to 

reclaim the substrate from the surface of the electrodes. This chemistry will simply repeat the 

chemistry described earlier in Chapter 3. This final part of the study is currently underway, as 
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well as the impedance experiment demonstrating the compatibility of the ―ultimate linker‖ with 

the signaling experiments.    

4.5 Conclusion 

      The effort to assess the quality of molecules made on arrays and of the arrays themselves 

continues with the design and synthesis of a versatile linker that has a central aromatic ring. The 

aromatic ring can be used as a central linking platform for the addition of the safety catch linker, 

the molecule to be studied, and a fluorescent tag. The groups can be added in any order so that a 

sensitive fluorescent tag can be introduced after methodology to which it may not be compatible.  

      Along these lines, an amino-acid-derived fluorescent tag has been developed in order to 

replace the pyrene-based systems used previously. This fluorescent group is easy to prepare and 

to modify. In addition, the reliability of the based-catalyzed esterification strategy for attaching 

the linker the arrays makes it possible to check the condition of the device before any chemistry 

and biological analysis begins. The compatibility of the fluorescent linker with the signaling 

studies was accomplished with the use of the biotin-strepavidin interaction, as well as a set of 

general procedures for running the impedance experiments and processing the electrochemical 

data. 
16

 

      Finally, the synthesis of the ―ultimate linker‖ is underway. Only one step remains before the 

linker can be placed onto an array and its compatibility with electrochemical signaling studies 

examined. 

4.6 Experimental Procedures 

4.6.1 General information of reagents and instruments 

      Chemical reagents and solvents were purchased from Sigma-Aldrich, Alfa Aesar, 



 109 

Mallinckrodt Baker, EMD Chemicals (Merck KGaA), and used without further purification 

unless otherwise noted. Dichloromethane (CH2Cl2) was distilled over calcium hydride. 

Anhydrous tetrahydrofuran (THF) was distilled over sodium benzophenone ketyl. 

Tetraethylammonium p-toluenesulfonate (Et4NOTs) was dried in an oven before use. Flash 

chromatography was carried out by using silica gel (200-400 mesh) purchased from Dynamic 

Adsorbent, Inc.  

      All proton and carbon-13 nuclear magnetic resonance (
1
H and 

13
C NMR) spectra were 

recorded by a Varian Inova 600, a Varian Inova 500, or a Varian Mercury 300 in a deuterated 

chloroform (CDCl3) solvent with tetramethylsilane (TMS) as an internal standard unless 

otherwise noted. Infrared (IR) spectra were recorded by a Perkin Elmer Spectrum BS FT-IR 

instrument. High resolution electrospray ionization (ESI) mass spectra were obtained at the 

NIH/NCRR Mass Spectrometry Resource Facility at Washington University in St. Louis. 

      Fluorescence images were taken with a Nikon Eclipse E200 microscope connected to a 

Boyce Scientific, M-100 burner and a Nikon D5000 camera. CFW-BP01-Clinical-000 (Semrock) 

filter cube excitation 380-395 nm/emission 420-470 nm, ET-GFP (FITC/Cy2) (Chroma) filter 

cube excitation 450-490 nm, emission 500-550 nm and TxRed-A-Basic-000 (Semrock) filter 

cube excitation 540-580 nm, emission 590-670. 

      Microelectrode arrays were spin coated with a spin coater spin-coater MODEL WS-400B-

6NPP/LITE. 

      An ElectraSense
®
 reader (Available from CustomArray) was used to address the electrodes 

on the array using a personal computer. For voltammetric measurements, the reader is used to 

activate selected electrodes on the array and an external BAS 100B/W potentiastat controls the 
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potential sweep. 

4.6.2 Syntheses and compounds 

Synthesis of the Fluorescent Linker 

 

(S)-methyl 2-(tert-butoxycarbonylamino)-3-(2-phenyl-6H-oxazolo[4,5-e]indol-8-

yl)propanoate (4a) 

      To a solution of 5-hydroxy serotonin (650 mg, 3.0 mmol) in MeOH (12 mL) was added 

SOCl2 (693 μL) at 0°C. After being stirred overnight, the reaction mixture was concentrated in 

vacuo. The residue was diluted with 20 mL of a dioxane / H2O (2 / 1) solution, and the resulting 

mixture treated with Na2CO3 (4.5 eq.) and Boc2O (1.1 eq.) at 0°C. After being stirred overnight, 

the reaction mixture was quenched aq. NH4Cl. The mixture was extracted with EtOAc, the 

organic layer concentrated in vacuo, and the residue purified by column chromotagraphy through 

silica gel using Hexane / EtOAc (2 : 1) as eluant. The purified product was dissolved in dry THF 

(56 mL) and then MnO2 (2.58 g, ca 10 eq.) and benzyl amine (2.58 mL, 10 eq.) added at 0°C.
5
 

After being stirred for two days, the mixture was filtered with through celite and washed with 

MeOH. The filtered solution was concentrated in vacuo and the residue was purified by 

chromatography though silica gel using a dichloromethane / EtOAc (10 : 1) mixture as eluant. 

The product was afforded in 31 % yield over the three steps. The spectal data for the product was 

as follows. 
1
H NMR (CDCl3/300MHz) δ 8.47 (broad s, 1H), 8.33 (m, 2H), 7.59 (m, 3H), 7.45 (m, 
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2H), 7.33 (m, 1H), 7.15 (m, 1H), 4.66 (m, X in ABX, 1H), 3.75 (s, 3H), 3.52 (m, A and B in 

ABX, 2H), 1.30 (bs, 1H), 1.15 (s, 9H) ppm, 
13

C NMR (CDCl3/300MHz) δ173.5, 156.5, 146.0, 

134.3, 131.1, 129.0, 127.6, 124.7, 124.3, 124.1, 121.8, 119.1, 111.0, 109.2, 105.0, 100.1, 79.3, 

74.9, 56.9, 52.3, 28.6, 28.3 ppm; IR (KBr) 3305, 2976, 2950, 1738, 1700, 1549, 1529, 1487, 

1453, 1377, 1366, 1221, 1202, 1056, 995, 775, 709 cm
-1

. HRESI MS m/z [M+Na]
+  

found 

458.1692, calcd. 458.1692.  

  

(S)-5-((3aS, 4S, 6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentyl 2-(tert-

butoxycarbonylamino)-2-(2-phenyl-6H-oxazolo[4,5-e]indol-8-yl)acetate (4b) 

Preparation of biotinol:
6
 

      Biotin (1.0 g, 4 mmol) was suspended in 15 mL of THF and then 4.8 mL of a 1 M solution of 

LiAlH4 in THF added drop-wise. The mixture was heated to 45 
o
C for 3 h followed by the 

addition of a second portion of the LiAlH4 solution (19.2 mL). Stirring was continued at 45 
o
C 

until the reaction was complete as evidenced by silica gel TLC (20% MeOH in acetone as eluant). 

The reaction was cooled to room temperature, and then water carefully dripped into the mixture 

until the bubbling stopped. The resulting mixture was concentrated under reduced pressure and 

then the resulting residue taken up in ethanol filtered, dried, and concentrated to afford 795 mg 

(84 %) of a white solid. The spectrum obtained for the product matched the literature. The 

product was carried on without further purification.  
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Hydrolysis of 4a to form carboxylic acid 4c: 

      Compound 4a (43.5 mg, 0.1 mmol) was dissolved in 5 mL of a 3/1/1  THF/ MeOH/ H2O 

solution. To this mixture was added approximately 5 equiv. of LiOH. The reaction was allowed 

to run at room temperature for 3h after which is was concentrated in vacuo. The residual solution 

was carefully acidified with 10 % citric acid in water solution to a pH of 3 to 4. The organic 

material was then extracted with EtOAc and the combined organic layers dried and concentrated 

in vacuo. The resulting carboxylic acid was used in the next step without further purification.        

Coupling of biotinol and acid 4c: 

      Approximate 30 mg of biotinol (0.13 mmol), 45 mg of acid 4c (0.11 mmol), 7 mg DMAP 

(0.5 equivalents), and 21 mg of EDC (1.1 equivalents) were dissolved in 3 mL of DMF at 0 
o
C. 

The mixture was allowed to warm to room temperature and stirred overnight. Following the 

reaction, the solution was acidified to a pH of 4 to 5, diluted with a 5% aqueous LiCl solution, 

and then extracted with EtOAc. The combined organic layers were dried, concentrated in vacuo, 

and then purified through a silica gel column using 5% MeOH in EtOAc as eluent. Product 4b 

was formed in a 47% isolated yield (35.2 mg) after two steps. 

1
H NMR (CDCl3/300MHz) δ 9.28 (s, 1H), 8.34 (m, 2H), 7.59-7.31 (m, 5H), 7.16 (m, 1H), 5.97 

(bs, 1H), 5.40 (bs, 1H), 4.55 (m, 1H), 4.66 (m, X in ABX, 1H), 4.36 (m, 1H), 4.08 (t, J= 6 Hz, 

2H), 3.53 (m, A and B in ABX, 2H), 3.14 (m, 2H), 2.90 (m, 2H), 2.72 (m, 2H), 1.66 (m, 2H), 

1.64 (s, 9H), 1.21 (m, 4H) ppm;  
13

C NMR (CDCl3/300MHz) δ173. 6, 173.5, 163.7, 156.5, 146.0, 

134.3, 132.1, 129.4, 127.6, 125.7, 124.3, 124.2, 121.8, 119.7, 111.3, 109.2, 104.7, 100.3, 79.3, 

74.9, 61.9, 56.9, 55.4, 40.4, 33.9, 28.5, 28.3, 28.0, 24.7 ppm; IR (KBr) 3247, 2935, 2362, 1729, 

1700, 1562, 1534, 1477, 1377, 1320, 1202, 1056, 995, 745 cm
 -1

. HRESI MS m/z of [M+H]
+
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found 634.2361, calculated 634.2699. 

 

3-bromo-5-(bromomethyl)benzyl)oxy)(tert-butyl)dimethylsilane (4d) 

      Approximate 130 mg NaH (60% dispersion in mineral oil, 3 mmol) was suspended in 5 mL 

THF under argon at 0 ºC. It was added dropwisely to a THF solution containing 2.17 g (5-

bromo-1,3-phenylene)dimethanol (10 mmol). After being stirred for 2 hours, a total of 450 mg 

TBDMSCl (3 mmol) was added to the solution at one time. The reaction was left slowly raised to 

room temperature and stirred overnight before being quenched by water and concentrated in 

vacuo. Organic compounds were extracted by ethyl acetate. After a flash chromatography with 

silica gel and 25% ethyl acetate in a mixed solvent with hexane, the product was dissolved 20 

mL CH2Cl2. CBr4 and PPh3 (1 equiv. for each) were added to the solution at 0 ºC. After being 

stirred for about 4 hours, approximate 50 mL hexane was poured into the solution. The 

precipitation was filtered with celite pad. The solution was concentrated at reduced pressure 

before being purified with another flash chromatography. The product (0.99 mg, 84%) was 

afforded. 
1
H NMR (CDCl3/300MHz) δ 7.40 (s, 2H), 7.25 (s, 1H), 4.59 (s, 2H), 4.42 (s, 2H), 0.94 

(s, 9H), 0.11 (s, 6H) ppm, 
13

C NMR (CDCl3/300MHz) δ144.3, 139.6, 130.4, 129.0, 125.1, 122.4, 

63.9, 32.2, 25.9, 18.4, -5.3 ppm; IR (KBr) 2954, 2927, 2855, 1783, 1720, 1574, 1471, 1462, 

1444, 1368, 1255, 1153, 1114, 1093, 817 cm
-1

. HRESI MS m/z [M+Na]
+
 416.9688 found,  

416.9684 calcd.  
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tert-butyl 3-(3-bromo-5-(((tert-butyldimethylsilyl)oxy)methyl)benzyl)-2-oxopyrrolidine-1-

carboxylate (4e) 

      Diisopropyl amine (0.1 mL, 1.2 equiv.) was dissolved in 5 mL of anhydrous THF. The 

solution was cooled to -78
o
C and 0.36 mL (1 equiv.) of a 1.6 M n-BuLi in hexane solution was 

added dropwisely. The mixture was stirred for 30 min before adding 108 mg (0.66 mmol) of 1-

(tert-butoxycarbonyl)-2-pyrrolidinone. The reaction was stirred at -78
o
C for another 30 minutes 

before slowly adding a solution of 230 mg (0.66 mmol) 4d in 2 mL of cold anhydrous THF. The 

mixture was stirred at -78 
o
C for 7 h and then quenched with saturated ammonium chloride. The 

reaction was diluted with ethyl acetate and washed with water. The organic phase was 

concentrated in vacuo and then chromatographed through silica gel using a an eluant of 15% 

ethyl acetate in hexane to afford 286 mg (87%) product. 
1
H NMR (CDCl3/300MHz) δ 7.32 (s, 

1H), 7.19 (s, 1H), 7.05 (s, 1H), 4.66 (s, 2H), 3.68 (m, 1H), 3.52 (m, 1H), 3.23 (A in ABX, JAB= 

13.8 Hz, JAX= 3.9 Hz, 1H), 2.74 (m, 1H), 2.57 (B in ABX, JAB= 13.8 Hz, JBX= 9.9 Hz, 1H), 2.02 

(m, 1H), 1.53 (m, 1H), 1.52 (s, 9H), 0.92 (s, 9H), 0.08 (s, 6H) ppm, 
13

C NMR (CDCl3/300MHz) 

δ174.7, 150.2, 144.0, 141.0, 130.2, 127.2, 125.1, 122.5, 82.9, 64.1, 45.3, 44.3, 36.0, 28.0, 25.9, 

23.9, 18.4, -5.3 ppm; IR (KBr) 3349, 2954, 2930, 2885, 1698, 1682, 1651, 1573, 1519, 1446, 

1367, 1252, 1165, 1114, 838 cm
-1

. HRESI MS m/z [M+Na]
+  

522.1475 found, 522.1474 calcd.  
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2-(3-bromo-5-((((S)-2-((tert-butoxycarbonyl)amino)-3-(2-phenyl-8H-oxazolo[4,5-g]indol-6-

yl)propanoyl)oxy)methyl)benzyl)-4-((tert-butoxycarbonyl)amino)butanoic acid (4f) 

      To a solution of 249 mg (0.5 mmol) 4e in a mixture of 7 mL THF and 1.5 mL of water was 

added 80 mg (~ 2 equiv.) of LiOH. After stirring overnight, the reaction solution was 

concentrated in vacuo and diluted with water. The aqueous solution was acidified with 

CH3COOH to pH=4~5 and then extracted with ethyl acetate. The combined organic layers were 

washed with brine and dried over sodium sulfate. The solvent was removed by distillation under 

reduced pressure before a flash chromatography with silica gel and 30% ethyl acetate in hexane 

to afford a pure product. The product was then dissolved in 4 mL dry THF. After being cooled 

down to 0 ºC, the solution was added 1 mL TBAF solution (0.6 M in THF). The reaction was 

stirred and allowed to warm up to the room temperature for 3 hours, before being quenched by 

water. The aqueous solution was acidified with CH3COOH to pH=4~5 and then extracted with 

ethyl acetate. The combined organic layers were washed with brine and dried over sodium 

sulfate. The solvent was removed by distillation under reduced pressure before a flash 

chromatography with silica gel and 50% ethyl acetate in hexane to afford a pure product (4g, 143 

mg, 71% in two steps).     

      Approximate 50 mg of 4g (0.125 mmol), 130 mg of acid 4c (0.3 mmol), 7 mg DMAP (0.5 

equivalents), and 24 mg of EDC (1.1 equivalents) were dissolved in 3 mL of DMF at 0 
o
C. The 

mixture was allowed to warm to room temperature and stirred overnight. Following the reaction, 
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the solution was acidified to a pH of 4 to 5, diluted with a 5% aqueous LiCl solution, and then 

extracted with EtOAc. The combined organic layers were dried, concentrated in vacuo, and then 

purified through a silica gel column using 50% EtOAc in hexane as eluent. Product 4f was 

formed in a 38% isolated yield (38 mg). 
1
H NMR (CDCl3/300MHz) and 

13
C NMR 

(CDCl3/300MHz) show a mixture of diastereomers. Analytical HPLC with the mixed solvent of 

acetonitrile and water (7:3) as the mobile phase indicates a diastereomer ratio of 1:1. HRESI MS 

m/z [M+H]
+ 

805.2443 found, 805.2443 calcd. 

4.6.3 Chemistry on Microelectrode Arrays 

      A microelectrode array containing 12544 electrodes/cm
2
 was spin-coated at 1000 rpm for 45 

seconds with 3 % poly(4-homostyrene)-block-(2-cinnamoyloxyethyl methacrylate) in 50% THF 

and 50% p-xylene. After the polymer coated surface was irradiated with UV light for 30 min, the 

microelectrode array was plugged into a circuit and the electodes controlled with the use of a PC 

(software available from CustomArray). The array was covered with a cap containing the Pt-

counter electrode (Pt is sputtered onto the surface of the cap and connected to the circuit with a 

Pt-wire). The cap is separated from the array using a Kalrez spacer and the reaction run by 

flowing the reaction medium into the space between the array and the cap. 

  

      In this way, a polymer coated 12 K microelectrode array was placed under a solution made 

from 1.5 mL of CH3CN/ DMF/ H20 (7/ 2/ 1), 10 mg of 2, 10 mg of tetrabuylammonium bromide 
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as an electrolyte, and 6 uL each of a 25 mM aqueous CuSO4 solution and a 50 mM ligand (Ph3P) 

in DMF solution. The reaction was run by setting selected microelectrodes in the array at -1.7 V 

relative to the Pt-electrode on the cap for 180 sec. As metioned in the text, the selected electrodes 

were comprised of ten blocks of 12 microelectrodes each. After the reaction, the array was rinsed 

with EtOH, a small amount of DMF, and EtOH again. The array was then visualized using a 

fluorescence microscope.  

The same experiment was repeated a second time with the use of compound 1 as the substrate. 

4.6.4 Probing of compatibility of the fluorescent linker with the signaling experiments 

      The result of the preparative work described above was an array with three types of surfaces 

for testing. There were electrodes coated with only the diblock copolymer (a), blocks of 

electrodes  coated with only the fluorescent linker (b), and blocks of electrodes coated with the 

fluorescent linker plus biotin.   

 

 

 

 

      With the array ready to use, a series of strepavidin buffer solutions with gradient 

concentrations was needed. The preparation of these solutions started with 200 mL of 1x PBS 

(pH  7.4) aqeous solution. Approximate 131.5 mg K3[Fe(CN)6]3 and 169.0 mg K4[Fe(CN)6]2 

were dissolved in the PBS solution so that the redox couple had a concentration of 8 mM. 
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Commercially available strepavidin solid was then dissolved and diluted with the prepared Fe 

(III)/Fe (II) solution to form a 1.0 X 10
-5

 M stock solution. This stock solution was diluted with 

the 8 mM iron solution to make streptavidin solutions ranging in concentration from 1.0 X 10-6 

M to 1.0 X 10-20 M (1 mL for each).   

      The electro-analysis began by running cyclic voltammetry tests various electrodes on the 

array using the Fe (III)/Fe(II) buffer solution without any protein added. The potential at the 

electrodes was scanned from –700 mV to +700 mV relative to the Pt-cap over the array at a scan 

rate of 400 mV/s. The oxidative current peaks were measured. The experiment looked at three of 

the ten blocks of electrodes functionalized with the fluorescent linker, three of the ten blocks 

funtionalized with linker plus biotin, and three blocks of twelve electrodes from random, 

unfunctionalized regions on the array. The array was then washed and the experiment repeated 

with the lowest concentration of streptavidin. After washing the array again, the experiment was 

repeated for a third time using the next highest concentration of streptavidin. This procedure was 

repeated until a CV had been recorded at each of the nine selected blocks of electrodes for each 

concentration of streptavidin. The data from these experiments was processed and analyzed 

using the approach described in the paper. The experiments were repeated on different arrays to 

make sure that reproducible results could be obtained. 
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4.6.5 Cyclic Voltammetries on Microelectrode Array 
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Figure 4.6 Sample Cyclic Voltammetries of Fe(II)/Fe(III) on Microelectrode Array 
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Chapter Five 

Conclusion and Future Work 

 

5.1 Conclusion 

      This work described in this thesis has laid the groundwork for the direct synthesis of small-

molecule libraries on microelectrode arrays. It has done so by both demonstrating how core 

scaffolds can be constructed on the arrays using Lewis-acid catalyzed multicomponent reactions 

and Diels-Alder cycloaddition reactions.  This chemistry took advantage of Sc(III) as the Lewis 

acid. Like all site-selective reactions run on an array, the key to success was finding a general 

―confining strategy‖ that allowed the reagent to be localized to specific, preselected electrodes in 

the array. In this case, Sc(I) was oxidized to Sc(III) at sites where the reaction was desired, and 

then the Sc(III) reduced back to Sc(I) in the solution above the array with the use of an 

arylbenzothiazole.  

      Of course, the accomplishment of more complex reactions on the array immediately raised 

issues with characterization of the product generated. This is a common problem with a small-

molecule library. How does one conduct a quality control assessment of the molecules in the 

library? The major part of the thesis work described addressed this question along with a second 

issue that involved the quality of the array itself. The approach taken along these lines was a 

―molecular-linker‖ strategy.  

      To this end, a general and versatile ―chemically cleavable linker‖ has been developed to 

check the quality of molecules on the arrays. In this approach, γ-amino acids or γ-hydroxyl acids 

with the nitrogen or the oxygen protected serve as the ―linkers‖ to tie molecules for study to a 
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polymer coating the surface of the electrodes in the array. The linkers are attached to a polymer 

coating the surface of the electrodes in the array by making an ester linkage between the acid in 

the linker and an alcohol of the polymer. The molecules to be studied on the array are typically 

tethered to the α-position of the γ-amino acid or γ-hydroxy acid linker. The most successful 

linkers used an acid-cleavable protecting group on the amine or alcohol. In these cases, acid 

generated at a neighboring electrode in the array leads to cleavage of the protecting group. The 

newly de-protected amino or alcohol promptly attacks the ester linking the molecule to the 

surface of the array leading to the formation of either a lactam or lactone and cleavage of the 

ensemble from the array. The molecules released from the array in this manner can be collected 

and then analyzed by LC-MS or HPLC (with fluorescent tags enhancing absorption coefficients) 

and compared with independently synthesized material. By using this tool, the product from the 

Diels-Alder reaction could be completely characterized and the stereochemistry of the product 

assigned.  A comparison between the molecules cleaved from the array and Diels-Alder products 

synthesized in solution demonstrated that the steric impact of the array led to the formation of 

some of the exo Diels-Alder product (only endo product had been obtained from the Sc(III)-

catalyzed reaction in solution). Hence, for the first time the effect of the array on a chemical 

reaction could be assessed.  

The work was particularly attractive because it allowed for analysis of the reaction 

products without destruction of the array. In direct contrast with TOF-SIMS studies, the arrays 

could then be reused.  

        In addition to enabling the characterization of molecules on the arrays, it is important that 

the linkers can be used to assess the quality of the microelectrode array itself.  To this end, it is 

helpful if the linkers are fluorescent. In collaboration with Dr. Takamasa Tanabe, a former post-
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doctoral scientist in our group, we developed a new amino-acid fluorescent linker for use on an 

array. This ―fluorescent linker‖ has proven to be very effective. It is also being incorporated 

along with a chemically cleavable linker strategy in a new ―ultimate linker‖ that is both easy to 

prepare and compatible with quality control analysis of both a molecular library and the array 

itself.  

      In order to test the viability of the linkers being developed, ―real-time‖ signaling efforts that 

take advantage of electrochemical impedance experiments were undertaken. This work 

comprises the third part of the thesis. The first such study probed the effectiveness of the amino 

acid-based ―fluorescent linker‖. In that study, a biotin-coupled fluorescent linker was placed 

proximal to selected electrodes in an array. In addition, electrodes functionalized with the linker 

minus the biotin group and electrodes not having any functionalization were examined. 

Measurements of the current associated with the oxidation of iron at each of the electrodes were 

made as the concentration of streptavidin in the solution above the array was varied. The 

experiments clearly showed the binding between the biotin and streptavidin as the event occurred. 

As part of these efforts, a new protocol for the signaling was developed that aided with the 

experiment setup and data analysis.         

5.2 Future work 

5.2.1 Application of the “Ultimate Linker” 

      As discussed in Chapter 4, we have built a linker that has all of the attributes needed. 

However, is the linker compatible with the signaling studies? In principle, an answer to this 

question can be obtained with the use of an RGD-peptide and integrin receptor. The chemistry 

for attaching an RGD-peptide to the arylbromide group on the ultimate linker has been optimized 
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and published by Dr. Fellet, Dr. Bartels, and coworkers.
1
 A general scheme showing their work 

is illustrated in Scheme 5.1. Note how a cysteine in the peptides was coupled to an arylbromide 

in the presence of a fluorescent tag. In principle, the same approach can be used with the linker 

developed in Chapter 4 (the scheme proposed in Scheme 4.5).  

 

Scheme 5.1 The Cu(I)-catalyzed selective attachment of peptides on the array
1
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      One advantage of this new approach would be that the peptide itself would no longer require 

a fluorescent group because that group would be part of the linker. This should make the peptide 

easier (cheaper) to produce. The success of the coupling reaction would be ascertained by taking 

advantage of the chemical-cleavable linker.  The linker once assembled on the array would be 

checked for its compatibility with electrochemical impedance experiments with the use of an 

integrin receptor.  
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5.2.2 Chemo-selectivity of coupling chemistry on Microelectrode Array 

      There is a remaining issue regarding Cu(I) and Pd(0)- catalyzed couplings: chemo- 

selectivity. For example, in Scheme 5.1, isobutyl 2-carboxycyclohexanone was chosen as the 

ligand to favor the thiol-end coupling over the amino-end in the same peptide.
2
 This is in 

accordance with the solution studies done by other researchers like Buchwald group, 
3,4

 and our 

own observations on the arrays.
2
 However, while we made observations about the use of the 

ligand and relative rates of couplings on an array based on fluorescence images, we had no way 

at the time to prove if a substrate having two different heteroatoms for coupling really behaved in 

the expected manner. With a cleavable linker strategy in place, that is no longer the case. 

Answering questions about the chemoselectivity of a Cu(I)-based coupling reaction on the arrays 

is important from not only a synthesis point of view, but also for understanding the binding data 

that comes from a particular molecule. Certainly, its binding efficiency might vary greatly 

depending on the manner in which it is bound to a surface.  

      To this end, we propose that molecules containing amines, alcohols, thiols, and other 

nucleophiles be placed onto arrays using a variety of Cu(I)-based catalysts and the 

chemoselectivity of the reactions determined using a cleavable linker strategy. The data from 

these studies can then be used to guide the attachment of future peptide mimetics to the arrays.           

 

5.2.3 Better understanding of the impedance experiments on the array 

      The most recent signaling study also showed the impedance measurement of peptides-loaded 

surface on the array (Figure 5.1).
1
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Figure 5.1 Summary of the CV data for all nine blocks of electrodes. Normalized curves are 

shown for the impedance measured electrodes functionalized with the RGD peptide (black), 

Non-RGD peptide (green), and unfunctionalized electrodes (red) 

       

      In that case, little impedance was observed at the electrodes functionalized with the peptide 4 

indicating a low level non-specific binding to the functionalized surface of the array. The steady 

climb in impedance at the sites functionalized with 4 without any leveling off of the curve 

suggested that the non-specific binding that was observed was a result of the functionalized 

surface and not peptide 4. There is only 10 to 50 fmole of peptide bound to the surface of the 

electrode so binding to the peptide itself would lead to a leveling off of the impedance with 

increasing concentration of the receptor. This leveling off of the impedance was observed with 

the binding of the receptor to peptide 3 (with RGD sequence). At the unfunctionalized electrodes 

no binding was observed indicating that functionalization of the surface did increase the level of 

non-specific binding of the integrin receptor to the polymer surface. The level of impedance 

observed for the electrodes functionalized with 3 relative to those functionalized with 4 clearly 

demonstrated that the integrin receptor recognized the RGD-peptide on the surface. 
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      However, at this point, it is not known why the impedance measurement made on the array is 

more sensitive that the typical nanomolar binding constant associated with RGD-integrin binding. 

One idea is that the integrin binds to the surface of the array because of there are multiple copies 

of the ligand bound to the array. If it dissociates with one, then it can immediately bind to the 

next. In that way, the receptor is slow to diffuse away from the surface, a scenario that leads to 

larger impedances. To determine if this is the case, a careful quantitative measurement of how 

much of the RGD-peptide is placed by an electrode in an array is needed. By probing the same 

interaction with different amount of ligand on the surface of the array, we could test if there was 

an impedance dependence on surface concentration of the ligand.  

      The fluorescent linker would provide an ideal tool for this study because it can be used to 

quantify the amount of material placed on an array. In principle, the amount of material placed 

by an electrode is directly related to the length of time employed for the coupling reaction. 

Hence, concentration gradients of the RGD-peptide can in principle be placed on an array. The 

result of the study would be a better understanding of the impedance experiments run on the 

arrays and more insight into their potential use. For example, if the arrays really do amplify the 

signal for a binding event, then they can be used to monitor much weaker binding events.                

5.2.4 Diversify the chemically cleavable linkers and build molecule libraries 

      After several years of effort, we have developed a number of powerful synthetic methods for 

array-based applications, protocols for signaling studies on the arrays, and now tools for 

conducting quality control measurements on the arrays. It is time to start building molecule 

libraries and monitoring their binding behaviors.  

      As discussed in Chapter 3, one of advantages of the chemically cleavable linkers is that it is 

readily to be modified by replacing the substitutions on the side chain. These changes can be 
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made without needing to alter the synthetic route to the linker. In this way, the linker can be used 

to conduct quality control assessment of a variety of structures built with the site-selective 

chemistry developed. For example, Dr. Guoxi Xu in our group showed that a Diels-Alder 

reaction can be used to place C-glycosides onto the surface of an array.
5
 This scheme could be 

adapted to the chemically cleavable linkers (Scheme 5.2) in order to make sure that the 

chemistry proceeded as planned.  

         

Scheme 5.2 Example the quality control of the C-glycoside with the chemically cleavable linker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

      By using the similar strategies, a library of sugar monomer derivatives, peptides, etc. can be 

placed by different electrodes of the array with Lewis-acid, Cu(I), Pd(0) as catalysts in a 

convenient and convincing manner. Then the relative interaction of those ligands with receptors 

of interest can be probed in ―real-time‖. Molecules that show a signal can then be reclaimed from 

the array using the same electrode used to record the signal in order to make sure that they 

remain the molecule that was intended for the study.  The approach would enable the first true 

applications of microelectrode arrays for the analysis of a small molecule library.     
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