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ABSTRACT OF THESIS 

Process Dissociation Analyses of Memory Changes in Healthy Aging, Preclinical, and  

Very Mild Alzheimer Disease: Evidence for Isolated Recollection Deficits  

by 

Peter R Millar 

Master of Arts in Psychological & Brain Sciences 

Washington University in St. Louis, 2016 

Professor David A Balota, Chair 

Recollection and familiarity are independent processes that contribute to memory 

performance. Recollection is dependent on attentional control, which breaks down in early-stage 

Alzheimer disease (AD), whereas familiarity is independent of attention. The present study 

examines the sensitivity of recollection estimates based on Jacoby’s (1991) process dissociation 

procedure to AD-related biomarkers in a large sample of well-characterized cognitively normal 

older adults (N = 519) and the extent to which recollection discriminates these individuals from 

individuals with very mild symptomatic AD (N = 64). Participants studied word pairs, e.g., 

“knee bone,” then completed a primed, explicit, cued fragment-completion memory task, e.g., 

“knee b_n_.” Primes were either congruent with the correct response, e.g., “bone,” incongruent, 

e.g., “bend,” or neutral, e.g., “&&&.” This design allowed for the estimation of independent 

contributions of recollection and familiarity processes, using the process dissociation procedure. 

Recollection, but not familiarity, was impaired in healthy aging and in very mild AD. 

Recollection discriminated cognitively normal individuals from the earliest detectable stage of 

symptomatic AD above and beyond standard psychometric tests. In cognitively normal 

individuals, baseline CSF measures indicative of AD pathology were related to lower initial 

recollection and less improvement in recollection over time. Finally, presence of amyloid 
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plaques, as imaged by PIB-PET, was related to less improvement in recollection over time. 

These findings suggest that attention-demanding memory processes, such as recollection, may be 

particularly sensitive to both symptomatic and preclinical AD pathology.  
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Chapter 1: Introduction 

Alzheimer disease (AD) is traditionally characterized by a deficit in episodic memory 

processes and there is clear evidence that these deficits are the prominent clinical feature of the 

disease throughout its progression (for review, see Carlesimo & Oscar-Berman, 1992; R. G. 

Morris & Kopelamn, 1986). In addition to episodic memory, there is accumulating evidence that 

early-stage symptomatic AD is also marked by changes in executive function and/or attentional 

control processes that might contribute to changes in memory performance (for reviews, see 

Balota & Duchek, 2015; Faust & Balota, 2007; Perry & Hodges, 1999). This proposal runs 

parallel to research in the domain of healthy aging, where it has been repeatedly demonstrated 

that certain age-related memory deficits may be mimicked in younger adults under conditions of 

divided attention (e.g., Balota, Burgess, Cortese, & Adams, 2002; Benjamin, 2001; Castel & 

Craik, 2003; Jacoby, 1999b). Interestingly, structural equation models reveal that individual age 

differences in memory ability are mediated by an executive/attention factor, composed of 

executive functioning and working memory measures (McCabe, Roediger, McDaniel, Balota, & 

Hambrick, 2010). The critical role of attention/executive processes in the study of memory 

changes in both healthy aging and AD is in accord with longstanding theoretical frameworks that 

emphasize the relationship between attention and memory systems (e.g., Craik & Lockhart, 

1972; Hasher & Zacks, 1979; Jacoby, 1991). In this light, if changes in attention processes are 

hypothesized to contribute to AD-related memory changes, then one might predict that memory 

tasks and processes that are highly dependent on such processes should be particularly sensitive 

to biomarkers of asymptomatic AD in healthy control individuals and in discriminating healthy 

aging from the earliest stages of symptomatic AD. 
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One theoretical framework that has been critical in identifying contributions of attention 

to memory performance is Jacoby’s (1991) dual process theory. This model proposes that at least 

two cognitive processes contribute independently to performance on a given memory task: 

recollection, which is intentionally guided and highly dependent upon attentional control, and 

familiarity, which is automatic and independent of attentional control. Importantly, Jacoby 

(1991) developed experimental paradigms to isolate the contributions of each process to overall 

performance via the process dissociation procedure (PDP). A PDP task includes congruent 

conditions, in which reliance upon either process would lead to the same response, and 

incongruent conditions, in which the two processes lead to conflicting responses. With such a 

design, one can estimate the independent contributions of recollection and familiarity for a single 

memory task. As predicted by the dual process model, under conditions of divided attention at 

encoding or retrieval, estimates of recollection are decreased, while estimates of familiarity 

remain consistent (Jacoby, 1991, 1998; Jacoby, Toth, & Yonelinas, 1993; for review, see 

Yonelinas & Jacoby, 2012), confirming that recollection is highly dependent upon attentional 

control. 

If recollection is indeed dependent upon attentional control systems, one would predict a 

relatively large recollection deficit among individuals who exhibit deficits in such systems, such 

as aging or dementing populations. Koen and Yonelinas (2014) recently presented a meta-

analysis of recollection and familiarity estimates as a function of healthy aging, amnestic mild 

cognitive impairment (aMCI), and AD. Interestingly, healthy aging was associated with 

significant reductions of both recollection and familiarity. However, the mean effect size of age 

on recollection was approximately three times larger than the effect on familiarity. Furthermore, 

the effect of age on familiarity was only significant for a subset of studies in which processes 
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were not directly estimated, but were inferred using a remember-know procedure (e.g., McCabe, 

Roediger, McDaniel, & Balota, 2009). In the studies that directly employed a PDP (e.g., Jacoby, 

1999b) or receiver operating characteristic (ROC) approach (e.g., Healy, Light, & Chung, 2005), 

there was no deficit in the more automatic familiarity process. In contrast to the inconsistent 

effects age on familiarity estimates, the effect of age on recollection was significant across all 

three estimation procedures (Koen & Yonelinas, 2014). AD, like healthy aging, was associated 

with significant reductions of both recollection and familiarity. Unlike healthy aging, however, 

the effect sizes were similar in magnitude across the two processes. This finding is somewhat 

surprising given the above evidence of deficits in both attention and memory in early stage 

symptomatic AD. If indeed attention contributes to the memory deficit, one would a priori expect 

AD status to produce a larger deficit in recollection than in familiarity. 

 Because one of the foci of the present study is on early stage symptomatic AD, one 

aspect of the Koen and Yonelinas meta-analysis that is of particular interest is that aMCI was 

associated with a deficit in recollection, but not in familiarity. Indeed, the mean effect of aMCI 

on familiarity only approached significance for a subset of studies that tested individuals with 

both single-domain and multiple-domain diagnoses of aMCI (e.g., Wolk, Mancuso, Kliot, 

Arnold, & Dickerson, 2013), while the mean effect size was near zero and slightly positive for 

studies that examined only single-domain aMCI (e.g., Anderson et al., 2008).  

 It is clear that estimates of recollection are sensitive to healthy aging and symptomatic 

AD, however, there appears to be some inconsistency regarding the relative contributions of 

familiarity in these populations, which merits further investigation. As noted above, this 

inconsistency may be due in part to different approaches for estimating recollection and 

familiarity, e.g., using remember/know judgments, as opposed to direct estimates via PDP 
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procedures, or different criteria for diagnosis, e.g., single-domain aMCI, multiple-domain aMCI, 

or AD. In addition, task complexity may play a part in this variability. It is possible that some of 

the more severe AD participants may not fully understand complex task instructions and hence 

produce deficits in both recollection and familiarity. Other procedural details of the memory task 

may play a role as well. Studies reported in the Koen and Yonelinas meta-analysis estimated 

recollection from performance on a variety of recognition tasks, e.g., memory inclusion and/or 

exclusion, or discrimination of intact, rearranged, and novel paired associates. Such recognition 

tasks might not engage controlled processes to the same extent as a recall task (Craik, 1983). If 

attentional control plays a role in the memory changes in aging and symptomatic AD, it might be 

more informative to examine memory processes in a free or cued recall task. Finally, because of 

relatively small sample sizes in previous studies, i.e., from 7 to 32 individuals with aMCI or AD 

in each study, it is important to examine these process estimates in a larger, well-characterized 

sample. 

 In addition to discriminating healthy aging from early-stage symptomatic AD, memory 

process estimates might change as a function of biomarkers of asymptomatic AD pathology in 

non-demented older adults. Clinically, the stage of progressed AD biomarkers in the absence of 

AD symptoms or diagnosis is defined as “preclinical AD” (Albert et al., 2011; J. C. Morris et al., 

2014; Sperling et al., 2011). Physiologically, this stage is marked by amyloid plaque deposits, 

which can be detected by measuring amyloid β42 (Aβ42) in the cerebral spinal fluid (CSF) or via 

positron emission tomography with the Pittsburgh Compound B radiotracer (PIB-PET), and 

progressive neuronal degeneration, which can be detected by measuring tau in the CSF or 

regional brain atrophy via magnetic resonance imaging (MRI) (Sperling et al., 2011). 

Correlations between these preclinical biomarkers and cognitive measures are small and 
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inconsistent (see Hedden, Oh, Younger, & Patel, 2013 for meta-analysis). Here we examined 

whether memory process estimates, particularly recollection, might be sensitive to these 

biomarkers. 

 The present study includes a large, longitudinal cohort of healthy aging (N = 519 

individuals) and early stage symptomatic AD (N = 64 individuals) from the Charles and Joanne 

Knight Alzheimer Disease Research Center at Washington University in St. Louis. The 

participants are well-characterized with AD-related biomarkers, e.g., apolipoprotein E (APOE) 

genotype, CSF estimates of Aβ42 and tau, and PIB-PET imaging, available for most participants. 

By defining the current AD sample using the Clinical Dementia Rating (CDR) scale, we can 

focus on the earliest detectable stage of symptomatic AD in participants who have a CDR of 0.5 

(indicating very mild dementia). These individuals typically have an average MMSE score 

around 27 and are very likely to progress to a higher CDR level. The CDR has been shown to be 

very accurate (93%) in identifying very mild AD (CDR 0.5), as confirmed by subsequent 

autopsy (Berg et al., 1998; Storandt, Grant, Miller, & Morris, 2006).  

There are four goals in the present study. First, we developed a relatively simple 

paradigm that affords the use of the PDP to obtain estimates of recollection and familiarity in 

their relative contributions to the memory deficits observed in both healthy aging and 

symptomatic AD. Second, we examined the extent to which recollection estimates account for 

age and AD effects above and beyond standard psychometric measures. Third, because of the 

large and well-characterized sample, we were able to examine whether recollection (or 

familiarity) is sensitive to preclinical biomarkers of AD pathology in cognitively normal older 

adults. Fourth, because we have multiple measures of recollection and familiarity across time for 
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individuals, we were able to examine the change in the recollection and familiarity estimates as a 

function of biomarker burden across time via longitudinal analyses. 

In order to address these goals, we utilized a primed memory task that would allow for 

PDP estimates of recollection and familiarity, based on a procedure previously used by Jacoby 

(1999a). The current version of the task was unique in that it was much shorter than prior PDP 

tasks of a similar type, i.e., 30 critical test trials vs. 60-90 trials. In fact, this task may be 

administered in approximately 10 minutes, which might facilitate use in clinical applications.  

 As shown in Figure 1, the current PDP memory task included an incidental encoding 

phase followed by a fragment-completion phase. During incidental encoding, participants made a 

judgment of relatedness about a series of word pairs, e.g., “knee bone,” “arrow cage.” 

Immediately afterward, participants completed a primed, cued fragment-completion task with 

explicit recall instructions. Participants were instructed to complete a cued word fragment based 

on their memory for the prior related word pairs, e.g., “bone” for “knee b_n_.” Each trial was 

primed with a stimulus that was congruent with the correct response, e.g., “bone,” incongruent 

with the correct response, e.g., “bend,” or neutral, i.e., “&&&.” Crucially, all incongruent primes 

were also valid completions of the stem and semantically related to the cue, but had not been 

presented during the incidental encoding phase. Thus, the incongruent condition was designed to 

prime a feeling of familiarity for an incorrect response. In a longer version of this task, Jacoby 

(1999a) found that healthy older adults were more likely than younger controls to falsely recall 

the incongruent prime words, resulting in a higher intrusion rate. He did not report estimates of 

recollection and familiarity for individual participants, but application of the PDP to mean 

performance revealed a greater estimate of recollection in younger adults than in older adults and 

similar estimates of familiarity in each age group. This paradigm is ideally suited to obtain 
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estimates of the relative contributions of recollection and familiarity in healthy aging and very 

mild AD because the task is mostly automated, relatively brief, and requires only simple 

instruction. Furthermore, since the paradigm demands explicit retrieval of the target, it should be 

particularly sensitive to changes in attentional control processes. 

 

Figure 1. Illustration of PDP task design and example trials. 

Chapter 2: Method 

2.1 Participants 

 As noted, all participants were recruited by the Charles F. and Joanne Knight Alzheimer 

Disease Research Center at Washington University in St. Louis, as part of one of two 

longitudinal studies: the Healthy Aging and Senile Dementia Program Project or the Adult 

Children Study Program Project. In total, 583 individuals participated in this study for up to four 

study sessions over the course of up to 8 years. Basic demographic measures of the sample are 
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reported in Table 1. Research methods were approved by the Washington University Human 

Research Protection office. Written informed consent was obtained from all participants. 

2.2 Annual Clinical, Psychometric, and Cognitive Batteries 

Each participant was assessed by a trained clinician using the Clinical Dementia Rating 

(CDR) scale (John C Morris, 1993). At each assessment, participants were assigned a CDR 

rating: 0 for cognitively normal, 0.5 for very mild dementia, 1 for mild dementia, 2 for moderate 

dementia, or 3 for severe dementia. A clinical diagnosis of AD in individuals who are CDR 0.5 

or greater was based on NINCDS-ADRDA criteria (McKhann et al., 1984). In this report, we are 

most interested in describing very mild symptomatic and asymptomatic AD, so we focus on 

individuals with CDR ratings of 0 or 0.5.  

 Participants also annually completed a 2-hour battery of psychometric tests to assess 

cognitive performance. This battery included several measures of memory, including the Logical 

Memory, Digit Span, and Associate Memory subtests of the Wechsler Memory Scale (WMS-R; 

Wechsler, 1987), and the Free and Cued Selective Reminding test (FCSR; Grober, Buschke, 

Crystal, Bang, & Dresner, 1988), measures of attention and processing speed, including WMS 

Mental Control (Wechsler & Stone, 1973), Letter-Number Sequencing (Wechsler, 1997), and 

Digit Symbol of the Wechsler Adult Intelligence Scales (WAIS-R Wechsler, 1981), measures of 

semantic/lexical retrieval, including the Animal Naming Test (Goodglass & Kaplan, 1983), the 

Boston Naming Test (Kaplan, Goodglass, & Weintraub, 1976), and the Word Fluency Test S-P 

(Thurstone & Thurstone, 1947), as well as measures of visuomotor ability (Trail Making A & B; 

Armitage, 1946) and working memory capacity (Reading Span; Engle, Tuholski, Laughlin, & 

Conway, 1999). Measures of Associate Memory, FCSR free recall, and Logical Memory delayed 

recall were averaged together to form an episodic memory composite (see Aschenbrenner, 

Balota, Fagan, et al., 2015). The tasks included in the psychometric battery differed between the 
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two longitudinal cohorts and, thus, some tasks were administered to only a subset of the current 

sample. All participants also completed the Mini-Mental State Exam (MMSE; Folstein, Folstein, 

& McHugh, 1975). Average baseline psychometric test scores are presented in Table 1 as a 

function of age and CDR status. Table 2 presents the reliability of these scores over time in the 

full sample of CDR 0s and CDR 0.5s, as measured by intra-class correlation (ICC), using the 

“ICC” package in R (Wolak, Fairbairn, & Paulsen, 2012). 

Participants also completed a separate battery of cognitive tests to assess attentional 

control. This battery included computerized versions of the Stroop color naming task (Spieler, 

Balota, & Faust, 1996; Stroop, 1935), the Simon task (Castel, Balota, Hutchison, Logan, & Yap, 

2007; Simon, 1969), and a consonant-vowel/odd-even task-switching task (CVOE; Tse, Balota, 

Yap, Duchek, & McCabe, 2010). Accuracy on select conditions of these tasks, i.e., incongruent 

Stroop and Simon trials and CVOE switch trials, were standardized to previous norms from a 

similar cohort and averaged into a composite measure for each time point, as described by 

Aschenbrenner, Balota, Fagan, and colleagues (2015).  

2.3 APOE Genotyping, CSF Measurement, and PIB-PET Imaging 

 APOE genotyping was performed using standard procedures with TaqMan assays 

(Applied Biosystems, Foster City, CA) for both rs429358 (ABI#C_3084793_20) and rs7412 

(ABI#C_904973_10). We defined ε4+ individuals as those with at least one ε4 allele present, 

i.e., ε24, ε34, and ε44, while ε4- individuals were those without a single ε4 allele present, i.e., 

ε22, ε23, and ε33. The proportion of individuals identified as ε4+ is presented in Table 1. 

Approximately once every 3 years, CSF was collected via lumbar puncture and analyzed 

using methods described previously (Fagan et al., 2007). After participants fasted overnight, 20-

30 mL samples of CSF were collected, then aliquoted (500 μL) in polypropylene tubes, and 

stored at -84°C. Samples were analyzed after a single thaw using ELISA (INNOTEST, Fujirebio   
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Variable (units) CDR 0  

Age <60 

CDR 0 

Age 60-74 

CDR 0 

Age 75+ 

CDR 0.5 F(df) p 

N 94 277 148 64   

% Female 68% 61% 61% 42%   

Age (years) 54.04 (3.38) 68.10 (3.98) 79.92 (4.13) 75.03 (7.14) 24.64 (1,581) * <.001 

Education (years) 16.25 (2.53) 15.57 (2.57) 15.39 (2.71) 15.11 (2.69) 0.78 (1,572) .38 

MMSE 29.45 (0.84) 29.08 (1.30) 28.50 (1.49) 26.15 (3.32) 134.55 (1,552) <.001 

WMS Logical 

Memory immediate 
12.57 (4.12) 13.89 (3.76) 13.28 (4.44) 8.54 (4.64) 76.78 (1,426) <.001 

WMS Logical 

Memory delayed 
13.00 (4.55) 12.99 (4.18) 12.19 (4.95) 5.62 (5.27) 119.04 (1,426) <.001 

WMS Digit forward 6.43 (0.98) 6.83 (1.04) 6.64 (1.10) 6.57 (1.06) 1.25 (1,424) .26 

WMS Digit 

backward 
4.86 (1.46) 4.85 (1.20) 4.74 (1.15) 4.28 (1.14) 9.79 (1,424) .002 

WMS Associate 

Memory 
14.50 (4.50) 14.45 (3.38) 13.33 (3.99) 9.86 (3.58) 64.48 (1,423) <.001 

FCSR free recall 33.15 (5.38) 31.41 (5.76) 28.97 (6.31) 18.52 (8.25) 174.51 (1,545) <.001 

FCSR total 47.87 (0.37) 47.82 (1.32) 47.63 (0.85) 42.79 (7.91) 161.02 (1,545) <.001 

WMS Mental 

Control 
6.71 (1.80) 7.32 (1.77) 7.48 (1.71) 6.72 (1.97) 6.89 (1,426) .009 

WAIS-III Letter 

Number Sequencing 
11.83 (2.61) 10.35 (2.54) 8.63 (2.42) 7.71 (3.27) 15.33 (1,372) <.001 

WAIS-R Digit 

Symbol 
58.86 (12.19) 49.59 (10.12) 44.99 (10.78) 37.74 (12.95) 41.52 (1,418) <.001 

Animal Naming 24.50 (5.94) 21.51 (5.45) 18.38 (5.53) 15.95 (4.41) 27.49 (1,552) <.001 

Boston Naming 57.43 (3.60) 55.64 (4.92) 53.56 (6.82) 50.52 (7.75) 24.13 (1,426) <.001 

Word Fluency S-P 33.57 (11.83) 30.58 (9.75) 29.77 (10.63) 25.82 (10.02) 9.38 (1,426) .002 

Trail Making A 27.26 (9.13) 32.86 (13.46) 39.23 (14.10) 49.03 (28.47) 35.56 (1,552) <.001 

Trail Making B 58.79 (22.80) 78.67 (31.28) 101.26 (39.40) 116.85 (47.28) 30.59 (1,551) <.001 

Reading span 2.82 (0.67) 2.45 (0.72) 2.09 (0.56) 1.68 (0.61) 23.33 (1,287) <.001 

Psychometric 

interval (days) 
196.4 (194.45) 86.70 (114.32) 62.80 (57.21) 59.36 (59.88) 1.16 (1,552) .28 

% APOE ε4 positive 40% 36% 25% 54%   

CSF Aβ42 (pg/mL) 700.29 (230.65) 692.84 (259.62) 608.56 (304.98) 485.99 (228.86) 10.96 (1,346) .001 

CSF Tau (pg/mL) 204.64 (77.34) 285.98 (159.11) 392.64 (248.17) 589.29 (292.72) 54.63 (1,346) <.001 

Lumbar puncture 

interval (days) 
280.99 (281.83) 194.64 (230.94) 265.94 (292.87) 142.46 (164.02) 2.80 (1,346) .10 

PIB-PET MCBP 0.05 (0.07) 0.15 (0.21) 0.24 (0.32) 0.43 (0.32) 9.94 (1,289) .002 

PIB-PET interval 

(days) 
239.13 (227.32) 263.91 (263.49) 277.77 (226.39) 316.89 (369.05) 0.14 (1,289) .71 

Number of PDP 

assessments 
1.69 (0.73) 1.75 (0.80) 1.45 (0.59) 1.30 (0.46) 8.52 (1,580) .004 

Time in Study 

(years) 
2.51 (2.55) 2.34 (2.38) 1.41 (1.88) 0.91 (1.49) 9.05 (1,580) .003 

       

       

       

Table 1. Demographic, psychometric, and biomarker measures, mean (SD), at initial test grouped 

by age and CDR status. F(df) reports the univariate F statistic for the effect of CDR status, 

controlling for age as a continuous covariate. * Age was not controlled as a covariate. 

[formerly Innogenetics], Ghent, Belgium). Baseline levels of CSF biomarkers, Aβ42 and tau, are 

presented in Table 1. 
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Variable ICC 95% LB 95% UB N k σ
2

w σ
2

a 

        

WMS Logical Memory 

immediate 
0.65 0.57 0.72 441 1.47 6.73 12.77 

WMS Logical Memory 

delayed 
0.74 0.68 0.79 441 1.47 6.74 19.64 

WMS Digit forward 0.62 0.53 0.69 439 1.47 0.43 0.70 

WMS Digit backward 0.45 0.34 0.55 439 1.47 0.78 0.65 

WMS Associate 

Memory 
0.72 0.65 0.77 438 1.47 4.46 11.26 

FCSR free recall 0.69 0.63 0.74 562 1.54 16.23 36.02 

FCSR total 0.79 0.75 0.83 562 1.54 1.51 5.71 

WMS Mental Control 0.54 0.44 0.62 441 1.47 1.43 1.67 

WAIS Letter Number 

Sequencing 
0.71 0.64 0.76 480 1.45 2.18 5.38 

WAIS-R Digit Symbol 0.87 0.84 0.90 434 1.44 17.55 117.78 

Animal Naming 0.69 0.63 0.74 570 1.54 10.90 24.42 

Boston Naming 0.83 0.78 0.86 441 1.47 6.19 29.39 

Word Fluency S-P 0.71 0.64 0.77 441 1.47 29.76 73.64 

Trail Making A 0.74 0.68 0.78 570 1.54 62.71 174.92 

Trail Making B 0.79 0.74 0.82 570 1.54 305.94 1129.02 

Reading span 0.42 0.28 0.54 423 1.36 0.41 0.30 

Attentional control 

composite 
0.72 0.66 0.77 584 1.50 0.71 1.83 

Episodic memory 

composite 
0.74 0.69 0.79 570 1.54 0.20 0.57 

MMSE 0.66 0.60 0.71 570 1.54 0.98 1.91 

Recollection 0.63 0.57 0.69 595 1.55 0.03 0.05 

Familiarity 0.18 0.05 0.29 578 1.50 0.05 0.01 

 
       

Table 2. Reliability of psychometric tests and current PDP task measures. Measures reported 

include intra-class correlation (ICC), 95% confidence interval, number of individuals (N), 

average number of observations per individual (k), variance within individuals (σ
2

w), and 

variance among individuals (σ
2

a).  

 

 Approximately once every 3 years, amyloid burden was imaged with PIB-PET using 

methods previously described (Mintun et al., 2006). Regions of interest were segmented 

automatically using Freesurfer (Fischl, 2012). Mean cortical binding potential (MCBP) was 

calculated across the following regions: left and right lateral orbitofrontal, inferior parietal, 
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precuneus, rostral middle frontal, superior frontal, superior temporal, and middle temporal. 

Cerebellum was used as the reference region. This Freesurfer-derived measure of MCBP is 

highly consistent with a manually-derived MCBP and demonstrates excellent test-retest 

reliability (Su et al., 2013). Baseline MCBP is presented in Table 1. 

2.4 Behavioral PDP Memory Task 

 Word stimuli were developed according to previously described norms (Jacoby, 1996, 

1999b). Related word pairs were constructed such that the cue word had a strong semantic 

association with two target words, e.g., “knee bone,” “knee bend.” Furthermore, the two possible 

targets were constrained to include words with the same number of letters and with at least two 

identical letters in the same position, such that either target would be a valid completion of the 

same word fragment, e.g., “b_n_.” In total, 34 related and 14 unrelated word pairs were 

produced. All stimuli were presented in Courier font on a computer monitor using E-Prime 

(Psychology Software Tools, Pittsburgh, PA).  

 As noted, the PDP memory task consisted of two phases (see Figure 1). During incidental 

encoding (Phase 1), participants viewed a series of 40 word pairs, consisting of 30 related pairs, 

e.g., “knee bone,” and 10 unrelated pairs, e.g., “arrow cage.” Word pairs were presented in a 

random order. On each trial, the following sequence of events occurred: (a) a fixation cross 

appeared at the center of the screen for 1000 ms; (b) a word pair appeared for 3000 ms; (c) the 

participant read each word pair aloud and vocally identified if the words were related or 

unrelated; (d) the experimenter coded verbal responses with a button press. Four unscored buffer 

trials (including 2 related and 2 unrelated word pairs) were presented before and after the 40 test 

trials to minimize the influence of primacy and recency effects and to serve as memory targets 

for practice trials in the second phase. 
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 Immediately after completing the incidental encoding phase, participants completed a 

primed, cued fragment-completion task with explicit recall instructions (Phase 2). Each trial 

consisted of the following: (a) a fixation cross presented at the center of the screen for 1000 ms; 

(b) a prime presented for 1000 ms; (c) a cue word paired with a word fragment, based on one of 

the 30 related word pairs presented during the incidental encoding phase, e.g., “knee b_n_.” The 

type of prime was manipulated within subjects in 3 conditions: congruent with the correct 

response, e.g., “bone,” incongruent with the correct response, e.g., “bend,” or neutral symbols, 

i.e., “&&&.” All incongruent primes were also valid completions of the fragment and 

semantically related to the cue, but had not been presented during the incidental encoding phase. 

Participants were instructed to silently read each prime word, then use the cue and fragment to 

recall the word that was earlier paired with the cue. Participants were given up to 20 seconds for 

their responses. The experimenter coded all vocal responses. Participants were informed that all 

correct answers were related to the cue word and correctly completed the fragment, and that the 

prime words might be congruent or incongruent with the correct answer that was presented 

during the first phase of the experiment. Participants completed 10 congruent, 10 incongruent, 

and 10 neutral trials in a random order. These 30 trials were preceded by 4 unscored practice 

trials, based on the 4 related buffer trials presented in the incidental encoding phase.  

2.5 Data Aggregation 

 For each administration of the PDP task, performance was matched with a set of 

demographic, behavioral, and physiological measures from that individual, within 1 year before 

or after the CDR rating, within 2 years before or after the psychometric and attentional control 

batteries, and within 3 years before or after the CSF estimates and the PIB-PET scans. The mean 

time intervals between the PDP task and each of these measures are reported in Table 1.  
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Chapter 3: Results 

 We first tested the effects of healthy aging and very mild symptomatic AD on task 

performance, then on PDP estimates of recollection and familiarity. Aging effects were tested by 

dividing the sample of CDR 0 participants into three age groups: 45-59 years, 60-74, and 75-95. 

These age groups were selected to obtain relative equivalence of the number of individuals and 

the range of ages represented in each group. Other groupings of age, e.g., two-group median split 

or four groups, resulted in consistent interpretations of the age effects. Effects of very mild 

symptomatic AD were tested by comparing all CDR 0s to CDR 0.5s with age as a covariate. We 

then compared the recollection estimates to a battery of standard psychometric tests in their 

accuracy in classifying individuals as CDR 0 vs. CDR 0.5. We also tested whether recollection 

estimates were sensitive to individual differences in preclinical biomarkers of AD pathology and 

risk in cognitively normal individuals (CDR 0s) both at baseline and via longitudinal analyses. 

These biomarkers included APOE genotype, CSF measurements of Aβ42 and tau, as well as the 

presence of amyloid burden, as imaged by PIB-PET. One participant was excluded from all 

analyses as an outlier for age (31 years). Another participant was excluded from all analyses 

because a concurrent CDR rating was unable to be matched. 

3.1 Memory Performance in Healthy Aging 

Figure 2 displays the proportion of each response type (correct, intrusion, or other error) 

at the initial PDP test as a function of age (top panel) and CDR status (bottom panel). We first 

tested the effects of healthy aging on memory task performance in a 3 x 3 mixed-model Analysis 

of Variance (ANOVA), with proportion of correct responses as the dependent variable, age as a 

between-subjects factor (<60 years, 60-74 years, or 75+ years) and condition as a within-subjects 

factor (congruent, incongruent, or neutral). Only CDR 0s were included in this analysis. As 
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expected, this analysis revealed a main effect of age, F(2,516) = 23.37, p < .001, ηp
2
 = .08, a 

main effect of condition, F(2,1032) = 407.17, p < .001, ηp
2
 = .44, and an interaction between age 

and condition, F(4,1032) = 8.65, p < .001, ηp
2
 = .03. As shown in the top panel of Figure 2, older 

age was associated with a greater decrease in correct responses for incongruent trials compared 

with neutral or congruent trials. 

The age effects on correct memory responses might be driven by differences in the 

proportion of intrusions of the critical/incongruent prime word or other errors, including random 

word responses and time-outs. Analysis of the intrusion errors revealed a main effect of age, 

F(2,516) = 21.83, p < .001, ηp
2
 = .08, a main effect of condition, F(2,1032) = 443.23, p < .001, 

ηp
2
 = .46, and a reliable interaction between age and condition, F(4,1032) = 9.29, p < .001, ηp

2
 = 

.04. As shown in the top panel of Figure 2, older age was associated with a greater increase in 

intrusion responses for incongruent trials compared with neutral or congruent trials.   

We also analyzed “other” errors. These errors included trials in which the participant 

responded with a word that was neither the correct response nor the critical lure, as well as trials 

in which the participant did not respond within 20 seconds. For these errors, there was a 

significant main effect of age, F(2,516) = 3.98, p = .02, ηp
2
 = .02, and a main effect of condition, 

F(2,1032) = 49.46, p < .001, ηp
2
 = .09, but the interaction between age and condition was not 

significant, F(4,1032) = 0.51, p = .73, ηp
2
 < .01.  
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Figure 2. Mean proportion (+/- standard error of the mean) of correct responses, intrusions, and 

other errors as a function of trial type, age group (top panel) and AD group (bottom panel) on the 

baseline PDP task. 

 

3.2 Memory Performance in Very Mild Symptomatic AD 

Turning to the effects of CDR status on memory task performance, we conducted a 2 

(CDR: 0 or 0.5) x 3 (condition: congruent, incongruent, or neutral) mixed-model analysis of 

covariance (ANCOVA), controlling for the effect of age as a continuous covariate. This analysis 

revealed a main effect of CDR status, F(1,580) = 158.68, p < .001, ηp
2
 = .22, and an interaction 

between CDR status and condition, F(2,1160) = 34.82, p < .001, ηp
2
 = .06. As shown in the 
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bottom panel of Figure 2, the group difference in performance between CDR 0s and 0.5s was 

greater for incongruent trials compared with neutral trials or congruent trials.  

 The effects of CDR status on intrusion and other errors were tested in separate ANCOVA 

models, using the factor structure described above for correct responses. For intrusions, there 

was a significant main effect of CDR status, F(1,580) = 126.98, p < .001, ηp
2
 = .18, and an 

interaction between CDR status and condition, F(2,1160) = 36.76, p < .001, ηp
2
 = .06. As shown 

in the bottom panel of Figure 2, the group difference in intrusions between CDR 0s and 0.5s was 

greater for incongruent trials compared with neutral trials or congruent trials.  

 For other errors, there was a significant main effect of CDR status, F(1,580) = 46.95, p < 

.001, ηp
2
 = .08, and an interaction between CDR status and condition, F(2,1160) = 9.64, p < .001, 

ηp
2
 = .02. As shown in the bottom panel of Figure 2, the group difference in other errors between 

CDR 0s and 0.5s was greater for neutral trials compared with congruent trials or incongruent 

trials. Therefore, the present results indicate that, controlling for age, AD-related differences in 

task performance are strongly driven by intrusion errors, and to a much smaller extent, by other 

errors, including random word responses and failures to respond. 

3.3 Estimates of Recollection and Familiarity using the PDP 

 In the current paradigm, the independent memory processes, recollection and familiarity, 

may lead to a consistent response (on congruent trials) or conflicting responses (on incongruent 

trials). Thus, this paradigm was ideally suited to use the following equations (see Jacoby, 1991) 

to obtain estimates of recollection and familiarity: 
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Since a recollection estimate of 1.00 would produce a familiarity estimate that is not defined, 

familiarity estimates were not calculated in cases where recollection was equal to 1.00 

(approximately 6% of CDR 0s and 2% of CDR 0.5s). Figure 3 depicts the mean estimates of 

recollection and familiarity as a function of age (left panel) and CDR status (right panel), 

excluding recollection estimates of 1.00, for which a corresponding familiarity estimate was not 

calculated. 

Because when recollection estimates of 1.00, the familiarity estimate is undefined, 

recollection estimates of 1.00 were also excluded from Figure 3 and from the ANOVA and 

ANCOVA analyses of process estimates. For subsequent regression analyses, in which we 

focused specifically on recollection, we included recollection estimates of 1.00. This inclusion 

served to avoid unnecessarily discarding data for tests that did not require complete pairs of 

recollection and familiarity estimates and to avoid biasing correlations by removing the highest 

performers.  

The effects of healthy aging on memory process estimates were tested in the CDR 0 

sample using a 3 x 2 mixed-model ANOVA, with process estimate as the dependent variable, 

age group as a between-subjects factor and process type as a within-subjects factor (recollection 

or familiarity). The interaction between age and process type was significant, F(2,487) = 7.45, p 

= .001, ηp
2
 = .03. As shown in the left panel of Figure 3, older age was associated with a greater 

change in recollection estimates than in familiarity estimates. Planned contrasts revealed that the 

age effect on recollection was significant, F(2,487) = 17.28, p < .001, ηp
2
 = .07, but the effect on 

familiarity was not, F(2,487) = 0.12, p = .89, ηp
2
 < .01.  
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Figure 3. Mean estimates (+/- standard error of the mean) of recollection and familiarity as a 

function of age group (left panel) and AD group (right panel) on the baseline PDP task. 

 

The effects of very mild symptomatic AD on memory process estimates were tested in a 

2 x 2 mixed-model ANCOVA, with process estimate as the dependent variable, CDR status as a 

between-subjects factor, process type as a within-subjects factor, and age as a continuous 

covariate. The interaction between CDR status and process type was highly significant, F(1,550) 

= 46.18, p < .001, ηp
2
 = .08. As shown in the right panel of Figure 3, the group difference 

between CDR 0s and 0.5s was greater for recollection estimates than it was for familiarity 

estimates. Planned contrasts revealed that, controlling for age, the AD group difference for 

recollection was significant, F(1,550) = 112.71, p < .001, ηp
2
 = .17, but the difference in 

familiarity was not, F(1,550) = 0.14, p = .71, ηp
2
 < .001.  

It should be noted that the Familiarity estimates were negatively skewed, with most 

estimates being 1.00. The skewness might limit statistical power for a test of differences in 
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familiarity compared to a test of the more normal and more variable recollection estimate. 

Therefore, we also performed the same ANOVA for age effects on a subset of 244 CDR 0s in 

whom familiarity was less than one. Again, the interaction between age and process type was 

significant, F(2,241) = 7.05, p = .001, ηp
2
 = .06. Older age was associated with a greater change 

in recollection estimates (Ms = .57, .58, .43) than in familiarity estimates (Ms = .62, .56, .65). 

Planned contrasts revealed that the age effect on recollection was significant, F(2,241) = 10.02, p 

< .001, ηp
2
 = .08, as was the effect on familiarity, F(2,241) = 3.30, p = .04, ηp

2
 = .03. However, it 

is worth noting that this familiarity effect is marginally significant and importantly, is low for the 

middle aged group compared to the older age group.  

We also performed the same ANCOVA for symptomatic AD effects on a subset of 244 

CDR 0s and 48 CDR 0.5s in whom familiarity was less than one. Again, the interaction between 

CDR status and process type was highly significant, F(1,289) = 51.73, p < .001, ηp
2
 = .15. The 

group difference between CDR 0s and 0.5s was greater for recollection estimates (Ms = .53, .16) 

than it was for familiarity estimates (Ms = .60, .76). Planned contrasts revealed that, controlling 

for age, the AD group difference for recollection was significant, F(1,289) = 79.97, p < .001, ηp
2
 

= .22, as was the effect on familiarity, F(1,289) = 16.39, p < .001, ηp
2
 = .05. However, it is worth 

noting that this familiarity effect is in the opposite direction than that reported in some of the 

previous literature (see Koen & Yonelinas, 2014), and might reflect a dependence between the 

recollection and familiarity processes within this subset of the data. Indeed, when recollection is 

included as an additional covariate in the familiarity contrast, the AD group difference is no 

longer significant, F(1,288) = 3.25, p = .07, ηp
2
 = .01. 

The results from the PDP estimates are very clear. In a large, well-characterized sample, 

there are highly reliable effects of age and CDR status on the more attention-demanding 
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recollection component, but there is no evidence of an effect of age or AD status on the more 

automatic familiarity component.  

3.4 Sensitivity of Recollection to CDR Status 

 Next we evaluated the utility of the recollection estimates in discriminating between 

cognitively normal individuals and those with very mild symptomatic AD above and beyond 

standard psychometric tests, which have been useful in such discrimination in the extant 

literature (see Storandt, Botwinick, Danziger, Berg, & Hughes, 1984). To address this question, 

we ran a series of stepwise binary logistic regression models on participants at time 1 with CDR 

status (0 or 0.5) as the dependent variable. In the first step, we entered age, education, and one of 

the 19 psychometric measures and cognitive composites described above and tested whether the 

measures were able to reliably classify CDR status. In the second step, we added recollection as 

a predictor and tested whether it reliably increased the classification accuracy of the previous 

model. As shown in Table 3a, each psychometric measure, except Digit Span forward, when 

modeled with age and education, reliably classified CDR status in step 1, χ
2
s(3) > 9, ps ≤ .03, 

Nagelkerke’s R
2
s ≥ .04. Crucially, for each psychometric measure, adding recollection reliably 

increased classification accuracy in step 2, Δ χ
2
s(1) > 18, ps < .001, Δ Nagelkerke’s R

2
s ≥ .05. 

 We then tested whether any of the psychometric measures offered discriminative utility 

for CDR status above and beyond recollection. To do so, we ran another series of stepwise 

binary logistic regression models with CDR status as the dependent variable. In the first step, we 

entered age, education, and recollection. In the second step, we entered one of the 19 

psychometric or composite measures. As shown in Table 3b, age, education, and recollection 

reliably classified CDR status in step 1 for each sample, χ
2
s(3) > 55, ps < .001, Nagelkerke’s R

2
s 

≥ .33. Adding the psychometric measures had mixed effects on classification accuracy in step 2: 
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 For age, education, and X For recollection, after 

partialling out age, 

education, and X 

   

Variable  χ
2
(3) p R

2
 Δ χ

2
(1) p Δ R

2
 

       

WMS Logical Memory 

immediate 
69.03 <.001 .27 51.69 <.001 .17 

WMS Logical Memory delayed 100.41 <.001 .37 34.78 <.001 .11 

WMS Digit forward 3.29 .35 .01 88.19 <.001 .33 

WMS Digit backward 12.10 .007 .05 83.81 <.001 .31 

WMS Associate Memory 63.03 <.001 .25 49.95 <.001 .17 

FCSR free recall 133.21 <.001 .45 18.70 <.001 .05 

FCSR total 97.17 <.001 .34 39.14 <.001 .12 

WMS Mental Control 9.22 .03 .04 85.48 <.001 .32 

WAIS Letter Number 

Sequencing 
29.42 <.001 .17 50.39 <.001 .26 

WAIS-R Digit Symbol 40.41 <.001 .17 57.55 <.001 .21 

Animal Naming 50.81 <.001 .18 74.82 <.001 .23 

Boston Naming 21.38 <.001 .09 78.20 <.001 .28 

Word Fluency S-P 12.25 .007 .05 83.54 <.001 .31 

Trail Making A 43.65 <.001 .15 78.89 <.001 .25 

Trail Making B 43.91 <.001 .15 76.20 <.001 .24 

Reading span 30.69 <.001 .21 34.12 <.001 .21 

Attentional control composite 67.53 <.001 .23 57.68 <.001 .17 

Episodic memory composite 142.14 <.001 .45 21.16 <.001 .06 

MMSE 91.60 <.001 .30 56.00 <.001 .16 

Familiarity 20.01 <.001 .07 95.36 <.001 .31 

PDP task neutral accuracy 94.49 <.001 .31 39.52 <.001 .11 

 

Table 3a. Logistic regression analyses of recollection predicting CDR status (0 vs. 0.5), 

controlling for psychometric tests.  

 

15 measures produced a significant improvement to the model and 4 measures produced a non-

significant improvement (see Table 3b). 

We then compared the unique classification utility of recollection estimates to that of the 

psychometric measures by comparing model improvement measures, i.e., Δ χ
2
s, in step 2, across 

the two models, i.e., the recollection-second model in Table 3a vs. the psychometric-second   
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 For age, education, and 

recollection 

For X, after partialling 

out age, education, and 

recollection 

   

Variable  χ
2
(3) p R

2
 Δ χ

2
(1) p Δ R

2
 

       

WMS Logical Memory 

immediate 
93.89 <.001 .35 26.82 <.001 .09 

WMS Logical Memory delayed 93.89 <.001 .35 41.30 <.001 .13 

WMS Digit forward 91.15 <.001 .35 0.32 .57 .001 

WMS Digit backward 91.15 <.001 .35 4.76 .03 .02 

WMS Associate Memory 94.65 <.001 .36 18.34 <.001 .06 

FCSR free recall 102.93 <.001 .35 48.98 <.001 .15 

FCSR total 102.93 <.001 .35 33.38 <.001 .10 

WMS Mental Control 93.89 <.001 .35 0.81 .37 .003 

WAIS Letter Number 

Sequencing 
77.70 <.001 .41 2.11 .15 .01 

WAIS-R Digit Symbol 85.01 <.001 .33 12.95 <.001 .05 

Animal Naming 113.53 <.001 .37 12.10 <.001 .04 

Boston Naming 93.89 <.001 .35 5.69 .02 .02 

Word Fluency S-P 93.89 <.001 .35 1.91 .17 .006 

Trail Making A 113.53 <.001 .37 9.02 .003 .03 

Trail Making B 113.32 <.001 .37 6.79 .01 .02 

Reading span 55.67 <.001 .37 9.14 .002 .06 

Attentional control composite 110.40 <.001 .36 14.81 <.001 .04 

Episodic memory composite 112.48 <.001 .36 50.83 <.001 .15 

MMSE 113.53 <.001 .37 34.08 <.001 .10 

Familiarity 113.02 <.001 .37 2.35 .12 .007 

PDP task neutral accuracy 112.48 <.001 .36 21.53 <.001 .06 

 

Table 3b. Logistic regression analyses of psychometric tests predicting CDR status (0 vs. 0.5), 

controlling for recollection. 

model in Table 3b. The model improvements for recollection after partialling psychometric X 

(see Table 3a) were greater than the corresponding improvements for psychometric X after 

partialling recollection (see Table 3b) for all but three psychometric measures: Logical Memory 

delayed recall, FCSR free recall, and the episodic memory composite, composed of those two 

measures along with Associate Memory. A non-parametric sign test revealed that the 
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classification improvement for recollection over the psychometric measures was reliably greater 

than the classification improvement for psychometric measures over recollection, n+ = 16, n- = 

3, p = .004. Thus, a recollection estimate from this 10-minute, computerized task was a relatively 

useful discriminator of healthy aging from very mild symptomatic AD, and at the very least 

comparable to the well-established psychometric memory measures. 

 Additionally, we tested whether the recollection estimates were a more accurate 

discriminator of very mild symptomatic AD than other indices of performance on the same PDP 

task. For this test, we performed the same stepwise binomial logistic regression analyses 

described above, substituting the familiarity estimate and neutral trial accuracy for the 

psychometric measures. Familiarity was selected for this analysis as it is a process hypothesized 

to contribute to task performance independently of recollection. Neutral trial accuracy was 

selected as a simple index of cued recall, without the influence of congruent or incongruent 

primes. As shown in Table 3a, adding recollection, after controlling for these other task 

measures, reliably increased classification accuracy in step 2, Δ χ
2
s(1) > 39, ps < .001, Δ 

Nagelkerke’s R
2
s ≥ .11. In the reverse-ordered model, familiarity did not significantly improve 

classification accuracy, after controlling for recollection, Δ χ
2
(1) = 2.35, p = .12, Δ Nagelkerke’s 

R
2
 = .007. Neutral trial accuracy did significantly improve classification accuracy, Δ χ

2
(1) = 

21.53, p < .001, Δ Nagelkerke’s R
2
 = .06, but this improvement was small in comparison to the 

recollection-second model, i.e., Δ χ
2
(1) = 39.52, p < .001, Δ Nagelkerke’s R

2
 = .11. Thus, the 

recollection process estimate provided better discrimination between healthy aging and very mild 

symptomatic AD than another memory process or a simpler measure of performance derived 

from the same task. 
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3.5 Sensitivity of Recollection to Preclinical AD Biomarkers 

 If recollection estimates are sensitive to the earliest detectable stage of symptomatic AD, 

then they might also be sensitive to individual differences in preclinical AD biomarkers within a 

cognitively normal population, as reflected by CSF measures or PIB-PET imaging. Moreover, 

since we estimated recollection multiple times longitudinally, this sensitivity might emerge in 

baseline recollection estimates and/or in change in recollection over time. We tested these 

hypotheses using hierarchical linear regression models of recollection as predicted by biomarker 

measures, controlling for demographic variables. We completed these analyses on a sample of 

only CDR 0s, so that any effects could be attributable to preclinical variability in AD biomarkers 

and not a clinical diagnosis of symptomatic AD. In these models, we aimed to minimize the 

influence of extreme outliers in the recollection estimate, so we estimated each participant’s 

slope of recollection over time. We removed two potential outlier individuals with recollection 

slopes greater than 5 standard deviations from the sample mean. 

 In the following analyses, we present two sections. First, we examine the relationship 

between the CSF biomarkers and recollection estimates both at baseline and longitudinally. 

Second, we examine the relationship between PIB and recollection both at baseline and 

longitudinally. We present the analyses on CSF biomarkers and on the PIB biomarker as separate 

analyses for two reasons: First, although there is overlap in individuals who have both PIB and 

CSF measures, when we impose our constraints regarding the timing of the biomarker 

measurements, the inclusion of only participants with both biomarkers reduces our sample size 

by 34% in the following CSF analyses and by 24% in the following PIB analyses. Hence, in 

order to maximize the sample, and reduce intercorrelated variables in the analyses (CSF Aβ42 

and PIB MCBP are correlated at r = -.50), we report these as separate analyses.  
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3.5.1 Sensitivity of Recollection to CSF Biomarkers 

We first examined the sensitivity of recollection to CSF biomarkers, including measures 

of Aβ42 and tau. These analyses were performed on a subset of individuals who had completed a 

lumbar puncture within 3 years of the baseline PDP estimate. We corrected for non-normality in 

the tau measurement by applying a natural log transform as performed by Aschenbrenner, 

Balota, Tse, and colleagues (2015). No observations were identified as potential outliers for Aβ42 

or log-transformed tau (all cases were less than 3.5 standard deviations from the respective 

sample means). The final CSF model dataset included a total of 562 observations from 320 

unique individuals (141 with one test, 122 with two tests, 51 with three tests, and 6 with four 

tests).  

 Hierarchical linear models were analyzed using the “nlme” package in R (Pinheiro, 

Bates, DebRoy, & Sarkar, 2014). We first calculated the intra-class correlation (ICC) in an 

unconditional random-intercept model to describe the variability of the recollection estimates in 

this sample. The ICC for this sample was .55, indicating that 55% of variability in recollection 

estimates was driven by inter-individual differences, leaving 45% driven by intra-individual 

change over time. We then added time as a level 1 predictor to begin accounting for this 

variability. The fixed effect of time was marginally significant, β = .03, SE = .02, p = .055. 

Recollection marginally increased over time. There was considerable variability between 

individual slopes over time, τ1 = .09, 95% C.I. = [.04, .19]. The random effect 95% confidence 

interval was -.14 to .20, indicating the range of 95% of the slopes predicted in the sample. 

We then added demographic and CSF biomarker predictors of recollection. These 

predictors included baseline age, education, APOE genotype, sex, baseline values of CSF Aβ42 

and tau, as well as all two- and three-way interactions between time, Aβ42, and/or tau. These 
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predictors were always retained as they were necessary to test our a priori hypotheses. We then 

added each other two-way interaction between each level 2 demographic predictor and time to 

test for cross-level effects. Only the interaction between time and sex was significant, and thus 

all other cross-level demographic interactions were removed from the model. This approach was 

taken to test our hypotheses and avoid forming overly complex models or over-fitting the data 

(as conducted by Aschenbrenner, Balota, Fagan, et al., 2015). 

The final parameter estimates are displayed in Table 4. In this model, time had a 

significant, positive relationship with recollection, β = .06, p = .02. As predicted, baseline age 

was negatively related to the recollection estimate in the initial test, β = -.21, p < .001. 

Additionally, years of education were positively related to initial recollection estimate, β = .06, p 

= .001. APOE genotype was not related to recollection, β = .02, p = .87. Sex was positively 

related to initial recollection, β = .49, p < .001, indicating that females had higher initial 

recollection estimates than males. Additionally, the time * sex interaction was marginally 

significant, β = -.06, p = .048, indicating that females had marginally lower increases in 

recollection over time than males did. 

The CSF biomarker predictors were most critical to our hypotheses. The model revealed 

that baseline level of Aβ42 was positively related to initial recollection estimate, β = .14, p = .02 

(see Figure 4). To clarify, low levels of Aβ42 in the CSF are associated with accumulation of 

amyloid plaques in the brain (Fagan et al., 2006). Thus, lower recollection estimates were 

associated with markers of more progressed AD pathology. In contrast, baseline level of tau was 

not related to initial recollection estimate, β = -.06, p = .36, nor was the interaction between 

baseline tau and Aβ42, β = -.09, p = .11.  
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Variable Estimate (SE) df t p 

     

Intercept -0.33 (0.09) 321 -3.72 <.001 

Time 0.06 (0.02) 228 2.33 .02 

Age -0.21 (0.05) 321 -4.21 <.001 

Education 0.06 (0.02) 321 3.33 .001 

APOE 0.02 (0.10) 321 0.16 .87 

Sex 0.49 (0.11) 228 4.64 <.001 

Aβ42 0.14 (0.06) 321 2.41 .02 

Tau -0.06 (0.06) 321 -0.93 .36 

Time * Sex -0.06 (0.03) 228 -1.99 .048 

Aβ42  * Tau -0.09 (0.06) 321 -1.60 .11 

Time * Aβ42 -0.01 (0.02) 228 -0.47 .64 

Time * Tau 0.00 (0.02) 228 0.01 .99 

Time *  Aβ42 * Tau 0.06 (0.02) 228 3.23 .001 

 

Table 4. Hierarchical linear regression analyses of CSF biomarkers and recollection. Note: Time 

was defined as years after initial test and was allowed to vary randomly within individuals. Age 

was defined as age at initial test. Education was centered at 16 years, the sample mean. APOE 

genotype was coded as 0 for absence and 1 for presence of an ε4 allele. Sex was coded as 0 for 

male and 1 for female. CSF biomarkers were baseline values at the time of the first PDP 

estimate, within 3 years. CSF tau was corrected for non-normality using a natural log transform. 

Baseline age and CSF biomarkers were standardized within the sample. 

 

Turning to longitudinal change in recollection, the model revealed a significant 

interaction between time, Aβ42, and tau, β = .06, p < .001. This interaction is depicted in Figure 

5, in which predictions are plotted in separate panels for individuals with abnormal (lower) 

baseline CSF Aβ42, as defined using the Youden index by Vos et al. (2014) as values less than 

459 pg/mL, and for individuals within the normal (higher) range. When Aβ42 was abnormal, as 

CSF tau increased, recollection was less likely to increase over time. However, when Aβ42 was 

normal, the relationship between CSF tau and recollection slope was weaker. Improvement over 

time in the recollection estimate likely reflects a practice effect, which has been noted in similar 

samples for repeated episodic memory tasks (see Aschenbrenner, Balota, Fagan, et al., 2015; 

Galvin et al., 2005; Hassenstab et al., 2015). The episodic memory practice benefit has 

previously been associated with a decreased risk of progression to symptomatic AD 
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Figure 4. Relationship between recollection and CSF Aβ42. Points are residual observations. Line 

is the model prediction. Shaded area is the 95% confidence region. 

 

(Hassenstab et al., 2015). Thus, CSF Aβ42 and tau, both indicative of progressed AD pathology, 

had an interactive effect on the practice effect for recollection. 

3.5.2 Sensitivity of Recollection to PIB-PET  

We then tested whether recollection was related to presence of amyloid plaques as 

observed by PIB-PET. These analyses were performed on a subset of observations in which the 

baseline PDP estimate had been completed within 3 years of a PIB-PET scan. MCBP within this 

sample was highly skewed with several potential outliers. One conservative, but informative, 

approach to testing the effects of amyloid plaque is to categorically identify the presence (PIB+) 

or absence of amyloid plaques (PIB-) using a threshold value of MCBP. We defined PIB+ 

individuals as those with MCBP greater than .23 and PIB- individuals with MCBP less than or 

equal to .23. This threshold value was taken from Gordon et al. (2015), who dichotomized PIB 
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Figure 5. Interaction between Aβ42, tau, and time on recollection. Regression lines of 

recollection, predicted by time, are plotted separately for mean levels of tau, as well as 1 

standard deviation above and below the mean, for individuals with abnormal levels of Aβ42 

(<459 pg/mL, upper panel) and those with normal levels (≥459 pg/mL, lower panel). 

 

positivity in a similar cohort using the Youden index (as performed by Vos et al., 2014). The 

final PIB-PET model dataset included a total of 501 observations from 278 unique individuals 

(116 with one test, 106 with two tests, 51 with three tests, and 5 with four tests). We repeated the 

same modeling procedures described in the CSF model above, substituting PIB positivity for 

CSF measures as a biomarker predictor. The ICC of recollection in this sample was .53. Again, 

there was a marginally significant fixed effect of time, β = .03, SE = .02, p = .10, as well as a 

significant random effect of time, 95% C.I. = [-.09, .14]. The final model parameters are 

presented in Table 5. Crucially, PIB positivity was not related to baseline recollection, β = .00, p 
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= .99, but it significantly interacted with time to predict change in recollection, β = -.10, p = .02. 

As shown in Figure 6, in individuals who were PIB- at baseline, recollection tended to slightly 

increase over time, while in individuals who were PIB+, recollection decreased over time.  

Variable Estimate (SE) df t p 

     

Intercept -0.16 (0.10) 280 -1.62 .11 

Time 0.02 (0.02) 212 0.94 .35 

Age -0.24 (0.05) 280 -4.56 <.001 

Education 0.06 (0.02) 280 3.29 .001 

APOE -0.24 (0.12) 280 -1.96 .051 

Sex 0.29 (0.11) 280 2.78 .006 

PIB 0.00 (0.15) 280 -0.01 .99 

Time * APOE 0.06 (0.03) 212 1.65 .10 

Time * PIB -0.10 (0.04) 212 -2.33 .02 

 

Table 5. Hierarchical linear regression analyses of PIB positivity and recollection. Note: Time 

was defined as years after initial test and was allowed to vary randomly within individuals. Age 

was defined as age at initial test. Education was centered at 16 years, the sample mean. APOE 

genotype was coded as 0 for absence and 1 for presence of an ε4 allele. Sex was coded as 0 for 

male and 1 for female. PIB was coded as 0 for baseline MCBP ≤ .23 and 1 for > .23. Baseline 

age was standardized within the sample. 

 

Figure 6. Interaction between PIB positivity and time on recollection. Regression lines of 

recollection, predicted by time, are plotted separately for individuals who were PIB+ (MCBP 

>.23) and those who were PIB- (MCBP ≤ .23). 
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Consistent with the CSF model, age, β = -.24, p < .001, education, β = .06, p = .001, and 

sex, β = .29, p = .006, were significantly related to recollection estimates. Unlike the CSF model, 

however, APOE was marginally related to baseline recollection, β = -.24, p = .051, as well as 

longitudinal change in recollection, β = .06, p = .10. Note that the APOE * Time interaction is 

opposite to the hypothesized direction. The difference in slope between ε4+ and ε4- groups may 

be driven in part by the difference in baseline recollection. Moreover, because neither the 

baseline effect of APOE nor its interaction with time was significant in the CSF analyses, and 

APOE relations to cognition in healthy non-demented individuals has been inconsistent in the 

literature (for meta-analysis, see Wisdom, Callahan, & Hawkins, 2011), we believe that one 

should interpret the current APOE effects with caution.  

Chapter 4: General Discussion 

The results from the present study yielded a number of noteworthy results. Specifically, 

using a short 10-minute procedure that affords PDP analyses in a large cohort, we find that an 

estimate of recollection, but not familiarity, is (a) sensitive to healthy aging, (b) particularly 

sensitive to early stage symptomatic AD, compared to standard psychometric measures, and (c) 

sensitive to biomarkers of preclinical AD pathology and risk in cognitively normal individuals 

both at baseline and as a function of longitudinal change. Below, we discuss how these results 

are informative to individual and group differences in memory processes, the relationships 

between AD biomarkers and cognition, the important role of attention in memory, and the 

potential applied utility of recollection estimates. 

4.1 Memory Processes in Healthy Aging and Early Stage Symptomatic AD  

The current results indicate that healthy aging is associated with a large deficit in 

recollection, but no change in familiarity. This finding is consistent with the meta-analysis of age 

effects on process estimates (Koen & Yonelinas, 2014). Across 20 studies in which processes 
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were estimated with PDP (13 studies) or ROC procedures (7 studies), recollection reliably 

decreased in healthy aging, while familiarity exhibited no deficit. The present study is unique, 

however, in that it replicated the effects of healthy aging on process estimates in a much less 

extreme age comparison. Prior studies of these effects, as summarized by Koen and Yonelinas 

(2014), have compared younger adult samples (typically undergraduate students; mean sample 

age = 21.47, range = 18.90 – 30.00) to older adult samples (typically recruited from the 

community; mean sample age = 71.14, range = 60.61 – 77.00). By contrast, the present study 

compares three groups of older adults (45-59 years, 60-74, and 75-95), recruited from the 

community, grouped by 15- to 20-year age intervals. Furthermore, in both the present 

hierarchical linear models for CSF and PIB biomarkers, we demonstrate continuous effects of 

age on recollection, controlling for AD biomarkers. To our knowledge, no other study has 

examined age effects on process estimates, without including younger adult samples. The current 

findings suggest that an age-related, process-specific deficit in recollection continues even in 

advanced healthy aging above and beyond the effects of preclinical AD pathology. 

 The current analyses also indicate that very mild symptomatic AD is associated with a 

large deficit in recollection, but no change in familiarity. This finding is also consistent with 

aspects of the meta-analysis of the effect of aMCI on process estimates (Koen & Yonelinas, 

2014). In terms of dementia severity, the current CDR 0.5 sample (mean MMSE = 26.15, S.D. = 

3.32) is a better match to the aMCI population reported in the meta-analysis (mean sample 

MMSE = 27.61, range = 25.50 – 28.50) than to the more advanced AD population (mean sample 

MMSE = 22.23, range = 17.00 – 24.90). Across 9 studies of single- or multiple-domain aMCI 

reported in the meta-analysis, recollection reliably decreased in aMCI, compared to healthy 

controls, in every study, while familiarity had only a marginal deficit. Of those studies, only the 
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ones with multiple domain diagnosis aMCI have reported familiarity deficits (see Ally, Gold, & 

Budson, 2009; Wolk et al., 2013; Wolk, Signoff, & DeKosky, 2008). Multiple-domain diagnosis 

of aMCI differs from a single-domain diagnosis in that the impairment is in at least one other 

cognitive domain, in addition to memory (Winblad et al., 2004). Interestingly, when studied 

exclusively, individuals with single-domain aMCI do not exhibit a reliable familiarity deficit (see 

Anderson et al., 2008; Serra et al., 2010). In terms of power, the current CDR 0.5 sample (63 

individuals afforded estimates of familiarity) is much larger than any previous sample in which a 

familiarity deficit was found (11 individuals with aMCI in Ally et al., 2009; 32 in Wolk et al., 

2013, 16 in Wolk et al., 2008). Therefore, the present study affords substantial power to detect a 

familiarity deficit, and yet no evidence of such a deficit was found. Moreover, to our knowledge, 

no other study has tested the effect of symptomatic AD on memory process estimates using a 

cued stem completion recall task. The current findings regarding recollection estimates are 

largely consistent with previous studies in which processes were estimated from recognition, but 

it is likely that interpretations of familiarity estimates may vary depending on the task used for 

estimation. Specifically, recognition performance is more likely to be influenced by familiarity 

processes (e.g., Mandler, 1980). Together, these observations solidify the proposal that in 

contrast to the automatic familiarity process, the attention-demanding recollection process 

exhibits a more robust deficit in the earliest stages of symptomatic AD. 

4.2 Cognitive Correlates of Preclinical AD Biomarkers 

 In the present analysis of preclinical AD biomarkers, we found that the initial estimate of 

recollection is sensitive to individual differences in CSF Aβ42. Additionally, change in 

recollection over time is sensitive to the interaction between CSF Aβ42 and tau, and to the 

presence of amyloid plaques detected by PIB-PET imaging. One reason for this sensitivity might 

stem from the utility of extracting a recollection process estimate from memory task 
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performance. Since the recollection process is highly dependent on attention, it might amplify 

sensitivity to the attentional component of memory performance. Indeed, composite measures of 

both episodic memory and attentional control demonstrate sensitivity to preclinical AD 

biomarkers in a similar sample (Aschenbrenner, Balota, Fagan, et al., 2015). Furthermore, a 

recent meta-analysis reported small, but reliable correlations between preclinical measures of 

amyloid (including PIB, CSF, etc.) and both episodic memory and executive function (Hedden et 

al., 2013). Thus, recollection is likely tapping memorial, as well as attentional domains, both of 

which might be particularly disrupted in preclinical AD. The interaction between 

executive/attentional processes and memory, as well as its relevance to recollection, are 

discussed in more detail below. 

4.3 Relationship between Attention and Memory Systems 

 One model of memory impairment in preclinical AD posits that the preferential 

accumulation of amyloid in areas of the default mode network directly influences the integrity of 

memory network areas through neuronal atrophy and metabolic disruption (Buckner et al., 

2005). However, several longstanding cognitive models of memory recognize that memory is not 

an entirely isolated system and is, in fact, highly dependent upon executive and attentional 

control systems (Craik & Lockhart, 1972; Hasher & Zacks, 1979; Jacoby, 1991). Thus, 

attentional/executive control systems likely contribute to the memory deficits that arise in 

preclinical AD (Balota & Duchek, 2015). In the present study, we conclude that attention-

dependent recollection, but not automatic familiarity, is particularly sensitive to biomarkers of 

AD pathology and risk in asymptomatic individuals. Thus, preclinical AD-related memory 

changes may be in part driven by changes in executive and/or attentional processes. The role of 

attentional systems should not be ignored in the study of preclinical AD and its effects on 

memory systems. Indeed, just as in the Stroop task, one needs to exert control over the readily 
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available Word dimension in the incongruent condition, in the present paradigm, one needs to 

exert control over the readily available incongruent prime information. Attentional control is 

important in both contexts, while the relative strength of the competing pathways may vary.  

4.4 Clinical Utility of Recollection 

 The results from the binomial logistic regression analyses indicate that a recollection 

estimate improves the identification of the earliest detectable stage of symptomatic AD above 

and beyond standard psychometric tests. Such a measure might aid in the diagnosis of AD. The 

current behavioral task was relatively quick, lasting about 10 minutes, is entirely computer-

based, and may be automatically scored. Thus, it would be very easy to administer in a clinical 

setting. 

 It is worth noting that the Free and Cued Selective Reminding test (FCSR) free recall 

portion (Grober et al., 1988), WMS Logical Memory (WMS-LM) delayed recall units (WMS-

LM; Wechsler, 1997), as well as the episodic memory composite of those two measures along 

with WMS Associate Memory (Wechsler, 1987), outperformed the recollection estimate. Unlike 

the recollection estimate, these tasks currently lack computer implementation and instead must 

be manually administered and scored. Furthermore, the current PDP task is comparable in 

duration to FCSRT (12-15 minutes; National Institute on Aging) and is much shorter than the 

retention interval of 30 to 40 minutes required for WMS-LM (Wechsler, 1997). Finally, the test-

retest reliability of recollection estimates within the full sample (ICC = .63, 95% C.I. = [.57, 

.69]) is comparable to that of FCSRT recall (ICC = .69, 95% C.I. = [.63, .74]), but, as expected, 

is lower than that of the much longer WMS-LM delayed recall (ICC = .74, 95% C.I. = [.68, .79]) 

and episodic memory composite (ICC = .74, 95% C.I. = [.69, .79]). 

Interestingly, the FCSR free recall, WMS-LM delayed recall, and the episodic composite, 

like recollection, all involve strong components of controlled recall. It is possible that 
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recollection estimates, FCSR, WMS-LM, and the composite are tapping similar processes, 

particularly memory processes that are highly dependent on executive and/or attentional control 

processes. If these processes are influenced by very mild symptomatic AD, then it is not 

surprising that such measures would be particularly useful in identifying CDR 0.5s. However, we 

would argue that no task is process pure and that FCSR, WMS-LM, and the cognitive composite 

are likely not tapping identical processes to recollection. Indeed, recollection is only modestly 

correlated with FCSR free recall (r = .53), WMS-LM delayed recall (r = .46), and the episodic 

memory composite (r = .55) in the current sample. Furthermore, in the logistic regression 

models, the addition of recollection significantly improves CDR classification accuracy 

controlling for FCSR, WMS-LM,  or the composite, and vice versa (see Tables 4a & b), 

suggesting that each measure is capturing a significant portion of unique variance within the 

sample. Therefore, recollection estimates, FCSR, WMS-LM, and the episodic memory 

composite might each be indicative of similar, but different, processes or combinations of 

processes. 

4.5 Conclusion 

 In summary, the present results suggest that recollection is a sensitive cognitive marker of 

age, very mild symptomatic AD, and preclinical AD pathology. Recollection may exhibit this 

role because it places a high demand on executive or attentional control systems. Moving 

forward, recollection, or other attention-demanding memory processes, might prove particularly 

useful in describing and detecting both symptomatic and asymptomatic AD pathology.  
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