
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2004-2 

2004-01-23 

A Component Deployment Mechanism Supporting Service A Component Deployment Mechanism Supporting Service 

Oriented Computing in Ad Hoc Networks Oriented Computing in Ad Hoc Networks 

Radu Handorean, Rohan Sen, Gregory Hackmann, and Gruia-Catalin Roman 

Ad hoc networks are dynamic, open environments that exhibit decoupled computing due to 

frequent disconnections and transient interactions. Reliable deploy-ment of components in such 

demanding settings requires a different design approach for the mechanisms that perform 

these functions. Not only do the deployment mechanisms have to perform the traditional tasks 

of deploying, installing, integrating and activat-ing components, they must also be robust 

enough to handle the nuances of an ad hoc network. This paper proposes a mechanism for 

component deployment that is adapted for use in ad hoc networks, and, as such, can cope with 

the effects of disconnection... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

Recommended Citation Recommended Citation 
Handorean, Radu; Sen, Rohan; Hackmann, Gregory; and Roman, Gruia-Catalin, "A Component Deployment 
Mechanism Supporting Service Oriented Computing in Ad Hoc Networks" Report Number: WUCSE-2004-2 
(2004). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/992 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/992?utm_source=openscholarship.wustl.edu%2Fcse_research%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/992 

A Component Deployment Mechanism Supporting Service Oriented Computing in A Component Deployment Mechanism Supporting Service Oriented Computing in 
Ad Hoc Networks Ad Hoc Networks 

Radu Handorean, Rohan Sen, Gregory Hackmann, and Gruia-Catalin Roman 

Complete Abstract: Complete Abstract: 

Ad hoc networks are dynamic, open environments that exhibit decoupled computing due to frequent 
disconnections and transient interactions. Reliable deploy-ment of components in such demanding 
settings requires a different design approach for the mechanisms that perform these functions. Not only 
do the deployment mechanisms have to perform the traditional tasks of deploying, installing, integrating 
and activat-ing components, they must also be robust enough to handle the nuances of an ad hoc 
network. This paper proposes a mechanism for component deployment that is adapted for use in ad hoc 
networks, and, as such, can cope with the effects of disconnection and transient connectivity. We present 
the general architecture for the mechanism and follow it with a discussion of a Java-based 
implementation of the model. 

https://openscholarship.wustl.edu/cse_research/992?utm_source=openscholarship.wustl.edu%2Fcse_research%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/992?utm_source=openscholarship.wustl.edu%2Fcse_research%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages




A Component Deployment Mechanism
Supporting Service Oriented Computing in

Ad Hoc Networks

Radu Handorean, Rohan Sen, Gregory Hackmann and Gruia-Catalin Roman

Department of Computer Science and Engineering
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA

{radu.handorean, rohan.sen, ghackmann, roman}@wustl.edu

Abstract. Ad hoc networks are dynamic, open environments that exhibit decoupled

computing due to frequent disconnections and transient interactions. Reliable deploy-

ment of components in such demanding settings requires a different design approach for

the mechanisms that perform these functions. Not only do the deployment mechanisms

have to perform the traditional tasks of deploying, installing, integrating and activat-

ing components, they must also be robust enough to handle the nuances of an ad hoc

network. This paper proposes a mechanism for component deployment that is adapted

for use in ad hoc networks, and, as such, can cope with the effects of disconnection

and transient connectivity. We present the general architecture for the mechanism and

follow it with a discussion of a Java-based implementation of the model.

1 Introduction

The continually improving performance of mobile computing devices has stimu-
lated a migration from traditional desktop systems to mobile devices. However,
the expectations of performance of mobile devices is also rising at a similar, if
not greater rate. This rising expectation has fuelled a demand for a range of
functionality and quality of service on mobile devices that are commensurate
with those available on wired networks.

Providing a wide-ranging set of services is especially challenging in ad hoc
networks, a special class of wireless networks which are open environments where
the network infrastructure is borne by member hosts. The total amount of re-
sources in any ad hoc network is the sum of the resources of its constituent
members. Hence to offer a diverse range of functionality to members of the net-
work, each member must share its capabilities with other members. The sharing
of resources requires all member hosts to advertise their individual capabilities
in a uniform manner and to provide a uniform way of interacting with any ca-
pability that is available on a remote host.

In addition to requiring uniformity, sharing of resources takes on an added
complexity in ad hoc networks due to the lack of standard protocols and due to



the physical mobility of hosts, i.e., frequent disconnections and transient interac-
tions. In most cases, it is more practical to have the capability reside on the host
that offers it (as opposed to migrating from host to host) and to provide a simple
mechanism through which interested parties can interact with that capability.
One way of achieving the twin goals of uniformity and protocol independence
is to implement a service oriented framework using the proxy approach [1]. In
this approach, the code for the service resides on the host that offers it and a
software component in the form of a proxy is distributed to clients.

Proxies can be conceptualized as handles to remote services. They are ad-
vertised and deployed by the service provider and once installed and activated
on the client side, behave like components of the client side application, rep-
resenting the service locally. They accept calls from the client application and
delegate them to the remote instance of the service, thus allowing usage of a
remote service as if it were a local component of the client application.

A successful deployment of a proxy component entails deploying a primary
proxy component and, often, other external components that are needed as sup-
port objects. They are components that are required for correct execution of
the proxy code, e.g., a streaming media player can be considered a proxy to a
music broadcasting service while the codecs to interpret file formats are external
components that are not explicitly requested by the client but required by the
proxy to correctly fulfil its functionality of playing streaming music. Often, the
external components may not be found on the same host as the proxy component
itself, requiring a mechanism to collate all required components.

The proxy model of using a component on the client side to control a service
is not new in of itself. The novelty of our approach lies in the mechanism we use
to deploy the initial proxy component, in the mechanism via which we discover
dependencies that the proxy component requires, in the technique we use to
install and integrate the proxy within the client application and in the manner
in which we dispose of the proxy once it has fulfilled its function. This paper
proposes a model for the deployment of proxy components supporting service
oriented computing in ad hoc networks. The model we propose has features
geared towards withstanding the dynamism of ad hoc networks while reliably
fulfilling all the requirements of a successful proxy deployment. We also describe
a Java based implementation of our model.

The rest of this paper is organized as follows. Section 2 covers background
material on component deployment and services in ad hoc networks. Section
3 outlines our model for deployment of proxies supporting interactions with
services on remote hosts. We provide implementation details and illustrate the
concept via a demo application in Section 4. We highlight additional technical
challenges in Section 5 and draw conclusions in Section 6.

2 Background

In this section, we present a selection of developments in the field of component
deployment and highlight some research that focusses on non-traditional uses for



component-based application building. We observe that the models and systems
reviewed are geared towards wired networks. Accompanying this observation is
a summary of challenges we face in designing a Service Oriented Computing
(SOC) framework for ad hoc networks and reasons why we chose to adopt the
proxy approach for our solution to the problem.

2.1 Current Strategies for Component Deployment

Component oriented computing is a paradigm in which applications are assem-
bled from a set of software components. The strategy of marshalling components
into cohesive applications and deploying them is a mature one and a significant
amount of research has been done in this field. Component oriented computing
has been used in a variety of settings. Enterprise Java Beans (EJBs) [2] is a com-
ponent technology developed by Sun Microsystems as part of the J2EE standard
that has gained widespread acceptance for use in commercial enterprise-level ap-
plications. Web application servers like Weblogic [3], WebSphere [4], JRun [5]
and ColdFusion [6] each provide their customized bean packaging and deploying
tool that deploys components in the form of EJBs into bean containers where
they may be accessed by various applications. Microsoft Corp.’s Component
Object Model (COM) is another component technology that is popular in the
enterprise application market.

The Corba Component Model (CCM) [7] is part of the Corba 3.0 specifica-
tion and is a component model for building server-side CORBA applications.
Like EJBs, they exhibit standard interfaces that allow them to be connected
seamlessly with other components. The CCM specification is simply a model
though implementations such as OpenCCM [8] are available for use. In [9], the
authors propose a deployment mechanism for CCM that uses a multi-step pro-
cess to deploy components. First, the chosen components are assembled into an
assembly archive. Next, the archive is read and an identifier generated for it. This
is followed by installation of required libraries and connection of components.
Finally, a reference to the completed component is returned.

Components have also been used in settings other than enterprise applica-
tions. In [10], von Laszewski et. al. suggest three deployment mechanisms–thick,
thin and slender, depending on how much software is carried on the client–for
computing grids, which are complex infrastructures that allow scientists to use
distributed software, services, and components that access a variety of dispersed
resources. Various local code repositories are integrated to form a virtual code
repository from which components are selected and assembled into a meaningful
application. In TACOMA [11], mobile agents deploy components for the purpose
of updating software. An agent possesses a list of servers that it is responsible for
keeping up to date. It collects information about updates required on the initial
server and then migrates itself to another server on its list until all of them have
been covered. After this is done, another agent deploys the components required
for the update to the servers in a similar manner.

Rudkin and Smith [12] describe an architecture for deploying components
for services, which are “functions delivered to users through the execution of



software components.” They describe an Application Description Transformer
which combines a component list, a session description and a user profile to
generate an application description which is then forwarded to an application
builder that requests all the required components and dynamically assembles a
customized application for the session in question.

EJB, COM and CCM are standards that are used in enterprise level sys-
tems. The assembly and deployment mechanisms for components obeying these
standards is geared for use in wired networks with high bandwidth, perma-
nent connectivity and on powerful servers with high computational capability.
As such, they are heavyweight mechanisms. The work by von Laszewski et. al.
on Computational Grids is of a similar flavor. Though they describe three dif-
ferent kinds of deployment, they focus on the amount of code carried by the
client. However, the mechanism for deployment still remains fairly heavyweight.
Similarly, Rudkin and Smith too suggest a complex architecture for deploying
components for services.

All these approaches are tailored for use in wired networks. As such, the im-
plementations are not appropriate for ad hoc networks where hosts are resource
poor, bandwidth is limited and connectivity is not guaranteed for more that
short intervals at a time. The TACOMA model addresses some of these issues
by having the deployment carried out by a pair of lightweight agents. However,
the model does not address the issues inherent in ad hoc networks. For example,
if the state collecting agent migrated to a host that then went permanently out
of range of all other hosts, the process of collecting state information would be
permanently blocked and the state updates could not occur.

Our work focusses on designing a lightweight component deployment model
supporting services which is engineered to deal with the nuances of an ad hoc
network, i.e., frequent disconnection and transient connectivity. In the next sub-
section, we briefly discuss the challenges of providing services over ad hoc net-
works and justify our key design decision, the use of proxy components to control
services on remote hosts in the network.

2.2 The Transition to Ad Hoc Networks

Service oriented computing is a paradigm that is fast gaining acceptance due to
its promise of unhindered interoperability. In a SOC framework, a provider of-
fers a service, which is some functionality wrapped in an interface familiar to the
client that avails of the service. While numerous implementations of service ori-
ented computing frameworks exist for wired networks, there has been relatively
little attention being paid to designs and implementations of this framework
for wireless networks, specifically ad hoc networks. Migrating SOC to ad hoc
networks brings with it fresh challenges and imperatives, a list of which may
be found in [13]. Assumptions that are valid in the wired setting fall apart in
the dynamic and demanding environment of ad hoc networks. For example, in
wired networks, standard application level protocols like HTTP exist to facili-
tate communication between hosts. However, such standards do not exist for ad
hoc networks which are by nature very heterogenous.



Ad hoc networks are open environments comprising of member hosts. Hence,
there are no standard application level protocols that govern communication
between hosts, unlike the Internet where standards such as HTTP allow uniform
communication between the client browser and a web server. Therefore, for a
client to be able to communicate with a server, it must know a priori the protocol
that the server uses. If the client needs to communicate with multiple servers, it
must know the protocols for each of those servers. This is impractical because
disseminating knowledge of the protocols requires an external channel and the
storing protocol information could consume valuable space on the client device.

The solution to this problem is the proxy approach. A proxy can be concep-
tualized as a handle to a service that resides on a remote host. The proxy is
designed and implemented by the service provider and deployed to clients that
are interested in using the service. The proxy approach encapsulates details as-
sociated with the protocol used between the service provider and client. This is
useful since it significantly simplifies the development effort and code base for
client side applications and eliminates any need for a priori knowledge of the
protocol, an important asset, given that the client is usually a resource poor
device.

While the proxy approach mitigates many of the problems associated with
providing a service oriented computing framework in ad hoc networks, it does
raise technical issues related to the deployment of the proxy. The environment
of an ad hoc network requires a fresh approach to deploying these proxy com-
ponents. Traditional directories and implementation repositories do not mea-
sure up to the task. The dynamism of the network dictates that directories and
repositories be transiently shared. In addition, since ad hoc networks are open
environments, it is essential to design the proxy component in such a way that it
can be deployed, installed, instantiated and activated seamlessly within a wide
range of potential client applications that may use it.

3 Architecture for Component Deployment

In our framework a service consists of an application running on a server host
and a proxy object the server advertises for clients. The proxies are retrieved
and used locally by the clients. They represent remote handles to the actual
service. In some cases, the entire functionality of the service can be delivered by
the proxy itself, without the need to connect to any server. However, all services
need to advertise their proxy in order to be contacted and used by clients.

3.1 Component Release

The release phase is the initial phase when the component is first made available.
All service providers are required to register their proxies and the associated
service’s performance parameters with service directories since this is the only
way the clients can contact them. Service providers register their proxies with



service directories and clients browse these directories in search of components
that meet their needs.

Traditionally, centralized architectures have been employed with service di-
rectories running on dedicated hosts whose purpose is to manage the directory.
While the approach is appropriate for wired networks, the dynamic environ-
ment and opportunistic interactions found in wireless networks require alternate
strategies. As an example, we highlight two scenarios in which a centralized di-
rectory architecture fails in wireless settings. In the first scenario, a client may
not be able to use a service offered on a nearby host because the client could not
access the directory thus informing him of a candidate service’s presence within
his communication range. In the second scenario, a client could potentially dis-
cover the advertisement of a service which is no longer available because the host
it is running on has moved away, leaving behind orphan advertisements.

In our design, a proxy registration consists of an entry in a service directory
and one or more entries in a binary code repository. The service directory entry
contains the proxy and a description of its performance parameters. The code
repository holds the binary code for the proxy and other components the proxy
needs for its proper execution (dependencies). These dependencies represent ad-
ditional code the proxies may depend on and may not be able to find on the
clients host. To address issues introduced by the dynamic nature of the environ-
ment, our design entails a distributed architecture for the service directory as
well as for the binary code repository. Since the model and the implementation
are similar for the service directory and for binary code repository, we will only
refer to the service directory hereafter.

Each host maintains its own local service directory. Hosts within communica-
tion range share these directories to form a federated service directory. A client’s
query spans the entire federated service directory, which is the conglomeration
of local service directories of participating hosts. The content of the federated
service directory is updated atomically with the arrival or departure of any host
that has a local directory with service advertisements. The structure and con-
tent of the federated directory thus reflects any change in connectivity and real
service availability (i.e., there are no orphan advertisements, each proxy in the
service directory having a corresponding server to connect to).

3.2 Component Install

The installation phase occurs on the client side, where our framework performs
all the preparatory steps for the successful utilization of the component. When
the client searches for a service it explicitly requests the proxy component, since
the service directory is the only directory the client can access and knows about.
The client browses the service directory for components which implement an
interface known a priori by the client and which advertise performance parame-
ters that meet clients requirements. When retrieving the proxy, the framework,
in a manner transparent to the client, decides if the proxy needs any additional
components not available on the clients host. These dependencies are fetched



from the binary code repository and installed before the proxy is made available
for use by the client.

Though the dependencies are fetched after the proxy has been deployed to the
client host, the mechanism employed is similar to the one used to fetch the initial
proxy component. They are published in the same federated implementation
repository but they are not subject to browsing performed by clients. Their
availability is also updated in sync with real-time changes in connectivity.

Our framework design

= Proxy Component
Advertised by Host X

= External Component
Advertised by Host X

= A requires B to function

B
1

X
1

B
2

B
1

B
2

A
1

E
1

E
2

D
1

C
1

Host A

Host B

Host C

Host D

Host E

E
1

D
1

C
1

A
1

X
Y

BA

Fig. 1. Federated component repository and its
contents: proxies and their dependencies.

also provides mechanisms
that support service com-
position. One proxy can
have among its dependen-
cies another proxy, which
could itself be a self suf-
ficient service, offered by
the same or a different
provider and advertised on
the same or on a different
host. Though the depen-
dency of the primary proxy
may be another proxy, to
the primary proxy, it is sim-
ply a dependency that is
fetched and installed in the same manner as other dependencies. Figure 1 il-
lustrates this feature. Each slice in the pie chart represents the implementation
repository local to each host, and the entire pie represents the federated compo-
nent repository. P 1

A is the proxy of a service advertised on host A depending on
D1

A and P 2
B . D1

A is a component that the P 1
A proxy needs and is advertised by the

server running on host A. P 2
B is a stand-alone service which can be discovered

and used independently by a client but, from P 1
A’s perspective, it is just another

component which will be treated in a similar manner to D1
A.

Due to the dynamic nature of the environment, we anticipate there is a low
likelihood that a client will need and use a service for more than a short period of
time. The devices that we designed our infrastructure for have limited resources
and storage space is at a premium. Therefore it is imperative that we minimize
its occupancy. In addition to this, the code needs to be loaded in memory before
it can be used. We employ a lightweight installation of components, directly into
the client device’s memory. (Details are provided in the Implementation section.)
Other benefits of this approach are discussed in a later subsection.

3.3 Component Utilization

The utilization of the component is the stage where the client calls methods the
component implements. Once the proxy is fetched and installed, the client can
use it as it would a locally available component. At this point, all the binary
code needed for the correct utilization of the proxy (including the code the proxy



needs without client’s explicit knowledge) has been correctly downloaded and
installed. The client calls methods on the proxy and the proxy either resolves
the request locally or tunnels the request back to the server on which its parent
service resides.

While most of the time the proxy will connect back to the instance of the
server which published it, it is possible for one proxy to connect to another
instance of the same server, running on a different host. This is particularly
useful in ad hoc networks, when the client can be within proximity of different
servers offering similar functionality. An example of such a scenario is the proxy
of a printing service. While this could run on a user’s PDA (embedded in a
client application), the user could be next to different printers in a department
at different times, and the proxy could connect to the closest printer (the context
awareness aspect of the problem is not within the scope of this paper, but the
technical mechanism for delivering this behavior is presented).

Client
App.

Proxy
Component ServerService

Directory
Impl.

Repository

Advertise service

Deploy binaries
for proxy

Deploy binaries for
external classes

Request service

Return proxy object

Request binaries for proxy

Ship binaries to client

Request binaries for external classes

Ship binaries to client
Instantiate Proxy

Call service
Call service

Return results
Return result

Search for binaries locally. If found,
proceed directly to instantiation step.

Fig. 2. Proxy advertisement, discovery, installation and utilization.

The communication between the proxy and a server is entirely designed by
the service provider and the client does not need to be aware of the communica-
tion protocol. The only knowledge the client must possess is the interface offered
by the proxy, which cannot change (see next section on component updating).



The proxy-server protocol needs to address a few issues specific to the ad hoc net-
working environment. Among these issues we mention temporary disconnections
which can be caused by the two hosts moving beyond communication range or
by having the proxy reconnect to a different server. The client will only need to
wait longer for the result of a method call to be returned, which is indistinctive
from a simple method call that takes a long time to complete. In certain cases
the proxy needs to alert the user that it has reconnected to a new provider (e.g.,
the printing service proxy sends the first 10 pages of a document to a printer
and the other pages to another printer, along the user’s way towards a meet-
ing room). The proxy object will need to use a timer to avoid infinite blocking.
When the time expires, the proxy searches for a another, similar, server. If this
is not found within a specified period of time, the client informs the user that
the operation cannot be performed to completion.

Figure 2 illustrates the phases of the component’s life cycle described thus
far. The server publishes the proxy in the service directory and deploys the binary
code to support proxy’s execution in the implementation repository. The client
searches for a service and if a matching advertisement is found, it retrieves the
proxy component and verifies if the proxy has all that it needs locally. If not, the
framework in clients machine brings the needed binaries from the implementation
repository and so that the client can instantiate and use the proxy locally. More
details about the implementation can be found in Section 4.

3.4 Component Update

In the update phase, the service provider upgrades the components in a manner
transparent to the client, thereby improving the quality of service the component
offers. The maintenance process in the described framework addresses the issue
of a live upgrade of software while hiding the extra complexity associated with
this process from the client. Updates can occur on the providers side (i.e., the
server is updated) or on clients side (i.e., the proxy is updated).

Updating the server is easier since it does not affect software on the client’s
host in any way. If the server needs to go off line for a short period (i.e., needs
to be restarted to run using some newly deployed components on the server side
by the provider), the proxy can mask the short disconnection from the client as
a delayed return from method invocation. The situation is similar to the server’s
host moving temporarily out of range. The proxy-server interaction can be de-
signed such that short interruptions in communication or short disconnections
do not cause crashes or influence the client’s performance. While the framework
doesn’t explicitly handle server updates, it offers support to the service designer
to alleviate the consequences of the server update.

Updating the proxy is more challenging since it affects the code on the client
side. The procedure entails replacing a piece of code the client has access to
and is actively using without affecting the clients execution flow. To overcome
this, we propose the use of the interceptor design pattern [14] combined with the
wrapper facade design pattern [15]. An extra layer, the wrapper-interceptor layer,
between the proxy and the client, receives the calls from the client and normally



just forwards them to the proxy, which then handles the implementation of the
method call. When the proxy needs to be updated, the interceptor will hold the
client’s calls until the new proxy is in place. Without this extra layer, it would
be impossible to swap the proxies while in use by the client, without actively
involving the client in the procedure. This feature is currently under further
investigation and not supported in this version of our implementation.

It is again important to notice that the proxy’s interface to the client (to the
wrapper layer actually) cannot change upon upgrade. Only internal functional-
ity or the interface to the server delivering the advertised functionality can be
affected (e.g., the communication protocol can be encrypted in after the upgrade
but the client will call the methods the same way it used to before the update).

3.5 Component Remove

The removal phase is the last phase in component’s lifetime and is related to the
proper disposal of the component once it is no longer required. By default, the
framework performs a light installation of components, i.e., in the client host’s
memory and not on permanent storage media. We took this decision as the short
period of time that the service is used for does not warrant the expense of storage
on permanent media. Our light installation allows for the already-in-use garbage
collection mechanisms to remove unnecessary components like any other unused
memory. Because of the limited storage space on the mobile devices, it is more
convenient for the clients to search for and retrieve the proxy again than to use
permanent storage space for a short-lived interest in a service proxy. This also
discards the dependencies that were loaded along with the proxy.

On the server side, the advertisement is removed from the service directory.
This is a relatively straightforward operation because the server simply has to
remove the advertisement from its own local directory. Here, we reiterate that
though the service directory appears to be a single federated entity, it is in actu-
ality the combination of all the local directories hence removing an advertisement
from the federated registry is trivial if the advertisement lies in the portion of
the directory that is local to the server that is removing it.

4 Implementation

The framework described in the previous section has been implemented in Java,
using Lime [16] as a middleware to handle the implications of an ad hoc wireless
network, i.e., physical mobility of hosts. In this section we present a brief overview
of Lime, followed by a description of the implementation. We also show a proof
of concept via a set of demo proxies running on our client.

4.1 LIME Overview

Lime is a Java implementation of the Linda [17] coordination model, designed
for ad hoc networks, which masks details associated with coordination and



communication from the application programmer. A host running Lime runs
a LimeServer upon which run one or more Lime agents, which are analogous
to applications. Coordination in Lime occurs via transiently shared tuple spaces.
Every tuple space in Lime is identified by a name. Tuple spaces having the same
name can be merged to form a federated tuple space when their hosts are within
communication range.

Tuple spaces are containers for tuples. Tuples are ordered sequences of Java
objects which have a type and a value. An agent places a tuple in the tuple space,
making it available to all other agents that are sharing the same tuple space. To
read a tuple from the tuple space, an agent needs to provide a template, which
is a pattern describing the tuple that the agent is interested in. A template is a
sequence of fields, each of which can contain a formal representing the required
type for that field or an actual value that identifies the type and value of the
corresponding field. A template is said to match a tuple if all the corresponding
fields match pairwise.

An agent can access the tuple space via standard Linda operations (rd (read
a tuple), in (remove a tuple), out (write a tuple)). The in and rd operations
take a template as a parameter and return a tuple as the result or block until
a match is found (the operations are synchronous). To provide asynchronous
interactions, Lime offers a reaction mechanism. An agent can declare interest in
a tuple by registering a reaction on a tuple space using an appropriate template.
If multiple candidate tuples exist for a given reaction template, one is chosen
non-deterministically from the set.

4.2 Implementation Details

In our implementation, we represent the client and server entities as Lime agents.
The service directory and implementation repository are modelled as tuple spaces
that are shared between the client and the server agents. The service directory
contains a set of service advertisements encapsulating proxy components while
the implementation repository contains the binary code for the classes support-
ing the execution of the proxy component on the client.

The service directory tuple space contains service advertisement tuples of the
form <Attributes:attrib, ServiceProxy:proxy, ImageIcon:icon>. The implemen-
tation repository tuple space contains tuples of the form <String:class name,
ClassFile:bytecode>. The server generates these on initialization based on a list
of classes passed to it. It is assumed that this list contains all classes used by the
proxy that are not in the standard Java class library or the Lime class library,
including the proxy class itself.

The client finds services by specifying an interface that the service is required
to implement as well as a set of performance attributes, which the service must
meet. This specification is translated into a pattern which is provided to Lime’s
reaction mechanism. A candidate advertisement is selected non-deterministically
from the set of advertisement tuples that match the pattern. The proxy com-
ponent contained in this advertisement is downloaded to the client. Since it is
quite likely that the client does not have the bytecode for the proxy locally, it is



necessary that the client be able to treat the proxy as a self-contained compo-
nent and dynamically download bytecode at runtime. This is accomplished by
using a custom class loader, a custom ObjectInputStream that refers to this
new class loader, and a slightly-modified version of Lime that uses this modi-
fied ObjectInputStream in place of the standard one for deserializing the proxy
object.

Our custom ObjectInputStream intercepts any failed attempts to resolve
classes locally. It then invokes our custom LWClassLoader, which attempts a
rd operation on the implementation repository using the pattern <class name,
ClassFile:bytecode> with the purpose of retrieving the bytecode for the required
class from the repository. If this rd operation succeeds, the class loader loads the
bytecode contained in this proxy into memory and converts it into a standard
Java class. An exception is thrown only if the bytecode cannot be found in the
implementation repository.

By using our custom ObjectInputStream, we also solve the problem of class
dependencies on the client. Java will note at runtime that a non-standard class
loader was used to deserialize the proxy object, and it will continue to use this
custom class loader whenever the proxy object refers to a class that is not al-
ready loaded into the runtime class space. The net effect of this is that bytecode
fetching is done whenever a missing class is first used by the proxy, and the
fetching is entirely transparent to the developer and the user. This allows the
proxies to be deployed as whole components without any extra effort required
on the developer’s part.

Currently, the class loader stores any retrieved class bytecode in memory,
which it consults before attempting a rd operation on the binary code repository.
Though this helps minimize the number of repeated operations within a given
client session, it cannot store retrieved bytecode across multiple sessions. We
envision that future implementations of the classloader could use a fixed-size
persistent cache much like a Web browser cache to save frequently-used bytecode
across multiple sessions.

4.3 Demo Application

The demo application consists of a simple client shown in fig 3 and several
services that simulate roadside services, like a tollbooth and a parking meter.
When the client discovers one of these services, it adds the service’s proxy (which
contains its own GUI) to its main window and adds an icon to its toolbar allowing
the user to switch to the newly-found proxy.

To ensure that the client is lightweight, the proxy rather than the client is
responsible for providing all major functionality, such as GUI and communi-
cation protocol. However, a small number of hooks have been added from the
lightweight client application to the client agent to allow interaction with tuple
spaces (the design of Lime dictates that tuple spaces can only be created and
manipulated within an agent). These hooks allow the proxy to make requests to
the client agent to perform certain Lime level actions on its behalf. These hooks
are entirely generic, allowing the implementor of the service and proxy to dictate



the protocol used for communication between client and server. There are also
convenience hooks, e.g., certain hooks can allow the proxy to request a username
and password pair, which can be used for authentication and/or encryption.

Figure 3 shows a sam-

Fig. 3. Demo application showing two discovered
proxies.

ple execution of the client.
It has discovered two road-
side services, a tollbooth
and a parking meter, and
placed icons representing
them in its toolbar. The
toll booth GUI is currently
displayed in the window.
Both of these proxies com-
municate back to the server
in a similar fashion: when
the user clicks one of the
proxies’ payment links, the
proxy prompts the user for
a username and password,
which it uses to share an encrypted tuple space with the server. It then places a
tuple into this tuple space indicating the client’s payment. The server reacts to
this tuple and responds to the client’s payment which is displayed on the GUI
as an acknowledgement.

5 Discussion

The Lime coordination model, which employs transient sharing of tuple spaces
among mobile hosts is the basis of our model, which proposed distributed ser-
vice directories and implementation repositories. The choice of Java as an im-
plementation language allowed us to leverage off certain key capabilities such as
reflection and dynamic class loading that is built into the standard libraries. The
exchange of tuples via tuple spaces promoted location-agnostic communication
protocols at the application level. This is achieved because tuples are read based
on their content and the actual local tuple space in which the tuple is located is
irrelevant. When a local tuple space is shared with others, every agent perceives
only a change in the content of the tuple space it was already accessing.

The transient sharing of tuple spaces facilitates easy interactions among ser-
vices offered by different providers, promoting service composition. For example,
a fully deployed service can be a simple dependency for another service. This
behavior can span across providers, each unaware of the location of the other.
If the communication between components is also conducted via tuple spaces
(e.g., the proxies and their servers use a tuple space-based protocol), migration
of services and clients can occur in a manner transparent to the ongoing compu-
tation. As one end of a tuple space-based communication relocates, it will simply
reconnect to the federated tuple space from the new location (if still mutually



reachable) and the communication can resume, as the location (e.g., IP address)
never appears explicitly in the agent-tuple space interaction.

The tuple space-mediated communication simplifies software updates by of-
fering a high degree of decoupling. The tuple space acts as an intermediary buffer
between the two ends of a communication channel decoupling their interaction.
This allows actions at one end without the implication/notification of the other,
such as restarting a server without crashing the client because of broken socket
level communication.

Another feature of Lime that proved useful in our model was the template-
tuple matching mechanism. It allows clients to search for components by speci-
fying their requirements at a high level (e.g., the clients can search for a service
that implements an interface that they understand instead of searching for a
components based on lower level details). The Java hierarchy of objects and
polymorphism is used when comparing the client specified against the compo-
nents available in the tuple space–the proxy objects in the service directory. Any
proxy instance of a class that implements the specified interface or any other
class that extends such a class, will qualify as a candidate (e.g., a Printer class
may implement the PrinterInterface the client uses but LaserPrinter and
InkjetPrinter can both extend the Printer class and thus polymorphically
implement the interface and therefore qualify as candidates). The additional in-
formation provided in the template ensures that the framework filters out any
results that do not meet the client’s criteria (e.g., pages per minute, in a printer
service advertisement).

6 Conclusions

In this paper, we presented an framework for component deployment supporting
service oriented computing in ad hoc networks. Special attention was given to
making the framework robust enough to deal with the dynamism of the ad hoc
network including host mobility and opportunistic interactions. We began by
proposing a distributed approach to constructing service directories and imple-
mentation repositories. We followed this with a mechanism that can deduce the
dependencies of a given proxy component and fetch the required binaries from
remote locations. We also illustrated the model for a lightweight client as well
as additional functionality such as on-the-fly component updating. Finally we
showed how the proxy components can be disposed by existing garbage collec-
tion mechanisms.

Acknowledgements
This research was supported by the Office of Naval Research under MURI

research contract N00014-02-1-0715. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not
necessarily represent the views of the research sponsors.



References

1. Edwards, K.: Core JINI. Prentice Hall (1999)
2. Sun-Microsystems: Enterprise java beans product page. (http://java.sun

.com/products/ejb/)
3. BEA: Bea weblogic service product page. (http://www.

bea.com/framework.jsp?CNT=index.htm&FP=/content/products/server/)
4. IBM: Ibm websphere product page. (http://www-306.ibm.com/ soft-

ware/info1/websphere/index.jsp?tab=highlights)
5. Macromedia: Macromedia jrun product page. (http://www.macromedia.

com/software/jrun/)
6. Macromedia: Macromedia coldfusion product page. (http://www.macromedia.

com/software/coldfusion/)
7. Object-Management-Group: Corba component model page. (http://www.omg.

org/technology/documents/formal/components.htm)
8. OpenCCM-Project-Team: Openccm product page. (http://openccm.object

web.org/)
9. Barros, M.C.B., Madeira, E.R.M., Sotoma, I.: An experience on CORBA com-

ponent deployment. In: Proceedings of the Sixth International Symposium on
Autonomous Decentralized Systems (ISADS’03). (2003)

10. von Laszewski, G., Blau, E., Bletzinger, M., Gawor, J., Lane, P., Martin, S., Rus-
sell, M.: Software, component and service deployment in computational grids. In
Bishop, J., ed.: Proceedings of the 1st International Conference on Component
Deployment. Number 2370 in LNCS, Springer-Verlag (2002) 244–256

11. Sudmann, N.P., Johansen, D.: Software deployment using mobile agents. In Bishop,
J., ed.: Proceedings of the 1st International Conference on Component Deployment.
Number 2370 in LNCS, Springer-Verlag (2002) 97–107

12. Rudkin, S., Smith, A.: A scheme for component based service deployment. In
Linnhoff-Popien, C., Hegering, H.G., eds.: Proceedings of Third International
IFIP/GI Working Conference, USM 2000. Number 1890 in LNCS, Springer-Verlag
(2000) 68–80

13. Sen, R., Handorean, R., Roman, G.C., Gill, C. In: Service Oriented Software
Engineering: Challenges and Practices. Idea Group Publishing (To appear in 2004)

14. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: 2. In: Pattern-Oriented Soft-
ware Architecture. Volume 2. John Wiley and Sons Ltd. (2000) 109–141

15. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: 2. In: Pattern-Oriented Soft-
ware Architecture. Volume 2. John Wiley and Sons Ltd. (2000) 47–75

16. Murphy, A., Picco, G., Roman, G.C.: Lime: A middleware for physical and logi-
cal mobility. In: Proceedings of the 21st International Conference on Distributed
Computing Systems. (2001) 524–533

17. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7 (1985) 80–112


	A Component Deployment Mechanism Supporting Service Oriented Computing in Ad Hoc Networks
	Recommended Citation
	A Component Deployment Mechanism Supporting Service Oriented Computing in Ad Hoc Networks

	tmp.1470340445.pdf.hSPam

	Abstract: Abstract: Ad hoc networks are dynamic, open environments that
exhibit decoupled computing due to frequent disconnections and
transient interactions. Reliable deployment of components in such
demanding settings requires a different design approach for the
mechanisms that perform these functions. Not only do the
deployment mechanisms have to perform the traditional tasks of
deploying, installing, integrating and activating components, they
must also be robust enough to handle the nuances of an ad hoc
network. This paper proposes a mechanism for component deployment
that is adapted for use in ad hoc networks, and, as such, can cope
with the effects of disconnection and transient connectivity. We
present the general architecture for the mechanism and follow it
with a discussion of a Java-based implementation of the model.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes: 
	Email: 
	Date: January 23, 2004
	Author: Authors: Handorean, R.; Sen, R.; Hackmann, G.; Roman, Gruia-Catalin
	Title: A Component Deployment Mechanism Supporting Service Oriented Computing in Ad Hoc Networks
	ReportNumber: 2004-2 
	DepartmentName: Department of Computer Science & Engineering


