
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-19

2004-04-22

A Principled Exploration of Coordination Models A Principled Exploration of Coordination Models

Gruia-Catalin Roman and Jamie Payton

Coordination is a style of interaction in which information exchange among independent system

components is accomplished by means of high-level constructs designed to enhance the

degree of decoupling among participants. A de-coupled mode of computation is particularly

important in the design of mobile systems which emerge dynamically through the composition

of independently developed components meeting under unpredictable circumstances and thrust

into achieving purposeful cooperative behaviors. This paper examines a range of coordination

models tailored for use in mobile computing and shows that the constructs they provide are

reducible to simple schema definitions in Mobile UNITY. Intellectually, this exercise

contributes... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Roman, Gruia-Catalin and Payton, Jamie, "A Principled Exploration of Coordination Models" Report
Number: WUCSE-2004-19 (2004). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/991

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/991?utm_source=openscholarship.wustl.edu%2Fcse_research%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/991

A Principled Exploration of Coordination Models A Principled Exploration of Coordination Models

Gruia-Catalin Roman and Jamie Payton

Complete Abstract: Complete Abstract:

Coordination is a style of interaction in which information exchange among independent system
components is accomplished by means of high-level constructs designed to enhance the degree of
decoupling among participants. A de-coupled mode of computation is particularly important in the design
of mobile systems which emerge dynamically through the composition of independently developed
components meeting under unpredictable circumstances and thrust into achieving purposeful
cooperative behaviors. This paper examines a range of coordination models tailored for use in mobile
computing and shows that the constructs they provide are reducible to simple schema definitions in
Mobile UNITY. Intellectually, this exercise contributes to achieving a better operational-level understanding
of the relation among several important classes of models of mobility. Pragmatically, this work
demonstrates the immediate applicability of Mobile UNITY to the formal specification of coordination
constructs supporting mobile computing. Moreover, the resulting schemas are shown to be helpful in
reducing the complexity of the formal verification effort.

https://openscholarship.wustl.edu/cse_research/991?utm_source=openscholarship.wustl.edu%2Fcse_research%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/991?utm_source=openscholarship.wustl.edu%2Fcse_research%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages

A Principled Exploration

of Coordination Models

Gruia-Catalin Roman and Jamie Payton

Department of Computer Science and Engineering
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA
{roman, payton}@wustl.edu

Coordination is a style of interaction in which information exchange among
independent system components is accomplished by means of high-level con-
structs designed to enhance the degree of decoupling among participants. A de-
coupled mode of computation is particularly important in the design of mobile
systems which emerge dynamically through the composition of independently
developed components meeting under unpredictable circumstances and thrust
into achieving purposeful cooperative behaviors. This paper examines a range
of coordination models tailored for use in mobile computing and shows that
the constructs they provide are reducible to simple schema definitions in Mobile
UNITY. Intellectually, this exercise contributes to achieving a better operational-
level understanding of the relation among several important classes of models of
mobility. Pragmatically, this work demonstrates the immediate applicability of
Mobile UNITY to the formal specification of coordination constructs supporting
mobile computing. Moreover, the resulting schemas are shown to be helpful in
reducing the complexity of the formal verification effort.

1 Introduction

Mobile devices equipped with wireless communication capabilities have become
essential tools in everyday life. As society becomes increasingly familiar with
and discovers new uses for mobile devices, we can expect heightened demand
for new applications designed with mobility in mind. Logical mobility allows
for software components to migrate from one host to another. Physical mobility
entails changes in location and connectivity. Many systems entail both forms
of mobility. Consider, for instance, the case of a tourist carrying a miniature
PDA in his shirt pocket. Upon entering a museum, a mobile agent may migrate
to the PDA to help the tourist navigate through the exhibits. The agent, in
turn, communicates the tourist’s location and preferences to the display units
on the wall, thus making it possible for custom presentations to accompany the
visitor from one hall to another. The development of such applications entails
not only the introduction of new concepts but also new levels of complexity,
which is compounded as the system becomes increasingly dynamic. A museum
guide, while employing both physical and logical mobility, is relatively simple to
design because of the highly constrained and structured environment in which it

functions. By comparison, an application that executes in a fully ad hoc network
formed by vehicles that travel at high speeds over the highway is significantly
more difficult to construct. Environments that are open and subject to rapid
evolution are likely to pose the greatest challenges for the software engineer.

A design strategy that promises to faciliate the development of mobile ap-
plications is the use of coordination middleware. The idea is to simplify the
development effort by offering the software engineer powerful high level con-
structs for component interaction within the confines of a known programming
language. The programming gains are the result of a careful formulation of an
appropriate conceptual model and its packaging as a set of coordination primi-
tives accessible in the form of a standard API (Application Program Interface).
Precise semantics are critical to effective use of such middleware. Unfortunately,
the semantic treatment of coordination middleware has been highly polarized.
Formalists found the intellectual challenges of developing new classes of mod-
els exciting and concentrated their attention on applying sophisticated skills to
formalizing a range of new concepts and constructs—almost solely focusing on
formal exercises without paying much attention to the software engineering pro-
cess. Pragmatists delivered new kinds of middleware motivated by the needs of
various application domains, rarely being concerned with a proper formalization
of the constructs they provide. Our goal is to bridge the gap between formal mod-
els of mobility and the pragmatics of dependable software development, with a
focus on precise semantic definitions of coordination constructs. By necessity,
our treatment will be less formal than is the custom in the theoretical computer
science community and more formal than most software engineering approaches.
This is because we pursue a very pragmatic strategy for bridging formal think-
ing and engineering practice. We do this in a very narrow band, focusing on the
precise semantic definition of coordination constructs, which is fundamental to
achieving correct usage of the middleware and supporting informal verification
of the resulting applications.

The starting point for any precise semantic definition is always a formal
model. Many such models have been proposed with the most visible among them
being Mobile Ambients [3], π-calculus [15], and Mobile UNITY [13, 20]. Their
individual perspectives on mobility are quite distinct and entail only limited over-
lap in concepts and methods. Mobile Ambients structures space hierarchically
and limits movement to conform to this hierarchical organization; the (possibly
changing) structure of the space is actually the structure of the dynamic system
being described. In π-calculus, mobility is reduced to the reorganization of the
communication structure by allowing the creation of new unique channel names
and the passing of such names among processes for the purpose of establish-
ing private communication channels. Both models fall in the general category of
process algebras and lend themselves naturally to a treatment of mobility that
entails mostly evolutionary change rather than a more explicit notion of space.
Because of their popularity, many variants of these models have been proposed.
Included among them are the join calculus [5], which restricts interactions to
a particular sites, and the nomadic π-calculus (related to the Nomadic Pict[21]

2

language) which covers a variety of low-level and high-level communication prim-
itives. Mobile UNITY is fundamentally different from all these models: it is a
state transition model that employs an explicit (albeit abstract) notion of space,
and relies on an assertional proof logic for program verification.

Our strategy to relating these different models to each other centers on rep-
resenting their key concepts within the Mobile UNITY framework. We have
been successful in doing so in other settings by exploiting the decoupling Mobile
UNITY provides between programs (as units of execution, mobility and mod-
ularity) and the interactions among them (the rules by which information is
exchanged between programs which otherwise appear unable to communicate
with each other). Our past experience with CodeWeave [11] and Lime [16] are
particularly relevant in this respect. CodeWeave is a model developed to support
fine-grained code mobility, i.e., the unit of mobility is allowed to be as small as
a single variable or an individual program statement. Lime [16] is a model and
middleware that adapts the Linda coordination model to support communica-
tion in ad hoc networks; its primitives have been formally specified in Mobile
UNITY. In this paper we build directly on these past experiences, but focus
our attention on exploring a broader range of interaction styles. The specific
modes of interaction we consider are inspired by existing middleware for agent
coordination, formal models of mobility, and models of communication.

In each case, we capture the essential features of a coordination model by
providing a schema that consists of a set of macros that appear in the code for
agents making up the system and an operational specification of the interac-
tion rules. The former capture local actions while the latter defines coordination
activities that span multiple agents. We provide schemas that encompass pro-
cesses that employ location-sensitive synchronous communication (á la CSP [9]),
processes that create and pass private channel names (á la π-calculus), mobile
agent systems for wired networks (á la TuCSoN [18], MARS [2], and Limbo [4]),
mobile agent systems for mobile ad hoc networks (á la Lime), and programs
with malleable structures (á la Mobile Ambients).

At first sight, the process of building the various schemas appears to be
merely an exercise in elegant coding of a series of coordination constructs into a
notation system specifically designed to provide support for compact expression
of coordination processes. In actuality, much more is accomplished along the way.
First, this is the very first attempt to examine formally the relation among three
important models of mobility. The question regarding whether Mobile UNITY is
able to capture the essential features of π-calculus and Mobile Ambients has been
finally resolved in the affirmative. While other methods for comparison could
have been considered, we view the operational approach employed in this paper
as being more in tune with software engineering practice and more likely to lead
to the development of middleware inspired by some of these models. Second, the
manner in which tuple space coordination constructs are given formal operational
semantics in terms of Mobile UNITY offers a practical illustration of how to
generate precise semantic specifications for mobility middleware. The net result
is that of offering the software engineering community a valuable intellectual

3

tool for exploring coordination alternatives and their semantics. It is precisely
the operational style of our investigation that makes this possible.

While a purely operational approach could be construed as being less ab-
stract and a possible impediment to formal analysis, Mobile UNITY includes
an associated assertional style proof logic, and models captured in terms of Mo-
bile UNITY can be subject to formal verification. Actually, when a particular
schema is used, it becomes possible to carry out the formal verification of the
overall agent system without having to consider the details of the coordination
mechanics. In this paper we show how an abstract semantic definition of the co-
ordination constructs can be built, verified, and reused in proofs for systems that
employ the same schema. In turn, this leads to a simplification of the verification
process.

An introduction to Mobile UNITY, the model used in this paper as a founda-
tion for the development of coordination schemas, is given in Section 2. In each
of Sections 3 through 7, a Mobile UNITY formalization of a coordination model
is given. Section 8 provides an overview of how formal verification is employed
when schemas are used. Finally, conclusions are presented in Section 9.

2 The Essence of Mobile UNITY

In this section, we give a brief introduction to the Mobile UNITY [13, 20] model.
We describe the concept of a Mobile UNITY system, which encapsulates a set
of programs and governs their interactions. We begin by introducing the foun-
dational element of all systems—the program. The notation used to specify a
Mobile UNITY program is presented and applied to a simple example, a pro-
gram that specifies the actions of a mobile baggage cart. The proof logic as-
sociated with Mobile UNITY programs is discussed. We then describe how a
Mobile UNITY system captures program descriptions, their instantiations, and
the interactions between instantiated programs. We describe the notation used to
specify a system, and illustrate its application, expanding upon the baggage cart
example to create a baggage transport system. Finally, we discuss the associated
proof logic for a Mobile UNITY system.

2.1 Program Specification

Programs are defined to be the basic units of mobility, modularity, and execution.
This is a natural choice in Mobile UNITY and, fortunately, places no undue
burden on the modeling process because programs can be of arbitrary complexity.
Both fine-grained mobility (e.g., the movement of single statements) and coarse-
grained mobility (e.g., the movement of whole components) may be expressed
simply by varying the size of the programs being used. For now, we impose no
restrictions on the size of the program code, the functions it performs, or the
number of components that are being instantiated. In a given application setting,
however, such restrictions may prove highly profitable, e.g., when one considers

4

the case of very small devices such as sensors dedicated to evaluating one single
local environmental condition, such as temperature.

Notation. As in UNITY, the key elements of a Mobile UNITY program
specification are variables and assignments. Programs are simply sets of con-
ditional assignment statements, separated by the symbol []. Each statement is
executed atomically and is selected for execution in a weakly fair manner—in an
infinite computation, each statement is scheduled for execution infinitely often.
A program description begins with a declare section that introduces the vari-
ables used. Abstract variable types such as sets and sequences can be used freely.
The initially section defines the allowed initial conditions for the program. If
a variable is not referenced in this section, its initial value is constrained only
by its type. The heart of any Mobile UNITY program is the assign section,
consisting of a set of labeled conditional assignment statements of the form:

label :: var1, var2, . . . , varn := expr1, expr2, . . . , exprn if cond

where the optional label associates a unique identifier with a statement. The
guard cond, when false, reduces the statement execution to a skip.

Like UNITY, Mobile UNITY also provides quantified assignments, specified
using a three-part notation:

label :: 〈‖ vars : condition :: assignment〉

where vars is a list of variables, condition is a boolean expression that defines a
range of values, and assignment is an assignment statement. For every instance
of the variables in vars satisfying the condition, an assignment statement is
generated. All generated assignments are performed in parallel. (This three-part
notation is also used for other operations besides quantified assignment. For
example, the ‖ can be replaced with a ’+’, and all generated expressions are
added together and a value is returned.)

Though not provided in the original UNITY model, the nondeterministic
assignment [1] proved to be useful in many formalizations, and is sometimes
included in presentations of the UNITY and Mobile UNITY models. A non-
deterministic assignment statement such as x := x′.Q, assigns to x a value x′

nondeterministically selected from among the set of values satisfying the predi-
cate Q.

In addition to the aforementioned types of assignment statements provided
in the original UNITY model, Mobile UNITY also provides a transaction for
use in the assign section. Transactions capture a form of sequential execution
whose net effect is an atomic state change, on a scale larger than that of a simple
assignment. A transaction consists of a sequence of assignment statements which
must be scheduled in the specified order with no other statements interleaved.
The notation for transactions is:

label :: 〈s1; s2; . . . ; sn〉,
where si for i = 1 to n is a stand-alone assignment, as discussed earlier. The term
normal statement, or simply statement, will be used to denote both transactions
and the stand-alone assignments.

5

As previously stated, normal statements are selected for execution in a weakly
fair manner and executed one at a time. The guards of all normal statements can
be strengthened without actually modifying the statement itself by employing
another Mobile UNITY construct, the inhibit statement :

inhibit label when cond

where label refers to some statement in the program and cond is a predicate.
The net effect is conjoining the guard of the named statement with the negation
of cond at runtime, thus inhibiting execution of the statement when cond is true.

A powerful construct unique to Mobile UNITY is the reactive statement:

s reacts-to cond

where s is an assignment statement (not a transaction) and cond is a predicate.
The basic idea is that reactions are triggered by any assignment establishing
the reactive condition cond. The semantics are more complex, since a program
(or a system, which will be defined in the next subsection) can contain many
reactive statements. Operationally, one can think of each assignment (appearing
alone or as part of a transaction) as being extended with the execution of all
defined reactions up to such a point that no further state changes are possible
by executing reactive statements alone. More formally, the set of all reactive
statements forms a program � that is executed to fixed point after each atomic
state change by assignments appearing alone or within a transaction. Clearly,
� must be a terminating program. The result is a powerful construct that can
easily capture the effects of interrupts, dynamic system reconfiguration, etc.

The above constructs have resulted from a careful analysis of what is neces-
sary to model mobile systems. However, because programs are expected to be
mobile, a mechanism is still needed to capture the notion that a given compo-
nent is present at a specific location and that it can move from one location to
another. To address this need, location is modeled in Mobile UNITY as a dis-
tinguished variable which is required to appear in all programs. Conventionally,
this variable is named λ.

By having an explicit representation of the program location as part of a
program’s state, mobility is reduced to changes in the value of λ. The type of λ
is determined by the specific way in which space is modeled. For example, when
modeling physical movement, a latitude and longitude pair may be appropriate
in defining a point in space. Logical mobility may entail the use of host identifiers.
Spaces may be uniform and bounded, may be undefined in certain regions, or
may extend to infinity. The operations permitted for use in changing λ are
specified implicitly in the definition of the space. When the space being modeled
has a specific structure, mobility requires appropriate constraints. For instance,
if the space is defined as a graph, it is reasonable to expect that movement takes
place along edges in the graph. In other cases, we may prefer to allow a program
to change location by simply moving to any reachable node in the graph if the
passage through intermediary nodes results in no local interactions.

6

Loader
Cart

Unloader

Fig. 1. A baggage transfer example

Illustration. A sample Mobile UNITY program, Cart , is illustrated in Fig-
ure 1. The purpose of the cart is to transport baggage from one place to another.
The program text in Figure 2 specifies the actions of a baggage cart that moves
along a track, loading at one end of the track and unloading at the other end.
The space in which the cart moves, i.e., along the track, is assumed to be a
discrete linear space over the range 0 to N .

The program Cart defines a variable y of type integer in the declare section;
y represents the size of the cart’s current load. The initially section states that
the cart is empty at the start of execution. Note that the distinguished variable
λ is not given a value in the initially section of Mobile UNITY programs; in this
example, λ can take any integer value at the beginning of program execution.
(Alternatively, λ can be initialized in the Components section of a system
description, as discussed in Section 2.2.)

The assign section of Cart illustrates the use of several Mobile UNITY con-
structs. The statement load is a simple conditional non-deterministic assignment
statement that places a load in the cart (represented by the non-deterministic
choice of a positive integer) if the cart is located at position 0 and is empty.
The statements go right and go left are simple assignment statements that up-
date the cart’s location on the track. The location of the cart is incremented or
decremented one unit at a time, faithfully representing the nature of discrete but
contiguous linear movement. The first inhibit statement prevents the execution
of the go right statement when the cart is empty. Similarly, the next inhibit
statement prevents the cart from moving left when the cart is not empty. The
next statement, unload , assigns to y a value of 0 if the cart is not empty and is
located at position N , effectively emptying the cart. The two statements follow-
ing the unload statement are reactive statements. The first reactive statement
is enabled when the cart is at a position less than 0. If after the execution of
a normal statement in the program, this statement becomes enabled, the cart’s
position is updated to a legal position (position 0) on the track. Similarly, the
second reactive statement, when enabled, will force the cart in a legal position
on the track, position N .

Proof Logic. Mobile UNITY has an associated proof logic by and large
inherited directly from UNITY. Program properties are expressed using a small
set of predicate relations whose validity can be derived directly from the program
text or from other properties through the application of inference rules. It is
important to note that, by reducing movement to value assignment, the proof
logic naturally covers mobility without the necessity for extensions.

7

program Cart at λ
declare y : integer
initially y = 0
assign

load :: y := y ′.(y ′ > 0) if λ = 0 ∧ y = 0
[] go right :: λ := λ + 1
[] go left :: λ := λ − 1
[] inhibit go right when y = 0
[] inhibit go left when y �= 0
[] unload :: y := 0 if λ = N ∧ y �= 0
[] λ := 0 reacts-to λ < 0
[] λ := N reacts-to λ > N

end

Fig. 2. An example Mobile UNITY program

Basic safety is expressed using the unless relation. For two state predicates
p and q, the expression p unless q means that for any state satisfying p and
not q, the next state in the execution sequence must satisfy either p or q. There
is no requirement for the program to reach a state that satisfies q, i.e., p may
hold forever. Progress is expressed using the ensures relation. The relation
p ensures q means that for any state satisfying p and not q, the next state
must satisfy p or q. In addition, there exists a statement that guarantees the
establishment of q if executed in a state satisfying p and not q. Note that the
ensures relation is not itself a pure liveness property, but is a conjunction of a
safety and a liveness property. The safety part of the ensures relation can be
expressed as an unless property, and the existence of an establishing statement
can be proven with standard techniques. In UNITY, the two predicate relations,
expressed in Hoare triple notation [8], are defined by:

p unless q ≡ 〈∀s : s in P :: {p ∧ ¬q}s{p ∨ q}〉

p ensures q ≡ (p unless q) ∧ 〈∃s : s in P :: {p ∧ ¬q}s{q}〉
where s is a statement in the program P .

The distinction between UNITY and Mobile UNITY becomes apparent only
when we consider the manner in which we prove Hoare triples, due to the in-
troduction of transactions and reactive statements. For instance, in UNITY a
property such as:

{p}s{q}where s in P

refers to a standard conditional multiple assignment statement s exactly as it
appears in the text of the program P . By contrast, in a Mobile UNITY program
we will need to use:

{p}s∗{q}where s ∈ ℵ,

where ℵ denotes the normal statements of P while s∗ denotes a statement s
modified to reflect the guard strengthening caused by inhibit statements and
the extended behavior resulting from the execution of the reactive statements in

8

the reactive program � consisting of all reactive statements in P . The following
inference rule captures the proof obligations associated with verifying a Hoare
triple in Mobile UNITY under the assumption that s is not a transaction:

p ∧ ι(s) ⇒ q, {p ∧ ¬ι(s)}s{H}, H �→ (FP (�) ∧ q) in �
{p}s∗{q}

For each non-reactive statement s, ι(s) is defined to be the disjunction of all
when predicates of inhibit clauses that name statement s. Thus, the first part
of the hypothesis states that if s is inhibited in a state satisfying p, then q must
be true of that state also. {p ∧ ¬ι(s)}s{H} is a standard Hoare triple for the
non-augmented statement s. H is a predicate that holds after execution of s in
a state where s is not inhibited. It is required that H leads to both fixed-point
and q in the reactive program �.

For transactions of the form 〈s1; s2; . . . sn〉 the following inference rule can
be used before application of the one above:

{a}〈s1; s2; . . . sn−1〉∗{c}, {c}sn
∗{b}

{a}〈s1; s2; . . . sn〉∗{b}

where c may be guessed at or derived from b as appropriate. This rule repre-
sents the proof obligation for transactions as the sequential composition of two
elements. The first element is a subsequence of the normal statements (aug-
mented with reactive behaviors) in the transaction. We call this subsequence a
sub-action of the transaction. The second element in the sequential composition
is the last sub-action of the transaction. This proof rule can be used recursively
until we have reduced the transaction to a single sub-action. This rule may
seem complicated, but it represents standard axiomatic reasoning for ordinary
sequential programs, where each sub-statement is a predicate transformer that
is functionally composed with other sub-statements.

2.2 System specification

So far, the notation and logic of Mobile UNITY have been discussed in terms of
a single program. However, Mobile UNITY structures computations in systems
consisting of multiple components and coordination rules that govern their inter-
actions. Each component is a program, each having uniquely named variables.
Programs are defined as instantiations of program types. Program type defini-
tions are followed by a Components section that establishes the overall system
configuration and some initialization parameters, and by an Interactions sec-
tion consisting of coordination constructs used to capture the nature of the data
transfers among the decoupled component programs.

Notation. A System description begins by providing parameterized type
definitions for the programs to be composed. A type definition of a program is
simply program text that has a parameter used only to identify an instantiation
of a program. Type definitions are similar to macros in that the textual type
definition of a program can be substituted for a program instantiation anywhere
within the System.

9

In the Components section of a system, component programs are instan-
tiated using the name of a type definition and a parameter value to identify
the instantiated program. An initial location can optionally be provided to the
program instantiation as well. The Components section assumes a form such
as:

programA(1)[] programA(2)[] programB(1) at (1, 2)

where programA(i) and programB(j) are type definitions in the system, and
programA(1), programA(2), and programB(1) are the desired program instanti-
ations. Notice in this example the extension to the last program instantiation.
This provides programB(1) with an initial location, giving its distinguished λ
variable a value of (1, 2) at the start of its execution.

Instantiated programs making up a System in Mobile UNITY have disjoint
namespaces. The separate namespaces for programs hide variables and treat
them as internal by default, instead of allowing them to be universally visible to
all other components as is the case in UNITY program composition. Formally,
uniqueness of variable names in Mobile UNITY systems is achieved by implicitly
prepending the name of the component to each variable, e.g., programA(1).x ,
programB(1).x . This facilitates modular system specification and impacts the
way program interactions are specified for those situations where programs must
communicate. Coordination among programs in Mobile UNITY is facilitated by
defining rules for program interaction in the Interactions section of a system.

The Interactions section captures inter-process communication. As men-
tioned previously, programs in Mobile UNITY cannot interact with each other
in the same style as in UNITY (by sharing identically named variables) be-
cause they have distinct namespaces. Instead, special constructs must be pro-
vided to facilitate program interaction. These rules must be defined explicitly in
the Interactions section, using fully-qualified variable names. Since in mobile
computing systems, interaction between components is transient and location-
dependent, the Interactions section often restricts communication based on
variables representing location information. When mobile code is involved, inter-
actions among programs take place whenever the components are co-located. In
the presence of physical mobility, interactions are allowed when components are
within wireless communication range. Reactive statements, inhibit statements,
and assignment statements can appear in the Interactions section. In contrast
to the assign section of a program, however, references to variables that cross
program boundaries are permitted.

Illustration. Figure 3 shows a system called BaggageTransfer. It is based
upon a restructuring of the earlier Cart program designed to separate the cart,
loading, and unloading actions. Three types of components are used: Cart(k),
Loader(i), and Unloader(j). Each program type is parameterized to allow for the
creation of multiple instances of the same type.

Cart(k) defines a program in which a baggage cart is moved along a track,
which ranges from position 0 to position N . As before, the movement of the cart
1 Though its semantics are identical to those of the if keyword, the when keyword is

used for emphasis in the Interactions section of Mobile UNITY systems.

10

System BaggageTransfer

program Cart(k) at λ
declare y : integer
initially y = 0
assign

go right :: λ := λ + 1
[] go left :: λ := λ − 1
[] inhibit go right when y = 0
[] inhibit go left when y �= 0
[] λ := 0 reacts-to λ < 0
[] λ := N reacts-to λ > N

end

program Loader(i) at λ
declare x : integer
initially x = 0
assign

load :: x := x ′.(x′ > 0)
end

program Unloader(j) at λ
declare z : integer
initially z = 0
assign

unload :: z := 0
end

Components
Cart(1) [] Cart(2) [] Loader(1) at 0 [] Loader(2) at N/2

[] Unloader(1) at N [] Unloader(2) at 3N/4

Interactions
Cart(k).y ,Loader(i).x := Loader(i).x , 0

when 1 Cart(k).y = 0 ∧ Loader(i).x �= 0 ∧ Cart(k).λ = Loader(i)λ
[] Cart(k).y ,Unloader(j).z := 0,Cart(k).y

reacts-to Cart(k).y �= 0 ∧ Unloader(j).z = 0 ∧ Cart(k).λ = Unloader(j).λ

end BaggageTransfer

Fig. 3. An example Mobile UNITY system

depends on the value of the program variable y, which represents the weight of
the current baggage in the cart. Notice that the program type definition contains
no statement in which y is explicitly assigned. Loader(i) defines a program in
which a variable x is non-deterministically assigned a value, presumably defining
a baggage weight to be loaded. Unloader(j) defines a program in which a variable
z is assigned a value of 0.

The Components section instantiates the component programs in the Bag-
gageTransfer System. To illustrate the ease with which our original baggage
example can be extended to include multiple components of the same type, two
carts, Cart(1) and Cart(2), are created along with two loaders and two unload-
ers. The two carts are distinguished by the values given to parameter k. The
loaders and unloaders are similarly distinguished.

The Interactions section allows the cart, loader, and unloader program
instantiations to work together to transport baggage. The first statement is an
asynchronous value transfer conditional on the location of the cart and the status
of the loader. Since all free variables are assumed to be universally quantified
by convention, the statement describes the relationship between a typical loader
and a typical cart, and so it applies to both carts. The load stored in Loader(i).x
is transferred to the cart and stored in Cart(k).y . This will enable the cart to

11

start its movement towards the unloader. In a similar fashion, the arrival of a
cart at an empty unloader makes it possible for the load to be transferred from
Cart(k).y to Unloader(j).z , later to be discarded as apparent in the code of the
unloader.

As shown elsewhere [13], many different coordination constructs can be built
out of the basic constructs presented so far. Among them, one of particular
interest is transient and transitive variable sharing, denoted by ≈. For instance,
the code below describes an interaction between a cart and an inspector where
the cart and the inspector share variables y and w as if they denoted the same
variable, when co-located. At the point when the cart and inspector become co-
located, the shared variable is given the value of the cart’s y variable as specified
by the engage clause. When the cart and inspector are no longer co-located,
the cart’s y variable retains the value of the shared variable, and the inspector’s
w variable is set to 0, as stated in the disengage clause.

Cart(k).y ≈ Inspector(q).w when Cart(k).λ = Inspector(q).λ
engage Cart(k).y
disengage Cart(k).y, 0

Proof Logic. The entire system can be reasoned about using the logic pre-
viously presented because it can easily be re-written as an unstructured program
with the name of each variable and statement expanded according to the pro-
gram in which it appears, and with all statements merged into a single assign
section. In other words, the system structuring represents solely a notational
convenience with no deep semantic implications.

3 Location-Sensitive Synchronous Communication

The study of synchronous communication has its origins in CSP [9] and was later
refined with the introduction of an entire family of process algebras, including
CCS [14] and π-calculus [15]. Most often, events are identified by naming a
communication channel and are differentiated as being send and receive events
associated with distinct processes. Pairs of matching events are executed simulta-
neously; if no match exists, the communication channel is blocked until a match
is available. In principle, many pairs of processes could be synchronized using
the same channel name with matching pairs being selected nondeterministically.

The typical notation used for communication between processes can be easily
explained. The notation c!x is used for sending a value stored in x on channel
c. Similarly, c?y is used to express the desire to receive a value on channel c to
be stored in y. In this section, we capture key features of these models, and we
show how communication can be constrained based on the relative locations of
processes.

Let us first consider a generic event model similar to CSP [9], in which a
process can send (c!x) or receive (c?y) values on a specified channel. Figure 4
illustrates such a model. Since Mobile UNITY programs are not sequential in

12

nature, blocking will be interpreted as no additional operations being permitted
to take place on the respective channel. To simplify the presentation of the
schema, we assume that only one sender and one receiver can communicate on
a particular channel. Throughout the section, we refer to the writer as process
A and the reader as process B.

…
c!x

Process A

…
c?y

Process B

n

Channel c

Fig. 4. An overview of the basic CSP model. In the figure, each process has access to
the named channel c. Process A writes the value n contained in variable x to channel
c using the syntax c!x. Process B reads channel c using the syntax c?y and places the
value of n in the variable y.

A process represents its local view of the channel as a variable, c. The value
of the local channel variable is a tuple. The first field of the channel variable
indicates the channel’s status. The channel is either idle, which means that a
value can be sent on the channel, or ready, which means that a value has been
written to the channel and a process is ready to participate in the transfer of
a value. The second field of the channel variable indicates the value currently
available on the channel. At times, the channel is idle and there is no value
available on the channel; this is indicated by the value ⊥. The valid states of the
channel are as follows:

– (idle,⊥): indicates that the channel is available
– (ready, v): indicates that the channel is busy and a value v is available for

reading
– (ready,⊥): indicates that the channel is busy, that the channel value has

been read, and that the channel is being cleared for further use

Under these assumptions, an output operation may assume the following
syntax and semantics:

c!x if g ≡
c := (ready,x) if g ∧ c ↑ 1 = idle (s1)

where the notation c ↑ 1 is used to refer to the first field of the variable c. The
local view of the channel stores a request for output, if the channel is not already

13

in use (indicated by idle channel status) and the guard is passable. A request
for an input operation works similarly when a value is available on the channel,
but requires the transfer of the channel value to a specified variable:

c?y if g ≡
y, c := c ↑ 2, (ready,⊥) if g ∧ c ↑ 1 = ready ∧ c ↑ 2 �= ⊥ (s2)

Notice that the read operation can only place a value in the specified local
variable if the channel is ready and has a value available. The channel can only
be put in such a state by the execution of a write operation on the channel.
Since each process has a local representation of the channel and these channel
values are not automatically shared across Mobile UNITY processes, a process
executing a read must become aware somehow that a write request has been
placed on the other end of the channel. This form of coordination between the
two processes takes place in the Interactions section. A simple solution is to
match pairs of pending input/output operations present in different connected
processes and involving the same channel, and to transfer values accordingly:

B.c := A.c reacts-to connected(A,B) ∧ B.c ↑ 1 = idle (s3)
∧ A.c ↑ 1 = ready ∧ A.c ↑ 2 �= ⊥

A.c, B.c := (idle,⊥), (idle,⊥) reacts-to connected(A,B) (s4)
∧ B.c = (ready,⊥)

where process names A and B and channel name c are universally quantified.
The relation connected(A,B) is used to determine if processes are allowed to
communicate. The basic connected relation may be defined in terms of physical
connectivity, i.e., connected(A,B) holds if and only if processes A and B are
within communication range.

Given this model of interaction, we use the Interactions section to address
the appropriate action to take when two processes become disconnected before
a channel value that is read is written locally:

B.c := (idle,⊥) reacts-to ¬connected(A,B) ∧ B.c ↑ 2 �= ⊥ (s5)

This allows our model to clear the channel on a potential reader process’s side
in the event of disconnection. When using connectivity as a condition for trig-
gering reactions or in defining conditional assignment statements, we must rely
on the assumption that disconnections between processes are detectable. More
sophisticated connectivity functions can be defined which use additional prop-
erties of processes, such as access control rights and policies, as parameters to
the function.

4 Private Communication in a Mobile Setting

The π-calculus is a process algebra that builds on the CSP [9] and CCS [14]
models of synchronous communication to encompass mobility. In the π-calculus,

14

mobility is represented as the dynamic reconfiguration of the communication
structure through the creation, communication, and adoption of new channel
names. An interesting aspect of this model is that it becomes possible to protect
access to a specific channel by creating new channel names and communicating
them to other specific processes.

Typically, in the π-calculus, a protected channel is created for communication
between processes using the scoping operator ν to ensure uniqueness of the
created name and to restrict the use of the channel name to only the specified
processes. For example, the notation (νc)(P |Q) means that a new name c is
created whose scope is the processes P and Q. Processes output new channel
names using send events. A notation similar to that of CSP is used to represent
send events in the π-calculus, e.g., c!x where c is the name of the channel used
for communication and x is a variable holding the new channel name to be
communicated. A process notes that it expects to receive a name on channel c
by c?y, where y is a variable that will hold the input received along channel c.
We capture the key elements of the π-calculus model—the creation, output, and
input of channel names—in the coordination schema below. Differences from the
original π-calculus are a direct reflection that our schema defines an operational
model while the π-calculus is an algebra.

In other synchronous coordination models like CSP, we assumed that channel
names are fixed and that there is no protection against unauthorized usage. To
capture the unique ability of π-calculus to create new channel names that can
be passed among processes, we need to distinguish between the variable used
to refer to a channel and the channel name. By storing the channel name, it
becomes possible for it to be changed and shared. Surprisingly, the changes in
the schema are relatively straightforward. First, we assume the existence of a
function that returns a unique system-wide name that can be stored in a local
program variable and cannot be forged:

η := new().

Second, we alter the structure of the local channel to accept a new name, but
only when not in use:

c named η if g ≡
c := (η, nil) if g ∧ c ↑ 2 = ⊥

The send and receive operations are altered so as to not impact the channel
name. The requests are stored in the second field associated with the local view
of the channel:

c!x if g ≡
c := (c ↑ 1, (ready, x)) if g ∧ c ↑ 2 = (idle,⊥)

c?y if g ≡
y, c := c ↑ 2 ↑ 2, (c ↑ 1, (ready,⊥)) if g ∧ c ↑ 2 ↑ 1 = ready ∧ c ↑ 2 ↑ 2 �= ⊥

Finally, input/output commands are matched based on channel names:

15

B.c := A.c reacts-to connected(A,B) ∧ B.c ↑ 1 = A.c ↑ 1 ∧ B.c ↑ 2 ↑ 1 = idle
∧ A.c ↑ 2 ↑ 1 = ready ∧ A.c ↑ 2 ↑ 2 �= ⊥

A.c, B.c := (A.c ↑ 1, (idle,⊥)), (B.c ↑ 1, (idle,⊥)) reacts-to connected(A,B)
∧ B.c ↑ 1 = A.c ↑ 1 ∧ B.c ↑ 2 = (ready,⊥)

We address disconnection of a communicating pair of processes by resetting the
potential reader’s channel:

B.c := (B.c ↑ 1, (idle,⊥)) reacts-to ¬connected(A,B)
∧ B.c ↑ 1 = A.c ↑ 1 ∧ B.c ↑ 2 ↑ 2 �= ⊥

The resulting schema allows us to capture an interesting combination of dynam-
icity and mobility.

5 Agent Mobility in Wired Networks

Agent systems represent a popular new style of computing specifically designed
to take advantage of the global space offered by the Internet. In these systems, an
agent is a code fragment that can move from site to site in pursuit of some task
defined at its point of origin. The underlying space is a graph whose vertices
denote servers willing and able to accept agents. Since Internet connectivity
may be perceived to be reliable and universal, the edges in the graph represent
accessibility to other sites. Each agent carries with it not only the code to be
executed, but also data and control state that affect its actions at each site.
The movement from one site to the next may be autonomous (subjective) or
initiated by the server (objective). Agents belonging to the same community of
applications may interact with each other. In D’Agents [7], for instance, message
passing, streams, and events are used to enable agents to communicate among
themselves. Agent systems that stress coordination rather than communication
tend to rely on tuple spaces, in the spirit of the original coordination modality
proposed in Linda [6]. TuCSoN [18], MARS [2], and Limbo [4] are just a small
sample of agent systems that employ tuple based coordination.

In examining such systems, the following features capture their essence:

– agent mobility among servers
– mechanisms for controlling the admission of migrating agents
– coordination by means of tuple spaces located on the server
– traditional tuple space operations, e.g., out(tuple), in(pattern), rd(pattern)
– augmentation of tuple space operations with reactions that extend the effects

of the basic operations to include arbitrary atomic state transitions.

The basic priniciples of these models are illustrated in Figure 5, and provide the
basis for the schema proposed below.

A coordination schema that enforces the design style discussed above will
need to distinguish between agents and servers. Syntactically this can be done

16

Server 2

Server Tuplespace

Agent
1

Agent
3

Server 1

Server Tuplespace

Agent
1

Agent
2

Admission
Control

Admission
Control

Fig. 5. The basic tuple space coordination model for wired networks. Agents 1 and
2 initially reside on Server 1 and can issue traditional tuple space operations on the
server’s tuple space. Server 1 is connected to Server 2, on which Agent 3 resides. At
some point in time, Agent 1 meets the admission conditions for migration and becomes
resident on Server 2.

by substituting Server or Agent for the keyword Program, as needed. For
instance, one can do this by means of a macro definition of the form:

Agent X ≡
Program Agent X

With this distinction, we can examine the different requirements for agent and
server programs. The agent location is the location of one of the servers and the
change in location can be accomplished by modifying λ to hold the value of some
other server location, including the agent’s home location. For reasons having to
do with admission control, it is best to think of λ as holding a pair of values:

λ ≡
(current location, desired server relocation)

and to provide the agent with a single move operation:

goto(S) ≡
λ := (λ ↑ 1, S)

As before, we use var ↑ n to denote the nth field of the value stored in variable
var. This subjective move operation simply changes the value of the agent’s
location variable λ to reflect the fact that new server location S is desired. The
agent is restricted to using only this operation to foster a change in its location.

While the agent is present at a particular server, all interactions with the
server and other agents take place by sharing a single tuple space owned by the
server. A variable T could be used to represent such a tuple space, where T
is a set of tuples. Access to T is restricted to tuple space operations. The out
operation simply adds a tuple to the set if the guard g is true:

17

out(t) if g ≡
T := T ∪ {t} if g.

The in operation is blocking and removes a tuple matching some pattern p:

z = in(p) if g ≡
〈 θ : θ = θ′.(θ′ ∈ T ∧ match(θ′, p)) ∧ g :: z := θ ‖ T := T − {θ}〉

where we use the nondeterministic value selection expression x′.Q to identify one
suitable tuple. If none exists, the operation is reduced to a skip. Busy waiting
is the proper modeling solution for blocking operations in the Mobile UNITY
context. The rd operation is similar to an in, the only difference being that the
returned tuple is not removed from the tuple space.

The server also has a variable T , intended to hold the contents of the tuple
space used by co-located agents, and a location λ. Unlike agents, a server’s lo-
cation cannot change (we address systems that encompass both host and agent
mobility in the next section). For the sake of uniformity, the server’s location
variable must hold a pair like the agent’s location variable λ, but the two fields
hold identical values. Since the server is stationary, it cannot change its λ vari-
able, and the goto operation is not available. However, the server needs to be
aware of the presence of agents at its location, either in order to refuse admission
by sending an agent back before it can have any local effects or by forcing an
agent to move elsewhere when conditions demand it. The presence of an agent
could be made known to the server by introducing a new variable Q in both
agents and servers. On the agent, the variable Q contains a tuple i that identi-
fies that agent but no operations are available to access it. The server need not
store its own identity in Q. The server can discover the presence of agents by
reading the shared tuple space Q without being able to modify it. Restricting
access in such a way can be accomplished by hiding Q inside an operation such
as:

AG:=LocalAgents() ≡
AG := Q

Finally, the server may request an agent to move to some other location by
employing an operation such as:

Move A to S ≡
M := (A,S)

which places in the hidden variable M a request to move agent A to server S.
The schema elements presented so far restrict the representation of loca-

tion in agents and servers to a particular form, prevent altering of the location
variable except through the provided subjective and objective move constructs,
restrict an agent’s method of accessing the tuple space to the defined tuple space
operations, and restrict servers to the given construct for agent discovery to pre-

18

vent tampering of agent identifiers. These syntactic restrictions on agent and
server code are complemented by coordination patterns built into the Interac-
tions section. In this particular schema, the coordination patterns define the
rules by which agents and servers share tuple spaces and how agents’ subjective
and objective move requests are completed.

First, we must specify the sharing rules governing the variables T and Q.
Using the transient and transitive variable sharing of Mobile UNITY, the sharing
rules become:

S.T ≈ A.T when S.λ ↑ 1 = A.λ ↑ 1
engage S.T
disengage S.T., ∅

S.Q ≈ A.Q when S.λ ↑ 1 = A.λ ↑ 1
engage S.Q ∪ A.Q
disengage S.Q − {A.ι}, {A.ι}

where we assume that the initial value of A.Q is permanently saved in A.ι,
another hidden variable. The first sharing rule simply states that when an agent
becomes located at a server, the contents of the server’s tuple space are shared
with the agent. When the agent moves away from the server, the tuple space is no
longer shared; the server retains the contents of the formerly shared tuple space,
but the agent’s tuple space becomes empty. The second sharing rule similarly
defines sharing of the tuple space that holds agent identifiers, in order to support
the discovery of agents at a server and admission control functions.

Second, we must specify the rules for handling agent migration requests. Mo-
bility requests are handled by introducing reactive statements designed to extend
the request (a local operation) with its actual processing (a global coordination
action). For instance, the objective move operation requested (stored in M) by
the server S′ is transformed into an equivalent hidden subjective request:

A.λ := (A.λ ↑ 1, S.λ ↑ 1)‖S′.M := nil
reacts-to A.λ ↑ 1 = S′.λ ↑ 1 ∧ S′.M = (A, S).

Notice that neither the subjective move specified above nor the subjective move
specified by the goto operation actually moves the agent to a new location;
rather, they change the agent’s location to reflect that a new location is desired.
To complete the subjective move, i.e., to change the agent’s current location to
be the desired location, we must consider two cases. First, when the agent A is
accepted by the destination S and the move is carried out:

A.λ := (S.λ ↑ 1, S.λ ↑ 1) reacts-to A.λ ↑ 2 = S.λ ↑ 1 ∧ admitted(A.Q,S),

and second, when the move is rejected and the agent move request is cleared:

A.λ := (A.λ ↑ 1, A.λ ↑ 1) reacts-to A.λ ↑ 2 = S.λ ↑ 1 ∧ ¬admitted(A.Q,S),

19

where admitted(A.Q, S) is a user-defined function that captures the admission
control policy for accepting or rejecting migration requests.

As an example, consider an inspector agent that moves among unloader ser-
vice sites and computes the total number of packages that pass through the
system. Each unloader is assumed to hold a local counter of packages. The in-
spector adds the local counter to its own and resets the local one. Once all sites
are visited, the inspector agent returns home. Each site will reject any inspec-
tor agent that is not authorized to collect the data. By employing the schema
presented in this section, the agent code for this example becomes:

program Inspector(k) at λ

always
home again = (λ = (home(k), home(k)))

declare
. . .

initially
ι = (inspector.k, password(k))

[] Q = {ι} [] T = {} [] N = 0 [] λ = (home(k), home(k))

assign
〈goto(next server(λ)); t := in(〈counter, int : m〉);

N := N + t ↑ 2; out(〈counter, 0〉)〉
[] N := 0 reacts-to home again

end

The assign section of the Inspector program has two statements. The first is
a transaction that moves the Inspector to the next service site, removes the
package counter at the site via an in operation, adds the counter to its own,
and resets and replaces the counter via an out operation. The second reactively
resets the Inspector’s counter when it reaches its home site.

One element still missing from the schema definition is the augmentation of
tuple space operations with arbitrary extra behaviors. This can be accomplished
by separating the initiation of an operation from its execution. An in operation,
for instance, can be redefined as a request RQ which, in turn, can enable a
programmer specified reaction on the server:

t:=in(p) if g ≡
〈RQ := (id, in, p) if g; t, T, tt := tt, T − {tt}, nil if tt �= nil〉

〈‖θ : θ = θ′.(θ′ ∈ T ∧ match(θ′, p)) :: tt := θ〉 reacts-to RQ ↑ 3 = p

action extends(ρ,ω, π) ≡
action reacts-to RQ �= nil ∧ tt �= nil ∧ ρ(RQ ↑ 1) ∧ ω(RQ ↑ 2) ∧ π(RQ ↑ 3)

[] RQ := nil reacts-to RQ �= nil ∧ tt = nil

where ρ, ω, and π are user-defined functions that specify the criteria under which
the in operation is extended, and id is simply an auxiliary variable used to

20

represent the issuing agent’s unique identifier. Notice that the above definition
uses the fact that reactive statements are interleaved after the execution of an
assignment statement (even in transactions) to find a tuple tt matching the
requested pattern p, to accomplish the execution of the extended behavior action,
and to clear the request RQ. This illustration assumes one extension only, but
it could be rewritten to accommodate multiple extensions to be applied in a
nondeterministic order.

Since systems consist of components controlling local actions and interac-
tions that extend their effects to other components, it is not suprising that the
schema definition also seems to be structured along these lines: mostly syntac-
tic restrictions of the component code (further refined by component type) and
coordination patterns of a behavioral nature, restricted in scope solely to vari-
ables involved in the process of information sharing. It is this structuring of the
schema definition that qualifies it as a coordination schema.

6 Agent Mobility in Ad Hoc Networks

In this section we explore the implication of extending the mobile agent paradigm
to ad hoc networks. Ad hoc networks are formed when hosts come into wireless
contact with each other and communicate as peers in the absence of base sta-
tions and any wired infrastructure. In such settings, one can envision systems
consisting of hosts that move through physical space and agents that reside
on such hosts. Agents can coordinate application activities with other agents
within reach and also have the ability to move from one host to another when
connectivity is available. One of the very few systems to offer these capabilities
is Lime [16], which will be used as a model for the schema we explore in this
section. The essence of the Lime model is illustrated in Figure 6, and the key
features of Lime can be described as follows:

– each agent may create an arbitrary number of local tuple spaces, each bearing
a locally distinct name

– agents coordinate by sharing identically-named tuple spaces belonging to
agents on connected hosts, i.e., each agent has access to all the tuples in
such combined tuple spaces (called federated tuple spaces).

The above features are captured in the schema proposed below.
In Mobile UNITY, it is convenient to represent each tuple space as a pair of

variables, with the first element holding a name and the other storing the set
of locally-owned tuples that are part of that tuple space—tuples the agent is
willing to share with other agents. Consequently, the tuple space sharing rule
can be easily expressed as follows:

21

Server 2Server 1

Agent
1

Agent
2

Agent
3

Agent
4

Fig. 6. The essence of Lime coordination model. Hosts, represented as shadowed
boxes, serve as containers for agents. Each agent, represented by an oval, is permanently
associated with a tuple space, represented as a dark gray box. Agents share tuple spaces
when on the same host, creating a logical host-level tuple space (represented by the
medium gray box). Agents residing on connected hosts also share tuple spaces, creating
a logically federated tuple space represented by the lightest gray box.

A.X[2] ≈ B.Y [2] when connected(A, B) ∧ A.X[1] = B.Y [1]
engage A.X[2] ∪ B.Y [2]
disengage
〈set t, C, Z : connected(A,C) ∧ A.X[1] = C.Z[1]

∧ t ∈ A.X[2] ∧ t owned by C :: t〉,
〈set t, C, Z : connected(B, C) ∧ B.Y [1] = C.Z[1]

∧ t ∈ B.Y [2] ∧ t owned by C :: t〉

where A and B are agents, connected is defined in terms of reachability in the
ad hoc network and the array elements X [1] and X [2] refer to names and sets of
tuples, respectively. Upon connection, the engagement value is the union of all
the connected identically-named tuple spaces, and, upon disconnection, the set
of tuples is repartitioned according to the new connectivity pattern. However, in
order to accomplish this, the concept of tuple ownership needs a representation;
we assume that each tuple includes a current location field (an agent id, ι) which
allows us to define:

t owned by C ≡
t.loc = C.ι

In the above, we take the liberty to assume that fields in a tuple could be
referenced by name. It is interesting to note the kind of hierarchical spatial or-
ganization emerging from this schema: hosts have locations in the physical space
and their wireless communication capabilities can be abstracted by a reachabil-
ity predicate, not shown but implied in the definition of connected; agents reside
on hosts or servers in a manner similar to that shown in the previous section (for
this reason, we do not repeat the details of agent movement even though now it
is conditional on the availability of connectivity); tuples reside on agents, a new

22

logical space defined by the name of the tuple space combined with that of the
agent.

Since tuples have a logical location, it becomes reasonable to consider the
possibility of restricting operations on tuples to particular subspaces and to en-
tertain the notion of tuple movement. Lime offers both capabilities. For instance,
in and out operations can be restricted to a specific agent location. More inter-
estingly, out operations can be targeted to a particular location, i.e., the named
tuple space of a particular agent. Since the agent may not be connected at the
time, the tuple is augmented with a second location field that stores the desired
destination. This is reminiscent of the agent mobility treatment from the previ-
ous section but with one important difference—the tuple will continue to reside
locally until such time that migration becomes possible. Migration, immediate
or upon the establishment of a new connection, is captured by an interaction of
the form:

A.X [2] :=
〈set t, B, Y : t ∈ A.X [2] ∧ t.dest = B ∧ connected(A, B)

∧ A.X [1] = B.Y [1] :: t[loc : B; dest : B]〉
∪
〈set t, B, Y : t ∈ A.X [2] ∧ t.dest = B ∧ ¬(connected(A, B)

∧ A.X [1] = B.Y [1]) :: t〉
reacts-to true

where we use the notation t[field name : newvalue] to denote a modification of
a particularly named field in tuple t.

Since the purpose of this paper is to explore coordination schemas, we refrain
from including here all the features of Lime. The interested reader can find a
complete formalization of Lime in terms of Mobile UNITY in [17]. The features
that were discussed in this section demonstrate the applicability of the model to
an area of computing of growing importance, one that presents new challenges
to the software engineering community.

7 Mobility in Malleable Program Structures

In some systems, the definition of space is the program itself. In Mobile Ambi-
ents [3], for instance, the program consists of environments called ambients that
can be embedded within each other. Mobility takes place by altering the relation
among ambients, which, for mobility purposes, are treated as single units. An
ambient can exit its parent and become a peer with the parent; an ambient can
enter a peer ambient; and an ambient can dissolve the domain boundary of a
peer ambient. All these can be done only if the name of the relevant ambient
is known. This is a way to model security capabilities. Other systems, such as
MobiS [10], are more restrictive in terms of the range of operations provided
for mobility while others, such as CodeWeave [12], may approach mobility at
a much finer level of granularity—in CodeWeave, single statements and single

23

variables can be moved anywhere in the program structure where the latter is
distributed across hosts and is hierarchical along the lines of block-structured
programming languages.

The schema we describe in this section is directly inspired by Mobile Ambi-
ents. Key points of distinction will be related to fundamental differences between
a process algebra and a programming notation that does not support dynamic
process creation or scope restriction. To avoid possible confusion, we will use the
term spatial domain, or simply domain, to refer to the analog of an ambient.
The defining features of the resulting schema are:

– hierarchical structuring of the space in terms of embedded domains that
directly reflect the overall structure of the system

– protection enforcement via capabilities that rely on unique secret names
– mobility in the form of localized restructuring of the system structure.

In Mobile UNITY, a system is simply a collection of programs. One way to
organize it hierarchically and still allow for dynamic reconfiguration is to impose
a partial order over the set of programs in a manner that corresponds to a tree
having an imaginary root. A domain is defined in terms of all programs that
share a common parent, and the name of the parent can be used to uniquely
designate that domain. This can be encoded by simply setting λ to refer to
the (program, parent) pair of names. An assignment of location values in the
Components section defines the initial program structure. At the start, each
program is given a unique name which, as explained later, can change over
time. The program instance parameter can be used for this purpose. Below is
an example of a well-formed Components section:

A(1) at (1, 0)
[] B(1) at (1.1, 1)
[] C(1) at (1.2, 1)

where A, B, and C receive hidden distinct names 1, 1.1, and 1.2, respectively.
The above establishes four domains: domain 0, which contains A(1); domain
1, which contains the peer components B(1) and C(1); domain 1.1, which is
empty; and domain 1.2, which is also empty. References to domain names will
be needed in the programs. For this reason we assume that a distinguished
variable ι provides each program with its own name, assumed to be unique. We
assume, however, that λ (the pair consisting of ι and its parent, i.e., the domain
name) is not directly accessible to the individual programs, i.e., the schema rules
out statements that refer to λ in any way.

To enforce some sort of scoping constraints, we simply require that program
to program communication be restricted only to communication among peers.
The type of communication is not important for the remainder of this presenta-
tion, but the reader should assume that it is available in the form of tuple space
coordination or synchronous message exchange. One thing that is important is
the fact that program/domain names can be passed among programs.

24

In the spirit of Mobile Ambients, we treat naming as the critical element
of any security enforcement policy. Without exception, all operations entailing
mobility involve a domain name reference, and such names must be acquired
via some communication channel and cannot be guessed. For instance, the exit
and enter operations allow a component to move up in the structure at the level
of the current parent program and to move down in the structure inside the
domain associated with one of its peers, respectively. In both cases, the correct
name of the parent or the sibling must be known in order for the operation
to succeed. This will become apparent only when we discuss the coordination
semantics expressed in the Interactions section since both operations reduce
simply to appropriate requests for action:

x :=exit n if g ≡
〈OP := (exit, n) if g; x := true if OP ↑ 1 = pass; OP := nil〉

y := enter n if g ≡
〈OP := (enter, n) if g; y := true if OP ↑ 1 = pass; OP := nil〉

where n is the domain name to be operated upon. The variables x and y are
used to communicate back to the program that the operation succeeded. We
use a transaction to set the variables x and y to the correct values after the
coordination is completed.

In Mobile Ambients, open n dissolves the boundaries of a peer level ambient
n. In our case, this is equivalent to bringing the subordinate programs to the
same level as the parent. The domain does not disappear, but it does become
empty. Locally, the operation is encoded again simply as a request which may
or may not be satisfied:

x := open n if g ≡
〈OP := (open, n) if g; x := true if OP ↑ 1 = pass;OP := nil〉

The most subtle aspect of our creation of a structured navigation schema
along the lines defined by Mobile Ambients is the management of domain names.
In process algebras, the name restriction operator provides a powerful mecha-
nism for generating new, unique names and for using them to enforce private
communication among components. The operational approach associated with
a programming notation such as Mobile UNITY forces us to consider an op-
erational alternative that can offer comparable capabilities. Our solution is to
permit domain (i.e., program) renaming. A renamed program cannot be refer-
enced by anyone else unless the new unique name is communicated first—this is
the analog of scope extension in process algebras.

The renaming operation assumes the form:

d := rename n if g ≡
〈OP := (rename, n, new()) if g; d := nil;

d := OP ↑ 3 if OP ↑ 1 = pass; OP := nil〉

25

When renaming is successful, the new domain name is returned in d in order to
facilitate it being communicated to other components. In principle, a component
may be able to rename itself, its domain (i.e., its parent), and its peers—as long
as it has their correct names. This can be restricted further if necessary.

The Interactions section needs to encode the coordination rules associated
with the operations above. The general pattern for encoding any of these opera-
tions is to first verify that the referenced name is correct; second, to record this
fact in the variable OP ; and finally, to complete all necessary changes to the
domain structure. We illustrate the use of this pattern by considering the case
when a request is made to rename the current domain, i.e., the parent name:

P.OP := (pass, n, m) reacts-to P.OP = (rename,n, m) ∧ P.λ ↑ 2 = n
Q.λ := (m, Q.λ ↑ 2) reacts-to P.OP = (pass, n, m) ∧ Q.λ ↑ 1 = n
R.λ := (R.λ ↑ 1, m) reacts-to P.OP = (pass, n, m) ∧ R.λ ↑ 2 = n

The first reactive statement records the success of the renaming for the case
when n is indeed the domain name containing P , the initiator of the operation.
The second reactive statement changes the domain name while the third changes
the domain reference in all the components associated with the renamed domain.
Similar code can be used to process exit, enter, and all other open requests.

As an illustration let us consider two programs P and Q which desire to share
private information in a protected domain, and let us assume the existence of a
third program S. Initially P , Q, and S are assumed to be part of some domain
U , as shown in Figure 7a.

U

(a) (b)

U U

(c)

S S
P Q S P Q P Q

Fig. 7. Domain configurations

We use superscripts to denote the domain names. Assuming that P and Q know
the name γ of S, they both can issue the operation enter γ changing the con-
figuration to that shown in Figure 7b.

At this point, P can rename S with a new unique name δ and communicate
the name δ to Q. The resulting configuration is shown in Figure 7c. Now, both
P and Q can exit and enter S at will with no risk that any other program might
be able to enter their private domain.

26

One problem this example ignores is the situation that some other program
R may have entered S prior to P and Q. While R is trapped forever (R cannot
perform any operations on S because the name of S is changed), R could interfere
with the data exchanges between P and Q. There are several ways to avoid this
situation. One interesting solution is to allow P to know the cardinality of its
domain, i.e., the number of components in S.

8 Formal Verification

In this section we take up the issue of formal verification. Systems specified using
Mobile UNITY may be formally checked by employing the Mobile UNITY proof
logic. Since all coordination constructs we considered so far are ultimately ex-
pressed in terms of basic Mobile UNITY statements, one can simply expand the
macros defining the semantic interpretation of each construct and, by also taking
into consideration the contents of the Interactions section, one can carryout
the desired proof from first principles. We show how this can be accomplished in
the next subsection, but we do this strictly in order to illustrate the essence of
the verification process. We also take advantage of this opportunity to emphasize
the critical role the Hoare triple plays in enabling us to reason about individual
statements, whether or not they are augmented with reactions.

Translating everything to Mobile UNITY for verification purposes is clearly
not a very convenient way to carry out the proofs. For this reason we propose
an approach that is more abstract and less cumbersome. The general idea is
to provide an abstract semantic definition for each coordination construct. We
do so by employing the concept of a global virtual data structure (GVDS) [19],
an abstract representation of the global state of the coordination process. Local
coordination-related actions are given semantic meaning in terms of their logical
effect on the GVDS. By employing the notion of GVDS, coordination actions
are reduced (logically speaking) to value assignments to the GVDS, which acts
as a single global variable. The basic idea is illustrated later in this section for
three different coordination models, and can be summarized as entailing the
following key steps. Given a specific coordination model whose primitives have
been expressed in Mobile UNITY as macros and interactions, a specific GVDS is
formulated and all primitive operations are recast as atomic transitions over the
GVDS. This abstract version of the operations is shown to be indistinguishable
from the concrete realization of the same set of operations, under an appropriate
state-to-state mapping. At this point, any proof about the overall system can
use the abstract version of the statements without any need to refer to the
actions included in the Interactions section of the system description, i.e., by
consulting only the program text and previously established properties of the
coordination constructs.

The notion of GVDS emerged from our own earlier work with Lime and was
envisioned as a way to allow software engineers to design systems in terms of
local actions and to reason about their effects on a global scale. Up to now, this
idea has been leveraged strictly as a design concept. This is the first instance that

27

demonstrates its potential for simplifying program verification, whether carried
formally or informally. Before demonstrating this new application of the GVDS
concept on several coordination models, we review some of the basic notions of
formal verification in Mobile UNITY. Synchronous message passing is used as
an example.

8.1 Verification from First Principles

In this section, we use the Mobile UNITY implementation of the c!x and c?y
synchronous communication constructs as a vehicle for explaining how to em-
ploy standard Mobile UNITY proof techniques. For the reader’s reference, the
Mobile UNITY encoding of the CSP-like coordination constructs discussed in
this section can be found in Section 3. Before we begin a discussion of how to
apply verification techniques to this encoding, we take this opportunity to re-
mind the reader that in this example we continue to assume that the channel
is defined strictly between only one writer process (process A) and one reader
process (process B).

The desired system behavior between a writing process and a reading pro-
cess using the Mobile UNITY implementation of the c!x and c?y synchronous
communication constructs is summarized by the state transition diagram shown
in Figure 8. Reads and writes are issued by the communicating processes on the
channel. The execution of each read or write operation results in a state change
on the local channel variable. Disconnections and reconnections caused by the
relative movement of components also impacts the state of local channel vari-
ables. These local state changes and their associated reactions cause the state
transitions seen in the diagram. The global configuration is constrained such that
only these transitions occur in the execution of the communication protocol.

The correctness conditions captured in Figure 8 can be formally expressed by
capturing each depicted transition in terms of properties of the form p unless
q. For instance, when the system is in a state in which the channel variables of
two connected processes both have a value of (ready, v), only two transitions
are possible. One takes the system to a state in which both channel variables
have a value of (idle,⊥), while in the other, the channel variables have values
of (ready, v) and (idle,⊥). To prove an unless property such as this, we must
consider its validity over every statement in the system. Most statements have
no impact, and can be ignored. Only those statements that impact the state
of the channel variable or the distinguished location variable λ should be con-
sidered. Two statements in our schema that could violate the unless property
under consideration are those that implement the c!x and c?y constructs, i.e.,
statements s1 and s2 in Section 3, respectively. We must also consider the move-
ment of processes. When we consider each of these statements and the impact
of mobility when the system is in the state ((ready, v), (ready, v)), we can show
that all transitions agree with those depicted in Figure 8.

statement s1: If the statement s1 ≡ c!x is selected for execution in the sender
process A, the statement reduces to a skip and no state change occurs. This is

28

ca = (idle,)

cb = (idle,)

ca = (ready, v)
cb = (ready, v)

connected(A,B)

ca = (ready, v)

cb = (idle,)
disconnected(A,B)

connected,
write

connected,
read

connected

disconnected

disconnected,
write

Fig. 8. An overview of the desired system behavior. In the figure, the local channel
states of two processes A and B are represented by variables ca and cb, respectively.

because the guard of s1 is not satisifed; the channel variable has a state that is
not of (idle,⊥).

statement s2: If the statement s2 ≡ c?y is selected for execution in the receiving
process B, the guard for statement s2 is satisfied. The execution of the statement
results in a state in which the local channel value of the process issuing the
read becomes (ready,⊥). This triggers a reaction (statement s4) which resets
the channel variables to (idle,⊥) for both A and B, and the reactive program
reaches fixed point in a single step. The combination of the execution of s2

and the reactive statement s4 force an atomic state change in the system. This
transition, then, is a valid transition identified by the unless property that we
are considering.

mobility: At any point in the execution of the protocol, the partipating parties
may move. If either of the communication partners move, then the result of
connected relation between the communication partners is updated to reflect the
change in location. If the connected relation changes to reflect that the sender
becomes disconnected from the receiver while the system is in a state in which
both processes’ local channel variables have values of (ready, v), then the reaction
s5 fires. The reactive program resets the reader’s channel variable to the value
(idle,⊥) and reaches fixed point. Again, this is a single atomic state change that

29

is identified as a valid transition in the unless property that we are interested
in.

From the above, we can conclude that neither the execution of statements s1

and s2 nor the mobility of processes causes a violation of the unless property
that we are interested in.

To illustrate the process in a more precise and formal manner, let us consider
statement s2 that implements the c?y construct with respect to one of the state
transitions described above. Let us consider the starting state in which two
processes are connected and have values available on their local channels. The
safety property under discussion is captured by:

P unless (Q ∨ W)
where

P ≡ connected(A, B) ∧ ca = (ready, v) ∧ cb = (ready, v)
Q ≡ connected(A, B) ∧ ca = (idle,⊥) ∧ cb = (idle,⊥)
W ≡ ¬connected(A, B) ∧ ca = (ready, v) ∧ cb = (idle,⊥)

With respect to s2, the proof obligation assumes the form:

{P ∧ ¬(Q ∨ W)} s2 {P ∨ (Q ∨ W)}

This reduces to showing that

{P ∧ ¬(Q ∨ W} s2 {H}
H �→ fixpoint(�)
{fixpoint(�)} ⇒ P ∨ (Q ∨ W)

where H is an intermediate state that holds after the execution of the normal
statement s2 but before the reactive program W begins execution. Given a state
in which P holds, the execution of statement s2 takes the system to a state H
in which ca = (ready, v) and cb = (ready,⊥) when the guard of s2 is met. A
single reactive statement, s4, is enabled in the reactive program �. This reactive
statement assigns ca and cb the value of (idle,⊥). The reaction is disabled and
no other reactions are enabled. Thus, fixed point is reached, and Q holds.

If we were to consider a movement that causes disconnection, a single reactive
statement, s5, is enabled in the reactive program �. This reactive statement
assigns to the potential reader, cb, the value of (idle,⊥). The reaction s5 disables
itself, and the new state does not enable any other reactions. Thus, fixed point
is reached, and W holds.

In a similar manner, we can consider each transition with respect to every
statement in the program and the mobility of processes. We could then conclude
that the unless properties under consideration hold throughout the execution
of the communication protocol.

30

8.2 Abstract Treatment of Coordination Constructs

The coordination schemas presented in this paper can be used to simplify pro-
gramming in Mobile UNITY by allowing programmers to rely on familiar coor-
dination constructs. Given a schema that captures the essence of a coordination
model, one can simply use a high-level coordination construct in a Mobile UNITY
program without having to consider how the schema is implemented. As seen
in the previous section, verifying that the program is correct, however, requires
one to delve into the details of the schema implementation. Requiring a style
of verification that utilizes low level mechanics of a construct’s implementation
seems to defy our philosophy of providing minimal and elegant coordination
mechanisms in Mobile UNITY. As noted at the start of Section 8.2, we propose
to exploit the notion of global virtual data structures (GVDS) [19]. A GVDS
is a reflection of the global system state captured in a standard data structure
that is accessed locally through the use of a familiar API. The term virtual
is used to describe the representation because the entirety of the structure is
not simultaneously available; local access via the data structure’s API is con-
strained according to properties of the environment. The key contribution of
this approach is that in creating the appropriate abstraction, an operation that
requires interaction among multiple components is reduced to an atomic change
of the global representation of system state, the GVDS.

In this section, we illustrate this style of verification for three of the coor-
dination models considered in this paper. We begin by showing how reasoning
about the synchronous communication implementation can be simplified by us-
ing an abstract shared channel. We move on to show how a similar approach can
be employed in LIME by relying on an abstract shared tuple space. Finally, we
show how spatial relations can ease verification in settings such as the Mobile
Ambients model.

An Abstract Shared Channel in CSP. We have illustrated the mechan-
ics of how to prove the correctness of the Mobile UNITY implementations of
the c!x and c?y constructs. In the style of verification outlined in the previous
subsection, it was necessary to utilize details of the implementation in order
to prove system properties. In this section, we show how we can reduce the
expression of synchronous communication between two programs with distinct
variables representing a channel to a single abstract shared variable represent-
ing a channel. By doing so, we provide a programmer with the ability to prove
properties about a program utilizing the Mobile UNITY c!x and c?y constructs
by reasoning about a high-level abstraction, a shared channel, without needing
to know the lower-level mechanics present in the Interactions section of the
actual implementation.

We can represent synchronous communication through the use of an abstract
shared variable C representing a shared channel. The channel C can be in one of
three states: ⊥, v, or v̂. The state ⊥ indicates that the channel is idle, v indicates
that a value is available on the channel, and v̂ indicates that a process wanting
to send the value v is waiting for connectivity to the reading process. Table 1

31

shows how the states of the local program variables ca and cb map to the abstract
variable C’s state. Notice that the local channel states are not mapped to the
abstract shared channel state for the last three rows. This is because the system
state is a shadow state, i.e., the state exists locally but is invisible globally since
a reaction is immediately enabled which changes the channel state in a single
atomic step.

Process A’s state Process B’s state Connectivity Abstract Shared Channel State

(idle,⊥) (idle,⊥) connected(A, B) ⊥
(idle,⊥) (idle,⊥) ¬connected(A, B) ⊥
(ready, v) (ready, v) connected(A, B) v

(ready, v) (idle,⊥) ¬connected(A, B) v̂

(ready, v) (idle,⊥) conected(A, B) invisible

(ready, v) (ready,⊥) connected(A, B) invisible

(ready, v) (ready,⊥) ¬connected(A, B) invisible

Table 1. Local channel states and corresponding global states

Given the correspondence between the states of the local channel variables
and the abstract shared variable C, we can give the following definitions of the
shared channel:

C = ⊥ iff ca = cb = (idle,⊥)
C = v iff ca = cb = (ready, v)
C = v̂ iff ca = (ready, v) ∧ cb = (idle,⊥)

We can now define the c!x and c?y constructs in terms of their effects on the
abstract shared channel:

c!x if g ≡
C := x if g ∧ C = ⊥∧ connected(A,B)

‖ C := x̂ if g ∧ C = ⊥ ∧ ¬ connected(A,B)
c?y if g ≡

y,C := C,⊥ if g ∧ C �= ⊥∧ connected(A,B)

Typically, proving safety and liveness properties about a protocol whose im-
plementation spans across programs requires a programmer to rely on the details
of the Interactions section. However, the concept of an abstract shared channel
in this case provides a global perspective on the communication protocol using
local state information, which allows the programmer to transparently reason
about the protocol without knowing the Mobile UNITY implementation details.
The need to consult the Interactions section for verification purposes is elimi-
nated, which can greatly reduce the complexity of the proof process. Given the
concept of the abstract shared channel as described, a programmer can prove

32

properties about the program simply by using the standard assignment axiom
in Hoare proof logic. For example, proving properties about the construct c!x
reduces to:

{P} C := x if g ∧ C = ⊥∧ connected(A,B)
‖ C := x̂ if g ∧ C = ⊥ ∧ ¬ connected(A,B) {Q}

where the proof obligation is satisfied simply by showing

P ⇒ (connected(A,B) ∧g ∧ C = ⊥ ⇒ Q[x/C])
∧ (¬ connected(A,B) ∧ g ∧ C = ⊥ ⇒ Q[x̂/C])

It should be noted that the channel state is affected not only by the communi-
cation constructs but also by mobility and its impact on connectivity. As such,
the abstract semantics of a value assignment to λ must also include changes to
the channel state, e.g., v to v̂.

An Abstract Shared Tuple Space in LIME. The LIME system makes
coordination possible in ad hoc networks by distributing the tuple space over
multiple agents. Agents coordinate via tuple space operations on the logically
merged tuple space formed by the individual tuple spaces of connected agents.
Central to the Mobile UNITY implementation of the LIME approach in Section 6
is a local tuple space variable defined using the transitive and transient sharing
operation, ≈, subject to agent connectivity constraints. Given this encoding, the
Mobile UNITY implementations of the out, in, and rd constructs and their
extensions are elegantly captured as simple assignment statements on the local
tuple space variable. This style of encoding, however, requires one to examine the
tuple space variables of several programs in order to verify the implementation
of the construct. To aid the programmer using the Mobile UNITY schema in
the verification process, we turn our attention to providing a more abstract
representation of the tuple space sharing mechanism.

In this case, the GVDS has a structure that is controlled by the physical con-
nectivity of hosts. We represent the set of all tuples in the universe as a single
virtual global tuple space, T , which is accessible by all agents in the system.
Since tuples are shared only between connected agents, we represent a snap-
shot of agent connectivity at the current moment in time using a connectivity
relation, connected, defined over all agents in the system. Specifically, this con-
nectivity relation is defined in terms of the transitive closure of physical network
communication links that exist at the current instant in time. The combination
of the set T and the connectivity relation form our GVDS. Given this represen-
tation, it is possible to extract a snapshot of a particular agent’s logically shared
tuple space. Moreover, we can interpret the Mobile UNITY implementations of
LIME tuple space coordination constructs as operations that access and modify
the shared tuple space T .

In Section 6, the Mobile UNITY implementations of tuple space operations
were captured as assignments to the local tuple space variable T which was

33

transitively and transiently shared across connected agent programs. Given the
abstract treatment described in the previous paragraph, we can redefine the
traditional content-based based retrieval operations performed on the tuple space
in terms of T :

z = in(p) if g ≡
〈 θ : θ = θ′.(θ′ ∈ T ∧ match(θ′, p) ∧ connected(A, θ′.loc) ∧ g ::

z := θ ‖ T := T − {θ}〉

where A is the requesting agent. Notice that the assignment to the global tuple
space T is dependent on the connectivity relation with respect to the tuple θ’s
location, i.e., the agent owning the tuple. It is possible to model operations this
way because, as discussed in Section 6, tuples have a hidden “owner” field that
holds the tuple owner’s location. The rd construct can be redefined in an similar
fashion to take advantage of the use of an abstract shared tuple space, except
that the returned tuple is not removed from the variable T . Tuple generation is
likewise redefined with respect to T , but does not require constraints using the
connectivity relation. Notice that these statements simply assign a value to the
universal tuple space abstraction T , much like the Mobile UNITY definition that
updates the local tuple space variable T . The difference lies in the representation:
the abstract treatment of the LIME tuple space coordination mechanism allows
us to reason about the effects of assignment on a global virtual data structure
using the standard assignment axiom, rather than examining the impact of the
assignment across the variables of multiple programs.

As a final note on tuple space coordination constructs, defining the location-
aware tuple generation operation out in terms of the tuple space abstraction T
requires additional consideration to capture the correct “delivery” of tuples to
particular agent or host in our abstract treatment of tuple space coordination.
As discussed in Section 6, the location-aware out implementation places a tuple
in the creator’s local tuple space, and the intent to migrate the tuple is indicated
by setting the destination field of the tuple to the desired location. If the creating
agent is connected to the destination, the location fields of the tuple are changed
to reflect migration of the tuple. In cases where the generated tuple is intended
for an agent that is not currently connected to the creator of the tuple, the tuple
is stored locally until a connection to the intended recipient becomes available.
We can simply treat the migration of tuples as an extension to the movement
of agents in order to capture the definition of the globabl virtual data structure.
With respect to our abstract treatment of tuple space coordination, as an agent
moves, the value of the connected relation changes in response. The location fields
of the tuple of interest are changed to reflect the new state of connectivity. Given
this representation, proofs of the encodings of these constructs must consider
location changes as well.

The result of this section is a reduction of operations in the coordination
process to standard assignment statements on the global virtual data structure.
In this case, tuple space operations can be represented as assignments on a data
structure that encapsulates a set T of tuples and an associated connectivity

34

relation. Verification, then, is achieved through straightforward application of
the assignment axiom.

Spatial Reasoning in Mobile Ambients. Actions available to an ambient to
induce mobility among domains, such as exit, enter, and open, are realized in
a distributed fashion through the interaction of multiple cooperating ambients,
and the result is a restructuring of the domain organization. The implementation
of the Mobile Ambient constructs in the Mobile UNITY schema presented in
Section 7 reflects the distributed nature of ambient interactions. Typically, the
effect of a Mobile UNITY operation implemented in a distributed fashion is
studied by analyzing the details of ambient interactions. Here again, the key
to simplifying verfication of such programs is to abstract away the details of
the system. Though it is not immediately apparent that we can apply the same
approach set forth in the previous section for achieving abstract reasoning, our
encoding of Mobile Ambient constructs in Mobile UNITY allows us to employ a
similar modeling and verification technique.

In section 7, we captured the actions used to manipulate an ambient’s lo-
cation in the domain hierarchy as a Mobile UNITY schema. In general, these
actions were expressed using local Mobile UNITY assignment statements and
global reactions. For example, the exit n operation issued by a Mobile UNITY
ambient program was expressed in the program text as a series of sequential
assignment statements:

x :=exit n if g ≡
〈OP := (exit, n, m) if g; x := true if OP ↑ 1 = pass; OP := nil〉

Reactive statements in the Interactions section are interleaved with the execu-
tion of the individual normal statements in the transaction above. The following
reactions act to service the request:

P.OP := (pass, n) reacts-to P.OP = (exit, n) ∧ P.λ ↑ 2 = n
P.λ := (P.λ ↑ 1, Q.λ ↑ 1)

reacts-to P.OP = (pass,n) ∧ R.λ ↑ 1 = n ∧ Q.λ ↑ 1 = R.λ ↑ 2

An exit request is submitted locally by an ambient via the first normal statement
in the transaction. As a result, the first reactive statement is triggered. This
statement executes to indicate that the operation was a success and disables
itself, reaching fixed point. After execution of the second normal statement in
the locally executed transaction above, the second reactive statement is enabled.
This statement changes the parent references of the ambient and disables itself.
No other reactions are enabled, and fixed point is reached. Finally, the third
normal statement in the locally executed transaction is executed. This statement
clears the exit request from the system. The net effect of executing the Mobile
UNITY implementation of the exit operation is a single atomic state change
that manipulates the domain structure formed by the collection of ambients in
the system. This feature of the exit encoding in Mobile UNITY allows us to

35

deal with ambient actions in a more abstract fashion by interpreting them as
atomic operations that operate over a global representation. Therefore, we can
represent the domain organization formed by a collection of ambients in Mobile
UNITY as a global virtual data structure; given that the domains are organized
hierarchically, the natural choice is to represent the collection of ambients as a
tree A.

Given the tree representation of the domain structure, the exit n action can
be viewed as an atomic operation that removes a subtree in A rooted at node
n with parent p and inserts the subtree in A as a child of p’s parent. The result
is a tree in which the ambient n is now a sibling of its former parent. This
atomic operation on the global virtual tree can be reduced to a simple Mobile
UNITY value assignment. Given that we represent the tree A as a set of (node,
set of children) pairs, the exit n action executed by an ambient m reduces to
the following assignment:

〈p, Y, Z: (n, Z) ∈ A ∧ m ∈ Z ∧ (p, Y) ∈ A ∧ n ∈ Y
:: A := A− {(n, Z)} + {(n, Z − {m})} − {(p, Y)} + {(p, Y + {m})}〉

The implementations of the enter and open constructs are achieved in a
fashion similar to that of the exit operation discussed above: a local ambient
assignment statement is used to issue and clear requests, and a group of globally
applicable reactive statements carry out the resulting domain restructuring. For
either action, the end result of execution is a single large-grained state change for
the system. As such, we can also capture their effects as simple assignment state-
ments on the global representation of the domain structure, the tree A. Using
such an abstraction allows the programmer to reason about the global effect of
distributed, interacting ambient programs implemented in Mobile UNITY using
standard proof techniques for value assignment on the tree A.

Case after case, a simplification of the verification process is achieved by
considering abstract representations over a global structure. The question is,
why not rely solely on these abstractions? The answer rests with the distinction
between examining the coordination process versus reasoning about the overall
result. We are interested in presenting a method of formalizing high level coor-
dination constructs that appeals to both formalists and software engineers. As
such, we must precisely define the constructs with respect to the actions each
performs in the coordination process, while providing an acessible method of
verification that focuses on the results of the executed coordination constructs.

9 Conclusions

The theme of this paper is the formalization of coordination models, particularly
in settings that entail mobility. The essential traits of a variety of coordination
styles recognized in the literature have been captured using Mobile UNITY. In
all cases, the formalization has been partitioned between a set of local actions
and a set of global interactions that abstract the coordination and communi-
cation activities associated with each specific model. It is our hope that these

36

exercises will be used by others to specify the coordination semantics associated
with various coordination languages and constructs. Such exercises are partic-
ularly important in situations where mobility is present. Precise specifications
assume critical importance if dependability requirements are to be met. The sim-
plicity of the formalizations discussed in the paper suggests that Mobile UNITY
is an appropriate vehicle for exploring the semantics of coordination. The sim-
ilarity among the resulting formal treatments reflects the decoupled style of
computing being promoted by coordination models in general and facilitates di-
rect comparisons among competing techniques and constructs. Extensions of the
original models (e.g., the inclusion of location sensitive interactions) highlight
the opportunities that exist to formally explore new modes of coordination be-
fore incorporation into a coordination infrastructure or middleware. Finally, a
style of verification based on the global virtual data structures concept is offered
which provides a simplified and pragmatic approach to formal analysis of pro-
grams utilizing Mobile UNITY encodings of coordination constructs by reducing
the task to reasoning about atomic changes to a global representation of system
state.

Acknowledgements
This research was supported in part by the National Science Foundation un-

der Grant No. CCR-9970939 and the Office of Naval Research under ONR MURI
research contract N00014-02-1-0715. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the sponsoring agencies.

References

1. R. J. R. Back and K. Sere. Stepwise refinement of parallel algorithms. Science of
Computer Programming, 13(2–3):133–180, 1990.

2. G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A programmable coordination
architecture for mobile agents. IEEE Internet Computing, 4(4):26–35, 2000.

3. L. Cardelli and A. Gordon. Mobile ambients. Theoretical Computer Science, Special
Issue on Coordination, 240(1):177–213, June 2000.

4. N. Davies, S. Wade, A. Friday, and G. Blair. Limbo: A tuple space based platform
for adaptive mobile applications. In Proceedings of the International Conference
on Open Distributed Processing/Distributed Platforms (ICODP/ICDP ’97), pages
291–302, May 1997.

5. C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In Pro-
ceedings of the 23rd ACM Symposium on Principles of Programming Languages,
pages 372–385, 1996.

6. D. Gelernter. Generative communication in Linda. ACM Computing Surveys,
7(1):80–112, Jan. 1985.

7. R. Gray, D. Kotz, G. Cybenko, and D. Rus. D’agents: Security in a multiple-
language, mobile agent system. In G. Vigna, editor, Mobile Agents and Security,
volume 1419 of Lecture Notes in Computer Science, pages 154–187. 1998.

8. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580,583, 1969.

37

9. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
10. C. Mascolo. MobiS: A specification language for mobile systems. In Proceedings

of 3rd International Conference on Coordination Models and Languages, volume
1594, pages 37–52. Springer-Verlag, 1999.

11. C. Mascolo, G.P. Picco, and G. Roman. CodeWeave: Exploring fine-grained mo-
bility of code. Automated Software Engineering Journal (to appear).

12. C. Mascolo, G.P. Picco, and G.-C. Roman. A fine-grained model for code mobility.
In Proceedings of the Seventh European Software Engineering Conference (ESEC),
volume 1687 of Lecture Notes in Computer Science, pages 39–56. Springer-Verlag,
September 1999.

13. P.J. McCann and G.-C. Roman. Compositional programming abstractions for
mobile computing. IEEE Transactions on Software Engineering, 24(2):97–110,
1998.

14. R. Milner. Communication and Concurrency. Prentice Hall, 1980.
15. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and

II. Information and Computation, 100(1):1–77, 1992.
16. A.L. Murphy, G.P Picco, and G.-C. Roman. LIME: A middleware for physical and

logical mobility. In Proceedings of the 21st International Conference on Distributed
Systems, pages 524–533. IEEE Computer Society Press, April 2001.

17. A.L. Murphy, G.P. Picco, and G.-C. Roman. LIME: A coordination middleware
supporting mobility of hosts and agents. Technical Report WUCSE-03-21, Wash-
ington University, Department of Computer Science and Engineering, St. Louis,
Missouri, 2003.

18. A. Omicini and F. Zambonelli. The TuCSoN coordination model for mobile in-
formation agents. In Proceedings of the First Workshop on Innovative Internet
Information Systems, June 1998.

19. G. P. Picco, A. L. Murphy, and G.-C. Roman. Process Coordination and Ubiquitous
Computing, chapter Global Virtual Data Structures, pages 11–29. CRC Press, 2002.

20. G.-C. Roman and P. J. McCann. A notation and logic for mobile computing.
Formal Methods in System Design, 20:47–68, 2002.

21. P. Sewell, P. Wojciechowski, and B. Pierce. Location-independent communica-
tion for mobile agents: a two-level architecture. In H. Bal, B. Belkhouche, and
L. Cardelli, editors, Internet Programming Languages, volume 1686 of Lecture
Notes in Computer Science. 1999.

38

	A Principled Exploration of Coordination Models
	Recommended Citation
	A Principled Exploration of Coordination Models

	tmp.1470340445.pdf.if3a_

	Abstract: Abstract: Coordination is a style of interaction in which information exchange among independent system components is accomplished by means of high-level constructs designed to enhance the degree of decoupling among participants. A decoupled mode of computation is particularly important in the design of mobile systems which emerge dynamically through the composition of independently developed components meeting under unpredictable circumstances and thrust into achieving purposeful cooperative behaviors. This paper examines a range of coordination models tailored for use in mobile computing and shows that the constructs they provide are reducible to simple schema definitions in Mobile UNITY. Intellectually, this exercise contributes to achieving a better operational-level understanding of the relation among several important classes of models of mobility. Pragmatically, this work demonstrates the immediate applicability of Mobile UNITY to the formal specification of coordination constructs supporting mobile computing. Moreover, the resulting schemas are shown to be helpful in reducing the complexity of the formal verification effort.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: April 22, 2004
	Author: Authors: Roman, Gruia-Catalin; Payton, Jamie
	Title: A Principled Exploration of Coordination Models
	ReportNumber: 2004-19
	DepartmentName: Department of Computer Science & Engineering

