
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-18

2004-04-22

Bringing Context-Awareness to Applications in Ad Hoc Mobile Bringing Context-Awareness to Applications in Ad Hoc Mobile

Networks Networks

Christine Julien, Gruia-Catalin Roman, and Jamie Payton

Context-aware mobile applications require constant adapta-tion to their changing environments.

Technological advancements have increased the pervasiveness of mobile computing devices

such as laptops, handhelds, cellular phones, and embedded sensors. The sheer amount of

context information necessary for adaptation places a heightened burden on application

developers as they must manage and utilize vast amounts of data from diverse sources.

Facilitating programming in this data-rich environment requires a middleware infrastructure for

sensing, collect-ing, and providing context information to applications. In this paper, we

demonstrate the feasibility of providing such a middleware that allows programmers to focus

on high-level interactions among programs... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Julien, Christine; Roman, Gruia-Catalin; and Payton, Jamie, "Bringing Context-Awareness to Applications in
Ad Hoc Mobile Networks" Report Number: WUCSE-2004-18 (2004). All Computer Science and Engineering
Research.
https://openscholarship.wustl.edu/cse_research/990

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/990?utm_source=openscholarship.wustl.edu%2Fcse_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/990

Bringing Context-Awareness to Applications in Ad Hoc Mobile Networks Bringing Context-Awareness to Applications in Ad Hoc Mobile Networks

Christine Julien, Gruia-Catalin Roman, and Jamie Payton

Complete Abstract: Complete Abstract:

Context-aware mobile applications require constant adapta-tion to their changing environments.
Technological advancements have increased the pervasiveness of mobile computing devices such as
laptops, handhelds, cellular phones, and embedded sensors. The sheer amount of context information
necessary for adaptation places a heightened burden on application developers as they must manage
and utilize vast amounts of data from diverse sources. Facilitating programming in this data-rich
environment requires a middleware infrastructure for sensing, collect-ing, and providing context
information to applications. In this paper, we demonstrate the feasibility of providing such a middleware
that allows programmers to focus on high-level interactions among programs and to employ declarative
abstract specifications of context in settings that exhibit high levels of mobility and transient interactions
with opportunis-tically encountered components. We also discuss the novel context-aware abstractions
the middleware provides and the programming knowledge necessary to write applications using our
middleware. Finally, we provide examples demonstrating the flexibility of the infrastructure and its abil-ity
to support differing tasks from a wide variety of application domains.

https://openscholarship.wustl.edu/cse_research/990?utm_source=openscholarship.wustl.edu%2Fcse_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/990?utm_source=openscholarship.wustl.edu%2Fcse_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages

Bringing Context-Awareness to Applications in
Ad Hoc Mobile Networks

Christine Julien, Gruia-Catalin Roman, and Jamie Payton

Department of Computer Science and Engineering
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA

{julien, roman, payton}@wustl.edu

Abstract. Context-aware mobile applications require constant adapta-
tion to their changing environments. Technological advancements have
increased the pervasiveness of mobile computing devices such as laptops,
handhelds, cellular phones, and embedded sensors. The sheer amount of
context information necessary for adaptation places a heightened burden
on application developers as they must manage and utilize vast amounts
of data from diverse sources. Facilitating programming in this data-rich
environment requires a middleware infrastructure for sensing, collect-
ing, and providing context information to applications. In this paper, we
demonstrate the feasibility of providing such a middleware that allows
programmers to focus on high-level interactions among programs and
to employ declarative abstract specifications of context in settings that
exhibit high levels of mobility and transient interactions with opportunis-
tically encountered components. We also discuss the novel context-aware
abstractions the middleware provides and the programming knowledge
necessary to write applications using our middleware. Finally, we provide
examples demonstrating the flexibility of the infrastructure and its abil-
ity to support differing tasks from a wide variety of application domains.

1 Introduction

With the increasing popularity of mobile computing devices, software users find
themselves living and interacting in environments characterized by the ability
to communicate and coordinate with a wide variety of wirelessly networked re-
sources. In the most extreme of cases, this network is completely disconnected
from a wired infrastructure. As one example, imagine a network that forms
among wirelessly enabled vehicles on a highway, in which the cars communicate
directly with one another. This type of network, in which mobile components
communicate directly with each other using wireless radio signals, is commonly
referred to as an ad hoc network.

Ad hoc networks form opportunistically and change rapidly in response to the
movement of the networked devices, or mobile hosts. These networks present an
environment in which the network topology is both dynamic and unpredictable.

The lack of a static infrastructure requires the mobile hosts themselves to serve
as routers for messages in the network. In addition, because communicating
parties may be constantly moving, their interactions are inherently transient
in nature. Two communicating parties may be only briefly connected and may
never encounter each other again. Much work on supporting applications in this
environment builds on the foundation of ad hoc routing protocols that create
and maintain communication pathways between senders and receivers specified
by IP address. As the topology of the ad hoc mobile network changes due to host
mobility, the protocols adjust the paths to maintain end-to-end connectivity.

We attempt to bridge the gap between these current provisions for commu-
nication in ad hoc networks and the needs of applications in this highly dynamic
environment. Specifically, we see two fundamental limitations application devel-
opers for ad hoc networks experience. First, the currently available communica-
tion primitives do not fully address the challenges of ad hoc networks previously
outlined. While ad hoc routing protocols handle topology changes due to host
mobility, applications in ad hoc networks are not likely to know in advance the
IP addresses of the parties with which they want to communicate. These ap-
plications instead require communication constructs that support the transient
connections they encounter in ad hoc networks and facilitate opportunistic inter-
actions. Second, the existing communication primitives do not provide the best
level of abstraction for enabling rapid development and dissemination of appli-
cations in ad hoc networks. The appropriate abstractions of the ad hoc network,
on the other hand, will ease the development task of mobile applications.

In this paper, we apply lessons learned within the paradigm of context-aware
computing to the unique challenges presented by ad hoc networks. With this
approach, applications need not have explicit knowledge of the other mobile hosts
in the network and the application’s level of awareness rises to an environment
with which it interacts. This abstraction of networked components as a context
encompasses information that can be collected from hosts throughout the ad hoc
network and facilitates the provision of natural programming constructs.

Given this expanded context, potential applications in many domains abound.
The difficulty of programming these applications can be generalized to the need
to manage large amounts of distributed and transiently available context data.
This challenge motivated us to develop an infrastructure that facilitates pro-
gram development by hiding the details associated with mobility, distribution,
and transient connectivity. This middleware, EgoSpaces, provides mechanisms
for applications to limit the portion of the context that they interact with, and
each application can tailor its context to its individualized needs. An application
may define different contexts that reflect diverse concurrent and changing needs
and which encompass varying data from multiple sources. Each of these contexts
may access a wide range of data, and EgoSpaces manages this information for the
application. This relieves the programmer from having to open sockets between
the communicating parties and manage the network disconnections common in
mobile environments. The middleware’s communication and management prim-
itives facilitate rapid development of context-aware applications.

In the next section, we outline related work in context-aware computing and
discuss how our application of context to the ad hoc network environment differs
from previous approaches. Section 3 briefly overviews the EgoSpaces coordina-
tion model, highlighting how it manages sophisticated application contexts. Sec-
tion 4 details the mechanics of using the infrastructure to program applications.
Section 5 describes sample applications, shows how they rely on the middleware,
and discusses lessons learned in their development. In Section 6, we present the
middleware’s design and implementation which focuses on modularity to allow
reuse of components as necessary. Section 7 provides conclusions.

2 Context-Aware Computing

Context-aware computing first came to the forefront in the early 1990’s with the
introduction of small mobile devices. Active Badge [1] used infrared communi-
cation between badges worn by users and sensors placed in a building to mon-
itor movement of the users and forward telephone calls to them. PARCTab [2]
also used infrared communication between users’ palm top devices and desktop
computers to allow applications to adapt to the user’s environment. These ap-
plications perform activities ranging from simply presenting information to the
user about his current location to attaching a file directory to a room for use as
a blackboard by users in the room. More recent work [3] in building such ubiqui-
tous computing environments uses CORBA and operates over a wired network
infrastructure that supports both localization and communication. These sys-
tems require extensive infrastructures which need constant maintenance. They
also rely on wired communication and do not address the issues inherent to ad
hoc networks, including the need to scale to large networks.

More recent context-aware applications, e.g., Cyberguide [4] and GUIDE [5],
serve as tour guides by presenting information about the user’s current envi-
ronment. Fieldwork tools [6] automatically attach contextual information, e.g.,
time, to notes taken by researchers in the field. These applications each collect
their own context information and focus on providing a specific type of context.
While these applications have proven useful in their target environments, the ap-
plications commonly demanded by ad hoc networks share some characteristics
that set them apart from previous context-aware applications. Most specifically,
the applications benefit from opportunistic interactions. For example, an appli-
cation for vehicles on a highway interacts with other cars locally (e.g., in the
same area of a city) to collect traffic information. A particular driver has no
advance knowledge about the cars providing the traffic information; instead the
driver knows to collect traffic information from other nearby cars.

Generalized software built to support the development of context-aware com-
puting in mobile environments has begun to be developed. Among the best
known systems are the Context Toolkit [8] and the Context Fabric [9]. The Con-
text Toolkit provides abstractions for representing context information through
the use of context widgets. These widgets collect low-level sensor information and
aggregate it into higher-level information more easily handled by application de-

velopers. These widgets form a library that developers can use when constructing
context-aware applications. The Context Fabric attacks a similar problem but
uses an infrastructure approach. While the Context Toolkit and Context Fabric
offer developers much needed building blocks for constructing context-aware ap-
plications, even those for collecting information from distributed sets of sensors,
these systems do not explicitly address the needs of applications in ad hoc net-
works to dynamically discover and operate over a constantly changing context.

Ubiquitous computing environments build on traditional approaches to context-
aware computing. The GAIA project [10] introduces the notion of Active Spaces
as immersive computing environments for context-aware applications. Users move
from one Active Space to another, seamlessly extracting from one space and inte-
grating into a new one. This work addresses the needs of context-aware applica-
tions in small networked environments where the available resources in the space
can be centrally managed by a kernel. This type of approach does not map well
to large-scale context-aware applications in completely wireless environments.

The CORTEX project [11] proposes an infrastructure for context-awareness
in nomadic mobile environments that combine mobile entities with a wired in-
frastructure. This project focuses on quality of service guarantees that can be
provided within a region of the network and uses gateways to connect these var-
ious regions. Similarly, Solar [12] provides an infrastructure to support context
acquisition and operation for nomadic wireless networks. The goals of these sys-
tem are in line with our goals—to support large-scale mobile computing—but
the target environment differs in that the concerns apparent in ad hoc networks
require specialized solutions that are not applicable in nomadic networks.

From this review, it becomes apparent that context-aware computing pro-
vides abstractions similar to those that would be useful for supporting appli-
cations in mobile ad hoc networks. The distinguishing characteristics of ad hoc
networks and the applications likely to be desired in these dynamic environ-
ments necessitate a redefinition of what it means to be context-aware. The key
components of this new definition of context-awareness are:

1. Context should be generalized so that applications interact with different
types of context (e.g., location, bandwidth, etc.) in a similar manner.

2. Different applications require contexts tailored to their individual and chang-
ing needs.

3. In an ad hoc network, an application’s context includes information collected
from a distributed network of devices surrounding the application’s host.

4. Due to the large-scale nature of the environment, applications require a
decentralized solution for interacting with their contexts.

5. Abstractions of this distributed context ease the programming burden.

In the remainder of this paper, we describe a middleware that provides ex-
actly this perception of context driven by the specific needs of applications in ad
hoc networks. This middleware builds on the asymmetric model of coordination
first introduced in [13]. Throughout the presentation, we relate the middleware’s
abstractions to application scenarios common in these dynamic environments
and show how the middleware facilitates the development of these applications.

3 EgoSpaces Model Overview

In our computing model, hosts can move in physical space, and applications are
structured as a community of logically mobile agents that can move among these
hosts. Agents can communicate among themselves and move among hosts when
the hosts involved can physically communicate. These software agents control
pieces of data they share with other agents to foster coordination; this data can
include application information or data generated by environmental sensors.

The EgoSpaces model uses asymmetric coordination to gather and utilize
context information in an ad hoc mobile environment, i.e., each agent filters the
world around it through its own unique and changing perspectives. The amount
of context information ultimately available to an application may span a large
network; this generates an overwhelming amount of data for the application to
manage. EgoSpaces allows an individual application agent to precisely specify the
context necessary for completing its tasks, and the infrastructure provides this
context for the application. As the environment changes, the set of data satisfying
the application’s specification also changes, and the infrastructure adapts the
context accordingly. Throughout this paper, we use the term reference agent to
refer to the particular agent whose context we are discussing.

3.1 The View Concept

To provide scalable coordination in an ad hoc network, EgoSpaces relies on
an abstraction called a view. This concept is agent-centric because a reference
agent defines views with respect to its individual needs. In practice, the reference
agent’s behavior generally relies on information available in a region surrounding
its location. In EgoSpaces, an agent sees the world through a set of personalized
views that it may alter at will, and each view presents a projection of all data
available to the reference agent. The unique properties of ad hoc mobile networks
force context restriction based on attributes of the network hosts and links.
EgoSpaces combines these network and host constraints with restrictions on the
data and agents that own the data. An agent describes its personal needs through
a declarative view specification. For example:

Traffic information (reference to data) collected by traffic monitoring
agents (reference to agents) on cars (reference to hosts) within 100 meters
in front of my current position (network restriction).

Network Constraints. To restrict the scope of the network, the applica-
tion specifies an abstract metric over network properties. This metric calculates
a logical distance from the reference host to other network hosts. The applica-
tion also provides a bound over allowable distances which restricts which hosts
belong to the neighborhood. In EgoSpaces, we support this abstraction using a
communication protocol like the one detailed in [14].

Host and Agent Constraints. Host and agent constraints allow an appli-
cation to restrict a view’s data based on properties of the hosts and agents that

hold the data. In EgoSpaces, every host and agent creates a profile describing
its properties. Host properties might include a unique host id, the host’s owner,
or services the host provides. Agent properties might include the agent’s host or
the agent’s application task. To restrict which hosts and agents contribute to its
view, a reference agent provides constraints over profile properties. Constraints
are evaluated over profiles in a content based manner, detailed later.

Data Constraints. The data constraints allow a reference agent to restrict
the individual data items in the view. Applications can associate “meta-data”
with each data object that describes the data or its intended use. The data
constraints can then operate over this meta-data to restrict view membership.

Access Controls. In EgoSpaces, each agent specifies an individualized func-
tion that limits the ability of other agents to access its local data. From the
opposite direction, when an agent specifies a view, it attaches to the view a set
of credentials that verify it to other agents. The specifying agent also declares
the operations it intends to perform on the view. When determining whether
a particular data item belongs to a view, EgoSpaces evaluates the contributing
agent’s access control function over the view’s credentials and operations. The
access control function is evaluated for each individual data item, which provides
a fine level of granularity. In addition, the access control function can account
for properties of the environment, making it context-sensitive in its own right.

Given these components, a view specification consists of three patterns (one
over data items, one over agent profiles, and one over host profiles), the network
constraints (consisting of a metric for network path costs and a bound on the
metric), and an operation list and credentials that allow provision of access
controls. With this information, our middleware constructs the application’s
desired view, at a logical level, the set of data items in the network that satisfy
all four levels of constraints.

3.2 Tuple Space Based Coordination

In Linda [15], distributed processes coordinate through a shared tuple space. A
tuple is an ordered list of typed fields. In Linda, coordinating processes interact
directly with a single, centralized tuple space. Adaptations of Linda divide this
tuple space to accommodate mobility. MARS [16] associates a tuple space with
each host in the network and allows coordination among co-located application
agents. Lime [17] associates a tuple space with each agent, and the tuple space
moves with the agent. In this model, the tuple space an application operates on is
defined as the union of all tuple spaces within communication range. EgoSpaces
also associates tuple spaces with individual application agents because it flexibly
supports both physical host mobility and logical agent mobility.

Processes place tuples in the tuple space using out(t) operations. Data access
occurs in a content based manner by matching a tuple against a pattern, or
template, constraining the values of the fields in the tuple.

Tuple Definition and Pattern Matching. EgoSpaces extends the tuple
definition to provide more flexible coordination. Specifically, a tuple is an un-
ordered set of fields, each consisting of a name, type, and value. A tuple can have

only one field of a given name. The use of this name field allows us to relax re-
strictions on tuple pattern matching. In Linda, patterns must be the same length
as the tuple, and the fields of the tuple and pattern are matched in order. We
extend pattern matching to operate over unordered tuples. A pattern is similar
to a tuple, but each field’s value is replaced with a constraint that restricts the
field’s value. A tuple matches a pattern if, for every constraint in the pattern,
there exists a field in the tuple with the same name and type. The value of the
field must also satisfy the corresponding constraint function. While the matching
mechanism does require that every constraint in the pattern is satisfied, it does
not require that every field in the tuple is constrained, i.e., a tuple must contain
exactly the fields in the pattern, but the tuple can contain additional fields.

3.3 View Operations

A view is the set of tuples that satisfy the reference agent’s restrictions. Agents
use operations similar to Linda tuple space operations to interact with the view’s
tuples. EgoSpaces preserves Linda’s atomic blocking operations, rd(p) and in(p),
which provide a pattern a matching tuple must satisfy. The operations do not
return until a tuple in the view matches the pattern. When a match exists,
both operations return the matching tuple, and an in operation also deletes the
tuple from the network. The atomicity of these operations guarantees that, if a
matching tuple exists in the view, it will be found and returned.

Common extensions to Linda provide atomic probing operations, rdp(p) and
inp(p) that carry the same atomicity guarantees as the original operations but
return immediately instead of blocking. If no tuple in the view immediately
matches, an empty value is returned. Other Linda extensions utilize aggregate
operations that return all matching tuples. EgoSpaces provides these operations
in both blocking (rdg(p) and ing(p)) and probing (rdgp(p) and ingp(p)) forms.

Finally, in the dynamic ad hoc environment, atomic operations are often
costly to provide. While some applications (e.g., those involving money trans-
fer) require strong guarantees, other applications can take advantage of or even
benefit from operations with weaker guarantees. In EgoSpaces, scattered prob-
ing operations provide this style of context interaction by providing best-effort
semantics. EgoSpaces provides both single (rdsp(p) and insp(p)) and group
(rdgsp(p) and ingsp)p)) scattered probing operations.

Formal semantic definitions for the view operations can be found in [13]. Ad-
ditional programming constructs such as reactive programming and behavioral
extensions [18] are also available; they are not detailed in this paper.

4 Rapid Development Potential

EgoSpaces reduces programming context-aware mobile applications to simple
operations tailored to the capabilities of novice programmers. The middleware
provides all network communication programming and presents the program-
mer with a high-level agent coordination interface. In this section, we show how

EgoSpaces’s abstractions ease development by simplifying the programming in-
terfaces while retaining the necessary power of coordination.

EgoSpaces uses the software agent as the unit of modularity and mobility. To
use EgoSpaces’ abstractions, applications extend the Agent class, which allows
access to the view specification mechanics and communication capabilities.

Agent Extension. Figure 1 shows the interface for the abstract Agent
class. An application’s agent inherits three key fields: the unique AgentID, the
AgentProfile, and the AccessControlFunction. The AgentID is not modifi-
able by the extending class, and its initialization guarantees its uniqueness.

public abstract class Agent {
protected final AgentID aID;

protected AgentProfile profile;

protected AccessControlFunction acf;

public Agent();

public AgentProfile getProfile();

protected final void register();

protected final void out(ETuple tuple);

}

Fig. 1. The API for the Agent class

An agent’s profile fosters powerful coordination by allowing other agents to
include or exclude the agent from coordination based on the agent’s properties.
Initially, the AgentProfile contains two fields named “Agent ID” and “Host ID”
that contain the AgentID and the id of the agent’s host. EgoSpaces represents
profiles as tuples, so a field in a profile consists of a name, type, and value. The
field types can be determined at runtime, therefore an agent need only specify
the field’s name and value. An agent can use the three methods shown in Figure 2
to modify its profile.

public class AgentProfile {
public void addProperty(String name, Serializable value);

public void removeProperty(String name);

public void modifyProperty(String name, Serializable newValue);

}

Fig. 2. The API for the AgentProfile class

An application agent also inherits the Agent’s AccessControlFunction. The
default function grants all access requests. Agents can personalize this function to
exercise access control over their data by extending the AccessControlFunction
and overriding the evaluate method. This function evaluates incoming access
requests based on the credentials provided by the reference agent, the view the
request comes from, and the particular tuple being accessed.

In extending the Agent base class, the application agent receives two meth-
ods. The first method registers the Agent with the EgoManager, a component
described in more detail in Section 6. By registering with the EgoManager, an
application agent delegates responsibility for data management and communica-
tion. This also facilitates agent migration among hosts, which we discuss later.

The final Agent method allows agents to create tuples. When the agent is
registered with the EgoManager, these data items are available for coordination.
Agents generate tuples without respect to their views or their current location.
If an agent moves to a new host, all its data moves with it.

View Definition and Use. The view abstraction allows application agents
to coordinate over an ad hoc network. Once registered with the EgoManager, an
agent can define and use views. Figure 3 shows the public API of the View class.

public class View {
public View(Metric m, Cost bound,

HostConstraints hc, AgentConstraints ac,

DataConstraints dc, Credentials cred);

public ETuple rd(ETemplate template);
public ETuple rdp(ETemplate template);
public ETuple rdsp(ETemplate template);
public ETuple[] rdg(ETemplate template);
public ETuple[] rdgp(ETemplate template);
public ETuple[] rdgsp(ETemplate template);
public ETuple in(ETemplate template);
public ETuple inp(ETemplate template);
public ETuple insp(ETemplate template);
public ETuple[] ing(ETemplate template);
public ETuple[] ingp(ETemplate template);
public ETuple[] ingsp(ETemplate template);

}

Fig. 3. The API for the View class

We first examine the View constructor. The first two components represent
the network constraints and are part of the NetworkAbstractions interface.
The Metric defines the costs of paths in the network based on properties of
hosts and links. Based on this Metric and the Cost that defines a bound on the
lengths of paths, the NetworkAbstractions protocol can build a subnet con-
taining exactly the hosts that satisfy the view’s network constraints. EgoSpaces
provides commonly used Metric definitions, for example, a metric based on hop
count and another based on physical distance. More sophisticated application
developers can build their own Metric and Cost definitions by following the pro-
cedure outlined in [19]. The HostConstraints and AgentConstraints provide
restrictions that hosts and agents must satisfy to contribute data to the view.
Because EgoSpaces represents profiles as tuples, both types of constraints can be
provided as patterns over tuples. The DataConstraints in a View specification
are a pattern over data items that appear in the view.

The View’s Credentials identify the reference agent to remote agents. Re-
mote agents’ AccessControlFunctions use the Credentials when determin-
ing whether to allow the reference agent access to tuples. The Credentials
are a subset of the AgentProfile and contain, at a minimum, the reference
agent’s AgentID. If an application represents agents’ Credentials as tuples,
AccessControlFunctions can be given via patterns.

Once a View is defined, the reference agent sees it as the set of data items
that satisfy the associated restrictions. The reference agent uses the operations
shown in Figure 3 to access data. Each operation takes a pattern, which allows
an application to provide a final restriction that any returned tuple must satisfy.

5 Sample Applications

The best demonstration of the middleware’s ability to ease context-aware appli-
cation development is by example. In this section, we present three applications
that show different uses of the view concept in varying application domains.

5.1 Emergency Vehicle Warning System

Our first application warns cars of emergency vehicles along their projected path
or appearing from other directions. When a driver needs to clear the road for
the emergency vehicle, a light on the dashboard appears.

View Definition. Key to this application is being able to notify the car in
time for it to give way for the emergency vehicle. The car’s view constraints are:

– Network constraint. The network is restricted based on physical distance
between hosts.

– Host constraint. Only emergency vehicles’ hosts contribute to the view.
– Data constraint. The view contains only emergency warning tuples.

Agent Interaction. Only the emergency vehicle generates tuples. An emer-
gency vehicle creates a tuple when it turns its siren on and removes the tuple
when it turns its siren off. The access controls for the emergency vehicle prevent
any other agent from removing the warning tuple from the tuple space (i.e., no
in operations are allowed except by the emergency vehicle’s application agent).

Given the view defined above, a car issues a rd operation on the view. This
operation will match any warning tuple and blocks until a warning tuple appears
in the view, indicating an emergency vehicle’s presence. At this time, the light on
the dashboard warns the driver. The application can probe the view (with peri-
odic rdp operations, e.g., at one second intervals) to wait for the disappearance
of the warning tuple. After the emergency vehicle has passed, the application
can reissue the rd operation and the driver can continue. If multiple emergency
vehicles appear, this implementation ensures that the driver remains pulled over
until all emergency vehicles have passed.

Lessons Learned. The key to successful implementation of this application
lies in the definition of the view. Because both the car and the emergency vehicles
speeds are variable, the scope of the view depends on their velocities. Given a
well-defined view, the application agent’s minimal interaction with EgoSpaces
involves only simple view operations. The car is guaranteed to be notified as
soon as possible of the approach of an emergency vehicle. Notification that the
emergency vehicle has departed is not guaranteed to be as timely. This latter
behavior could be provided using reactive extensions [18] to the middleware.

5.2 Subscription Music Service

The second application enables music sharing on a network of cars and requires
more sophisticated agent coordination. Users subscribe to a music file sharing
service which allows them to manage their music and share music with other
subscribers they meet on the highway. The application allows a user to manage
his music files, search a region of the highway for music, and download these files.
If a download only partially succeeds, the application remembers the user’s desire
for the song, and, when the file is encountered again, the download completes.
Figure 4 shows the user interface.

Fig. 4. The subscription music service

View Definition. The dialog box in Figure 4 allows the user to change his
view’s constraints. The constraints the user can manipulate are:

– Network constraint. The span of the view is defined by network hops.
– Host constraint. Restricting the hosts in the view to those traveling in the

same direction provides more stability in the contents of the view, making
successful downloads more likely.

– Data constraint. The user can limit potential downloads based on file size.

As one example, Figure 5 shows the code to build the data constraint based
on the file size, where LTConstraint requires data items to have values in the
size field less than maxSize.

LTConstraint lt = new LTConstraint(new Integer(maxSize));

EConstraint ec = new EConstraint(‘‘Size’’, Integer.class, lt)

dc.addConstraint(ec);

Fig. 5. Building a data constraint

Agent Interaction. The application represents each song in multiple tuples.
One tuple holds information about the song, and multiple additional tuples
hold the song data. The data is divided into multiple tuples to facilitate the
ability of the application to continue interrupted downloads. Figure 6 shows the
application code used to generate an information tuple. This code is part of the
FileShareAgent, which extends the Agent base class.

ETuple songTuple = new ETuple();

songTuple.addField(new EField("Filename", file));

songTuple.addField(new EField("Title", title));

songTuple.addField(new EField("Artist", artist));

songTuple.addField(new EField("Album", album));

songTuple.addField(new EField("Size", size));

songTuple.addField(new EField("Length", length));

out(songTuple);

Fig. 6. Generating information tuples

When the user performs a search, the “Search Results” tab displays the
results. The user can choose to download a file, and the progress appears in the
“Downloads” tab. The “Library” tab allows the user to manage his music files.

To perform searches, the user enters restrictions in the search panel, which
the application constructs into a template. The user can select a file based on
its title, artist, or album. Because a music subscription service does not require
atomicity guarantees, we use scattered probing operations. Figure 7 shows the
code for querying the view.

ETemplate template = new ETemplate();

template.addConstraint(titleConstraint);

template.addConstraint(artistConstraint);

template.addConstraint(albumConstraint);

ETuple[] results = searchView.rdgp(template);

Fig. 7. Accessing the view

Lessons Learned. The subscription music service takes full advantage of the
simplified programming interface in EgoSpaces. Using the view abstraction and
coordination constructs, EgoSpaces allows the programmer to focus on how the
music subscription application uses the information collected instead of having
to explicitly discover and communicate with other agents in the network.

5.3 Collaborative Puzzle Game

The final application demonstrates how the EgoSpaces coordination model can
be applied to cooperative work applications. In this example, several users col-
laborate to complete a puzzle whose pieces are distributed throughout the ad
hoc network. Figure 8 shows the screens of two puzzle participants.

Fig. 8. Two views of a puzzle game

View Definition. This application uses the view constraints to limit the
amount of data displayed based on properties of the puzzle to be solved. This
view is more logical in nature and can be as simple as to contain only data
constraints. The specific constraints used depend on a particular user’s goals;
as one example, the view might be defined to contain only edge pieces, or only
pieces of a certain color. An example of the data constraint required to define
the former is shown in Figure 9. It makes use of the EqualConstraint function
included in EgoSpaces that requires the field’s value to equal a designated value.

EqualConstraint e = new EqualConstraint(new Boolean(true));

EConstraint ec = new EConstraint(‘‘edgePiece’’, Boolean.class, e);

dc.addConstraint(ec);

Fig. 9. Seeing only edge pieces

Puzzle players may find many different view definitions useful. If player agents
have an idle status, a player might define a view that contains only pieces owned
by idle players. If a player is facing a hole of a certain shape, he might specify
his view to contain only the partially assembled piece he is working on and any
pieces that are the correct shape for the hole. In the puzzle application, choices
for defining these views are provided through a series of menus and dialog boxes.

Agent Interaction. One player in the game initializes the puzzle by loading
an image. The pieces of the puzzle are represented by tuples in the data space of
the agent initializing the puzzle. Each agent (representing a single player in the
puzzle game), can define views that determine which puzzle pieces are displayed
at a given time. Each agent initially starts with the maximal view, i.e., the
view contains all pieces owned by any connected agents. As new agents connect,
they too define this view and can see the puzzle pieces available in the system.
A user can select a piece by clicking on it. When the user does so, the tuple
corresponding to the puzzle piece is removed from its owner and placed in the
user’s local data space. To all users, this change appears as a change in the color
of the border of the displayed puzzle piece. Players can assemble their pieces,
and these changes are also reflected in the displays of connected agents.

When a user defines a different view of the puzzle pieces, the display changes
appropriately. For example, if the user defines a view to contain only edge pieces,

the player will see only these pieces, and all of the interior pieces are hidden.
This is the view seen by the agent on the left-hand side of Figure 8. The player
on the right has the default view and sees all the pieces. Changes made by the
player on the left are displayed to the player on the right, but the reverse is not
necessarily true. This is because the player on the right may make changes that
affect only interior pieces not included in the other player’s view.

Lessons Learned. In the previous two application scenarios, the view def-
initions were based on obvious notions of distance and relative location. With
the puzzle game example, on the other hand, we see that the same abstractions
can be used to define more logical views in perhaps smaller scale networks where
a user wants to interact with a subset of all of the available data. While the
particular subset was determined partially by the data’s location in the previ-
ous examples, in the puzzle game only properties of the data or agents matter.
Other applications that involve cooperative work by distributed parties can be
implemented in a similar way. If the collaborative project does span a large-scale
network, the application can be extended to account for the relative locations of
the data items, in much the same way as in the music sharing example.

6 Infrastructure Design and Implementation

The programming abstractions pre-

Fig. 10. The system architecture

sented in Section 3 facilitate rapid pro-
gram development of applications in ad
hoc networks. Figure 10 shows the high-
level system architecture of EgoSpaces.
The gray boxes represent components we
assume to exist (message passing and the
ad hoc physical network) or components
the programmer provides (the applica-
tion). The white boxes represent compo-
nents we provide.

6.1 Supporting Packages

To build EgoSpaces, we implemented three support packages (a discovery pack-
age, a monitor package, and a network abstractions package) that provide lightweight
implementations of services necessary for building the view abstraction. The
eLights package provides the tuple matching mechanism described in Section 4.

Discovering Network Neighbors. In ad hoc networks, no wired infras-
tructure with dedicated routing nodes exists. Instead, all hosts serve as routers.
To distribute messages, a host must maintain knowledge of its current set of
neighbors, and, as movement causes this set to change, the host must be no-
tified. Our system utilizes a discovery service that uses a periodic beaconing
mechanism parameterized with policies for neighbor addition and removal.

Monitoring Environmental Conditions. To adapt to context informa-
tion, applications must sense environmental changes. Our purposes require a

lightweight mechanism in which both local and neighboring sensors are accessed
in a context-sensitive manner. The sensed information is used to calculate the
network restriction discussed next. Our monitor service provides context infor-
mation by maintaining a registry of monitors available on the local host and
neighboring hosts. An application tailors the monitor package to its needed ca-
pabilities, e.g., to add a location monitor, the application provides code that
interacts with a particular GPS monitor. New monitors must adhere to a stan-
dard monitor interface.

Defining Metrics on the Network. EgoSpaces uses the network abstrac-
tions protocol [19] to construct a subnet of the ad hoc network. The protocol uses
sensor information from monitors and the view’s metric and bound to build a
tree over the subnet of the ad hoc network that contains exactly the hosts in the
network that satisfy the network constraints. The protocol can also maintain the
tree as the hosts in the network move and the path costs change. The network
abstractions protocol provides EgoSpaces the ability to send messages to exactly
the hosts in the context. EgoSpaces can also use the network abstraction inter-
face to register persistent operations on the context hosts. As new hosts move
into the context, they receive notification of any registered operations, and as
hosts move out of the context, registered operations are removed.

6.2 EgoSpaces Implementation

Figure 11 depicts the

Fig. 11. Internal class diagram of EgoSpaces

middleware’s details. The
previous sections explained
how the application agent
interacts with the upper
portions in this figure.
In this section, we detail
how the underlying com-
ponents support the view
abstraction while being at-
tentive to the need for
a lightweight and efficient
system. Each host supports
a single EgoManager object
that facilitates agents’ in-
teractions.

Agent Registration and
Migration. When an agent is created, a data structure within the agent holds
the agent’s tuples. EgoSpaces hides this data structure from the extending class.
However, if the agent generates tuples via out operations before it registers with
the EgoManager, the tuples are placed in this local storage. These tuples are not
available for access by other agents; essentially the agent owning the tuples does
not exist in the system. When the agent calls the register method, the agent
is registered with the EgoManager.

Upon registration, the contents of the agent’s local tuple storage are placed
in a host-level tuple space. During the transfer from the agent’s local storage
to the host-level tuple space, each tuple is annotated with the owning agent’s
id. We use a single host-level tuple space instead of maintaining the agent level
tuple spaces to reduce the overhead of remote operations. This justification will
become more apparent in the discussion of operation processing.

With the registration mechanism described above, facilitating agent migra-
tion is reduced to a few simple steps. Upon migrating, an agent is first dereg-
istered from the current EgoManager. This moves the agent’s tuples from the
host-level tuple space to the agent’s local storage. This extraction is simplified
by the fact that every tuple is labeled with the owning agent’s id. After dereg-
istration, the application agent’s code and state are moved to the destination
host, where the agent is registered with the local EgoManager.

View Creation and Maintenance. Any registered agent can define views.
For each view, the EgoManager uses NetworkAbstractions to construct the
subnet of hosts that define the network over which the view operates. This
construction is performed on-demand; NetworkAbstractions only builds and
maintains views for the EgoManager when operations are issued to avoid unnec-
essary communication overhead. This is important to ensuring as efficient an
implementation as possible.

View Operation and Agent Interaction. When the reference agent issues
an operation on a View, the operation and view constraint information are passed
to the EgoManager. The EgoManager creates a dedicated operation thread for
the request.

Atomic Blocking

Fig. 12. Sequence diagram of an in

Operations. Figure 12
shows a sequence dia-
gram describing an in
operation. The calling
thread blocks until the
operation thread finds a
tuple matching the op-
eration’s template. The
operation thread uses
NetworkAbstractions
to distribute a persis-
tent query to every host
in the context, and the
query remains regis-
tered on those hosts
until the operation
thread deregisters it.
If new hosts move into
the context while the query remains active, they receive the query. Similarly, as
hosts move out of the context, the query is removed from them.

Two things can happen when an operation is registered. First, a tuple may
immediately match. If so, the context host notifies the operation thread. If not,
the context host stores the registration and checks every tuple generated to see
if it matches. When a tuple matches the request, the context host reserves the
matching tuple for the requesting agent until either the operation thread requests
it be removed and returned or the operation’s query is deregistered (indicated
as the blackened active period in Figure 12). A match may also be triggered
by a new host with a matching tuple moving into the view. The registration of
the operation on this arriving host (as well as deregistration from any departing
host) is handled implicitly by the NetworkAbstractions protocol.

When the operation thread receives notification of a matching tuple, it sends
a message to the owning host to remove the tuple. It is possible that the operation
thread will receive multiple matches for an in operation from multiple context
hosts; it chooses one non-deterministically. Once the operation is ready to return,
the persistent operation query is deregistered from the context hosts.

The other blocking operations have a similar form. When a context host
finds a match to a rd operation, it simply returns the match and waits for the
operation thread to deregister the query. Aggregate operations perform the same
steps as their counterparts, but to ensure they return all matching tuples, when
the operation finds a match, the operation thread issues an aggregate atomic
probing operation, described next.

Atomic Probing Oper-

Fig. 13. Sequence diagram of a rdp

ations. The sequence dia-
gram in Figure 13 shows
a rdp operation. Again,
when the reference agent
issues its operation, the
EgoManager spawns a dedi-
cated operation thread; the
reference agent remains ac-
tive, waiting for a re-
sponse. If, after checking
each host in turn, the
operation thread finds no
matching tuple, it will re-
turn a null value. The op-
eration thread first collects
the ids of hosts within the
view by sending a query
to the hosts defined by
the view’s network con-
straints. Every host within
the context responds with
its host’s id and the host
ids of its children in the tree. The EgoManager on the reference agent’s host

uses this information to ensure that it hears from every member of the context
before continuing. At this point, the set of hosts on which the operation will be
performed is fixed. If new hosts move within the constraints of the view, their
addition to the context is delayed until this operation completes.

When the operation thread has gathered the ids of all context hosts, it locks
them in order of increasing id. The ordered locking prevents deadlock because
every operation thread locks hosts in the same order. Locking a tuple space pre-
vents other threads from modifying the tuple space’s contents. When a context
host receives a locking request, it waits until its tuple space is not locked by
another thread, then returns positively. The operation thread waits to hear from
each context host before locking the next host.

The need for locking

Fig. 14. Locking example

is not immediately obvi-
ous. Consider, however,
the case shown in Fig-
ure 14, which shows four
host tuple spaces that
contain tuples in the
reference agent’s view.
The ellipse inside each
host tuple space con-
tains the tuples that
satisfy the view con-
straint. The black tu-
ples also satisfy the operation’s template. In this figure, the operation queries
the host tuple spaces for matching tuples in order; the outlined rectangle indi-
cates the host tuple space being queried. In Figure 14(a), the operation thread
first queries Host 1. Being unsuccessful, in part (b), the operation thread then
queries Host 2. At the same time, a different operation thread moves tuple x
from Host 3’s tuple space to Host 1’s tuple space. This is allowed because the
tuple spaces are not locked. In part (c), because the operation thread did not
find a matching tuple, it queries Host 3, while the tuple y is moved to Host 2.
The operation thread finds no match at Hosts 3 or 4. This violates the semantics
of the atomic probing operation because a matching tuple existed in the view
the entire time the operation was processed.

After locking every host in the context, the operation thread requests a
matching tuple from every host in order. For the rdp operation, as soon as
the operation thread finds a single match, it returns the tuple. For an inp oper-
ation, the operation thread also returns the first match, but the matching tuple
is removed from the owning agent’s host tuple space. For aggregate operations,
the actions performed are the same, except that the operation thread must query
every host tuple space instead of halting once it finds a match.

Scattered Probing Operations. These operations provide weaker semantics
than the previous two in that the operations are allowed to miss matching tu-
ples in the view. That is, the case shown in Figure 14 is acceptable. The weakened

semantics of these operations allow more efficient implementations that do not
require locking. The sequence of events in executing a scattered probing opera-
tion follows those of an atomic probing operation, without the need to lock the
context hosts. Thus, context hosts are active only while responding directly to
the operation thread.

7 Conclusions

Context-aware abstractions of the operating environment prove essential to the
rapid development of applications designed for ad hoc mobile networks. EgoSpaces
utilizes a novel approach that combines the use of context-awareness and asym-
metric coordination that proves successful in easing the development burden of
applications in this environment. These constructs are especially useful in dealing
with the large amounts of data encountered in large-scale ad hoc networks. As the
ubiquity of mobile computing devices continues to grow, the need for middleware
providing this style of coordination becomes increasingly apparent. This paper
highlighted the software engineering gains associated with providing application
programmers abstractions of the unpredictable operating contexts the resulting
applications may encounter over their lifetimes. Specifically, EgoSpaces facili-
tates opportunistic interactions through the view concept which dynamically
changes to represent a changing environment. The programming constructs are
provided as a simplified interface to the application’s world, yet they retain the
flexibility and expressiveness required from the variety of applications needed in
mobile ad hoc networks.

ACKNOWLEDGMENTS

This research was supported in part by the Office of Naval Research under
ONR MURI research contract N00014-02-1-0715. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the sponsoring agencies. The authors
would also like to thank Rohan Sen and Tom Elgin for the help in the middleware
implementaiton.

References

1. Want, R., Hopper, A., Falco, V., Gibbons, J.: The Active Badge location system.
ACM Transactions on Information Systems 10 (1992) 91–102

2. Want, R., et al.: An overview of the PARCTab ubiquitous computing environment.
IEEE Personal Communications 2 (1995) 28–33

3. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a
context-aware application. Mobile Networks 8 (2002) 187–197

4. Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cy-
berguide: A mobile context-aware tour guide. ACM Wireless Networks 3 (1997)
421–433

5. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Experiences of
developing and deploying a context-aware tourist guide: The GUIDE project. In:
Proceedings of MobiCom, ACM Press (2000) 20–31

6. Pascoe, J.: Adding generic contextual capabilities to wearable computers. In:
Proceedings of the 2nd International Symposium on Wearable Computers. (1998)
92–99

7. Rhodes, B.: The wearable remembrance agent: A system for augmented mem-
ory. In: Proceedings of the 1st International Symposium on Wearable Computers.
(1997) 123–128

8. Salber, D., Dey, A., Abowd, G.: The Context Toolkit: Aiding the development of
context-enabled applications. In: Proceedings of CHI’99. (1999) 434–441

9. Hong, J., Landay, J.: An infrastructure approach to context-aware computing.
Human Computer Interaction 16 (2001)

10. Roman, M., Hess, C., Cerqueira, R., Ranganat, A., Campbell, R., Nahrstedt, K.:
Gaia: A middleware infrastructure to enable active spaces. IEEE Pervasive Com-
puting 1 (2002) 74–83

11. Verissimo, P., Cahill, V., Casimiro, A., Friday, K.C.A., Kaiser, J.: CORTEX:
Towards supporting autonomous and cooperating sentient entities. In: Proceedings
of European Wireless. (2002)

12. Chen, G., Kotz, D.: Solar: An open platform for context-aware mobile applications.
In: Proceedings of the 1st International Conference on Pervasive Computing. (2002)
41–47

13. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mo-
bile environments. In: Proceedings of the 10th International Symposium on the
Foundations of Software Engineering. (2002)

14. Roman, G.C., Julien, C., Huang, Q.: Network abstractions for context-aware mo-
bile computing. In: Proceedings of the 24th International Conference on Software
Engineering. (2002) 363–373

15. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7 (1985) 80–112

16. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. Internet Computing 4 (2000) 26–35

17. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A middleware for physical and log-
ical mobility. In: Proceedings of the 21st International Conference on Distributed
Computing Systems. (2001) 524–533

18. Julien, C., Roman, G.C.: Active coordination in ad hoc networks. In: Proceedings
of the 6th International Conference on Coordination Models and Languages. (2004)
199–215

19. Julien, C., Roman, G.C.: A protocol supporting context provision in wireless
mobile ad hoc networks. Technical Report WUCSE-03-57, Washington University
(2003)

	Bringing Context-Awareness to Applications in Ad Hoc Mobile Networks
	Recommended Citation
	Bringing Context-Awareness to Applications in Ad Hoc Mobile Networks

	tmp.1470340445.pdf.MOQZG

	Abstract: Abstract: Context-aware mobile applications require constant adaptation to their changing environments. Technological advancements have increased the pervasiveness of mobile computing devices such as laptops, handhelds, cellular phones, and embedded sensors. The sheer amount of context information necessary for adaptation places a heightened burden on application developers as they must manage and utilize vast amounts of data from diverse sources. Facilitating programming in this data-rich environment requires a middleware infrastructure for sensing, collecting, and providing context information to applications. In this paper, we demonstrate the feasibility of providing such a middleware that allows programmers to focus on high-level interactions among programs and to employ declarative abstract specifications of context in settings that exhibit high levels of mobility and transient interactions with opportunistically encountered components. We also discuss the novel context-aware abstractions the middleware provides and the programming knowledge necessary to write applications using our middleware. Finally, we provide examples demonstrating the flexibility of the infrastructure and its ability to support differing tasks from a wide variety of application domains.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: April 22, 2004
	Author: Authors: Julien, Christine; Roman, Gruia-Catalin; Payton, Jamie
	Title: Bringing Context-Awareness to Applications in Ad Hoc Mobile Networks
	ReportNumber: 2004-18
	DepartmentName: Department of Computer Science & Engineering

