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This dissertation addresses model-based deep learning for computational imaging. The
motivation of our work is driven by the increasing interests in the combination of imaging
model, which provides data-consistency guarantees to the observed measurements, and deep
learning, which provides advanced prior modeling driven by data. Following this idea, we
develop multiple algorithms by integrating the classical model-based optimization and modern
deep learning to enable efficient and reliable imaging. We demonstrate the performance of
our algorithms by validating their performance on various imaging applications and providing

rigorous theoretical analysis.

The dissertation evaluates and extends three general frameworks, plug-and-play priors (PnP),
regularized by denoising (RED) and deep unfolding (DU), all of which integrate model-based
optimization and deep learning. PnP and RED adopt deep-learned denoisers as image priors
inside model-based iterative algorithms, while DU interprets the iterations of a model-based
algorithm as layers of a deep neural network and trains it end-to-end in a supervised fashion.
We contribute to these research areas by 1) providing the statistical interpretation of the PnP
algorithms through the analysis of the priors implicitly represented by denoisers; 2) proposing
an incremental variant of the widely-used PnP-ADMM algorithm to handle problems involving

large-scale measurements; 3) extending the family of PnP algorithms to the non-Euclidean
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setting based on the general Bregman distance; and 4) developing an end-to-end model-based
learning framework for the estimation of quantitative maps from under-sampled, noisy and

motion-corrupted MRI data.
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Chapter 1

Introduction

OMPUTATIONAL imaging is the process of indirectly forming images from measurements
C using algorithms that rely on a significant amount of computing. Different from
traditional imaging, computational imaging systems involve a tight integration of the sensing
system and the computation in order to form the images of interest.! Benefiting from such
hardware and software integration, computational imaging systems are used in broad range of
applications including computational microscopy, X-Ray computed tomography(CT) imaging,
magnetic resonance imaging(MRI), ultrasound imaging, computational photography. Fig. 1.1

shows some examples of such computational imaging applications.

Image reconstruction is at the core of computational imaging. Such reconstruction is usually
formulated as an inverse problem, where we use the measurements of the sensing system to

compute the unknown desired images. Algorithms that can solve such inverse problems are

!Definition from the Wikipedia entry ‘Computational Imaging’.



(a) Imaging with microscopes (b) Imaging with cameras (c) Imaging with C'T scanners

Figure 1.1: Some examples of computational imaging applications with different imaging
instruments: (a) microscopes, (b) cameras, and (c) CT scanners.

in high demand for modern imaging applications. However, solving imaging inverse problems

is very challenging in practice due to the following reasons:

e Non-unique solution. Inverse problems are usually ill-posed, which means that many

different solutions may be consistent with the measured data.

« Noisy measurements. The measurements are usually corrupted with noise during
the signal acquisition. Such noise contamination will damage the accuracy of the

measured data and consequently mislead the reconstruction method.

 High computational complexity. The data can be very high-dimensional in a sense
that the measurements and the corresponding solution may contain millions or even

billions of data entries, making the reconstruction computationally expensive.

These challenges motivate the development of not only effective but efficient image re-
construction algorithms that can balance the quality of the reconstructed images and the
computational cost. In this dissertation, we seek to develop such novel computational imag-
ing algorithms that can take advantage of both the physics of the imaging systems and
advanced deep learning priors to enable reliable image reconstruction. In particular, we
build our work on three different frameworks, namely plug-and-play priors (PnP), regularized

by denoising (RED), and deep unfolding (DU), all of which integrate imaging models and



the learning capability of deep neural networks. We contribute to these areas by developing
novel imaging algorithms, providing rigorous theoretical analysis, and applying algorithms
to various imaging tasks. We summarize our key contributions in this dissertation in the

following section.

1.1 Main Contributions

This dissertation contains the following major contributions to computational imaging.

o We present a simple, but effective, denoiser scaling technique for improving the
performance of PnP algorithms. The proposed technique is shown to be particularly
valuable when PnP is used with CNN denoisers that have no explicit tunable parameters.
We theoretical justify the denoiser scaling from the perspectives of proximal optimization,
statistical estimation, and consensus equilibrium. We show the potential of denoiser

scaling to significantly improve the performance of PnP across several inverse problems.

o We establish the first theoretical convergence result for proximal gradient method
(PGM) variant of PnP for minimum mean squared error (MMSE) denoisers. We
show that the iterates produced by PnP-PGM with an MMSE denoiser converge to
a stationary point of some global cost function. We validate our analysis on sparse
signal recovery by comparing two types of denoisers, namely the ezact MMSE denoiser
and the approrimate MMSE denoiser obtained by training a deep neural net. Our
results illustrate the potential of denoisers obtained by training deep neural nets, which
have been extensively used in practice, to match the performance of the exact MMSE

denoiser.

o We provides several new insights into the PnP methodology in the context of large-scale

imaging problems. First, we propose IPA—a new incremental variant of PnP-ADMM



algorithm—to allow randomized partial processing of measurements in large scale set-
tings. Second, we theoretically analyze IPA under a set of realistic assumptions, showing
that in expectation IPA can approximate the convergence behavior of PnP-ADMM to a
desired precision by controlling the penalty parameter. Third, we validate the potential
of TPA to handle nonsmooth data-fidelity terms, large number of measurements, and
DNN priors with multiple imaging tasks, highlighting the effectiveness of IPA for

addressing large-scale imaging problems.

« We propose to broaden PnP/RED by considering a non-Euclidean setting based on the
more general Bregman distance. This work can be considered as a first step towards
extending widely-used PnP/RED to problems where there is a benefit of using non-
Euclidean formulations of proximal and projection operators. We present a theoretical
convergence result for our method and demonstrate the effectiveness of our algorithms

on Poisson linear inverse problems using a deep unfolding architecture.

o We design and apply a model-based learning framework for the quantitative MRI
application. Our method is the first method for end-to-end estimation of quantitative
MRI maps directly from under-sampled, noisy and motion-corrupted k-space data.
Our results show that our method achieves the best performance in different scenarios
compared to other widely-used methods, showing its effectiveness and potential in

practical applications.

1.2 Organization of the Dissertation

This dissertation is organized as follows: In Part II, we provide the statistical interpretation
for PnP through the analysis of the priors implicitly represented by denoisers. We first
present an effective denoiser scaling technique that has a potential to broadly improve the

performance of PnP algorithms. We provide a theoretical justification linking the technique



to the strength of the regularization within PnP. We then prove that the iterates produced
by PnP-PGM algorithm with an MMSE denoiser converge to a stationary point of some
global cost function, providing theoretical justification to the performance of the approximate
MMSE denoiser obtained by training a deep neural networks. In Part III, we focus on the
practical challenge of PnP in large-scale settings by proposing an incremental variant of
the widely used PnP-ADMM algorithm, making it scalable to problems involving a large
number measurements. We theoretically analyze the convergence of the algorithm under a
set of explicit assumptions, extending recent theoretical results in the area. Additionally, we
show the effectiveness of our algorithm with nonsmooth data-fidelity terms and deep neural
net priors, its fast convergence compared to existing PnP algorithms, and its scalability in
terms of speed and memory. In Part IV, we extend the family of PnP algorithms to the
non-Euclidean setting. We develop two new Bregman proximal gradient method variants,
namely PnP-BPGM and RED-BSD algorithms, by replacing the traditional updates in
PnP and RED from the quadratic norms to more general Bregman distance. We present
a theoretical convergence result for PnP-BPGM and demonstrate the effectiveness of our
algorithms on Poisson linear inverse problems. In Part V, we present an effective end-to-end
model-based neural network for solving the accelerated quantitative MRI problem and validate

its performance on experimentally collected data.



Chapter 2

Background

HIS chapter introduces the background material for this dissertation. We start by
T giving a mathematical formulation for inverse problems, including the forward model
that relates to the physics of the imaging systems and the statistical interpretation based on
Bayesian estimation. Based on this formulation, we then review the classical model-based
optimization methods and the recent popular learning-based methods for solving inverse
problems. Through the comparison of these two different types of approaches, we show that
model-based optimization and deep learning offer complimentary strategies for handling
imaging problems, and algorithms that can take advantage of both have the potential to enable
more efficient and more reliable image reconstruction. Finally, we introduce more advanced
algorithms, including plug-and-play priors (PnP), regularization by denoising (RED), and
deep unfolding (DU), all of which achieved success in imaging by integrating the information

of forward models and the learning capability of deep neural networks.



2.1 Imaging as Inverse Problems

The development and analysis of imaging algorithms, which is the core of this dissertation,
relies on the formal formulation of the computational imaging problems. In this section, we
introduce this formalism that will be used extensively in the sequel, including mathematical

definitions of imaging systems and statistical interpretations of imaging problems.

2.1.1 Forward Model

In the context of computational imaging, the measurement process corresponds to the acquisi-
tion of measurements y € R™ from the unknown target image * € R". An understanding of
this acquisition process is a prerequisite for understanding computational imaging algorithms.

We refer to this process as a forward model, often represented as
y=A(x) +e. (2.1)

For notational convenience, we assume that the image and measurements are both real-valued;
nonetheless, all the algorithms developed in this dissertation can be easily extended to
complex-valued data. Note here, the operator A : R" — R™, usually referred to as the
forward operator, represents the physics of the imaging system. This forward operator varies
across imaging modalities but is usually assumed to be known and accurately describes the
deterministic physical process of the measurement acquisition. The vector e € R™ models
the non-deterministic noise corruption in the imaging system. In practice, the causes of this
noise are various and often intractable. However, by assuming that the noise sources are
independent and adopting the the central limit theorem, we can model e as independent and

identically distributed (i.i.d.) Gaussian with zero mean, known as additive white Gaussian
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Figure 2.1: The illustration of an imaging pipeline for the forward and inverse problems
corresponding to (2.1) in MRI. The forward model refers to the acquisition of measurements
y from unknown image @, while the inverse problem refers to the recovery of @ from y.

noise (AWGN). In this dissertation, we denote AWGN as

e ~ N(0,0°T), (2.2)

where 0 € R" is the zero vector and o the standard deviation, and I the identity matrix.

The forward model presented in (2.1) models the acquisition of measurements y from an
target @. The recovery of the unknown image @ from the noisy measurements y, on the
other hand, is referred to as an inverse problem. Fig. 2.1 illustrates an imaging pipeline for
the forward and inverse problems corresponding to (2.1) in MRI. Inverse problems related to
image reconstruction are fundamental in computational imaging. Inverse problems can be
divided into continuous problems and discrete problems based on the data type involved. In
this dissertation, we only focus on the discrete inverse problems where both image x and

measurements y are discrete vectors.



Linear Models

The forward model (2.1) describes the mapping from an image @ to the measurements y in a

general imaging system. Further simplification of such mapping is the linear forward model

y=Ax+e, (2.3)

where the forward operator A in (2.1) is re-expressed as a measurement matrix A € R™*"
and e models the AWGN. In this scenario, the inverse problem of recovering @ from noisy
measurements y is therefore reduced to a linear inverse problem. Linear inverse problems
are central to most modern imaging systems, including optical microscopy, digital cameras,
MRI, and CT. The major benefits of linear problems is the feasibility of using standard
theoretical results from linear algebra in deriving solutions. Most algorithms we develop in
this dissertation are particularly well-suited to solve linear inverse problems under AWGN.
Nevertheless, it is possible to extend our algorithms to more general settings with other noise
types. For example, in Chapter 7, we specifically discuss the development of algorithms for

Poisson noise, which usually occurs in the optical devices under a low-light exposure.

Image Denoising

Further simplification of the liner forward model in Eq. (2.1) can be obtained by assuming

the forward operator A is an identity matrix

y=x-+e, (2.4)

where y is simply a noisy observation of the clean image @ corrupted by additive noise

e. The estimation of clean image @ from its noisy version y is known as image denoising.
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Image denoising is considered as a basic but fundamental problem in computational imaging.
As we shall see in detail, the denoising is a key sub-routine influences the quality of the

reconstructed image in many methods for solving more general inverse problems.

2.1.2 Statistical Inference

In practice, inverse problems such as (2.1) are often ill-posed, meaning that it is impossible
to recover x by simply inverting A. Therefore, prior knowledge additional to the information
of the measurements and forward operators is needed to compute faithful and high-quality
images. For example, Bayesian estimation uses a prior probability distribution p,, which
describes our belief of the distribution of the underlying true image x, to impose desired
constrains on the solutions. In particular, given the prior p, and following Bayesian theory,

the posterior distribution of the true image, denoted as pg,, can be expressed as

Pary (@) = py'“”fy‘f;?(‘”) x puelyl2) pae). (2.5)

Likelihood Prior

Here we use o to denote equality after normalization and py|, to denote the likelihood
function that characters the probabilistic relationship between the desired image x and
the measurements y. The classical mazimum-a-posteriori probability (MAP) estimator is

therefore obtained by maximizing the posterior distribution pg, (x|y)

TrAP :arg;;nax {Pajy(x|y)} (2.6a)
= argmin { —log(pyz(y|2)) — log(pa(2))} (2.6b)
=argmin{ D(x) + R(x) }. (2.6¢)

x —— ——

Data-fidelity = Regularizer

11



Note here by using the Bayes rule, we turn the estimation task into an optimization problem,
where the solution is obtained by minimizing an objective function consisting of two terms,
D(x) and R(x). In the context of computational imaging, D(x) is usually called the data-
fidelity term as it controls the data consistency to the measurements, and R(x) is called the
reqularizer or prior term as it imposes our preferred properties or prior knowledge to the
estimation. By adjusting the regularizer term R(x), in other words, the prior distribution p,,
we can directly change our preference on the solution. The optimization formulation (2.6) is
known as reqularized optimization and widely adopted in solving inverse problems because 1)

it is interpretable, 2) it is usually solvable, and 3) it is friendly to theoretical analysis.
Regularized Least Squares

Regularized optimization (2.6) can accommodate a variety of data-fidelity and regularization
terms. For example, under the assumption that the noise corruption in forward model is
AWGN with e ~ N(0,0°I), the likelihood can be obtained as

1

1 2
Pus(vle) = s o (g1l A(@) i ).

(2.7)

where det(-) denotes the determinant of a matrix and || - || denotes the standard ¢s-norm in
R™. For the sake of simplicity, we use ||-|| to denote the fo-norm in the rest of this dissertation.

Plugging this result into Eq. (2.6) we have

12



Buap = arg max {—1og(py () — og(p=(x))} (2.82)

= arg min {T;HA(:B) —y|* + R(az)} (2.8b)

xr

= argmmin {%HA(:}:) —y|?+ TR(:L')} : (2.8¢)

where in the last equality, o2 is absorbed into the regularization parameter 7 > 0 to adjusts
the relative strength of the regularizer. By substituting forward operator A with its matrix

form A for a linear system, we have the reqularized least-squares optimization as

~ 1
&t = argmin { 514z~ ylP + R(@)}. 29)

This regularized least-squares optimization will accompany us throughout most part of this
dissertation. However, it worthy mentioning that if distribution changes for noise e, we

depart form the ¢y data-fidelity form.

2.2 Computational Imaging Algorithms

So far, we have explained the essential recipes for understanding computational imaging
algorithms, including how to define the imaging systems with forward models, how to
formulate imaging as an inverse problem, and how to solve such inverse problems via Bayesian
inference. In fact, since Bayesian inference (see Eq. (2.6)) uses the operator A of the forward
model, it is usually refereed to as model-based method in the context of computational imaging.
While model-based method is a classical approach, deep learning (DL) has recently drawn
considerable attention in image reconstruction. Instead of explicitly defining a regularizer,

the general idea of DL is to train a deep neural networks (DNN) on a large number of data
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samples to map low-quality images to their desired high-quality counterparts. In this section,
we briefly review these two different types of methods in order to explain the motivation in

integrating model-based and learning-based methods.

2.2.1 Model-based Methods

In the classical model-base approach, the reconstruction of image & from measurements y is

usually formulated as an regularized optimization problem of the form

T = argmin f(x), where f(x)=g(x)+r(x), (2.10)

T

where we use function g to denote the data-fidelity term, and r to denote the regularizer with
the strength parameter 7 absorbed. We adopt this widely-used notations in (2.10) through

the whole dissertation. In fact, by setting

g(x) = —log(pyj=(y|®)) and r(z) = —log(pz(z)), (2.11)

the minimization problem (2.10) is the same as the MAP estimation shown in (2.6). The major
advantage of (2.10) over MAP estimation is that it does not require the exact distribution of
the prior, which in practice may not exist or be hard to interpret. The regularized optimization
framework (2.10) can accommodate a variety of data-fidelity and regularization terms. For
example, under the assumption of a linear forward model A and AWGN e, anisotropic total

variation (TV) regularization [18, 156] is obtained by setting

1
g(x) = Slly — Az|® and r(z) = 7| Da|;, (2.12)

14



where 7 > 0 is the regularization parameter and D is the discrete image gradient operator.
Anisotropic TV corresponds to the sparsity-promoting ¢;-norm prior on the magnitude of
the image gradient. Examples of other popular imaging regularizers include smoothness,
nonnegativity, transform-domain sparsity, and self-similarity [45, 54, 62, 90, 156, 198, 202,
208].

Proximal Methods

When the objective function f(-) is smooth, gradient method (GM) such as gradient descent

can be adopted to efficiently solve the minimization problem (2.10)
xb bt — AV (2, (2.13)

where V computes the gradient of a function and k£ > 1 denotes the iteration index. Nev-
ertheless, a large number of regularizers used in the context of imaging inverse problems,
including ¢;-norm and TV, are nonsmooth. Prozimal methods (PMs) [144] enable efficient
minimization of nonsmooth functions, without differentiating them, by using the proximal

operator, defined as

xrcR™?

1
prox_,.(z) = argmin {§Hw —z|* + Tr(w)} : (2.14)

for any proper, closed, and convex function r [144]. Here 7 > 0 is a weighting parameter
that controls the influence of r. PMs are widely used for solving regularized optimization
problem (2.10) due to nonsmoothness of many regularizer. For example, summarized in
Algorithm 1 and Algorithm 2 are two known PMs that include the proximal operator in
solving minimization problem (2.10) with nonsmooth regularizer terms. We introduces the

details these two algorithms below.
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Proximal gradient method (PGM). PGM, also known as iterative shrinkage/thresholding
algorithm (ISTA), is a standard iterative approach for solving regularized optimization problem
formed in (2.10) [18, 19, 46, 61]. The derivation of PGM follows the majorization-minimization
(MM) method by assuming that the data-fidelity term g in (2.10) is continuously differentiable
and has a Lipschitz continuous gradient with constant L > 0. A function g has L-Lipschitz

gradient if there exists L > 0 such that

L
5 ||| — g(x) is convex, Va € R™ (2.15)

By applying the first-order convexity inequality (see Definition B.5) to (2.15), we obtain the

following quadratic upper bound for the data-fidelity term g
+ Tt L + 2 + n
glx™) < g(x)+ Vyg(x) (x —a:)—|—§||a: —z|*, Va,zeR" (2.16)

The corresponding proof for the inequality above can be found in Appendix B.5. By replacing
L with 1/~ where 0 < v < 1/L in (2.16), we obtain the following upper bound function for

the data-fidelity term g at * € R”
1
g(z* x) = g(z) + Vg(2)' (@ —z) + —7||m+ — x|, (2.17)

Function ¢ is called a quadratic majorizer of the data-fidelity term ¢ as it is a tangent to ¢ at

xT = x and lies above g everywhere else, that is

qglzt,x) > g(x") V', xzecR" (2.18)

q(xz,x) = g(x) Ve e R" (2.19)
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PGM obtains its solution to the optimization problem (2.10) by minimizing the sum of the

quadratic majorizer ¢ and the regularizer function r at iteration k > 1 as

xh = argelrkynin {q(z, 2" ") +r(x)} (2.20)
= a;gegnin {g(azk_l) + V(" T (x — ") + %Hm — "2+ r(m)} (2.21)
—argmin{ o — (2~ Vgl )P+ (o) | (2.22)
= proxwﬁ(.ﬂck_1 — V(" h)). (2.23)

By splitting the updates into two steps, we obtain the following widely-adopted form of PGM

with the update in iteration k£ > 1 being

2F bt — Vg () (2.24a)

x* « prox,.(z"), (2.24b)

where v > 0 is usually referred to as the step-size parameter. When imaging system is linear

and g corresponds to the least-square penalty shown in Eq. (2.12), Vg is given as
Vg(a) = AT(Az — y), (2.25)

where T denotes the transpose operation for a real-valued matrix.? It can be shown that
when Vg is Lipschitz continuous with constant L > 0, PGM converges for any v € (0,1/L] to

a minimizer of the objective function f with rate O(1/t), where ¢ > 1 is the number of PGM

2If a matrix is complex-valued, T denotes the conjugate transpose operation.
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Algorithm 1 PGM/APGM Algorithm 2 ADMM

1: input: °=s"€R", v>0,0>0,and L input: z° € R", s =0,y > 0, and
{@ }ren o>0

2: for k=1,2,... do 2: for k=1,2,... do

3 2k« g1 — 4Vg(sh 1) 3: z"  prox (zF1 — sF71)

4 x¥ « prox,,(zF) 40 xb prox,(2F + 5571

5 s b+ (g1 — 1) /qi) (2" — 1) 5 sk« sh7l 4 (2F — xF)

6: end for 6: end for

iterations [17]. PGM can be further accelerated by adopting a sequence ¢ in each iteration

2k sF Vg (st (2.26a)
b proxw(zk) (2.26b)
-1
sF b LT D gk gk, (2.26¢)
Ak

This accelerated version of PGM is known as accelerated prozimal gradient method (APGM),
also referred to as fast iterative shrinkage/thresholding algorithm (FISTA) [16]. Particularly,
the values for {g;} = 1 and {qx} = 3 <1 +4/1+ 4q§_1> for all k > 1 serve as a switch between
the traditional form of PGM and APGM. In this manuscript, we will use the sequence {q;}
as a mechanism for switching between the methods. It can be shown that APGM converges
to the minimizer of the objective function f with rate O(1/t*) for any step-size v € (0,1/L],
which has been proven to be optimal for gradient-based methods [137]. A summary of PGM
and APGM is shown in Algorithm 1.

Alternating Directions Method of Multipliers (ADMM). PGM requires the gradient
computation of the data-fidelity term g. ADMM [144] is an alternative proximal method

to PGM when such gradient is not accessible due to the differentiability of the data-fidelity
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term. ADMM algorithm solves problems in the general form

min ¢g(z)+r(x) st. Pr+Qz=c, (2.27)

where x € R", z € R”, P € RP*" @ € RP*™ and ¢ € RP. Specifically, when P = I,

Q = —1I and ¢ = 0, problem (2.27) can be simplified as

min g(z)+r(x) st x=z, (2.28)

which is a constrained version equivalent to our optimization problem (2.10). The only
difference from the general unconstrained problem (2.10) is that the variable & has been split
into two parts, called & and z here, with the objective function separable across this splitting.
To derive the solution of ADMM for (2.28), let’s assume g and r are convex and form the

augmented Lagrangian [139)]

Lﬁ(zawau’)
1
=g(2) +r(@) +p'(z—z) + 5Hz—avH2 (2:29)
1 gl
=g<z>+'r’(w)+5llz—w+w||§— §Hull2 (2.29b)

where 7 > 0 is a regularization parameter and p € R™ is the dual variable. By introducing

the scaled dual variable s == ~yu, we obtain the following scaled augmented Lagrangian
( ) =9(2) () _1 |z — Hz—_l I H2 (2.30)
L.(z,x,s z)+r(x)+ z—x+s s||. .
v ) Ay g 27 2

Following method of multipliers [139], the augmented Lagrangian can be minimized jointly

and iteratively with respect to the two primal variables  and z, where in each iteration

19



(2%, ") < argmin L, (z,z,s"1) (2.31a)
8" M (28— 2F). (2.31Db)

The algorithm ADMM obtain its final form by simplifying the joint optimization of @ and z

to an alternating or sequential fashion, which accounts for the term alternating direction

2« argmin L (2,2 s"71) (2.32a)
z€R”

x" « argmin L, (2", z,s" ) (2.32b)
zeR™

sP o sF 4 (2 — ). (2.32¢)

By adopting the definition of proximal operator defined in (2.14), we have

1
argmin L (z, "', s" 1) = argmin g(2) + — |z — a" " + *1?

zER" zER" 2"}/

= prox, ("' — ") (2.33a)
1

argmin L. (2" @, s 1) = argminr(z) + —||2* — @ + s* 1|

zER™ TERM 2y

= prox,,. (2" + s*71), (2.33b)

which leads to the final form of ADMM algorithm, as summarized in Algorithm 2 (where s°

is initialized with 0). Different from PGM, ADMM computes the proximal prox,, instead of

the gradient on the data-fidelity term g. Particularly, when g(z) = || Az — y||? (assuming
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linearity of the forward mode and AWGN), the close-form solution of prox., can be derived as

.1 Y
prox (@) = argmin { 3112 ~ ol + 4= -yl |

z€R™

= [T +~ATA] Y (x +vATy). (2.34)

Therefore, ADMM is known to be fast for forward operators that can be inverted efficiently [7,
126, 193], while PGM is well suited to nonlinear forward models where prox_(-) is computa-
tionally expensive to evaluate [91, 94]. Theoretically, there are also many convergence results
for ADMM discussed in the literature. For example, by assuming the data-fidelity g and
regularizer r are convex, closed, and proper, 1) the residue between x* and z* converges to 0
as t — 00, 2) dual variable s convergence to a dual optimal point, and 3) and the objective
function (2.28) converges to its minimizers at the rate of O(1/t). Although the convergence
rate of ADMM is s suboptimal compared with O(1/t?) convergence rate of APGM, in prac-
tice, it often converges to modest accuracy within a few iterations [2]. Therefore, ADMM is
practically favored in cases when modest accuracy is sufficient, such as large-scale problems

we consider in the Chapter 6.

2.2.2 Learning-based Methods

In the past few years, DL has gained great popularity in solving imaging inverse problems
due to its excellent performance (see reviews in [100, 119, 127, 140, 187]). Different from the
model-based optimization approach where an explicit prior is needed, deep neural networks
provide a state-of-the-art tool for representing and enforcing implicit but sophisticated
structural information of images through end-to-end learning. Generally, such methods are
based on training the weights of a DNN over a dataset in order for the network to produce an

accurate estimate of the desired images. The traditional supervised learning for a DNN F,
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Weights update

Figure 2.2: An illustration of the widely-used DL framework. The input to the network is
initialized with the simple backprojection of the measurements y. The weights of the network
are trained by minimizing the loss between its output Z and the corresponding ground truth
image @« on a large number of training samples.

characterized by its parameter ¢ is formulated as an optimization problem over a training

set consisting of data pairs {&;, z;} as follows

N
b — argmin%ZE(}}g(ii),wi), (2.35)
¢ i=1

where ¢ indexes the samples in the training set of N samples. The loss function £ measures
the discrepancy between the reconstruction &; = F,(&;), which is generated by the neural
network from low-quality images «;, and the ground-truth ;. Typical choices for £ include
the ¢ and the ¢, distances. For a linear forward model, the low-quality image @; can be
ATy;, which is a simple backprojection from measurements. This minimization problem can
be solved by using stochastic gradient-based optimization algorithms such as Adam [25, 99].
Once the optimal set of parameters ¢* are learned by minimizing the optimization problem
on the training dataset, which consists of many samples, the well-trained network Fg- can
be applied to unseen data for image reconstruction tasks. Figure 2.2 shows a widely-used
end-to-end DL scheme for solving inverse problems. Many DNN architectures were designed
targeting at different imaging applications. Here we introduce two that are close to our work

presented in the following chapters of this dissertation, known as U-Net and DnCNN.
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U-Net. U-Net is a well-known CNN named after its U-shaped architecture. U-net was
first proposed in [155] for image segmentation. Its design was later adopted in [87] for
image reconstruction, where it achieved the state-of-the-art performance in the context of
X-Ray CT imaging. The U-shaped architecture of U-Net results from a combination of a
contracting path and an expanding path, where the contracting path relies on a repeated
usage of convolutions (conv), each followed by a rectified linear unit (ReLU) and a max
pooling operation to encode the spatial information, and the expanding path uses sequence of
up-convolutions and concatenations with high-resolution features from the contracting path
to increase the resolution of the output. The spatial information is reduced while feature
information is increased during the contracting path, making the effective size of its filters in
the middle layers larger than that of the early and late layers [87]. Such multi-scale structure
leads to a large receptive field of the CNN that has been shown to be effective for removing

globally spread imaging artifacts typical in medical imaging [73, 102].

DnCNN. DnCNN is a popular CNN architecture for image denoising, for which the original
design can be found in [216]. DnCNN consists of a sequence of layers, where the first is a conv
layer followed by ReLU, the middle ones are the combination of conv, batch normalization
(BN) and ReLU, and the last is a simple conv. Different from U-Net, DnCNN does not change
the spatial resolution of inputs across layers. DnCNN is trained using the strategy of residue
learning , where its outputs are the artifacts in the inputs, and the clean predictions are
obtained by subtracting those artifacts from the inputs. After it was proposed, DnCNN has
gained significant popularity for its simple implementation and start-of-the-art performance

in various denoising tasks.
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Discussion

So far, we have reviewed some key ideas of the two approaches in solving inverse problems—
classical model-based methods and recent learning-based methods. In particular, model-based
methods look into the problem by integrating forward models and handcrafted designed
explicit prior knowledge. While learning-based methods attempt to use the representation
power of deep neural networks to learn the sophisticated structural information and statistical
priors through end-to-end training. The two approaches have all established great success in
various imaging tasks, showing distinct advantages from different perspectives. I will now
briefly discuss the pros and cons provided by those two approaches and from there, highlight

the benefits of their integration in advanced algorithm design.

On the one hand, the model-based optimization methods can explicitly guarantee the data-
consistency and desired properties in the reconstruction by taking advantages of priors and
forward models regarding the unknown image. However, the design of a good prior term is
not easy as it is highly dependent on the estimation of distribution of the unknown image.
Meanwhile, the iterative mechanism in solving the objective function (2.10) limits their
application in scenarios with large-scale data and high speed computing requirements. Those
drawbacks therefore reduce the popularity of such model-based optimization approaches in

solving modern complex imaging problems.

On the other hand, DL shows its advantages over the traditional model-based approaches as
it shifts the prior design from explicit human estimation to an implicit manner driven by data.
Powered by a large number of data, this end-to-end learning approach provides a more flexible,
sophisticated, and data-adaptive tool for characterizing imaging priors. This representation
power has been widely demonstrated in various image reconstruction applications, showing

the state-of-the-art performance [119, 127, 140, 187]. However, as the information of the
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forward model is generally not utilized in the pipeline, one typical loss of such learning
scheme is the data-consistency guarantee, which degrades the reliability and robustness of
the reconstruction. Meanwhile, the common need for a huge amount of training data also
limits its application in some scenarios such as medical imaging where paired training data is

usually inaccessible.

Therefore, it can be seen that model-based methods benefit most from their utilization of
forward models but are limited to the prior design, while learning-based methods benefit
most from the advanced prior representation but suffer from the missing of imaging models.
Those two approaches naturally compliment to each other, resulting in an appeal for their
integration. In the next section, we introduce some advances that realize such integration,

completing the background of this dissertation.

2.3 Integrating Models and Learning for Imaging

As discussed above, model-based optimization methods and end-to-end learning-based meth-
ods offer complimentary strategies for handling image reconstruction problems. Modern
complex and large-scale image reconstruction problems require fast and reliable methods
that can combine the benefits of both. In this section, we will introduce some advances in
such combination. Note that our goal here is not to include all the existing methods but to
highlight some key ones related to the dissertation. We refer the interested readers to [23, 64,

82, 83, 95, 106, 130, 131, 145, 162, 171, 174] for a boarder range of methods and discussion.

2.3.1 Using Learning Priors inside Model-based Methods

One way to integrate models and learning is to replace the handcrafted priors in the model-

based approaches by deep-learned priors. By leveraging the power of deep learning as priors,
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such model-based methods can be greatly boosted. In this section, we introduce the following

two known approaches originated from this idea.

Plug and Play Priors (PnP). Plug-and-play priors (PnP), first proposed in [186], is
a methodology for regularized image reconstruction that specifies the prior through an
image denoiser. It is motivated by the observation that the proximal operator (2.14) can be
mathematically interpretative an MAP image denoiser for AWGN. To see this interpretation,

let’s consider the following AWGN denoising problem with variance of 7
y=x+e where e~ N(0,7I). (2.36)

Following the similar derivation in Eq. (2.7) and Eq. (2.8), we can establish the the MAP

estimation for x as

- (1
Iyiap = argmin {—||a: — sz + Tr(ac)} = prox,,.(y), (2.37)
xER? 2

which is the proximal operator involved in proximal algorithms. The PnP methodology,
proposed to replace the the proximal operator prox_,.(-), within a proximal algorithm, with a
more general image denoiser D(-), such as BM3D [44] or DnCNN [216]. Two popular PnP
algorithm, PnP-PGM (also referred to as PnP-ISTA) [91] and PnP-ADMM [186], which are
originated from proximal-based algorithm PGM and ADMM, are summarized in Algorithm 3
and Algorithm 4, where in analogy to prox,,(-) we also introduce the parameter o > 0 to
characterize the denoising strength of the denoiser D,(-). Unlike traditional regularized
optimization, PnP does not require the prior to be expressible in the form of a regularization
function. This flexibility enables PnP algorithms to exploit the most effective image denoisers,
especially powerful denoising CNNs, leading to their state-of-the-art performance in various

imaging tasks [31, 35, 91, 141, 166, 177, 217]. It is worth briefly mentioning that learned
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Algorithm 3 PnP-PGM/PnP-APGM Algorithm 4 PnP-ADMM
I input: x°=s"cR", v>0,0>0,and 1 input: z° € R", s =0, v > 0, and

{Qk}keN o>0
2: for k=1,2,... do 2: for k=1,2,... do
3: 2k« g1 — 4Vg(sh 1) 3: 2k proxwg(zc"‘:_1 — sk 1)
4. ¥+ D,(2F) 4. xF + D, (2" + sF71)
5: sF e + ((groy — 1) /qp) (xF — 2+ 1) 5 sk sh7l 4 (2F — xF)
6: end for 6: end for

denoisers have also been adopted for a class of algorithms in compressive sensing known as
approximate message passing (AMP) [64, 130, 131, 174]. The key difference of PnP from
AMP is that it does not assume random measurement operators. A recent line of work has
also investigated the recovery and convergence guarantees for priors specified by generative
adversarial networks (GANs) [23, 82, 83, 106, 145, 162]. PnP does not seek to project its
iterates to the range of a GAN;, instead it directly uses the output of a simple AWGN denoiser
to improve the estimation quality. This simplifies the training and application of learned

priors within the PnP methodology.

Regularized by Denoising (RED). Note the use of an arbitrary denoiser inside PnP
immediately results in the missing of the objective function as it is usually hard to relate
a denoiser as a regularizer function. The RED framework, first proposed in [153], is an
alternative scheme where the denoiser D,(-) can sometimes lead to an explicit regularization
function. The widely-used gradient-method-based RED algorithm RED-GM (also called

steepest descent variant of RED (RED-SD)) updates its iteration as

b = 2" — 4G(2F!) with G(x) = Vg(z) + 7(x — Ds(x)), (2.38)
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where v > 0 is the step size and 7 > 0 is a regularization parameter that balances the strength
between the gradient of the data-fidelity term and the noise residual. RED-GM algorithms

seek a fixed point x* that satisfies

G(z*) = Vyg(x*) + 7(x* — D,(x*)) = 0. (2.39)

Equivalently, * satisfies

x* € zer(G) = {x € R": G(x) = 0}. (2.40)

When the denoiser is locally homogeneous and has a symmetric Jacobian [149, 153], the noise

restdue term

R(z) = 7(x — D,()) (2.41)

corresponds to the gradient of the RED regularizer

r(x) = (1/2)x" (x — D, (), (2.42)

which enables a simple interpretation of RED as an instance of the regularized optimiza-
tion (2.10). For the reference, we summarize these two conditions on the denoisers as

follows:

1) (Local) Homogeneity [153]. A denoiser applied to a positively scaled image should

result in a scaled version of the original image, that is, for any (small) ¢ > 0

D,(c-x)=c-D,(x).
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This condition actually implies

D,(x) = VD, (x)x.

2) Symmetric Jacobian [149]. Denoiser D, has a symmetric Jacobian, that is

VD, (z) = [VD, ()]

It was shown that many popular denoisers (e.g. BM3D, TNRD, and DnCNN) cannot meet
these conditions [149], which consequently breaks the connection between the noise residue
term in Eq. (2.41) and the explicit regularizer function in Eq. (2.42). Nevertheless, the
gradient-based updates of RED-SD in (2.38) still lead to an interpretable fixed-point solution
illustrated in Eq. (2.39), making RED a popular framework for image reconstruction. The
excellent performance of RED together with learned CNN denoisers has been reported in a
broad range of imaging applications such as super-resolution, phase retrieval, and compressed

sensing [129, 170].

2.3.2 Including Imaging Models inside Learning-based Methods

As an alternative to PnP/RED, the combination of deep learning and model-based opti-
mization can also be realized by merging the model information into the learning approach.
This idea has been discussed in various work [3, 115, 182, 214]. We use the following two

approaches as examples to elaborate this idea.

Deep image prior (DIP). DIP [185] is a recent regularization framework that uses the
architecture of the CNN itself as an prior for image reconstruction without data-driven

training. Given a CNN F characterized by its parameter ¢, DIP optimizes ¢ by minimizing
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Figure 2.3: An illustration of the widely-used DU framework 7y, which contains multiple
recursive layers and each layer contains a data-consistency module DC and a CNN module
Dg. Note here we assume all Dy across layers share the same architecture and weights but
they can also adopt different architectures. The input to the network are the measurements
y and their simple backprojection ATy to the image domain. The weights of the CNNs Dg
are trained by minimizing the loss between the output Z and the corresponding ground truth
image & on many training samples.

the loss function L£(A(Fy(2),y), where z is a randomly vector sampled from Gaussian
distribution and y is the noisy measurements illustrated in the forward model (2.1). The
intuition behind DIP is that natural images can be well represented by CNNs, which is not
the case for the random noise and certain other image degradations. DIP was shown to
achieve remarkable performance on a number of image reconstruction tasks [65, 112, 185].
Note the success of DIP is benefited from not only the prior presented by the CNN, but also
forward operator A inside the loss function that enforces the data-consistency. A similarly
idea has also been adopted in the recent work of self-supervised learning, where a model is
trained using a pretezt (or auziliary) task, but tested on the actual desired task [38, 72, 98,
116, 161, 182, 206]. Such learning can also enabled by utilizing the information of forward
operator inside the loss function. We will illustrate more details of this idea on a specific

application in Chapter 8.

Deep Unfolding/Unrolling (DU). DU is a combination of DL and model-based iterative
algorithm that interprets the iterations of an image recovery algorithm as layers of a neural
network and trains it end-to-end in a supervised fashion [1, 3, 75, 79, 134, 205, 214]. A

typical DU architecture Ty is shown in Fig. 2.3, where it contains multiple recursive layers and
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each layer contains a data-consistency module DC and a CNN module Dy with @ being the
trainable parameters. Such unfolding methods have been shown to be effective in a number
of problems [21, 79]. Many PnP/RED algorithms that combine the forward operator and the
DL prior (discussed in Section 2.3) have also been turned into DU architectures by truncating
the algorithm to a fixed number of iterations, producing high-quality results within fewer
iterations. But unlike in PnP/RED, the CNN component Dg in DU is trained jointly with
the imaging model, leading to an image prior optimized for a given inverse problem. In this
dissertation, with an emphasize on model-based deep learning, we will develop several DU

algorithms for different imaging tasks.

2.4 Summary

In this chapter, we introduced the background of computational imaging, including how
to model the imaging problems as inverse problems and how to statistically interpret such
problems. We reviewed the classical model-based and popular learning-based methods for
solving inverse problems and highlighted the benefits of their integration. We then introduced
some advanced algorithms that successfully realize such integration. In the following chapters,
with an emphasis on model-based deep learning methods, we will introduce our work in
integrating models and learnings for computational imaging. Our contribution includes
both the development of novel algorithms and rigorous theoretical analysis. As a reference,
we summarize and provide useful mathematical materials including the definitions and
propositions in monotone operator theory that are related to our analysis in the rest of the

dissertation in Appendix B.
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Chapter 3

Overview

LUG-AND-PLAY PRIORS (PNP) is a simple yet flexible methodology for imposing
P statistical priors without explicitly forming an objective function [166, 186]. As
what discussed in Section 2.3, PnP algorithms alternate between imposing data consistency
by minimizing a data-fidelity term and imposing a statistical prior by applying an AWGN
denoiser. By adopting the advanced denoisers such as the ones trained with DNNs, PnP
integrates physical and learned models thus achieving its state-of-the-art performance in a
variety of applications [4, 49, 190, 215, 217]. However, the use of general denoisers blurs the
connection between PnP and classical regularized optimization, and brings new challenges for
statistical interpretation of PnP. In this chapter, we review PnP and discuss its theoretical

challenges.

3.1 Recap of PnP

Let’s recall the key idea and derivation of PnP introduced in Section 2.3. As discussed in

Chapter 2, image formation is naturally posed as an inverse problem, which is often ill-posed.
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Regularized optimization is a widely adopted framework for dealing with such ill-posed inverse
problems by taking advantage of prior information regarding the unknown image. Since
imaging priors are often nondifferentiable, proximal algorithms [144], such as PGM (also
referred to as ISTA) and ADMM (see Algorithm 1 and Algorithm 2), are extensively used
in image reconstruction. These algorithms avoid differentiating the regularizer by using the
proximal operator prox_.(-) (see definition in Eq. (2.14)) on the prior/regularizer function
r [144]. The observation that the proximal operator is an image denoiser for AWGN prompted
the development of PnP [186], where the operator prox,,.(-), within a proximal algorithm, is

replaced with a more general image denoiser D, (-)

replace prox,,.(-) with DJ(-)\

PGM / ADMM s PnP-PGM / PnP-ADMM. (3.1)
Proximal:;lgorithms PnP al?g,rorithms

The two known PnP variants derived from PGM and ADMM are summarized in Algorithm 3
and Algorithm 4, known as PnP-PGM (also refereed to as PnP-ISTA) ands PnP-ADMM.
Recent results have shown that by using advanced image denoisers in iterative image recon-

struction, PnP algorithms achieve state-of-the-art performance in many imaging problems [35,

91, 141, 166, 177, 217].

3.2 Theoretical Challenges

PnP algorithms have been successfully combined with many powerful denoisers, such as
DnCNN [216], for exploiting learned imaging priors while enforcing fidelity to the measured
data [128, 158, 168, 181, 200]. However, the flexibility of using powerful denoisers also brought
some new challenges compared to proximal methods. For example, we cannot interpret the
iterates of PnP as the minimization of an objective function as not every denoiser is expressible

in the form of a regularizer. Without an objective function, the convergence analysis of PnP
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is unclear. Also for many denoisers, we do no have tunable parameters that can control their

influence within PnP. In the table below, we summarize these benefits and challenges.

Benefits Challenges
1. No need for the handcrafted image pri- 1. Missing connection to an objective func-
ors and no need for these priors to be tion and the corresponding convergence
expressible in the form of a regulariza- analysis.

tion function.
2. Missing control on the relative strength

2. Excellent or even state-of-the art perfor- between the prior imposed by the de-
mance in many imaging tasks. noisers and the data fidelity.

To address these challenges, in the following two chapters, we propose methods and conduct
analysis for better understanding PnP with different type of denoisers. We present: 1) a
denoiser scaling technique that boosts the performance of PnP, and 2) a theoretical analysis

that establishes the convergence and statistical interpretation for PnP.
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Chapter 4

Boosting the Performance of
Plug-and-Play Priors via Denoiser

Scaling

HE use of image denoisers as imaging priors brings a lot of flexibility to PnP. For
T example, unlike traditional regularized optimization, PnP does not require the prior
to be expressible in the form of a regularization function. This flexibility enables PnP
algorithms to exploit the most effective image denoisers, leading to their state-of-the-art
performance in various imaging tasks. However, many powerful denoisers, such as the ones
based on CNNs,; do not have tunable parameters that would allow controlling their influence
within PnP. To address this issue, in this chapter, we introduce a scaling parameter that
adjusts the magnitude of the denoiser input and output. We theoretical justify the denoiser
scaling from the perspectives of proximal optimization, statistical estimation, and consensus

equilibrium. Finally, we provide numerical experiments demonstrating the ability of denoiser
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scaling to systematically improve the performance of PnP for denoising CNN priors that do

not have explicitly tunable parameters.?

4.1 Introduction

The scaling parameter we introduce for PnP is independent from the intrinsic parameters of
the denoiser or iterative algorithms. For denoisers based on CNNs, this parameter additionally
avoids training several network instances at multiple noise levels and therefore potentially
leads to the optimal performance. We summarize our key contributions on this topic are as

follows:

o We introduce a new denoiser scaling technique that simply scales the denoiser input by
a positive constant and its output by the inverse of the same constant. The technique
is broadly applicable to all PnP algorithms, and provides a mechanism to adjust the

denoiser strength in a way that is independent of traditional approaches.

o We present a detailed theoretical justification of denoiser scaling for several classes
of denoisers. We show that, unlike the intrinsic parameters of the denoiser, the new
scaling parameter can be explicitly related to the trade-off between the data-fidelity

and the prior.

o We extensively validate denoiser scaling by showing its potential to address the subop-
timal performance of denoising CNNs within PnP algorithms. Our results show that
denoiser scaling is a simple yet effective approach for boosting the performance of CNN

priors within PnP.

3This chapter is based on our paper [200].
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Algorithm 5 Scaled PuP-PGM/PnP-APGM Algorithm 6 Scaled PnP-ADMM
1: input: z° =" € R, v >0 0 >0, Ll:input: € R", s"=0,7>0,0>0

>0 and {qxren and p > 0
2: for k=1,2,... do 2: for k=1,2,... do
3 2P sl —4Vg(shT) 3 zF <« prox  (xF! —sMT)
4. xF + D, (2%) 4. @b« D, (2" + s"71)
5: sF—xF + (g1 — 1) /qr) (=" — 2*1) 5 8P« sh71 4 (2F — )
6: end for 6: end for

4.2 Background

To explain the idea of our scaling technique, let’s consider the recovery of an unknown image
x € R™ from noisy measurements y € R™ for a linear system defined in (2.3). Following the
discussion in Section 2.1.2, a common approach is to formulate the problem as regularized

optimization, expressed as an optimization problem of the form

x =argmin f(x) with f(z)=g(x)+ \r(x), (4.1)

P ASING

where g is the data-fidelity term, r is the regularizer, and A > 0 is a regularization parameter

that adjusts their relative strengths. And by setting

g(x) = —log(pyl(ylz)) and r(z)=—(1/A)log(ps(x)),

where p,|, denotes the likelihood function characterizing the imaging system and p, denotes
a probability distribution over «, one obtains the classical MAP estimator discussed in 2.1.2.
Proximal algorithms [144] enable efficient minimization of nonsmooth functions, without

differentiating them, by using the proximal operator prox.,(z) defined in Eq. (2.14), where
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7 > 0 is a scaling parameter that controls the influence of r. Note that the proximal operator

can be interpreted as a MAP image denoiser for AWGN with variance of 7.

The observation that the proximal operator is an image denoiser for AWGN prompted the
development of PnP [186], where the operator prox_,.(:), within a proximal algorithm, is
replaced with a more general image denoiser D(-), such as BM3D [44] or DnCNN [216]. In
traditional proximal optimization, the scaling parameter 7 of the proximal operator (2.14) is
directly related to the regularization parameter A\. For example, by setting 7 = yA within
traditional ADMM or PGM, one minimizes the objective function in (4.1). However, this
explicit relationship between the scaling parameter and the regularization parameter is lost
in the context of more general denoisers. Since some popular image denoisers, such as BM3D,
accept a parameter corresponding to the noise variance, current PnP algorithms generally
treat it as a proxy for the regularization parameter. For example, if ¢ in the notation for
D,(-) in Algorithm 4 and Algorithm 3 denotes the standard deviation parameter accepted by
the denoiser, the common strategy is to set it as o = /7y [35]. However, this strategy does
not work with all denoisers, since some do not have a dedicated parameter for noise variance.
In particular, many denoising CNNs do not have a parameter for the noise standard deviation,
which is often addressed by training multiple neural nets at different noise levels and using o
to select the most suitable one for a given problem. The denoiser scaling technique introduced
in the next section enables the control of the regularization strength for denoisers that have

no intrinsic parameters analogous to o.

4.3 Proposed Method

We introduce denoiser scaling for explicitly controlling the regularization strength in PnP.

Remarkably, the technique can be theoretically justified from multiple perspectives, including
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from that of proximal optimization, statistical estimation, and consensus equilibrium [31].
Our experimental results in Section 6.5 corroborate the ability of denoiser scaling to control

the relative influence of the denoiser.

4.3.1 Denoiser Scaling

Consider an image denoiser D : R™ — R", where we omit the parameter o from the notation

as it is not available for all denoisers. We define the scaled denoiser as

Du(z) = (1/w)D(uz), zcR", (4.2)

where we will refer to the parameter p > 0 as the denoiser scaling parameter. The scaled
PnP algorithms equipped with such denoiser scaling technique is summarized in Algorithm 5
Algorithm 6, where in in line 4 the scaling parameter p is adopted. Note that the scaling in (4.2)
is complimentary to any intrinsic parameter of D(+). For example, if the underlying denoiser
D(-) additionally accepts o as a parameter, D, (-) will also accept the same parameter. However,
as discussed below, the parameter p will enable control of the strength of regularization when

o is not available.

4.3.2 Proximal Operator Denoisers

We first consider the case in which D(-) is an émplicit proximal operator of some unknown r,
which is a common interpretation for PnP algorithms [166]. For convenience, we assume r
to be closed, convex, and proper [144]; however, this assumption can be dropped as long as

prox,(-) is well defined for the given r. We state the following result for the scaled denoisers.
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Proposition 4.1. Suppose D(z) = prox,(z), where r is a closed, convex, and proper function.

Then, we have

D.(2) = prox,—z,(,)(2), =z €R" (4.3)

Proof. See Appendix C.1.

Proposition 4.1 indicates that by scaling an implicit proximal operator, one directly adjusts
the strength of regularization via the scaling of the regularizer by 1/u? and of the input to r
by p. While the relationship between i and the regularization parameter in front of r is not
linear, y still provides an explicit mechanism to tune the denoiser. If the denoiser corresponds

to a 1-homogeneous regularizer r, we have r(u-) = p - r(-), which directly implies

D.(z) = prox,-1,(2), =z €R" (4.4)

This means that the denoiser scaling becomes equivalent to tuning the traditional regulariza-
tion parameter in regularized optimization. Since any norm and semi-norm is 1-homogeneous,
the strength of many implicit and explicit regularizers, such as the ¢/;-norm or TV penalty,
can be directly adjusted through denoiser scaling. This equivalence is confirmed numerically

for the TV denoiser in Section 6.5.

4.3.3 Mean Squared Error Optimal Denoisers

We now consider the case of a denoiser that performs the minimum mean-squared error
(MMSE) estimation of a vector from its AWGN corrupted version [71, 93, 96]. MMSE
denoisers are optimal with respect to the ubiquitous image-quality metrics, such as signal-to-

noise ratio (SNR). Additionally, many popular denoisers (such as BM3D and certain denoising
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CNNs) are often interpreted as empirical MMSE denoisers. We state the following result for
the scaled MMSE denoisers.

Proposition 4.2. Suppose D(:) computes the MMSE solution of the following denoising
problem

z=xz+n with x~p, and n~N(0I),

where I is an identity matriz. Then, the denoiser (4.2) computes the MMSE solution of

z=u+e with u~py(u) and e~ N(0,u?I).

Proof. See Appendix C.2.

Similarly to Proposition 4.1, Proposition 4.2 indicates that the scaling of the MMSE denoiser
enables the direct control of the strength of regularization via the scaling of the noise variance
by 1/u? and of the input to the prior p, by u. If p, assigns equal probabilities to all images
that have undergone rescaling, we have pg(1-) = pg(+), which implies that the scaled denoiser

directly adjusts the variance of AWGN in the MMSE estimation.

4.3.4 Consensus Equilibrium Interpretation

Consensus equilibrium (CE) [31] is a recent framework for interpreting the solution of
regularized optimization methods in terms of a set of balancing equations for the forward and
prior models, without an explicit cost function The solutions obtained by both PnP-ADMM

and PnP-PGM can be expressed in terms of the same set of CE equations

x=F(x+s) (4.5a)

x =D(x —s), (4.5b)
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Figure 4.1: Test images used for the quantitative performance evaluation. From left to right:
Cameraman, House, Pepper, Starfish, Butterfly, Plane, Parrot.

where F(:) = prox,,(-) and v > 0 is an algorithm tuning parameter. We use the CE

framework to state the following result for the scaled denoisers.

Proposition 4.3. Let g be a smooth, convex function and D(-) be a continuous denoiser.

The fized point (x,s) of PnP-ADMM and PnP-PGM for the scaled denoiser satisfies

HT = PrOX () ./ (HE + )

px =D (px —s).

Proof. See Appendix C.3.

This result establishes a direct relationship between the scaling parameter ;1 > 0 and the
rescaling of g with respect to the denoiser. Note that while Proposition 4.1 and 4.2 discuss
the impact of denoisier scaling on the implicit prior, Proposition 4.3 highlights its impact on
the relative influence between the denoiser and the data-fidelity term via the weighting in
front of ¢g. Since our only assumption is the continuity of the denoiser, Proposition 4.3 also
relaxes the assumptions on the denoiser. While the relationship between ;1 and the set of
equilibrium points is nontrivial, the proposition implies that one can still adjust the amount

of regularization by tuning pu.
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Table 4.1: SNR performances of several image denoisers at different noise levels.

Input SNR TV BM3D DnCNN
Scaled Opti- Un- Scaled Opti- Un- Scaled Opti-
mized scaled mized scaled mized
15 dB 22.77 22.77 16.58 24.55 24.51 16.49 24.30 24.21
20 dB 25.80 25.80 25.58 27.34 27.34 24.83 27.42 27.23
25 dB 29.09 29.09 29.61 30.43 30.43 29.83 30.51 30.35
30 dB 32.66 32.66 33.49 33.63 33.73 33.54 33.82 33.72

4.4 Numerical Validation

In this section, we demonstrate the ability of denoiser scaling to boost the performance of
PnP. Our experiments consider imaging inverse problems of the form y = Ax + e, where
y € R™ denotes the measurements, e € R™ is a vector of AWGN with zero mean and
standard deviation o, and A € R"™*™ denotes the forward operator. We focus on three
inverse problems: image denoising, subsampled Fourier optimization, which commonly used
in magnetic resonance imaging (MRI), and single image super-resolution (SR), where the
forward models correspond to the identity matrix, radially subsampled two-dimensional
Fourier transform, and blurring-downsampling operator, respectively. For each simulation,
the measurements are corrupted with AWGN quantified through the input signal-to-noise ratio
(SNR). We will consider three denoisers for PnP: TV, BM3D, and our own residual DnCNN™.
DnCNN”™ is a simplified variant of the standard DnCNN [216], where our simplifications
correspond to the removal of batch-normalization layers and reduction in the total number of
layers (see Appendix C.4 for details). This simplification reduces the computational cost of
applying the denoiser across multiple PnP iterations. We use o to parameterize BM3D and
DnCNN*. For BM3D o represents the parameter of the denoiser representing the standard
deviation of noise and for DnCNN™ it represents the standard deviation of the noise used

for training the CNN. We follow [40] and use 400 images of size 180 x 180 to train three
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Original image Corrupted image DnCNN* (Unscaled) DnCNN* (Scaled) DnCNN* (Optimized)

Figure 4.2: Tllustration of denoiser scaling on the color image Lighthouse. The noise levels is
o = 30. DnCNN" (Optimized) corresponds to the CNN denoiser trained using the correct
noise levels. On the other hand, DnCNN* (Unscaled) and DnCNN”* (Scaled) use the same
CNN trained at a mismatched noise level of o = 20. By adjusting p, DnCNN™ trained at a
suboptimal ¢ can be made to match the performance of DnCNN™ trained using the correct
noise level.

DnCNN* instances, on natural grayscale images, for the removal of AWGN at three noise
levels, o € {1,5,10}. For some of the experiments, we also use a constrained variant of
BM3D, where o is restricted to the same set. For the medical knee images, we follow the
work in [169] to train our 7-layer DnCNN™ on NYU fastMRI dataset [56] for o € {1,5,10}.
For color images, we use DnCNN™ trained on 4744 images from the Waterloo Exploration
Database [121] and use the CBM3D denoiser [43]. For all experiments in SR and Fourier,
we use PnP-PGM in Algorithm 3 as the reconstruction algorithm with total 500 iterations,
where as a hyperparameter, the scaling parameter p is fixed for each iteration. All the
quantitative results in the tables are averaged over seven test images shown in Figure 4.1
with hyperparameters optimized individually for each image for the best SNR performance
using grid search. All visual results are shown with SNR value displayed directly on the

images. None of the test images were used in training.

Table 4.1 shows the ability of denoiser scaling to adjust the denoising strength for three
different image denoisers at four input SNR levels: 15 dB, 20 dB, 25 dB and 30 dB. In the

table, TV (Optimized) is obtained by tuning the regularization parameter A\ for each test
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Table 4.2: Average SNRs obtained for different inverse problems and image denoisers.

A Input SNR TV BM3D DnCNN
Scaled Opti- Un- Scaled Opti- Un-  Scaled
mized scaled mized scaled
Fourier 30 dB 27.15 27.15 27.29 28.49 28.51 27.92 28.44
40 dB 27.79 27.79 28.97 29.17 29.21 29.72 29.89
SR 30 dB 19.86 19.87 14.32 20.65 20.64 13.59 20.05
40 dB 22.42 22.41 22.64 22.78 22.71 23.03 23.07
v —oo
- 10] DnCNN* (Optimized)
@ TV (Optimized)
é 1

-2 -2
logy 11 log, pt

-2
logy 1

Figure 4.3: The influence of the scaling parameter p on the denoising performance for Pepper
for AWGN with input SNR of 25 dB (0 = 7.23). We show the SNR evolution against u for
the variants of TV, BM3D, and DnCNN™ designed for the mismatched noise levels. The
horizontal line shows the performance of the corresponding denoiser optimized for input SNR
of 25 dB. Note how by adjusting u, one can achieve nearly optimal performance for all three
denoisers.

image. For TV (Scaled), we fix A = 1 and tune the scaling parameter p for the best result.
The performances of BM3D (Unscaled and Scaled) and DnCNN* (Unscaled and Scaled)
correspond to the best instance selected from the limited set of o € {1,5,10}. For reference,
we also show BM3D (Optimized), which uses fully optimized o, and DnCNN (Optimized),
which is trained on noisy images with the true input SNR. Table 4.1 highlights the equivalence
between TV with an optimized A and TV with A = 1, but optimized pu, which validates
eq. (4.4). Table 4.1 also shows that denoiser scaling significantly improves the performance
of sub-optimally tuned BM3D and DnCNN* to achieve the performance of the corresponding

denoiser with optimized o.
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Original image DnCNN* (14t = 0.36) DnCNN* ( u* = 0.68) DnCNN* (44 = 1.00) Corrupted image

DnCNN* (Optimized) MN: (Scaled) 22.83 dB
) = 119

g
24
Z DnCNN* (Unscaled) -w
15
0.2 0.68 1.16
o

Figure 4.4: The influence of the denoiser scaling parameter 1 on the denoising performance
of DnCNN™ on the color image Statue. The noise in the image corresponds to o = 30, while
DnCNN* was trained for the removal of noise corresponding to o = 20. The top row images
illustrate the visual performance at p values of 0.36, 0.68, and 1.00. The bottom plot shows
the SNR evolution against the parameter u for a wider range of values. The scaled DnCNN*
achieves its best performance at p* = 0.68. Note how unscaled DnCNN™ (= 1.00) leads to
an insufficient amount of regularization, while a smaller scaling parameter p = 0.36 leads to
oversmoothing. This figure highlights the ability of u to control the strength of regularization
with a CNN denoiser.

Figure 4.2 visually illustrates the performance of denoiser scaling on the problem of color
image denoising for AWGN of o = 30. In the figure, DnCNN* (Optimized) denotes to the
denoiser trained using the dataset with the correct noise level. On the other hand, DnCNN*
(Unscaled) and DnCNN* (Scaled) correspond to the same CNN instance, trained for noise
level o = 20. DnCNN* (Unscaled) uses o = 1, while DnCNN™ (Scaled) optimizes p for the
best SNR performance. By simply adjusting u, the suboptimaly trained DnCNN™ achieves

the performance of DnCNN™ trained using the correct noise level.

Figure 4.3 considers the problem of denoising an image with the input SNR of 25 dB, which

corresponds to the noise level 0 = 7.23. The figure shows the influence of the parameter
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Original image TV (Optimized) DnCNN* (Unscaled) DnCNN* (Scaled)

BM3D (Optimized)

26.38 dB 27.08 dB 25.54 dB 27.93 dB

Figure 4.5: Visual illustration of denoiser scaling on the subsampled Fourier operator and
one medical image Knee from the fastMRI dataset. The sampling ration is m/n = 1/3 and
input SNR is 30 dB. DnCNN” is selected from o € {1,5,10} that produces the best SNR
performance. DnCNN™ (Scaled) relies on the same CNN selected by DnCNN™ (Unscaled).
Note how DnCNN* (Scaled) improves the visual quality of results compared to DnCNN*
(Unscaled).

p for improving the performance of denoisers at mismatched values of 0 = 1, 5, and 10.
The SNR value after denoising is plotted against the logarithm of . For TV, we fixed the
regularization parameter \ to its optimal value for the noise levels o € {1,5,10} and then
adjusted the parameter u. For each plot, we also provide the performance of the denoisers
with optimized o. The comparison between unscaled denoisers at © = 1 and their scaled
counterparts demonstrate the potential of denoiser scaling to influence the final performance,
validating the theoretical conclusion that the denoiser scaling directly controls the strength
of regularization. This is particularly appealing for DnCNN”*, which does not have a tunable

parameter o.

Figure 4.4 visually and quantitatively illustrates the influence of the parameter u for color
image denoising. The DnCNN* trained on noise level o = 20 is applied for denoising an
image with a noise level 0 = 30. The performance of scaled DnCNN achieves its peak SNR

at u* = 0.68 and leads to either under- or over-regularization at either side of this value.

Table 4.2 shows results of image reconstruction for both Fourier and SR under the noise

levels 30 dB and 40 dB. Here, we fix 0 = 1 for both BM3D and DnCNN*. We also show
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DnCNN* (Unscaled)
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Figure 4.6: Results of SR simulation on color image Bikes. The input SNR is 40 dB. DnCNN*
is selected from o € {1,5,10} that produces the best SNR performance. DnCNN™ (Scaled)
relies on the same CNN selected by DnCNN* (Unscaled). One can see while DnCNN™ blur
out the details in some regions, DnCNN™ (Scaled) can generate images with more details and
sharper edges.

BM3D (Optimized), which uses fully optimized o. For Fourier, the measurement ratio is
set to be approximately m/n = 1/3. For SR, the low resolution (LR) image is simulated
by convolving the high resolution image (HR) with a Gaussian motion-blur kernel of size
19 x 19 from [112], followed by down-sampling with scale factor 2. Note that TV (Scaled) has
a fixed A = 1 and a scaling parameter p optimized for each test image. Some visual results
are shown in Figures 4.5, and 4.6. These results clearly highlight the potential of denoiser

scaling to significantly boost the performance of PnP.

4.5 Summary

In this chapter, we have presented a simple, but effective, technique for improving the
performance of PnP algorithms. The approach is justified theoretically by connecting the
denoiser scaling with the strength of the effective regularization introduced by PnP. The
proposed technique is shown to be particularly valuable when PnP is used with CNN denoisers
that have no explicit tunable parameters. Our experimental results show the potential of
denoiser scaling to significantly improve the performance of PnP algorithms across several

inverse problems. While we have focused on PnP, the denoiser scaling approach can be
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applied more broadly to improve the performance of related methods, such as AMP [64, 131,
174] and RED [125, 149, 153, 169].
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Chapter 5

Provable Convergence of
Plug-and-Play Priors with MMSE

Denoisers

HILE PnP algorithms are well understood for denoisers performing MAP estimation,

‘ ' they have not been analyzed for the MMSE denoisers. This chapter addresses
this gap by establishing the first theoretical convergence result for proximal gradient method
(PGM) variant of PnP for MMSE denoisers. We show that the iterates produced by PnP-PGM
with an MMSE denoiser converge to a stationary point of some global cost function. We
validate our analysis on sparse signal recovery in compressive sensing by comparing two types
of denoisers, namely the ezact MMSE denoiser and the approzimate MMSE denoiser obtained

by training a DNN.4

4This chapter is based on our paper [199].
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5.1 Introduction

Consider the following regularized optimization problem for solving the linear inverse prob-
lem (2.3)

x =argmin f(x) with f(x)=g(x)+r(x), (5.1)

reR"”
where ¢ is the data-fidelity term, r is the regularizer. Recall the known iterative proximal
algorithm PGM (see Algorithm 1) developed for solving this problem when regularizer is

nonsmooth

28 =2F 1t — Vg () (5.2a)

x* = prox.,.(z"), (5.2b)
and its PnP variant PnP-PGM (see Algorithm 3) equipped with a denoiser D,

2F = 2F "t — Vg (") (5.3a)

x" = D, (z"), (5.3b)

where v > 0 is the step-size parameter and ¢ > 0 in analogy to ~ for controlling the relative
strength of the denoiser D,. As we have discussed in Section 2.3, the transition from PGM
to PnP-PGM is inspired by the fact that prox,, can be interpreted as a MAP estimator for
the AWGN denoising problem

z=xz+n where x~p,, n~N(0NAI) (5.4)

by setting r(x) = —log(pz(x)).
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Recent work has provided theoretical convergence guarantees for PnP algorithms under
various assumptions on the data-fidelity term and the denoiser [31, 36, 67, 158, 166, 168, 176].
However, PnP has not been investigated for denoisers performing minimum mean squared

error (MMSE) estimation on (5.4)

D,(z) = E[xz|z] = / XTPg)2 (x| 2)d. (5.5)

n

MMSE denoisers are “optimal” with respect to broadly used image-quality metrics, such as
signal-to-noise ratio (SNR). However, they are generally not nonexpansive [177] and their
direct computation is often intractable in high-dimensions [96]. Insights into the performance
of PnP for MMSE denoisers are valuable as many denoisers (pre-trained CNNs, NLM,
BM3D) can be interpreted as approzimate or empirical MMSE denoisers. In this chapter, we
show that PnP-PGM with an MMSE denoiser converges to a stationary point of a certain
(possibly nonconvex) cost function. To the best of our knowledge, this explicit link between
PnP-PGM and MMSE estimation is missing in the current literature on PnP. Our analysis
builds on an elegant formulation by Gribonval [70], establishing a direct link between MMSE
estimation and regularized optimization. We validate our analysis on sparse signal recovery in
compressive sensing by comparing PnP-PGM with two types of denoisers—the exact MMSE
denoiser and the approzimate MMSE denoiser obtained by training DnCNN [216] to minimize
MSE. Our simulations show convergence of PnP-PGM for both denoisers, highlight their
close agreement in terms of performance, and illustrate the limitation of using an AWGN

denoiser as a prior within PGM.
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5.2 Theoretical Analysis

Our analysis requires three assumptions that serve as sufficient conditions for establishing

theoretical convergence.

Assumption 5.1. The prior p, is non-degenerate over R".

As a reminder, a probability distribution p, is degenerate over R™, if it is supported on a space
of lower dimensions than n. Consider the image set of the MMSE denoiser X = Im(D,).
Assumption 5.1 is required for establishing an explicit link between (5.5) and the following
function [70]

—2 @ — D ()| + Zry (D7 (x)) for m e X

[

r(x) = (5.6)

+00 forx ¢ X,

where v > 0 is the step-size and D;' : X — R" is the inverse mapping, which is well
defined and smooth over X' (see Appendix D.1). The definition of r includes the function
ro(-) = —log(p.(-)), where p, is the probability distribution of the AWGN corrupted
observation (5.4). As discussed in Appendix D.1, the function r is smooth for any & € X,

which is the consequence of the smoothness of both D! and 7.

Assumption 5.2. The function g is continuously differentiable and has a Lipschitz continuous
gradient with constant L > 0.
This is a standard assumption used extensively in the analysis of gradient-based algorithms

(see for example [136]).

Assumption 5.3. The function f has a finite infimum f* > —oo.
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This mild assumption ensures that the function f is bounded from below. We can now

establish the following result.

Theorem 5.1. Run PnP-PGM with a denoiser (5.5) under Assumptions 5.1-5.3 using a fived
step-size 0 <y < 1/L. Then, the sequence {f(x*)}r>0 with r defined in (5.6) monotonically

decreases and ||V f(z®)|| — 0 as k — .

The proof is provided in Appendix D.2. Theorem 5.1 establishes convergence of PnP-PGM
with MMSE denoisers to a stationary point of the problem (5.1) where r is specified in (5.6).
The proof relies on the majorization-minimization (MM) strategy widely used in the context of
both convex and nonconvex optimization [16, 47, 105, 122, 148]. It is important to note that
the theorem does not assume that g or r are convex and that the denoiser is nonexpansive.
The convexity of r is equivalent to the log-concavity of p,, [71], which is not true for a wide
variety of priors, such as mixtures of Gaussians [177]. In fact, D, is a proximal operator of a
proper, closed, and convex function r if and only if D, is monotone and nonexpansive [42].
Finally, note that the definition of r in (5.6) depends on both v and o, both of which influence
the relative weighting between g and r. This is the consequence of r being specified by
reverse engineering the MMSE denoiser D,, which leads to the explicit dependence of r on

the problem parameters.
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Figure 5.1: Convergence of PnP-PGM for exact and approximate MMSE denoisers. The
latter corresponds to DnCNN trained to minimize MSE. Average normalized cost f(z*)/ f(x°)
is plotted against the iteration number with the shaded areas representing the range of values
attained over 100 experiments. Note the monotonic decrease of the cost function f as
predicted by our analysis as well as the excellent agreement of both denoisers.

5.3 Numerical Evaluation

We illustrate PnP-PGM with both ezact and approzimate MMSE denoisers on the problem
of sparse signal recovery in compressive sensing [33, 50]. It is important to point out that
our aim here is not to justify PGM as a superior sparse recovery algorithm or the MMSE

denoiser as a superior signal prior. Instead, we seek to gain new insights into the behavior of

PnP-PGM with MMSE priors in highly controlled setting.

We generate € R™ with n = 4096 as a sparse independent and identically distributed (i.i.d.)
Bernoulli-Gaussian vector. Each component of @ is thus generated from the distribution
pz(x) = ady, () + (1 — a)d(x), where 0 is the Dirac delta function and ¢,, is the Gaussian
probability density function with zero mean and o, > 0 standard deviation. The parameter
0 < a < 1 in p, controls the sparsity of the signal and we fix 02 = 1/a. Since the
distribution p, = (¢, * p,) is not log-concave [70], the Bernoulli-Gaussian prior leads to a
nonconvex regularizer and an expansive denoiser. The entries of A € R™*™ are generated as

i.i.d. Gaussian random variables N'(0,1/m). For each experiment, we additionally corrupt

2
e

measurements with AWGN of variance ¢’ corresponding to input SNR of 20 dB. Accordingly,
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Figure 5.2: Convergence of PnP-PGM for exact and approximate MMSE denoisers. The
latter corresponds to DnCNN trained to minimize MSE. Average SNR (dB) is plotted against
the iteration number with the shaded areas representing the range of values attained over
100 experiments. The SNR behavior of LASSO, implemented using PGM with the ¢;-norm
prior, is also provided for reference. We highlight excellent agreement of both denoisers and
their superior SNR performance compared to the ¢; regularization.

the data fidelity term is set as least-squares g(x) = (1/2)|ly — Ax||*>. All plots are obtained

by averaging results over 100 random trials.

We consider two baseline signal recovery algorithms extensively used in compressive sensing.
The first is the standard least absolute shrinkage and selection operator (LASSO) [180], which
computes (5.1) with an ¢;-norm regularizer r(x) = A||z||;. The regularization parameter
A > 0 of LASSO is optimized for each experiment to maximize SNR. The second baseline
method is the MMSE variant of the generalized approzimate message passing (GAMP) [147],
which is known to be nearly optimal for sparse signal recovery in compressive sensing [103].
The parameters of GAMP are set to the actual statistical parameters (a, 0., 0.) of the
problem. While the suboptimality of PGM to GAMP for random measurement matrices is
well known, our aim is to illustrate the relative performance of “optimal” PGM with the

MMSE denoiser D,,.

Since x is a vector with i.i.d. elements, the exact MMSE denoiser D, can be evaluated as a
sequence of scalar integrals. As an approximate MMSE denoiser, we use DnCNN with depth

4 (see [216] for more details). To that end, we train 9 different networks for the removal of
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Figure 5.3: Illustration of the recovery performance of PnP-PGM for exact and approximate
MMSE denoisers. Average SNR (dB) is plotted against the measurement rate (m/n) with
the shaded areas representing the range of values attained over 100 experiments. We also
provide the performance of LASSO and GAMP, two widely used algorithms for sparse
recovery in compressive sensing. The figure highlights the suboptimality of both variants
of PnP-PGM compared to GAMP, which stems from their assumption that errors in every
PGM iteration are AWGN. One can also observe the remarkable agreement between two
variants of PnP-PGM in all experiments.

AWGN at noise levels in the range from 0.01 to 0.37. The training was conducted over 2000
random realizations of the signal & ~ p, using the ¢5-loss. For each experiment, we select

the network achieving the highest SNR value under the scaling technique from [199].

Theorem 5.1 establishes monotonic convergence of PnP-PGM in terms of the cost function f.
This is illustrated in Fig. 5.1 for the measurement rate m/n = 0.8. The average normalized
cost f(x¥)/f(x°) is plotted against the iteration number for both exact and approximate
MMSE denoisers. The shaded areas indicate the range of values taken over 100 random
trials. Fig. 5.2 illustrates the convergence behaviour of PnP-PGM in terms of SNR (dB)
for identical experimental setting by additionally including the SNR performance of LASSO
as a reference. First, note the monotonic convergence of {f(x*)};>o as predicted by our
analysis. Second, note the excellent agreement between two variants of PnP-PGM. This
close agreement is encouraging as deep neural nets have been extensively used as practical

strategies for regularizing large-scale imaging problems.
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The underlying assumption in PnP-PGM is that errors within every PGM iteration can be
modeled as AWGN, which is known to be false [51]. This makes both exact and approximate
MMSE denoisers “suboptimal” when used within PnP-PGM. Unlike PGM, GAMP explicitly
ensures AWGN errors in every iteration for random measurement matrices, making it a valid
upper bound in our experimental setting. Fig. 5.2 illustrates the suboptimality of “optimal”
PGM for different measurement rates, highlighting the necessity of developing more accurate
error models for PnP iterations [55]. Note again the remarkable agreement between DnCNN

and the exact MMSE estimator, which highlights practical relevance of our analysis.

5.4 Summary

This chapter provides several new insights into the widely used PnP methodology by con-
sidering “optimal” MMSE denoisers. First, we have theoretically analyzed the convergence
of PnP-PGM for MMSE denoisers. Our analysis reveals that the algorithm converges even
when the data-fidelity term is nonconver and denoiser is not nonexpansive. This has not
been shown in the prior work on PnP. Second, our simulations on sparse signal recovery
illustrate the potential of approximate MMSE denoisers—obtained by training deep neural
nets—to match the performance of the ezact MMSE denoiser. The latter is intractable for
high-dimensional imaging problems, while the former has been extensively used in practice.
Third, our simulations highlight the suboptimality of “optimal” PGM with an MMSE denoiser,
due to the assumption that error within PGM iterations are Gaussian. We hypothesize that a
similar phenomenon is present in the context of imaging inverse problems, which indicates to
possible performance improvements by using more refined statistical models for characterizing

errors within PnP algorithms.

29



Part 111

Adapting Plug-and-Play Priors for

Large-scale Problems
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Chapter 6

Incremental Plug-and-Play
Alternating Direction Method of

Multipliers

LTHOUGH PnP is broadly applicable for solving inverse problems, current PnP algo-
A. rithms are impractical in large-scale settings due to their heavy computational and
memory requirements. In this chapter, we address this issue by proposing an incremental
variant of the widely used PnP-ADMM algorithm, making it scalable to problems involving a
large number measurements. We theoretically analyze the convergence of the algorithm under
a set of explicit assumptions, extending recent theoretical results in the area. Additionally, we
show the effectiveness of our algorithm with nonsmooth data-fidelity terms and deep neural
net priors, its fast convergence compared to existing PnP algorithms, and its scalability in

terms of speed and memory.?

5This chapter is based on our paper [172].
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6.1 Introduction

The empirical success of PnP has spurred a follow-up work that provided theoretical justifi-
cations to PnP in various settings [31, 35, 128, 158, 168, 177, 181, 199, 200], including the
ones we presented in Chapter 4 and Chapter 5. Despite this progress, the computation and
memory requirements of current PnP algorithms makes them impractical in problems with a
large number of measurements. One prior work on developing PnP algorithms for processing
large-scale measurements is the stochastic gradient descent variant of PnP (PnP-SGD), whose

fixed-point convergence was recently analyzed for smooth data-fidelity terms [168].

In this chapter, we present a new incremental PnP-ADMM (IPA) algorithm for dealing
with large-scale measurements. As an extensions of the widely used PnP-ADMM [166, 186],
IPA can integrate statistical information from a data-fidelity term and a pre-trained deep
neural net. However, unlike PnP-ADMM, IPA can effectively scale to datasets that are
too large for traditional batch processing by using a single element or a small subset of the
dataset at a time. The memory and per-iteration complexity of IPA is independent of the
number of measurements, thus allowing it to deal with very large datasets. Additionally,
unlike PnP-SGD [168], IPA can effectively address problems with nonsmooth data-fidelity
terms, and generally has faster convergence. We present a detailed convergence analysis of
IPA under a set of explicit assumptions on the data-fidelity term and the denoiser. Our
analysis extends the recent fixed-point analysis of PnP-ADMM in [158] to partial randomized
processing of data. To the best of our knowledge, the proposed scalable PnP algorithm
and corresponding convergence analysis are absent from the current literature in this area.
Our numerical validation demonstrates the practical effectiveness of IPA for integrating
nonsmooth data-fidelity terms and deep neural net priors, its fast convergence compared to

PnP-SGD, and its scalability in terms of both speed and memory. In summary, we establish
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IPA as a flexible, scalable, and theoretically sound PnP algorithm applicable to a wide variety

of large-scale problems.

6.2 Background

To explain the details of our IPA algorithm, let’s recall the original PnP-ADMM algorithm

summarized in Algorithm 4

2" = prox,,(@" ' 4+ s"71) (6.1a)
x* = prox,,(z" — ") (6.1b)
Y R L (6.1c)

A elegant fixed-point convergence analysis of PnP-ADMM was presented in [158]. By

k k—1

substituting v* = 2* — s*~1 into PnP-ADMM, the algorithm is expressed in terms of an

operator

1 1 .
P = §| + 5(2G —1)(@2D, — 1) with G = prox,,, (6.2)

where | denotes the identity operator. The convergence of PnP-ADMM is then established
through its equivalence to the fixed-point convergence of the sequence v* = P(vF~1). The
equivalence of PnP-ADMM to the iterations of the operator (6.2) originates from the well-
known relationship between ADMM and the Douglas-Rachford splitting [31, 53, 144, 158].

Since PnP-ADMM can integrate powerful deep neural net denoisers, there is a need to
understand its theoretical properties and ability to process a large number of measurements.
In this chapter, we address this issue by providing new conceptual, theoretical, and empirical
insights into incremental ADMM optimization under statistical priors specified as deep neural

net denoisers. Scalable optimization algorithms have become increasingly important in the
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context of large-scale problems arising in machine learning and data science [26]. Stochastic
and online optimization techniques have been investigated for traditional ADMM [81, 142,
173, 188, 220], where prox.,, is approximated using a subset of observations (with or without
subsequent linearization). Our work contributes to this area by investigating the scalability

of PnP-ADMM that is not minimizing any explicit objective function.

6.3 Incremental PnP-ADMM

Batch PnP algorithms operate on the whole observation vector y € R™. We are interested in
partial randomized processing of observations by considering the decomposition of R™ into

b > 1 blocks
Rm:lemezx...meb Wlth m:m1+m2+_._+mb‘

We thus consider data-fidelity terms of the form

o@) =Y a@), @R, (6:3)

where each g; is evaluated only on the subset y; € R™ of the full data y.

The proposed IPA algorithm seeks to avoid the direct computation of prox,, in PnP-ADMM.
As shown in Algorithm 7, it extends stochastic variants of traditional ADMM ([81, 142, 173,
188, 220] by integrating denoisers D, that are not associated with any h. Its per-iteration
complexity is independent of the number of data blocks b, since it processes only a single

component function g; at every iteration.

It is important to note that in some applications [7, 146, 193], the prox_, step of PnP-ADMM

can be efficiently evaluated by leveraging the structure of the measurement operator (such as
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Algorithm 7 Incremental Plug-and-Play ADMM (IPA)

1: input: initial values x°, s° € R™, parameters v, > 0.
2: for k=1,2,3,... do
3: Choose an index i € {1,...,b}

4 2" < G (x"7 + 8*71) where G;, = prox,,,
5 xk « D, (2F — s 1)

6: sV« sl 2k

7: end for

diagonalization by Fourier transform). Nonetheless, IPA provides flexibility for controlling
the number of measurements 1 < m; < m used in every iteration, which makes it a useful
alternative to PnP-ADMM, when the memory/computational benefits for evaluating prox_ .
(which uses only y; € R™ and A; € R™*™) outweigh those of prox., (which uses y € R™

and A € R™*™).

In principle, IPA can be implemented using different block selection rules. The strategy
adopted for our theoretical analysis focuses on the usual strategy of selecting indices iy
as independent and identically distributed (i.i.d.) random variables distributed uniformly
over {1,...,b}. An alternative would be to proceed in epochs of b consecutive iterations,
where at the start of each epoch the set {1,...,b} is reshuffled, and iy is selected from this
ordered set [20]. In some applications, it might also be beneficial to select indices i in
an online data-adaptive fashion by taking into account the statistical relationships among

observations [97, 179].

Unlike PnP-SGD, IPA does not require smoothness of the functions g;. Instead of computing
the partial gradient Vg;, as is done in PnP-SGD, IPA evaluates the partial proximal operator
G;. Nonsmooth data-fidelity terms have been extensively used in many applications, including
wavelet inpainting, tensor factorization, feature selection, dictionary learning, and phase
unwrapping [8, 37, 76, 86, 92, 117, 138]. The maximal benefit of IPA over PnP-SGD is

expected for problems in which G; is efficient to evaluate. This is a case for a number of
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functions commonly used in many applications (see the extensive discussion on proximal
operators in [15]). For example, the proximal operator of the fy-norm data-fidelity term

gi(x) = 1||ly; — A;z|)3 has a closed-form solution
Gi(2z) = prox,,,(z) = (I+ YATA) " (z +7ATy)) (6.4)

for v > 0 and z € R™. Prior work has extensively discussed efficient strategies for evaluat-
ing (6.4) for a variety of linear operators, including convolutions, partial Fourier transforms,
and subsampling masks [2, 7, 146, 193]. As a second example, consider the ¢;-data fidelity
term g;(x) = ||ly; — A;x||1, which is nonsmooth. The corresponding proximal operator has a
closed form solution for any orthogonal operator A; and can also be efficiently computed in

many other settings [15].

IPA can also be implemented as a minibatch algorithm, processing several blocks in parallel
at every iteration, thus improving its efficiency on multi-processor hardware architectures.
Algorithm 8 presents the minibatch version of IPA that averages several proximal operators
evaluated over different data blocks. When the minibatch size p = 1, Algorithm 8 reverts to
Algorithm 7. The main benefit of minibatch IPA is its suitability for parallel computation of

G, which can take advantage of multi-processor architectures.

Minibatch TPA is related to the prozimal average approximation of G = prox,, [13, 211]

b

- 1

G(x) = 5 Z prox., () = €R".
i=1

When Assumption 6.1, introduced in Section 6.4, is satisfied, then the approximation error is

bounded for any & € R" as

1G(=) = G(z)|| < 29L .
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Algorithm 8 Minibatch IPA
0

1: input: initial values x°, s° € R™, parameters v, o > 0, minibatch size p > 1.

2: for k=1,2,3,... do

3: Choose indices i1, ..., i, from the set {1,...,b}.
E ,  Cfek— k— a1

4 2% < G(z"! + 8"71) where G = S 37F | proX,

5 xt « D, (zF — k1)

6: sk sF 7l 4 gk — 2k

7: end for

Minibatch IPA thus simply uses a minibatch approximation G of the proximal average G. One
implication of this is that even when the minibatch is ezactly equal to the full measurement
vector, minibatch IPA is not exact due to the approximation error introduced by the proximal
average. However, the resulting approximation error can be made as small as desired by

controlling the penalty parameter v > 0.

6.4 Theoretical Analysis

We now present a theoretical analysis of IPA. We first present an intuitive interpretation of

its solutions, and then present our convergence analysis under a set of explicit assumptions.

6.4.1 Fixed Point Interpretation

PnP cannot be interpreted using the standard tools from convex optimization, since its
solution is generally not a minimizer of an objective function. Nonetheless, we develop an

intuitive operator based interpretation.

Consider the following set-valued operator

T =799+ (D;'-1) v>0, (6.5)
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where Jg is the subdifferential of the data-fidelity term and D;!(z) = {z € R" : & = D,(2)}
is the inverse operator of the denoiser D,. The details for obtaining (6.5) from (6.1) are
provided in Appendix E.3.1. Note that this inverse operator exists even when D, is not
one-to-one [53, 157]. By characterizing the fixed points of PnP algorithms, it can be shown

that their solutions can be interpreted as vectors in the zero set of T

0 € T(z") =79g(=") + (D, (z") — ")

& xrezer(T) ={xeR":0€T(x)}.

Consider the following two sets

zer(Jg) = {x € R": 0 € Jg(x)} and

fix(D,) = {x e R": & = D,(x)} ,

where zer(0g) is the set of all critical points of the data-fidelity term and fix(D,) is the set of
all fixed points of the denoiser. Intuitively, the fixed points of D, correspond to all vectors
that are not denoised, and therefore can be interpreted as vectors that are noise-free according

to the denoiser.

If * € zer(0g) N fix(D,), then x* € zer(T), which implies that * is one of the solutions.
Hence, any vector that minimizes a convex data-fidelity term ¢ and noiseless according to
D, is in the solution set. On the other hand, when zer(0g) N fix(D,) = &, then x* € zer(T)

corresponds to an equilibrium point between two sets.

This interpretation of PnP highlights one important aspect that is often overlooked in the
literature, namely that, unlike in the traditional formulation (2.10), the regularization in

PnP depends on both the denoiser parameter ¢ > 0 and the penalty parameter v > 0, with
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both influencing the solution. Hence, the best performance is obtained by jointly tuning both
parameters for a given experimental setting. In the special case of D, = prox,, with v = o2,

we have

fix(Dy) ={x € R": 0 € Or(x)} and

zer(T) = {x € R": 0 € 9g(x) + Or(x)} ,

which corresponds to the optimization formulation (2.10) whose solutions are independent of

.

6.4.2 Convergence Analysis

Our analysis requires three assumptions that jointly serve as sufficient conditions.

Assumption 6.1. Each g; is proper, closed, convex, and Lipschitz continuous with constant

L; > 0. We define the largest Lipschitz constant as L = max{Ly, ..., L;}.

This assumption is commonly adopted in nonsmooth optimization and is equivalent to
existence of a global upper bound on subgradients [28, 142, 211]. It is satisfied by a large
number of functions, such as the ¢;-norm. The fy-norm also satisfies Assumption 6.1 when it

is evaluated over a bounded subset of R". We next state our assumption on D, .

Assumption 6.2. The residual R, := | — D, of the denoiser D, is firmly nonexpansive.

We review firm nonexpansiveness and other related concepts in the Appendix E.3. Firmly
nonexpansive operators are a subset of nonezrpansive operators (those that are Lipschitz
continuous with constant one). A simple strategy to obtain a firmly nonexpansive operator is

to create a (1/2)-averaged operator from a nonexpansive operator [144]. The residual R, is
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firmly nonexpansive if and only if D, is firmly nonexpansive. It is worth noting that (a) any
explicit or implicit proximal operator is firmly nonexpansive, and (b) any symmetric matrix
with eigenvalues in [0, 1] is firmly nonexpansive. This implies that many recently designed
denoisers for PnP, such as those discussed in [67, 135, 166, 176, 177] automatically satisfy

Assumption 6.2.

The rationale for stating Assumption 6.2 for R, is based on our interest in residual deep
neural nets. The success of residual learning in the context of image restoration is well
known [216]. Prior work has also shown that Lipschitz constrained residual networks yield
excellent performance without sacrificing stable convergence [158, 169]. Additionally, there
has recently been an explosion of techniques for training Lipschitz constrained and firmly

nonexpansive deep neural nets [58, 133, 158, 178].

Assumption 6.3. The operator T in (6.5) is such that zer(T) # @. There also exists R < oo
such that

|z" — x| < R forall x* € zer(T).

The first part of the assumptions simply ensures the existence of a solution. The existence
of the bound R often holds in practice, as many denoisers have bounded range spaces. In
particular, this is true for a number of image denoisers whose outputs live within the bounded

subset [0, 255]" C R™.

We will state our convergence results in terms of the operator S : R" — R" defined as

S =D, —G(2D, — ). (6.6)

Both IPA and PnP-ADMM can be interpreted as algorithms for computing an element in

zer(S), which is equivalent to finding an element of zer(T) (see details in Appendix E.3).
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We are now ready to state our main result on IPA.

Theorem 6.1. Run IPA for t > 1 iterations with random i.i.d. block selection under

Assumptions 6.1-6.3 using a penalty parameter v > 0. Then, the sequence v = zF — sF~1
satisfies
t
1 (R+2vL)?
B STISMIE] < ST 4 maxdy, 710 (6.7)
k=1

where C' .= 4LR + 12L? is a positive constant.

In order to contextualize this result, we also review the convergence of the traditional

PnP-ADMM.

Theorem 6.2. Run PnP-ADMM for t > 1 iterations under Assumptions 6.1-6.3 using a

penalty parameter v > 0. Then, the sequence v* = z¥ — s*~1 satisfies
t
1 (R+2yL)?
-3 lswhl < S (63)
k=1

Both proofs are provided in the Appendix E.1. The proof of Theorem 6.2 is a modification
of the analysis in [158], obtained by relaxing the strong convezity assumption in [158]
by Assumption 6.1 and replacing the assumption that R, is a contraction in [158] by
Assumption 6.2. Theorem 6.2 establishes that the iterates of PnP-ADMM satisfy ||S(v!)|| — 0
as t — oo. Since S is firmly nonexpansive (see Appendix E.3.3) and D, is nonexpansive, the
Krasnosel’skii-Mann theorem (see Section 5.2 in [12]) directly implies that v* — zer(S) and

x' = D, (v") — zer(T).

Theorem 6.1 establishes that in expectation, IPA has a similar convergence behavior to
PnP-ADMM up to an error term that depends on the penalty parameter 7. One can precisely

control the accuracy of IPA by setting v to a desired level. In practice, v can be treated as
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Figure 6.1: Illustration of the influence of the penalty parameter v > 0 on the convergence
of IPA for a DnCNN prior. The average normalized distance to zer(S) and SNR (dB) are
plotted against the iteration number with the shaded areas representing the range of values
attained over 12 test images. The accuracy of IPA improves for smaller values of v. However,
the SNR performance is nearly identical, indicating that in practice IPA can achieve excellent
results for a range of fixed v values.

a hyperparameter and tuned to maximize performance for a suitable image quality metric,
such as SNR or SSIM. Our numerical results in Section 6.5 corroborate that excellent SNR
performance of ITPA can be achieved without taking ||S(v")]|2 to zero, which simplifies practical
applicability of IPA. (Note that the convergence analysis for IPA in Theorem 6.1 can be easily
extended to minibatch IPA with a straightforward extension of Lemma E.1 in Appendix E.1.2

to several indices, and by following the steps of the main proof in Appendix E.1.1.)

Finally, note that the convergence of the IPA iterates can also be analyzed under assumptions
adopted in [158], namely that g; are strongly convex and R, is a contraction. Such an analysis

leads to the statement

E[||lz' — z*|s] < n'(2R +4yL) + (4yL)/(1 —n) , (6.9)

where 0 < 1 < 1. Equation (6.9) establishes a linear convergence to zer(T) up to an error
term. A proof of (6.9) is provided in the Appendix E.2. As corroborated by our simulations
in Section 6.5, the actual convergence of IPA holds even more broadly than suggested by
both sets of sufficient conditions. This suggests a possibility of future analysis of IPA under

more relaxed assumptions.

72



6.5 Numerical Validation

Recent work has shown the excellent performance of PnP for smooth data-fidelity terms
using advanced denoising priors. Our goal in this section is to extend these studies with
simulations validating the effectiveness of IPA for nonsmooth data-fidelity terms and deep
neural net priors, as well as demonstrating its scalability to large-scale inverse problems. We
consider two applications of the form y = Ax + e, where e € R™ denotes the noise and
A € R™™ denotes either a random Gaussian matrix in compressive sensing (CS) or the

transfer function in intensity diffraction tomography (IDT) [109].

Our deep neural net prior is based on the DnCNN architecture [216], with its batch nor-
malization layers removed for controlling the Lipschitz constant of the network via spectral
normalization [160] (see details in Appendix E.6.1). We train a nonexpansive residual network
R, by predicting the noise residual from its noisy input. While this means that R, is not
trained to be firmly nonexpansive, we observed that nonexpansiveness was sufficient for
empirical convergence. Note also that a nonexpansive R, satisfies the necessary (but not
sufficient) condition for firm nonexpansiveness of D,. It is also worth mentioning that denoiser
design, which is not our main focus, is an active area of research in the context of PnP. The
training data is generated by adding AWGN to the BSD400 images [124]. The reconstruction
quality is quantified using the signal-to-noise ratio (SNR) in dB. We pre-train several deep
neural net models as denoisers for o € [1,10], using o intervals of 0.5, and use the denoiser

achieving the best SNR.
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6.5.1 Integration of Nonsmooth Data-Fidelity Terms and Pretrained

Deep Priors

We first test IPA on non-smooth data-fidelity terms. The matrix A is generated with i.i.d.
zero-mean Gaussian random elements of variance 1/m, and e as a sparse Bernoulli-Gaussian
vector with the sparsity ratio of 0.1. This means that, in expectation, ten percent of the
elements of y are contaminated by AWGN. The sparse nature of the noise motivates the
usage of the ¢;-norm g(x) = ||y — Ax||;, since it is less sensitive to extreme values. The
nonsmoothness of /1-norm prevents the usage of gradient-based algorithms such as PnP-SGD.
On the other hand, the application IPA is facilitated by efficient strategies for computing the

proximal operator [18, 34].

Note that the focus of this section is on using CS as a convenient application for demonstrating
some of the key properties of IPA, and is not on achieving the state-of-the-art subsampling
in CS [104, 131, 163, 210, 214]. For any subsampling rate, the reconstruction quality of IPA
is expected to match that of PnP-ADMM, which has been extensively studied in prior work.
In particular, a recent work [114] has extensively compared the recovery performance of PnP

relative to several widely-used algorithms in CS.

We set the measurement ratio to be approximately m/n = 0.7 with AWGN of standard
deviation 5. Twelve standard images from Set12 [216] are used in testing, each resized to
64 x 64 pixels for rapid parameter tuning and testing. We quantify the convergence accuracy
using the normalized distance ||S(v*)||3/||v*||3, which is expected to approach zero as IPA

converges to a fixed point.

Theorem 6.1 characterizes the convergence of IPA in terms of ||S(v*)||2 up to a constant error

term that depends on . This is illustrated in Fig. 6.1 for three values of the penalty parameter
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Figure 6.2: Illustration of scalability of IPA and several widely used PnP algorithms on
problems of different sizes. The parameters n and b denote the image size and the number of
acquired intensity images, respectively. The average SNR is plotted against time in seconds.
Both IPA and PnP-SGD use random minibatches of 60 measurements at every iteration,
while PnP-ADMM and PnP-APGM use all the measurements. The figure highlights the fast
empirical convergence of IPA compared to PnP-SGD as well as its ability to address larger
problems compared to PunP-ADMM and PnP-APGM.

v € {70,7%/2,7/4} with 7o = 0.02. The average normalized distance ||S(v*)||3/||v*||? and
SNR are plotted against the iteration number and labeled with their respective final values.
The shaded areas represent the range of values attained across all test images. IPA is
implemented to use a random half of the elements in y in every iteration to impose the
data-consistency. Fig. 6.1 shows the improved convergence of IPA to zer(S) for smaller values
of v, which is consistent with our theoretical analysis. Specifically, the final accuracy improves
approximately 3x (from 1.07 x 107 to 3.59 x 107%) when + is reduced from 7 to v5/4. On
the other hand, the SNR values are nearly identical for all three experiments, indicating that
in practice different v values lead to fixed points of similar quality. This indicates that IPA

can achieve high-quality result without taking ||S(v¥)||s to zero.

6.5.2 Scalability in Large-scale Optical Tomography

We now discuss the scalability of IPA on intensity diffraction tomography (IDT), which is
a data intensive computational imaging modality [109]. The goal is to recover the spatial
distribution of the complexr permittivity contrast of an object given a set of its intensity-only

measurements. In this problem, A consists of a set of b complex matrices [A1, ..., A]T, where
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Table 6.1: Final average SNR (dB) and Runtime obtained by several PnP algorithms on all
test images.

Simulations Parameters n = 5122 n = 5122 n = 1024°
(b = 300) (b = 600) (b = 600)
Algorithms o ~y SNR in dB (Runtime)

PnP-APGM 1 5x1074 22.60 (19.4 min)  22.79 (42.6 min)  23.56 (8.1 hr)
PnP-SGD (60) 1 5x1074 2231 (7.1 min)  22.74 (5.2 min)  23.42 (44.3 min)
PnP-ADMM 2.5 1 24.23 (7.4 min)  24.40 (14.7 min) 25.50 (1.4 hr)

IPA (60) 2.5 1 23.65 (1.7 min) 23.88 (2 min) 24.95 (11 min)

each A; is a convolution corresponding to the ith measurement y;. We adopt the ¢s-norm
loss g(x) = ||y — Ax||3 as the data-fidelity term to empirically compare the performance of
IPA and PnP-SGD on the same problem. PnP-SGD has been implemented with Nesterov

acceleration, as in [168].

In the simulation, we follow the experimental setup in [109] under AWGN corresponding
to an input SNR of 20 dB. We select six images from the CAT2000 dataset [24] as our test
examples, each cropped to n pixels. We assume real permittivity functions, but still consider
complex valued measurement operator A that accounts for both absorption and phase [109].
Due to the large size of data, we process the measurements in epochs using minbatches of

size 60.

Fig. 6.2 illustrates the evolution of average SNR against runtime for several PnP algorithms,
namely PnP-ADMM, PnP-APGM, PnP-SGD, and IPA, for images of size n € {512 x
512,1024 x 1024} and the total number of intensity measurements b € {300,600}. The final
values of SNR as well as the total runtimes are summarized in Table 6.1. The table highlights
the overall best SNR performance in bold and the shortest runtime in light-green. In every

iteration, PnP-ADMM and PnP-APGM use all the measurements, while IPA and PnP-SGD
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Table 6.2: Per-iteration memory usage specification for reconstructing 1024x1024 images

Algorithms PnP-ADMM IPA (Ours)

Variables size memory size memory
fag real 102024000938 GB 10245 102460 094G

imagi- 1024 x 1024 x 600 9.38 GB 1024 x 1024 x 60 0.94 GB

nary

- 1024Xl024><600 ............ 1875GB1024X1024X60 .............. 188GB ..........
e et s 013GB ................................. 7013(;]3 .........

Total 37.63 GB 3.88 GB

use only a small subset of 60 measurements. IPA thus retains its effectiveness for large values
of b, while batch algorithms become significantly slower. Moreover, the scalability of IPA over
PnP-ADMM becomes more notable when the image size increases. For example, Table 6.1
highlights the convergence of IPA to 24.95 dB within 11 minutes, while PnP-ADMM takes
1.4 hours to reach a similar SNR value. Note the rapid progress of PnP-ADMM in the first
few iterations, followed by a slow but steady progress until its convergence to the values
reported in Table 6.1. This behavior of ADMM is well known and has been widely reported
in the literature (see Section 3.2.2 “Convergence in Practice” in [29]). We also observe faster
convergence of IPA compared to both PnP-SGD and PnP-APGM, further highlighting the
potential of IPA to address large-scale problems where partial proximal operators are easy to

evaluate.

Another key feature of IPA is its memory efficiency due to incremental processing of data.
The memory considerations in optical tomography include the size of all the variables related
to the desired image @, the measured data {y;}, and the variables related to the forward
model {A;}. Table 6.2 records the total memory (GB) used by IPA and PnP-ADMM for
reconstructing a 1024 x 1024 pixel permittivity image, with the smallest value highlighted in

light-green. PnP-ADMM requires 37.63 GB of memory due to its batch processing of the
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whole dataset, while IPA uses only 3.88 GB—mnearly one-tenth of the former—by adopting
incremental processing of data. In short, our numerical evaluations highlight both fast and
stable convergence and flexible memory usage of IPA in the context of large-scale optical

tomographic imaging.

6.6 Summary

This chapter provides several new insights into the widely used PnP methodology in the
context of large-scale imaging problems. First, we have proposed IPA as a new incremental
PnP algorithm. IPA extends PnP-ADMM to randomized partial processing of measurements
and extends traditional optimization-based ADMM by integrating pre-trained deep neural
nets. Second, we have theoretically analyzed IPA under a set of realistic assumptions, showing
that in expectation IPA can approximate the convergence behavior of PnP-ADMM to a
desired precision by controlling the penalty parameter. Third, our simulations highlight the
potential of IPA to handle nonsmooth data-fidelity terms, large number of measurements, and
deep neural net priors. We observed faster convergence of IPA compared to several baseline
PnP methods, including PnP-ADMM and PnP-SGD, when partial proximal operators can
be efficiently evaluated. IPA can thus be an effective alternative to existing algorithms for
addressing large-scale imaging problems. For future work, we would like to explore strategies
to further relax our assumptions and explore distributed variants of IPA to enhance its

performance in parallel settings.
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Part 1V

Extending Plug-and-Play Priors to

the Non-Euclidean Setting
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Chapter 7

Bregman Plug-and-Play Priors

HE state-of-the-art performance of PnP, RED, and DU has been validated in a variety
T o applications. However, the current paradigm for designing such algorithms is
inherently Euclidean, due to the usage of the quadratic norm within the projection and
proximal operators. We propose to broaden this perspective by considering a non-Euclidean
setting based on the more general Bregman distance. Our new Bregman Proximal Gradient
Method variant of PnP (PnP-BPGM) and Bregman Steepest Descent variant of RED (RED-
BSD) replace the traditional updates in PnP and RED from the quadratic norms to more
general Bregman distance. We present a theoretical convergence result for PnP-BPGM and

demonstrate the effectiveness of our algorithms on Poisson linear inverse problems. °

6This chapter is based on our paper [6].
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Algorithm 9 PnP-BPGM

1: input: z° ¢ R", y € R™, and v > 0
2: for k=1,2,... do

3: x" < Do (Vh* (Vh —4Vyg)) (x*1)
4: end for

7.1 Introduction

In previous chapters, we have focused on the linear forward model (2.3) that models the

relationship between the measurements y € R™ and an unknown signal & € R" as

y=Ax+e, (7.1)

where where A € R™*" is a linear forward operator and we assume that the noise e is AWGN.

Now let’s consider a more general model with noise corruption denoted by the operator P

y=PAx). (7.2)

We note that P models a more general noise corruption than the additive one in formula-
tion (7.1), in a sense that it could be either additive (e.g., Gaussian noise) or non-additive
(e.g., Poisson noise). Similar to the problem (7.1), the solution of ill-posed inverse problems

(7.2) can also be formulated as an regularized optimization problem

x = argmin f(x), where f(x)=g(x)+r(x), (7.3)

x

where ¢ is the data-fidelity term and r is the regularizer.

Most of the current work in PnP is fundamentally based on the traditional definition of

the proximal operator that relies on the squared Euclidean norm. Under this definition the

81



Algorithm 10 RED-BSD

1: input: z° ¢ R", y € R™, and v > 0

2: for k=1,2,... do

3 &+ VR (Vh—~(Vg+7(I —Dg))) (1)
4: end for

proximal operator can be naturally interpreted as the Gaussian denoiser. In this chapter, we
seek to broaden the family of PnP algorithms to the non-Euclidean setting by building on
the recent work on Bregman proximal algorithms [11, 118, 175]. Specifically, we propose to
generalize the well-known PnP-PGM [91] and RED-SD [153] algorithms to their Bregman
counterparts, PnP-BPGM and RED-BSD algorithms, by using the Bregman distance. We
learn the corresponding artifact-removal operators by unfolding the iterations of our algorithms.
Finally, we present the theoretical convergence analysis of PnP-BPGM and test our algorithms

on Poisson linear inverse problems.

7.2 Background

7.2.1 Recap of PGM

As what we have introduce in Section 2.2.1, PGM can be interpreted as the majorization-
minimization (MM) method for solving the composite optimization problem in (7.3). Each

iteration of PGM can be expressed as a minimization of a quadratic majorizer

x* = arg min {:cTVg(:ckl) +
xzcR™

L k—112
EHw—w | —|—7“(zc)}, (7.4)
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k" iteration k' iteration

)
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(a) U-PnP-PGM (b) U-RED-SD

Repeat for K Iterations Repeat for K Iterations

k" iteration k" iteration

(c) U-PnP-BPGM (d) U-RED-BSD

Figure 7.1: The proposed PnP-BPGM and RED-BSD methods replace the quadratic penalty
in PnP-PGM and RED-SD by a more general Bregman distance. Both algorithms rely
on data-driven regularizers obtained by training an artifact-removal operator Dy via deep
unfolding.

where g is assumed to have a L-Lipschitz continuous gradient. Eq. (7.4) can also be expressed

in the following standard form

2F =2F ! — Vg () (7.5a)

x* = prox.,.(z"), (7.5b)

where 0 < v < 1/L is the step size.
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7.2.2 The Bregman Distance

Given a differentiable convex reference function h defined on a closed convex set C' C R™, the

Bregman distance By, : dom h x int dom h — [0, 00) [30] is defined by

By(z;y) = h(z) — h(y) — Vi(y)' (x —y). (7.6)

" is an extension of the classical squared Euclidean distance which

The Bregman distance
is recovered when h(x) = 1/2||x||3. Typical examples of the Bregman distance include the

following:

Squared Euclidean distance with h(x) = 1/2|z||?,

Squared Mahalanobis distance with h(z) = 1/2||z[|3, = 1/22"Qzx, Q = 0,

The generalized Kullback-Leibler divergence with Shannon Entropy h(x) = xlog(x),

Itakura—Saito (IS) distance with Brug’s entropy h(x) = —log(x).

7.2.3 Using Learning Priors in Deep Unfolding

Compared with the methods that integrate pre-trained DL denoisers into iterative algorithms
such as PnP and RED, deep unfolding (DU) is a related strategy based on unfolding an
iterative algorithm and including trainable blocks within it [69]. Compared to the black-box
DL, model-based DL methods integrate the physics-based knowledge of the measurement
model. Their empirical success [115, 166], has spurred a number of algorithmic extensions [5,

91, 141], as well as theoretical convergence analyses [39, 158, 168].

"Note that the Bregman distance is a pesudodistance, because it does not satisfy the triangle inequality,
and is generally asymmetric.
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7.3 Proposed Method

The path to Bregman-based proximal algorithm starts from observing that the quadratic

majorization step in the classical PGM in eq. (7.4) is equivalent to the following condition
L 9 .
5 |lz||* — g(x) is convex, (7.7)

where the equivalence follows from the first-order convexity inequality (see Section 2.2.1). To
bypass the Lipschitz gradient assumption, the work in [11, 118] has proposed to generalize

the condition in eq. (7.7) by using a possibly non-quadratic reference function h
Lh(x)— g(x) is convex. (7.8)

Such functions g can be referred to as L-smooth relative to h. Then, by using the first-order

convexity inequality, one can obtain a Bregman majorizer of the data-fidelity term
g(x) < g(x*) + Vg(z*) T (z — ") + L By,(z, z"). (7.9)

This inequality directly leads to the Bregman PGM (BPGM) method, which generalizes the

classical PGM using a Bregman majorizer as

z* = argmin {x"Vg(z" ") + L By(z, " ") + r(z)} . (7.10)
zeR™
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The BPGM method shares the same structural splitting mechanism as the classical PGM

[175], which allows one to express (7.10) as

zF = Vh* (Vh —4Vg) (1) (7.11a)

x" = (Vh+~0r)" ' Vh(z") (7.11b)

where 0 < v < 1/L is the step size and h* denotes the Fenchel conjugate of h. Note that the
PGM is a special case of the BPGM obtained by setting h(x) = 1/2||z||3. The first step of
the BPGM in (7.11a) is known as the Mirror Descent (MD) algorithm, which generalizes the

classical gradient method. The second step is known as the left Bregman proximal operator

(BPO) defined as

prox’,.(z) == argmin { By, (x, z) + 7r(x)} . (7.12)

xrcR™

Traditionally, the BPO is motivated from a computational perspective, e.g., Bregman pro-
jection onto the simplex with h(x) = xlog(x) is simpler than the corresponding classical
proximal operator (2.14). Moreover, selecting the reference function h provides more flexibility
depending on the problem settings [11, 118, 175]. Meanwhile, similar to the case where the
classical proximal operator can be interpreted as a Gaussian denoiser, under some conditions
on the reference function h, the BPO can be interpreted as an exponential family mean

estimator. As a reference, we include such statistical interpretation of the backward step in

the left BPO in Appendix F.1.

7.3.1 Bregman PnP and RED Algorithms

In this section, we propose two algorithms, PnP-BPGM and RED-BSD that extend existing

two algorithms PnP-PGM (summarized in Algorithm 5.3) and RED-SD (summarized in
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Algorithm 2.38), respectively. PnP-BPGM is obtained by replacing the BPO in (7.11b) with

a DL network Dy

zF = Vh* (Vh —4Vg) (1) (7.13a)

x" = Dy (2"), (7.13b)

where 0 are the learnable parameters that characterize the network Dgy. Similarly, the

Bregman variant of RED-SD is obtained as

x" = Vh* (Vh — v (Vg +7(1—Dp))) (1), (7.14)

where | is an identity operator. When the assumptions for the existence of the explicit RED
regularizer in [153] hold, then RED-BSD can be interpreted as the mirror descent algorithm.
Note that the PnP-PGM [186] and RED-SD [153] are recovered when h(x) = 1/2||z|* and

Dy being a Gaussian denoiser.

Algorithm 9 and Algorithm 10 summarize the proposed PnP-BPGM and RED-BSD algorithms.
In this work, the regularizer Dg is implemented using the deep unfolded strategy, so we refer
to the proposed algorithms as unfolded PnP-BPGM (U-PnP-BPGM) and unfolded RED-BSD
(U-RED-BSD). Similarly, the unfolded version of PnP-PGM, and RED-SD are referred as
U-PnP-PGM and U-RED-SD. All four different unfolding architectures are shown in Fig. 7.1

and will be compared in the next section.

Recent work has explored the convergence properties of various PnP/RED algorithms [39,
158, 168]. Similar results can be also established for both PuP-BPGM and RED-BSD. The
following theorem presents the analysis of PnP-BPGM for a strongly convex function g

and a Lipschitz continuous operator Dg. While these assumptions are too strong for some
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applications, they provide the first steps for the broader analysis of Bregman PnP/RED

methods.

Theorem 7.1. Assume h be up-strongly convex with Lyj-Lipschitz continuous gradient, and
g be pg-strongly convex function with L,-Lipschitz continuous gradient. Assume Dg be an

M -Lipschitz operator. Then, the iteration in (7.13) converges to a fized point if

Hh (Ug + Lg)

M <
Lth_Mhlug

(7.15)
. L 1 1
and the step size Z—Z <u_: — M) << ’i—’g‘ (1+M)'

Proof. See Appendix F.2.

7.3.2 Poisson Linear Inverse Problem

We empirically evaluated the proposed methods on Poisson linear inverse problems. Poisson
noise is a signal dependent noise whose negative log-likelihood function results in the following

data-fidelity term and its gradient

glx) =1TAzx — y'log (Az) + 1Tlog(y!) (7.16a)

Vyg(x)=AT(1 -y (Az)) (7.16b)

where 1 is a vector of ones, and @ denotes element-wise division.

Classical algorithms for solving Poisson linear inverse problems include the Richardson—Lucy
(RL) algorithm and transform-based methods [48, 52, 74, 123, 167]. Several ADMM-based
algorithms were proposed that handle the data fidelity via its proximal operator [63, 154]. In

[11] it was showed that by using the Burg’s entropy as a reference function h(xz) = —1Tlog(z),
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one can satisfy Eq. (7.8) with L > ||y||;. Therefore, using (7.13) we can obtain the following

simple iteration for PnP-BPGM

k—1
k w

= 1
o 1+~xh 1o Vg(xh) (7.17a)

x" = Dy(2"), (7.17b)

where ® is the element-wise multiplication. It can be shown that the backward operator is

related to inverse Gamma scale estimator. Similarly, RED-BSD in (7.14) can be simplified to

k-1
k w

r = 1+~yx1® (Vg+ 7 (I —Dg))(xh1)

(7.18)

7.4 Numerical Illustration

7.4.1 Image Deblurring with Poisson Noise

We demonstrate the ability of our proposed algorithms PnP-BPGM and RED-BSD over
their traditionally counterparts PGM and RED on Poisson linear inverse problems. We
focus on image deblurring, where the forward model A corresponds to the blurring operator.
Specifically, we follow a similar settings in [63, 154], and test our algorithms for Poisson noise
with peaks 8 and 32 using two different blur kernels of size 9 by 9: (1) a Gaussian kernel with
o = 1.6, and (2) a uniform kernel, respectively. All the methods compared are trained in an
unfolding fashion as illustrated in Fig. 7.1, where the end-to-end training seeks to compute the
trainable parameters in Dg by minimizing the £y loss function between network output {x*}
and the ground-truth {z} over all training samples. We set x° using the raw measurements y

with a small white Gaussian perturbation. We unfold each algorithm with K = 100 iterations
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Table 7.1: The PSNR (dB) results of different methods on the testing images with different
peaks and kernels.*

Method 1 2 3 4 5 6 7 8 9 10 11 12 Average

Uniform kernel, peak = 8

Corrupted 11.70 11.13 11.74 11.59 11.61 9.56 11.81 11.80 11.82 11.63 12.04 11.91 11.53

U-Net 20.89 23.11 21.28 20.79 19.79 19.15 19.63 24.76 21.96 22.70 23.37 22.65 21.67
U-P-PGM 19.57 22.74 20.89 20.59 19.20 19.15 19.04 24.38 21.79 22.43 23.19 22.44 21.28
U-R-SD 20.38 22.74 20.74 20.29 18.81 19.00 18.90 24.44 21.81 22.38 23.32 22.41 21.27

U-P-BPGM  21.00 24.12 21.27 20.72 20.10 19.17 19.81 25.21 22.13 22.65 23.82 22.62 21.89
U-R-BSD 20.97 23.97 21.14 20.82 20.25 19.28 19.78 25.08 22.13 22.70 23.75 22.66 21.88

Uniform kernel, peak = 32

Corrupted 16.14 16.08 16.51 16.25 15.76 13.97 15.81 17.12 16.68 16.77 17.13 16.95 16.26

U-Net 21.50 24.66 22.12 21.71 21.01 19.97 20.23 26.19 22.56 23.38 24.67 23.40 22.62
U-P-PGM 20.90 23.76 22.03 21.54 20.54 19.71 19.85 25.37 22.22 23.26 24.01 23.32 22.21
U-R-SD 21.37 24.13 21.92 21.41 20.75 19.88 20.17 25.67 22.40 23.35 24.25 23.40 22.39

U-P-BPGM  21.58 25.01 22.15 21.81 21.64 20.23 20.57 26.33 22.64 23.45 24.90 23.46 22.81
U-R-BSD 21.57 25.04 22.17 21.64 21.48 20.22 20.34 26.44 22.65 23.35 24.91 23.41 22.77

Gaussian kernel, peak = 8

Corrupted 11.98 11.25 12.01 11.86 12.01 9.71 12.32 11.89 11.89 11.79 12.17 12.07 11.75

U-Net 21.72 24.92 22.06 21.55 22.17 20.87 21.27 25.60 22.22 22.97 24.63 23.08 22.76
U-P-PGM 21.01 23.97 21.70 21.41 20.74 19.72 20.32 25.18 22.17 22.72 24.17 22.87 22.16
U-R-SD 21.18 23.30 21.88 21.26 20.65 19.79 20.15 24.86 21.96 22.97 23.69 23.03 22.06

U-P-BPGM  22.30 24.60 22.48 21.78 22.44 19.23 21.92 26.03 22.48 23.90 24.49 23.60 22.94
U-R-BSD 22.22 24.62 22.17 21.72 22.27 19.61 21.61 25.76 22.37 23.79 24.37 23.60 22.84

Gaussian kernel, peak = 32

Corrupted 17.06 16.62 17.30 17.17 17.05 14.45 17.19 17.51 17.04 17.35 17.57 17.55 16.99

U-Net 22.63 26.74 23.13 23.13 23.83 21.69 22.51 27.14 22.89 24.00 25.95 24.12 23.98
U-P-PGM 22.12 24.50 23.61 23.10 22.54 19.53 21.81 26.03 22.60 24.27 24.77 24.22 23.26
U-R-SD 22.15 25.43 23.07 23.14 22.86 21.29 21.92 26.55 22.80 24.27 25.31 24.24 23.58

U-P-BPGM  23.41 26.85 23.79 23.54 24.41 20.82 23.30 27.86 23.13 25.03 26.03 24.83 24.42
U-R-BSD 23.12 26.79 23.41 23.27 24.46 21.02 23.05 27.88 23.11 24.96 26.04 24.75 24.32

* Due to the space limitation, we denote U-PnP-PGM, U-RED-SD, U-PnP-BPGM,U-RED-BSD

as U-P-PGM, U-R-SD, U-P-BPGM and U-R-BSD in respective order in the table.

The best performance in each scenario is highlighted in blue.
for stable performance, where in each iteration, the network Dy is realized using a 7—layer
DnCNN [216] with shared weights across all iterations. The step-size parameter v and the
regularization parameter 7 in RED and BRED are set as a learnable parameters, initialized

with v =5 x 107! and 7 = 1 x 1073, As a reference, we also report the image reconstruction

performance of the end-to-end learning method where U-Net is trained end-to-end in the

90



8

Uniform, peak

=32

Gaussian, peak

Figure 7.2: Examples of image reconstruction results on Babara (top) and Cameraman
(bottom) obtained by U-Net, U-PnP-PGM, U-RED-SD, U-PnP-BPGM, and U-RED-BSD.
The first row is corresponding to the noise peak 8 with uniform kernel, and the second
row is noiser peak 32 with Gaussian kernel. Each reconstruction is labeled with its PSNR
(dB) value with respect to the Ground-truth image. Visual differences are highlighted using
the rectangles drawn inside the images. Note U-PnP-BPGM and U-RED-BSD shows close
performance one to another, outperforming other methods and providing the best visual
results by recovering sharp edges and removing artifacts.

usual supervised fashion using the l-loss [87, 155]. All networks are trained on public dataset
BSD400 for 400 epochs, using the Adam solver [99] with an initial learning rate 1 x 107%.
We select the models that achieved the best performance on the validation dataset BSDG68.

At test time, Set12 dataset is used to evaluate the performance of each algorithm.

The numerical results on the test dataset Set12 with respect to two scenarios are summarized
in Table 7.1. Test images used for the quantitative performance labeled from 1 to 12 are:
Cameraman, House, Pepper, Starfish, Butterfly, Plane, Parrot, Lena, Barbara, Boat, Artist,
Room. For each image, the highest PSNR in each scenario is highlighted. We observe that
the performances of U-PnP-BPGM and U-RED-BSD are very close to one another, providing
the best performance compared to all the other methods, outperforming U-PnP-PGM and

U-RED-SD. Fig. 7.2 shows visual examples for two images from Set12 in two different settings,
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uniform kernel with peak 8 (top) and Gaussian kernel with peak 32 (bottom). Note that
both U-PnP-PGM and U-RED-SD yield similar visual recovery performance with artifacts
remaining in the images, U-PnP-BPGM and U-RED-BSD show much better reconstruction
performance in removing artifacts and noise. The enlarged regions in the image suggest that
U-PnP-BPGM and U-RED-BSD better recover the fine details and sharper edges compared

to their counterparts and U-Net.

7.5 Summary

In this chapter, we propose generalizing plug-and-play priors (PnP) and regularization by
denoising (RED) beyond squared Euclidean distance using the Bregman distance. The
proposed Bregman-based methods are motivated by the recent progress in optimization, that
have the potential to better align to specific non-Euclidean geometry of the loss function.
Our numerical results show the potential of the proposed methods in Poisson linear inverse
problems. This work can be considered as a first step towards extending widely-used PnP/RED
to problems where there is a benefit of using non-Euclidean formulations of proximal and

projection operators.
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Part V

Developing Model-based Deep

Learning Algorithms
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Chapter 8

CoRRECT: A Deep Unfolding
Framework for Motion-Corrected

Quantitative RS Recovery

E have analyzed PnP and RED in previous chapters. PnP/RED leverages the

‘ ' power of deep learning by using learning-based denoisers inside model-based
optimization approaches. In this chapter, we focus on the deep unfolding (DU) frameworks,
which are methods that integrate imaging model inside the end-to-end deep learning. In
particular, we present CORRECT as a new framework for recovering quantitative R maps
from subsampled and artifact-corrupted MRI data using DU. Quantitative MRI (qMRI)
refers to a class of techniques for quantifying the spatial distribution of biological tissue
parameters using MRI. Traditional gMRI methods deal separately with artifacts arising from
accelerated data acquisition, involuntary physical motion, and magnetic-field inhomogeneities,

leading to suboptimal performance. This work addresses all three jointly by proposing
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CoRRECT, a specialized DU method consisting of a model-based end-to-end neural network,
an efficient motion-artifact simulator, and a self-supervised learning scheme. The network is
trained to make the k-space data corresponding to the estimated Rj maps resemble the real
data by accounting for motion and field inhomogeneities. When deployed, CoORRECT uses
only the k-space data without any pre-computed parameters for motion or inhomogeneity
correction. Our results on simulated and experimentally collected multi-Gradient-Recalled
Echo (mGRE) MRI data show that CoORRECT recovers high-quality RS maps in highly
accelerated acquisition settings. This work opens the door to DU methods that can integrate
information from physical measurement models, biophysical signal models, and learned prior

models for high-quality quantitative MRI.

8.1 Introduction

The recovery of diagnostic-quality images from subsampled k-space measurements is funda-
mental to accelerated magnetic resonance imaging (MRI) [120]. The recovery is traditionally
formulated as an inverse problem, where the unknown image is reconstructed by combining
the MRI forward model and a regularizer [45, 54, 80, 156]. Deep learning (DL) has recently
enabled a powerful data-driven paradigm for solving inverse problems, leading to new state-
of-the-art MRI methods [100, 119, 127, 140, 187]. Instead of defining an explicit regularizer,
the traditional DL methods are based on training convolutional neural networks (CNNs) to
map the measured data to the desired high-quality image. Model-based DL methods—such
as those based on PnP and DU—have extended the traditional DL to deep architectures that

combine the MRI forward models and CNN regularizers [1, 3, 75, 79, 134, 205, 214].

Quantitative MRI (¢gMRI) refers to a class of techniques for quantifying the spatial distribution
of biological tissue parameters from MRI data [77, 101, 150, 184, 192, 197, 218, 219]. ¢MRI
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scans are relatively slow due to their reliance on acquisition sequences that require a large
number k-space samples. Additionally, the recovered quantitative maps frequently suffer
from undesirable imaging artifacts due to various sources of noise and corruption in the
measurements. Three common sources of artifacts are the measurement noise, macroscopic B
magnetic field inhomogeneities, and involuntary physical motion of the object during signal
acquisition. There is consequently a need for gqMRI methods that can recover high-quality
quantitative parameters from accelerated MRI data contaminated by measurement noise,

field inhomogeneities, and motion artifacts.

Despite the rich literature on gMRI, the majority of methods consider the artifacts arising from
accelerated data acquisition, involuntary physical motion, and magnetic-field inhomogeneities
separately. In particular, it is common to view qMRI parameter estimation as a post-processing
step decoupled from the MRI reconstruction. In this paper, we address this gap by proposing
a new unified qMRI framework—referred to as co-design of MRI reconstruction and R}
estimation with correction for motion (CoRRECT )—for high-quality quantitative Ry mapping
directly from noisy, subsampled, and artifact-corrupted MRI measurements. Inspired from the
state-of-the-art performance of recent DU methods, we propose CoORRECT as a specialized
DU method consisting of two core components: (a) a model-based end-to-end neural network,
and (b) a self-supervised learning scheme for training without the ground-truth R} maps.
During training, the weights of the proposed network are updated to produce Rj maps
with k-space data that resembles the real data while also accounting for object motion and
magnetic field inhomogeneities. During testing, CORRECT requires only the k-space data,
without any pre-computed parameters related to motion or inhomogeneity correction, thus
significantly simplifying and accelerating the imaging pipeline. We present numerical results
on simulated and experimentally collected mGRE data showing that CORRECT enables

high-quality R mapping in highly accelerated data acquisition settings.
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8.2 Background

8.2.1 Inverse Problem Formulation

In MRI, the relationship between the unknown complex-valued image € C" and its noisy

k-space measurements y € C™ is commonly expressed as a linear system
y=Azx+e, (8.1)

where A € C™*" is the measurement operator and e € C™ is the measurement noise, which is
often modeled as an AWGN vector. In particular, in multi-coil parallel MRI, the measurement

operator A consists of several operators representing the response of each coil [60]
A'= PFS', (8.2)

where S° is the pixel-wise sensitivity map of the ith coil, F is the Fourier transform operator,
P is the k-space sampling operator. When multiple gradient echos are used for qMRI, the
sampling pattern P and the coil sensitivity maps {S*} are assumed to be fixed for all echo
times. We say that the MRI acquisition is “accelerated”; when each coil collects m < n
measurements. [t is common to formulate the reconstruction in accelerated MRI as the

regularized optimization problem illustrated in Section 2.2.1

T = arwgegjnnin f(x) with f(x)=g(x)+r(x), (8.3)

where ¢ is the data-fidelity term that quantifies consistency with the measured data y and h
is a regularizer that enforces a prior knowledge on the unknown image @. For example, two

widely-used data-fidelity and regularization terms in accelerated MRI are the least-squares
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and total variation (TV)
1 2
g(@) =3 lly — Az|" and r(z) =7 Dz, , (8.4)
where 7 > 0 controls the regularization strength and D is the discrete gradient operator [156].

8.2.2 Image Reconstruction using Deep Learning

In the past decade, DL has gained great popularity for solving MRI inverse problems due to
its excellent performance (see reviews in [100, 212]). A widely-used supervised DL approach
is to train an image reconstruction CNN Ry by mapping a corrupted image Ay to its clean
target &, where A' is an operator that maps the measurements back to the image domain.
The training is formulated as an optimization problem over a training set consisting of desired

ground-truth images {x;} and their noisy subsampled measurements {y,}

J
0" = argemin ZE(RQ(A;yj)’ x;) , (8.5)

j=1

where £ denotes the loss function that measures the discrepancy between the predictions
of the CNN and the ground-truth. Popular choices for the CNN include U-Net [155] and
for the loss function the ¢; and ¢, norms. For example, prior work on DL for accelerated
MRI has considered trained the CNN by mapping the zero-filled images to the corresponding

fully-sampled ground-truth images [73, 159, 189].

PnP [166, 186] is a widely-used framework that extend the traditional DL by enabling the
integration of the physical measurement models and powerful DL denoisers as image priors to
provide state-of-the-art reconstruction algorithms (see recent reviews of PnP in [4, 95]). As

we have introduced in Section 2.3, the iterations of regularization by denoising (RED) [153],
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which is a well-known PnP method, can be expressed as
2" —y (Vg(2* ) + 7(2" — Doz 7)) | (8.6)

where Vg is the gradient of the data-fidelity term in (8.3), Dy is the CNN denoiser param-
eterized by weights 6, and v, 7 > 0 are the step size and the regularization parameters,
respectively. The iterates of (8.6) seek an equilibrium between the physical measurement
model and learned prior model. Remarkably, this heuristic of using CNNs not necessarily
associated with any h within an iterative algorithm exhibited great empirical success [4, 166,

215, 217] and spurred a great deal of theoretical work on PnP [36, 158, 172, 199].

DU (also known as deep unrolling and algorithm unrolling) is another widely-used DL paradigm
that was widely adopted in MRI due to its ability to provide a systematic connection between
iterative algorithms and deep neural network architectures [1, 3, 75, 79, 134, 205, 207,
214]. PnP algorithms can be naturally turned into DU architectures by truncating the
PnP algorithm to a fixed number of iterations and training the corresponding architecture
end-to-end in a supervised fashion. By training the CNN Dy jointly with the measurement

model, DU leads to an image prior optimized for a given inverse problem.

In this work, we adopt the RED iteration (8.6) as the basis of our DU architecture. We will
refer to this architecture as U-RED. The data-consistency layers of our U-RED architecture

correspond to the gradient of the least-squares penalty (8.4)
Vy(z) = A"(Az —y) , (8.7)

where A" denotes the hermitian transpose of A. We will introduce the details of our method

in Section 8.3.
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8.2.3 mGRE Sequences and Biophysical Model

The multi-Gradient-Recalled Echo (mGRE) sequences are used in different MRI applications to
produce quantitative maps related to biological tissue microstructure in health and disease [77,
101, 150, 184, 192, 197, 218, 219]. Each reconstructed mGRE voxel can be interpreted using

the following biophysical model [203]

z(t) = Xo - exp(—R5 -t —iwt) - F(t), (8.8a)

where ¢ denotes the gradient echo time, X, = x(0) is the signal intensity at ¢ = 0, and w is a
local frequency of the MRI signal. The complex valued function F(¢) in (8.8) models the
effect of macroscopic magnetic field inhomogeneities on the mGRE signal. The failure to
account for such inhomogeneities is known to bias and corrupt the recovered R; maps. The
function F'(t) is traditionally computed using the vozel spread function (VSF) approach [204],
based on evaluating the effects of macroscopic magnetic field inhomogeneities (background
gradients) on formation of the complex-valued mGRE signal. The R} maps, w maps, and
Xp can be jointly estimated from 3D mGRE images acquired at different echo times ¢ by
fitting (8.8) with pre-calculated F'(t) on a voxel-by-voxel basis to experimental data using

non-linear least squares (NLLS).

8.2.4 Deep qMRI Map Estimations

In practice, the traditional voxel-wise fitting methods such as NLLS are time consuming,
and also sensitive to the artifacts (e.g. noise or motion artifacts) in MRI images. Recent
work has shown the effectiveness and efficiency of using deep neural networks (DNNs) to

estimate high-quality gMRI maps (see recent reviews in [59, 883, 110]). One straightforward
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and effective application of DL in ¢qMRI is to train a DNN to learn a direct mapping of
gMRI maps from the MR images in a supervised fashion. The training can be guided by
minimizing the loss between the outputs of the DNN and the qMRI map references estimated
from the MR images using standard fitting methods. This end-to-end mapping strategy has
been investigated in many qMRI applications, including T3 [32], high quality susceptibility
mapping (QSM) [22, 209], T; and T3, [108], R2t* and R2' [89]. It has also been applied to help
magnetic resonance fingerprinting (MRF') [143] with a better and more efficient generation of
qMRI maps such as 77 and T3 [41, 57]. When it is challenging to obtain accurate and reliable
gMRI map references, such end-to-end mapping can be further combined with biophysical
models connecting MR images and qMRI maps to enable self-supervised learning where
only MR images instead of the ground-truth gMRI maps are required for training [182, 201].
When measurement operator A is also available, it can be combined with biophysical models
to enforce data consistency to the subsampled measurements in the DL pipeline [111, 213],
leading to a model-based qMRI mapping. Other than these end-to-end MRI mappings,
some work also focused on developing DL-based image reconstruction methods to improve
the gMRI estimation. The gMRI maps can be later computed from these reconstructions
either using standard fitting method [66, 221] or DL-based mapping [194]. In analogy to
these separated MRI reconstruction and ¢MRI map estimations, one can also combine the
DL-based MRI reconstruction and DL-based qMRI estimation into one single pipeline and

train it end-to-end [84].

DL-based ¢MRI estimation often leads to reliable qMRI mapping with better artifact-
suppression capability and faster computation than standard fitting methods [32, 41, 84,
89, 111, 182, 201, 213]. In this work, we contribute to this growing deep qMRI estimation
field by enabling the end-to-end estimation for R; maps directly from k-space measurements,

where the artifacts caused by subsampling, noise, motion and magnetic field inhomogeneities
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Figure 8.1: The overview of the proposed CoORRECT framework for training an end-to-end
deep network consisting of two modules: Ry for reconstructing mGRE MRI images and
E, for estimating corresponding R5 maps. The network takes input as subsampled, noisy,
and motion-corrupted k-space measurements. Ry is implemented as the unfolded U-RED
architecture initialized using the zero-filled reconstruction. E, is implemented as a customized
U-Net architecture mapping the output of Ry to the desired R map.The whole network
is trained end-to-end using fully-sampled mGRE sequence data without any ground-truth
quantitative (X, R5) maps.

are considered and fixed together. We realize this idea by using a model-based MRI recon-
struction module to first recover the mGRE images followed a biophysical-model-assisted
R5 estimation module to compute motion- and B0-inhomogeneity-corrected 5 maps from
those intermediately reconstructed mGRE images. By conducting joint training of these

two modules, we achieve the accelerated, robust and accurate MRI reconstruction and R}

estimation simultaneously.

8.3 Proposed Method

The proposed CoORRECT framework seeks to jointly recover both mGRE images and R}

maps via end-to-end training. In this section, we present the technical details of CORRECT.
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8.3.1 Overall Architecture of CoORRECT

CoRRECT focuses on a motion-involved version of the imaging problem illustrated in
Eq. (8.1). In particular, consider motion-affected subsampled measurements y® obtained

from the mGRE image x of N echo times as
Yy’ = Ag(x) + e, (8.9)

where the motion function ¢ represents the movements of the object during the scanning,
which is assumed to be unknown. Our method aims to, without knowing ¢, reconstruct
both the motion-corrected mGRE image « and the R; map by training a DNN on a set
of ground-truth mGRE images {z;}7_; and their noisy subsampled measurements {y¢}7_,
given the measurement operator for each measurement as {A}}-le. Fig. 8.1 summarizes the
details of the CORRECT framework, where the sample index j of all variables are omitted

for simplicity. We introduce the key idea of the CORRECT as follows.
mGRE Reconstruction Module

Given the corrupted k-space measurements y;, a mGRE reconstruction module Ry is first
applied to reconstruct high quality mGRE images. We adopt a K-layer U-RED network as
our mGRE reconstruction module Rg, where 8 € R? corresponds to the trainable parameters
of the regularization network Dg. Ry takes subsampled, noisy, and motion-corrupted k-
space measurements yj’ and the measurement operator A; as its inputs, and produces
artifact-corrected N-echo mGRE image Z; as its output, where

77
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As shown in Fig. 8.1, the input of U-RED is initialized with A;'yj’ In our implementation,
we set K = 8 and adopted a customized 7-layer DnCNN for the implementation of the
regularization network Dg. The weights of Dy are shared across all K steps for memory
efficiency. To enable the reconstruction for complex mGRE data, the input of Dg are split to

2 channels that consist of the real (denoted as Re) and imaginary (denoted as Im) parts.
R; Estimation Module

As shown in Fig. 8.1, the mGRE reconstruction module Ry is followed by a R} estimation
module E,, to allow for the estimation of R3. Our R estimation module E, is built on the
self-learning network LEARN-BIO [201] discussed in Sec. 8.2.4, which consists of a CNN
customized from U-Net [155] with trainable parameters ¢ € R?. As its order-sensitive input,
E, accepts the magnitude of the reconstructed N-echo mGRE image Z; from Ry as its input

and produces ¢qMRI maps (}ACO, ﬁ;)] as its output, where
(Xo, R3); = Ep(|2;]) - (8.11)

Here we use | - | to represents the magnitude extraction operator, and )ACO € R”, ﬁ; € R" to
denote the vectorized X, and R} outputs from the estimation module, respectively. Once
trained, CORRECT allows the joint reconstruction of mGRE images and estimation of R;

maps. We introduce the training strategy of CoORRECT in the following section.

8.3.2 Training of CORRECT

We adopt a self-supervised learning strategy for the end-to-end training of CORRECT, where
only the mGRE data instead of the ground-truth (Xg, R%) maps are required. To explain this

training procedure, let’s consider the intermediate mGRE output Z; from the reconstruction
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module Rg in Eq. (8.10) and the final quantitative map output (}20, ﬁ;) ; from the estimation
module E, in Eq. (8.11). The end-to-end training of CORRECT is enabled by the joint
minimization of two distinct loss functions with respect to these two outputs: the mGRE
reconstruction loss Le.(0) and the R} estimation loss L (0, ). Given sampled data x; and
yf, the mGRE reconstruction loss L,e.(0); computes the difference between the reconstructed

mGRE image Z; and the ground truth mGRE image ; as
L1ec(0); = L(Z;, x;) . (8.12)

The R} estimation loss Let (0, ¢);, on the other hand, enforces the data consistency of the
mGRE images synthesized by the estimated (Xy, R3) maps to the ground-truth mGRE
images. It uses the analytical biophysical model p; = B((Xo, R3) ;3 f;) in Eq. (8.8) to relate

the mGRE images and the quantitative 5 maps into the loss function
Lest(0,9); = L Mp;], [Mx,]), (8.13)

where f; € C" denotes the vectorized F(t) function pre-computed using the VSF ap-
proach [204] from ground-truth mGRE data x; to compensate for the effect of macroscopic
magnetic field inhomogeneities, and M denotes the voxel-wise region extraction mask (REM)
where the biophysical model applies. REM M is only needed during the training to assist the
computation of R; estimation loss and is not necessary during the test. Given losses Lyec(0);
and Le(0,);, the training of CORRECT is conducted by minimizing their combination

over a training set consisting of J samples as

J
0%, " =argmin > {L,ec(6); + Aet(6, )} , (8.14)
0, =1
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where A\ > 0 is a weight parameter and the optimized parameters 8* and ¢* are obtained

through gradient-based back propagation (BP).

The key feature of CORRECT is that it is fully self-supervised, in the sense that it does not need
ground-truth quantitative R maps for training. Instead, it is trained using only the mGRE
images and our knowledge of the biophysical model B connecting the mGRE signal with R}
that includes the contribution of magnetic field inhomogeneities described by F(t). By using
F(t) during training, our estimation module E,, learns to compensate for macroscopic magnetic
field inhomogeneities to produce motion-artifact-free and B0-inhomogeneity-corrected R}
maps. Therefore, at testing time, the information of F'(¢) functions are not required, resulting
in a fast computation of the quantitative maps. The joint training of the mGRE reconstruction
module Ry and R estimation module E,, also benefits the performance of CORRECT. On one
hand, with the assistance of the reconstruction module on artifact correction, the estimation
module greatly releases its pressure in artifact removal and therefore can focus on the R}
fitting. On the other hand, the reconstruction module is also guided by the performance of
our R} estimation module via the minimization of the loss L (6, ). And by reconciling
the reconstruction module and the estimation module into one end-to-end pipeline, they
learn how to collaborate with each other through joint training, resulting in a potential

maximization of the overall performance.
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Table 8.1: Average SNR and SSIM values over the testing dataset corrupted with random levels
of synthetic motion. The table highlights that CORRECT outperforms several well-known
baseline methods for different accelerated subsampling rates.

Images mGRE R3
Metric SNR(dB) SSIM SNR(dB) SSIM
Acceleration rate x2 x4 x8 x2 x4 x8 x2 x4 x8 x2 x4 x8
Corrupted 16.72 14.73 14.00 0.90 0.86 0.85 6.70 6.30 6.17 0.85 0.82 0.82
TV 21.46 19.88 17.05 0.81 0.8 0.77 1221 11.72 10.60 0.92 0.90 0.87
RED 21.49 20.10 1749 0.92 0.90 0.87 12.16 11.70 10.59 0.91 0.90 0.87
U-Net 20.79 19.25 18.09 0.92 0.90 0.88 12.08 11.39 10.77 0.91 0.89 0.88
U-RED 21.53 20.36 19.08 093 0.91 0.90 1220 11.79 11.15 0.92 0.90 0.89

CoRRECT (Ours) 22.12 20.66 19.25 0.93 0.91 0.90 12.99 12.33 11.60 0.92 0.90 0.89

The performance of CORRECT is marked bold for achieving the best performance in each column.

8.4 Experimental Validation

CoRRECT is trained to directly provide high-quality R maps from subsampled, noisy, and
motion-corrupted k-space measurements. It is trained on simulated data with synthetic
motion and validated on both simulated and experimentally-collected data. Our results in
this section show that the method trained only on simulated motion-corrupted data can
achieve excellent performance on previously-unseen experimental data corrupted with real

motion.

8.4.1 Dataset Preparation

To validate our method, we selected fully-sampled clean k-space data of the brain as our
source to generate the synthetic subsampled, noisy and motion-corrupted measurements.
These brain data were collected from 15 healthy volunteers using a Siemens 3T Trio MRI
scanner and a 32-channel phased-array head coil. Studies were conducted with the approval of
the local IRB of Washington University. All volunteers provided informed consent. The data

were obtained using a 3D version of the mGRE sequence with N = 10 gradient echoes followed
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by a navigator echo [191] used to reduce artifacts induced by physiological fluctuations during
the scan. Sequence parameters were flip angle F'A = 30°, voxel size of 1 x 1 x 2 mm?3, first
echo time ¢; = 4 ms, echo spacing At = 4 ms (monopolar readout), repetition time TR, = 50
ms. The dimension of raw measurement for each subject from each coil at a single echo time
was N* x Nk x N*: with k, and k, both being the frequency-encoding dimension and k,
being read-out dimension, respectively. In our data, N*= = 72, N*» = 192, and N** = 256.
For the sake of GPU memory, we converted 3D k-space data into 2D k-space slices after a 1D
Fourier Transform along the k, dimension and apply our method to 3D MRI reconstruction

and R estimation in a slice-by-slice manner.

These 15 subjects were split into 10, 2, and 3 for training, validation, and testing, respectively.
For each subject, we extracted the middle 25 to 56 slices (72 in total) that contains the most
relevant regions of the brain to use. This yields 3100 images for training, 620 for validation,
and 930 for testing in the simulation. For each slice, 10-echo mGRE images of fully-sampled,
noise- and motion-free k-space data was used as the ground truth, corresponds to the target
image x in Eq. (8.9). We corrupted the ground-truth images x with the synthetic motion
function ¢ as well as the forward operator A and Gaussian noise e in Eq. (8.9) to generate
the artifact-corrupted measurements y®. The data {x,y?} of all samples were used to serve
the training and quantitative evaluation of our method. We explain details of such data
simulation and pre-processing in Sec. 8.4.2. Additional experimental data with clear visible
motion artifacts were used for evaluating the performance of our network trained on synthetic
data. The coil sensitivity maps for each slice were estimated from its 1st echo of fully sampled

k-space data using ESPIRIT [183] for both simulated and experimental data.
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Figure 8.2: Performance of CORRECT compared with different baseline methods on exemplar
testing data corrupted with synthetic motion and subsampled with acceleration rate x4. The
bottom-left corner of each image provides the SNR and SSIM values with respect to the ground-
truth. Arrows in the zoomed-in plots highlight brain regions that are well reconstructed
using CoORRECT. Note that the R} estimation of TV, RED, U-RED are conducted by the
motion-correction-enabled network LEARN-BIO for fixing the motion corruptions left in
their reconstruction. This figure highlights that CoORRECT can achieve excellent quantitative
and visual performance in both mGRE reconstruction and R} estimation.

8.4.2 Data Simulation and Pre-processing

As aforementioned, the training and quantitative evaluation of our network requires the
paired clean mGRE images x as its ground truth and corrupted k-space measurements y? as
its inputs. We obtained x from fully-sampled clean k-space measurements via inverse Fourier
transformation, and synthesized the subsampled, noisy and motion-corrupted measurements
y® by corrupting the fully-sampled clean ones. We introduce the procedure of the simulation

here.
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Motion Simulation

We hypothesize the motion artifacts in the MR images are the consequence of a series of
physical motions such as shifts or rotations that result in perturbations of blocks of k-space
lines during corresponding motions. We therefore replace certain k-space lines of the ground-
truth MR images & with those of their moved versions to synthesize motion artifacts. To
generate a range of realistic and various motion artifacts for our simulated data, we set the
number of motion movements, the duration of each movement, and the amplitude of each

movements all as random numbers following the configuration used in [201].

Subsampling and Noise Corruption

The motion-affected k-space data were further corrupted by subsampling. In this work,
we adopt a Cartesian sampling pattern that fully-samples along k, and k, dimension, and
subsamples along the k, dimension in the k-space. We experimented with three sampling rates
50%, 25% and 12.5%, which are referred to as acceleration rate x2, x4 and x8 respectively
in the following context for simplicity. For each rate, we kept the central 60 out of 192 lines
along k, fully-sampled. The simulation of corrupted measurements y was finalized by adding
AWGN corresponding to an input SNR of 40dB to the motion-corrupted and subsampled

k-space data.

8.4.3 Experiments Setup

CoRRECT solves the mGRE reconstruction problem and R; estimation problem simulta-
neously through joint training. To demonstrate the performance of CORRECT on both
problems and highlight the benefits of joint training, we compare our method against several

approaches that decouple the image reconstruction and the R; estimation.
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Baseline Methods for mGRE Reconstruction

For the image reconstruction problem, we included TV [156], U-Net [155] and traditional
RED [153]. We also included deep U-RED explained in Sec. 8.2.2 to illustrate the im-
provements due to joint training. TV is an iterative method that does not require training,
while other methods are all DL-based with publicly available implementations. We trained
our DL-based baseline methods on motion-free data to handle mGRE reconstruction. We
used the same DnCNN [155] architecture used in our image reconstruction module as the
AWGN denoiser for RED and trained those denoisers for AWGN removal at four noise levels
corresponding to noise variance o €{1, 3, 5, 7}. For each experiment, we selected the denoiser
achieving the highest SNR. U-RED shares the same setting as our image reconstruction
module, except that it is not jointly trained with an attached R estimation module. We ran
TV and RED both for 50 iterations. We fixed the step size v = 0.5 for TV, RED, U-RED
and CoRRECT. We used grid search to identify the optimal regularization parameters 7 for
TV, RED and learned its value through training for U-RED and CoRRECT.

Baseline Methods for R?; Estimation

We applied the DL-based R} estimation method LEAR-BIO [201] to the reconstructed mGRE
images from baseline methods to compute the corresponding R} maps as comparisons to
the ones from our end-to-end training. LEARN-BIO shares the same network structure
as our R estimation module E,, except that it was not jointly trained with the mGRE
reconstruction. In particular, we trained two LEARN-BIO networks, namely LEARN-BIO
(clean) and LEARN-BIO (motion), to compute high-quality R; maps. LEARN-BIO (clean)
was trained on artifact-free mGRE images. We applied this network to ground-truth mGRE
images to get ground-truth R} references for quantitative evaluation. LEARN-BIO (motion)

was trained on motion-corrupted mGRE images (generated with the same motion simulation
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Figure 8.3: Performance of CORRECT compared with different baseline methods on exemplar
testing data corrupted with real motion and subsampled with acceleration rate x4. The mGRE
image in the first column, denoted x1, is from the motion-corrupted but fully-sampled k-space
data, while the one in the second column, denoted x4, is from the motion-corrupted and also
subsampled k-space data. Note the excellent performance of our method in removing the
comprehensive artifacts that remain in the results of all baseline methods. This demonstrates
the capability of our network trained with synthetic motion in dealing with real motion
artifacts.

configuration introduced in Sec. 8.4.2) to compute motion-corrected Rj maps. We applied
this network to all reconstruction baseline methods to capture the motion residue in their
mGRE reconstruction for high-quality R5 estimation. In addition, for the subsampled, noisy
and motion-corrupted mGRE images reconstructed with zero-filling, we applied the traditional
voxel-wise NLLS approach for their R} estimation. As described in Sec. 8.2.3, NLLS is a
standard iterative fitting method for computing Rj based on Eq. (8.8), where in each iteration,
the regression is conducted by combining the data from different echo times ¢ with their
F(t) values voxel by voxel. Since NLLS is a pure fitting method without artifact-fixing
capability, this clearly shows how artifacts in mGRE images collapses the estimation of R}
maps. Prior to the NLLS fitting procedures, a brain extraction tool, implemented in the

Functional Magnetic Resonance Imaging of the Brain Library(FMRIB), was used to generate
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the REMs to mask out both skull and background voxels in all mGRE data [85], where
the signal model defined in Eq. (8.8) doesn’t apply. NLLS was run over only the set of
unmasked voxels. Similarly, we applied the same REMs in the loss function Eq. (8.13) of our
R estimation module as well as baseline method LEARN-BIO during their training. All the
results of R; presented in this paper were also processed by these masks before evaluation

and visualization.

Implementation Details and Evaluation Metrics

Based on our empirical observation, we adopted the ¢5 loss for both loss functions L,..(0) and
Lest(0, ) and set the weighting parameter A = 1. We set the learning rates of our network
as 1 x 107°. We performed all our experiments on a machine equipped with 8 GeForce RTX
2080 GPUs. For quantitative evaluation, we adopted two widely-used quantitative metrics,
signal-to-noise ratio (SNR), measured in dB and structural similarity index (SSIM), relative
to the ground-truth. In experimental scenarios where ground-truth is not available, we
applied our networks trained on synthetic data to experimental data and provided qualitative

visual comparisons of different approaches.

8.4.4 Results on Simulated Data

We first test the performance of CORRECT on simulated data with synthetic motion corrup-
tions. We followed the configuration in Sec. 8.4 to add random motion to each data slice in
our testing dataset to cover comprehensive motion levels. Table 8.1 summarizes quantitative
results of all evaluated methods at different acceleration rates. As highlighted in Table 8.1,
CoRRECT achieves the highest SNR and SSIM values compared to other methods over all

considered configurations.
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Figure 8.4: Performance of CORRECT compared against different baseline methods on
exemplar testing data corrupted with real motion and subsampled with acceleration rates
{x2, x4, x8}. The mGRE image in the first column, denoted with x1, is from the motion-
corrupted but fully-sampled k-space data, while the ones in the second column are from the
motion-corrupted and also subsampled k-space data. Note the excellent performance of our
method is demonstrated by its ability to remove comprehensive artifacts while maintaining
structure details across different acceleration rates.

Fig. 8.2 visualizes the performance of CORRECT compared with different baseline methods
on exemplar simulated data. The 1st echo of a complex-valued mGRE image sequence is
visualized as its normalized magnitude, where the normalization is done by dividing by the
mean of the intensity in the 1st echo of the mGRE sequence. The corrupted image shows
that subsampling and motion can severely degrade the quality of mGRE images by causing a
significant amount of blurring and aliasing artifacts, and consequently collapses R5 estimation.
Baseline methods TV and RED alleviate some of the artifacts in the corrupted image.
However, due to their inability to capture the motion effects missed in the forward operator,
a considerable amount of artifacts are still observed in mGRE reconstruction. Meanwhile,
due to the existence of unknown motion, the forward operator A that only models the
subsampling is no longer accurate. As a result, the reconstruction can get misled, even

resulting in a degradation of artifacts (see the enhanced artifacts around the central region
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Figure 8.5: The performance of CORRECT on experimental data corrupted with real motion
and subsampled with acceleration rate x4. The first row shows the mGRE images across
different slices in a whole brain volume of 72 slices, and the second row shows the corresponding
R; maps estimated from these mGRE images. For a given slice in each column of the first
row, the image to the left of the dashed line is the mGRE image reconstructed by zero-filling
from subsampled, noisy and motion-corrupted k-space data, and the image to the right is
reconstructed by CoORRECT. In each column of the second row, the R; to the left of the
dashed line is estimated by applying NLLS to the corrupted mGRE image above it, and
the right is produced by our method. This demonstrates the of capability of CORRECT in
removing artifacts for the whole brain volume.

of the brain). U-RED can further reduce the overall artifacts by using a CNN-embedded
deep network to compensate for artifacts through end-to-end training, but is still suboptimal,
showing visible artifacts in mGRE reconstruction. As for R} estimation, although a significant
improvement over the NLLS fitting is observed by using motion-correction-enabled LEARN-
BIO on artifact-contaminated mGRE images from those baseline methods, the estimation
still suffers from inaccuracy in the regions indicated by blue arrows. Our proposed method,
CoRRECT, managed to achieve the best performance compared to all evaluated baseline
methods in terms of sharpness, contrast, artifact removal and accuracy, thanks to joint

training of mGRE reconstruction and R estimation.

115



8.4.5 Results on Experimental Data

We further validate the performance of our network trained on simulated data using experi-

mental data with real motion corruptions.

Figure 8.3 visualizes the performance of CORRECT compared with different baseline methods
on exemplar experimental data corrupted with real motion and subsampled with acceleration
rate x4. Note that the corrupted mGRE image in the first column, denoted with acceleration
rate x1, corresponds to the corrupted mGRE image of motion-affected but fully-sampled
k-space data. The corresponding Rj, which is estimated using LEARN-BIO (clean), conse-
quently suffers from these motion corruptions as well. While such motion artifacts in this
experimental data might not follow our simulation model, we do observe similar results to
our synthetic experiments. It can be seen that CORRECT outperforms the evaluated baseline
methods in both mGRE reconstruction and R; estimation in terms of removing artifacts and
maintaining sharpness. This shows CoRRECT is capable of handling real motion artifacts
while still keeping detailed structural information. Figure 8.4 shows comprehensive results
across different acceleration rates for the same data sample, where consistently outstanding

and robust performance of CORRECT is observed.

Fig. 8.5 further demonstrates the performance of our method across different data slices in a
whole brain volume, where each slice, in principle, is corrupted with different and random
motions during the scan. For each slice, we show the side-to-side comparison between the
results of CORRECT and the corrupted images, including the zero-filled mGRE images
reconstructed from subsampled, noisy and motion-corrupted k-space data and their NLLS-
estimated R maps. The constant success of CORRECT on different brain slices proves that
our network can work on the whole spectrum of brain volume, highlighting the effectiveness

and adaptability of our method.
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8.5 Discussion and Conclusion

In this manuscript, we proposed CoRRECT, a codesign of MRI reconstruction and R}
estimation with correction for unknown motion. Our method realizes MR image reconstruction
and end-to-end R} estimation simultaneously and directly from subsampled, noisy and
motion-corrupted k-space data. It is realized by integrating a MRI reconstruction module
that produces clean mGRE images and a ¢MRI estimation module that computes R} maps
together. Both modules are DL-based to allow for joint end-to-end training, where the MRI
reconstruction module adopts the popular deep U-RED framework, and the ¢qMRI estimation
module adopts the powerful U-Net structure. Our network is trained in a self-supervised
fashion, where ground truth mGRE images instead of the quantitative R5 maps are used.
Such learning is enabled by embedding the biophysical model that connects the mGRE images
and Rj maps into the loss function. We train our network on simulated data, and validated it
on both simulated data with synthetic motion and experimental data with real motion. Our
results show that CORRECT achieves the best performance in different scenarios compared

to other popular methods, showing its effectiveness and potential in practical applications.

Despite the excellent performance of our method obtained using our current design, both
the reconstruction module and estimation module in CORRECT are compatible with other
potential architectures. Therefore, any improvements on MRI reconstruction and qMRI
estimation, in principle, can also be adopted to further improve our performance. Also,
although in this work we focused on R} estimation, by changing biophysical models used, our

method can be modified for the prediction of many other qMRI maps.
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Chapter 9

Conclusion

N this dissertation, we introduced extensions, analysis, and applications of three popular
I image reconstruction frameworks: plug-and-play priors (PnP), regularized by denoising
(RED), and deep unfolding (DU). In the first section below, we compare the major features
of these three frameworks. In the second section, we summarize the results and contributions
of our work. In the last section, we discuss the potential areas of interest for future research

related to our work.

9.1 Summary of PnP, RED and DU

As popular computational imaging algorithms for image reconstruction, PnP, RED and DU
integrate the imaging model and deep learning to achieve both data consistency guarantees
and advanced prior representation. PnP and RED realize the integration by using learning-
based denoisers inside model-based optimization, while DU by including the imaging models

inside end-to-end deep learning. These three methods are closely related to but also distinct
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from each other in many ways. Here we summarize their key features of them to highlight

their similarities and differences.

PnP. PnP [166, 186] is flexible methodology that embed image denoisers D, with denoising
strength ¢ as priors inside model-based optimization algorithms for image reconstruction.
PnP algorithms alternate between imposing data consistency by minimizing a data-fidelity
term and imposing a statistical prior by applying an AWGN denoiser. The use of advanced
learning-based denoisers specified through pre-trained deep neural nets enhanced PnP with
the power of deep learning. The key advantage of PnP is that it can impose statistical priors
without explicitly forming an objective function, which on the other hand, also introduces
challenges for theoretical analysis of PnP. Nevertheless, as presented in Chapter 5, the iterates
of PnP can be related to the minimization of some objective function for certain type of

denoisers such as MMSE denoisers.

RED. RED [153] is a closely related approach to PnP that also enables integration of
denoisers D, as priors for inverse problems. The key difference between RED and PnP is that
RED was initially derived as an optimization problem where it can lead to an explicit denoiser-
embedded regularization function 7(z) = (7/2)x" (x —Dy(x)), under certain conditions on D,:
1) local homogeneity and 2) symmetric Jacobian. However, due to the impracticalness of such
constrains, the use of RED usually abandons the explicit regularization function and relies
on the operator 7(x — D, (x)) instead. Subsequent analysis showed that the gradient-based
RED variants can be interpreted as an interpretable fixed-point iterations [149], which is
more appropriate for practical denoisers. Another attractive advantage of RED is that it can
adjust the strength between data-fidelity and the prior imposed by a denoiser through the
parameter 7. The missing of such a weighting parameter in PnP was addressed in Chapter 4

with our denoiser scaling technique.
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DU. DU [1, 3, 75, 79, 134, 205, 214] is a related approach to both PnP and RED that
interprets the iterations of an image recovery algorithm as layers of a neural network and
trains it end-to-end in a supervised fashion. In each layer, it usually contains a un-trainable
data-consistency module and a deep learning module. Many PnP/RED algorithms have been
turned into DU architectures by truncating the algorithm to a fixed number of iterations.
But unlike in PnP/RED that specify the prior with AWGN denoisers D,, the CNN in DU
is trained jointly with the measurement model, leading to an image prior Dg optimized for
a given inverse problem via the trainable parameter 8. Such task-specific priors obtained
trough end-to-end training usually lead DU to outperform PnP and RED where the denoiser
is trained separately from the task. Besides the use in the context of DL, such task-dependent
prior Dy pre-trained using DU can also be plugged into PnP or RED algorithms as an artifact-
removal (AR) operator. Equipped with the power of artifact removal, the sophisticated AR
operators yield significantly improved results relative to an AWGN denoiser [114]. Other
than advanced image priors, the end-to-end training also benefits the application of DU in a
sense that it allows DU to be embedded into even larger frameworks for complex imaging
applications. Our work in Chapter 8 presented such an example where DU was used as an
image reconstruction submodule inside an end-to-end learning framework for the accelerated

estimation of quantitative MRI maps.

9.2 Summary of Our Work

In this dissertation, we have presented our work on computational imaging algorithms based
on the PnP, RED, and DU frameworks. We summarize the key results and contribution of

our work as follows.
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The statistical interpretation of PnP. In Chapter 4, we presented a denoiser scaling
technique for improving the performance of PnP algorithms. We theoretical justified the
denoiser scaling from the perspectives of proximal optimization, statistical estimation, and
consensus equilibrium. In Chapter 5, we established the first theoretical convergence result
for PnP-PGM algorithm with MMSE denoisers. We showed that the iterates produced by
PnP-PGM with an MMSE denoiser converge to a stationary point of some global cost function.
These two chapters together provided several new insights into the PnP methodology by

giving statistical interpretations for PnP through the analysis of the denoisers.

An incremental PnP-ADMM algorithm. In Chapter 6, we addressed the limitation of
PnP algorithms in dealing with a large number measurements. Our proposed incremental
PnP-ADMM algorithm can effectively scale to datasets that are too large for traditional
batch processing by using a single element or a small subset of the dataset at a time. We
theoretically analyzed the convergence of the algorithm under a set of explicit assumptions,
extending recent theoretical results in the area. This work successfully adapted PnP to

large-scale imaging problems and validated its effectiveness with stochastic data processing.

Bregman PnP algorithms. In Chapter 7, we generalized the PnP/RED algorithms to
the Bregman-PnP/Bregman-RED algorithms based on the more general Bregman distance
beyond the classical Euclidean distance . We presented a theoretical convergence result for
PnP-BPGM and demonstrated its effectiveness on Poisson linear inverse problems using
DU. This work bypassed the Lipschitz gradient assumption on the data-fidelity term and

broadened the family of PnP algorithms to the non-Euclidean setting.

A novel DU framework for quantitative MRI. In Chapter 8, we presented CORRECT as
a new framework for recovering quantitative R5 maps from subsampled and artifact-corrupted

MRI data using DU. Our method jointly addressed three problems: image reconstruction,
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motion correction and quantitative map estimation. Our results on simulated and experi-
mentally collected multi-Gradient-Recalled Echo (mGRE) MRI data showed the potential
of CoORRECT to enable high-quality R5 mapping in highly accelerated acquisition settings.
This work opened the door to DU methods that can integrate information from physical
measurement models, biophysical signal models, and learned prior models for high-quality

quantitative MRI.

9.3 Outlook

Based on our work presented in this dissertation, we discuss the potential future directions

for computational imaging algorithms as follows.

Understanding the solutions of PnP/RED. The current theoretical analysis for PnP
and RED has established many results for the solution of PnP/RED algorithms in terms of
fixed points. However, the interpretation to such fixed-point solutions are still open questions.
Meanwhile, there are also questions about how to relate different denoisers to optimization

problem and which denoisers provide guaranteed convergence.

Learning more sophisticated priors for imaging.: The use of AWGN denoisers especially
the learning-based ones in PnP/RED opened a new door to the exploration of advanced
image priors that unnecessarily represented by a regularizer function. AR operators further
boost the performance of PnP/RED by adopting task-optimized priors [114]. A recent line of
work has also investigated the priors specified by generative adversarial networks (GANSs) [23,
82, 83, 106, 145, 162]. It is a interesting question to ask how to develop even better priors
that can assist the image reconstruction and how to establish convergence analysis for these

advanced denoisers.
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Enabling the learning without ground truth. Most of current model-based learning
frameworks require the ground truth for training. It is appealing to investigate the un-
supervised, self-supervised and half-supervised learning where the access to full ground
truth data is relaxed. Recent work on neural fields representation provides an option for
representing and rendering 3D scenes using coordinate-based deep neural networks without
access to the full view of the scenes [132, 164, 165]. Such internal learning scheme have been
adopted to enables the interpolation for measurements where the ground-truth data is not
required [171]. Future end-to-end learning framework that combines the internal learning

with advanced priors worth discovering.

Training memory-efficient DU networks. The success of DU highly benefits from the
end-to-end training of imaging model and prior integrated networks. DU architectures,
however, are usually limited to a small number of unfolded iterations due to the high
computational and memory complexity of training. Recent work has addressed this issue
with the deep equilibrium model (DEQ) [9, 68, 113], which is a method for training infinite-
depth networks by analytically backpropagating through the fixed points using implicit
differentiation. Both theoretical and practical extensions of such DEQ-assisted DU frameworks
can be discussed to enable the efficient training of DU networks for large-scale imaging

problems.
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Appendix B

Background Material

We briefly introduce the definitions and propositions in monotone operator theory that are
related to our analysis in the dissertation. We note that the content we present in this section
are well-known results from the optimization literature that can be found in different forms

in standard textbooks [12, 27, 136, 152].

B.1 Properties of Monotone Operators
Definition B.1. An operator T is Lipschitz continuous with constant A > 0 if
[T —Tyl| < Az -yl =,y ecR".

When A = 1, we say that T is nonexpansive. When A < 1, we say that T is a contraction.

Definition B.2. T is monotone if

(Ta:—Ty)T(a:—y) >0 xyeR".
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We say that it is strongly monotone or coercive with parameter p > 0 if
(Te —Ty)"(x —y) > plle —yl|* = yeR".
Definition B.3. T is cocoercive with constant 5 > 0 if
(Te —Ty) (x —y) > BTz - Ty|* x,yeR".

When =1, we say that T is firmly nonexpansive.

The following results are derived from the definition above.

Proposition B.1. Consider R=1—T where T : R — R"™.
T is nonexpansive < R is (1/2)-cocoercive .

Proof. First suppose that R is 1/2 cocoercive. Let h = x — y for any x,y € R". We then
have

1
5lIRz —Ry|* < (Re —Ry)'h = [|A]* — (Tz - Ty)'h.

We also have that
1 o _ Lo T 1 2
sIRz =Ryl = Sllh|” = (Tz = Ty) 'k + S|[Tz — Ty|".
By combining these two and simplifying the expression
[Tz — Tyl < [|A] .

The converse can be proved by following this logic in reverse.
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Proposition B.2. Consider R=1—T where T : R — R".

T s Lipschitz continuous with constant A < 1

= R s (1 — \)-strongly monotone .

Proof. By using the Cauchy-Schwarz inequality, we have for all &,y € R"

(Rz —Ry)"(z — y)
=z —y|>— (Tz - Ty) (z — y)
> lz—y|* - | Tz — Ty|/||lz — y||

> [l =yl = Az -yl > (1 = N)llz -yl

Definition B.4. For a constant a € (0, 1), we say that T is a-averaged, if there exists a
nonexpansive operator N such that T = (1 — «)l + aN.

The following characterization is often convenient.

Proposition B.3. For a nonexpansive operator T, a constant o € (0,1), and the operator
R = | =T, the following are equivalent

(a) T is a-averaged

(b) (1 —1/a)l+ (1/a)T is nonexpansive

(¢) ITe = Tyl* < lz — y|* - (5%) Rz — Ry|, =,y € R".

«

Proof. See Proposition 4.35 in [12].

Proposition B.4. Consider T : R" — R" and 8 > 0. Then, the following are equivalent
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(a) T is B-cocoercive

(b) BT is firmly nonexpansive

(c) | — BT is firmly nonexpansive.
(d) BT is (1/2)-averaged.

(e) | — 20T is nonexpansive.

Proof. For any o,y € R", let h = & — y. The equivalence between (a) and (b) is readily

observed by defining P := ST and noting that

(Px —Py)"h = 3(Tz — Ty)"h and

IP2 — Pyl = 5| Tz — Tyl .

Define R = | — P and suppose (b) is true, then

(Rz —Ry)"h
= |[h|]* = (Pz —Py)"h
= |Rz — Ryl + (Pz — Py)"h — ||Px — Py|

> ||Rz — Ry|*.

By repeating the same argument for P = | — R, we establish the full equivalence between (b)

and (c).
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The equivalence of (b) and (d) can be seen by noting that

2||Px — Py||?> < 2(Px — Py)"h
& |Pz — Py|?> < 2(Pz — Py)"h — ||Pz — Py|?
= ||h||* = (||h|* — 2(Px — Py)"h + ||Pz — Py|*)

= |[h|I* — IRz — Ry]* .

To show the equivalence with (e), first suppose that N := | — 2P is nonexpansive, then
P=1(1+(—N)) is 1/2-averaged, which means that it is firmly nonexpansive. On the
other hand, if P is firmly nonexpansive, then it is 1/2-averaged, which means that from
Proposition B.3(b) we have that (1 —2)I 4+ 2P = 2P — | = —N is nonexpansive. This directly

means that N is nonexpansive.

B.2 Convex Functions, Subdifferentials, and Proximal

Operators

Definition B.5. A continuously differentiable function f is called convex on R™ if

fy) = flx) + V() (y — ) (B.1)

for all x € R™ and y € R™. If —f is convex, we call f concave.

The definition is also known as the first-order convexity inequality, for which more details

can be found in Section 2.1 of [136].
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Proposition B.5. Let f be convex and differentiable function with V f that is L-Lipschitz

continuous. Then,

Fly) < F(@)+ V@)~ ) + lly
for all x € R™ and y € R".

Proof. The proof is a minor variation of the one presented in Section 2.1 of [136]. 0

Proposition B.6. Let f be a proper, closed, and convex function. Then for all x,y € R",

g € 0f(x), and h € 0f(y), Of is a monotone operator

(g—h)(x—y)>0.

Additionally if f is strongly convex with constant p > 0, then Of is strongly monotone with

the same constant.

(g—h)"(x—y) > pllz—y|*.
Proof. Consider a strongly convex function f with a constant u > 0. Then, we have that

fly)> flx)+g"(y—x)+ 5lly — =|?
f(®) > fly) +h"(x—y) + 5z -yl

= (g-h)(z—y)>plz—y|*.

The proof for a weakly convex f is obtained by considering ¢ = 0 in the inequalities above.

It is well-known that the proximal operator is firmly nonexpansive.
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Proposition B.7. Prozimal operator prox,, of a proper, closed, and convexr [ is firmly

nonerpansive.

Proof. Denote with @, = Gz; = prox,;(z1) and z; = Gzy = prox_((23), then

(21 — 1) € v0f (1)
(29 — ®3) € YO f(22)
= (21— X1 — 2o+ @) () — ) >0

= (GZl — GZQ)T(Zl — ZQ) > HGZI — G22||2 .

The following proposition is sometimes referred to as Moreau-Rockafellar theorem. It estab-

lishes that for functions defined over all of R", we have that 0f = 0f; + -+ + 0fp.

Proposition B.8. Consider f = fi+---+ f,, where f1,..., fn are proper, closed, and

convex functions on R™. Then

ofi(x) + -+ 0fm(x) COf(x) xeR".

Moreover, suppose that convez sets ri(dom f;) have a point in common, then we also have

Of(x) COfi(x) + -+ Ofm(z) xER".

Proof. See Theorem 23.8 in [151].
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Proposition B.9. Let f be a convex function, then we have that

f s Lipschitz continuous with constant L > 0

& lg@®)| <L, g(x)ecif(®) zecR".

Proof. First assume that ||g(x)|| < L for all subgradients. Then, from the definition of

subgradient

fx)> fly)+9) (z —y)
fly) > f(x) +g(x)"(y — =)

S gy)'(z—y) <flx)—fly) <glx) (x—y).

Then, from Cauchy-Schwarz inequality, we obtain

—Lllz -yl < gz -y

< f(z) - f(y) < lg(@)|/lx -yl < Lllz -yl .

Now assume that ¢ is L-Lipschitz continuous. Then, we have for any @,y € R"”

gx) (y—=) < fly)— flx) <Ly — =] .

Consider v = y — « # 0, then we have that

s (o) <t

Since, this must be true for any v # 0, we directly obtain ||g(x)| < L.
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Appendix C

Supplement for Chapter 4

C.1 Proof of Proposition 4.1

The proof below is a direct consequence of definition (2.14). It is similar to the derivation
of other properties of the proximal operator that have been extensively described in the

literature (see for example [15, Ch. 6]). For any z € R", we have that

D.(z) = (1/n) - prox, (1 - 2)

— () srgmin{ e — sl + i)}

= - argmin {3 /i) - 213 + (1/pr(a) |
= (U)o ergmin S 218+ (1/3)r o)}

= ProX (/) (2),

[153]



where in the second and the last lines we used the definition of the proximal operator, and in

the fourth line we performed the variable change u = x/p.

C.2 Proof of Proposition 4.2

This result is a direct consequence of the definition of the MMSE denoiser. For any z € R”,

we have that

Du(2) = (1/p) - Dy - 2)
- i

LR & e
LR werrir=r e

where we defined the probability density function of AWGN of variance v > 0 as

1 el
ou(x) = \/%_Ve :

The final line corresponds to the MMSE estimate of a random variable uw ~ p,(p-) from

AWGN of variance 1/p?.
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C.3 Proof of Proposition 4.3

It has already been shown that for any continuous denoiser both PnP-ADMM and PnP-PGM

have the same set of fixed points [168]. Consider any fixed point & of PnP-PGM

x=D,(x—7Vyg(x)) & px=D(px—yuVg(x))
px = D(ux — z) px = D(ux — z)

= =
z =yuVg(x) AT = ProX(y,2ye(./m (T + 2),

which directly leads to the result. To see the last equivalence, assume that g is a smooth and

convex function and note that

HET = PrOX(20)q(. ) (HE + 2)
) 1
= argmin {5 u — (e -+ 2)15 + Gulatu/ |
u

& pe— (pe+2) + (ye) - (1/p) - Vg(pa/p) = 0

& z=uVy(x),

where we used the optimality conditions.
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Figure C.1: The architecture of two variants of DnCNN™ we use in our simulations. DnCNN*
(top) is applied on natural images, and DnCNN™* (bottom) is applied on the medical knee
images. Both neural nets are trained to predict the AWGN from the input. The final
desired denoiser D is obtained by simply subtracting the predicted noise from the input
D(z) = ¢ — DnCNN*(x).

C.4 Architecture of the DnCNN" denoiser

Two variants of the residual DnCNN™, shown in Figure C.1, are used in our simulations. The
DnCNN™ of 12 convolutional layers is used for natural images. The DnCNN* of 7 layers
from [169] is used for the knee images from the NYU fastMRI dataset [56]. The latter has a
bounded Lipschitz constant L = 2, providing a necessary but not sufficient condition for D to
be a nonexpansive denoiser. As discussed in [169], the Lipschitz constant is controlled via

spectral-normalization [160].
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Appendix D

Supplement for Chapter 5

D.1 MMSE Denoising as Proximal Operator

The relationship between MMSE estimation and regularized optimization has been established
by Gribonval in [70] and has been discussed in other contexts [71, 96]. Our contribution is to
formally connect this relationship to PnP algorithms, leading to their new interpretation for

MDMSE denoisers.

It is well known that the estimator (5.5) can be compactly expressed using the Tweedie’s
formula

D,(2) = z — 0°Vr,(z) with 71,(2) = —log(p.(2)), (D.1)

which can be obtained by differentiating (5.5) using the expression for the probability

distribution

p2(2) = (P2 % 06 )(2) = | ¢o(z — x)pa(x) de, (D.2)

R
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where
1

0o0) = e (k)

Since ¢, is infinitely differentiable, so are p, and D,. By differentiating D,, one can show

that the Jacobian of D, is positive definite (see Lemma 2 in [70])
ID,(2) =1—0’Hr,(2) =0, z€R", (D.3)

where Hr, denotes the Hessian matrix of the function r,. Finally, Assumption 5.1 also implies
that D, is a one-to-one mapping from R" to X = Im(D, ), which means that D~! : X — R"
is well defined and also infinitely differentiable over X' (see Lemma 1 in [70]). This directly

implies that the regularizer r in (5.6) is also infinitely differentiable for any x € X.

We will now show that

Ds(2) = prox.,(2) (D.4)

1
= arg min {EHJ: —z||* + yr(:c)}

xrcR™

where r is a (possibly nonconvex) function defined in (5.6). Our aim is to show that u* = z

is the unique stationary point and global minimizer of
1 2 n
o) = 2[IDofu) — 2|+ 7r(Dy(w), we R
By using the definition of 7 in (5.6) and the Tweedie’s formula (D.1), we get

() = 51D (1) = 2 ~ S11D () — wll* + % ur)

1 2 ot 2 2
= 5lIDs(w) = 2|7 = - [[Vra(w) [ + o7ro ().
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The gradient of ¢ is then given by

Vi(z)
= [JDo(u)](Dy(u) — 2) + 0*[I — 0*Hry(u)]Vry(u)
= [JD,(u)] (Da(u) + 0?Vr,(u) — z)

= [JDo(w)](u — 2),

where we used (D.3) in the second line and (D.1) in the third line. Now consider a scalar

function ¢(v) = ¢(z + vu) and its derivative

T

¢ (V) =Vo(z +vu) u = vu"[ID,(z + vu)|u.

From the positive definiteness of the Jacobian (D.3), we have ¢'(v) < 0 and ¢'(v) > 0 for
v < 0 and v > 0, respectively. This implies that v = 0 is the global minimizer of ¢q. Since
u € R" is an arbitrary vector, we have that ¢ has no stationary point beyond u* = z and

that ¢(z) < p(u) for any u # z.

D.2 Convergence Analysis

Prior work has analyzed the convergence of PnP algorithms for contractive, nonexpansive, or
bounded denoisers [36, 67, 158, 166, 168, 177]. Our analysis extends the prior work on PnP
by analyzing convergence for MMSE denoisers without any assumptions on convexity of g
and r or on nonexpansiveness of D,. We adopt majorization-minimization (MM) strategy

widely used in nonconvex optimization [16, 47, 105, 122, 148].
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Consider the following approximation of f at s € R

wx, s) = g(s) + Vg(s)" (x — s) + %Hflf —s|* +r(x)

—9(s) + -lle — (s = 1V9(a)|* + 7(a) = J [Vt
Assumption 5.2 implies that for any 0 < v < 1/L, we have
p(xe,s) > f(x) and pu(s,s) = f(s), x,scR" (D.5)
We express (5.3) in the MM format
xh = a;geﬂrgnin p(x, 2" = Dy ("t — 4 Vg(zh ), (D.6)

where from Appendix D.1, we know that D, = prox.,.. Therefore, from (D.5) and (D.6), we

directly have that
F(@*) < pat, @) < plah et ) = f(ak ).

From Assumption 5.3, we know that f is bounded from below; therefore, the monotone

convergence theorem implies that the sequence { f(x*)}1>¢ converges.

Consider the residual function v between p and f

p(x) = p(x, s) - f(z)

— g(s) + Vg(s) (@ — 5) + %Hw s — gla).
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The definition of v implies that p(s) = 0 and Vp(s) = 0. Additionally, we have for any

x,y e R"”

IVp(z) = Vp(y)l = I(1/7)(® - y) = (Vg(z) = Vg(y))l
< (1/)lle =yl + IVg(x) = Vg(y)]

< (/v + D)z —yll < 2/l -y,

where we used 0 < v < 1/L. The last inequality implies that Vv is Lipschitz continuous with

constant 2/7.

Denote by f* the infimum of f and by
pr(x) = p(, 2" ) - f(x) >0, zeR",

the residual at iteration k > 1. Then,

= Y pla) < (f@) - ).

where we used the fact that f* <lim;_ f(2"). This implies that py(x*) — 0 as k — cc.

Since Vpy is (2/7v)-Lipschitz continuous, we have that

u =" — %Vpk(:ck)

= plw) < pulah) — | Vpn(at)
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Since pg(x) > 0, for all x € R™, we have

IVpe(@) 2 < 2 (pula®) — pu(a) < %m’w S0,

2

as k — 0.

Finally, consider the gradient of f at ¥ € X = Im(D,)

IV £ (@)l = [Vou(a", 2*1) = Vpe(®)|| = IVpr(=")|] = 0,

as k — oo, where we used the fact that ¥ is the minimizer of u(x,*~1). This concludes

the proof.
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Appendix E

Supplement for Chapter 6

We adopt monotone operator theory [12, 157] for a unified analysis of IPA. The preliminary
results of monotone operator theory related to our proofs are summarized in Section B.
In Section E.1, we present the convergence analysis of IPA. In Appendix E.2, we analyze
the convergence of the algorithm for strongly convex data-fidelity terms and contractive
denoisers. In Section E.3, we discuss interpretation of IPA’s fixed-points from the perspective
of monotone operator theory. For completeness, in Section E.4, we discuss the convergence
results for traditional PnP-ADMM [158]. In Section E.5, we summarize the major similarities
and differences of variations of PnP and RED algorithms. In Section E.6, we provide technical
details and additional validation. For the sake of simplicity, we use || || to denote the standard
ly-norm in R". We will also use D(-) instead of D,(-) to denote the denoiser, thus dropping

the explicit notation for o.
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E.1 Convergence Analysis of IPA

In this section, we present one of the main results in this paper, namely the convergence
analysis of IPA. A fixed-point convergence of averaged operators is well-known under the
name of Krasnosel’skii-Mann theorem (see Section 5.2 in [12]) and was recently applied to
the analysis of PnP-SGD [168]. Additionally, PnP-ADMM was analyzed for strongly convex
data-fidelity terms g and contractive residual denoisers R, [158]. Our analysis extends these
results to IPA by providing an explicit upper bound on the convergence. In Appendix E.1.1,
we present the main steps of the proof, while in Appendix E.1.2 we prove two technical

lemmas useful for our analysis.

E.1.1 Proof of Theorem 6.1

Appendix E.3.3 establishes that S defined in (6.6) is firmly nonexpansive. Consider any

v* € zer(S) and any v € R™, then we have

|v — v* — Sv||? (E.1)
= [lv — v = 2(Sv — Sv")" (v — v") + ||Sv]|*

< [lo —v7|* = [ISv|*,

where we used the firm nonexpansiveness of S and Sv* = 0. The direct consequence of (E.1)
is that

lv —v" = Sof| < [lv — o7
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We now consider the following two equivalent representations of IPA for some iteration k > 1

( (
2k — Gik <$k—1 + Sk—l) k-1 = D(’Uk_l)
b = D(2F — sk = zF = G, (22F! — vhh) (E.2)
s = sh1 gk _ 2k s T e
\ \
where iy is a random variable uniformly distributed over {1,...,b}, G; = prox,,, is the

proximal operator with respect to g;, and D is the denoiser. the left and the right sides
of (E.2), , simply introduce the variable v* = 2¥ — s*~1 into the right side of (E.2) [158]. It

is straightforward to verify that the right side of (E.2) can also be rewritten as

vF ="t =S, (0" with S;, == D—G; (2D 1) . (E.3)

i

Then, for any v* € zer(S), we have that

o —v"[? = (0" = v* = Svt ) + (SoF ! = S0P
— H,kal — vt — S,vk71HQ =+ 2(S,Uk71 o Sik’vkil)T(’Ukil — vt — S,kal) 4 HS,kal - Sikkal“Q
< ot = ot = [ISvt T 4 2)Sot T = S ot [flof T — vt + [[SotT - S0t

< 0" =[P = ISV + 2(R + 29 L) [Svt T = S 0|+ [ISv T — S 0,

where in the first inequality we used Cauchy-Schwarz and (E.1), and in the second inequality
we used Lemma E.2 in Appendix E.1.2. By taking the conditional expectation on both sides,

invoking Lemma E.1 in Appendix E.1.2, and rearranging the terms, we get

[SOF ] < ot — v — E [|Jv* — v*|)? | v*] + 4yLR + 129°L% .
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Hence, by averaging over ¢ > 1 iterations and taking the total expectation, we obtain

(R +2vL)?
t

E < +4yLR + 12+°L* .

t
1 _
3 lIset e
k=1

The final result is obtained by noting that

4yLR + 127°L* < max{7y,v*}(4LR + 12L%) .

E.1.2 Lemmas Useful for the Proof of Theorem 6.1

This section presents two technical lemmas used in our analysis in Appendix E.1.1.

Lemma E.1. Assume that Assumptions 6.1-6.3 hold and let iy, be a uniform random variable

over {1,...,b}. Then, we have that

E [||Si;v — Sv||*] <44°L%, v eR".

Proof. Let z; = G;(x) and z = G(x) for any 1 < i < b and € R". From the optimality

conditions for each proximal operator

Gx = proxm(m) =x —79i(2i), 9i(zi) € 0g:i(z:)

and

Gz = prox.,(x) = = — vg(z)

such that



where we used Proposition B.8 in Appendix B.2. By using the bound on all the subgradients

(due to Assumption 6.1 and Proposition B.9 in Appendix B.2), we obtain

1Gi(x) — G(z)|| = [[prox,, (@) — prox, ()|l = vllgi(z:) — g(2)|| < 2L,

where L > 0 is the Lipschitz constant of all g;s and g. This inequality directly implies that

|Sv — S;v|| = ||G(2Dv — v) — G;(2Dv — v)|| < 2L .

Since, this inequality holds for every i, it also holds in expectation.

Lemma E.2. Assume that Assumptions 6.1-6.3 hold and let the sequence {v*} be generated

via the iteration (E.3). Then, for any k > 1, we have that

|v* —v*|| < (R+2yL) forall v* € zer(S) .

Proof. The optimality of the proximal operator in (E.3) implies that there exists g;, (2*) €

dgi, (%) such that

N AR L e 7gik(zk) )
By applying v* = v*71 — S, (vF71) = o1 4 2% — "1 to the equality above, we obtain

oot =g, (2") & o =2 g, (2").
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Additionally, for any v* € zer(S) and «* = D(v*), we have that

S(v*) =D(v") — G(2D(v*) —v*) =" — G2z" —v") =0

* *

= x"—v =~vg(x*) forsome g(x*) € dg(x”).

Thus, by using Assumption 6.3 and the bounds on all the subgradients (due to Assumption 6.1

and Proposition B.9 in Appendix B.2), we obtain

lv" — vl = 2" =g, (") — 2" — g2 < [l — & + 29L < (R +29L) .

E.2 Analysis of IPA for Strongly Convex Functions

In this section, we perform analysis of IPA under a different set of assumptions, namely under

the assumptions adopted in [158].

Assumption E.1. Each g; is proper, closed, strongly convex with constant M; > 0, and
Lipschitz continuous with constant L; > 0. We define the smallest strong convexity constant

as M = min{M, ..., M,} and the largest Lipschitz constant as L = max{L1, ..., L;}.

This assumption further restricts Assumption 6.1 to strongly convex functions.

Assumption E.2. The residual R, = | — D, of the denoiser D, is a contraction. It thus
satisfies

IRz — Ry|| < ellz -yl ,

for all &,y € R™ for some constant 0 < e < 1.
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This assumption replaces Assumption 6.2 by assuming that the residual of the denoiser is
a contraction. Note that this can be practically imposed on deep neural net denoisers via

spectral normalization [133]. We can then state the following.

Theorem E.1. Run IPA for t > 1 iterations with random 1i.i.d. block selection under

Assumptions 6.3-F.2 using a fized penalty parameter v > 0. Then, the iterates of IPA satisfy

4L
E[|z" — "] Sﬂk(2R+4vL)+1L, 0<n<l.

Proof. It was shown in Theorem 2 of [158] that under Assumptions E.1 and E.2, we have

that

[(1=S)x — (I =S)y| <nllz -yl (E.4)

with

o 1+ €+ eyM + 2e2yM
= 1+~yM + 2eyM ’

for all &,y € R™, where S is given in (6.6). Hence, when

€
YM(1+ € — 2€2)

<1,

the operator (I —S) is a contraction. Using the reasoning in Appendix E.1, the sequence

v* = zF — g~1 can be written as

(VP with S, == D —G;, (2D —1). (E.5)

Then, for any v* € zer(S), we have that
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[

= [[(1=9)v"" = (1= S)v"|* + 2((1 = S)v* ™" — (1= S)v") (1 = S, )v* ' -
(1 =)o) +[I(1 = Sy o — (1 = S)o*|?

<[l = ot |P o+ 2ot — ot [1S;, 0" = SuET| ]IS 0" = So T

where we used the Cauchy-Schwarz inequality and the fact that (I — S) is n-contractive. By
taking the conditional expectation on both sides, invoking Lemma E.1 in Appendix E.1.2,

and completing the square, we get
E [Jlo* — v*|2o" "] < (nflo" ! — 0" + 29L)" .
Then, by applying the Jensen inequality and taking the total expectation, we get
E [Jo* — v*[] <& [[o" " —v"[] + 27L .
By iterating this result and invoking Lemma E.2 from Appendix E.1.2, we obtain
E [|[0* —o*|]] <0*(R+2vL) + (2yL)/(1 =) .

Finally by using the nonexpansiveness of (1/(1+ €))D (see Lemma 9 in [158]) and the fact

that * = D(v*), we obtain

2vL
B [l —al] < (14 [ (R+200) + T

4vL

< n*(2R +4yL) + 1

This concludes the proof.
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E.3 Fixed Point Interpretation

Fixed points of PnP algorithms have been extensively discussed in the recent literature [31,
128, 158]. Our goal in this section is to revisit this topic in a way that leads to a more
intuitive equilibrium interpretation of PnP. Our formulation has been inspired from the
classical interpretation of ADMM as an algorithm for computing a zero of a sum of two

monotone operators [53].

E.3.1 Equilibrium Points of PnP Algorithms

It is known that a fixed point (x*, z*, s*) of PuP-ADMM (and of all PnP algorithms [128])

satisfies
" =G(x"+s") and " =D(z" —s"), (E.6)

with & = 2*, where G = prox, . Consider the inverse of D at « € R", which is a set-valued
operator D7'(x) := {z € R": & = D,(2)}. Note that the inverse operator exists even when
D is not a bijection (see Section 2 of [157]). Then, from the definition of D~ and optimality

conditions of the proximal operator, we can equivalently rewrite (E.6) as follows
s* € v9g(x*) and —s*eD l(x*)—=x*.
This directly leads to the following equivalent representation of PnP fixed points

0 € T(z*) == vdg(z*) + (D H(z*) — =*) . (E.7)
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Hence, a vector &* computed by PnP can be interpreted as an equilibrium point between

two terms with v > 0 explicitly influencing the balance.

E.3.2 Equivalence of Zeros of T and S

Define v* = z* — s* for a given fixed point (x*, z*, s*) of PuP-ADMM and consider the

operator

S=D-G(2D~1) with G=prox,,,

which was defined in (6.6). Note that from (E.6), we also have * = D(v*) and v* = &* — s*

(due to z* = x*). We then have the following equivalence

0 € T(z") =10g(z") + (D' (") — x")

< S(v") =D(w") = G(2D(v*) —v*) =0,

where we used the optimality conditions of the proximal operator G. Hence, the condition

that v* = z* — s* € zer(S) is equivalent to * = D(v*) € zer(T).

E.3.3 Firm Nonexpansiveness of S

We finally would like to show that under Assumptions 6.1-6.3, the operator S is firmly

nonexpansive. Assumption 6.2 and Proposition B.7 in Appendix B.2 imply that D and G
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are firmly nonexpansive. Then, Proposition B.4 in Appendix B.1 implies that (2D — I) and

(2G — I) are nonexpansive. Thus, the composition (2G — 1)(2D — I) is also nonexpansive and
1 1
(1-5) = 51+ 526 (2D - 1) (E.8)

is (1/2)-averaged. Then, Proposition B.4 in Appendix B.1 implies that S is firmly nonexpan-

sive.

E.4 Convergence Analysis of PnP-ADMM

The following analysis has been adopted from [158]. For completeness, we summarize the key

results useful for our own analysis by restating them under the assumptions in Section 6.4.

E.4.1 Equivalence between PnP-ADMM and PnP-DRS

An elegant analysis of PnP-ADMM emerges from its interpretation as the Douglas—Rachford
splitting (DRS) algorithm [158]. This equivalence is well-known and has been extensively
studied in the context of convex optimization [53]. Here, we restate the relationship for

completeness.

Consider the following DRS (left) and ADMM (right) sequences

a:kfl D(,Ulcfl) Zk _ G(wkfl + skfl)
2k = G(2zF~1 — vF 1) < k= D(zF — sk71) (E.9)
oF — oF—1 | gk gkl sk — sh=1 4 gk — 2k
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where G = prox_, is the proximal operator and D is the denoiser. To see the equivalence
between them, simply introduce the variable change v* = z¥ — s¥~1 into DRS. Note also the

DRS sequence can be equivalently written as

v =v" ! —S(v*!) with S :=D-G(2D—1).
To see this simply rearrange the terms in DRS as follows
,vk — ,kal 4 G(2wk71 o ,kal) - wkfl

=t — [D(vk’l) — G(2D(v" ) — vk’l)} .

E.4.2 Convergence Analysis of PnP-DRS and PnP-ADMM
It was established in Appendix E.3.3 that S defined in (6.6) is firmly nonexpansive.

Consider a single iteration of DRS v* = v — Sv. Then, for any v* € zer(S), we have

lo* = v = [l — v"||* = 2(Sv = Sv") T (v — v") + ||Sv]|*

< [lo —v7|]* = [ISv|*,

where we used Sv* = 0 and firm nonexpansiveness of S. By rearranging the terms, we obtain

the following upper bound at iteration k > 1

ISo*HJ® < o — w7 = v — 77 (E.10)
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Table E.1: Overview of several existing PnP/RED algorithms

Algorithms Nonsmooth Online

PnP-ADMM [35, 158, 166, 186] v

>

PuP-PGM,/PnP-APGM [91, 128, 168]
PnP-SPGM [168]

RED-SD [153]

RED-ADMM [149, 153]

prDeep [129]

RED-PG/RED-APG [149]

SIMBA /On-RED [195, 196]

N> SIS [N [ X || X% | X
SIS > % [ % [ % ||| x

IPA (proposed)

By averaging the inequality (E.10) over ¢ > 1 iterations, we obtain

t *
12||Svk_1||2 < [v° — v*? < (R+2yL)°
tk:l - t - t

where used the bound on ||[v° — v*|| < (R + 2vL) that can be easily obtained by following

the steps in Lemma E.2 in Appendix E.1.2.

This result directly implies that ||Sv’|| — 0 as t — 0. Additionally, Krasnosel’skii-Mann
theorem (see Section 5.2 in [12]) implies that v' — zer(S). Then, from continuity of D, we

have that ' = D(v") — zer(T) (see also Appendix E.3.2). This completes the proof.

E.5 Variants of PnP/RED Algorithms

Several variants of PnP/RED algorithms are summarized in Table E.1, focusing on two

properties (a) the ability to handle nonsmooth data-fidelity terms, and (b) the ability to
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Back-propagation

D 3x3 Conv. D RelU |

Residual Learning

Figure E.1: Tllustration of the architecture of DnCNN used in all experiments. Vectors  and
x denote the denoised image and ground truth, respectively. The neural net is trained to
remove the AWGN from its noisy input image. We also constrains the Lipschitz constant of
R, to be smaller than 1 by using the spectral normalization technique in [160]. This provides
a necessary condition for the satisfaction of Assumption 6.2.

handle online/minibatch processing of the measurements. The table highlights the way IPA

complements existing work by addressing both (a) and (b).

E.6 Additional Technical Details

In this section, we present several technical details of our experiments.

E.6.1 Architecture and Training of the DnCNN Prior

Fig. E.1 illustrates the architectural details of the DnCNN prior used in our experiments. In
total, the network contains 7 layers, of which the first 6 layers consist of a convolutional layer
and a rectified linear unit (ReLU), while the last layer is just a convolution. A skip connection
from the input to the output is implemented to enforce residual learning. The output images
of the first 6 layers have 64 feature maps while that of the last layer is a single-channel image.
We set all convolutional kernels to be 3 x 3 with stride 1, so that intermediate images have
the same spatial size as the input image. We generated 11101 training examples by adding

AWGN to 400 images from the BSD400 dataset [124] and extracting patches of 128 x 128
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Table E.2: Per-iteration memory usage specification for reconstructing 512x512 images

Algorithms IPA (60) PnP-ADMM (300) PnP-ADMM (600)
Variables size memory size memory size memory
A real 512 x 512 x 60 0.23 GB 512 x 512 x 1.17 GB 512 x 512 x 2.34 GB
{4} 300 600
imaginary = 512x512 X 60 0.23 GB 512 x 512 x 1.17 GB 512 x 512 x 2.34 GB
300 600
{yi} 512x512x 60 0.47 GB 512 x 512 x 2.34 GB 512 x 512 x 4.69 GB
300 600
others combined — 0.03 GB — 0.03 GB — 0.03 GB
Total 0.97 GB 4.72 GB 9.41 GB

pixels with stride 64. We trained DnCNN to optimize the mean squared error by using the

Adam optimizer [99].

We use the spectral normalization technique in [160] to control the global Lipschitz constant
(LC) of DnCNN. In the training, we constrain the residual network R, to have LC smaller
than 1. Since the firm non-expansiveness implies non-expansiveness, this provides a necessary
condition for R, to satisfy Assumption 6.2. The training of DnCNN with and without spectral
normalization takes 4 and 1.82 hours, respectively, on the same hardware. Thus, for about

2x increase in the denoiser pre-training time, one can make IPA/PnP-ADMM convergent.

E.6.2 Computation of Proximal Operators

In the CS experiments, the measurement matrix A is a random matrix, and the data-fidelity
term is based on the ¢;-norm: ||[Azx — yl||;. While closed form solution of the proximal
operator is inaccessible in this setting, we can efficiently approximate the proximal solution in
the dual domain by using projected gradient method (PGM) [18]. Note that the closed-form
solution is also unavailable for other ¢;-based proximal operators [18, 90]. The stopping
criteria for the PGM algorithm are that either that the total iterations exceeds 200, or that

the relative change between two iterates is below 1 x 1074,
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Figure E.2: Illustration of the convergence of IPA for a DnCNN prior under drastically
changed ~ values. The average normalized distance to zer(S) and SNR (dB) are plotted
against the iteration number with the shaded areas representing the range of values attained
over 12 test images. In practice, the convergence speed improves with larger values of ~.
However, IPA still can achieve same level of SNR results for a wide range of v values.

For intensity diffraction tomography (IDT'), we adopted the linearized forward model developed
in [109], which is based on the Fourier transform. For the i'® measurement, the forward
model for the 2-dimensional case is described as A; = F'H,F, where F and F" denote the
discrete Fourier transform and its inverse, respectively, and H; corresponds to light transfer
function of the i*" illumination. Under the f5-norm, we can directly derive the closed-form

solution of the proximal operator in the Fourier space [2, 193].

E.6.3 Extra Details and Validations for Optical Tomography

All experiments were run on the machine equipped with an Intel Core i7 Processor that has
6 cores of 3.2 GHz and 32 GBs of DDR memory. We trained all neural nets using NVIDIA
RTX 2080 GPUs. We define the SNR, (dB) used in the experiments as

NN ]
SNR(z, x) = mgﬁ{%logm (Hw ~ it bH)} ,

where & is the estimate and @ is the ground truth.

For intensity diffraction tomography, we implemented an epoch-based selection rule due to

the large size of data. We randomly divide the measurements (along with the corresponding
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Figure E.3: Visual examples of the reconstructed House (upper) and Parrot (bottom) images
by IPA and PnP-ADMM. The first and last columns correspond to PnP-ADMM under
DnCNN with 5 fixed measurements and with the full 60 measurements, respectively. The
second, third, and fourth column correspond to IPA with a small minibatch of size 5 under
TV, BM3D, and DnCNN, respectively. Each image is labeled by its SNR (dB) with respect
to the original image, and the visual difference is highlighted by the boxes underneath. Note
that IPA recovers the details lost by the batch algorithm with the same computational cost
and achieves the same high-quality results as the full batch algorithm.

o
X o

forward operators) into non-overlapping chunks of size 60 and save these chunks on the hard
drive. At every iteration, IPA loads only a single random chunk into the memory while the
full-batch PnP-ADMM loads all chunks sequentially and process the full set of measurements.
This leads to the lower per iteration cost and less memory usage of IPA than PnP-ADMM.
Table E.2 shows extra examples of the memory usage specification for reconstructing 512 x 512
pixel permittivity images. These results follow the same trend observed in Table 6.2. We
also conduct some extra validations that provide additional insights into IPA. In these
simulations, we use images of size 254 x 254 pixels from Set 12 as test examples. We assume

real permittivity functions with the total number of measurement b = 60.
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Table E.3: Optimized SNR (dB) obtained by IPA under different priors for images from
Set12 from [216]

. PnP-ADMM IPA (Ours) PnP-ADMM
Algorithms .

(Fixed 5) (Random 5 from full 60) (Full 60)

Denoisers DnCNN TV BM3D DnCNN DnCNN
Cameraman 15.95 17.45 17.38 18.16 18.34
House 19.22 21.79 21.97 22.45 22.94
Pepper 17.06 18.68 19.55 20.60 21.11
Starfish 18.20 19.29 20.29 21.64 22.22
Monarch 17.70 19.81 18.66 20.85 21.60
Atreraft 17.15 18.67 18.83 19.28 19.54
Parrot 17.13 18.60 18.27 18.72 19.18
Lenna 15.41 16.48 16.32 16.94 17.13
Barbara 13.63 16.00 17.53 16.58 16.85
Boat 17.98 19.35 20.21 20.95 21.34
Pirate 17.93 19.36 19.45 19.88 20.10
Couple 15.40 17.31 17.53 18.24 18.57
Average 16.90 18.57 18.83 19.52 19.91

Fig. E.2 illustrates the evolution of the convergence of IPA for different values of the penalty
parameter. We consider three different values of v € {~,70/20,7/400} with 7o = 20. The
average normalized distance ||S(v*)||3/[|v*||3 and SNR are plotted against the iteration
number and labeled with their respective final values. The shaded areas represent the range
of values attained across all test images. IPA randomly selects 5 measurements in every
iteration to impose the data-consistency. Fig. E.2 complements the results in Fig 6.1 by
showing the fast convergence speed in practice with larger values of . On the other hand,
this plot further demonstrates that IPA is stable in terms of the SNR results for a wide range

of v values.

Our final simulation compares the reconstruction performance of IPA using TV, BM3D,
and DnCNN. Since TV has a proximal operator, it serves as a baseline. The reconstruction
performance of IPA on House and Parrot are presented in Fig. E.3, while average SNR values
for additional images are presented in Table E.3. We include the results of PnP-ADMM using

5 fixed measurements and the full batch as reference. First, note the significant improvement
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Figure E.4: Comparison between IPA and PnP-SGD for block sizes 10, 30, and 50.

of IPA over PnP-ADMM under the same computational budget. Second, using learned priors
in IPA leads to better reconstruction than other priors. For instance, DnCNN outperforms
TV and BM3D by 0.7 dB in SNR. Finally, the agreement between IPA and the full batch
PnP-ADMM highlights the nearly optimal performance of IPA at a lower computational cost

and memory usage.

E.6.4 IPA with Different Block Sizes

The block size in IPA (and other online/minibatch methods), is a free parameter that must
be adjusted to achieve the best overall convergence speed. In our experiments on IDT, we
used block size = 60 due to its excellent empirical performance. Here we provide additional
experiments to show the influence of block sizes < 60 on both IPA and PnP-SGD (with
Nesterov acceleration). The setup is identical to the one in the leftmost plot of Figure 2 in
the Chapter 6, where b = 300 and n = 512 x 512. Figure E.4 plots the average SNR in dB
against the time in seconds for both methods under block sizes € {10, 30,50}, highlighting

the relative advantage of IPA over PnP-SGD for smaller values of block size.
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Appendix F

Supplement for Chapter 7

F.1 Properties of the Bregman Proximal Operator

The following proposition addresses the statistical interpretation of the backward step in the

BPGM, that is the left Bregman Proximal Operator (BPO).

Proposition F.1. Let the reference function h be Legendre function. Then, the left BPO in

Eq. (7.12) can be rewritten as

proxzr(z) = (Vh*o &, 0Vh)(z) (F.1a)
with  &€,(w) = argmin {By+(w, x) + yr o Vh*(x)} . (F.1b)
xzcRn

Proof. The proof is based on the dual symmetry property [14] of the Bregman distance

By, (x,z) = By« (Vh(2z), Vh(x)) (F.2)
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for all z,x € intdom h. Then, we have

prox’,(z) = argERrPnin {Bu(z,2) +vr(z)}

= argmin { By~ (Vh(2), Vh(z)) +vr(x)}

= Vh* oargmin { By« (Vh(z), w) + yr(Vh*(w))}

weR?

where we used £ = Vh™'(w) = VA*(w). Similar result can be found in [107]. O

It was established that there is a unique Bregman distance corresponding to every reqular
exponential family (REF) distribution [10]. Consequently, given a valid reference function h,
the operator (F.1b) can be interpreted as mean MAP estimator of a REF distribution. In
case h is the squared Euclidean, we have proxﬁr = &,. That is, the BPO (F.1a) generalize

the Gaussian denoiser into the REF distributions.

F.2 Proof of Theorem 7.1

The proof of Theorem 7.1 requires the following two lemmas.

Lemma F.1. [78, Theorem 4.2.2] If h is u-strongly convex function, then Vh* is 1/ u-Lipschitz,

that is
* * 1
VR (z) — VR (y)|| < ;Hfﬁ ]l (F.3)

for all ,y € int dom h.

Lemma F.2. Assume that the reference function h is p-strongly convex with Ly-Lipschitz

continuous gradient. Assume g s jig-strongly convex function with L,-Lipschitz continuous
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gradient. Then

Fl) = (Vh =7 Vyg)() (F.4)

is Lipschitz continuous with constant

p(y) = max{|pun — YLy, | L, — vYig|}- (F.5)

With the lemmas above, we establish following proof for Theorem 7.1.

Proof. Using Lemma F.1 and F.2, the operator T = D (Vh*(Vh — v Vg)) representing the

updates in (7.13) is Lipschitz with coefficient

L =M max{|L —vLg/pnl, [ Ln/pn — virg/ pinl}- (F.6)

Considering fixed point convergence is achieved if L < 1, the result is obtained with elementary

algebra. In the case where h(x) = 1/2||z||?, the result reduces to [158, Theorem 1]. O
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Appendix G

Supplement for Chapter 8

This chapter provides additional technical details and experimental results of the proposed
method CoRRECT. Section G.1 reports the architectures and training details of the our

network. Section G.2 provides additional validation on the performance of CORRECT.

G.1 Network Architectures and Training

G.1.1 Network Architectures

The regularization network Dg used in our reconstruction module is a customized version
of the original DnCNN. It consists of 7 layers, where the first and the last is a convolution
(conv) layer with a kernel size of 3 followed by rectified linear unit (ReLU), and the middle
ones are just conv. Filters of all convs are set to 32. Dy is implemented using the strategy of
residue learning, where its outputs are the artifacts in the inputs, and the clean predictions

are obtained by subtracting those artifacts from the inputs.
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The CNN used in our R} estimation module is modified based on the popular U-Net
architecture [155]. It consists of five encoder blocks, four decoder blocks with skip connections,
and an output block. These connection increase the effective receptive field of the network
as the input goes deeper in the network. For each block in encoder and decoder blocks, it

consists of convs with a kernel size of 3 followed by ReLU. Filters of all convs are set to 64.

G.1.2 Network Training

We use a warm-up strategy to initialize the reconstruction and estimation modules in our
network for joint training. During the warm-up stage, both modules are first trained separately
for their own task on our simulated data. The reconstruction module is trained to recover
mGRE images from the subsampled, noisy and motion-corrupted k-space data, while the
R; module is trained to estimate high-quality Rj from motion-corrupted mGRE images.
Both modules are trained for 400 epochs when stable convergence is observed. We then
plug the two warmed-up modules into our CORRECT framework and train them jointly for
another 50 epochs. Final network instances used in our experiments are finalized based on

the performance on our validation dataset.

G.2 Supporting Materials and Additional Validation

In this section, we provide more supporting materials and experimental validation for
CoRRECT, which was trained to directly produce high-quality mGRE images and R} maps
from subsampled, noisy, and motion-corrupted k-space measurements. These materials
include the sampling masks used in our experiments, the performance of our methods at

different echoes, and the comparison of artifacts caused by motion, sampling, and their
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Figure G.1: Different subsampling masks used in our experiments. The masks in the first
row are the ones used in our main manuscript, where the center 60 out of 192 lines are fully
sampled while the other parts are subsampled with rates 50%, 25% and 12.5%, denoted
as acceleration rate x2, x4, and x8 respectively. The masks in the second row provide
more challenging sampling patterns used in this appendix for additional validation. These
sampling patterns keep the center 30 out of 192 lines fully sampled while the other parts are
subsampled with rates 50%, 25% and 12.5%, denoted as acceleration rate x2*, x4*, and x8*
respectively.

combination. Additional validation using data from different subjects and more challenging

sampling patterns than the ones used in our main manuscript are also provided.

G.2.1 Supporting Materials

Configuration of Motion Simulation

To generate a range of realistic motion artifacts for our simulated data, we followed the
configuration in [201] for motion simulation, introducing various levels of motion artifacts to
our training, validation and testing dataset. We explain the details of such configurations
here. We selected the total number of motions occurring during data acquisition as a random

number in the range from 1 to 10. For each motion, we simulated random in-plane shifts
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Figure G.2: The visualization of artifacts caused by different synthetic corruptions in k-space
data. The effects of motion, subsampling and their combination are shown in columns 2, 4,
and 6, and their difference with respect to the ground truth in the first column are shown in
columns 3, 5, and 7, respectively. Note the motion and subsampling cause different artifacts
in our mGRE images, where the former leads to the ring-shape artifacts near the skull, and
the latter adds to the overall blurry and aliasing effects in the central region.

within the range of 0 to 15 voxels in each dimension followed by a random rotation within the
range of 0° to 15° relative to the center of a 2D mGRE data slice. The time at which each
motion occurred and the duration it lasted were randomly generated as well. In particular,
all motions were assumed to occur randomly throughout the whole examination process, and
each of them is assumed to last for a random duration from about 3 seconds to 30 seconds,
which would be equivalent to disturbing about 1 to 10 k-space lines in a single 2D slice. All
random numbers mentioned above were uniformly generated in the given range, introducing
various levels of motion artifacts to our training, validation and testing dataset. Considering
the fact that k-space scanning in the echo direction is much faster than the physical movement,
we assume that all 10-echo images of a data slice suffer from the same motion effects. While
the simulation setting above yields excellent performance in our experimental data, it can be

adjusted for different applications.
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Figure G.3: The statistical analysis of SNR values obtained over the testing dataset corrupted
with random levels of synthetic motion. Results highlight the performance of CORRECT in
both mGRE reconstruction and R; estimation against different approaches.

Sampling Masks

Fig. G.1 shows the subsampling masks used in our experiments. Note that the masks in
the first row are the ones used in the experiments in our main manuscript. Those sampling
masks keep the center 60 out of 192 lines fully sampled while the other parts subsampled
with rates to 50%, 25% and 12.5%, denoted as acceleration rate x2, x4, and x& respectively.
The masks in the second row provide more challenging subsampling patterns that are used in
this appendix for additional validation. These sampling masks keep the center 30 out of 192
lines fully-sampled while the other parts are subsampled with rates of 50%, 25% and 12.5%,
denoted as acceleration rate x2*, x4* and x8* respectively. The results of our method with

these more challenging masks are shown in Fig. G.7.

Effects of Different Corruptions

Fig. G.2 illustrates the artifacts in mGRE images and their Rj estimation caused by different

synthetic corruptions in the k-space data. Corrupted mGRE images are obtained by zero-filling
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Figure G.4: Performance of CoORRECT compared against baseline method U-RED on
exemplar testing data with synthetic motion of levels {low, moderate, high} and acceleration
rates {x2, x4, x8}. The bottom-left corner of each image provides the SNR and SSIM values
(on the full-size image) with respect to the ground-truth. Note that while the baseline method
U-RED gradually collapses along with the increase of motion levels, CORRECT maintains a
much more stable performance in terms of artifact removal and detail maintenance, which
highlights the robustness of our method.

from corrupted k-space measurements, and the corresponding R for each is obtained using
NLLS fitting (which has no artifact correction capabilities). Note that motion movements
mostly introduce ring-shape artifacts near the skull, while subsampling causes the additional
overall blurring and aliasing effects in the central region. The combination of both results in
comprehensive artifacts in mGRE images and therefore collapses the estimation of Rj. Our
method, CoORRECT, was developed and shown to be able to fix such comprehensive artifacts
in both mGRE reconstruction and R estimation. Though those synthetic artifacts may not
model the real ones perfectly, our method trained on such synthetic data resulted in excellent
performance on our real-world experimental data, as shown in the extensive performance

validation in both our main manuscript and this appendix.
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Figure G.5: The performance of CORRECT on additional experimental data corrupted with
real motion and subsampled with acceleration rate x4. The first row shows the mGRE images
across different slices in a whole brain volume of 72 slices, and the second row shows the
corresponding Rj maps estimated from these mGRE images. For a given slice in each column
of the first row, the image to the left of the dashed line is the mGRE image reconstructed by
zero-filling from subsampled, noisy and motion-corrupted k-space data, and the image to the
right is reconstructed by CoRRECT. In each column of the second row, the Rj to the left
of the dashed line is estimated by applying NLLS to the corrupted mGRE image above it,
and the right is produced by our method. This demonstrates the capability of CORRECT to
remove artifacts for the whole brain volume.

G.2.2 Additional validation on Simulated Data

Fig. G.3 provides statistical analysis for the results shown in Table 8.1 in our main manuscript.
Fig. G.3 visualizes the statistical significance compared to the baseline methods in both
mGRE reconstruction and Rj estimation, thanks to the joint training of our the mGRE

reconstruction and 5 estimation module.

To evaluate the robustness of our network trained on random motion across different levels
of motion artifacts, we specially synthesized three motion levels such that the artifacts

introduced by each are representative of different levels of motion corruption that appear
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Figure G.6: The performance of CoORRECT for different echoes on experimental data
corrupted with real motion and subsampled with acceleration rate x4. The different echoes
of the 10-echo corrupted mGRE and its NLLS-based (X, R3) estimation are shown in the
first row, and the CORRECT reconstructed mGRE images and (Xy, Rj) estimation are shown
in the second row. The results validate the performance of our method on the whole mGRE
sequence.

in our experimental data. We name the motion levels generated through each of these
settings as light, moderate and heavy, where each manipulate 3%, 4% 6% of the k-space data,
respectively. Fig. G.4 comprehensively illustrates the performance of CORRECT across those
different motion levels as well as different acceleration rates. It can be seen that while the
baseline method U-RED gradually collapses with increased motion level and acceleration
rate, our method results in rather stable performance in terms of artifact correction and

detail maintenance. This shows the robustness of our network over different levels of motion.
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Figure G.7: Performance of CORRECT on exemplar testing data corrupted with real motion
and challenging acceleration rates {x2*, x4*, x8*}. The mGRE image in column 1, denoted
with x1, is from the motion-corrupted but fully-sampled k-space data, while the ones in
column 2, 4, and 6 are from the motion-corrupted and subsampled k-space data. Note that
our method can successfully remove the artifacts in mGRE reconstruction and produce high
quality R; maps even in such challenging scenarios, as shown in column 3, 5, and 7.

G.2.3 Additional Validation on Experimental Data

Performance on Additional Experimental Data

Fig. G.5 further demonstrates the performance of our method with a different subject than the
ones used in our main manuscript. Similar to the results in Fig. 8.5 in our main manuscript,
this figure shows the performance of CORRECT across different data slices in a whole brain
volume, where each slice, in principle, is corrupted with different and random motions during
the scan. For each slice, we show a side-to-side comparison of the results of CORRECT and
the corrupted images, including the zero-filled mGRE images reconstructed from subsampled,
noisy and motion-corrupted k-space data and their NLLS-estimated Rj maps. The constant
success of CORRECT on different brain slices shows that our network can work on the whole

spectrum of brain volume, highlighting the effectiveness and adaptability of our method.
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Performance of X; Estimation and Reconstruction of Different Echoes

Fig. G.6 shows the performance of CORRECT across different echoes on experimental data.
We show the comparison between the reconstructed mGRE images of our method and the
corrupted mGRE images at different echoes in a 10-echo mGRE image sequence. We also
show the (X, R}) maps estimated from each sequence. One can observe that CORRECT

successfully removes the artifacts for different echoes and produce high-quality (Xo, Rj) maps.

Performance on More Challenging Sampling Patterns

Fig. G.7 shows the performance of CORRECT with more challenging subsampling masks
than the ones used in our main manuscripts. These subsampling masks are shown in the
second row of Fig. G.1. Notice the great performance of CORRECT even in such challenging

scenarios highlights the artifact correction capability of our method.
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