
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2004-10 

2004-03-15 

Context-Sensitive Data Structures Supporting Software Context-Sensitive Data Structures Supporting Software 

Development in Mobile Ad Hoc Networks Development in Mobile Ad Hoc Networks 

Jamie Payton, Gruia-Catalin Roman, and Christine Julien 

Context-aware computing, an emerging paradigm in which applications sense and adapt their 

behavior to changes in their operational environment, is key to de-veloping dependable agent-

based software systems for use in the often unpredictable settings of ad hoc net-works. 

However, designing an application agent which gathers, maintains, and adapts to context can be 

a diffi-cult undertaking in an open and continuously changing environment, even for a seasoned 

programmer. Our goal is to simplify the programming task by hiding such issues from the 

programmer, allowing one to quickly and reliably produce a context-aware application agent for 

use in large-scale ad hoc... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

Recommended Citation Recommended Citation 
Payton, Jamie; Roman, Gruia-Catalin; and Julien, Christine, "Context-Sensitive Data Structures Supporting 
Software Development in Mobile Ad Hoc Networks" Report Number: WUCSE-2004-10 (2004). All 
Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/982 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/982?utm_source=openscholarship.wustl.edu%2Fcse_research%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/982 

Context-Sensitive Data Structures Supporting Software Development in Mobile Context-Sensitive Data Structures Supporting Software Development in Mobile 
Ad Hoc Networks Ad Hoc Networks 

Jamie Payton, Gruia-Catalin Roman, and Christine Julien 

Complete Abstract: Complete Abstract: 

Context-aware computing, an emerging paradigm in which applications sense and adapt their behavior to 
changes in their operational environment, is key to de-veloping dependable agent-based software 
systems for use in the often unpredictable settings of ad hoc net-works. However, designing an 
application agent which gathers, maintains, and adapts to context can be a diffi-cult undertaking in an 
open and continuously changing environment, even for a seasoned programmer. Our goal is to simplify 
the programming task by hiding such issues from the programmer, allowing one to quickly and reliably 
produce a context-aware application agent for use in large-scale ad hoc networks. With this goal in mind, 
we introduce a novel abstraction called context-sensitive data structures (CSDS). The programmer in-
teracts with the CSDS through a familiar program-ming interface, without direct knowledge of the context 
gathering and maintenance tasks that occur behind the scenes. In this paper, we begin by defining a 
model of context-sensitive data structures, and we identify key requirements and issues associated with 
building an infrastructure to support the development of context-sensitive data structures. 

https://openscholarship.wustl.edu/cse_research/982?utm_source=openscholarship.wustl.edu%2Fcse_research%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/982?utm_source=openscholarship.wustl.edu%2Fcse_research%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages




Context-Sensitive Data Structures Supporting Software Development

in Ad Hoc Mobile Settings

Jamie Payton, Gruia-Catalin Roman, and Christine Julien
Department of Computer Science and Engineering

Washington University in St. Louis
Campus Box 1045, One Brookings Drive

St. Louis, MO 63130-4899, USA
{payton, roman, julien}@wustl.edu

Abstract

Context-aware computing, an emerging paradigm in
which applications sense and adapt their behavior to
changes in their operational environment, is key to de-
veloping dependable agent-based software systems for
use in the often unpredictable settings of ad hoc net-
works. However, designing an application agent which
gathers, maintains, and adapts to context can be a diffi-
cult undertaking in an open and continuously changing
environment, even for a seasoned programmer. Our
goal is to simplify the programming task by hiding such
issues from the programmer, allowing one to quickly
and reliably produce a context-aware application agent
for use in large-scale ad hoc networks. With this goal in
mind, we introduce a novel abstraction called context-
sensitive data structures (CSDS). The programmer in-
teracts with the CSDS through a familiar program-
ming interface, without direct knowledge of the context
gathering and maintenance tasks that occur behind the
scenes. In this paper, we begin by defining a model
of context-sensitive data structures, and we identify
key requirements and issues associated with building an
infrastructure to support the development of context-
sensitive data structures.

1. Introduction

In recent years, communication technology has be-
gun to reflect the dynamic nature of society, with de-
vices becoming increasingly portable and untethered.
The widespread use of mobile devices brings about an
increased demand for software designed with mobility
in mind. In fact, we can expect the number of software
systems designed for use in ad hoc networks to experi-

ence rapid growth. In such networks, connections are
formed opportunistically between devices within wire-
less communication range. Applications for this envi-
ronment are likely to come into routine usage in situa-
tions such as disaster recovery in which rescue workers
must find and treat victims, construction supervision
in which a foreman gathers information around a site to
gauge progress, etc. These and other applications for
ad hoc networks are often composed from several ap-
plication agents that must operate in open and highly
dynamic environments, making it difficult for the pro-
grammer to produce reliable and dependable software.

Context-aware computing has been advocated as
a solution for managing the programming complexity
associated with such development efforts. Context-
awareness refers to the ability of a software system
to adapt its behavior in response to environmental
changes. Typical examples of context-aware systems
include location-aware offices (e.g., Active Badge [6]
and PARCTAb [12]), context-sensitive tour guides
(e.g., Cyberguide [1] and GUIDE [3]), and context-
aware note tools (e.g., FieldNote [10]). Constructing
such systems is a daunting task, requiring the developer
to consider the interaction between the system and a
number of possibly heterogeneous sensors to gather and
deliver context information.

Several frameworks and infrastructures have been
devised to promote efficient, reliable development of
context-aware applications by masking the complex-
ity of interacting with heterogeneous sensors, e.g., the
Context Toolkit [11] and the Context Fabric [7]. While
these support systems simplify interactions with sen-
sors, the programmer must still know the source of data
to access and operate on it. In an ad hoc network, the
open and dynamic nature of the environment makes
it unreasonable to assume advance knowledge of the

1



identities of data sources; application agents for use
in such scenarios require a highly decoupled method
of data access. Mobile agent middleware systems have
been developed that provide decoupled communication
in ad hoc networks, including LIME [9], MARS [2],
and EgoSpaces [8]. Many of these systems, however,
are tied to the tuple space data abstraction.

To provide a more general and flexible method of
decoupled data access for application agents operat-
ing in an ad hoc network, we propose the concept of
context-sensitive data structures as the basis for a new
programming methodology. A context-sensitive data
structure (CSDS) is determined by and provides ac-
cess to data available in the context; it is encapsulated
as an abstract data type (ADT), which is represented
by a class in a programming language such as Java
or C++. Like all classes, it provides the programmer
with an application programming interface (API) to
access and manipulate data. The collection of data
items operated on by an instantiation of such a class
changes with the content of the ad hoc network. The
distributed data items are accessed using the API of
the local class instantiation.

The resulting design methodology provides the de-
signer with the flexibility to use familiar and proven
programming tools, i.e., ADTs, for context-aware ap-
plication development. The programming tasks associ-
ated with gathering, maintaining, and adapting to con-
text are simplified for the developer, which allows the
focus to be shifted to satisfying domain-specific require-
ments. While implementations of context-sensitive
data structures may be useful to the burgeoning com-
munity of context-aware application developers, requir-
ing programmers to construct an entire library of these
data structures from scratch is impractical. Our goal is
to provide a general model and infrastructure to sup-
port the gradual development of a library of context-
sensitive data structures, which can, in turn, be used to
support the context-sensitive data structures program-
ming methodology. In this paper, we lay the concep-
tual foundation required to support the methodology
by defining the context-sensitive data structures model
and by exploring the needs of CSDS developers.

The remainder of this paper is organized as follows.
Section 2 summarizes the computational model and the
notion of context assumed in this paper. A motivat-
ing example of a CSDS and its use in developing a
context-aware application agent is given in Section 3.
Section 4 addresses the key elements required in an in-
frastructure for supporting the development of context-
sensitive versions of traditional data structures and dis-
cusses issues with developing protocols for inclusion in
the infrastructure. Conclusions appear in Section 5.

2. Context-Sensitive Data Structures
Explained

As we embark on an exploration of the context-
sensitive data structures model, we should be more spe-
cific about the environment in which an application op-
erates. We consider agents as the main computational
entities of a system, as well as providers and users of
data items. To put it simply, agents are pieces of code
that make up an application. Pieces of data provided
by an agent are context items; context items have a
general representation and can capture a wide range of
information that may be important to an application,
e.g., sensor readings, location information, etc. Run-
time support for agents is provided by devices, which
simply serve as containers for agents; we often refer to
such devices as hosts. Hosts perform no application
execution and do not provide or use data. An agent
may migrate between connected hosts. Hosts are con-
nected when they are within wireless communication
range, and agents are connected when they reside on
the same host or on connected hosts. This definition
of agent connectivity is important in our definition of
context. In the systems that we consider, each agent
has an individual context. An agent’s maximal context
consists of data items provided by connected agents.
When talking about a particular agent’s context, we
often refer to that agent as the reference agent.

Context-sensitive data structures are an appropri-
ate abstraction for accessing and operating on the data
available in an agent’s context. To allow applications in
large scale multi-agent systems to economically man-
age an expansive context, an agent should be supplied
with a pertinent and manageable subset of the max-
imal context as its tailored context. The context for
a particular data structure is specified by the agent,
and context-sensitive data structures operate on these
tailored definitions of the application context. Thus, a
context-sensitive data structure’s content is determined
by the state of the environment and a specification of
context supplied by the application. In terms of our
computational model, the content of the CSDS is de-
fined as all data items on agents running on hosts in
the logical subnet of the ad hoc network that forms the
application context meeting some qualification criteria.

When a context-sensitive data structure is used, the
task of managing access to the data elements that are
spread across the ad hoc network while maintaing a
specific data organization possibly defined by the struc-
ture is hidden from the application programmer. Ac-
cess to the data elements of the CSDS is gained only
through operations defined on its ADT. Operations
performed on the CSDS can effect a change in the con-



text of others, as can the movement of an agent that
may cause it to join or leave someone else’s context.
As these changes in the state of the environment oc-
cur, the content of the context-sensitive data structure
is changed appropriately in response. A developer us-
ing a context-sensitive data structure can operate on
the dynamically changing set of data elements that are
distributed throughout the context as if the data were
stored in a local, persistent data structure. The man-
agement of the data elements within the CSDS is auto-
matically handled in the face of changes without inter-
vention by the application programmer, since the data
structure is essentially a reflection of context.

In the remainder of this paper, we investigate
the software engineering potential for context-sensitive
data structures. First, we offer a concrete example of
a context-aware application that can benefit from the
use of a particular context-sensitive data structure, the
priority queue. We then explore protocols we must pro-
vide in the infrastructure to support the development
of context-sensitive data structures for use in such ap-
plications. In doing so, we seek to demonstrate the
feasibility of applying the context-sensitive data struc-
tures concept and associated design methodology.

3. Programming with Context-Sensitive
Data Structures

The impetus behind the introduction of the context-
sensitive data structure design methodology is to re-
duce development costs in terms of effort and er-
rors, and to make context-aware application develop-
ment accessible even to novice programmers. Context-
sensitive data structures provide a decoupled method of
accessing and operating on data in the ad hoc network,
one that is simple and natural to the programmer, us-
ing the same interface as in static settings. Moreover,
the dynamically changing content is managed trans-
parently, reducing the complexity of the environment,
and, in turn, the potential for programming errors in-
curred by interacting with agents in a large-scale and
highly dynamic ad hoc network.

To illustrate the utility of context-sensitive data
structures and the associated design methodology, con-
sider a disaster recovery scenario in which triage is em-
ployed to treat the wounded. Victims are quickly ex-
amined to evaluate the seriousness of their injuries and
are tagged with devices that emit (via wireless radio or
infrared) information about the assigned injury classi-
fication, ranging from injuries that need immediate at-
tention to those for which treatment can be postponed.
Rescue teams are assigned areas in which they must
arrange transport for the most severely injured first

and provide as much on-site treatment as possible for
these victims until transport is available. The rescue
team members use PDAs with wireless communication
capabilities to coordinate activites and to obtain and
display the status of victims and volunteers. A volun-
teer is selected by the rescue team member to treat the
most seriously wounded victim until transport arrives.
A volunteer’s assignment may change as the status of
injured victims within the context changes. After a res-
cue crew member arranges on-site treatment for victim,
he must arrange for the victim’s transport to a hospi-
tal. As victims are transported, they are removed from
the context of the application. As new victims are dis-
covered and their injuries evaluated, they are added to
the context. Figure 3 illustrates this application.

Figure 1. Disaster Recovery Scenario. The

disaster site lies within the large oval. A rescue crew

member (the encircled cross) uses a PDA that runs an

application to assign to the most seriously wounded

victims in the designated area (the dashed box) on-

site treatement and ambulance transport to a nearby

hospital. Victims are shown as circles, with serious-

ness of injury reflected by darker shading.

Building the application described from scratch can
be a significant undertaking. The programmer must
include functions to sense the set of neighboring hosts,
to send messages to agents on reachable hosts, and to
issue queries to obtain data. Query responses must be
processed and placed into a traditional, static priority
queue. When an operation is requested, the hosts in
the network must be queried to ensure operation over
a set of data most closely reflecting the current state of
the context. The remainder of this section illustrates



a CSDS approach to implementing the disaster recov-
ery application and demonstrates how context-sensitive
ADTs can be used by application programmers.

When using the CSDS programming methodology,
the amount of data processed by the application is re-
duced, explicit data maintenance by the application
programmer is removed, and application development
is simplified. A simple application agent for rescue
team support could be constructed around the notion
of a context-sensitive priority queue. Within this pri-
ority queue, the content of the data structure is defined
by a context specification that restricts the context to
a manageable area of the disaster site, e.g., a one block
radius. The data associated with the priority queue
reflects an ordering over the injured within that area
such that the most seriously injured victim is at the
head of the queue. The context, and hence the content
of the context-sensitive priority queue, is updated inde-
pendently of the application’s operation on the queue.

Data elements of the priority queue used in the
triage application are pieces of injury information emit-
ted from victims’ triage tags. The content of a context-
sensitive priority queue for a particular rescue crew
member’s application is determined by the context def-
inition provided. The context definition restricts which
elements of the entire operational environment will be
included as items in the priority queue. In this case, the
content of the priority queue for the crew member’s ap-
plication is the injury information data elements that
are located within her assigned area.

We envision our priority queue as having two oper-
ations: getFirst() and removeFirst(). In our ap-
plication, getFirst() is used to access an injury de-
scription for the victim in the context with the most
severe injury. The injury description includes a unique
injury identifier, the injury priority, and the geographi-
cal location of the injured person. The removeFirst()
operation is used to access the injury description of the
victim with the highest priority injury and to remove
the injury description from the queue.

It may seem that we have omitted operations needed
to populate a priority queue. While explicit data in-
sertion operations may be needed in other applications,
none are needed for this scenario. Data elements be-
come available as a result of the introduction of devices
that emit injury information, and are included in a res-
cue crew member’s application as a result of context-
maintenance performed to uphold the provided context
definition. (It is important to note that while the appli-
cation presented here requires only implicit insertion of
data items by the infrastructure, the general context-
sensitive data structures model is not limited to this
type of insertion. A discussion of issues related to sup-

porting insertion operations is presented in Section 4.)
In the disaster recovery application, the context-

sensitive priority queue is populated with the victims
in the context ordered by injury priority. The rescue
crew member uses the application to get the head of
the priority queue, dispatching a volunteer to tend to
the victim until transport can be arranged. Because we
consider that crew members may be assigned overlap-
ping contexts and that the transport vehicles available
to one crew member may not be available to another,
the injury description obtained to dispatch treatment
should still be made available. For this reason, the dis-
patch function of the application is implemented using
the getFirst() operation previously described. Once
treatment has been dispatched to the most severely
wounded victim, the crew member uses the applica-
tion on his PDA to determine if any transportation re-
sources are available. If so, the application assigns the
available transportation resources to the most severely
injured victim in the context. Because the victim has
been assigned on-site treatment and scheduled for evac-
uation, the victim should be removed from considera-
tion by the rescue crew teams. Therefore, transport
scheduling in the application should be implemented
using the removeFirst() operation.

public class DisasterRecovery
public DisasterRecovery()

Context context = one block radius
PriorityQueue pq =

new PriorityQueue(context);

public void main(String args[])
while(victimsUntreated())

if(volunteersAvailable())
TreatmentThread treat =

new TreatmentThread(pq);
treat.start();

if(transportAvailable())
TransportThread transport =

new TransportThread(pq);
transport.start();

class TreatmentThread extends Thread
the start method calls the run method...
public void run()

dispatch(getVolunteer(),
(pq.getFirst()).id);

class TransportThread extends Thread
the start method calls the run method...
public void run()

assign(getTransport(),
(pq.removeFirst()).id);

Figure 2. A CSDS Approach to the Disaster
Recovery Application

Figure 2 shows sample code for an implementation



of the disaster recovery application using a context-
sensitive priority queue. This version of the applica-
tion simply defines a context, instantiates the context-
sensitive priority queue, and performs processing on
the priority queue using the operations made avail-
able by the API, e.g., getFirst() and removeFirst().
The data structure does not have to be explicitly recon-
figured by the application each time a victim is trans-
ported. Instead, an untreated victim in the context
with the highest injury priority can be identified sim-
ply by using the getFirst() operation.

This example is suggestive of the programming pro-
ductivity gains one could achieve with context-sensitive
data structures. In the next section, we explore what
is needed to support the implementation of context-
sensitive data structures like the priority queue used in
the disaster recovery application.

4. CSDS Infrastructure Support

We envision the gradual development of a library
of context-sensitive data structures for use by context-
aware application programmers. In most cases, the
application programmer should not have to implement
the context-sensitive data structure; she should sim-
ply choose among the available CSDS implementations.
The application programmer is expected to use the API
of the selected CSDS to interact with data as if it were
local. Since many data structures share common opera-
tions, we envision providing an infrastructure that sup-
ports the development of context-sensitive lists, trees,
stacks, queues, and other data structures.

At the heart of the CSDS model is the perception
that we are populating a locally accessible structure
with data items distributed throughout the reference
agent’s context, keeping the items in the local view con-
sistent with the context as the environment changes.
In reality, we are building a structure on top of the ad
hoc network that mimics the organization imposed by
a particular data structure. This overlay structure is
used to support operations issued on a CSDS. As such,
the structure must adapt accordingly in response to
context changes.

To deliver a CSDS support infrastructure, we must
explore what is required to build and maintain an over-
lay structure over the ad hoc network. To begin, we
consider that the environment in which agents oper-
ate is open and dynamic. As the number of hosts that
join the network grows, the number of context items
available to an application agent significantly increases.
Building an overlay structure to support the operation
of an agent’s CSDS over a large body of context items
requires a substantial amount of processing. To aid

in the development of efficient context-sensitive data
structures, the infrastructure must contain protocols
for limiting the scope of the context to include only
those items that suit an agent’s particular needs. The
tailored context delivered as a result will be used by
other protocols required in our infrastructure: those for
supporting the implementation of particular operations
on a CSDS. In the remainder of this section, we explore
design issues associated with context scoping protocols
and examine the effects of various CSDS operations on
the development of protocols for building and main-
taining overlay structures for ad hoc networks.

4.1 Protocols for Tailored Contexts

There are several viable approaches to limiting the
reach of an agent’s context. We utilize a policy-based
approach similar to that in the network abstractions
protocol [5] in which a context-scoping policy is used
to determine an agent’s context. In our approach, a
context-scoping policy is associated with a particular
CSDS. The policy is used to govern which context items
in the ad hoc network are eligible for inclusion in the
CSDS. An application programmer can specify the con-
text associated with a CSDS by providing a context-
scoping policy as part of the data structure’s instanti-
ation.

Each policy is defined as a set of constraints on prop-
erties of the ad hoc network. Constraints on proper-
ties of hosts (e.g., battery life), of communication links
(e.g., bandwidth), of agents (e.g., access rights), and of
data (e.g., type) may be used to define a context spec-
ification policy. We favor policy specifications that use
constraints on such properties because they offer gen-
erality and flexibility and allow developers to reason at
a higher level of abstraction about the entities within
the ad hoc network and the way they contribute to
defining the content of the CSDS.

The context-scoping protocol uses the scoping pol-
icy supplied by the application programmer to present
a subset of the items in the ad hoc network as the con-
tent of the CSDS. In doing so, the protocol builds a
context structure over the ad hoc network, which is
then used by other protocols that support the execu-
tion of data structure operations. Certain scenarios call
for different ways of using the context structure. When
the environment is highly dynamic and data structure
operations are issued over the context infrequently, the
context structure is built on-demand each time that
an operation on the associated data structure is is-
sued. In situations where the environment is relatively
stable and operations over the context are frequently
performed, the context structure is maintained as the



environment changes.
As a final note, implementations that supply agents

with tailored contexts are implemented in a distributed
fashion. Agents do not require global knowledge of the
environment to participate in the computation of and
to interact with their tailored context.

4.2 Data Structure Population Protocols

Typically, the insert operation described below is
used to populate traditional data structures:

• insert(X): places the data element X in the data
structure according to its organizational policy.

Rather than allow programmers to insert data di-
rectly into a CSDS, the infrastructure performs data
maintenance on behalf of the application. Thus,
the insert(X) operation is not directly provided to
programmers for a particular data structure in the
context-sensitive data structures methodology. In-
stead, there are two ways to include data items in
an application’s CSDS: indirectly through context-
specification and data element ordering, or directly by
injecting data as a context item into the environment.

First, indirect insertion is used to populate a data
structure. An application-provided context-scoping
policy is supplied to the infrastructure in the instanti-
ation of a CSDS. A protocol in the infrastructure for
providing tailored contexts selects the data elements to
be contained within the CSDS, and a separate protocol
creates an overlay structure to mimic a local organiza-
tion of those elements according to properties of the
data structure. Like the context-scoping protocol, it
may be practical in some situations to build the overlay
structure on-demand when an operation is issued, or it
may be more effective to maintain the overlay struc-
ture in the presence of changes. The overlay structure
protocols often utilize several other protocols for data
collection and aggregation. For instance, the imple-
mentation of the context-sensitive priority queue uses
a protocol that sorts the items in the scoped context
and returns the greatest element.

Second, direct insertion is performed by using an
insertion operation provided on the infrastructure in-
stead of on the context-sensitive data structures. We
treat each data item produced by an application as a
generic piece of data that is provided to the infrastruc-
ture via insert in order to supply it to other agents as
context. The semantics of direct data insertion varies,
and a suitable option can be specified by the program-
mer. We identify three types of direct insertion oper-
ations: local, destination-aware, and property-aware.
In local insertions, the data item is stored locally by

the inserting agent. A destination-aware insertion al-
lows the programmer to specify a desired destination
for a data item in terms of a particular agent or host.
The inserted context item will eventually reside at the
specified destination through the use of auto-migration.
With auto-migration, the data item is delivered imme-
diately when the destination is available. If the destina-
tion is unavailable (e.g., because of network partition-
ing), the data item is marked for migration and stored
locally until it can be delivered. The property-aware in-
sertion is similar, but allows a more decoupled method
of specifying a recipient. With this type of insertion,
a policy restricting the set of potential destinations is
provided as a parameter to the insert operation. All
destinations are evaluated against the criteria. A sin-
gle destination is non-deterministically chosen from the
set of matching destinations and is used by the infras-
tructure in a destination-aware insertion.

To allow agents to protect their data, specialized
versions of the direct insert operations that support
access control mechanisms can be used. Access control
parameters are included with an insert operation to
specify how the data is made available at different lev-
els of protection. Only authorized agents are allowed to
access or delete another agent’s data items. The pro-
grammer can specify which agents are authorized using
a policy similar to that used for context-scoping. This
form of access control can be supported in part by re-
quiring all agents to provide credentials in the context
definition used to populate the data structure. These
credentials are used by the context-scoping protocols
to evaluate the access control rights against the access
control policies of the provider to determine if the data
is included in the context.

All of these insertion styles may affect the context
associated with an agent’s CSDS. If an overlay struc-
ture maintained for a particular context-sensitive data
structure is affected by some agent’s insertion opera-
tion, the protocol for maintaining the overlay structure
must sense the change in the environment and accord-
ingly adapt the structure.

4.3 Data Access Protocols

Data access in traditional dynamic set data struc-
tures can be generalized by the set of operations de-
scribed below:

• get(X): searches the data structure for the item cor-
responding to the key X. If successful, the operation
returns the corresponding element; otherwise, it re-
turns null.

• contains(X): searches the data structure for the item
corresponding to the key X. If successful, the opera-



tion returns true; otherwise, it returns false.

• getNext(): returns the next data element in the data
structure. If the element does not exist, null is re-
turned.

• getFirst(): returns the data element located in the
first position of the data structure. If the element does
not exist, null is returned.

• iterate(): returns an iterator over the data structure.

These operations do not change the data structure in
any way. Thus, protocols designed to support data ac-
cess operations simply use the overlay structure built
by the population protocols discussed in the previous
subsection. Examining the set of operations brings up
questions about the semantics provided by the proto-
cols. In some situations, an application’s requirements
may be satisified by weakly consistent results in ex-
change for more efficient execution of operations. In
other scenarios, a strongly consistent reflection of the
environment is required in the result, regardless of the
expense of the distributed transactions needed for the
operation’s execution.

4.4 Data Removal Protocols

Manipulating the data structure by removing el-
ements is a common task, and is typically achieved
through the use of operations such as:

• remove(X): returns and deletes the data element X
from the data structure if it exists and adjusts the data
structure if needed. If the element X does not exist in
the data structure, the operation returns null.

• removeNext(): returns and deletes the next data ele-
ment from the data structure if it exists and adjusts
the data structure if needed. If the element does not
exist, the operation returns null.

• removeFirst(): returns and deletes the data element
located in the first position of the data structure if it
exists, and adjusts the data structure; otherwise, the
operation returns null.

Protocols developed to support these removal opera-
tions may have different semantics. We provide two
types of removal operations: an individual remove and
a communal remove. The former eliminates a data el-
ement from inclusion only for the issuing agent’s par-
ticular CSDS on which the operation was called, while
the latter expunges the data item from inclusion in any
CSDS of any agent by removing the data item from the
ad hoc network.

Individual remove operations are useful for collab-
orative applications that operate on overlapping con-
texts, such as the disaster recovery scenario presented
earlier. In this application, once a rescue team mem-
ber arranges treatment and transport, the victim is re-
moved from the context-sensitive priority queue. How-
ever, volunteers and ambulance crews still require ac-
cess to the injury information, and so it is not removed
from the ad hoc network. To support individual re-
moval operations, the protocol performs bookkeeping.
When a remove is issued, the specified data item is
marked as no longer belonging to a particular CSDS
and that information is remembered by the owner as
part of the data element. Choosing to use this proto-
col in the development of a CSDS, however, requires
careful consideration, as the bookkeeping required can
create a significant amount of overhead.

The more traditional communal remove operation
eradicates the specified element both from the context-
sensitive data structure and from the ad hoc network.
This approach also requires careful consideration, since
the protocol essentially deletes another agent’s data.
Using the access control approach previously men-
tioned, however, allows agents to control how other
agents access their data.

Regardless of choice between individual or commu-
nal removal semantics, if the overlay structure is main-
tained, the removal operations require its restructur-
ing. The removal of a piece of data is essentially a
change in context and is handled by rebuilding the
overlay structure when a data structure operation is
issued over the context, or by the overlay structure
maintenance protocol discussed in subsection 4.2.

4.5 Implementation Requirements and Issues

As we explore the potential for CSDS development,
we make the observation that with particular data
structures, the same portion is regularly accessed. For
instance, priority queues and stacks are frequently ac-
cessed at the beginning positions of the data structures,
using operations such as getFirst and pop. This ob-
servation is the motivation behind the concept of on-
demand partially maintained data structures. We be-
lieve that improvement upon the performance of a typ-
ical CSDS can be facilitated by relaxing the require-
ment that the structure be built and maintained over
all the data items in the context. Instead, a CSDS
is initially constructed to consist of only the first n
elements, where n is a parameter given in the instan-
tiation of the data structure. As the elements are ac-
cessed, the structure is further constructed on-demand.
The structure is maintained to n elements in the pres-



ence of context changes. The parameter n is tunable
and can be changed to address the application’s need
or changes in the context. Our approach to partially
maintained data structures has its roots in the sus-
pended cons concept described in [4], which was in-
troduced to support finite storage of infinite objects.
Suspended cons is an extension to Lisp that allows
placeholders of expressions to be stored until an op-
eration forces its evaluation. Similarly, our partially
maintained context-senstitive data structures are eval-
uated further only upon demand.

As a final note on supporting the development of
context-aware data structures, it is imperative that
we carefully evaluate the requirements and issues pre-
sented, develop protocols in response, and include
them in an infrastructure. The delivered infrastructure
should be flexible, allowing the CSDS programmer to
use only needed components. The components should
have minimal programming interfaces which are famil-
iar and intuitive. The protocols should perform in a
reasonably efficient manner. Moreover, the CSDS de-
sign methodology for context-aware application devel-
opment should be put to the test through the devel-
opment of applications that use context-sensitive data
structures.

5. Conclusions

In this paper, we presented a novel abstraction
called the context-sensitive data structure designed
to simplify the development of context-aware appli-
cations. A context-sensitive data structure encapsu-
lates data items distributed among a number of agents
within a restricted portion of the large-scale ad hoc net-
work and provides the programmer with access to the
collection of data elements as if they were local through
a well-defined API. The content of the context-sensitive
data structure is fluid; as the context changes, the
CSDS is reorganized to reflect the changes in the state
of the environment. To support the use of context-
sensitive data structures as a design methodology, we
proposed providing an infrastructure that encapsulates
protocols for restricting the context, for accessing data
elements in the context, and for modifying data ele-
ments in the context. We envision this infrastructure
as providing the CSDS developer with a set of essential
tools that can be used to develop a range of context-
sensitive data structures. In this paper we take a first
step toward that goal by defining the context-sensitive
data structures model and outlining the requirements
and issues associated with developing a CSDS support
infrastructure.

Acknowledgements
This research was supported in part by the Office

of Naval Research under ONR MURI research contract

N00014-02-1-0715. Any opinions, findings, and conclusions

or recommendations expressed in this paper are those of

the authors and do not necessarily reflect the views of the

sponsoring agencies.

References

[1] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper,
and M. Pinkerton. Cyberguide: A mobile context-
aware tour guide. ACM Wireless Networks, 3:421–433,
1997.

[2] G. Cabri, L. Leonardi, and F. Zambonelli. MARS:
A programmable coordination architecture for mobile
agents. IEEE Internet Computing, 4(4):26–35, 2000.

[3] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and
C. Efstratiou. Experiences of developing and deploying
a context-aware tourist guide: The GUIDE project. In
Proc. of MobiCom, pages 20–31. ACM Press, 2000.

[4] R. Filman and D. Friedman. Coordinated Computing
– Tools and Techniques for Distributed Software, chap-
ter 12, pages 156–179. 1984.

[5] Q. Huang G.-C. Roman, C. Julien. Network abstrac-
tions for context-aware mobile computing. In Proc. of
24th Int’l Conference on Software Engineering, pages
363–373, 2002.

[6] A. Harter and A. Hopper. A distributed location sys-
tem for the active office. IEEE Networks, 8(1):62–70,
1994.

[7] J. Hong and J. Landay. An infrastructure approach to
context-aware computing. Human Computer Interac-
tion, 16, 2001.

[8] C. Julien and G.-C. Roman. Egocentric context-aware
programming in ad hoc mobile environments. In Proc.
of 10th Int’l Symposium on the Foundations of Soft-
ware Engineering, pages 21–30, Nov. 2002.

[9] A.L. Murphy, G.P. Picco, and G.-C. Roman. LIME: A
middleware for physical and logical mobility. In Proc.
of the 21st Int’l Conf. on Distributed Systems, pages
524–533, April 2001.

[10] N. Ryan, J. Pascoe, and D. Morse. FieldNote: A hand-
held information system for the field. In 1st Int’l Work-
shop on TeloGeoProcessing, pages 156–163, 1999.

[11] D. Salber, A. Dey, and G. Abowd. The Context
Toolkit: Aiding the development of context-enabled
applications. In Proc. of CHI’99, pages 434–441, 1999.

[12] R. Want et al. An overview of the PARCTab ubiq-
uitous computing environment. IEEE Personal Com-
munications, 2(6):28–33, 1995.


	Context-Sensitive Data Structures Supporting Software Development in Mobile Ad Hoc Networks
	Recommended Citation
	Context-Sensitive Data Structures Supporting Software Development in Mobile Ad Hoc Networks

	tmp.1470340445.pdf.CB0nY

	Abstract: Abstract: Context-aware computing, an emerging paradigm in which applications sense and adapt their behavior to changes in their operational environment, is key to developing dependable agent-based software systems for use in the often unpredictable settings of ad hoc networks. However, designing an application agent which gathers, maintains, and adapts to context can be a difficult undertaking in an open and continuously changing environment, even for a seasoned programmer. Our goal is to simplify the programming task by hiding such issues from the programmer, allowing one to quickly and reliably produce a context-aware application agent for use in large-scale ad hoc networks. With this goal in mind, we introduce a novel abstraction called context-sensitive data structures (CSDS). The programmer interacts with the CSDS through a familiar programming interface, without direct knowledge of the context gathering and maintenance tasks that occur behind the scenes. In this paper, we begin by defining a model of context-sensitive data structures, and we identify key requirements and issues associated with building an infrastructure to support the development of context-sensitive data structures.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes: 
	Email: 
	Date: March 15, 2004
	Author: Authors: Payton, Jamie; Roman, Gruia-Catalin; Julien, Christine
	Title: Context-Sensitive Data Structures Supporting Software Development in Mobile Ad Hoc Networks
	ReportNumber: 2004-10
	DepartmentName: Department of Computer Science & Engineering


