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ABSTRACT OF THE DISSERTATION

Modeling Surfaces from Volume Data Using Nonparallel Contours

by

Ross Taylor Sowell

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2012

Research Advisor: Professor Cindy Grimm

Magnetic resonance imaging (MRI) and computed tomography (CT) scanners have

long been used to produce three-dimensional (3D) samplings of anatomy elements for

use in medical visualization and analysis. From such data sets, physicians often need

to construct surfaces representing anatomical shapes in order to conduct treatment,

such as irradiating a tumor. Traditionally, this is done through a time-consuming

and error-prone process in which an experienced scientist or physician marks a series

of parallel contours that outline the structures of interest. Recent advances in sur-

face reconstruction algorithms have led to methods for reconstructing surfaces from

nonparallel contours that could greatly reduce the manual component of this pro-

cess. Despite these technological advances, the segmentation process has remained

unchanged.

This dissertation takes the first steps toward bridging the gap between the new surface

reconstruction technologies and bringing those methods to use in clinical practice. We

develop VolumeViewer [68], a novel interface for modeling surfaces from volume data
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by allowing the user to sketch contours on arbitrarily oriented cross-sections of the

volume. We design the algorithms necessary to support nonparallel contouring, and

we evaluate the system with medical professionals using actual patient data. In this

way, we begin to understand how nonparallel contouring can aid the segmentation

process and expose the challenges associated with a nonparallel contouring system in

practice.
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Chapter 1

Introduction

1.1 Motivation

Cancer is the leading cause of death in economically developed countries. About 12.7

million cancer cases and 7.6 million cancer deaths are estimated to have occurred

in 2008 [37]. One of the primary forms of treatment for cancer patients is radiation

therapy, in which ionizing radiation is applied to shrink tumors and kill cancer cells.

This process requires several steps to be performed prior to the start of treatment.

First, the patient is imaged, usually by performing a CT scan of the area to be treated.

From the CT scan, segmentation is performed, in which 3D models of the tumors as

well as healthy organs and tissue are built. These models are then used to design a

treatment plan that determines the size, shape, and intensity of the radiation beams

to be used during treatment. Such a plan is reviewed by the radiation oncologist and

physics staff, and only then can treatment begin.

This process typically takes a week or more from the time a patient is imaged to the

time the first radiation dose is delivered. This is unfortunate because during that

time organs can shift and tumors can change size and shape, causing treatment plans

to become outdated. The segmentation process is one of the main bottlenecks in the

pipeline. It is a time-consuming and manually intensive process that can itself be a

source of error, as any inaccuracies in the segmentation will lead to inaccuracies in

the treatment plan and dose distribution. In this dissertation, we aim to improve

the overall accuracy and efficiency of the segmentation process, which can ultimately

lead to reduced morbidity and improved patient care.
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(a) (b) (c) (d)

Figure 1.1: Parallel versus nonparallel contouring. The contours are defined from
a mathematically exact ellipsoid. 13 parallel contours (a) are used to reconstruct a
surface model of the ellipsoid (b). 3 nonparallel contours (c) are used to reconstruct
a surface model of the ellipsoid (d). The surfaces look similar, but the ends of the
ellipsoid are more accurately defined using the nonparallel contours. We anticipate
that this will be indicative of many clinical structures, and that the accuracy and
efficiency of the contouring process can be improved by using a small set of nonparallel
contours rather than many parallel contours.

1.2 The segmentation problem

In radiation therapy, volumetric CT scans are used to determine the location and

shape of tumors, target volumes, and normal organs. The CT data is a 3D scalar field,

representing the photon attenuation coefficients of the patient and other materials in

the imaging volume. The segmentation problem is to partition this image data into

regions that are located inside and outside the structures of interest. The current

state of the art segmentation process presents the treatment planner with a set of

parallel CT slices and has the planner outline the structure boundaries, resulting in

a series of parallel contours (see Figure 1.1a,b). This is a time-consuming and error-

prone process [21, 29, 75]. But why is the user limited to marking contours on parallel

cross sections?

Early CT scanners had limited spatial resolution along the sampling axis that was

much coarser than the in-plane resolution, making it impractical to view images

in nonparallel planes (see Figure 1.2). Thus, the parallel contouring process was

arrived at not by intelligent design, but rather by historical consequence. Modern CT

scanners now support isotropic or nearly isotropic sub-millimeter voxel resolution [8],

making the quality of out-of-plane images comparable to those acquired along the

sampling axis. Additionally, advances in surface reconstruction algorithms have led

to methods [7, 44] for reconstructing surfaces from nonparallel contours that could

2



(a) (b) 

Nonparallel image resolution 

Today’s scanners Early scanners 

Figure 1.2: Impact of spatial resolution on image quality. (a) Example of the rel-
ative spatial resolution for five slice thicknesses (ST). The 0.625 mm and 0.75 mm
thick slices are the intrinsic resolutions of the Phillips Big Bore and Brilliance 64,
respectively and are representative of modern multislice CT scanners. The 3 mm,
5 mm, and 10 mm thicknesses are representative of reconstructions often used for
treatment planning. The transverse resolution has 512 x 512 voxels and 300 mm,
400 mm, and 500 mm fields of view (FOV) are shown. b) Example of a coronal CT
scan subset of the left lung acquired at 0.625 mm longitudinal resolution (0.98 mm
in-plane resolution) and reconstructed at 3 mm, 5 mm, and 10 mm resolutions to
show the degradation of the image content in the reduced resolution reconstructions.

greatly reduce the manual component of this process (see Figure 1.1c,d). Despite

these technological advances, the segmentation process has remained unchanged.

The goal of this dissertation is to conduct the research necessary to begin to bring

the new surface reconstruction technologies into routine clinical practice. This is

a nontrivial task, as the off-the-shelf reconstruction algorithms are not designed to

handle raw user input, and there are many human factors that must be considered

in order to make this work in practice. We develop algorithms that make surface

reconstruction from user-drawn nonparallel contours feasible, and we work with a

group of radiation oncologists to develop VolumeViewer, an interactive nonparallel

contouring system that is robust and easy to use. We evaluate the system with

the assistance of medical professionals using patient data, comparing the consistency

and efficiency of the segmentation process against traditional systems. In this way,

we begin to understand how nonparallel contouring can aid the segmentation process

and expose the challenges associated with a nonparallel contouring system in practice.

3



(b) (a) (c) 

Figure 1.3: Low image contrast makes automatic segmentation difficult. (a) An image
from a CT scan of a male pelvis. (b) An image corresponding to the magnitude of
the gradient of the image in (a), highlighting the regions of sharp contrast. (c)
The yellow contour outlines the location of the prostate in this image. Such weak
boundary strength is common for many structures of interest in the CT scans used for
radiotherapy, making automatic segmentation a difficult problem. Such segmentation
tasks are better performed manually by a trained human observer.

1.3 Background on automated approaches

Why do treatment planners not use automatic processes? Many approaches have

been proposed for automatic volume segmentation, including thresholding, k-means

clustering, deformable models, watershed segmentation, graph cut algorithms, and

level-set methods [56]. These methods typically depend on strong gradient informa-

tion in the image data, and in some cases, a template model that can then be deformed

to fit the image data. Unfortunately, there are still many cases where template mod-

els are not available, such as for irregularly shaped structures like tumors. The image

data is often noisy and does not have sufficient contrast for automatic methods (see

Figure 1.3). Even in cases where automated methods are suitable, physicians must

still manually review the results before they are used to treat a patient.

Due to the limitations of auto-segmentation approaches, several interactive techniques

have been developed to allow the user to specify input for semi-automatic segmenta-

tion. These methods allow the user to specify constraint points by roughly sketching

foreground and background regions on a cross-sectional plane [73] or the volume-

rendered image [82] or by sketching a contour of the region of interest on the volume
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rendered image [53]. These constraint points are then given as input to a segmenta-

tion algorithm that returns a set of voxels inside the region of interest. A surface can

then be generated by an isosurface algorithm such as Marching Cubes [45]. In more

recent work, Poon et al. [59] describe a 3D Livewire algorithm that allows the user

to provide a set of planar contours as input, which it uses to seed unvisited planes in

order to generate a dense set of 3D contours.

These techniques allow the user to provide input that guides the auto-segmentation

process, but they are still ultimately dependent on the underlying auto-segmentation

algorithm and will therefore have difficulties in cases where the structure does not

follow a clear isocontour. For this reason, manual segmentation on a series of parallel

cross sections remains the standard practice for segmentation in radiation therapy.

Furthermore, even as automated techniques improve, the resulting segmentations

will still need to be reviewed manually before treatment is conducted, and we believe

that the proposed techniques for improving segmentation can be applied to the review

process as well. Therefore, our focus is on improving the manual segmentation process

by allowing the user to contour on nonparallel planes.

1.4 Organization of the dissertation

The remainder of this document is organized into five chapters:

• Chapter 2 provides a discussion of the system of concepts, assumptions, ex-

pectations, and theories that underpins our work. We describe the criteria that

can be used to evaluate segmentation techniques and the key properties of our

data sets that affect the segmentation task. From there, we identify factors that

will influence the effectiveness of a contouring system and make several working

hypotheses about how a contouring system should be designed. We then ana-

lyze parallel and nonparallel contouring with respect to these hypotheses. This

discussion is used as a conceptual framework to guide and connect the different

aspects of our research presented here.

5



• In Chapter 3, we present VolumeViewer, a novel sketch-based interface that

allows the user to generate a surface from just a few contours drawn on arbi-

trarily oriented planes. The user can then review and edit the model globally

and interactively, rather than marking many parallel contours on a slice-by-

slice basis. We design structure-specific contouring protocols and a number of

visualization cues that aid the user in building consistent surfaces efficiently.

• Chapter 4 describes several algorithmic developments that are required for

nonparallel contouring to be feasible in practice. In order to reconstruct a

surface from nonparallel contours using existing techniques [7, 44], the input

contours must be consistent. We describe a process for validating a set of user-

drawn contours and develop tools to aid the user in detecting and fixing any

contour inconsistencies. We also extend the work of [46] to provide support

for partial contours. This allows the user to only provide input where it is

necessary and where the user is confident in the input being provided, rather

than requiring closed contours on each plane.

• In Chapter 5, we present the results of two evaluations. The first study shows

that integrating a collection of reference images into the interface can reduce

the user variation in nonparallel contouring. The second study evaluates our

end-to-end system and offers insights into the situations in which it will provide

the most utility.

• Chapter 6 concludes with a summary of the dissertation and outlines several

avenues of future research based on the presented work.

6



Chapter 2

Conceptual framework

We make the argument that the segmentation process can be improved through the

use of nonparallel contours. This chapter sets the stage for this argument by answering

the following fundamental questions:

• What are the criteria used to evaluate the effectiveness of a segmentation

method?

• What are the essential properties of the data that affect the segmentation task,

and how do they vary from one data set to the next?

• What are the factors that influence the effectiveness of a segmentation method,

and what are the implications for the design of a contouring system?

The answers to these questions constitute a conceptual framework that informs our

research. We conclude this chapter with an analysis of the advantages and disadvan-

tages of both parallel and nonparallel contouring with respect to this framework.

It should be emphasized that this was not arrived at a priori as a result of surveying

previous work (although some of it certainly was, and citations are included where

that is the case). Instead, this is largely a product of our own investigation. It is the

system of concepts, assumptions, expectations, and theories that we have developed

by studying the contouring process. It includes a set of working hypotheses that we

have constructed from our research, but that have yet to be individually tested. We

will refer back to these hypotheses when we use them to make design decisions and

when our experiments provide evidence to support them. Though really a result of
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our research, we present this discussion here because it helps to put the rest of our

work into context, and we believe it will prove valuable to anyone that is beginning

work in this area.

2.1 Evaluation criteria

In order to assess the merit of any proposed changes to the segmentation process, we

must first define how a segmentation method can be evaluated. Common criteria for

evaluating segmentation methods are accuracy, consistency, and efficiency [52]. Here

we define each of these terms and describe how they can be measured.

2.1.1 Accuracy

Accuracy is the degree to which the resulting segmentation matches the truth. If

the ground truth is known, the resulting segmentation can be compared against the

ground truth using the following measures:

• Dice’s coefficient [19] can be used to measure the volume of the region shared

by two segmentations as a percentage of the total volume occupied by both

segmentations. It is calculated as twice the ratio of the number of voxels con-

tained in the intersection of the two segmentations to the total number of voxels

contained in each segmentation.

• Mean distance [14] measures the difference between two segmentations in

terms of the distances between point samples on the surfaces of both segmen-

tations. For each point on surface A, the distance to surface B is defined as

the Euclidean distance to the nearest point on surface B. The mean distance

from surface A to surface B is the average of these distances. Note that this is

a one-sided distance in that the mean distance from surface A to surface B may

be different from that of surface B to surface A. A two-sided mean distance can

be found by taking the average of all the distances from surface A to surface

B and surface B to surface A. If the maximum of all distances is taken, rather

than the average, then this is known as the Hausdorff distance.
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• The Mallows distance or earth mover’s distance (EMD) [47, 43] can be

used as a measure of the cost to correct the segmentation. Intuitively, each voxel

in the segmentation is thought of as a parcel of dirt. Two different segmentations

are then considered as two different ways of piling up the dirt. The EMD is

then the minimum cost of turning one pile into the other, which is the amount

of dirt that needs to be moved times the distance it must be moved.

• The Procrustes distance [39] is a measure of the difference in shape. It is

arrived at by first superimposing the two segmentations by finding an optimal

translation, rotation, and scale from one segmentation to the other. The dis-

tance is then computed as the square root of the sum of the squared distances

between corresponding points.

Unfortunately, we do not have ground truth for real patient data. We can simulate real

patient data by generating synthetic image data (for which we know the ground truth)

or by imaging a cadaver (for which ground truth can be determined by dissection).

These options can give us a rough estimation of accuracy, but the validity of that

estimation depends on how closely the synthetic or cadaver image data compares to

real patient data.

In the absence of ground truth, we can gain some measure of the accuracy with real

patient data in two ways. The first is to compare to a gold standard, which would be

generated and reviewed by a panel of experts. The drawback of this approach is that

the gold standard will vary depending on the composition of the panel of experts and

the segmentation method used to generate the gold standard.

A second option is to conduct a subjective evaluation, in which experts would review

and rank the results generated by other users. Because of its subjective nature, such

an evaluation will again vary depending on the group of experts doing the ranking.

Ideally, we would compute an average, “consensus” segmentation and then measure

the deviation from the consensus. However, computing the average and standard

deviation of a set of contours or surfaces remains an open problem. One approach

is the STAPLE algorithm [77] that considers a collection of segmentations and com-

putes a probabilistic estimate of the true segmentation and a measure of the perfor-

mance level represented by each segmentation. When prior information regarding the
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expected anatomy is available, STAPLE provides estimates of performance parame-

ters accounting for this external standard reference. When such information is not

available, STAPLE provides estimates of performance parameters with respect to a

weighted combination of the input segmentations and the appropriate weighting is

computed automatically. Therefore, in situations where there is no ground truth and

no reliable reference standard, consistency is commonly relied upon as a measure of

segmentation quality.

2.1.2 Consistency

Consistency, or precision, is the extent to which the same segmentation is produced

during separate segmentation sessions by the same user or by different users. Con-

sistency is measured in terms of inter-observer and intra-observer variability. For

inter-observer variability, the same data set is segmented by several users and the

resulting segmentations are compared. For intra-observer variability, the same data

set is segmented several times by one user and the resulting segmentations are com-

pared. Individual segmentations can be compared to one another using the same

metrics listed above for comparing a segmentation to the ground truth, and we can

take the mean difference between segmentations in a given population as a measure

of consistency.

2.1.3 Efficiency

Efficiency is the extent to which time and effort are well used during the segmentation

process. One simple measure of efficiency is the total elapsed time from the beginning

of the segmentation process until the final segmentation is produced. This is straight-

forward to evaluate, but it hides any wasted effort. What we really care about with

efficiency is the ratio of user input to output. Therefore, a more meaningful measure

is the time on task versus the accuracy of the segmentation generated from the input

created thus far.
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2.2 Data set properties

Now that we have defined the criteria used to evaluate a segmentation method, we

are ready to consider how the effectiveness (in terms of accuracy, consistency, and

efficiency) of a segmentation method is affected by the properties of different data

sets. The effectiveness of a segmentation method is dependent on the data set to

which it is applied. One segmentation method may be particularly effective for one

type of data set, while being entirely useless for many others. In this section, we

discuss the essential properties of the data sets that can affect the segmentation task.

We describe the properties that are common in radiation treatment planning and how

these properties can vary from one data set to the next.

2.2.1 Boundary strength

The degree to which the boundaries of the structure to be segmented are visible varies

greatly from structure to structure and data set to data set. In the ideal scenario,

the boundaries of the structure to be segmented would be crystal clear throughout

the volume. In this case, the segmentation problem would be trivial. Automatic

segmentation techniques would work satisfactorily every time.

In real-world data sets, however, the boundary strength of the structure to be seg-

mented can span the spectrum from very strong to very weak. For some cases, the

boundary is strong enough throughout the volume that automatic segmentation is

a valid option. In other cases, portions of the boundary may be very strong while

other portions are weak. In still other cases, the boundary is so weak that it is nearly

nonexistent, and the user must rely on the visibility of other landmarks in the volume

to delineate the structure (see Figure 2.1).

2.2.2 Structure size

The size of the structures to be segmented can vary greatly. For example, the average

liver is 21 x 17 x 12 cm, while the average prostate is 4 x 2 x 3 cm. This translates

into a large difference in the number of acquired slices in which the structure appears.
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(b) (d)(a) (c)

Figure 2.1: An example of differing boundary strengths. Example images are shown
from a liver data set (a) together with its contour (b), as well as a prostate data
set (c) together with its contour (d). We expect more user-variation in drawing the
prostate contour, due to the weaker boundary.

Assuming a slice thickness of 1 mm, the average liver would appear in 120 slices,

while the average prostate would appear in 30 slices. Therefore, there are many more

parallel planes that need to be contoured for the liver than the prostate, and the

length of the contour to be drawn on each plane will also be much larger for the liver

than the prostate.

2.2.3 Structure shape and orientation

The shape of each anatomical structure also varies. We have spherical shapes, cylin-

drical shapes, tubular shapes, curved shapes, shapes with bumps, shapes with bulges,

etc. Each of these 3D structures has its own orientation in the human body and, more

importantly, an orientation with respect to the image plane. The combination of the

shape of the 3D structure and the orientation of that structure with respect to the

image plane determines what 2D shapes appear in the images that will be contoured.

Intuitively, more complex shapes will be more difficult to contour than simpler ones.

We make a distinction between the local complexity of individual 2D contours and the

global complexity of the 3D structure. A single slice through a tubular structure is

simple, locally, whereas a slice through a structure like the pelvis, for example, could

be much more complicated. However, the tubular structure may still be globally

complex. The colon, for example, is more complex than the esophagus because it

twists and turns in space.
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2.3 Designing a contouring system

Having defined our evaluation criteria and the essential properties of the data sets,

we would like to design a system for manual segmentation that will be as effective

as possible. Here, we list the factors that will influence the effectiveness of a manual

contouring system, and then, based on these factors, we make several hypotheses

about how a contouring system should be designed.

2.3.1 Factors that influence accuracy and consistency

We group the factors that influence accuracy and consistency into three categories:

differences in judgment, differences in performing the segmentation, and differences in

the computational component of the tool. We describe these factors in terms of their

impact on consistency, but it should be noted that the same set of factors apply to

accuracy. In the discussion below, the differences between user segmentations could

be substituted for the difference between a user segmentation and the ground truth.

Differences in judgment: Differences in judgment occur when one user considers

the boundary of the structure to be located at a different position than another user.

Factors that contribute to differences in judgment include:

• Boundary strength A weaker boundary is more difficult to delineate and

therefore more subjective (see Figure 2.1). Weaker boundaries cause users to

be more likely to disagree. In this case, users will often draw the same general

shape, but the local variance along the contour will be higher.

• A priori knowledge The user relies on his or her prior knowledge and train-

ing to perform the segmentation. Intuitively, we expect experienced users to

be more consistent with their segmentations than novices, but even amongst

experienced users, their knowledge will vary. For example, when contouring

a structure with an inner and outer wall, some users may contour the inner

wall while others will contour the outer wall. In another example, an interna-

tional proposal for the delineation of elective neck regions was developed and
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published, but large variations persisted due to many users being unaware of

the published guidelines [61]. In this case, users disagreed on which parts of

the neck (high-, mid- and lower-jugular, and posterior) should be irradiated,

as well as on the size and shape of the regions selected to treat similar lymph

node regions [50]. A recent study on the segmentation of the female pelvic floor

found that while users agreed on the location of organs, they demonstrated poor

agreement at defining the structural boundaries [32].

Differences in performing the segmentation: Even when users agree on the

location of the structure and are trying to mark the same boundary, errors may

occur that are the result of differences in performing the segmentation. Factors that

contribute to differences in performing the segmentation are:

• Shape complexity A more complex shape is more difficult to segment. The

user must carefully control the mouse and use more mouse clicks in order to

capture the fine details of a complex shape, increasing the chance of user error.

For example, consider the case of marking a contour that is a perfect circle

versus a bumpy circle. We expect more user-variation in the case of the bumpy

circle due to the difficulty in correctly clicking on each of the bumps.

• Simplification Users may disagree on how much to simplify a contour. Con-

sider again the bumpy circle. One user may choose to carefully outline the fine

details of each bump, while another user may choose to ignore those details and

simply draw a smooth circle that circumscribes the shape.

• User fatigue A tired user is more likely to be careless and make mistakes. The

fatigued user is likely to use fewer clicks than is necessary to accurately mark

the contour.

• Mental integration Differences in how users perceive the impact of their con-

tours on the final shape will result in differences in the contours that they draw.

For example, the naive user will treat each contour individually, while an expert

may ensure that their contour is consistent with adjacent contours.
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Differences in the computational component of the tool: Differences in the

computational component of the tool are those differences that are unrelated to the

user input. Instead, these differences occur due to how the software system uses the

input contours to produce a 3D surface. The following factors should be considered:

• Surface reconstruction algorithm The choice of the algorithm for generating

a surface from the input contours makes a difference. All algorithms should

produce a surface that partitions space into inside and outside regions and

interpolates the input contours, but how the contours get interpolated will vary

from one algorithm to the next.

• Algorithm parameters Even if the same reconstruction algorithm is used,

such algorithms often have input parameters. For example, in the algorithm

by Liu et al. [44], input parameters control the degree of mesh fairing and

refinement. Changing the parameters will alter the results.

• Contour filtering For sketch-based interfaces, filtering noise from the raw

user input is a common operation [20, 16, 35, 80]. The algorithm used to

filter the contours will have an effect on the input, and therefore the resulting

segmentation as well.

2.3.2 Factors that influence efficiency

Factors that affect the efficiency of the segmentation process include:

• Number of planes There is an overhead associated with each additional plane

that a user must contour. The user must move through the data set to the

plane’s location and then determine the location of the boundary on the new

plane.

• Contour length Longer contours require more mouse clicks and therefore take

more time to draw.

• Shape complexity This includes both the complexity of the 2D contours and

of the 3D structure. More complex contours require more mouse clicks to cap-

ture the details of the boundary and therefore take more time to segment.
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Additionally, for more complex 3D structures, additional planes will need to be

contoured in order to capture the shape features, and it will take longer for the

user to determine if the generated segmentation matches that 3D shape.

• Boundary strength Weaker boundaries require more time for the user to

determine where the contour should be drawn.

2.3.3 Working hypotheses

Now that we have described the factors that influence the effectiveness of a manual

contouring system, we are ready to make some hypotheses regarding the design of

a contouring system. These are working hypotheses in the sense that, while not

unfounded, they have not been individually and thoroughly tested. We will refer

back to these when we use them to inform design decisions and when our experiments

provide evidence that supports them. Following the list of hypotheses, we provide

an analysis of the advantages and disadvantages of both parallel and nonparallel

contouring with respect to these hypotheses.

Hypothesis (H1): In order to be as efficient as possible, each contour added should

increase the accuracy of the segmentation as much as possible. This contour is likely

to be the one that maximizes the area enclosed as well as passes through regions

where the segmentation differs the most from the ground truth.

Corollary: For structures that have bumps or bulges, more contours will be required

in those regions to accurately capture the feature. The contour that increases the

accuracy of the feature as much as possible is likely to be the one that maximizes

the area enclosed as well as passes through regions where the reconstructed feature

differs the most from the true feature shape.

Hypothesis (H2): For structures that are cylindrical, tubular, or curved shapes

with a simple cross section, planes that are perpendicular to the medial axis of the

structure will result in the simplest 2D shapes to be contoured.

Hypothesis (H3): For data sets where the strength of the image gradient varies

throughout the volume, planes that are approximately orthogonal to the gradient
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field and pass through as many large magnitude gradients as possible will produce

the strongest boundaries.

Hypothesis (H4): Users will be more accurate, consistent, and efficient when con-

touring on planes that are familiar to them based on their prior knowledge and train-

ing.

Hypothesis (H5): When transitioning from one plane to the next, moving the

plane continuously through the volume data is more effective than jumping from one

discrete viewpoint to the next.

Hypothesis (H6): When transitioning from one plane to the next, movements that

keep the structure centered and the same size on the screen are more effective than

those that do not.

Hypothesis (H7): Users produce segmentations that are more accurate and con-

sistent when they can see the surface model and how it changes as they add each

additional contour.

2.4 Analysis of parallel contouring

Advantages of parallel contouring The parallel contouring system offers numer-

ous advantages with respect to these hypotheses, and perhaps none larger than the

user familiarity with these planes (H4). Contouring on a series of parallel (transverse)

planes is the standard of practice in radiation therapy. Users are trained to contour

on these planes, and have more experience looking at the anatomy in this view than

any other. Moreover, many structures in the human body are oriented in such a way

that the long axis of the structure is perpendicular to the transverse image plane

(H2).

Parallel contouring also enjoys advantages due to its simple navigation (H5,H6). Mov-

ing from one parallel slice to the next corresponds to moving one step forward and

backward along the axis from the patient’s head to feet. The size and position of a

structure of interest on the screen changes little from one plane to the next. After
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a set of contours have been drawn, paging back and forth quickly through the slices

can give the user a rough approximation of what the surface will look like (H7).

Disadvantages of parallel contouring The largest room for improvement in the

current parallel contouring system is in terms of its efficiency (H1). When adding

an additional contour to a set of parallel contours, adding one more parallel contour

on the next slice is unlikely to be the contour that increases the accuracy of the

segmentation as much as possible. Consider the ellipsoid from Figure 1.1. Adding

one more parallel contour between two other parallel contours will do little to improve

the accuracy of the segmentation in comparison to the improvement that could be

had by adding one nonparallel contour.

While many structures in the body (e.g., bones) are oriented in such a way that

the long axis of the structure is perpendicular to the imaging plane, many other

structures (e.g., cervix) are not axis-aligned or are curved (e.g., spinal cord). For

these structures, parallel contouring will not result in the simplest 2D shapes to be

contoured (H2). Similarly, for many data sets the standard parallel planes may not

produce the strongest possible boundaries (H3). The boundaries for a portion of the

structure may be clearer in another view, but the user is restricted to contouring on

the parallel planes.

There is a growing body of literature on systems such as Teddy [34], ShapeShop [63],

SmoothSketch [38], and FiberMesh [49] that allow users to create 3D models by

sketching in 2D. None of these systems restrict the user to drawing sketches on parallel

planes. To do so would make the task of the artist much more difficult and less efficient

(H1). Now that we are able to view the image data in nonparallel planes without a loss

of image resolution, there is no reason that the users of medical image segmentation

software should be constrained to contouring on parallel planes.
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2.5 Analysis of nonparallel contouring

In this dissertation, we address the disadvantages of parallel contouring by developing

a nonparallel contouring system. We discuss the potential advantages and disadvan-

tages of such a system in this section.

Advantages of nonparallel contouring The primary advantage of nonparallel

contouring is that the user can contour on any plane. As discussed above, the contour

that increases the accuracy of a segmentation as much as possible is often not a con-

tour parallel to an existing one. Nonparallel contouring allows the user to potentially

add the contour that does increase the accuracy of a segmentation as much as possible

(H1). Similarly, in situations where the structure or the gradient field is not aligned

to the transverse imaging axis, planes can be selected for contouring that result in

the simplest 2D shapes (H2) and strongest boundaries (H3). Thus, nonparallel con-

touring has the potential to improve the segmentation process by directly addressing

the disadvantages of a system that relies solely on parallel contouring.

Disadvantages of nonparallel contouring Nonparallel contouring is not without

its disadvantages, which we view as the primary challenges to our goal. One major

drawback of nonparallel contouring is the lack of user familiarity with these planes

(H4). Users may be more familiar with some planes than others, based on their

training in dissection of the anatomy for example, but users have not been trained to

contour in these views in the same way as they have the parallel planes.

Another problem with nonparallel contouring is that moving from one nonparallel

plane to the next does not correspond to a simple step forward or backward within

the image data. It is a challenge to move smoothly from one plane to the next (H5)

while helping the user maintain her point of reference (H6). Moreover, when given

the choice to contour on any plane, the user may waste time in determining which

plane to contour next.
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2.6 Chapter summary

In this chapter we developed a conceptual framework for reasoning about the segmen-

tation process that will be used throughout this dissertation. We discussed evaluation

criteria for segmentation methods and the key properties of our data sets. We ex-

plored the factors that influence the effectiveness of a contouring system and made

several working hypotheses about the design of such a system. We then analyzed

the advantages and disadvantages of both parallel and nonparallel contouring with

respect to these hypotheses. We believe that a nonparallel contouring system has

the potential to make significant improvements to the accuracy and efficiency of the

contouring process. However, in shifting to such a system, we face the challenge of

losing many of the advantages inherent to parallel contouring. Our aim is to develop

a system that supports nonparallel contouring while taking measures to address these

challenges.

In the next chapter we describe the development of VolumeViewer, our nonparallel

contouring system, in the context of the conceptual framework constructed in this

chapter. Chapter 4 details the algorithmic developments that we made to support

our system, and Chapter 5 presents results from our evaluation of the system.
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Chapter 3

VolumeViewer: An interactive tool

for fitting surfaces to volume data

3.1 Introduction

In this chapter we describe the development of VolumeViewer (see Figure 3.1), a

novel sketch-based interface that allows the user to generate a surface from just a

few contours drawn on arbitrarily oriented planes. The two primary challenges that

need to be addressed in the design of such an interface are the lack of user familiarity

with the nonparallel planes and the difficulty with navigating through the 3D volume

data. Therefore, our goals are to help the user maintain a sense of orientation, so

that the user always knows where she is and what she is looking at, and to keep the

time spent on navigation to a minimum.

We begin with a review of related work that highlights the need for such a system.

We then describe the user interface (see Section 3.3), the development of contouring

protocols and reference images (see Section 3.4) — which extend the interface and

further address the challenges above, and several visualization cues that can enhance

the contouring process (see Section 3.5). Each of these sections ends with a discussion

of the design rationale behind our decisions, referring back to the hypotheses (see

Section 2.3) developed in the previous chapter where appropriate. VolumeViewer

is free and open source software. We conclude this chapter with the details of its

implementation and distribution (see Section 3.6).
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3.2 Related work

A large number of systems exist for the interactive segmentation of medical images.

Here we list some of the most commonly used systems. This is not intended to be

an exhaustive list, but rather to highlight the most popular systems and those that

are most closely related to our own. We divide the systems into two groups based on

whether they are closed or open source.

3.2.1 Closed source systems

Pinnacle by Philips [28] and Eclipse by Varian [76] are two of the common commercial

systems for radiation treatment planning. These systems support a rich set of features

for the simulation and optimization of radiation treatments. This includes selecting

the energy and arrangement of the radiation beams in intensity modulated radiation

therapy (IMRT) as well as the seed positions and dwell times for brachytherapy. They

also include support for the segmentation of medical images which must be performed

prior to the planning phase. While arbitrarily oriented image planes may be viewed,

contouring is restricted to the axial slices.

The MIPAV (Medical Image Processing, Analysis, and Visualization) system [51] is

a Java application developed by the National Institutes of Health for general anal-

ysis and visualization of biomedical data. It is closed source, but freely available

and extensible via plug-ins that make use of a public application programming in-

terface (API). It provides a basic suite of segmentation tools, but visualization and

segmentation are limited to slices along the three primary axes.

MeVisLab [3] is not an end-user application, but rather an application framework for

medical image processing research and development. It provides an image processing

library, tools for visualization and interaction, and modules for integration with open

source libraries, including OpenInventor [27], ITK [33], and VTK [64].

Amira [70] is another application framework designed for visualizing and analyzing

life science and biomedical data. It provides support for 3D and 4D visualization,

processing, and analysis from a wide range of imaging sources and modalities.
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TurtleSeg [59] is a tool designed for the interactive segmentation of 3D medical

images. The key to the approach is a 3D Livewire algorithm that allows the user

to provide a sparse set of planar contours as input, which it uses to seed unvisited

planes in order to generate a dense set of 3D contours. This method is particularly

relevant, as the planar contours may be defined on nonparallel slices. However, since

this method relies on Livewire, it generally only works well in situations where there

is strong gradient information in the image data.

3.2.2 Open source sytems

The Insight Segmentation and Registration Toolkit (ITK) [33] is an application

framework that provides a range of general algorithms for image processing, seg-

mentation, and registration in two and three dimensions. The Visualization Toolkit

(VTK) [64] offers support for isosurfacing, mesh smoothing, mesh decimation, volume

rendering, and vector and tensor visualization. It also provides many high-level mod-

eling algorithms and support for 3D interaction. These toolkits provide a foundation

for many other systems.

MITK [81] is an application framework built on top of ITK and VTK that is specif-

ically designed for the development of interactive medical imaging software. It offers

multiple, consistent and synchronized views of the same data and a state machine

based interaction concept that includes an undo stack. It provides a module for man-

ual segmentation that includes basic tools for manual segmentation, interpolation

of missing slices from neighboring slices, surface model creation and analysis. Only

the three primary axis directions are supported, because as the authors state, “...on

rotated planes, the pixel filling operations would cause problems.”

ITK-SNAP [83] is an application built on top of ITK that is designed to provide

a user-friendly interface for manual and semi-automatic segmentation of 3D medi-

cal images. Manual labeling of voxels is restricted to the three orthogonal viewing

directions.
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Seg3D [15] is an application developed by the NIH Center for Integrative Biomedical

Computing at the University of Utah that combines a manual segmentation inter-

face with algorithms for image processing and automatic segmentation provided by

ITK. Image volumes can be labeled using volume rendering and orthogonal slice view

windows.

3D Slicer [10, 24, 57, 58] is a general-purpose medical imaging platform that began

as a masters thesis project in 1998 [31]. It is built on top of VTK and now contains

over a million lines of code. It provides a variety of functionality, including image

registration, automatic image segmentation, processing of diffusion tractography, and

tracking of devices for image-guided procedures. It does allow for the visualization of

arbitrarily oriented planes and includes an Editor module for manual segmentation,

but editing is restricted to slices along the three primary axes.

Note that, with the exception of TurtleSeg, none of these systems provide support

for contouring on nonparallel planes. Rather than create our own system, we could

have extended one of the open-source systems listed above. However, none of these

systems were really designed to support nonparallel contouring. They were designed

for other types of segmentation and have many additional features which might be

distracting or increase the learning curve for our users. Also, by extending another

system, we might be constrained by what we could offer in terms of the interface

due to having to integrate into an existing framework. Our aim was squarely on

developing an effective system for the interactive segmentation of volumetric images

using nonparallel contours. VolumeViewer was created as an evaluation tool to pursue

this research aim and allow us to easily make iterative refinements to the interface.

Once an effective interface is stable and tested, then it could be incorporated into an

existing toolkit.

3.3 User interaction

The interface consists of one large main window and three smaller side windows.

Sketching takes place in the main window where the view is always perpendicular

to the image plane. The side windows provide fixed views along the three primary

axes (transverse, sagittal, and coronal) to help the user maintain an awareness of the
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Figure 3.1: The VolumeViewer interface
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current position and orientation of the image plane in the volume. The user’s mental

model is that the view in the main window corresponds to a camera positioned on the

tip of the blue arrow and looking at the purple box in the side windows. A bounding

box of the volume is drawn in gray with images of a human model to indicate the

patient’s orientation with respect to the volume data. This indicates to the user

which end of the data is toward the head or feet of the patient, and the right leg of

the model is colored red to help the user orient the slice.

From the main window, the user pans the current image plane by clicking and dragging

the mouse anywhere on the image. The user rotates the plane up or down about its

current axis or changes the viewing orientation by clicking and dragging the in-screen

arrow controls, and translates the plane along its normal by scrolling the mouse. From

the side windows, the user may also adjust the position and orientation of the plane

by manipulating a simple transform widget (see Figure 3.1 (bottom)).

The user may sketch a contour on the current plane using one of three currently

implemented drawing tools. “Paint” allows the user to contour using a traditional

brush stroke. “Dots” allows the user to click a series of points that are linearly

interpolated to form a contour, and an implementation of “LiveWire” [48] is also

provided for use when the desired contour follows an image gradient. Contour points

may be removed by pressing the delete key.

Once a set of contours has been drawn, a button is pressed to build a surface that

interpolates the contours. After a surface has been reconstructed, it may be viewed

simultaneously with the image data for evaluation. A clipping plane may be turned

on to view the intersection of the image plane with the surface. The surface may then

be edited by modifying existing contours or adding new contours and reconstructing

the surface.

Design rationale One of the primary challenges to a nonparallel contouring system

is the lack of user familiarity with the nonparallel planes (H4). Therefore, many of our

design decisions were made to address this issue. For example, our initial prototype

did not contain the fixed views in the side windows. When presented with only a

nonparallel plane, users would often not understand at what angle and orientation

they were viewing the structure. The fixed views together with the human model
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drawn on the bounding box help the user determine the position and orientation of

the slice within the greater volume.

The user can move or rotate the plane using either the in-screen controls or the

transform widget in the side windows. In practice, we found that users tended to make

use of the transform widget for large scale movements and the in-screen controls for

fine-grained adjustments once the slice was already in the general region of interest

within the volume. The important point here is that the movements are always

continuous (H5). We start with a parallel plane that is familiar to the user and allow

the user to adjust the position and orientation of the plane. As the user moves the

plane, the image is updated continuously and the user can watch the planes position

and orientation change in the side windows. This feedback helps the user maintain a

sense of orientation while navigating the plane through the volume.

Another form of visual feedback that we provide to aid the user in performing the

segmentation is the ability to build and view the surface, together with the image

data, at any point during the contouring process (H7). The surface model serves as

a 3D landmark for the user during navigation and allows the user to evaluate his or

her progress and to better determine where the next contour should be added. It also

makes refining the segmentation more efficient, because once a surface has been built,

new contours no longer have to be drawn from scratch. Instead, the intersection of

any plane with the surface defines a contour which can be edited by simply sketching

over the portions of the existing contour that need adjusting.

3.4 Contouring protocols

The VolumeViewer interface as described in the previous section provides all the tools

necessary to perform segmentation using nonparallel contours. However, it places the

burden of determining on which planes to sketch and navigating to those planes

entirely on the user. When we know the general shape of the structure that we are

trying to reconstruct, we can aid the user by providing an initial set of planes on

which to draw and automatically performing the 3D navigation from one plane to the

next. For this, we provide contouring protocols that include step-by-step instructions

for performing the segmentation and smooth, animated transitions from one image
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(b) (d) (a) (c) 

Figure 3.2: An example protocol for contouring the prostate. The top row shows what
the user sees at the beginning of each step. The bottom row shows what the user
draws. The user makes use of the intersection points of previously drawn contours as
well as a set of reference images (see Figure 3.4) to aid in marking the contour at each
step. (a) The user marks the first transverse contour in the middle of the prostate.
(b) The user marks a second contour, perpendicular to the first. (c) The user marks
a third contour, perpendicular to the first two. (d) The user marks the seventh and
final contour. The resulting contours and surface are shown in Figure 3.3.

plane to the next. The use of these protocols with a set of corresponding reference

images (see Figure 3.4) helps to ensure that users consistently produce surfaces of the

highest quality.

We refer to this type of interaction as spatio-temporal navigation, as opposed to the

free-form navigation described in the previous section. The idea is that the user

moves through the volume in a set of pre-specified moves and views that are defined

relative to one another, and are placed in a temporal order.

For example, we have experimentally determined a set of nonparallel planes that

are generally sufficient at capturing the shape of the prostate [2] (see Figure 3.3).

This consists of three transverse planes, one sagittal plane, one coronal plane, and

two nonparallel sagittal-coronal planes. One possible contouring protocol for this

structure using these planes is illustrated in Figure 3.2. To begin, the user is instructed

to navigate to the transverse plane that lies in the middle of the prostate and mark a
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(a) (b) 

Figure 3.3: Contours and surface model generated by example prostate protocol. The
contours (a) drawn by the user while following the protocol depicted in Figure 3.2
to segment a human prostate. The resulting surface model (b), reconstructed by our
system.

(b) (a) (c) 

Figure 3.4: Reference images. The main window (a) displays the current image plane
together with a protocol instruction (circled in yellow) that describes where the next
contour should be marked. Reference images of similar contours in other patient data
sets are provided as examples. The contours can be toggled on (b) or off (c) to train
the user to look for cues in the image data.
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contour (see Figure 3.2a). Once this contour is drawn, the user needs to perform no

further navigation. The system automatically rotates the first plane ninety degrees

about the center of the contour and instructs the user to mark the sagittal contour

(see Figure 3.2b). From these two contours, the other five planes are easily generated

and automatically navigated to by the system (see Figure 3.2c,d).

For each contour, the user is presented with a set of reference images (see Figure 3.4),

and simple instructions to look for specific anatomic cues in the image in order to

accurately delineate the contour. The reference images are presented to the user in

a separate window of the interface. For each nonparallel plane, the window contains

four reference images. Three of these images show example contours drawn on similar

cross-sections of the anatomy of three different patients. These contours were made

by intersecting the nonparallel planes with a surface model reconstructed from many

physician-reviewed contours drawn on the parallel cross-sections of the data set. The

contours can be toggled on and off, to give the user a sense of what they should be

looking for in the image data. The fourth image illustrates which cross-section the

user is currently observing, by showing its position as a slicing plane through a surface

model of the anatomy.

We have worked with a team of radiation oncologists to develop contouring protocols

for both the prostate and liver. Alternative protocols for these structures or new

protocols for other structures can easily be created and used by VolumeViewer. This

process simply involves writing a list of instructions and commands for transforming

the image plane from one position to the next and capturing a set of corresponding

reference images to be used in conjunction with the protocol.

Design rationale 3D navigation is a time-consuming and difficult task. In the ab-

sence of any contouring protocol, much of our users’ time would be spent manipulating

the image plane from one position and orientation to the next, as well as determining

which contour should be marked next. We created the contouring protocols to remove

this guesswork and make much of the required navigation happen automatically. The

user still has the ability to manipulate the image plane as described in the previous

section, but this is now generally used to make local adjustments to the plane. The

automatic navigation will move the plane to the general vicinity of where the next
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contour needs to be placed. The movement of the plane is animated smoothly and

continuously (H5) to help the user maintain a sense of orientation, and the infor-

mation provided by previously drawn contours is used to keep the region of interest

centered and the same size on the screen (H6).

The other motivation behind our use of contouring protocols is that since we are in-

structing the user as to which plane to contour next, we are able to provide reference

images from other patient data sets that correspond to that plane. This further helps

to address the challenge posed by the users being unfamiliar with the nonparallel

views (H4). The user can immediately determine the general shape and orientation

of the structure in the current view by glancing at the set of reference images. More-

over, having users contour on the same set of planes at the outset helps to increase

consistency across users.

3.5 Visualization cues

VolumeViewer allows the user to view the image data by moving a two-dimensional

(2D) slicing plane through the volume. The user can mark contours on this plane, and

once a surface is reconstructed, it can be viewed along with the image data. These are

the basic visualization requirements for a nonparallel contouring system. However,

the image data is often noisy, and the user must rely on subtle cues to delineate the

contours. In this section, we explore several visual enhancements that can be made

to the image data and the way that the contours and surface models are rendered in

order to make the segmentation process easier for the user.

One such visualization enhancement is illustrated in Figure 3.5. As the image plane

rotates from one position to the next, the user can see portions of the previously drawn

contours that stick out above the image plane. This can be very useful in order to

help the user maintain a point of reference and understand the overall shape of the

structure that is being segmented. However, the spatial context of 3D curves floating

in space can be difficult to infer (see Figure 3.5a). By adding a bit of geometry, so that

the curves become thin ribbons, and using directed lighting and soft shadows where

the curves intersect the plane, the spatial context becomes much more apparent (see

Figure 3.5b).
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(b)(a) (c)

(e)(d) (f)

Figure 3.5: Rendering contours as thin ribbons. Visualizing the shape of an ongoing
segmentation is challenging, as curves floating in space (a) are difficult to draw and
understand. We can make the 3D structure of the curves more apparent by drawing
the curves as thin ribbons, with directed lighting and shadows where the curves
intersect the plane (b), adding a linear texture to the ribbons (c), and shading the
contours so that portions of the contours that are further away appear darker (d).
The underlying surface (e) can also be rendered translucently, to avoid obscuring the
image data (f)

.
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(b) (d) (a) (c) 

Figure 3.6: Coloring the image plane. A partial segmentation of the bladder is shown
(a). The user-drawn contour is shown in solid red. The part of the image that is
considered inside the surface is tinted with red hue. The user continues drawing the
contour to further define the segmentation (b). The same images are shown without
the contours (c, d). Note that when coloring the segmentation in this manner, there
is no need to draw the actual contour. It can be omitted so as to not obscure the
image data.

In addition, we can add a linear texture to the contour ribbon (see Figure 3.5c), and

shade the contours based on their distance from the viewpoint which enhances the

perceived depth (see Figure 3.5d). This all helps to better convey the 3D structure of

the curves and the underlying shape that they define (see Figure 3.5e). The surface

model itself can be drawn translucently, so that the underlying image data can still

be seen (see Figure 3.5f).

While drawing the contours in this manner works well for visualizing the 3D shape of

a set of contours, it is less than ideal when sketching a contour on a given plane. In

this case, the solid geometry of the contour actually obscures the image data that the

user is segmenting. A better approach is to color with hue the part of the image that

is inside the surface for a given slice (see Figure 3.6). When the user begins to draw a

contour, an initial estimated segmentation is found by extending the region enclosed

by the contour a fixed distance. This area of the image data is colored with hue,

appearing darker nearest the contour, where the segmentation is more certain, and

fading out from there. As the user continues to draw the contour, the segmentation

becomes more refined. The user always knows which portion of the plane is considered

inside and outside the surface, and the entire image data remains visible.
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Design rationale The user segments a 3D structure by marking a set of 2D con-

tours. To do this effectively, it is important for the user to understand the impact

that each 2D contour has on the generated 3D surface (H7). This surface model can

serve as a landmark during navigation, and when viewed along with the image data,

can help the user determine where more input is needed. All of the visualization

enhancements described in this section were designed with the intention of conveying

as much 3D information as possible to the user while obscuring the underlying image

data as little as possible.

3.6 Implementation and distribution

The input to our system is a volumetric data set. The examples in Figure 3.3 were

reconstructed from a 1024x1024x256 CT scan of a human prostate. The data is

stored as a 3D texture and any desired smoothing or filtering can be performed

in the fragment shader. The system linearly interpolates the data in each slice of

the input data set in order to render arbitrarily oriented image planes. After a set

of contours have been drawn using the tools described in Section 3.3, the system

reconstructs a surface from the nonparallel contours using the technique of [44]. This

algorithm requires that the contours be closed and that the intersection points along

the common line between any two planes be located at the same position. For details

on how we ensure this type of consistency between the contours, see Section 4.3.

VolumeViewer is implemented entirely in the C++ programming language, using the

Open Graphics Library (OpenGL) [26] for graphics and rendering, and the Fast Light

Toolkit (FLTK) [69] for the graphical user interface (GUI).

For the general audience, VolumeViewer is freely available for use under the terms of

the GNU General Public License. The VolumeViewer website [67], available via

http://volumeviewer.cse.wustl.edu, is a comprehensive resource for all VolumeViewer

users. Here we have all major and minor releases, cross-platform source code, sample

data sets, a user guide, video tutorials, and a bug tracking system that allows users

to submit errors or feature requests. To date, we have 56 registered users from 13

different countries who have downloaded VolumeViewer.
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Figure 3.7: A screenshot of the VolumeViewer website

This system was implemented solely by the author of this dissertation with a few ex-

ceptions. VolumeViewer makes use of a free and open-source suite of tools for mesh

processing and basic graphics routines [25]. The author worked closely with Liu et

al. [44] to integrate their software for surface reconstruction into our system. The au-

thor served as a student mentor for two students that made valuable contributions to

the project under the authors supervision. Michelle Vaughan, then a first-year gradu-

ate student, implemented the HRBF technique for partial contouring (see Section 4.4)

and a few of the visualization cues, including textured ribbons, depth shading, and

surface translucency. Chris Trn, an undergraduate student at the time, implemented

the approach for coloring the image plane with hue during sketching. The rest of the

software including the interface, visualization, user interaction, protocols, methods

for ensuring contour consistency, and tools for editing were all implemented by the

author.
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3.7 Chapter summary

We have presented the VolumeViewer interface and described how it can be used to

explore a volumetric data set, sketch contours on arbitrarily oriented cross-sections

of the volume, construct a surface model that interpolates those contours, and re-

view and edit the resulting segmentations. We defined contouring protocols that

enable spatio-temporal navigation for segmenting known structures consistently and

efficiently, and we described a number of visualization cues that can be used to pro-

vide the user with spatial context and make the segmentation process easier and

more intuitive. We detailed the implementation of VolumeViewer and noted that it

is freely available on our website. In the next chapter, we will develop the algorithms

necessary to support our nonparallel contouring system.
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Chapter 4

Algorithms for nonparallel

contouring

4.1 Introduction

In the previous chapter we presented an interface that allows users to navigate through

a volumetric data set and sketch a set of contours on arbitrary cross-sections of the

data. In order to construct surface models from these user-drawn contours, several

algorithmic developments were required that are the focus of this chapter. We begin

with a discussion of contour consistency and how to ensure that the contours a user

draws are consistent. We then describe an extension to an existing reconstruction

algorithm that provides support for accepting partial (non-closed) contours as input.

4.2 Related work

The earliest approaches to surface reconstruction from contours [40, 23] focus on

simple closed curves lying on parallel planes and are known as “contour stitching”.

Many advancements have been made since then, but the basic approach remains the

same: connect the vertices of adjacent contours to build a mesh that passes through

all the input contours. For a complete review of methods of surface reconstruction

from parallel contours, please see the literature review in [44].
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More recently, several methods have been developed for reconstructing surfaces from

curves on nonparallel planes [62, 54, 79, 17, 6, 7, 44]. A common strategy adopted

in these methods is to consider a partitioning of space by all cross-sectional planes.

Within each partitioned cell, a closed triangular mesh is extracted as the exterior of

a 3D tetrahedral mesh that connects the cell boundary. These methods provide the

inspiration for our work, as they make it possible to reconstruct surfaces using fewer

nonparallel planes. However, current commercial treatment planning systems such as

Philips’ Pinnacle [28] and Varian’s Eclipse [76] do not provide facilities for visualizing

or sketching contours on non-transverse image planes. Even if they did provide such

support for drawing nonparallel contours in the interface, there remains a missing

link between allowing users to contour on nonparallel planes, and transforming that

input into a consistent set of contours that can be accepted as input to a surface

reconstruction algorithm. That missing link is the subject of the next section.

4.3 Ensuring contour consistency

Available algorithms for reconstructing a surface from a set of nonparallel contours [7,

44] require that the input contours be closed and consistent. By consistent, we mean

that the intersection points lying along the common line between any two planes must

be located at the same position. An example of a set of inconsistent contours is shown

in Figure 4.1. It is trivial to force the user to sketch a closed contour, but ensuring

the consistency of a set of user-drawn contours is more difficult.

We begin by defining formally what it means for a set of contours to be consistent

(see Section 4.3.1). Then, in Section 4.3.2 we describe a semi-automated approach

for taking a set of contours and making them consistent. In Section 4.3.3, we describe

an alternative approach that involves modifying the user interface to require the user

to always maintain a consistent set of contours throughout the segmentation process.
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(b) (c) (a) 

Figure 4.1: An example of inconsistent contours. This example is taken from a set
of user-drawn contours in our first user study (see Section 5.3). (a) The red contour
is inconsistent with the other contours, whose intersection points with the plane
are shown in blue. (b) The red contour violates the topological validation condition,
because it does not intersect the yellow common line twice. (c) If the contour defining
the yellow common line had not been drawn, the red contour would still violate the
geometric validation condition, because its distance (displayed in cyan) to one of the
intersection points is greater than the allowable distance σ.

4.3.1 Formal definition of consistency

We begin with a set of n planar contours C = {C1, C2, . . . , Cn}, where each contour

is a simple, closed curve defined by a sequence of vertices Ci = {c1, . . . , cm|cj ∈ R3}.
Consecutive vertices in the sequence are assumed to be connected to one another,

and since the contour is closed, cm is connected to c1.

Each contour Ci lies on a plane Pi embedded in R3 defined by any set of three

noncollinear points in Ci. Let L be the set of all lines found by intersecting each pair

of planes (Pi, Pj) defined by the contours Ci, Cj ∈ C. Note that each pair of planes

will intersect in a single line, unless they are parallel (or are the same plane in the

case of two contours lying on the same plane), and that multiple planes can share the

same line of intersection. We refer to L as the set of common lines.

Each common line l ∈ L is shared by a subset of the contours in C. Let Cl ⊆ C such

that for all Ci, Cj ∈ Cl, the intersection of Pi and Pj is l. Furthermore, each contour

sharing a common line will intersect that line 0 or more times. Let Ili denote the set

of intersection points between line l and contour Ci. That is,

Ili = {h ∈ R3|l and Ci intersect at h, l ∈ L and Ci ∈ Cl}.
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Note that we can order this set of intersection points according to their positions

along the line l. This requires us to orient the line l, but the choice of orientation

is arbitrary. Let hk ∈ Ili be the kth intersection point of contour Ci along the line l.

This has the effect of identifying corresponding intersection points. For example, if

the contours Ci and Cj share the common line l, then hk ∈ Ili corresponds to hk ∈ Ilj.

In order for a set of contours C to be consistent, they must be both topologically

consistent and geometrically consistent.

A set of contours C is topologically consistent if each contour that shares a common

line intersects that line the same number of times. Formally,

∀l ∈ L, ∀Ci, Cj ∈ Cl (|Ili| = |Ilj|).

A set of contours C is geometrically consistent if the corresponding intersection points

of each contour sharing a common line all lie at the same position. Formally,

∀l ∈ L, ∀Ci, Cj ∈ Cl (hk ∈ Ili = hk ∈ Ilj).

Surface reconstruction algorithms [7, 44] require that the input contours are consis-

tent. Unfortunately, an arbitrary set of user drawn contours is unlikely to satisfy this

property. We now describe a semi-automated approach for taking a set of contours

and making them consistent.

4.3.2 Contour validation and snapping

We developed a procedure called MakeConsistent, that takes an inconsistent set

of contours as input and outputs true, along with a modified set of the input contours

that is consistent, or outputs false, along with a list of the invalid intersection points,

if the input contours cannot be made consistent automatically. Pseudocode for the

procedure is given in Algorithm 1.

If this procedure returns true, then the contours will be consistent and ready to be

used as input to a surface reconstruction routine. A return value of false indicates that

the contours are either topologically or geometrically invalid. Figure 4.1 illustrates

both of the possible validation failure cases. If the contour does not pass validation,

then the user is notified. The intersection points that are causing the failure are
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Algorithm 1 Make consistent algorithm

1: procedure MakeConsistent(C, σ)
2: Input. A set of contours C and a threshold distance σ.
3: Output. True and a consistent set of contours C ′, if the input contours are

topologically and geometrically valid; false and a list of the invalid intersection
points otherwise.

4: if ¬AreTopValid(C) then return false.
5: if ¬AreGeomValid(C, σ) then return false.
6: C ′ = Snap(C,H, T )
7: return true
8: end procedure

highlighted, and the user can either edit the selected contour or drag the intersection

points along the common line to modify intersecting contours. After corrections have

been made, the MakeConsistent procedure can be repeated.

The MakeConsistent procedure relies on three subroutines, AreTopValid, Are-

GeomValid, and Snap, which we now define in turn.

Validation Our goal is to take a set of inconsistent contours and make them con-

sistent. In order to do that, we must first detect the inconsistencies and ensure that

they are something we can repair automatically. This is the job of the AreTopValid

and AreGeomValid procedures.

Recall that for a set of contours to be consistent, they must be both topologically and

geometrically consistent. The conditions for a set of contours to be valid are similar,

but with the geometrical consistency requirement relaxed.

There are two conditions that will cause a set of contours to fail validation, resulting

in a return value of false from the MakeConsistent procedure. The first is if the

contours are topologically inconsistent. While topological inconsistencies are easy to

detect, we do not have a method for automatically repairing them. A topological

inconsistency is considered to be a major inconsistency that we prefer to have the

user manually correct. Pseudocode to check for topological inconsistencies is provided

in Algorithm 2.
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Algorithm 2 Topological validation algorithm

1: procedure AreTopValid(C)
2: Input. A set of contours C.
3: Output. True if the input set of contours satisfy the topological validation

condition; false and a list of the invalid intersection points otherwise.
4: Compute the set of common lines L shared by the contours in C.
5: For each l ∈ L, compute the set of intersection points, Ili = {h ∈ R3|l and Ci

intersect at h, l ∈ L and Ci ∈ Cl}, of the contours that share it.
6: For each l ∈ L, if ∃Ci, Cj ∈ Cl, |Ili| 6= |Ilj| then return false.
7: return true
8: end procedure

On the other hand, we can automatically repair a set of contours that is topologically

consistent but geometrically inconsistent. Recall that a geometrical inconsistency

implies that ∃l ∈ L, ∃Ci, Cj ∈ Cl (∃hk ∈ Ili 6= hk ∈ Ilj). For each such inconsistency

we define a target point h′k to be the average of all points hk ∈ Ili, ∀Ci ∈ Cl. We

then use the Snap procedure, which we define later in this section, to deform each

Ci ∈ Cl such that hk ∈ Ili = h′k.

Note, however, that while we can repair all geometrical inconsistencies in this manner,

we do not choose to do so when the distance between hk and h′k is large. This

is considered to be a major inconsistency that the user should correct manually,

and automatic correction might result in creating contour self-intersections or new

intersection points that did not previously exist.

To detect and prevent this problem, we introduce a user-defined threshold distance

σ, specifying how close together the intersection points need to be in order to be

considered valid. If ||h′k − hk|| > σ for any target-intersection pair, the contours fail

validation. As long as σ < δ, where δ is the minimum distance between any hk and

any point of intersection of the common lines, we can guarantee that the deformed

contours C ′ will not contain any self-intersections or intersection points that did not

previously exist. By default we initialize σ to be a small fraction of the estimated size

of the structure being segmented, and we update it as needed to ensure that σ < δ.

Pseudocode for the AreGeomValid procedure is given in Algorithm 3.
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Algorithm 3 Geometric validation algorithm

1: procedure AreGeomValid(C, σ)
2: Input. A set of contours C and a threshold distance σ.
3: Output. True if the input set of contours satisfy the geometric validation

condition; false and a list of the invalid intersection points otherwise. As a side
effect, each contour Ci ∈ C is updated to include its intersection points, Hi =
{hk ∈ Ili|l ∈ L}, with the common lines as vertices. Furthermore, for the set
of intersection points on each contour, a corresponding set of target points is
computed Ti = {h′k ∈ R3|h′k is equal to the average of all points hk ∈ Ili, ∀Ci ∈
Cl}.

4: For each l ∈ L, sort the intersection points Ili into order along l.
5: For each l ∈ L, compute a target point h′k for each intersection point hk ∈ Ili,
Ci ∈ Cl. Doing this for all lines in L results in the set of target points Ti for each
contour Ci.

6: For each contour Ci ∈ C, if ∃hk ∈ Hi, h
′
k ∈ Ti(||h′k − hk|| > σ), then return

false.
7: For each contour Ci ∈ C, add the intersection points Hi as verticies.
8: return true
9: end procedure

(b)(a) (c)

Figure 4.2: Contour snapping. (a) These contours pass validation, but the blue
contour is inconsistent with the intersecting red and green contours. (b) Target
points, shown as yellow crosses, are defined to be the midpoint between each pair of
intersection points. (c) Each contour is deformed to pass through the target points
using constrained Laplacian editing.
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Snapping After all the contours have been successfully validated, they are then

automatically snapped together before being used as input to the surface reconstruc-

tion algorithm. For this, we use a contour snapping process based on constrained

Laplacian editing [66]. This technique is presented in the context of editing 3D sur-

face meshes, but as the authors indicate, the technique can be applied to 2D meshes

(curves) just as well. For completeness, we describe our implementation of this ap-

proach in the context of 2D contour deformation. We chose this technique because it

allows us to deform the contours to pass through the target points while preserving

the overall shape of the contour as much as possible.

Algorithm 4 Snapping algorithm

1: procedure Snap(C,H, T )
2: Input. A set of contours C. It is assumed that for each Ci ∈ C, there is a

set of intersection points, or handles, Hi ⊂ Ci, and a corresponding set of target
points Ti. In our algorithm, these are computed in the AreValid routine above.

3: Output. A set of contours C ′ such that for each C ′i ∈ C ′, hk ∈ H ′i = h′k ∈ Ti.
4: for each Ci ∈ C do
5: Compute the transformation matrix S that transforms Ci to the xy plane.

This will allow us to work in 2D. Transform the contour vertices ci ∈ Ci and
target points ti ∈ Ti by S and drop the z-coordinate, yielding a corresponding 2D
contour V and set of 2D target points U .

6: Compute the Laplacian of each vertex: L(vj) = vj − 0.5(vj−1 + vj+1)
7: Solve for the new set of vertices V ′ by minimizing the following error

functional: E(V ′) =
∑
vj∈V

||Rj(V
′)L(vj)− L(v′j)||2 +

∑
uj∈U

||v′j − u′j||2, where

Rj =

 a w rx
−w a ry
0 0 1


8: Transform V ′ by S−1, to yield the resulting contour C ′i.
9: end for
10: end procedure

An example of this deformation process is shown in Figure 4.2. In this way, we are

able to ensure consistency, while requiring minimal input from the user and modifying

the shape of the user-drawn contours as little as possible.
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4.3.3 Validate-as-you-go process

One major drawback to the approach described in the previous section is that if one

or more contours fail validation, then the user must go back to previously drawn

contours in order to make the necessary corrections. This can be time-consuming,

particularly if there are multiple inconsistencies. Additionally, even if the contours

all pass validation, the automated snapping process makes changes to the contours

over which the user has no control. In some situations, this may be the only option,

such as when the contours were generated in another system or by another process.

However, since we have control over the interface for contouring in our system, we can

make changes that address these issues by employing a validate-as-you-go process.

In this approach, when the user adds a new contour, we ensure contour consistency by

requiring that the new contour passes through the intersection points of previously

drawn contours. We make connecting the intersection points easy by highlighting

the intersection dots and connecting the contour to an intersection point when the

user clicks in its vicinity. If the completed contour does not pass through all of the

intersection points, it will be automatically adjusted to do so by projecting the missed

intersection points onto the contour to get handle vertices that are then moved to

the corresponding intersection points using the same snapping procedure described

in the previous section.

The user can always adjust the position of the intersection points by clicking and

dragging them along the common line. Doing so will modify not only the current

contour, but also any other previously drawn contours that pass through the inter-

section point. Again, this is done using the same snapping procedure as before, except

that the handle point is the intersection point being dragged and the target point is

the position to which it is dragged. By validating the contours as the user draws

them, we are able to ensure that the set of drawn contours are always consistent, and

that the user is in control of any adjustments that get made to the contours.
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Figure 4.3: Motivation for partial contouring. (a) The input cross-sectional image is a
sagittal view of the brainstem. (b) The partial contour that represents the portion of
the boundary in which the user is confident. (c) The completed contour. We extend
the surface reconstruction algorithm to support partial contours.

4.4 Supporting partial contouring

In addition to being consistent, current algorithms for reconstructing surfaces from

nonparallel contours [7, 44] require that the input contours be closed. This restriction

is unfortunate because in many cases the complete boundary of the structure is not

able to be delineated in a given view (see Figure 4.3). In these cases, the user must

make an educated guess in order to complete the contour. Later, when contouring

another plane, the user may notice that this portion of the contour is inaccurate, and

must then edit the previous contour. Moreover, future contouring decisions made

by the user are influenced by these uncertain portions of the contours, because the

interface makes no visual distinction between portions of the contours that the user

is confident or not confident about.

In other cases, contouring the entire boundary of a structure is unnecessary because

autosegmentation techniques can accurately segment the majority of the structure.

An example is an attached lung tumor, where much of the tumor can be automatically

segmented from the lungs, but the attached portion provides an ambiguous region that

can only be segmented by an experienced user (see Figure 4.4). In such cases, the user

should only have to contour the difficult regions and the system should automatically

complete the segmentation. Thus, a reconstruction algorithm that accepts partial

contours could improve the accuracy and efficiency of the segmentation process.
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difficult 

easy 

easy 

(a) (b) 

Figure 4.4: Stage T4 lung tumors. (a) Chest CT scan shows a primary lung tumor
in the right upper lobe (long black arrow) with a smaller separate nodule in the right
lower lobe (short black arrow). Original image courtesy of UyBico et al. [74]. (b)
Some portions of the primary tumor (circled) are difficult to segment, while others are
trivially easy. We propose a system that supports partial contouring, allowing the user
to manually segment the difficult portions, while the rest is handled automatically.

4.4.1 Extending Hermite radial basis function implicits

Recently introduced by Macedo et al. [46, 9], Hermite radial basis function (HRBF)

implicits provide a powerful tool to reconstruct implicitly-defined surfaces from points

and normals, rather than closed planar contours. Its intrinsic properties allow it to

handle irregularly spaced points as well as operate in the presence of close sheets. We

extend this method to support partial contouring (see Figure 4.5).

For completeness, we provide the relevant equations from Macedo et al. [46, 9]. The

authors frame the problem of reconstructing an implicit surface from points {xj}Nj=1 ⊂
R3 and normals {nj}Nj=1 ⊂ S2 as a Hermite interpolation problem, in which a function

f : R3 → R was sought such that f(xj) = 0 and ∇f(xj) = nj, for each j = 1, . . . , N .

They show that this can be solved using the following concrete form:

f(x) =
∑N

j=1 {αj||x− xj||3 − 3 〈Bj,x− xj〉 ||x− xj||}+ 〈a,x〉+ b,
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(a) (b)
Figure 4.5: Surface reconstruction from partial contours using HRBF. (a) A visual-
ization of the input point (blue dots) and normal (green vectors) constraints together
with the resulting surface (red). (b) The three input partial contours and resulting
surface in VolumeViewer.

with coefficients α1, . . . , αN , b ∈ R and B1, . . . , BN , a ∈ R3. These coefficients can be

uniquely determined by enforcing the Hermite interpolation conditions above along

with
∑N

j=1 αj = 0 and
∑N

j=1 {αjx
j +Bj} = 0.

In order to make use of this framework, we must provide as input a set of points and

corresponding normal vectors which will be interpolated by the implicit surface. We

obtain a set of points by regularly sampling the user-drawn contours, and we assign

each sample point a normal by computing the cross-product between the normal to

the drawing plane and the unit tangent vector at the given sample point on the

contour. Intersection points between contours are handled as a special case. To get

the normal at an intersection point, we consider the set of points that includes two

contour points, the one immediately preceding and the one immediately following the

intersection point, from each contour that shares the intersection point. We fit a plane

to this set of points and assign the normal of the resulting plane to the intersection

point.

We then fit a HRBF to the set of points and normals to obtain the final implicit

surface. Note that the user-drawn contours need not be closed in this case, because

we simply need a set of 3D points and normal vectors. The previous discussion
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on contour consistency (see Section 4.3) is still relevant however, as providing an

inconsistent set of points and normals would produce undesirable results.

In addition to allowing us to remove the restriction of closed contours, the use of

HRBF implicits makes it easy for us to add data to guide the surface reconstruction

in places where we do not have user input. For example, in areas where there is

a strong image gradient, we can add additional normal constraints and replace the

planar normals defined above with normal vectors in the direction perpendicular to

the local gradient of the image data. This results in a surface that interpolates the

input contours as well as follows the image gradient in the space between contours.

For structures where the general shape of the structure is known, we can similarly

add additional constraints based on the expected curvature. In this way, we are able

to produce quality reconstructions from partial contours.

4.5 Chapter summary

In this chapter we have described the algorithms necessary to support nonparallel

contouring. We looked at the problem of ensuring that a set of user-drawn contours

is consistent, and we developed a validate-as-you-go contouring process that makes

certain that the contours drawn by the user are always consistent. We developed

tools for editing the position of intersection points and adjusting contours to meet

the new locations naturally, using constrained Laplacian editing. We also presented

a method of supporting partial contours through the use of HRBF implicits, and

we demonstrated how to incorporate additional information such as image gradients

and expected curvature into this model in order to guide the surface reconstruction

through areas containing no explicit user input.
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Chapter 5

Evaluation

5.1 Introduction

In the previous two chapters we described the design of an interface for nonparallel

contouring and the development of the algorithms that support it. In this chapter

we present user studies that help us understand how nonparallel contouring can aid

the segmentation process and expose the challenges associated with a nonparallel

contouring system in practice.

In Section 5.3, we describe a sequence of studies designed to answer the question: Are

parallel-plane experienced users able to contour structures using nonparallel planes

with similar consistency? The findings show that users are not naturally able to

contour on the nonparallel planes with the same level of consistency, but that this

problem can be effectively addressed by integrating reference images (see Section 3.4)

into the interface. The results from this study heavily influenced the design of the

VolumeViewer interface (see Chapter 3).

In Section 5.4, we describe a study designed to answer the question: Are parallel-

plane experienced user able to segment structures consistently and more efficiently by

using VolumeViewer to follow a nonparallel contouring protocol? This study provides

evidence that nonparallel contouring can yield significant gains in efficiency, without

a drop in consistency, over traditional parallel contouring techniques, but that care

must be taken to choose an effective protocol for the given data set.
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5.2 Related work

Early in the adoption of CT-based treatment planning segmentation errors were un-

known but believed to be minor compared to the inaccuracy of localization and treat-

ment delivery techniques of the day. Since then, the degree of segmentation error has

been quantified for some segmentation tasks. Fiorino et al. [21] reported a study

which examined inter-observer variability when contouring the prostate and seminal

vesicles. They found that investigators differed by 1 cm in the cranio-caudal direc-

tion in four of six patients. Van de Steene et al. [18] examined the inter-observer

variability in the definition of gross tumor volume (GTV) for lung cancer and found

that the dimensions of the primary tumor varied by 4.2, 7.9, and 5.4 cm in the axial,

cranio-caudal, and antero-posterior directions, respectively. Similar results have been

found for nearly every anatomic site. Additionally, when compared to localization and

treatment delivery inaccuracies, it is now known that segmentation error comprises a

considerable portion of the treatment uncertainty [75].

Meanwhile, radiology capitalized on multislice CT and developed multiplanar refor-

mation (MPR), a technique capable of generating 2D images of arbitrary image planes

from a 3D image data set, to improve diagnosis and reduce inter-observer variability.

Higashino et al. [30] investigated the utility of MPR for the assessment of non-small

cell cancer and concluded that MPR improved diagnosis of chest wall lesions as well

as decreased mean reading times. Sebastian et al. [65] found that investigators made

additional findings and were more confident in their diagnosis when reviewing MPR

images of the abdomen and pelvis than they were compared to axial images alone.

They went on to state that MPR may become the preferred reading orientation due

to its ability to improve efficiency and productivity. Other studies have shown that

the use of MPR leads to improved diagnosis for multiple anatomic sites [41, 5]. To

date there are no reports in the radiation oncology literature describing the impact

of MPR on structure segmentation.

While observer variation in contouring structures on transverse image planes has been

widely studied in the radiation oncology community [11, 22, 78], few studies have

examined viewing or contouring on non-transverse planes. Steenbakkers et al. [71]

found that users who do not reference coronal and sagittal planes have a higher

variation in the superior and inferior directions when contouring, and thus have a
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greater level of inter-observer variation. While no significant improvement in accuracy

was measured, Petric et al. [55] found that contouring difficulty was decreased when

using paratransverse (perpendicular to the long cervical axis) than transverse planes

for cervical cancer segmentation. These two studies suggest that in addition to being

more efficient, nonparallel contouring is easier and more accurate in some cases.

In this dissertation, we examine the ability of users, who have been trained to contour

structures on transverse image planes, to contour structures on nonparallel image

planes, and we evaluate the effectiveness of our VolumeViewer system at enabling

users to segment structures using a nonparallel contouring protocol. In doing so, we

aim to determine when and how nonparallel contouring can benefit the segmentation

process.

5.3 User studies on the feasibility of nonparallel

contouring

To begin to examine the feasibility of nonparallel contouring, we sought to answer

the question: Are parallel-plane experienced users able to contour structures using

nonparallel planes with similar consistency? If users are able to do this while taking

about the same time to draw a parallel contour as a nonparallel contour, then we

should be able to improve the overall efficiency of the segmentation process in many

cases by allowing the user to contour the structure with fewer nonparallel planes. We

ran a series of three studies that we will refer to by what was being measured in each:

“Study I: Inter-observer variability of experts”, “Study II: Intra-observer variability of

experts”, and “Study III: Inter-observer variability of novices with reference images”.

5.3.1 Method

Participants Five experts and five novices were recruited to participate in the

study. The experts consisted of four radiation oncology residents and one medical

dosimetrist, all employed by the Washington University School of Medicine. Each

had considerable experience segmenting the male pelvis and head-and-neck regions
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with parallel contours. The novices were undergraduate or graduate students in the

Computer Science Department at Washington University in St. Louis. None of the

novices had any previous experience marking contours on medical images.

Patient image data Anonymized high-resolution CT scans from five pelvis and five

head-and-neck cases were selected from a data archive of previously treated conformal

radiation therapy patients. Each patient was scanned with a Philips Brilliance CT

64-slice scanner at the Washington University School of Medicine. The CT scans were

reconstructed with 0.625 mm thick transverse slices, each having 512 x 512 pixels and

corresponding in-plane pixel resolutions of 0.8 x 0.8 mm2.

Procedure We describe the procedure of Study I in detail, and then describe the

other two in terms of how they differed from Study I.

Study I: Inter-observer variability of experts The expert users segmented

one structure (prostate or brainstem) from each of the ten CT data sets using both

parallel and nonparallel methods, for a total of twenty trials. Between eighteen and

twenty-eight planes were used for the parallel trials, and four planes were used for the

nonparallel trials. The parallel planes were chosen so as to match those currently used

in clinical practice, and the nonparallel planes were chosen so that when combined

with two or three of the parallel planes, they would capture the shape of the structure

with as few planes as possible [2]. The order of the ten data sets was randomized,

and the order of the parallel and nonparallel trials was alternated to compensate for

any learning effect.

Contouring tools All the participants used identical workstations and contouring

tools. The interface provided to the users was a much simplified version of the Vol-

umeViewer interface (see Chapter 3). A picture of the setup for the user studies is

provided in Figure 5.1. All surface reconstruction tools were disabled, as the focus

was on 2D contouring. All navigation controls were disabled. Instead, the users were

required to move back and forth between the planes using Next and Previous buttons.

This is the same approach that is currently used in treatment planning systems to
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contours on 

contours off 

Figure 5.1: User study setup. The main window is highlighted in cyan. This is where
the drawing takes place, and was the only window available in Study I and Study
II. The window highlighted in yellow contains the reference images (see Section 3.4)
used in Study III, and we show each of the two possible views. The contours can be
toggled on (top) or off (bottom) to train the user to look for cues in the image data.
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page back and forth through the slices in the stack. We also chose to only display

the contour corresponding to the current image plane. For the nonparallel planes, we

could have also displayed the intersection points of previously drawn contours with

the current plane. However, this would have influenced what the user would have

drawn and would have caused the order in which the planes were presented to affect

the results. Instead, we wanted all users to draw on the same planes with the same

information.

Training and duration The only training the users received was a brief set of

presentation slides which gave an overview of the study and introduced the Vol-

umeViewer interface. The users were allowed to read through the slides at their own

pace. They were given an example data set, not included in the study, on which they

could practice, and were encouraged to ask any questions they had about the oper-

ation of the interface at this time. No user spent more than fifteen minutes on the

training. The total duration of the user study, including training together with trials,

was capped at ninety minutes. Users were allowed to take short breaks in between

trials if needed. No user failed to complete all trials within the allocated time.

Study II: Intra-observer variability of experts Approximately two weeks after

Study I, we invited the same expert users back to repeat the study. Four of the five

expert users participated. The study design was exactly the same as before, except

that the users were asked to segment one structure from just four (randomly chosen)

of the ten original data sets (two prostate, two brainstem). They again used both

parallel and nonparallel methods for a total of eight trials.

Study III: Inter-observer variability of novices with reference images Al-

though the data sets and design for this study were largely the same as those used for

the intra-observer study, this study was entirely different because of the difference in

users and the incorporation of reference images into the interface. These users were

novices, having no prior experience whatsoever segmenting medical images. The only

knowledge and training they received is what we provided to them in the interface.
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In addition to the difference in users, we only had the users contour on the non-

parallel planes (four trials total), and we added one new window to the interface

that was not available in the previous studies. This new window is highlighted in

yellow, with two possible views, in Figure 5.1. For each nonparallel plane, the win-

dow contained four reference images (see Section 3.4). Three of these images show

example contours drawn on similar cross-sections of the anatomy of three different

patients. These contours were made by intersecting the nonparallel planes with a

surface model reconstructed from many physician-reviewed contours drawn on the

parallel cross-sections of the data set. The contours can be toggled on and off, to give

the user a sense of what they should be looking for in the image data. The fourth

image illustrates which cross-section the user is currently observing, by showing its

position as a slicing plane through a surface model of the anatomy.

Measures Our primary source of data is the contour data produced by our users.

We ran a total of 152 trials (Study I: 5 users, 20 trials; Study II: 4 users, 8 trials;

Study III: 5 users, 4 trials). Each trial had the user mark between 4 and 28 contours.

We also recorded video screen captures of the users performing the segmentations,

and we recorded the total time from start to finish for each trial.

We computed the mean distance and percentage overlap between each pair of user-

drawn contours for each plane in each case. For the parallel cases, we chose a sample

of four planes that were evenly spaced through the data set. For inter-observer

variation, we compare the users against one another, and for intra-observer variation,

we compare each users’ contours with the contours that they drew in the previous

study.

The mean distance [14] (see Section 2.1.1) was a two-sided mean distance computed

as the average minimum distance between point samples on the first contour to the

second contour and from point samples on the second contour to the first contour.

The percentage overlap, or Jaccard index [36], was computed as the ratio of the

number of pixels contained in the intersection of the two contours to the number of

pixels contained in their union. The mean distance measure captures the average

distance from one contour to another, while the overlap measure normalizes for the
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size of the contour. We then averaged these numbers across all cases for the prostate

and the brainstem. See Figure 5.5 and Table 5.1 for these results.

5.3.2 Results

For Study I, sample images of the results from the brainstem case A and of the

prostate case B are shown in Figure 5.2. The contours of each of the five users are

displayed in a different color. Colored dots on the nonparallel planes represent the

intersection points of the plane with contours drawn on the other nonparallel planes.

These images show that the variation among users was much larger in the nonparallel

cases than in the parallel cases.

For Study II, sample images of the results from the brainstem case A and of the

prostate case B are shown in Figure 5.3. The results illustrate that intra-observer

variability was much larger for nonparallel contours than for parallel contours. In

general, the users did not draw highly similar contours to what they had drawn before

on the nonparallel planes. Also, there was no significant improvement in consistency

between the user-drawn parallel or nonparallel contours from Study I to Study II.

For Study III, sample images of the results from the brainstem case A and of the

prostate case B are shown in Figure 5.4. Given the reference images, the novice users

were much more consistent at marking contours on the nonparallel planes than the

experts.

The quantitative results verify what is observed in the images. The results are shown

in Figure 5.5, and corresponding p-values are provided in Table 5.1. Comparisons

between parallel, nonparallel, and nonparallel reference image trials were carried out

using Friedman’s two-way non-parametric analysis of variance followed, if significant

at the 0.05 level, by Wilcoxon signed ranks tests. The Bonferroni correction was

applied to correct for repeated measures, thus a p-value below 0.017 indicates that

the two groups do differ significantly. This analysis further confirms that the variation

among users was significantly larger in the nonparallel cases than in the parallel cases

for Study I and Study II. With the benefit of the reference images, the novice users

were much more consistent on the nonparallel planes in Study III. While the mean
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Brainstem-A Parallel 

Brainstem-A Nonparallel 

Prostate-B Parallel 

Prostate-B Nonparallel 

Figure 5.2: Inter-observer variability of experts. Each row contains four cross-sections
from the following cases: (Top row) Brainstem-A Parallel, (Second row) Brainstem-A
Nonparallel, (Third row) Prostate-B Parallel, (Bottom row) Prostate-B Nonparallel.
The contours of each of the five users are displayed in a different color. Colored dots
on an nonparallel plane represent the intersection points of the other contours with
that plane. Note that the variation among users is larger in the nonparallel cases
than in the parallel cases. The users were also largely inconsistent with the other
contours that they drew in the nonparallel cases.
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Brainstem-A Parallel 

Brainstem-A Nonparallel 

Prostate-B Parallel 

Prostate-B Nonparallel 

Figure 5.3: Intra-observer variability of experts. Each row contains four cross-sections
from the following cases: (Top row) Brainstem-A Parallel, (Second row) Brainstem-A
Nonparallel, (Third row) Prostate-B Parallel, (Bottom row) Prostate-B Nonparallel.
The contours of each of the four users are displayed in a different color. The same
color-scheme was used as in Figure 5.2. Colored dots on an nonparallel plane represent
the intersection points of the other contours with that plane. Note that the variation
among users was again larger in the nonparallel cases than in the parallel cases.
The users were also largely inconsistent with what they had drawn in Study I (see
Figure 5.2).
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Brainstem-A Nonparallel 

Prostate-B Nonparallel 

Figure 5.4: Inter-observer variability of novices with reference images. Each row
contains four cross-sections from the following cases: (Top row) Brainstem-A Non-
parallel, (Bottom row) Prostate-B Nonparallel. The contours of each of the five users
are displayed in a different color. Colored dots represent the intersection points of the
other contours with that plane. Note that the variation among users is smaller than
in the previous studies (see Figures 5.2 and 5.3). The users were also more consistent
with the other contours that they drew in the nonparallel planes.
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Figure 5.5: The average mean distances (left) and average percentage overlap (right)
between user drawn contours. “Inter” and “Intra” refer to the results from the inter-
observer (Study I and Study III) and intra-observer (Study II) studies, respectively.
“Nonparallel w/Ref” refers to the results from novices drawing on nonparallel planes
with reference images (Study III). Intra-observer variation was not measured for this
case. Note that the average distance between user drawn contours was higher and the
percentage overlap lower for the nonparallel cases than the parallel cases. The average
distance between nonparallel contours drawn by novices using reference images was
lower and the percentage overlap higher than for the nonparallel contours drawn by
experts without reference images.

distances for the brainstem case were still larger than that of the expert-drawn parallel

contours, the mean distances for the prostate case and the average percentage overlaps

were not significantly different. By and large, the novice users working with reference

images were able to contour the nonparallel planes with similar consistency to that

of the expert users contouring parallel planes.

5.3.3 Discussion

Study I and Study II showed that the expert users were much more consistent at

drawing parallel contours than nonparallel contours. We can use several of our work-

ing hypotheses (see Section 2.3.3) to explain this negative result. First, the users had

considerable experience interpreting imaging data using the parallel planes (H4), as

this is the current standard of practice in radiation oncology. Yet, the interpretation

of nonparallel image planes was limited to a brief tutorial and two example cases.
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Case Comparison Mean Overlap

Brainstem Inter
Parallel v. Nonparallel 0.000 0.000
Nonparallel v. w/Ref 0.000 0.000
Parallel v. w/Ref 0.000 0.049

Prostate Inter
Parallel v. Nonparallel 0.000 0.533
Nonparallel v. w/Ref 0.000 0.204
Parallel v. w/Ref 0.111 0.091

Brainstem Intra Parallel v. Nonparallel 0.000 0.009
Prostate Intra Parallel v. Nonparallel 0.004 0.082

Table 5.1: P-values from Wilcoxon signed ranks tests on the data presented in Fig-
ure 5.5. α = 0.017 was used as the level of statistical significance.

Users were given no additional imaging or spatial location information to assist with

nonparallel image planes.

In addition, for the brainstem and prostate, the parallel contours were generally

smaller and more symmetric than the nonparallel contours (H2). The image data is

noisy, making it very difficult to delineate the boundary, but if the user is able to

delineate part of the boundary in the parallel cases, the rest can often be completed

by symmetry. This is not the case for the irregular shaped nonparallel contours in

our examples.

Finally, the Next and Previous buttons provide more information for the parallel

cases than the nonparallel. For the parallel cases this corresponds to paging forward

and backward continuously through the image stack (H5). One parallel contour can

be used as a template for the next parallel contour in the stack, and paging back and

forth quickly through the parallel slices can give the user a rough idea of what the

surface would look like (H7). This is not the case for the nonparallel contours. The

next nonparallel plane is at a completely different location and orientation from the

one before it.

The results from Study I and Study II imply that some form of additional training for

drawing contours on nonparallel image planes is required in order to achieve consis-

tency between users. Study III investigated the use of reference images as one possible

training mechanism. The results of Study III showed that novice users working with

reference images were much more consistent drawing nonparallel contours than the
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expert users were without reference images, and they were nearly as consistent draw-

ing nonparallel contours as the expert users were drawing parallel contours.

Limitations Though we took measures to replicate the environment of the clinic

as much as possible, it is impossible to exactly mimic clinical conditions. The stakes

are different. We asked our users to treat this just like they would a real patient,

but they knew that the contours would not be used for treatment. They also knew

that their names would not be attached to the results in any way. We tailored our

VolumeViewer interface to have the same basic functionality as those used in the

clinic, but it is still not the same interface.

These results may not generalize to other data sets that may exhibit different proper-

ties. While we used real patient data sets and asked users to segment the prostate and

brainstem, which are two of the most commonly segmented structures in radiation

oncology, our results may not necessarily generalize to other structures or data sets

that differ significantly in terms of their properties, such as boundary strength, size,

or shape (see Section 2.2).

The participants for Study III were limited to novice users. We hypothesize that if

we were to run this study again on the expert users with the use of reference images,

that we would see similar results. However, we have chosen not to do this largely due

to signs of user fatigue after the intra-observer study. Ideally, we would invite the

novice users back to repeat the study in order to verify the consistency results that

we observed and to measure the intra-observer variability of the novices.

It should also be noted that we will not have the ability to create reference images

for every structure that might need to be segmented. For example, tumors are often

irregular in shape and therefore difficult to characterize with a set of reference images.

However, in this case, the difference between parallel and nonparallel contouring may

not be so large, as users are unlikely to be any more familiar at looking at the irregular

shape of the tumor in a parallel view than a nonparallel view.

Design implications The main implication of this study is that users with experi-

ence contouring medical images on parallel planes are not able to contour nonparallel
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planes with the same level of consistency, at least not without some additional train-

ing or enhancements made to the interface to support nonparallel contouring. Our

study suggests that the integration of reference images into the interface is one vi-

able way to address this issue. Other ideas that we have implemented to further

address this issue include: giving the user the ability to manipulate the image plane

(see Section 3.3), displaying the surface reconstruction (see Section 3.3), animating

the image plane (see Section 3.4), displaying contour intersection points (see Sec-

tion 3.4), keeping the region of interest centered and the same size on the screen

(see Section 3.4), and adding visualization cues that help convey 3D information (see

Section 3.5). However, the efficacy of these ideas have not been tested in this study.

5.4 System evaluation

The results from the studies presented in the previous section highlighted the chal-

lenges associated with nonparallel contouring and informed the redesign of our Vol-

umeViewer interface (see Chapter 3). We evaluate the effectiveness of our system by

comparing the ability of radiation oncologists to reconstruct surfaces using the pro-

posed nonparallel contouring system against traditional systems. The main question

that we wanted to answer was as follows: Are parallel-plane experienced users able to

segment structures consistently and more efficiently by using VolumeViewer to follow

a nonparallel contouring protocol?

In contrast to our previous studies (see Section 5.3), users did not simply contour on

a given set of planes, but used our system to sketch a set of consistent contours, build

a surface model that interpolates those contours, review the surface model together

with the image data, and make any necessary edits to produce a segmentation. We

compare parallel and nonparallel segmentation techniques in terms of efficiency and

the consistency of the segmentations produced.
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5.4.1 Method

Participants We recruited seven radiation oncology residents, all employed by the

Washington University School of Medicine, to participate in the study. Each had

considerable experience segmenting the prostate and liver. None of these users had

participated in Study I or Study II or had any previous experience with the Vol-

umeViewer interface.

Patient image data Anonymized high-resolution CT scans from two prostate and

one liver cases were selected from a data archive of previously treated conformal

radiation therapy patients. The two prostate cases were the same as those used

in our previous studies (see Section 5.3). Each patient was scanned with a Philips

Brilliance CT 64-slice scanner at the Washington University School of Medicine. The

CT scans were reconstructed with 0.625 mm thick transverse slices, each having 512

x 512 pixels and corresponding in-plane pixel resolutions of 0.8 x 0.8 mm2. Example

images from both the prostate and liver cases are provided in Figure 5.6.

Procedure The users segmented the two prostate data sets using our nonparallel

contouring system and the liver data set using both our nonparallel contouring system

and traditional parallel contouring techniques. In order to avoid user fatigue and keep

the length of the study under one hour for each user, we did not have the users segment

the prostate data sets using traditional parallel contouring, but instead we compare

the results to the parallel contouring data obtained in Study I (see Section 5.3).

For the nonparallel contouring trials, we asked the user to construct an initial surface

by following a protocol (see Section 3.4) that consisted of seven planes for the prostate

cases (see Figure 3.3a) and eight planes for liver cases (see Figure 5.7c). For the par-

allel contouring trials, the user was asked to construct an initial surface by following

a traditional “parallel protocol”, marking a contour on every other parallel slice in

the data set, as is commonly done in practice for the liver case (see Figure 5.7a). For

both the parallel and nonparallel trials, after constructing an initial surface, the user

was asked to review the surface along with the image data and optionally make any

edits by adding additional contours or adjusting existing ones.
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(b) (d) (a) (c) 

Figure 5.6: Example images from prostate and liver data sets. The top row shows
example images from the four cases in the study: (a) parallel liver (b) nonparallel
liver (c) parallel prostate (d) nonparallel prostate. The bottom row shows the same
images together with the corresponding contours. Note the differences in boundary
strength between the liver and prostate data sets as well as between the parallel and
nonparallel prostate cases.
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(a) (b) 

(c) (d) 

Figure 5.7: Comparison of user contours for parallel and nonparallel liver cases. Users
contoured the liver data set using both a parallel (a) and nonparallel (c) protocol.
The contours drawn by two different users are displayed together for comparison in
the parallel case (b) and nonparallel case (d). The contours displayed in green were
drawn by one user and those displayed in brown by another. Inconsistencies are
highlighted in purple.
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Contouring tools All the participants used identical workstations and contouring

tools. The setup for the user study was similar to the previous studies (see Fig-

ure 5.1). The difference is that the interface provided to the users in this study was

a full-featured version of the VolumeViewer interface (see Chapter 3). All navigation

controls and surface reconstruction tools were available. Reference images were pro-

vided in all trials. The only difference between the parallel and nonparallel trials was

in the protocol that was used to construct the initial surface.

Training and duration The only training the users received was a brief demon-

stration of using the VolumeViewer interface to segment an example data set, not

included in the study. The focus of the demonstration was solely on the operation of

the interface and not on contouring technique. The users were then allowed to prac-

tice using the interface with the example data set themselves, and were encouraged to

ask any questions they had about the operation of the interface at this time. No user

spent more than fifteen minutes on the training. The total duration of the user study,

including training together with trials, was capped at sixty minutes. Users were al-

lowed to take short breaks in between trials if needed. No user failed to complete all

trials within the allocated time.

Measures We recorded both the contours drawn and the surface models created

from them by our users. We also recorded the user interaction and timing information

for each trial by recording a time stamp for each button press and labeling it with

the associated action being taken in the user interface. We had seven users perform

four trials each for a total of 28 trials.

We compare the consistency of the segmentations produced by starting from a tra-

ditional parallel contouring protocol to those produced using our nonparallel proto-

col. We performed pairwise comparisons within each group, computing the mean

percent distance and Dice’s coefficient [19] between each pair of segmentations (see

Section 2.1.1 for a further description of these measures). The mean percent distance

is simply the mean distance [14] divided by a scalar value that corresponds to an esti-

mated size of the structure. This has the effect of normalizing the distance measures

across structures of varying size. We also compared the efficiency of the segmentation

techniques by computing the average time it took to segment each structure.

68



5.4.2 Results

Examples of the image data for each of the four cases and the contours that were

drawn on them are provided in Figure 5.6. Note the differences in properties between

the data sets. In particular, the boundary strength of the liver data set is much

stronger than that of the prostate for both parallel and nonparallel cases, and the

parallel prostate image exhibits stronger boundaries than the nonparallel case.

An example of the set of user drawn contours and the types of inconsistencies ob-

served between users is shown for both the parallel and nonparallel liver cases in

Figure 5.7b,d. Since users may not draw on the same set of planes, we do not mea-

sure the difference between individual contours, but rather the difference between the

3D segmentations.

The efficiency and consistency results are shown in Figure 5.8. For the liver, the

average contouring time for the nonparallel case was nearly half of what it was for the

parallel case. The distance and Dice’s coefficient consistency measures were similar,

but with a smaller standard deviation in the nonparallel case. This indicates that the

users were able to segment the liver with similar consistency and in nearly half the

time by using the nonparallel protocol.

For the prostates, the contouring time was less for one parallel case than the other

which had more planes. In contrast, the time was the same for both nonparallel

cases. However, the time per contour for the parallel cases was nearly half that of

the nonparallel cases, resulting in lower total contouring times since neither of the

parallel cases had more than twice the number of contours as were in the nonparallel

protocol.

The mean distance measures for the prostates were much higher than that of the

liver, and were even higher in the nonparallel case. Similarly, the Dice’s coefficient

was much lower for the prostates than the liver, and were even lower in the nonparallel

case.
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Figure 5.8: Efficiency and consistency of user segmentations. Graphs of the average
contouring time (top), average mean percent distance (bottom left), and average
Dice’s coefficient (bottom right) are shown. For the contouring time graph, numbers
in the shaded boxes above the bars are the average number of contours drawn.
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5.4.3 Discussion

This study showed that the efficiency of the segmentation of the liver can be increased

dramatically, and without a loss of consistency, by contouring with a nonparallel

protocol as opposed to traditional parallel planes. However, a similar increase in

efficiency was not observed for the prostate cases. In fact, users were no more efficient

and less consistent when using the nonparallel protocol for the prostates. We can use

several of our working hypotheses (see Section 2.3.3) to explain these mixed results.

The results from the liver case demonstrate that gains in efficiency can be had by

allowing the user to contour on a sequence of nonparallel planes that increase the

accuracy of the segmentation more quickly than the standard sequence of parallel

contours (H1). We predict that we would see similar results for a prostate case

that was larger and therefore required more parallel contours. We expect that the

contouring time for a larger prostate would continue to increase linearly with each

additional parallel contour while the contouring time would remain roughly the same

for the seven-contour nonparallel protocol, as it did for the two prostate cases in the

study.

The boundary strength was much stronger in the liver cases than in the prostate

cases (see Figure 5.6), and we believe this is largely responsible for the users being

much more consistent with the liver segmentations than the prostate segmentations

(H3). When the boundary strength is weak, such as in the prostate cases, it becomes

increasingly important for the users to have familiarity with those planes in order

to create consistent results (H4). Users were much more familiar with the paral-

lel planes than the nonparallel planes. Furthermore, the boundary strength in the

parallel prostate images was stronger than that in the nonparallel prostate images

(see Figure 5.6c,d), causing users to be less efficient and consistent in the nonparallel

prostate cases (H3).

Limitations Ideally, we would have had the users segment the prostate cases using

traditional parallel contouring in addition to the nonparallel contouring protocol.

Instead, we compared the nonparallel contouring results to the parallel contouring

results from Study I. Those segmentations were performed on the same data sets, but
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by a different group of expert users. While we expect that the results for this group

of users would be similar, we cannot know for sure.

As in our previous studies (see Section 5.3), we face similar limitations in terms of

mimicking clinical conditions. Our users knew that their segmentations would not be

used to treat patients and that their names would not be attached to the results in

any way.

We ran trials with one liver data set and two prostate data sets. These results may

not generalize to other data sets that differ significantly in terms of their properties,

such as boundary strength, size, or shape (see Section 2.2). Indeed, in this study we

observed significant differences in the results between cases that we attribute largely

to a difference in the boundary strength of the image data in those cases.

We only tested one eight-contour nonparallel protocol for the liver data set and one

seven-contour nonparallel protocol for the prostate data set. The results will also

depend heavily on the choice of protocol. While we aimed to choose a small set of

planes that would sufficiently capture the shape of the structure [2], a protocol that

uses a different set of planes or even a different ordering of the planes might perform

better or worse in practice. Determining the best protocol to use for a given data set

is a ripe area for future research.

Design implications The primary implication of this study is that the use of a

nonparallel contouring protocol for segmentation has the potential to yield significant

gains in efficiency over traditional parallel contouring techniques, as seen in the liver

case. The caveat is that the simple use of a nonparallel contouring protocol does not

guarantee improvements over parallel techniques, and may in fact be worse, as seen

in the prostate cases in this study in which the choice of nonparallel planes resulted

in images with weaker boundaries than the parallel planes. Care must be taken to

choose an effective protocol for a given data set. Automatically determining such a

protocol remains an open problem. We describe one approach in Section 6.1.1.

72



5.5 Chapter summary

In this chapter we presented the results from a sequence of user studies that are a step

in the direction of understanding how nonparallel contouring can aid the segmenta-

tion process. We described our initial investigation into the ability of parallel-plane

experienced users to contour structures using nonparallel planes with similar consis-

tency. We showed that the inter-observer and intra-observer variability of nonparallel

contouring by expert users is much higher than for parallel contouring. We have

presented our hypotheses as to why this disparity exists, and have shown that the

consistency can be greatly improved in novice users simply by integrating a collection

of reference images into the interface.

We used the results from these initial studies to inform the redesign of our Vol-

umeViewer interface, and then we tested the ability of parallel-plane experienced

users to segment structures consistently and more efficiently by using VolumeViewer

to follow a nonparallel contouring protocol. We found that nonparallel contouring

has the potential to yield significant gains in efficiency over traditional parallel con-

touring, but that such results are dependent on choosing an effective protocol for the

data set.
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Chapter 6

Conclusion and future work

Image data set interaction and segmentation in radiation oncology revolves around

the 2D interpretation of 3D volume data which has been limited to parallel image

planes. This convention is not based upon scientific consensus but rather limitations

of early imaging and computing technology. New surface reconstruction algorithms

have been developed that allow surfaces to be built from nonparallel contours. The

use of nonparallel contours has the potential to increase the efficiency and accuracy of

the segmentation process. They grant the user the freedom to contour on the planes

that will increase the accuracy of the segmentation as much as possible, and that

will be the easiest to contour by choosing the planes with the simplest shapes and

the strongest boundaries. This dissertation has taken the first steps toward bringing

nonparallel contouring to use in practice.

In order to study nonparallel contouring, we first had to build a system to enable it.

We developed VolumeViewer, a complete nonparallel contouring system, that allows

a user to navigate through a volumetric data set, sketch contours onto planar cross-

sections, and reconstruct a surface model from those contours. We encountered sev-

eral challenges to making nonparallel contouring feasible in practice, including users

lacking familiarity with the nonparallel planes, the difficulty in determining which

planes to contour, and the challenge of navigating from one plane to the next while

maintaining a sense of orientation. To address these issues, we developed contouring

protocols for segmenting specific structures, incorporated reference images into the

interface, and made visualization enhancements to convey the 3D structure of the

segmentation as it is being constructed. We also made algorithmic developments for

supporting our nonparallel contouring system, including methods for ensuring the
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consistency of user-drawn contours and extending an existing reconstruction algo-

rithm to add support for partial nonparallel contouring.

We evaluated our system by studying the ability of medical professionals to segment

structures from real patient data . We began with an investigation into the ability of

users that have been trained to segment structures using parallel planes to segment

the same structures using nonparallel planes. We found that the contouring variation

was significantly higher for the nonparallel planes, but that this variation could be

improved by integrating a set of reference images into the interface. We used our

findings from these initial studies to improve the design VolumeViewer. We then

evaluated our end-to-end system by comparing the ability of medical professionals to

segment structures by using VolumeViewer to follow a nonparallel contouring protocol

as compared with traditional techniques. We found that nonparallel contouring can

yield significant gains in efficiency over traditional parallel contouring techniques, but

that care must be taken to choose an effective protocol for the given data set.

By studying the contouring process in this manner, we have taken the first steps

to understanding how nonparallel contouring can aid the segmentation process. We

have arrived at a conceptual framework that outlines the factors that influence the

effectiveness of a segmentation method and includes several working hypotheses on

the design of effective contouring systems.

Our work on nonparallel contouring has exposed several challenges that we intend to

address in the future. We now present these challenges in the context of our work

and outline possible solutions.

6.1 Future work

6.1.1 Plane selection and protocol authoring

In this dissertation, we developed an interface that allows the user to build surfaces

from volume data by sketching contours on arbitrarily oriented cross-sections of the

volume. When building surfaces in this manner, we tried to choose planes that cap-

tured the major features of the object while using as few planes as possible. Through
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experimentation, we found a set of nonparallel planes for the prostate and liver cases

that were generally sufficient at capturing the shape of those structures, and we then

developed protocols for moving from one plane to the next and guiding the user to

perform the segmentation. The importance of choosing an effective protocol for a

given data set was evidenced by our evaluation. However, no formal investigation has

been conducted to determine what makes a “good” set of planes for reconstructing

an arbitrary structure. We intend to develop semi-automated tools for selecting a set

of planes for a structure and authoring a protocol. Criteria to consider when choos-

ing planes include planes that pass through feature points of the structure, planes

that contain strong gradients in the image data, and planes that are orthogonal to

previously selected planes.

Geometrical approach One approach is to start with a collection of surface mod-

els for commonly segmented anatomical structures, and, for each structure consider,

what are the best planes to use to reconstruct the original surface? Note that in this

case, we know the ground truth, so we can measure accuracy. How many contours

are needed to achieve 90 percent accuracy? 95 percent accuracy? How many are

needed if we restrict ourselves to parallel contours? We expect that the answers to

these questions will further make the case for nonparallel contouring.

There are an infinite number of planes, so we cannot exhaustively try all possibilities.

However, we can automatically generate contours from the original surface and try

a large subset of them. Given a base surface and a number of potential candidate

contours, can we develop an effective strategy for choosing the next best contour to

add?

Filtering candidate contours Ideally, when considering which contour to add

next, we would try all candidate contours, reconstructing a new surface for each one.

We would then compare all of these surfaces to the ground truth, and choose to add

the contour that results in the surface that is closest to the ground truth. However,

surface construction and comparison are expensive operations. We need a method

for filtering candidate contours so that we can consider a large number of contours,

but only perform the surface construction and comparisons with the contours that

are likely to have the largest impact.
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One simple metric to consider for contour filtering is the distance from the candidate

contour to the base surface. A candidate contour with a small distance to the base

surface is likely to have a much smaller impact than a candidate contour with a

large distance to the base surface. Another potentially useful metric is the distance

from each vertex on the base surface to the contour set (the set of contours used to

construct the base surface together with the candidate contour). This metric tells us

something about how well the candidate contour covers portions of the base surface

that were not covered by other contours. A smaller distance, in this case, indicates

better coverage. Other metrics are possible, and for the distance computations, we

can consider using total distance, average distance, or maximum distance.

Such metrics for filtering candidate contours will need to be tested and verified. This

can be done by considering a number of different base surfaces and candidate contour

sets. In each case, all proposed metrics can be applied and used to rank the candidate

contours in order of which contour should be added next. These rankings can then be

checked against the ground truth ranking, found by constructing the surfaces for all

candidate contours and comparing to the ground truth surface. We expect that the

most effective ranking is likely to be a weighted combination of the metrics proposed

above.

Measuring other factors The approach proposed above will give us a good idea

of what are the best planes to choose based solely on the geometry of a structure.

However, due to other factors discussed in our conceptual framework, these may

not be the best planes on which to contour. For example, we know that boundary

strength and contour complexity play roles. But how much of a role? How weak of

a boundary is too weak? How much does contour size influence the results? Shape

complexity? We intend to design experiments that will allow us to quantify how and

to what extent these different factors influence contouring.

We can use the data that we have collected in our user studies (see Chapter 5)

as a starting point in analyzing the influence of these factors on contouring. We

can measure boundary strength as the magnitude of the gradient of the image in a

narrow band around the region where the users marked contours. We can measure

contour length as the perimeter of the polyline that defines the contour, and we can
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measure shape complexity of the contour using a variety of metrics for estimating the

complexity of 2D shapes [12, 42, 72, 13]. Then, we can perform regression analysis

to measure the correlation of each of these variables with respect to consistency and

efficiency. While this should give us some idea of how the different factors influence

contouring, more experiments are necessary to isolate the effect of each individual

variable.

To measure the effect of each individual variable, we need to have users perform

contouring tasks in which the values of the independent variable under study are

manipulated and all other variables are controlled. For boundary strength, we need a

way to manipulate the boundary strength in an image, in order to have users contour

on the same images, but with different levels of boundary strength. For the liver,

which has strong boundaries to begin with, we can start from the original images

and slowly begin adding noise to blur the boundary. Another option is to make use

of multimodal imagery. For a structure like the prostate, which is known to have

much sharper contrast in MRI images than CT images, we could acquire a set of

coregistered CT/MRI images. We can then vary the boundary strength by gradually

blending the MRI image with the CT image to get a variety of boundary levels. We

can then have users contour these images and measure consistency and efficiency as

related to the level of boundary strength.

We can run similar experiments to quantify the effects of contour length and shape

complexity. In these cases, we do not even need image data, but can simply have

users trace contours. For contour length, we can take a variety of different shapes,

grouped according to complexity as a control, and then vary the length of the contour

by scaling the contour up or down without changing its shape. For shape complexity,

we can group the different shapes according to length as a control, and then study the

effect of shape complexity with contours that have the same length. In each case, we

are measuring the effect that one independent variable has on contouring consistency

and efficiency, with all other variables controlled.

Creating a model Once we have quantified the effects of the different factors that

influence contouring, we can then use that information to create a model to predict

the levels of consistency and efficiency with which we can expect users to mark a given
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contour on a given image. We can train our model on a portion of the data collected

in our experiments, and we can test it on the portion not used for training. Further

testing on other data sets will be required to verify the robustness of the model.

This model can then be incorporated into our plane selection algorithm. The geomet-

rical approach described above will remain the first step in determining which contour

to add next. However, the model can be used to eliminate some contours and improve

the rankings based solely on geometry. For example, we would not want to include

any contour for which we could not ensure a reasonable level of consistency. Also, if

a set of contours are expected to provide roughly the same amount of improvement

to the surface, then we want to choose the one that is expected to have the highest

levels of consistency and efficiency.

Adaptive protocols In this section, we have described an algorithm that will allow

us to find an effective protocol for contouring a data set in which we know the ground

truth, but how can we use that information to create a protocol for a new data set

in which we do not know the ground truth? We propose a method that adapts the

protocol based on each new contour that the user draws. For an anatomic structure

such as the prostate or liver, we can run our plane selection algorithm on many

example data sets for which we do have a segmentation. Indeed, our collaborators

have been creating such a structure library [1] by capturing patient image data and

the segmentations that were used to treat them. This will give us protocols for a

variety of different prostate models. Then, when presented with a new prostate data

set, we can follow the protocol in our library that most resembles the prostate being

segmented as determined by the contours drawn by the user thus far. As the user

adds each additional contour, we can adjust the protocol as needed, to choose the

next best plane.

This method can also detect and adapt to irregularities. For example, if a contour

drawn for a prostate data set does not match anything in our structure library, then

we can adapt the protocol to add more planes in that region to better capture this

irregular feature. In this manner, we can create an effective protocol for a new data

set and adapt it on-the-fly to the input provided by the user.
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6.1.2 Path to clinical adoption

Ultimately, we would like to see nonparallel contouring adopted in clinical practice

and used to reduce morbidity and improve patient care. To this end, we have focused

on designing systems that can be used in practice and conducted our evaluations

with medical professionals and real patient data. However, more testing is needed to

evaluate the effectiveness of nonparallel contouring in the clinic.

While we continue to refine our nonparallel contouring system and to develop methods

for choosing effective protocols, there is no reason that we could not go ahead and

proceed with limited clinical trials. It has been shown that consistency is increased

when users observe their parallel contours in orthogonal views [71]. Therefore, having

users mark just one or two nonparallel contours in addition to the standard set of

parallel contours may be enough to significantly improve segmentation accuracy.

For example, previous studies have found significant inter-observer variability in defin-

ing the clinical target volume of the prostate, particularly in the cranio-caudal direc-

tion [21, 11]. We propose to run a similar study, in which experienced radiotherapists

will be asked to define the clinical target volume on actual patient data sets using

parallel contours. For half the trials, in addition to the standard set of parallel,

transverse contours, the radiotherapists will add two orthogonal contours — one in

the sagittal plane and one in the coronal plane that each contain the centroid of the

volume defined by the parallel contours. The radiotherapists will have the ability to

modify their previously drawn parallel contours by adjusting the intersection points

of those contours in the orthogonal planes. We hypothesize that we will observe a

significant increase in consistency and accuracy in the trials in which the additional

orthogonal contours are drawn.

This type of study should be conducted in the clinic and used to treat patients in or-

der to observe patient outcomes. Repeated clinical trials showing significant improve-

ments in outcomes will be necessary for nonparallel contouring to be recommended

for adoption as a standard in clinical practice.
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6.1.3 Error estimation for segmentation review

This dissertation has focused on improving the accuracy and efficiency of the seg-

mentation process, but an equally important process is that of segmentation review.

Regardless of the method used to produce an initial segmentation, the quantitative

review of these segmentations is required prior to clinical decisions using this data

because the shape, size, and intensity of radiation beams depend directly on the

segmentation results. In addition to improving the accuracy and efficiency of the

contouring process, we would also like to look at methods of improving the accu-

racy and efficiency of the review process. One way this could be approached is by

incorporating prior knowledge of the structure that is being reconstructed. For most

anatomical structures the general shape is known. This knowledge could be used to

estimate the error of the reconstructed surface, and then the user could be guided

in the review process to regions of the surface containing the highest error-likelihood

measures.

6.1.4 Extension to other applications and citizen science

There are many applications, including but certainly not limited to radiation treat-

ment planning, in which segmentation of volume data is required. Often, humans

are better at performing the segmentation than even the most advanced automated

techniques. However, the time it takes to segment the large amounts of data being

captured is great, and therefore much data is captured and never fully analyzed. One

approach to this problem is to employ the help of citizen scientists, as in projects

such as SETI@Home [4] and the Galaxy Zoo [60]. We are interested in modifying the

VolumeViewer interface for use by an untrained audience. This will require strate-

gies that allow a user to visualize and understand typical examples of a structure

and to give the user context in segmenting that same structure on novel data. New

computational geometry approaches to integrate and validate the segmentation data

created by multiple users on the same imagery will also be needed. The successful

development of such a system would enable scientists to produce large libraries of

segmented volume data that otherwise would have been impossible with their own
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limited resources. This data can then be visualized and analyzed in its own right,

and also used as training data for improving automated segmentation techniques.
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