
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-8

2005-03-01

A Query-Centered Perspective on Context Awareness in Mobile Ad A Query-Centered Perspective on Context Awareness in Mobile Ad

Hoc Networks Hoc Networks

Jamie Payton, Cheryl Simon, and Gruia-Catalin Roman

The wide-spread use of mobile computing devices has ledto an increased demand for

applications that operate de-pendably in opportunistically formed networks. A promis-ing

approach to supporting software development for suchdynamic settings is to rely on the

context-aware computingparadigm, in which an application views the state of the sur-rounding

ad hoc network as a valuable source of contextualinformation that can be used to adapt its

behavior. Col-lecting context information distributed across a constantlychanging network

remains a significant technical challenge.With this in mind, we propose a query-centered

approach tosimplifying context interactions in mobile ad hoc networks.With our approach, an

application programmer... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Payton, Jamie; Simon, Cheryl; and Roman, Gruia-Catalin, "A Query-Centered Perspective on Context
Awareness in Mobile Ad Hoc Networks" Report Number: WUCSE-2005-8 (2005). All Computer Science
and Engineering Research.
https://openscholarship.wustl.edu/cse_research/978

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/978?utm_source=openscholarship.wustl.edu%2Fcse_research%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/978

A Query-Centered Perspective on Context Awareness in Mobile Ad Hoc Networks A Query-Centered Perspective on Context Awareness in Mobile Ad Hoc Networks

Jamie Payton, Cheryl Simon, and Gruia-Catalin Roman

Complete Abstract: Complete Abstract:

The wide-spread use of mobile computing devices has ledto an increased demand for applications that
operate de-pendably in opportunistically formed networks. A promis-ing approach to supporting software
development for suchdynamic settings is to rely on the context-aware computingparadigm, in which an
application views the state of the sur-rounding ad hoc network as a valuable source of
contextualinformation that can be used to adapt its behavior. Col-lecting context information distributed
across a constantlychanging network remains a significant technical challenge.With this in mind, we
propose a query-centered approach tosimplifying context interactions in mobile ad hoc networks.With our
approach, an application programmer views thesurrounding world as a single data repository over
whichdescriptive queries can be issued. Queries may be tran-sient, or may be more durable persistent
queries that reactto changes in data or the network. Processing such queriesentails the creation and
maintenance of a distributed over-lay data structure whose size needs to be under applicationcontrol. A
high level of flexibility is achieved by judicioususage of mobile code fragments. In this paper, we
presentthe design and implementation of our query service for adhoc networks.

https://openscholarship.wustl.edu/cse_research/978?utm_source=openscholarship.wustl.edu%2Fcse_research%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/978?utm_source=openscholarship.wustl.edu%2Fcse_research%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages

A Query-Centered Perspective on Context Awareness
in Mobile Ad Hoc Networks

Jamie Payton, Cheryl Simon, and Gruia-Catalin Roman
Department of Computer Science and Engineering

Washington University in St. Louis
Campus Box 1045, One Brookings Drive

St. Louis, MO 63130-4899, USA
{payton, roman}@wustl.edu

ABSTRACT
The wide-spread use of mobile computing devices has led
to an increased demand for applications that operate de-
pendably in opportunistically formed networks. A promis-
ing approach to supporting software development for such
dynamic settings is to rely on the context-aware computing
paradigm, in which an application views the state of the sur-
rounding ad hoc network as a valuable source of contextual
information that can be used to adapt its behavior. Col-
lecting context information distributed across a constantly
changing network remains a significant technical challenge.
With this in mind, we propose a query-centered approach to
simplifying context interactions in mobile ad hoc networks.
With our approach, an application programmer views the
surrounding world as a single data repository over which
descriptive queries can be issued. Queries may be tran-
sient, or may be more durable persistent queries that react
to changes in data or the network. Processing such queries
entails the creation and maintenance of a distributed over-
lay data structure whose size needs to be under application
control. A high level of flexibility is achieved by judicious
usage of mobile code fragments. In this paper, we present
the design and implementation of our query service for ad
hoc networks.

1. INTRODUCTION
As the trend in the availability and affordability of portable
computing devices continues, we can expect heightened de-
mand for software designed for use in dynamic mobile en-
vironments. The increasing popularity of ubiquitous com-
puting drives the need for applications developed for ad hoc
networks in particular. In these settings, network connec-
tions are formed opportunistically by devices within wire-
less communication range, without any assistance from a
wired infrastructure. Such environments are characterized
by their open and highly dynamic nature, resulting in highly

unpredictable and transient interactions among resource-
constrained devices.

In recent years, researchers have concluded that the key to
developing rich applications for limited platforms in inher-
ently uncertain settings is to rely on the resources offered by
other hosts in the vicinity. As such, they have embraced the
context-aware computing paradigm in which applications
adapt their behavior according to changes sensed in their op-
erational environments. For example, context-aware office
applications such as Active Badge [8] and PARCTab [22],
use an employee’s location (provided to sensors by the em-
ployee’s badge) to automatically direct communications (phone
calls, faxes, etc.) to the correct office. Other typical context-
aware applications include more sophisticated context-aware
office spaces (e.g., GAIA [19]), tour guides which adapt dis-
plays according to a tourist’s location and interests (e.g., Cy-
berguide [1] and GUIDE [5]), and context-aware note tools
which attach environmental information such as time and
temperature to observational notes (e.g., FieldNote [20]).

Though popular consensus seems to point to context-awareness
as a programming solution for ad hoc networks, a key ques-
tion remains unanswered: how can we best assist context-
aware application programmers to master the difficult tasks
of gathering and maintaining a diverse collection of context
information originating from multiple sources distributed
across the constantly changing ad hoc network? Our ap-
proach relies on the notion that context can be abstracted
as a virtual data repository that reflects the continuously
changing state of an application’s environment. A program-
mer must simply query the virtual repository to gain access
to available context information. This “repository” of in-
formation is actually a reflection of the collection of data
items provided by applications residing on hosts within the
ad hoc network. Providing such an abstraction simplifies
the development task by hiding the complex distributed in-
teractions required to obtain context distributed across the
network, allowing the developer to interact with context as
if it were local. Additionally, interacting with a database
abstraction allows the programmer to use a uniform API to
collect context from a heterogeneous set of mobile hosts and
applications.

Relying on a database-like abstraction seems to be a natu-
ral choice for simplifying context interactions. In fact, ideas

have been previously explored in the development of mid-
dleware systems for ad hoc networks that rely on a Linda-
like tuple space abstraction for agent coordination (e.g.,
LIME [14], MARS [4], EgoSpaces [11], etc). While tu-
ple spaces are useful for managing underlying coordination
needs in mobile environments, these systems are limited to
the sharing policy imposed by the tuple space model and
to basic tuple space operations for context interactions. In
another vein of work, researchers have developed query pro-
cessing systems that utilize database-like queries to obtain
information from sensor networks (e.g., TinyDB [13] and
Cougar [23]) and P2P environments (e.g., AmbientDB [3]
and PeerDB [15]). We believe a query processing approach
can provide an application developer with a rich set of op-
erations that can simplify context interactions. As such, we
introduce a query-centric approach to supporting context
interactions. In contrast to the aforementioned query sys-
tems, our approach addresses the technical challenges that
arise due to the intrinsic nature of ad hoc networks and
targets solutions to that environment.

Our query service addresses the continuous nature of data
in ad hoc networks by providing a special query construct
which allows for reactive query processing and application
notification. This construct, the persistent query, has se-
mantics which are comparable to a subscription in the pub-
lish/subscribe paradigm. Such a construct is needed to sup-
port the development of applications which require notifi-
cation when data previously returned as a query result has
become invalid, perhaps due to the disconnection of host on
which the application providing the data resides or due to
the application updating its data value. This construct also
supports the delivery of newly available data to the query
initiator.

Our query service also addresses the need of the application
programmer to limit the time, communication, and process-
ing costs incurred by issuing queries over the ad hoc net-
work. We allow the developer to control the scope of the
query, the query propagation scheme, and the reply pro-
cessing scheme in order to tailor the execution costs of the
query to the needs of the application. One design option for
addressing issues related to query control is to hard-code all
possible customization configurations into the query service.
Queries would be parameterized with a set of customiza-
tion options that the programmer chooses from a fixed set.
The query service simply uses the provided parameters in
order to determine how to process the query. However, in-
stalling a query service which includes a comprehensive set
of query options for execution may be impractical in ad hoc
networks; the environment is composed of a variety of de-
vices, many of which have limited resources. Furthermore,
adhering to such a design implies advance knowledge of all
possible specializations that any context-aware application
might ever require. For these reasons, we rely on the use
of mobile code fragments that can be installed over the net-
work to encapsulate an application’s tailored context scope
definition, query propagation scheme, and reply processing
scheme. Because the mobile code fragments are loaded and
installed across the network at runtime as a query is issued,
this approach has potential to greatly reduce the size of the
code installed on each machine. Moreover, it results in a
flexible, extensible, and expressive query service, since mo-

bile code elements can be interchanged and new mobile code
elements which implement arbitrary query control schemes
can easily be included in the query service.

In this paper, we present the design and implementation of
our query service for mobile ad hoc networks. Our goal is
to promote rapid software development by simplifying the
manner in which an application interacts with its context,
while empowering the developer with the ability to control
context interactions at a fine-grained level in a flexible man-
ner. By relying on mobile code to encapsulate customizable
elements of query execution, we are able to provide a query
service that is flexible, modular, and extensible. Such adher-
ence to a design principle of generality allows us to support
a wide range of existing context-aware applications as well
as those of the future.

The paper is organized as follows. In Section 2, we pro-
vide a more detailed description of the problem that we are
trying to solve. An overview of our approach is presented
in Section 3. Section 4 details the design and implementa-
tion of our query service for mobile ad hoc networks, and
describes how to use the system through an example. Sec-
tion 5 presents a comparison of related work along with a
discussion of the benefits and limitations of our approach.
A discussion of the approach employed in this paper is pre-
sented in Section 6, and concluding remarks appear in Sec-
tion 7.

2. PROBLEM DEFINITION
Applications for ad hoc networks increasingly rely on sur-
rounding information to perform their assigned tasks. We
believe that treating the network as a single virtual data
repository and utilizing a query interface on that abstration
can be useful to application programmers collecting context
information across the network. Our goal is to provide a
query service that supports context-aware programming in
mobile ad hoc networks. In this section, we define in more
detail the problem which we are trying to solve. We begin
by presenting the basic computational model. We then mo-
tivate the need for fine-grained control of query processing
in the ad hoc network setting, and introduce our approach
to supporting user-controlled queries in ad hoc networks.

We consider systems in which applications execute on physi-
cally mobile hosts. A closed set of bidirectionally connected
hosts form an ad hoc network. Applications selectively pro-
vide access to their local data items for public use, and can
keep some data items private. For clarity, we use the term
“context item” to refer to a data item that the application
makes publicly available. The term “data item” is a general
term that we use to describe any piece of information that an
application produces or manipulates. Data items may range
from a sensor application’s simple temperature reading (an
integer value) to a remote printer service provider’s connec-
tion proxy (a piece of executable code). By default, an appli-
cation’s context is defined to be all context items contributed
by applications residing on reachable hosts that comprise the
ad hoc network. Notice that this means the application’s
context reaches across the entire network, and is not limited
to an application’s local data or context items within one
hop. In our approach, the developer of a context-aware ap-
plication uses query constructs (e.g., SELECT, MIN, MAX,

SUM, AVG, INSERT, DELETE) to query an abstraction
of the application’s context, a virtual data repository, to
gain access to context information. Though the developer is
presented only with the data repository abstraction, behind
the scenes, a query is issued over the ad hoc network and
distributed context information is collected from reachable
hosts and presented to the application.

As an example of an application that would benefit from
such context interactions, consider a software program used
for monitoring crops in the field. The field of crops is equipped
with small wireless sensors which can sense a number of
properties, such as temperature, moisture, humidity, and
chemical balance. Roving users collect information by query-
ing the collection of information provided by the sensor field
and other applications to aid in their tasks. For instance, a
small mobile robot responsible for spraying pesticides con-
stantly moves through the field, evaluating when it is ap-
propriate to release the chemicals. The robot can only re-
lease chemicals if the plants need them and if no humans
are in the vicinity. Thus, the robot queries the collection
of sensors to determine the chemical level of the crops and
queries the profiles of connected mobile devices to deter-
mine if people are in the field. An environmental scientist
may use his PDA to take notes on soil samples collected in
the crop field. To make the notes complete, the scientist
queries the sensor network field for the temperature, mois-
ture, and chemical readings across the field. He also queries
the robots for information about chemicals released in the
field, e.g., the quantity, location, and time that chemicals
were released. Harvesters may roam through the field, tak-
ing inventory and noting the status of the crops on their
PDAs. Farmers may later collect this information to adjust
irrigation or fertilization schedules.

While these and many other applications are aided by query-
ing the ad hoc network to gain access to the wealth of dis-
tributed context information, utilizing a naive query pro-
cessing approach can be problematic in such environments.
An application that queries a virtual data repository is ac-
tually querying the entire ad hoc network for context infor-
mation. Obviously, such an operation is expensive in terms
of time, communication, and processing costs. Furthermore,
once the query responses have all been returned to the ap-
plication, much of the information may be discarded due to
the need for locality, temporal, or other constraints imposed
by the application. Moreover, the collection of information
available in the ad hoc network is constantly changing, due
to the mobility of hosts and dynamicity of applications. Af-
ter querying the network, applications often need to know
that the returned information is no longer valid or that new
information is available. In the crop monitoring example,
the robot queries the network to determine if there are peo-
ple around before emitting potentially noxious chemicals.
For safety purposes, if the robot begins spraying the crops
and a human is around, the robot should stop until the hu-
man has left the area. Thus, it is important that the robot
constantly know if humans are in the vicinity. With a naive
query service, the robot would need to constantly query the
network in order to determine if the area is clear.

The above issues must be addressed in order to develop a
practical query-based solution for simplifying context inter-

actions that is suitable for use in ad hoc networks. In re-
sponse to this need, we propose a query service for ad hoc
networks which puts control over query processing in the
hands of the application developer. In our query service,
we provide the application programmer with the ability to
limit the costs of querying the collection of information. We
do so by providing control over the scope of the query, the
methods used to propagate the query, and the methods used
to process the query and send replies. Because the ad hoc
network can include resource constrained devices, we rely on
the use of mobile code fragments, which are loaded and in-
stalled at runtime across the portion of that network that is
network within the scope of the query, to capture these tai-
lorable query schemes. In addition to providing control over
the costs of the query through the use of mobile code, we
address the issue of changing information in the ad hoc net-
work by allowing the developer to register persistent queries,
which emulate the semantics of publish/subscribe service.
Registering these persistent queries on the context elimi-
nates the need for the application to constantly reissue the
same query. In the following section, we further explain
persistent queries and each element of our approach to cus-
tomizing query execution.

3. A FLEXIBLE APPROACH TO QUERY-
BASED CONTEXT INTERACTIONS

In this section, we present our approach to tailorable query
processing in ad hoc networks. We begin by giving a brief
overview of how a query is executed over the ad hoc net-
work by our query service. We then give the specifics of
data representation and storage. Next, we describe in more
detail how we provide programmers with control over the
scope of queries, the propagation of queries over the scope,
and the processing performed in the network. Finally, we
discuss how to provide long-lived query constructs that are
responsive to environmental changes.

An application issues a query that is packaged with its asso-
ciated mobile code specializations that dictate the details of
its execution. This query will be evaluated in a distributed
fashion by our query service. For clarity, we henceforth refer
to the application issuing the query as the reference appli-
cation, and the host on which the application resides as the
reference host. Once the query is issued, the mobile code el-
ements are extracted and stored along with a unique query
identifier. The query construct is evaluated on the host-level
data repository, and the mobile code capturing the context
definition is evaluated to determine the subset of connected
neighbors that belong to the issued query’s context. We call
this set of neighbors the potential context children. Next, the
query service executes the mobile propagation scheme over
the potential context children to determine a set of neighbors
that are referred to as the actual context children. The query
service disseminates the query and its mobile code special-
izations to the actual context children. Finally, the mobile
reply processing scheme for the query is executed, utilizing
the local result from the host-level data repository and, in
some cases, replies from the application’s set of actual con-
text children. As the query is propagated throughout the
network, the query is evaluated at each network hop using
the mobile code fragments packaged with the query.

3.1 Data Representation and Storage
Ad hoc networks are often comprised of a collection of het-
erogeneous devices, each of which may provide runtime sup-
port for a variety of applications. These applications, in
turn, can provide many different kinds of data as context. In
order to be useful in such heterogeneous settings, our query
service must have a uniform representation of context. We
choose to represent each application’s context items as tu-
ples. A tuple is a set of unordered fields, where each field
is a triple of (name, type, value). Using tuples allows us to
capture a wide range of context types, as well as to incorpo-
rate metadata about the context item using the name and
type fields.

We store an application’s context items, or tuples, in a tu-
ple space associated with the host on which the application
resides. Figure 1 illustrates the query service’s use of tuples
and the tuple space. As indicated in the figure, access to
the interface of this tuple space is limited to components of
the query service; applications contribute context items and
access context items only through the use of queries through
the query service’s application programmer interface (API).
Choosing this storage option allows the query service to take
advantage of content-based retrieval operations which use a
provided pattern, or template, to describe the desired tu-
ple(s) to be returned. A template is similar to a tuple except
that wildcards can be used in the name and type elements
of a tuple field, and a tuple field’s value is replaced with a
constraint on the field’s value. Only tuples which match a
provided template are returned as a result. A tuple matches
a template, if for every field in the template, there exists a
field in the tuple with the same name and type and a value
that satifies the the template’s constraint. Tuple space op-
erations used by our query service include non-blocking (or
probing) variants of Linda’s rd and in operations, the inp

and rdp. Both operations check the tuple space for a tuple
matching the provided pattern. If one or more matching
tuples exist, one is selected non-deterministically and is re-
turned. In the case of the inp operation, the returned tuple
is also removed from the tuplespace. If no matching tuple
exists, a null result is returned. Probing operations which
return all matching tuples (rdgp, ingp) are also provided for
use by the query service. The query service also utilizes the
out(t) tuple space operation, which places the tuple t into
the tuple space, to support insertion queries.

Another benefit of using tuple spaces is that we can take ad-
vantage of reactive constructs that have previously defined
in tuple space models [14, 6, 11]. A reaction is simply an
association between a pattern describing a tuple and a call-
back function. The semantics of these reactive constructs
dictate that the appearance of a tuple in the tuple space
that satisfies the reactive pattern immediately triggers the
execution of the associated callback function. The insertion
of the matching tuple in the tuple space and the execution of
triggered callback functions occurs in a single atomic step.
Such reactive constructs are extremely useful in the query
service to address issues associated with reporting changing
data to the application, as discussed in subsection 3.5.

3.2 Controlling the Scope of the Context
As mentioned previously, an application programmer should
be able to control the cost associated with query processing

by limiting the scope of the query. Essentially, we want to
allow a programmer to define a context tailored to the ap-
plication’s particular needs. The application programer can
specify a context through the use of context policies. These
context policies are similar to those introduced in [11]; each
policy is comprised of constraints imposed on properties of
the physical network as well as on hosts and applications
available within the network.

Using the network constraints provided by a programmer as
part of a context policy, a distributed protocol constructs
an network overlay data structure that corresponds to the
desired context defined by these constraints. In the design
of our query service presented in this paper, we rely on a
network overlay data structure that is commonly used in ad
hoc networks for routing: a spanning tree. We leverage off
of the ideas proposed in [7], which constructs and maintains
a spanning tree in an ad hoc network according to specified
constraints on network properties. We utilize this spanning
tree to further limit the context using host and agent con-
straints.

To construct the overlay data structure, an application pro-
grammer must provide two pieces of mobile code as part of
the network constraints: a Metric class which encapsulates
a metric defined over properties of links and hosts in the ad
hoc network that will be used to calculate a logical distance
of a network path, and a Cost class which encapsulates a
bound on the metric that restricts the inclusion of hosts be-
longing to the context to those that are within an allowable
distance. The metric must be increasing to ensure that a
bounded overlay can be formed. Mobile code is used to cap-
ture the metric and bound that comprise a context policy’s
network constraint because it offers the developer great flex-
ibility in defining the context. With this approach, arbitrary
network constraints can be defined over properties of the ad
hoc network to build the overlay data structure.

Host and application constraints that comprise the remain-
der of the context policy are then imposed on the resulting
overlay data structure to form a more restricted context.
Each host and application in the network provide a profile
describing their characterizing traits. For example, a host’s
profile may include a unique host identifier, current location,
platform type, etc. An application’s profile may include an
application identifier, lifetime, type, etc. Constraints are
evaluated over the profile using a constraint function. Be-
cause we want to allow a number of constraint functions
to be expressed, constraint functions provided as part of
the constraints are presented to the query service as mobile
code fragments. In essence, queries are issued over the ap-
plication’s spanning tree, and are processed only by applica-
tions meeting the specified application constraints running
on hosts meeting the specified host constraints.

Figure 2 illustrates a context definition and the resulting
spanning tree for the crop monitoring application presented
in the previous section. For simplicity, we assume only one
application per host in the figure, and depict each host (and
hence each application) as a circle, and each network link
as a line. The doubly ringed circle represents the applica-
tion of interest: the application running on the robot that
is responsible for spraying pesticide in the crop field. The

Host

Application ApplicationApplication ...

Query Service

Tuple Space

re
pl

y reply

reply

replies

one-time query
persistent query

Tuple Space
 (<“rainfall”, Double, 2.2>,

<”humidity”, Double, 90.2>)

 (<“report”, File, Report.pdf>)

Figure 1: Each host in the ad hoc network is equipped with our query service, which uses tuples for data
representation and tuple spaces for storage.

robot needs to spray pesticide on plants within a prescribed
area that are in need of pest control care, and should do so
only when humans are not in the vicinity. The robot needs
to query chemical monitoring applications running on sen-
sors and tracking applications running on tracking station
platforms within 20 meters.

To construct such a context for the robot, the application
developer provides a context policy consisting of network,
host, and application contraints. To provide the network
constraint, the application developer defines a metric that
adds the previous physical distance and hop count to eval-

uate the current distance and hop count, and specifies a
bound of (d, c), where d is the distance and c is the desired
hop count value (in this case, d = 20 and c = 3). (The
metric uses both hop count and physical distance because
the evaluation of additive physical distance alone is not in-
creasing in many circumstances and cannot ensure bounded
construction of the network overlay.) As illustrated in Fig-
ure 2a, at some point in time (time t), the context defined
by the network constraint only is a, b, c, where a, b, and c
are hosts that meet the context specification provided by
the reference application (the doubly ringed circle). The
constructed spanning tree network overlay is depicted us-

a

b

d

e

c

a

b

c

d

e

(a
)

N
et

w
or

k
co

ns
tra

in
ts

 o
nl

y,

at
 ti

m
e

t

(b
)

W
ith

 h
os

t &
 a

pp
lic

at
io

n
co

ns
tra

in
ts

,
at

 ti
m

e
ta

b

c

d

e

(c
)

W
ith

 h
os

t &
 a

pp
lic

at
io

n
co

ns
tra

in
ts

,
at

 ti
m

e
t+

1

f
f

Figure 2: An application’s tailored context is captured using a network overlay data structure.

ing bold lines. Figure 2b shows the network overlay and
the resulting context when additional host and application
constraints are applied. Satisfied host constraints are de-
picted by heavily outlined circles and satisfied application
contraints by shaded circles. Notice the dashed line be-
tween the reference host and c. This illustrates the fact
that c is technically in the network overlay formed strictly
by the network constraints but does not satisfy the host and
application constraints. Thus, c can be considered to serve
as a virtual node in the spanning tree, used only to queries
and reponses to and from f. As shown in Figure 2c, the
network overlay changes over time to reflect changes in the
enviornment.

3.3 Controlling Query Propagation
Different kinds of queries may have different kinds of needs.
For example, an application that wants to determine the
existence of a particular data item in the context issues
an EXISTS query construct over the context. Typically,
a query service would propagate the query over the entire
context, triggering a response only when the query reaches
a leaf node in the overlay network data structure, and col-
lecting answers at the reference host from all applications
in the context before returning the result to the reference
application. Since this particular query does not necessarily
need all data items available in the context that satisfy the
query, it is possible to reduce the communication costs by

controlling the propagation of the query over the context.

One option that has potential to reduce communication costs
but requires an extended execution time is to propagate the
query using controlled flooding. With controlled flooding, a
predicate provided as part of the query propagator is evalu-
ated at each host. The predicate likely incorporates knowl-
edge of the local query result. If the predicate evaluates
as true, the query is not propagated further, and the reply
process is initiated in order to return a result to the query
initiator. Otherwise, the query is propagated to the next hop
neighbors that are in the context associated with the query.
Other query propagation schemes that may prove useful in-
clude random subtree and random path. In random subtree
propagation, the query propagator selects some subset of
next hop neighbors that are in the context and propagates
the query to those neighbors, effectively limiting propaga-
tion to a pruned version of the overlay data structure. Sim-
ilarly, in random path propagation, the query propagator
selects a single context neighbor and propagates the query
to that host, resulting in a query that travels along a single
path in the network.

Rather than permanently associate a propagation method
with a particular query construct, we allow the developer to
consider the tradeoffs associated with each particular prop-
agation method and specify the desired propagation method
each time that a query is issued. We achieve generality and
flexibility by requiring the use of a mobile code fragment to
capture the desired propagation scheme. When the query
programmer uses our query service API to issue a one-time
or persistent query, this mobile code element is provided as
a parameter. The query service receives the query packaged
with the propagation scheme and extracts the mobile query
propagation code. The query operation is evaluated locally,
and then the query propagation code is evaluated. Evalu-
ation of the query propagation code should result in either
propagating the query further over the context or initiating
the query reply process.

3.4 Controlling Query Processing and Replies
Naive evaluation of queries such as MIN, MAX, SUM, AVG,
and COUNT requires the collection of query replies from all
applications in the network at the reference host. The col-
lected replies are evaluated according to the query construct,
and a single result is returned to the application. This
method of executing the query is cost-intensive in terms of
communication. With the exception of leaf nodes, each node
in the network overlay data structure must act as a router
to deliver its context children’s query replies. On many
small devices, communication requires much more power
consumption than computation. The reference application
may need to minimize the resources consumed on remote
platforms in order to prolong the availability of context in-
formation. To reduce communication costs, query replies are
often processed in the network [12, 23, 9] such that nodes
in the network aggregate query responses and communicate
only the aggregate response as the query reply.

A number of algorithms exist for performing in-network pro-
cessing of data. Our query service offers the developer the
option of choosing an in-network processing scheme to best
suit the needs of the query and the application. When an

application programmer uses our query service API to issue
a one-time or persistent query, she specifies an in-network
processing algorithm as a parameter. Again, to satisfy our
need to support arbitrarily defined processing algorithms,
the query processing algorithm is encapsulated within a mo-
bile code fragment. As the query is propagated, this mobile
code fragment is extracted from the packaged query and
installed on hosts determined to be in the context. The
query operation is evaluated locally, the query propagation
code mentioned in the previous section is evaluated, and the
query processing code is evaluated to control the sending of
query responses.

3.5 Managing Changing Data in Dynamic Set-
tings

An issue of particular interest when designing a query ser-
vice for ad hoc networks is the manner in which each query
operation is serviced in such a dynamic setting with a chang-
ing collection of distributed data. Many applications re-
quire prolonged use of information, and should be informed
of changes in the context that can affect the answer to a
query. To address this need, an application can simply is-
sue a query over the context each time that data is actually
needed, constructing the overlay data structure to encap-
sulate the context in an on-demand fashion each time that
the query is executed. We refer to such queries as one-time
queries. It may, however, be more practical to maintain
the overlay data structure over time and notify the applica-
tion of changes in the context that impact previous query
results. For these reasons, our query service provides per-
sistent queries that are registered on a maintained context.

Persistent queries emulate the semantics of publish/subscribe
services. However, they are a better choice for a query ser-
vice designed for an ad hoc network enviornment because
the focus is on data state rather than events. Relying on
data state removes the requirement of knowing in advance
the kinds of events that are relevant in an open environ-
ment. The concept of persistent queries was first introduced
in [7], which introduced a protocol that supports reactive
evaluation of long-lived queries. We extend their approach
to provide a reference application with updates that detail
changes in the network that impact the result of the appli-
cation’s persistent query. Such changes include the addition
of new data, the removal of data previously reported as a
query reply to the reference application, and the disconnec-
tion of hosts running applications which previously provided
a response to the reference application’s query. An applica-
tion developer that registers a persistent query must be able
to process replies generated by the query service as notifica-
tion of such changes. Therefore, the application is required
to specify the set of notifications that are of interest. It does
so by implementing a listener for each kind of change. A lis-
tener for a particular kind of change processes query replies
generated as a result of that change.

New data items. Addressing the issue of notifying the ref-
erence application of the addition of new context items that
meet a persistent query’s data specification is relatively sim-
ple. When the persistent query is issued, the query service
simply registers a reaction on the tuple space using the data
template provided as part of the query as the reactive pat-
tern. The reaction’s call back function simply initiates reply

processing in order to deliver the new results to the query
initiator. The replies are encapsulated as a NewDataReply

and an application processes these replies by implementing
the NewDataReplyListener interface.

Removed data items. Dealing with deletions of context
items previously reported as replies is slightly more complex
since reactions cannot be triggered upon the removal of tu-
ples from the tuple space. To address this issue, we instead
register a reaction using an anti-tuple as the reactive pattern
to signal the deletion of a reported context item. The anti-
tuple is simply a copy of the tuple of interest with a value
set in a special system tuple field that indicates status as an
anti-tuple. When a piece of data is removed from the tuple
space, a corresponding anti-tuple is inserted into the tuple
space. The set of reactions are checked to see if any are trig-
gered by the new tuple. The triggered reactions fire, and the
associated call back functions are executed. As before, the
reaction’s callback function initiates reply processing, this
time to notify the query initiator that a previously deliv-
ered context item is no longer available. Replies generated
to notify applications of changes in reported data for a per-
sistent query are of type DeletedDataReply and are handled
by a DeletedDataReplyListener.

Though at first the use of anti-tuples may seem prohibitive
in terms of space, the semantics of reactions dictate that in-
sertion of the anti-tuple and the execution of callback func-
tions associated with reactions registered on the anti-tuple
appear to occur in a single atomic step, which allows the
anti-tuple to be immediately removed from the tuple space.

Unavailable data items. With persistent queries, the
overlay data structure that encapsulates the context asso-
ciated with a persistent query is constantly updated in re-
ponse to changes in the environment that impact the context
definition. When such changes cause an application to no
longer be a part of a query’s context, the data that the ap-
plication has previously reported to the query initiator is
no longer valid. Because each host in the context associated
with the query acts as a router to relay a query response the
disconnection of a host can result in an entire portion of the
context becoming unavailable. This data also becomes in-
valid to the application. The question is, how can a member
of the context notify a query initiator that a context child
and its descendant’s data is no longer available?

Again, we rely on the use of anti-tuples and reactions to
report change. However, we have indicated that a host’s
tuple space contains only context items contributed by ap-
plications residing on that host, which does not make it
possible for a host to detect the disappearance of data pro-
vided as a reponse by context children. Therefore, we allow
a host’s tuple space to also include context items provided
by the host’s context children which have been reported as
query responses. To be more specific, each time that a re-
ply to a persistent query is relayed to an application’s con-
text parent in the overlay data structure, the query service
stores the reply tuple in the host-level tuple space before
processing and propagating the reply back to the query ini-
tiator. If the reply is associated with a persistent query,
the query service also registers a reaction on the tuple space
that incorporates an anti-tuple as the reactive pattern, and

a call-back function. When the elimination of a host or
application within the context is detected, an anti-tuple in-
dicating such is placed in the tuple space. This triggers
the reaction associated with the anti-tuple, which is de-
signed to notify the query initiator that the data associated
with the host or application specified by the anti-tuple is
no longer available. Replies generated for persistent queries
that indicate the unavailablility of previously reported data
are of type DataUnavailableReply and are handled by a
DataUnavailableReplyListener.

One issue that we have not yet addressed is the unavail-
ability of data previously offered as query responses by a
departed context child’s descendants. To address this issue,
we incorporate an additional special system tuple space field
in each tuple that gives the path in the context overlay data
structure from the query initiator to the query responder.
Each time that a query initiator receives a notice that a
particular context child’s data is unavailable, the query ini-
tiator can use the paths of data items previously received in
order to determine their validity.

4. DESIGN AND IMPLEMENTATION OF A
FLEXIBLE QUERY SERVICE

We begin this section by presenting the API that a context-
aware programmer uses to construct and issue queries over
a tailored context. We then discuss the architecture of the
query service presented in this paper and review how the
query service executes a query.

4.1 Using the Query Service API
The query programmer must define a context, a propaga-
tion scheme, and a query processing scheme when issuing a
query. The query service utilizes these pieces of mobile code
to execute the query and deliver the desired results to the
issuing application. Each of these query components is dis-
cussed in detail in the following subsections. Throughout,
we use examples to illustrate the use of each concept.

4.1.1 Defining the Context
Before issuing a query, the user must define a context for
the query to be issued over. This requires the programmer
to provide network, host, and application constraints. The
network constraints are used to define the network overlay
data structure that encapsulates the context, while the host
and application constraints are used to further restrict the
context.

Network Constraints. In providing a mechanism to im-
pose network constraints on the ad hoc network, we build
upon the approach presented in [7] to specify and construct
a context. The context is constructed using a spanning tree.
This requires defining a Metric and a Cost that are used to
construct the tree. The Cost class is used to define a prop-
erty that contributes to the cost of a path in the overlay
data structure. The Metric details how to utilize the cost
evaluated at the previous hop and the cost of a link weight
to determine a new cost.

To define a context, a programmer must extend the Cost and
Metric classes shown in Figure 3. Defining a Cost subclass
simply requires the programmer to define a method which

public abstract class Cost {
int compareTo(Cost cost)

}

public abstract class Metric {
private String[] monitorNames;
public void setMonitorNames(String[] names);
public abstract Cost wFunction(HostID otherHost);
public abstract Cost costFunction(Cost currentD,

Cost weight);
}

Figure 3: The Cost and Metric interfaces

compares the Cost object to another Cost object. Defin-
ing a Metric subclass is a bit more complex, requiring the
application programmer to provide the names of environ-
mental monitors it will use to evaluate the metric. At each
host, the query manager component of the query service
uses a MonitorRegistry provided by a supporting monitor

package to provide the metric with access to local (on the
same host) or remote (on a reachable host) monitors with
the specified names. The Metric abstract base class also
requires an extending class to implement a weight function
and cost function. The wFunction method determines the
weight of the link between the evaluating host and a neigh-
boring host. The costFunction takes the cost of the path to
the current host and uses the weight calculated by the weight
function to determine the cost associated with including a
neighbor in the context.

public class HopCountMetric extends Metric{
public HopCountMetric(){
}
public Cost wFunction(HostID otherHost){

//calculate the weight on the link
HopCost weight = 1;
return weight;

}
public Cost costFunction(Cost currentD,

Cost weight){
HopCost newCost = currentD + weight;
return newCost;

}
}

Figure 4: An example HopCountMetric Class

To illustrate the use of network constraints, consider an ap-
plication that wants to limit its context to a particular num-
ber of hops, h. The metric to capture this simple context
definition is shown in Figure 4. We have omitted the defini-
tion of the HopCost class, which adheres to the Cost inter-
face by storing an integer and implementing the compareTo

method.

Constraints on Hosts. Defining constraints on the kinds
of hosts that can participate in a context is relatively straight-
forward. Each host in the ad hoc network provides a host
profile containing properties that describe the host, e.g., its
unique id, disk space, platform, etc. This profile is cap-
tured as a tuple using the HostProfile class that extends
a tuple class provided by a supporting tuple space package.
Therefore, to impose host constraints, a programmer sim-

ply provides a template that describes required host prop-
erties. To provide a template, the programmer uses the
HostConstraints class (a subclass of a template class pro-
vided by the tuple space package) to indicate which tuple
fields in a host profile are of interest and to provide a con-
straint function that determines if the host profile field meets
the needs of the application. The query service uses pattern
matching of a host profile tuple against a host constraint
template and the provided constraint function to determine
satisfaction of constraints. Since we need to support ar-
bitrarily defined constraint functions, these are defined as
mobile code elements.

HostConstraint hc = new HostConstraint();
hc.addConstraint(new EConstraint(‘‘platform’’,

new EquivalencyConstraintFunction(‘‘PDA’’)));

Figure 5: An example host constraint

An example use of host constraints is shown in Figure 5.
The host constraint dictates that only hosts that identify
themselves as PDAs in their host profiles are included in
the context.

Constraints on Applications. Constraints that dictate
what kind of applications may participate in the context are
defined much like host constraints. Each application pro-
vides an application profile that includes application prop-
erties such as application id, application type, user, etc.
The application profile is captured as a tuple, and appli-
cation constraints are captured as a template. As before,
pattern matching and a piece of mobile code implementing
a constraint function is used by the system to determine
constraint satisfaction.

ApplicationConstraint ac = new ApplicationConstraint();
ac.addConstraint(new EConstraint(‘‘access code’’,

new EquivalencyConstraintFunction(key)));

Figure 6: An example application constraint

An example application constraint is shown in Figure 6. The
constraint shown dictates that the application must have an
access code that matches that defined in the variable key.

We provide a collection of commonly used network con-
straints in our infrastructure for use by the developer. The
developer can use inheritance to extend the collection of
metric and bound classes used to construct the overlay data
structure. Likewise, we provide a collection of commonly
used constraint functions that can be included in the defini-
tion of a host or application constraint.

At this point, the programmer has provided everything needed
to define a context. The programmer can now use the query
service API to obtain a static reference to the QueryMananger
running on the local host. Once the manager is obtained, the
programmer registers a context definition with the manager
using the createContext method, providing network, host,
and application constraints as parameters. A ContextID is
returned to the application to identify the registered con-
text. The application supplies this context id when issuing
a query over the context. However, before issuing a query,

public abstract class QueryPropagator {
public abstract Vector limitPropagation(Vector

potentialChildren);
}

Figure 7: The QueryPropagator interface

the programmer must first define how the query’s execution
is to be controlled.

4.1.2 Defining the Query Propagation Scheme
To define a query propagation scheme, a programmer must
extend the QueryPropagator abstract base class shown in
Figure 7. To do so, a programmer must define a limitPropagation

method which utilizes a set of potential context children and
imposes the propagation constraints on this set to deter-
mine a new set of context children, which is returned to the
caller. If the context children set is empty, the query is not
to be propagated any further, and the propagator intiates
the sending of replies by calling the sendReply method on
the query manager.

We plan to include a number of query propagators that
incorporate standard query propagation schemes with our
query service. The developer can simply choose to use one
of the provided mobile code fragments. However, the set
of query propagators can easily be extended to incorporate
mechanisms tailored to a particular application.

public class ControlledPropagator extends QueryPropagator{
QueryID qID;

public ControlledPropagator(QueryID qID){
this.qID = qID;

}

public Vector limitPropagation(Vector contextChildren) {
QueryManager mgr = QueryManager.getManager();
Reply localResult = mgr.getLocalQueryResult(qID);
if (localResult.getResultTuple() != null){
mgr.sendReply(Reply);
return (new Vector());
}

else
return contextChildren;

}
}

Figure 8: An example ControlledPropagator Class

To illustrate the development of propagators, a controlled
flooding propagation scheme is shown in Figure 10. The
code shows that when a local result is found that satifies
the query, the propagator initiates the reply process and
suspends propagation by returning an empty vector of con-
text children to the query manager. Otherwise, the set of
context children remains unchanged and is returned to the
query manager to use in continuing propagation of the query.

4.1.3 Defining the Query Processing Scheme
To define a query processing scheme, a programmer must ex-
tend the QueryProcessor abstract base class shown in Fig-
ure 9. To do so, a programmer must define a processReply

public abstract class QueryProcessor {
public abstract void processReply(Reply r)

}

Figure 9: The QueryProcessor interface

method that determines how received replies are processed.
Because a query processor is often charged with the task
of performing aggregation on replies received from its con-
text children, the query processor may need to implement
a ChildReplyListener interface. The processReply method
is responsible for calling the sendReply method on the query
manager to send the result to the next upstream hop in the
overlay data structure.

As with query propagators, we plan to provide a number
of standard in-network reply processing schemes as mobile
code fragments that are available as part of the query ser-
vice. It is possible to extend the set of available query pro-
cessors by constructing new mobile code fragments.

public class AggregateProcessor extends QueryProcessor
implements ChildReplyListener{
QueryID qID;
Reply currentResult;
Hashtable receivedReplies = new Hashtable();
QueryManager mgr = QueryManager.getManager();

public AggregateProcessor(QueryID qID){
this.qID = qID;

}

public void processReply(Reply r) {
Vector children = mgr.getChildren(r.getQueryID());
while receivedReplies.size() != children.size()) {
poll for child replies ...

}

for(i=0; i<children.size(); i++) {
HostID hID = children.elementAt(i);
Reply childReply = receivedReplies.get(hID);
currentResult = aggregate(childReply);
}

mgr.sendReply(currentResult);
}

public void childReplyReceived(ChildReplyEvent cre){
Reply r = cre.getReply();
HostID sender = cre.getReply.getSender();
receivedReplies.add(r, sender);

}

public Reply aggregate(Reply reply) {
Reply r = ...aggregate currentResult with reply... ;

return r;
}

}

Figure 10: An example AggregateProcessor Class

4.1.4 Issuing a Query
At this point, the programmer is ready to issue a query over
a defined context using the query manager. The program-
mer can choose to use the API of the query manager to issue
a one-time query via the sendQuery method, or can register
a persistent query with the registerQuery method. In ei-

ther case, the programmer must provide a ContextID that
identifies a previously registered context, an ETemplate that
describes the desired data, the specified query option to be
performed, the QueryPropagator, and the QueryProcessor.

The table in Figure 11 lists a sample set of the kinds of
query operations that we expect a programmer to need when
constructing context-aware applications. Notice that, in
this first attempt at providing a query service for ad hoc
networks, we assume a trusted enviornment. As such, a
DELETE operation that we provide would allow any ap-
plication to delete another application’s provided context
items. In an untrusted environment, access controls should
be provided to determine if an application is allowed to per-
manently delete another application’s data or if the applica-
tion should instead remove the data only from consideration
as part of its context. Also of note is that we expect that
applications in this setting are cooperative and will provide
data items for use as context via an INSERT operation.

4.2 Query Service Implementation Details
The architecture of our query service implementation is pre-
sented in Figure 12. As shown in the figure, we rely on the
use of additional packages to support the operation of the
query service. These packages are used to deliver messages
in the ad hoc network (the message passing component),
discover network neighbors (the network discovery compo-
nent), and monitor environmental properties used to define
the network constraints portion of the context definition (the
monitor component). We assume the existence of the phys-
ical ad hoc network and a message passing mechanism; we
utilize external network discovery and monitor packages.

When the query service receives a request to issue a one-time
or persistent query via the sendQuery or registerQuery

methods, the query manager component of the query ser-
vice constructs a query to be issued over the specified con-
text. Each query consists of a metric and bound evaluated
over network properties, as well as the current cost associ-
ated with the evaluation of the metric; the host constraints,
agent constraints, and their constraint functions; the query
propagator; the query processor; the identifier of the query
initiator; the path that the query has traversed; and the
unique identifer of the query. The query manager compo-
nent stores information about the query and begins to pro-
cess it as described below.

First, the query manager processes the network constraints
portion of the context policy in order to begin constructing
the overlay data structure. To do so, the query manager
uses the set of current neighbors and applies the metric to
evaluate the cost of the path to each neighbor. The query
manager will only include neighbors whose path cost satisfies
the bound as part of the context.

To evaluate the metric, the query service uses two support
packages: a network discovery package and an environmen-
tal monitoring package (shown in Figure 12). The network
discovery package is used to determine the set of current
neighbors. At each host, the query manager’s network dis-
covery server periodically beacons the surrounding hosts to
discover the current set of neighbors. Discovery can be pa-
rameterized with policies that govern when to add or remove

a neighboring host from the set of neighbors. The query
manager keeps a consistent list of neighbors by implement-
ing the DiscoveryListener interface of the monitor package
in order to listen for events signalled by the discovery server
to indicate the addition and/or removal of neighbors. The
environmental monitoring package is used by the query ser-
vice to gain access to monitors on local and remote hosts.
The query service needs to access these monitors in order to
evaluate the metric over its host and its neighboring hosts.
The metric provides a list of monitor names that impact its
evaluation. The query manager uses a monitor registry pro-
vided by the monitor package to access local and neighbor’s
monitors, and uses the unified monitor interface to query
each monitor for its data value. As monitor values change,
the query manager is notified and the metric is re-evaluated
to determine if new neighbors are eligible to be considered
as part of the context.

Once a set of neighbors have been determined to be can-
didates for belonging to the context, the set of neighbors
is passed to the query propagator. The query propagator
applies its query propagation scheme to determine a subset
of the given context neighbors that are eligible for propaga-
tion and returns this set, which defines the context children.
If the returned set is empty, the propagation process stops.
The query manager also executes the query processor, which
will initiate the process of sending replies back to the query
initiator via the query manager.

When the query manager receives a propagated query, it
stores the information and processes the context definition,
query propagator, and query processor as described above.
When the query manager receives a request to send a re-
ply, it uses the query id associated with a reply to find the
appropriate return path over the context.

5. RELATED WORK
In this section, we review related work and give a compari-
son to our own approach. In particular, we examine mobile
databases, query processing systems, and methods for con-
structing spanning trees in ad hoc networks.

5.1 Mobile Databases
Over the years, researchers have explored the deployment of
database systems in mobile, dynamic environments [21, 18,
2]. Mobile database systems must consider issues related
to replicating data across the network such that it is read-
ily available, ensuring the consistency of replicas across the
network, and recovering from frequently terminated transac-
tions due to disconnection. In contrast, we are not actually
creating a database in our approach to providing queries
over the ad hoc network. Instead, our goal is to simply
hide the details of managing access to remote context in-
formation. There is no need for us to replicate data; either
data is available as context to any application or it is not.
Moreover, many of these database systems are targeted for
nomadic network environments in which disconnection from
the wired network is the exception. As such, many of the
proposed solutions for data management are not applicable
in mobile ad hoc networks.

5.2 Query Processing Systems

Operation Name Definition
GET Retrives the data matching the specified data pattern, if it exists.

If more than one match exists, one is selected non-deterministically and returned
EXISTS Returns true if data matching the specified data pattern exists and false otherwise
MIN Returns the data item that is the “minimum” among all data itemsthat match the specified data pattern.

To determine the minimum, an ordering must exist over the specified data type.
MAX Returns the data item that is the “maximum” among all data itemsthat match the specified data pattern.

To determine the maximum, an ordering must exist over the specified data type.
AVG Returns the data item that is the “average” among all data itemsthat match the specified data pattern.

To determine the average, a method of quantification must exist over the specified data type.
SUM Returns the data item that is the “sum” among all data itemsthat match the specified data pattern.

To determine the sum, a method of quantification must exist over the specified data type.
INSERT Makes the specified data item available to others in the network.

The query service places the specified data item in the host-level tuple space.
DELETE Removes the specified data item available from consideration in the query service.

The query service removes the specified data item from the host-level tuple space.

Figure 11: Operations supported by our query service

Query Service

Ad Hoc Physical Network

Message
Passing

Network
Discovery Monitor

Application

Figure 12: Query Service Architecture

Recent research has resulted in the development of data
management systems for P2P network environments. For
example, AmbientDB [3] provides a relational database man-
agement model that uses Chord, a Distributed Hash Ta-
ble (DHT) system, to manage data sharing across a po-
tentially large network. Users can query the network us-
ing high level database-like queries that are optimized by
AmbientDB. Another distributed data system for P2P en-
vironments is PeerDB, which utilizes local SQL database
table to store sharable information. Applications can issue
queries over a logically federated database which includes all
sharable information in the network. Because the database
tables are augmented with metadata, queries can be issued
in a content-based manner and no merging of schemas is
needed. Similarly to our work, PeerDB utilizes mobile code
to propagate a query and return its results.

Our work differs from these sytems in a number of ways.
First, while PeerDB provides the ability to limit queries to
nodes which have recently provided query results, it is not
possible in either system to select a tailored context based
on arbitrary properties of entities withint the ad hoc net-
work. Second, neither system supports persistent queries,
although this is mentioned as future work on AmbientDB.
Third, unlike these systems, we do not consider data man-
agement issues such as replication and data caching. Such
services are often overkill for what is needed by an applica-

tion that simply needs to obtain context information from
the network.

Distributed query processors have also been developed for
sensor networks, e.g., TinyDB [13], TAG [12], and Cougar [23].
Since communication is very expensive in sensor network en-
vironments, many query processors for this setting use ag-
gregation to compute intermediate results to reduce energy
consumption. In addition, some systems offer a long-lived
query construct that proactively deliver query results to the
issuing application at the specified sampling rate. While the
concepts of simplifying the task for the end user, optimizing
query processing, and eliminating the need to repeatedly
query the network are similar to our goals, these systems
address issues specific to the expenses of sensor networks,
such as dealing with lost packets, sensor failures, and inac-
curacy of readings. Additionally, protocols for processing
queries are designed at a low-level, using using knowledge of
the sampling and sleep cycles of sensors to minimize energy
consumption. To our knowledge, none of these systems con-
sider rapid changes in topology, which frequently occurs in
mobile ad hoc networks.

5.3 Spanning Tree Construction and Mainte-
nance

In this first attempt at implementing a query service for use
in ad hoc networks, we utilized a spanning tree to capture

the context. A number of ad hoc routing protocols have been
developed which construct and maintain spanning trees [16,
17, 10]. As mentioned previously in the paper, our approach
to the construction and maintenance of the spanning tree
supporting the execution of queries is derived from the net-
work abstractions protocol [7]. There are key differences,
however, in the model of expected interaction between ap-
plications. The implementation of network abstractions re-
quired that an application explicitly reply to a query. In
our implementation, we place the power of initiating replies
in the query itself, using mobile code elements that are de-
livered as part of a query. In addition, while network ab-
stractions supports the registration of persistent queries, the
protocol is primarily designed to adjust the spanning tree in
response to changes in the environment. Unlike our work,
the network abstractions protocol does not report to the
application when data is deleted or becomes unavailable.

6. DISCUSSION
A full implementation of the query service is underway. The
query service and all required support packages are written
in Java. Once the query service implementation is complete,
it will be necessary to evaluate its utility and practicality.
We plan to evaluate utility by using the query service to
facilitate the implementation of a number of context-aware
applications. The practicality of the query service can be
determined by measuring different properties, such as the
time required to distribute a query across the context and
the communication overhead. Measuring such properties
will likely require an implementation in an ad hoc network
simulator such as ns-2.

In this paper, our implementation relied on the use of a par-
ticular network overlay data structure to capture the con-
text: the spanning tree. The spanning tree is defined by an
increasing metric over properties of the network links and
hosts in the ad hoc network. However, defining the context
in this way may rule out potential useful contexts. Con-
sider, for instance, a city employee who wants to monitor
water meters distributed throughout the city. The context
for his application could be defined as “all meters until a
meter outside the city limits is reached”. Another applica-
tion might require a context based on temporal properties.
For instance, an application that uses temperature data in
the surrounding area to adapt its operation may only want
to act upon data readings that are relatively fresh. To our
knowledge, no protocols exist to define these kinds of con-
texts. We would like to develop protocols that allow spec-
ification of these and other contexts and to include them
in our infrastructure. We are interested particularly in pro-
viding a query service which provides a general method of
constructing contexts such that a variety of network over-
lay data structures can be utilized. We hope to explore
the possibility of a general approach to building structures
in the network, focusing on the use of pairwise relationships
defined on hosts in the network to support overlay construc-
tion and maintenance.

To this point, an issue of importance in designing query
processing systems for mobile enviornments has largely been
overlooked: providing a range of guarantees concerning query
results that are useful to an application in a dynamic envi-
ronment. Previous work on guaranteeing operations over

ad hoc networks have mostly focused on providing the tra-
ditional weak and strong transactional semantics common
in distributed systems for the new dynamic and mobile en-
vironment. However, we believe that there is a range of
semantics in between weak and strong that would be use-
ful in dynamic settings. For instance, an application used
by a teacher that uses queries to collect exams may allow
new additions to the collection of exams, but will not toler-
ate removal of exams. To our knowledge, no work exists to
support describing and implementing a collection of such in-
termediate guarantees. We would like to examine this prob-
lem formally and accordingly include a range of options for
evaluating queries in our query service.

7. CONCLUSIONS
Our goal is to simplify the development of context-aware ap-
plications by aiding the application developer in managing
access to a dynamic collection of distributed context infor-
mation. Towards that goal, we have introduced a query
service for ad hoc networks. Though we simplify context in-
teractions by allowing the programmer to query the ad hoc
network as if it were a local data repository, we still provide
the developer with the ability to control the execution of the
query to satisfy the application’s needs. We achieve general-
ity, flexibility, extensibility, and expressiveness by relying on
the use of mobile code to encapsulate customizable elements
of the query service.

8. REFERENCES
[1] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper,

and M. Pinkerton. Cyberguide: A mobile
context-aware tour guide. ACM Wireless Networks,
3:421–433, 1997.

[2] D. Barbara. Mobile computing and databases: A
survey. IEEE Transactions on Knowledge and Data
Engineering, 11(1):101–117, 1999.

[3] P. Boncz and C. Treijtel. Ambientdb: Relational
query processing in a P2P network. In Proceedings of
the Workshop on Databases, Information Systems and
Peer-to-Peer Computing 2003 (co-located with
VLDB’03, volume 2788 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[4] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A
programmable coordination architecture for mobile
agents. IEEE Internet Computing, 4(4):26–35, 2000.

[5] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and
C. Efstratiou. Experiences of developing and deploying
a context-aware tourist guide: The GUIDE project. In
Proc. of MobiCom, pages 20–31. ACM Press, 2000.

[6] C.L. Fok, G.-C. Roman, and G. Hackmann. A
lightweight coordination middleware for mobile
computing. In COORDINATION 2004, volume 2949
of Lecture Notes in Computer Science.
Springer-Verlag, 2004.

[7] Q. Huang G.-C. Roman, C. Julien. Network
abstractions for context-aware mobile computing. In
Proc. of 24th Int’l Conference on Software
Engineering, pages 363–373, 2002.

[8] A. Harter and A. Hopper. A distributed location
system for the active office. IEEE Networks,
8(1):62–70, 1994.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed diffusion: A scalable and robust
communication paradigm for sensor networks. In
Proceedings of the 6th International Conference on
Mobile Computing and Networking (MobiCom’00),
August 2000.

[10] D. Johnson and D. Maltz. Dynamic Source Routing in
ad hoc wireless networks. In Imielinski and Korth,
editors, Mobile Computing, volume 353. Kluwer
Academic Publishers, 1996.

[11] C. Julien and G.-C. Roman. Egocentric context-aware
programming in ad hoc mobile environments. In Proc.
of 10th Int’l Symposium on the Foundations of
Software Engineering, pages 21–30, Nov. 2002.

[12] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
Tag: A tiny aggregation service for ad-hoc sensor
networks. In ACM Symposium on Operating System
Design and Implementation (OSDI), Dec. 2002.

[13] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
The design of an acquisitional query processor for
sensor networks. In Proceedings of the 2003 ACM
SIGMOD International conference on Management of
Data, pages 491–502. ACM Press, 2003.

[14] A.L. Murphy, G.P. Picco, and G.-C. Roman. LIME: A
middleware for physical and logical mobility. In Proc.
of the 21st Int’l Conf. on Distributed Systems, pages
524–533, April 2001.

[15] W. Ng, B. Ooi, K.-L. Tan, and A. Zhou. Peerdb: A
P2P-based system for distributed data sharing. In
Proceedings of the 19th International Conference on
Distributed Data Sharing, 2003.

[16] C. Perkins and P. Bhagwat. Highly dynamic
Destination-Sequenced Distance-Vector routing
(DSDV) for mobile computers. In ACM SIGCOMM
’94 Conference on Communications Architectures,
Protocols and Applications, pages 234–244, October
1994.

[17] C. Perkins and E. Royer. Ad hoc on-demand distance
vector routing. In Proceedings of the Second IEEE
Workshop on Mobile Computing Systems and
Applications, pages 90–100, February 1999.

[18] E. Pitoura and B. Bhargava. Maintaining consistency
of data in mobile distributed environments. In
International Conference on Distributed Computing
Systems, pages 404–413, 1995.

[19] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan,
R. Campbell, and K. Nahrstedt. Gaia: A middleware
infrastructure to enable active spaces. IEEE Pervasive
Computing, pages 74–83, Oct.-Dec. 2002.

[20] N. Ryan, J. Pascoe, and D. Morse. FieldNote: A
handheld information system for the field. In 1st Int’l
Workshop on TeloGeoProcessing, pages 156–163, 1999.

[21] A.-P. Sistla, O. Wolfson, and Y. Huang. Minimization
of communication cost through caching in mobile
environments. IEEE Transactions on Parallel and
Distributed Systems, 9(4):378–390, 1998.

[22] R. Want et al. An overview of the PARCTab
ubiquitous computing environment. IEEE Personal
Communications, 2(6):28–33, 1995.

[23] Y. Yao and J. Gehrke. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Record, September 2002.

	A Query-Centered Perspective on Context Awareness in Mobile Ad Hoc Networks
	Recommended Citation
	A Query-Centered Perspective on Context Awareness in Mobile Ad Hoc Networks

	tmp.1469562486.pdf.aFGuI

	Abstract: Abstract: The wide-spread use of mobile computing devices has
led to an increased demand for applications that operate dependably in opportunistically formed networks. A promising approach to supporting software development for such dynamic settings is to rely on the context-aware computing paradigm, in which an application views the state of the surrounding ad hoc network as a valuable source of contextual information that can be used to adapt its behavior. Collecting context information distributed across a constantly changing network remains a significant technical challenge. With this in mind, we propose a query-centered approach to simplifying context interactions in mobile ad hoc networks. With our approach, an application programmer views the surrounding world as a single data repository over which descriptive queries can be issued. Queries may be transient, or may be more durable persistent queries that react to changes in data or the network. Processing such queries entails the creation and maintenance of a distributed overlay data structure whose size needs to be under application control. A high level of flexibility is achieved by judicious usage of mobile code fragments. In this paper, we present the design and implementation of our query service for ad hoc networks.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: March 1, 2005
	Author: Authors: Payton, Jamie; Simon, Cheryl; Roman, Gruia-Catalin
	Title: A Query-Centered Perspective on Context Awareness in Mobile Ad Hoc Networks
	ReportNumber: 2005-8
	DepartmentName: Department of Computer Science & Engineering

