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Abstract. Active Queue Management (AQM) is an important problem
in networking. In this paper, we propose a general functional optimiza-
tion model for designing AQM schemes. Unlike the previous static func-
tion optimization models based on the artificial notion of utility function,
the proposed dynamic functional optimization formulation allows us to
directly characterize the desirable system behavior of AQM and design
AQM schemes to optimally control the dynamic behavior of the system.
Such a formulation also allows adaptive control which enables the AQM
scheme to continuously adapt to dynamic changes of networking con-
ditions. In this paper, we present the Pontryagin minimum principle, a
necessary condition, for the functional optimization model of AQM with
TCP AIMD congestion control. As an example, we investigate a queu-
ing stability criteria and apply the necessary conditions to optimize the
functional model.

1 Introduction

Active Queue Management (AQM) is an important problem in networking. This
paper presents a functional optimization model for designing AQM schemes.

Starting from the initial work of F. Kelly et al. [6, 8, 7], there have been great
interests in a utility function optimization model for designing AQM schemes.
The model assumes that each user has a utility function which the user tries
to maximize. The objective of the system is to maximize the summation of
user utility functions subject to the resource (link capacity) constraints. This
constrained function optimization problems is then solved using either penalty
function methods [6, 8, 7, 9, 11] or duality model methods [13, 12, 2].

Various AQM schemes [10, 2], are derived so that each end hosts and each
router can carry out a distributed algorithms in such a way that the whole sys-
tem asymptotically solves the function optimization problem. Assuming that
the utility functions are continuously differentiable, strictly concave, and mono-
tonically increasing, various stability results have been established which show
that the system will asymptotically converge to the optimal solution as time
approaches infinity.
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There are two major problems with such a function optimization model.
First, the utility function may not be a realistic objective. The utility function is
artificially introduced as the goal of the AQM schemes, and does not necessarily
characterize the desirable objective of networking systems. Second, the function
optimization model is static (assuming no flow will die and no new flow will join)
and the stability results only analyze the asymptotic behavior of the system.
However, in real applications, networking conditions is constantly changing, the
static assumption is violated, and the stability results may not be useful.

To address the limitations of existing methods, we propose in this paper a
new dynamic functional optimization model of AQM. A functional is a map-
ping from the curves into a numerical value. We take end host source rates and
queuing lengths as state variables and dropping/marking probabilities as control
variables. All these system variables evolve with time and correspond to bundles
of curves that characterize the system behavior. The system objective of AQM
are defined as a functional of these system curves. In addition, the relation-
ship between state variables and control variables are specified in system control
functions. Based on the theory of calculus of variations, we develop the Pon-
tryagin minimum principle for the proposed functional optimization model of
AQM with TCP AIMD (Additive-Increase, Multiplicative-Decrease) congestion
control mechanism.

The functional optimization model proposed in this paper is significant for
two reasons. First, it provides us the flexibility and accuracy to directly specify
the design objective of AQM schemes as functional of dynamic system variables.
We can also incorporate addition side constraints to further define the desir-
able operating regions of the system. Second, the functional optimization model
enables the AQM scheme to continuously adapt to changes of networking con-
ditions through adaptive control, so that the system always follows the optimal
control trajectory based on current networking conditions.

The paper is organized as follows. In Section 2, we overview related previous
work in AQM. In Section 3, we present a general framework of functional opti-
mization models for AQM. Section 4 presents Pontryagin minimum principle, a
necessary condition for optimal solutions to the AQM model with TCP AIMD
congestion control. In Section 5, we present an example of applying the minimum
principle to a queuing stability criteria. Section 6 concludes the paper.

2 Previous Work

Previous work in AQM, including RED, FRED, SRED, BLUE, stochastic blue,
etc, adapts the dropping/marking probability using heuristic rules in order to
achieve various system objectives, including fairness, high link utilization, stabi-
lized queue length, etc. The newly developed PAQM [5] scheme predicts future
traffic using a LMMSE predictor and adapts the dropping probability using a
controller stabilizing the queue length based on the traffic prediction.

We briefly review previous work on the utility function optimization model
in the following. Adopting the following system model described by F. Kelly and
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R. Srikant in [6, 11], consider a network with a set L of links and let Cl be the
capacity of link l, for l = 1, · · · , |L|. Let a route r be a non-empty subset of L,
and let R be the set of possible routes. Let S be a |R| × |L| matrix, set Srl = 1
if l ∈ r; so that route r traverses link l and set Srl = 0 otherwise. Let route r
generates at rate xr .

The rate xr is assumed to have a utility Ur(xr) to user r. Assume that Ur(·) is
a continuously differentiable, strictly concave, increasing function in the interval
(0,∞) and assume that Ur(xr) is unbounded as xr approaches 0 to ensure that
each user gets some non-zero throughput. Examples of such a function include
log(xr) and −1/xr. Let C = (Cl, l ∈ L), the optimal rates for this network
can now be obtained by solving the following constrained function optimization
problem:

maximizex

|R|
∑

r=1

Ur(xr) (1)

subject to ST x ≤ C

There are two major approaches to solve this constrained optimization prob-
lem: penalty function methods [6, 8, 7, 9, 11] or duality model methods [13, 12, 2].
Various AQM schemes, such as AVQ [10] and REM [2], are proposed based on
this model and in essence carry out a distributed optimization algorithm solving
(1). AVQ maintains a virtual queue with adjustable size and uses input rate as
congestion index. Asymptotic stability of AVQ is proved based on a single link
model. REM uses a quantity called price to feedback the congestion index to
end users. Local asymptotic stability of REM is proved based on a multiple link
model.

The system goal of this model, i.e. utility function, is artificially introduced
in order to establish the model. Theoretic analysis typically first derive the dis-
tributed algorithms for end hosts and routers and try to fit the distributed
algorithm into end hosts’ congestion control scheme. Since most end hosts are
using the AIMD algorithm of TCP, the utility function has to take a particular
form in order for TCP to be the local algorithm for end users. Therefore, the
utility function objective may not be realistic and there exists a major discrep-
ancy between actual AQM system objective and the utility function objective.
The utility function model may not necessarily characterize the desirable system
behavior.

Various asymptotic stability results of the distributed algorithms are
proved [6, 8, 7, 9, 11, 2, 15]. The asymptotic stability results ensures that the sys-
tem will approach the optimal solution to the utility function optimization model
as time approaches infinity. The assumption of the stability property is that the
system is static, i.e. no route will die and no new route will join, which is not
true in real computer networks.
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3 Functional Optimization Model of AQM

From the point view of dynamic optimization, we proposed the following func-
tional optimization formulation for AQM. The dynamic system Υ evolves with
time t and contains both state variables, control variables, and control functions
governing the dynamics of the system.

State of system Υ can be described by the input rate of each user and the
queue length at each router. Therefore, system Ψ has the following state variables
at time t: xr(t) for r = 1, · · · , |R|, and ωl(t) for l = 1, · · · , |L|, where ωl(t)
denotes the queue length of router l at time t. More congestion indexes can
also be added into the state variables. Since we assume the congestion control
policy at end hosts is fixed, the only control variables of the system is pl(t), the
dropping probability of router l at time t, for l = 1, · · · , |L|. If we also want to
design the congestion control policy at end hosts, its control parameters should
also be included in the control variables and be determined by optimization.

Therefore, we have the following state vectors at time t:

x(t) = (x1(t), x2(t), · · · , x|R|(t))
T , (2)

and ω(t) = (ω1(t), ω2(t), · · · , ω|L|(t))
T (3)

and the following control vector:

p(t) = (p1(t), p2(t), · · · , p|L|(t))
T . (4)

In general, we assume that system Υ is governed by control functions:

∆x(t) = Gx(x(t), ω(t), p(t), t), (5)

and ∆ω(t) = Gω(x(t), ω(t), p(t), t), (6)

where the general operator ∆ means differentiation for continuous-time systems
and difference for discrete-time systems.

Since each state variable or control variable corresponds to a curve (contin-
uous or discrete) along the time dimension, the system is composed of several
bundles (a bundle is a vector of curves). Let x denote the bundle of x(t), ω de-
note the bundle of ω(t), and p denote the bundle of p(t), the objective of AQM
is to find the bundle p which forces the system, from any given initial state x(0)
and ω(0), to evolve while minimizing the following functional:

minimizep J [x, ω, p], (7)

subject to the system control dynamics in (5) and (6), where J is a functional
(a mapping from a set of curves to a numerical value) defining the performance
objective of an AQM scheme. Typical goals of AQM schemes include stabiliz-
ing queue lengths, maximizing link utilization, minimizing packet loss ratios,
and providing fairness guarantees. Such criteria can be readily defined in the
functional J .
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Unlike the formulation of utility function optimization, which is unrealistic
and only concerns about the asymptotic behavior, the functional formulation
provides the power of dynamically specifying the system objective on real-time
behavior, without recourse to artificial utility functions. In addition, based on
the optimal control function obtained from the functional optimization model,
the routers can perform continuous replanning when a existing route terminates
or a new route joins. Such an adaptive control process enables the AQM scheme
to continuously adapt to changes of networking conditions and follow the optimal
control trajectory based on current networking conditions.

Under this general functional analysis formulation, there are two major design
issues to be considered.

a) Discrete-time system vs. continuous-time system. We study discrete-time
system in this paper, because in real implementation, a router cannot con-
tinuously adapt the control variables (dropping probabilities). Instead, the
control variables are updated at discrete time points. Moreover, optimal
continuous-time control can be obtained from discrete-time results by limit-
ing the time unit to infinitesimal.

b) Dynamics of end host traffic rate. The AIMD (Additive-Increase,
Multiplicative-Decrease) scheme of TCP is the most widely used conges-
tion control policy in the Internet. Other schemes, such as MIMD, are also
actively studied. PAQM [5] provides a novel scheme in which the traffic
rate is not modeled by end-host protocol, but instead predicted based on
the long-range dependence property of Internet traffic. We study the AIMD
dynamics of TCP in this paper.

4 Pontryagin Minimum Principle for AQM with TCP

Calculus of variations is the major tool for attacking functional optimization
problems. In this section, we derive the Pontryagin minimum principle for dis-
crete system Υ with TCP AIMD schemes at end hosts. Following the classic
formulation of discrete calculus of variations [3], for a system with planning
horizon N , we need to find the discrete-time bundle p of dropping probabilities
in order to minimize the functional:

J [x, ω, p] =

N+1
∑

t=0

F (t, x(t), ω(t), p(t)) (8)

subject to system control functions, where F is a scalar function which has
continuous derivatives with respect to elements in x(t), ω(t), p(t).

It has been derived from numerous papers [12, 14, 9] that the AIMD algorithm
of TCP can be modeled as,

∆xr(t) = xr(t + 1) − xr(t) =
1

d2
− βx2

r(t)

|L|
∑

l=1

Srlpl(t), ∀r = 1, · · · , |R| (9)
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based on the simplifying assumption that all routes have round-trip delay d and
that link losses are independent [9]. Constant β is derived as 1/2 in [12], ln2
in [9], and 2/3 in [14]. For simplicity, we set β = 1/2 in this paper.

The dynamics of the queue length at each router are as follows:

∆ωl(t) = ωl(t + 1) − ωl(t) = (1 − pl(t))

|R|
∑

r=1

Srlxr(t) − Cl, ∀l = 1, · · · , |L|(10)

Summing up, the functional optimization model for AQM with AIMD con-
gestion control of TCP can formulated as follows:
SY STEM Υ (x, ω, p):

minimizep J [x, ω, p] =

N+1
∑

t=0

F (t, x(t), ω(t), p(t)), (11)

subject to:

xr(t + 1) = Ψr(x(t), p(t))

= xr(t) +
1

d2
−

x2
r(t)

2

|L|
∑

l=1

Srlpl(t), ∀r = 1, · · · , |R| (12)

ωl(t + 1) = Ωl(ω(t), x(t), p(t))

= ωl(t) + (1 − pl(t))

|R|
∑

r=1

Srlxr(t) − Cl, ∀l = 1, · · · , |L| (13)

where the initial states x(0) and ω(0) are known.
We apply the method of calculus of variations to solve this problem. We

introduce the Lagrange multiplier to formulate the Hamiltonian function of
SY STEM Υ (x, ω, p), and derive the Pontryagin minimum principle, a neces-
sary condition for optimal solutions to the system.

We introduce the following Lagrangian function:

Γ =

N+1
∑

t=0

(

F (t, x(t), ω(t), p(t))

)

+

N
∑

t=0

(

λT (t)[Ψ(x(t), p(t)) − x(t + 1)]

+ µT (t)[Ω(ω(t), x(t), p(t)) − ω(t + 1)]

)

(14)

where λ(t) is an |R|-element vector and µ(t) is an |L|-element vector. Both λ(t)
and µ(t) serve as Lagrange multipliers in (14). Ψ and Ω are vectors of functions
defined in (12) and (13), respectively.

We proceed to define the Hamiltonian function of the system based on the
Lagrangian formulation.

Definition 1. The Hamiltonian function of SY STEM Υ (x, ω, p) is defined as:

H(t, x(t), ω(t), p(t)) = F (t, x(t), ω(t), p(t)) + λT (t)Ψ(x(t), p(t))

+µT (t)Ω(ω(t), x(t), p(t)), t = 0, 1, · · · , N
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Based on variational calculus theory, we present in the following theorem a
necessary condition for optimal solutions to SY STEM Υ (x, ω, p). Define ⊙ to
be the vector multiplication operator (for two vectors u and v with same length
k, u ⊙ v = z, where zi = ui ∗ vi for i = 1, 2, · · · , k), the necessary condition is
stated as follows:

Theorem 1. Pontryagin minimum principle for SY STEM Υ (x, ω, p). For
any solution to SY STEM Υ (x, ω, p), there must exist bundles λ and µ so that
the following equations are satisfied:

λ(t − 1) = λ(t) − λ(t) ⊙ x(t) ⊙ [Sp(t)] + S[µ(t) − µ(t) ⊙ p(t)] + ▽x(t)F,

t = 1, 2, · · · , N (15)

µ(t − 1) = µ(t) + ▽ω(t)F, t = 1, 2, · · · , N (16)

0 = −
1

2
ST [λ(t) ⊙ x(t) ⊙ x(t)] − µ(t) ⊙ [ST x(t)] + ▽p(t)F,

t = 0, 1, · · · , N (17)

λ(N) = ▽x(N+1)F and µ(N) = ▽ω(N+1)F (18)

Proof. According to the theory of Lagrange multipliers in continuous space [1],
the necessary conditions for solving SY STEM(x, ω, p) is that x, ω, p should
extremize Γ . We extremize Γ with respect to x(t):

▽x(t)Γ = −λ(t − 1) + ▽x(t)H(t, x(t), ω(t), p(t)) (19)

= −λ(t − 1) + ▽x(t)

(

F (t, x(t), ω(t), p(t)) + λT (t)Ψ(x(t), p(t))

+ µT (t)Ω(ω(t), x(t), p(t))

)

= 0, t = 1, 2, · · · , N (20)

▽x(N+1)Γ = −λ(N) + ▽x(N+1)F = 0 (21)

with respect to ω(t):

▽ω(t)Γ = −µ(t − 1) + ▽ω(t)H(t, x(t), ω(t), p(t)) (22)

= −µ(t − 1) + ▽ω(t)

(

F (t, x(t), ω(t), p(t))

+ µT (t)Ω(ω(t), x(t), p(t))

)

= 0, t = 1, 2, · · · , N (23)

▽ω(N+1)Γ = −µ(N) + ▽ω(N+1)F = 0 (24)

and with respect to p(t):

▽p(t)Γ = ▽p(t)H(t, x(t), ω(t), p(t)) (25)

= ▽p(t)

(

F (t, x(t), ω(t), p(t)) + λT (t)Ψ(x(t), p(t))

+µT (t)Ω(ω(t), x(t), p(t))

)

= 0, t = 0, 1, · · · , N (26)
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From (12) and (13), for x(t), we have:

▽x(t)[λ
T (t)Ψ(x(t), p(t))] = λ(t) − λ(t) ⊙ x(t) ⊙ [Sp(t)] (27)

▽x(t)[µ
T (t)Ω(ω(t), x(t), p(t))] = S[µ(t) − µ(t) ⊙ p(t))] (28)

For ω(t), we have:

▽ω(t)[µ
T (t)Ω(ω(t), x(t), p(t))] = µ(t), (29)

and, for p(t), we have:

▽p(t)[λ
T (t)Ψ(x(t), p(t))] = −

1

2
ST [λ(t) ⊙ x(t) ⊙ x(t)] (30)

▽p(t)[µ
T (t)Ω(ω(t), x(t), p(t))] = −µ(t) ⊙ [ST x(t)] (31)

Substituting the derivatives in (27) - (31) into (20), (23), and (26), we get:

λ(t − 1) = λ(t) − λ(t) ⊙ x(t) ⊙ [Sp(t)] + S[µ(t) − µ(t) ⊙ p(t)) + ▽x(t)F (32)

µ(t − 1) = µ(t) + ▽ω(t)F (33)

0 = −
1

2
ST [λ(t) ⊙ x(t) ⊙ x(t)] − µ(t) ⊙ [ST x(t)] + ▽p(t)F (34)

The theorem is proved after combining (21), (24), (32), (33), and (34). �

Theorem 1 is important in that, combined with the system control functions
(12) and (13), it provides a system of first-order difference equations whose
solution will in general lead to the optimal solution of SY STEM Υ (x, ω, p). We
present an example of applying Theorem 1 in the next section.

5 An Example: Queuing Stability Criteria

Stability of queuing is a very important objective of AQM. A stable queue
length enables full utilization of link capacity while not incurring excessive packet
loss. To stabilize queue lengths, we define the following functional objective for
SY STEM Υ (x, ω, p):

J [x, ω, p] =

N+1
∑

t=0

(ω(t) − ω∗)T (ω(t) − ω∗) (35)

where ω∗ is a constant denoting the desirable queue length.
We apply Theorem 1 to this criteria. Let [x]ab = x if a ≤ x ≤ b, [x]ab = a if

x > a, and [x]ab = b if x < b, we have the following result:

Theorem 2. For SY STEM Υ (x, ω, p) with functional in (35), the optimal con-
trol of dropping probability p(t) is, ∀t = 0, 1, · · · , N :

pl(t) =

[

1 −
ω∗ + Cl − ωl(t)
∑|R|

r=1 Srlxr(t)

]1

0

, l = 1, 2, · · · , |L| (36)
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Proof. Since in this example,

F (t, x(t), ω(t), p(t)) = (ω(t) − ω∗)T (ω(t) − ω∗) (37)

we have:

▽x(t)(F (t, x(t), ω(t), p(t)) = 0 (38)

▽ω(t)(F (t, x(t), ω(t), p(t)) = 2(ω(t) − ω∗) (39)

▽p(t)(F (t, x(t), ω(t), p(t)) = 0 (40)

Substituting (38), (39) and (40) into the necessary conditions of Theorem 1
yields:

λ(t − 1) = λ(t) − λ(t) ⊙ x(t) ⊙ [Sp(t)] + S[µ(t) − µ(t) ⊙ p(t)],

t = 1, 2, · · · , N (41)

µ(t − 1) = µ(t) + 2(ω(t) − ω∗), t = 1, 2, · · · , N (42)

0 = −
1

2
ST [λ(t) ⊙ x(t) ⊙ x(t)] − µ(t) ⊙ [ST x(t)],

t = 0, 1, · · · , N (43)

λ(N) = 0, and µ(N) = 2(ω(N + 1) − ω∗) (44)

In order to solve the control variable p(t), we substitute the control function (13)
into (42) and expand (42) in scalar form as:

µl(t) = µl(t + 1) + 2(ωl(t) + (1 − pl(t))

|R|
∑

r=1

Srlxr(t) − Cl − ω∗)

l = 1, 2, · · · , |L|, t = 0, 1, · · · , N − 1 (45)

which can be rewritten as, ∀l = 1, 2, · · · , |L|, t = 0, 1, · · · , N − 1:

pl(t) = 1 −
µl(t)−µl(t+1)

2 + ω∗ + Cl − ωl(t)
∑|R|

r=1 Srlxr(t)
(46)

Similarly, substituting (13) into (44) gets, ∀l = 1, 2, · · · , |L|:

pl(N) = 1 −
µl(N)

2 + ω∗ + Cl − ωl(N)
∑|R|

r=1 Srlxr(N)
(47)

The optimal control of dropping probabilities p(t) can be solved using a backward
iterative process. At the first iteration, we start from λ(N) = 0, substitute it
into (43) to yield µ(N) = 0, which is then substituted into (47) to get:

pl(N) =

[

1 −
ω∗ + Cl − ωl(N)
∑|R|

r=1 Srlxr(N)

]1

0

, l = 1, 2, · · · , |L| (48)
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The dropping probability is bounded in [0, 1] and is set to be on the boundary
when out of feasible range [4].

We then substitute λ(N) = 0 and µ(N) = 0 into (41) and get λ(N − 1) = 0
to start the second iteration. At the second iteration, we substitute λ(N −1) = 0
into (43) to yield µ(N−1) = 0, substitute µ(N−1) = 0 into (46) to get p(N−1),
substitute λ(N − 1) = 0 and µ(N − 1) = 0 into (41) and get λ(N − 2) = 0 to
start the next iteration. Repeat the backward iteration until t = 0 will yield the
optimal control functions for p(t), t = 0, 1, · · · , N in (36). �

To implement (36), at time t, a router l, l = 1, 2, · · · , |L| can observe Cl

and ωl(t). Although router l does not know all the xr(t) for r = 1, 2, · · · , |R|,

but all it needs to know is the aggregated traffic
∑|R|

r=1 Srlxr(t), which can be
observed at the router. The queuing stability criteria studied is an illustration of
applying Theorem 1. We may need more sophisticated functional criteria which
can take more effective or multiple criteria, e.g. low loss ratio, fairness, etc., into
consideration.

6 Conclusions

In this paper, we have proposed a general functional optimization model for
designing AQM schemes. The proposed dynamic functional optimization formu-
lation models AQM as an optimal control problem and enables dynamic op-
timization of system behavior based system states, including input rates and
queue length. Such a formulation also allows dynamic replanning which enables
the AQM scheme to continuously adapt to changes of networking conditions.

We have further developed the Pontryagin minimum principle, a necessary
condition, for the functional optimization model of AQM with TCP AIMD con-
gestion control. As an example, we have presented a queuing stability criteria
and apply the necessary conditions to optimize the functional model.

The proposed functional optimization model is general and flexible. There
are lots of interesting open issues to explored. We need to design more sophisti-
cated functional formulation to enforce the system to be controlled in the most
desirable way. We can also study multi-objective formulations through which
multiple conflicting system objectives can be balanced. Another important ex-
tension is incorporation of additional side constraints to the functional optimiza-
tion model. Variational theory can handle Lagrange constraints and isoperimet-
ric constraints [3]. We can specify constraints on various measures, such as link
utilization, packet loss ratio, and queuing delay. Side constraints will allow us to
define more precisely the desirable operating regions of the system, and rule out
unacceptable behavior of the system.
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