
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-58

2005-11-01

Context Aware Service Oriented Computing in Mobile Ad Hoc Context Aware Service Oriented Computing in Mobile Ad Hoc

Networks Networks

Radu Handorean, Gruia-Catalin Roman, and Christopher Gill

These days we witness a major shift towards small, mobile devices, capable of wireless

communication. Their communication capabilities enable them to form mobile ad hoc networks

and share resources and capabilities. Service Oriented Computing (SOC) is a new emerging

paradigm for distributed computing that has evolved from object-oriented and component-

oriented computing to enable applications distributed within and across organizational

boundaries. Services are autonomous computational elements that can be described,

published, discovered, and orchestrated for the purpose of developing applications. The

application of the SOC model to mobile devices provides a loosely coupled model for distributed

processing in a resource-poor... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Handorean, Radu; Roman, Gruia-Catalin; and Gill, Christopher, "Context Aware Service Oriented Computing
in Mobile Ad Hoc Networks" Report Number: WUCSE-2005-58 (2005). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/974

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/974?utm_source=openscholarship.wustl.edu%2Fcse_research%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/974

Context Aware Service Oriented Computing in Mobile Ad Hoc Networks Context Aware Service Oriented Computing in Mobile Ad Hoc Networks

Radu Handorean, Gruia-Catalin Roman, and Christopher Gill

Complete Abstract: Complete Abstract:

These days we witness a major shift towards small, mobile devices, capable of wireless communication.
Their communication capabilities enable them to form mobile ad hoc networks and share resources and
capabilities. Service Oriented Computing (SOC) is a new emerging paradigm for distributed computing
that has evolved from object-oriented and component-oriented computing to enable applications
distributed within and across organizational boundaries. Services are autonomous computational
elements that can be described, published, discovered, and orchestrated for the purpose of developing
applications. The application of the SOC model to mobile devices provides a loosely coupled model for
distributed processing in a resource-poor and highly dynamic environment. Cooperation in a mobile ad
hoc environment depends on the fundamental capability of hosts to communicate with each other. Peer-
to-peer interactions among hosts within communication range allow such interactions but limit the scope
of interactions to a local region. Routing algorithms for mobile ad hoc networks extend the scope of
interactions to cover all hosts transitively connected over multi-hop routes. Additional contextual
information, e.g., knowledge about the movement of hosts in physical space, can help extend the
boundaries of interactions beyond the limits of an island of connectivity. To help separate concerns
specific to different layers, a coordination model between the routing layer and the SOC layer provides
abstractions that mask the details characteristic to the network layer from the distributed computing
semantics above. This thesis explores some of the opportunities and challenges raised by applying the
SOC paradigm to mobile computing in ad hoc networks. It investigates the implications of disconnections
on service advertising and discovery mechanisms. It addresses issues related to code migration in
addition to physical host movement. It also investigates some of the security concerns in ad hoc
networking service provision. It presents a novel routing algorithm for mobile ad hoc networks and a
novel coordination model that addresses space and time explicitly.

https://openscholarship.wustl.edu/cse_research/974?utm_source=openscholarship.wustl.edu%2Fcse_research%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/974?utm_source=openscholarship.wustl.edu%2Fcse_research%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages

WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CONTEXT AWARE SERVICE ORIENTED COMPUTING

IN MOBILE AD HOC NETWORKS

by

Radu Handorean

Prepared under the direction of

Professors Gruia-Catalin Roman and Christopher Gill

A dissertation presented to the Henry Edwin Sever Graduate School of

Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF SCIENCE

December 2005

Saint Louis, Missouri

WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

CONTEXT AWARE SERVICE ORIENTED COMPUTING

IN MOBILE AD HOC NETWORKS

by

Radu Handorean

ADVISOR:

Professors Gruia-Catalin Roman and Christopher Gill

December 2005

Saint Louis, Missouri

These days we witness a major shift towards small, mobile devices, capable of wireless
communication. Their communication capabilities enable them to form mobile ad hoc
networks and share resources and capabilities.

Service Oriented Computing (SOC) is a new emerging paradigm for distributed com-
puting that has evolved from object-oriented and component-oriented computing to
enable applications distributed within and across organizational boundaries. Services
are autonomous computational elements that can be described, published, discovered,
and orchestrated for the purpose of developing applications.

The application of the SOC model to mobile devices provides a loosely coupled
model for distributed processing in a resource-poor and highly dynamic environment.
Cooperation in a mobile ad hoc environment depends on the fundamental capability of
hosts to communicate with each other. Peer-to-peer interactions among hosts within
communication range allow such interactions but limit the scope of interactions to
a local region. Routing algorithms for mobile ad hoc networks extend the scope of
interactions to cover all hosts transitively connected over multi-hop routes. Additional
contextual information, e.g., knowledge about the movement of hosts in physical
space, can help extend the boundaries of interactions beyond the limits of an island
of connectivity.

To help separate concerns specific to different layers, a coordination model between
the routing layer and the SOC layer provides abstractions that mask the details
characteristic to the network layer from the distributed computing semantics above.

This thesis explores some of the opportunities and challenges raised by applying
the SOC paradigm to mobile computing in ad hoc networks. It investigates the
implications of disconnections on service advertising and discovery mechanisms. It
addresses issues related to code migration in addition to physical host movement. It
also investigates some of the security concerns in ad hoc networking service provi-
sion. It presents a novel routing algorithm for mobile ad hoc networks and a novel
coordination model that addresses space and time explicitly.

To my family. They all paid too much for my endeavour.

Contents

List of Figures . vii

1 Introduction . 1

1.1 Background . 1

1.2 Technological Trends . 2

1.3 Research Trends . 3

1.4 Technical Contributions . 5

1.5 Significance . 7

2 Overview of Tuple Space Coordination in Ad Hoc Networks . . . 10

3 Security Issues . 15

3.1 Introduction . 15

3.2 Secure Tuple Spaces . 17

3.3 Secure Communication . 19

3.4 Secure Tuples Inside Tuple Spaces . 21

3.5 Summary . 24

4 Service Oriented Computing in Ad Hoc Networks 27

4.1 Introduction . 27

4.2 Related Work and Motivation . 30

4.2.1 Related Work Overview . 30

4.2.2 Challenges in Ad Hoc Networks. 34

4.3 Runtime Environment . 36

4.3.1 Service Repositories . 36

4.3.2 Service Advertisement . 37

4.3.3 Service Discovery . 38

4.3.4 Service Utilization . 40

4.3.5 Service Upgrade . 41

iv

4.4 Follow-me Sessions . 47

4.4.1 Services In the Presence of Mobility 47

4.4.2 Building Blocks . 49

4.4.3 Mechanisms Employed for Continuous Service Provision . . . 54

4.4.4 Decision Algorithm . 61

4.5 Summary . 71

5 Disconnected Routing . 75

5.1 Introduction . 75

5.2 Motivation and Related Work . 77

5.3 Transient Connectivity . 81

5.3.1 Connectivity Intervals and Message Paths 81

5.3.2 Discontinuities and Non-Symmetric Paths 83

5.4 Problem Formalization . 83

5.5 Solution . 85

5.5.1 Basic Global Oracular Algorithm 85

5.5.2 Tree Algorithm Complexity Analysis 89

5.5.3 Advanced Global Oracular Algorithm 90

5.5.4 Exchanging and Using Partial Information About the Future . 93

5.5.5 Recording the Past for Future Efficiency 95

5.6 Complexity . 99

5.6.1 Building the Routing Table. 99

5.6.2 Using the Table. 100

5.6.3 Maintaining the Table. 101

5.7 Summary . 103

6 Coordination Across Time and Space 104

6.1 Introduction . 104

6.2 Motivation and Contribution . 106

6.3 Spatio-Temporal Coordination . 111

6.3.1 Mobile Tuples . 113

6.3.2 Reachability . 115

6.3.3 The OUT Operations . 119

6.3.4 The RD Operations . 121

6.3.5 The IN Operations . 126

v

6.3.6 Reactions . 128

6.3.7 Acquaintance Lists . 130

6.4 Formal Specification of Key Semantic Constraints 131

6.4.1 Static Primitives . 132

6.4.2 Dynamic Primitives . 139

6.5 Summary . 142

7 Future Work . 143

8 Conclusions . 147

References . 148

Vita . 159

vi

List of Figures

2.1 Tuple and template. 11

2.2 Transient sharing of tuple spaces. Each of the three slices are the

A’s, B’s, and C’s local “Cheese” tuple spaces and form the federated

“Cheese” tuple space. 12

3.1 Interceptors secure wireless communications. 20

3.2 The execution of an in operation matching a read-only tuple. Agent1

is able to retrieve the tuple because it provides the (correct) remove-

password, while Agent2 blocks because its template, even when it

matches the data part of the tuple, does not satisfy the security re-

quirements. 22

3.3 The tuple space interaction operations. 23

3.4 Adding fields and the matching policy to a tuple. 24

3.5 Secure Lime architecture. 25

4.1 A service advertisement is discovered but the service responsible is no

longer available. 35

4.2 A client and a service provider need a service registry to establish contact. 35

4.3 Transient sharing of tuple spaces with service advertisements and bi-

nary code. 37

4.4 Federated code repository - proxies and their dependencies. 40

4.5 Proxy advertisement, discovery, installation, and utilization. 42

4.6 Architecture supporting run-time service upgrades. 44

4.7 Interactions between components of the service upgrade mechanism. . 46

4.8 Follow-me session components. 48

4.9 Content-based communication supported by tuple spaces helps deliver

location agnostic protocols. 54

4.10 Context sensitive binding and location agnostic protocols. 57

4.11 Process migration. 59

vii

4.12 Temporary disconnection. 60

4.13 Take back. 62

4.14 Types of applications. 63

4.15 Sample FMS and mobile hosts configuration. 64

4.16 FMS transfer from one host to another. 65

4.17 Sample mobile host configuration to illustrate the decision algorithm. 67

4.18 The decision graph for the mobile hosts evolution depicted in the figure

above. 73

4.19 As motion profile information is learned, more woops can be discovered. 74

5.1 Routing protocols in mobile ad hoc networks. 78

5.2 Connectivity intervals. 81

5.3 Connectivity intervals. 82

5.4 Mobile disjoint connectivity. The arrow indicates how the host moves,

while the dashed line indicates a wireless connection between two hosts. 83

5.5 Non-symmetric message paths. 83

5.6 Sample pairwise connectivity (global view). 86

5.7 Candidate paths for a message sent by host a. 86

5.8 Route-building tree. 88

5.9 The routing table built for reference node s. 92

5.10 The route table building algorithm. 92

5.11 Reachability time. 93

5.12 Learning profile information. 95

5.13 Potential deadlock in message delivery. 98

5.14 The new window between c and d is discovered to take place at tm. . 102

6.1 Traffic jam and smart intersection . 109

6.2 The temporal qualifications of a tuple. 114

6.3 P2P interactions between a, b, c, and d. 116

6.4 Motion profile information dissemination. 117

6.5 1. Hosts a and d in their disjoint configurations at moment n. Host c

is connected to a at this time. 2. At moment n+1 host c is no longer

in (transitive) touch with a but it is with d. 117

6.6 A one-way path is needed for a successful out from a to d. 120

6.7 A tuple (top) and a template (below) matched by the tuple. 121

viii

6.8 A round trip path is needed for a successful rd from a to d. 124

6.9 Three trips are needed for a successful in from a to d. 126

6.10 Acknowledgements and negative acknowledgements. 127

6.11 Types of reactions. 129

6.12 Acquaintance lists maintained by a. 130

7.1 Both A’s and B’s locations can be affected by errors. 144

7.2 Extending the FMS. 146

ix

1

Chapter 1

Introduction

1.1 Background

Small, mobile computing devices steadily are becoming more and more part of our

everyday lives. More and more of them are wireless communication–enabled and

thus can engage in network communication with either an infrastructure deployed by

a service provider (e.g., a cell phone connecting to a base station) or directly with

each other (e.g., a laptop and a PDA can connect directly, in an ad hoc mode).

There is a myriad of applications that are needed only at some moments or some

places and therefore it makes no sense for a user to carry all of them around all

the time. These applications can be delivered only when and where needed, can be

executed by mobile computing devices anyone can carry, and can then be discarded

as soon as the goal is accomplished. For example, finding a parking spot in a garage

may be an application needed every morning when going to work, but it is useful

only for a few minutes and only around a parking garage. It makes no sense to carry

such an application on a PDA all day long only to use it the next day again, for a few

minutes. This class of applications is well served by dynamic discovery, utilization,

and discarding. This type of software exploitation offers a mobile device with limited

storage space and/or computational power, a potentially infinite set of applications it

can run, by using a natural time-sharing approach, consisting of discover-use-discard

cycles. The approach is known as the Service Oriented Computing (SOC) paradigm.

2

The networks formed by such devices (known to the research community as Mobile

Ad Hoc Networks, or MANETS), have a dynamic character, as the only infrastruc-

ture supporting them is entirely comprised of the mobile devices themselves that

communicate on-the-move, without base stations. Hosts within proximity of each

other opportunistically form a network which changes due to host mobility. An ad

hoc wireless network is a dynamic environment by necessity, which exhibits transient

interactions, decoupled computing, physical mobility of hosts, and logical mobility of

code. Such mobile devices both generate user and application traffic and carry out

network controls and routing protocols. Rapidly changing connectivity, network par-

titions, higher error rates, transmission collision interference, bandwidth and power

constraints together pose new problems which require special attention, as solutions

from the wired environment do not transfer transparently to these mobile settings.

1.2 Technological Trends

Technology has followed a path towards miniaturization and nowadays we can carry

in a shirt pocket more computational power than we had only years ago on an entire

desk. Calculator watches from the 80’s became data carriers for file transfer (watches

that connect to a computer via USB and can store as much as 512MB of data),

data banks (e.g., Casio dual display watches that can store and display and entire

addressbook on the glass on top of the regular dial, Swatch watches that can be used

for automatic payment at transportation facilities), and even computational platforms

running operating systems and Java Virtual Machines (IBM has developed a watch

that runs Linux, and Fossil deploys PalmOS on one of their watches).

PDAs and laptops are delivered these days with built-in adaptors for multiple wire-

less communication protocols including infrared, bluetooth, and ethernet. Even cell

phones that always connect to a base station to send and receive voice traffic, have

infrared and bluetooth communication capabilities for peer-to-peer interactions with

devices for wireless hands-free operation, or for addressbook synchronization with an-

other device. More and more, such devices also have built-in (or can accept) adaptors

for GPS localization, which makes them location aware.

3

All these devices, including the latest wireless sensors, can form ad hoc networks and

can take advantage of each other’s functionality. The PDA in a vehicle can connect to

a network of sensors in a garage to find an empty parking spot, a temperature sensor

can connect to a phone to announce fire danger, two children in different cars driving

along on a highway can play games over a wireless car-to-car link, and so forth.

1.3 Research Trends

These advances in hardware are both triggered and closely followed by advances in

software development. New types of applications are both needed and now possible.

Some existing applications can simply be augmented to work in an ad hoc networking

environment while others have to be completely redesigned as implicit assumptions

from the wired network (which are no longer valid in MANETS) may have impli-

cations for the semantics of the application itself (such as a transaction mechanism

which is no longer guaranteed connectivity for the entire length of a transaction) or

may just be too difficult to eliminate in the new setting. Entirely new applications

are now possible as well.

The research community has investigated challenges associated with infrastructure

discovery and maintenance (e.g., neighbor host discovery, routing algorithms for ad

hoc networks, etc.) [56], [69], [66], [107], [89], [46], [57], [61], [111], [92], etc., new ap-

plications (e.g., ad hoc schedule synchronization, etc.), new types of applications (e.g.,

mobile applications that can migrate from host to host, context-aware applications

that adapt to the user’s environment, etc.) [16], [78], [94], [3], [90], [34] middleware

systems to facilitate the development of these new types of applications (e.g., ser-

vice provision in ad hoc networks, coordination models deployed for ad hoc networks,

sensor networks programming middleware, etc.) The advance of hardware platforms

both rises new questions and demands new answers to problems already solved for

previously investigated environments. For example, the easy, centralized design of

many architectures in conventional, wired networks evolved to decentralized designs

for reliability reasons (to eliminate single points of failure), efficiency and convenience

(to have each part of a large system closer to where it is really used), security (to have

sensitive code and data protected more carefully), etc. In mobile ad hoc networks,

4

these challenges need new answers, even if, answers are already known in distributed

designs for reliable, wired networks.

The most basic element is the possibility for two hosts to simply communicate, i.e.,

to exchange a packet of information. This bare necessity is seriously challenged in

mobile ad hoc networks. The transient interactions between hosts and continuous

network reconfiguration require dynamic algorithms that discover and maintain com-

munication routes between hosts in an ad hoc community. The research in this area

has produced a plethora of algorithms each improving on the previous or addressing

a particular type of ad hoc network, or addressing a particular pattern of message

delivery for which it can yield a better performance than a general purpose routing

algorithm.

As routing algorithms execute at a low level, upper levels in a layered system ar-

chitecture are usually shielded from the issues specific to the layers below. This is

achieved via encapsulation of the solutions specific to certain problems into packages

specific to each layer. A coordination layer, usually delivered as middleware, away de-

tails related to communication by exposing a high level interface to be used by upper

layers which should not be concerned about anything else than the semantics of the

operations they need to perform themselves. The research community has addressed

the need for such coordination models in mobile add hoc networks to a significant

degree, though more needs to be done. Applications for mobile ad hoc networks are

concerned with how to deliver the desired functionality to their users and a coordi-

nation layer just below helps to encapsulate other low-level issues, like how to send a

message to a partner, how to synchronize execution with other applications’ progress

(e.g., to coordinate access to a resource), and so on. The various coordination models

investigated by the research community so far vary from tuple space coordination

semantics delivered in mobile ad hoc networks, to event-based coordination in ad hoc

networks, to software migration for purpose of local coordination (a popular approach

in the mobile agents research community, where such agents migrate and coordinate

directly when on the same physical host).

At the application layer, even in commonplace wired network environments, we are

used having access to applications we do not store on our machines, but rather ex-

ecute only when needed, e.g., over the internet via a web browser-friendly interface.

5

Listening to internet live radio feeds via a applet opened by a radio station’s web site,

registering for classes at school, booking a flight or hotel, etc., are all applications

that few store locally. We instead find them as we need them and then discard them

by simply closing a window. There is no reason for us to carry them around. This

approach is known as service oriented computing and it has seen its own evolutions of

models, culminating with what is known as web services. Service oriented computing

offers a complete solution to the problems of advertising, searching for, and utilizing,

previously undiscovered services (as opposed to the way we might register for classes

when we know which web page to visit for this particular purpose). While service ori-

ented computing seems promising for delivering software in mobile ad hoc networks,

especially where hosts have limited capabilities and therefore could use each other’s

functionality, the research community has only recently started to investigate this

area. Preliminary results are available in a number of areas but the field it not nearly

as mature as the others previously described.

1.4 Technical Contributions

My contributions are grouped into three layers: the top layer provides a service-

oriented computing middleware for mobile ad hoc networks; the middle layer is a

coordination model that exposes time and space explicitly to the user, and is also

targeted for mobile ad hoc networks; the bottom layer is a routing algorithm for

multi-hop communication in disconnected mobile ad hoc networks, which exploits

knowledge about hosts motions.

Service Oriented Computing in MANETS is the solution I identified as a novel

approach to provide software for mobile ad hoc networks. Applications deployed as

services can be discovered when and where needed, and easily discarded afterwards.

The SOC paradigm comes from traditional wired networks, and its transfer to mobile

ad hoc networks was a natural, useful, and yet non-trivial thing to do. In ad hoc

networks one often cannot connect to the Internet or other commonplace features of

the wired networking environment. On the other hand, a mobile device can allow

its user to discover applications when needed and where needed, such as finding a

payment service at a parking meter or highway tollbooth, a parking service that

6

helps a driver find a free spot in a garage. Issues related to service advertisement,

deployment, discovery, utilization, maintenance, migration, have their own specific

challenges and solutions in ad hoc networks. The description of my solutions to these

challenges follows in Chapter 4.

Coordination Across Time and Space is a novel coordination model, inspired

by the Linda coordination model, adapted to mobile ad hoc networks. It exposes

space and time explicitly to the user, allowing the user to schedule coordination

operations in the future, define the lifetime of operations, send them to specific hosts

or even specific geographic areas (assuming they are populated). This coordination

model takes advantage of contextual information made available by mobile hosts in

forms of motion profiles to identify collaboration partners and plan interactions. It

is the first coordination model that allows primitives to be scheduled to execute at a

particular moment, to be active between certain moments (e.g., allowing a search for

some data only between two given times). It is also the first coordination model that

allows primitives to execute in specific places (i.e., geographic locations). These new

features of the coordination model I developed are useful in mobile ad hoc networks,

where nodes aware of their location and future spatio-temporal evolution can schedule

interactions. The coordination layer serves to separate the upper SOC layer from the

lower routing layer so that their local do should not cross into each other’s layer. A

veneer to secure the interactions in the coordination model is presented in Chapter

3. The details of this coordination model are available in Chapter 6.

Disconnected Routing is a new routing algorithm for mobile hosts that uses knowl-

edge about host mobility to discover routes that can deliver messages from a source to

a destination. What sets this approach apart from the plethora of algorithms already

available is the use of contextual information to build potentially disconnected routes

from source to destination. A host can hop a message to the next host, where the

message can stay for a certain period of time and travel a certain distance in space,

and then hop to the recipient long after the source host has disconnected from the

intermediary carrier. This is fundamentally different from current approaches which

almost all search for end-to-end fully connected paths from source to destination

such that the message can be streamed from start to end rather than hopped on link

at a time. These algorithms work only in isolated islands of connectivity where all

hosts are connected with each other either directly, in a peer-to-peer relationship, or

7

transitively, over multi-hop fully connected routes. My algorithm goes beyond these

islands of transitive connectivity by allowing hosts in different such islands to be part

of the same message delivery route between two hosts. The algorithm is presented in

Chapter 5.

1.5 Significance

My research provides a solution for SOC in mobile ad hoc networks. My contributions

to each of the layers previously described not only take each one of them a step further,

but also provide building blocks for the complete solution I offer for context aware

service provision in mobile ad hoc networks. While the mobility of hosts is the main

source of problems in ad hoc networks, I use it to my advantage. I see in host mobility

not only disconnections and route breaks, but also an opportunity for hosts to meet

other hosts. Well exploited, host mobility can help increase inter-host collaboration.

Throughout my research, I have searched for those elements from the surrounding

environment that help turn host mobility to my advantage.

The use of motion profiles, assumed to be known for various durations in the future by

each host and exchanged with other hosts upon each encounter, is the key feature of

my research. The contributions of my work are the development of known mechanisms

from the wired environment into the wireless ad hoc networking environment, with

the main thrust being the use of the motion profiles. This has opened research paths

beyond just the resulting technology transfer. Analysis of known motion profiles has

helped my research and progress at all three layers: routing, coordination and SOC.

The disconnected routing algorithm was possible only because of the use of motion

profiles. After the initial work on peer-to-peer interactions, where hosts could only

collaborate with neighbors within their direct communication range (and therefore

the only important question was “am I in touch with the other host?”), new routing

algorithms extended this scope to include entire islands of connectivity by allowing

hosts to relay packets on behalf of others (making the important question become “am

I in transitive contact with the other host?”). Some algorithms do consider physical

location of hosts, such as geographic routing [63], [39], [107], [82], [59] (e.g., send a

8

message to the node the closest to some location). My routing algorithm takes this

trend a step further by enabling communication beyond a sender’s island of immediate

connectivity by taking advantage of (and paying a price for) additional contextual

information available in the form of motion profiles. My algorithm answers, based on

motion profile analysis, questions like “will I be able to talk to the other host”?, and

“will I be able to deliver this message at some location at some moment?”.

While the routing algorithm is concerned about delivering a message between two

points, the coordination layer above it searches for certain patterns in the discon-

nected routes the algorithm can discover. These patterns are characteristic to the

coordination primitives the model exposes to its users. I can thus provide coordina-

tion across space and time with the help of motion profiles. It is the first coordination

model that makes time and space explicitly available for manipulation by the user.

The user can explicitly request that a certain operation be executed at a specific time

at a specific place, as opposed to the limitation to “now” and “here” exhibited by

the currently known coordination models. “Now” means there is no explicit notion

of time. The coordination primitives execute as soon as they are invoked. Some may

exhibit a synchronous behavior and the “now” moment can extend until something

else happens and helps the primitive in question complete (e.g., a primitive may block

until a certain block of data is available). “Here” means the entity issuing the coor-

dination primitive is in contact (peer-to-peer (P2P) or transitive via fully connected

routes) with the place where the action takes place (e.g., a tuple space managed by

a centralized server, another agent on the same machine, a process at the other end

of a communication channel, etc.) Also, there is no sense of a lifetime of a primitive.

The primitives are active from invocation until completion.

My exhibits the notion of a lifetime for a primitive as well as for data exchanged

as part of the coordination that takes place (time-sensitive data is not a new idea,

especially in database research, but it was never before used in coordination models

research). It is also the first coordination model that accounts for (present and future)

physical location of entities being coordinated, such that data can be sent to or queried

from specific locations, no matter who is there to serve the reader. The coordination

primitives and data exchanged have their own profiles. Such a profile is built when the

operation is issued and defines the entire lifetime of the primitive. The programmer

delimits the active period and declares the target of interest (e.g., a particular host,

9

a particular zone), while the coordination layer translates this in a profile that takes

the primitive/data from the creator and carries it over disconnected routes to the

designated target, where is activated and destroyed as requested by the programmer.

This is the first coordination model that uses contextual information about motion

profiles to plan ahead of time what happens when and where, and who is involved. The

who part is enforced by a security veneer that provides means for secure coordination

in mobile ad hoc networks.

Once this easy interaction is available, my contribution to the SOC layer represents

a fundamentally new approach to delivering services in ad hoc networks. The new

approach I took to service advertisement, discovery, and utilization has resulted in

a completely distributed model, with no centralized single points of failure and with

strong consistency guarantees (e.g., if I discover a service, then I can really use it and

I didn’t discover a zombie advertisement not yet collected by some garbage collector).

This makes traditional service oriented computing, as we know it from wired networks,

work in ad hoc networks too. In addition to this, I provide a solution for runtime

upgrades to services, completely transparent to the client(s) using the service. It’s the

first such effort in service oriented computing. In addition, I allow the services to move

freely in an ad hoc network to better service their clients. This unprecedented level

of flexibility increases the degree of assistance clients get from their service providers.

The services can actually follow the client migrating from host to host to follow the

client’s machine as this moves in space and changes connectivity partners.

My overall contribution thus combines research at several levels of abstraction from

the networking layer to the application layer to provide context aware secure service

oriented computing in mobile ad hoc networks.

10

Chapter 2

Overview of Tuple Space

Coordination in Ad Hoc Networks

Coordination is a paradigm that promises to address some of the issues related to the

development of complex parallel and distributed systems. The development of such a

complex system can be imagined as made of two different parts: (1) computing : the

processes that manipulate the data and (2) coordination: the abstractions responsible

for enabling cooperation and communication among these processes. Coordination

thus distinguishes the computational concerns of such distributed systems from the

communication concerns, allowing the separate development and occasional intersec-

tion of these independent components of such systems. While there are multiple

definitions for the technical term “coordination model”, a short intuitive statement

can be found in [88]: “A coordination model is the glue that binds separate activities

into an ensemble.”

From the larger domain of all coordination models, I will describe a particular fam-

ily of models that use a shared dataspace to carry out the coordination, as these

models are related to and have influenced my research. A data space is a central,

content-addressable data structure [98]. All processes involved in coordination use

this data structure as a communication buffer between them. These processes can

post information in the shared dataspace, can read information or can remove infor-

mation from the dataspace. The information in the dataspace has a life span mainly

independent of the lifespan of the processes that published that data. The consumer

of some data doesn’t need to know the identity of the producer of that data as they

do not need to meet in order to exchange this data. A consumer retrieves data from

11

the shared dataspace by providing a description of the item the consumer is looking

for. If available, a matching item is returned to the consumer process.

The exact and detailed semantics of the operations that write, read, or remove items

from the dataspace vary among different specific models and various implementations

of coordination models based on shared dataspaces. The first coordination model in

this family, which inspired all all its successors is the Linda coordination model [37].

In Linda, the data published in the shared dataspace is in form of tuples and therefore

the shared dataspace is called a tuple space. A tuple is a sequence of fields, each field

having a type and a value. The coordination primitive out(tuple) puts the tuple in

the tuple space. To read a tuple from the tuple space a consumer needs to provide a

template and the rd(template) operation returns a tuple chosen nondeterministically

from all tuples available in the tuple space and that matches the template. A match

between a tuple and a template is declared if each field in the tuple matches the

corresponding field in the template. The field in the template can describe only the

type of data expected in the tuple field or may specify the requisite value as well.

<Integer(25), String(“Boat”), Location(Pacific)>
<Integer(25), String.(“Boat”), Location.class>

………..tuple
……...template

Figure 2.1: Tuple and template.

Figure 2.1 shows a tuple and a template matched by the tuple. The tuple has three

fields: the first is of type Integer and has the value 25; the second field if of type String

and has the value Boat and the third is of type Location and has the value Pacific.

The first field in the template requires the matching tuples to have a first field of

type Integer and with value 25. The second field is required to be of type String and

have the value Boat, while the third field is required to be of type Location but no

particular value is specified.

Two implementations of the Linda coordination model targeted to MANETs inspired

the middleware I will present in this document, and consisted the inspiration for the

coordination model I will describe in Chapter 6: Lime [80] and Limone [32]. The

active entities are called agents. An agent can be a thread of execution for an entire

application. Each agent has it’s own tuple spaces, identified by name. For simplicity,

12

I will assume there is only one tuple space per agent and each such local tuple space

has its own name.

The common and essential characteristic of these models is the transient sharing of

tuple spaces. In Lime, for example, when two agents are in touch (i.e., run on the

same host or on hosts within communication range), they can share their local tuple

spaces in a federated tuple space, if the local tuple spaces have the same name. Once

the tuple spaces are merged, each accesses the content of the federated tuple space

as if it was its own local tuple space. This means the scope of the coordination

operations performed by an agent on its local tuple space extends transparently to

the entire content of the federated tuple space.

brie

provolone

feta

Agent A

Agent B

Agent C

mozzarella

ricotta

blue cheese

Figure 2.2: Transient sharing of tuple spaces. Each of the three slices are the A’s, B’s,
and C’s local “Cheese” tuple spaces and form the federated “Cheese” tuple space.

For example, in Figure 2.2, Agents A, B, and C have each a local tuple space called

“Cheese”. Agent A has two tuples: “brie” and “provolone”. Similarly, Agent B has a

“feta” tuple, and Agent C has the “mozzarella”, “ricotta”, and “blue cheese” tuples.

Agents A and B are within communication range and they merged their local tuple

spaces in a federated “Cheese” tuple space. Both A and B can operate on this fed-

erated “Cheese” tuple space and see its entire content (i.e., “brie”, “provolone”, and

“feta”) as if this was the content of their own local tuple space (the figure shows local

tuple spaces in different shades of grey so they can be seen as separate contributors

to the federated tuple space). Agent C is on a machine too far from the hosts where

the other two agents are running. Therefore C has access only to its local inventory

of cheese. A similar discussion could be carried assuming C is within communication

range and therefore could share it’s tuple space with A and B, but C’s local tuple

space has a different name (e.g., “Dairy”) and will not be shared/merged with the

other two.

13

The primitives supported by Lime (originally introduced with the Linda coordination

model) for publishing, reading, and removing a tuple are out, rd, and, in, respectively.

If no matching tuple is found, rd and in block waiting for a matching tuple to appear.

There are non-blocking versions called probes (i.e., rdp and inp) who return a null

response without blocking if no tuples matched their template. Group operations

outg, rdg, and ing handle groups of tuples.

Lime supports a special type of operations: reactions. A reaction is a piece of code

associated with a template. When a tuple matching that template is found in the tuple

space, the code of the reaction is executed. Using reactions, agents can, for example,

search for tuples without staying blocked in a synchronous rd or continuously polling

using rdp.

The use of a coordination model was justified in Chapter 1. There are multiple reasons

I chose a tuple space–based coordination model to support service oriented computing

in ad hoc networks (initially Lime, then Limone, and then, as we will see in Chapter

6, I developed a new tuple space–based coordination model). Tuple space-based coor-

dination has the advantage of an extremely small yet very powerful interface. A few

coordination primitives are sufficient for developing sophisticated scenarios and these

fully addressed my needs. In addition, the model applies very conveniently to ad hoc

networks where the transient sharing of tuple space is tightly bound with the direct

connectivity between peer hosts. The transient sharing of tuple spaces offers trans-

actional guarantees with respect to updates to tuple space contents as connectivity

changes. Tuple spaces are also a very convenient communication medium. Tuples

can be exchanged over virtual communication channels created inside tuple spaces

(e.g., all tuples belonging to a communication session are tagged with a session ID in

their first field, so tuples belonging to different communication sessions can share the

same tuple space yet remain distinguishable). In addition, the content-based type of

communication confers the communication between two entities a location-agnostic

character, an extremely useful feature as will be shown later in this document. This

eliminates point-to-point types of communication channels, which are very inconve-

nient in ad hoc networks. As hosts change configurations and applications migrate

from host to host, point-to-point communication protocols such as those carried out

over direct socket communication are difficult to redirect and entail a significant over-

head (sockets have to be closed and (re)opened). Additionally, a tuple space can carry

14

out middleware level or application level communication, and can be a repository for

data or code which can migrate from host to host packaged in tuples.

15

Chapter 3

Security Issues

3.1 Introduction

Ease of coordination in an open environment is a great asset but it must be tempered

by security concerns. The open environment of an ad hoc network and the ease

of tuple space-based interactions make corruption of information through malicious

tampering or simply by accident an important concern. As the coordination model is

the foundation on top of which the rest of my architecture is built, addressing security

issues at this level is both easier and both more effective and more efficient than at

any other level. The layers above the coordination layer can take advantage of these

secure coordination primitives and use them directly, while still mainly concentrating

on the semantics of the problems specific to their respective levels.

While these problems are not new, the novelty of the challenges arises from the new

settings in which these problems have to be solved. Many strategies commonly used

in wired networks become problematic in the ad hoc setting. There is no protection

against eavesdropping, there are no trusted authentication servers, there are no cen-

tralized databases of secure information, etc. Full transparency may be desirable but

the ability to hide security concerns from the application developer and user may not

always be feasible. In this chapter, I answer the question whether the coordination

strategy made available in Lime can be made secure with minimal impact on the

Lime middleware and on its fundamental coordination model.

My solution was to extend Lime in two important ways. First, I offer password-

protected access to tuple spaces. The sharing policy within a group is extended to

16

require not just the same name but protection with the same password. This is com-

plemented by the ability to password-protect individual tuples regardless of whether

they are part of a protected or unprotected tuple space. Interestingly enough, the

implementation of these two capabilities employs distinct features of the underlying

Lime system itself. Moreover, by exploiting the fact that Lime restricts tuple space

access to its creator agent and other agents that create a tuple space with the same

name and share it with other agent’s local tuple space (i.e., if an agent creates a local

tuple space, it cannot hand it to another agent), password usage is limited solely to tu-

ple space creation, thus minimizing the scope of API modifications and also affording

some level of robustness in regard to possible programming errors involving incor-

rect password utilization. The tuples inside a tuple space need to be protected too,

against malicious or accidental tampering. For this reason, I developed tuple-level

protection mechanisms that allow three levels of access to a tuple: free access : any

agent with access to the tuple space has access to these tuples; read-protected - agent

with access to the tuple space need a password to read the tuple; remove-protected

(read-only tuples) - free to read by all agents with access to the tuple space but still

require a password for removal. This can logically subdivide a tuple space into secure

subspaces with different levels of protection. The third and last security mechanism

is a transparent encryption of all communication related to protected tuple spaces.

Any operation and parameter of operation (e.g., tuple or template) addressed to a

secure tuple space that needs to travel from a host to another is transparently en-

crypted before being sent out in the wireless network and is immediately decrypted

upon receipt by the remote host. While the mechanism does not protect against

physical level attacks (e.g., denial of service attacks by jamming the radio waves), it

does protect against eavesdropping by rendering the snooped information useless to

the intruder.

By making effective use of the existing Lime design, the secure version of the system

is realized by wrapping the existing middleware with a security veneer above and

an interceptor below. The interceptor provides the proper encryption of messages

associated with secure tuple spaces using a protected table shared with the former.

The price for achieving this level of simplicity is the need to accomplish an initial

password distribution possibly outside of the application itself and the requirement

17

for the application to manage required password changes in response to possible

security compromises.

This research was targeted towards securing an existing coordination model and not

towards designing a secure coordination model from beginning. While there is work

in the area of secure coordination, the main interest in securing this particular model

was the safety of communication rather than exploring new coordination models built

around the idea of secure interaction domains or any other type of security. This work

was done mostly to meet the requirement of having a secure platform rather than to

claim fundamental advances in the area of secure interactions.

3.2 Secure Tuple Spaces

The name of the tuple space is the key to gaining access to the information in that

tuple space. With the name of the tuple space one can create a local tuple space

which can be shared with other local tuple spaces bearing the same name, thus

gaining access to the contents of the latter tuple spaces. To make matters worse,

all tuple space names are freely available in a public tuple space, maintained by the

Lime system, and identified by the known name LimeSystemTupleSpace. To protect

the information means to protect the name of the tuple space, even it it is visible in

the LimeSystemTupleSpace.

The first step is to make the information obtained from the LimeSystemTupleSpace

unusable in its raw form. Changes are required to ensure that extracting the name of

a protected tuple space from the LimeSystemTupleSpace will no longer provide enough

information for an agent to create a tuple space with the same name and share it

with other agents thus gaining unauthorized access to its content.

To achieve this, some processing of the tuple space name is done on the way from

the constructor call, when the tuple space is created, to the internal storage of the

name inside the system. The information available in LimeSystemTupleSpace will be

the processed name of the tuple space. I ensure this information cannot be used in

its processed form obtained directly from the LimeSystemTupleSpace and also that it

cannot be generated incorrectly (the internal processing of this information entails

18

some processing beyond the control of the external user). Public (unprotected) tuple

spaces are not part of this concern.

For this reason tuple spaces are split in two categories: protected and unprotected.

If the user creates a tuple space that is intended to be secure, the user will have

to provide a password. If no password is provided, the tuple space is assumed to

be unprotected. For secure tuple spaces, the password is used to encrypt the name

before marking it as a secure tuple space name and forwarding it to the previous

implementation of Lime which will use it as if it were a regular string representing a

name of a tuple space that will be used for sharing.

The constructor call is the only place where the agent explicitly uses the password.

Once the agent has the handle to the tuple space, it does not need the password

anymore. The tuple space handle enables the agent to access the tuple space for as

long as the agent has it without having to provide the password. All methods will

be invoked as before and will use the tuple space protection password transparently

to the agent, if needed. As I mentioned before, these tuple space handles are not

transferrable. When an operation is called on a tuple space, Lime verifies that it

was called by the thread representing the agent that created it. This is why it is not

necessary to ask for the password when a tuple space operation is called.

The tuple space name (encrypted name when a password is provided or the plain,

clear name if the tuple space is not meant to be protected) will be prefixed by a

differentiator: letter “U” for unencrypted, or “S” for secure tuple space. The un-

protected tuple space called “blue” is different from the tuple space called “blue”

and protected with password “pwd” (the latter will actually have the internal name

Kpwd(blue)). They can coexist but no sharing takes place. The prefixes ensure that

a tuple space cannot be created incorrectly. Since they are internally added, they

cannot be manipulated by agents. Reading the name of a (secure) tuple space from

LimeSystemTupleSpace will not be enough to create an insecure tuple space with the

same name. A prefix will be attached in front of whatever the programmer provides

as a tuple space name. If an attacker reads the name of a protected tuple space from

LimeSystemTupleSpace and tries to create a tuple space with the same name, there

are two ways she/he could follow. One is to create the tuple space as an unprotected

tuple space. In this case the system will add the “U” prefix and will not be shared

19

with the original tuple space. The second attempt would be to trick the system to

add the “S” prefix. To do so it will be necessary to create a secure tuple space. In this

case the information retrieved by the attacker from LimeSystemTupleSpace is useless

since he will need to provide the clear name and the correct password. There are

no “blank” passwords that can be used to encrypt a text and to yield the same text

as result. The prefixes also address the case when the result of encrypting the clear

name of a tuple space coincides with the name of an unencrypted tuple space (before

adding prefixes).

The encrypted name of a protected tuple space and the password that protects it are

important not only when the tuple space is created and shared but also later in inter-

host communication. This is why the Lime server was augmented with a SecurityTable

that stores entries of the form [encrypted name, password]. An entry is added to this

table every time a new secure tuple space is created. When an operation is executed

on the tuple space, if it runs on the local host of the issuer no further verification

is needed. For executions of tuple space operations that span beyond the limits of

issuer’s host, the table will be used for more verifications. See Section 3.3 for details.

This SecurityTable is a very important target that has to be protected. Currently,

only the default Java object protection mechanisms protect this table. I could encrypt

it and provide a somewhat more difficult and less efficient form of access to it but

this would only shift the problem to protecting the password used for that additional

encryption. Since my work does not address the Java security model, I assume this

model is secure enough for my research.

3.3 Secure Communication

If a tuple space operation involves a remote execution on some other host whose agent

contributes to the federated tuple space, the request is sent across the wireless link

and the result is sent back over insecure wired or wireless lines. Eavesdropping is easy

because the information traveling across the network consists of clear serialized Java

objects. Secure communication between hosts is achieved by encrypting the messages

associated with a given tuple space using the password supplied when the tuple space

20

was created first (if any). The remote party is supposed to have access to the same

password since sharing of the tuple space is taking place. For tuple spaces which are

not protected, the messages will not be encrypted and the other party will need to

know only the communication protocol in order to be able to deserialize the objects

received in the request.

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Mobile Host

Tuple

decrypted

Mobile Agent

operation
decrypted

reply

operation
encrypted

reply
encrypted

Interceptors

operation

reply

Space

Local

Figure 3.1: Interceptors secure wireless communications.

When an agent executes an operation that spans beyond the limits of the current

host, an interceptor catches it, analyzes the tuple space that the message refers to

(the name of the tuple space is always present in the message that travels across

hosts) and takes the appropriate action (the use of the interceptor pattern [102] is

natural for this case, to add security to a system that in its initial design did not

address this issue). It also offers a great deal of flexibility with respect to the choice

of encryption protocol. Figure 3.1 shows how interceptors secure the communication

between two hosts.

The interceptor checks whether the tuple space name appearing in the outgoing mes-

sage is present in the SecurityTable. If the message refers to an unprotected tuple

space (it is not in the table), the interceptor lets it pass through unchanged. If the

tuple space is a secure one, the interceptor extracts from the table the password that

corresponds to that tuple space and uses it to encrypt the message. The interceptor

creates a packet that contains the encrypted message and the encrypted name of the

tuple space the message refers to and forwards this packet to the other involved host.

On the recipient’s side, actions happen symmetrically. Another interceptor catches

21

the incoming message, looks up the encrypted name of the tuple space in the local

SecurityTable and if found, uses the corresponding password to decrypt the message.

The message is then forwarded to the LimeServer. If the target tuple space is not a

secure one, the name is not found in the SecurityTable and the message is forwarded

unchanged to the LimeServer. The results are handled in the same way on their way

back.

Special attention has to be paid when using password-protected tuples in unprotected

tuple spaces. The traffic between two hosts is unprotected if it refers to an unprotected

tuple space. If such a tuple space contains a password protected tuple (let’s say the

tuple has only a read-password) then a rd or in operation will need to provide the

password along with the template. Let’s assume a rd operation provides the correct

password. Since the tuple space is not protected, the communication is not encrypted

so the password travels in clear between the two hosts (the content of a tuple can NOT

be encrypted because it would destroy the entire matching mechanism and therefore

the passwords can only be used as additional fields to filter the access). A hacker

could steal the password and use it then to remove the tuple (the tuple does not have

a remove password so the read-password will be the only protection against removal

as well). Password-protected tuples are safe to use in unprotected tuple spaces as

long as the owner does not disclose the password (no message carrying a password

should travel over insecure communication channels).

3.4 Secure Tuples Inside Tuple Spaces

Even if an entire tuple space can now be protected, restrictions at the tuple level are

still desirable in many applications. The reasons are two fold. In case of a secure tuple

space shared among cooperating agents, tuple level protection can protect inadvertent

tuple removal or access. Similarly, in an unprotected tuple space this feature affords

some level of protection against malicious agents.

A tuple may have a password to protect the tuple from removal (hereafter called

remove-password) and a different password that protects the tuple from reading

(hereafter called read-password). If these passwords are different and non null, a

22

in(templ)

template

Local tuple space

template

blocked

ok
result

Agent2Agent1

RO

Local tuple space

tuple

in(templ, pwd)

Figure 3.2: The execution of an in operation matching a read-only tuple. Agent1 is
able to retrieve the tuple because it provides the (correct) remove-password, while
Agent2 blocks because its template, even when it matches the data part of the tuple,
does not satisfy the security requirements.

rd operation can read the tuple if it provides either one of the passwords, assuming

that the fields match. This is because an agent that has the password to remove

a tuple is also entitled to read the tuple. If a tuple has a remove-password, an in

operation will have to provide the same remove-password to match this tuple. If the

tuple has no remove-password but has a read-password, an in operation will need to

provide the latter password to remove the tuple (Figure 3.2).

To implement read-only tuples every tuple space operation adds to the end of the user

specified fields (if any) three fields. They are in order: the read-password, the remove-

password and the name of the operation that uses that tuple or template (e.g., “rd”

for any type of read operation, “in” for any type of remove operation and “out” for

any type of write operation). This is because both tuples and templates are instances

of the Tuple class in Lime and the matching mechanism needs to differentiate them,

as well as the operation that requested the matching. If either password is absent the

field contains an instance of a NULL class (serializable object replacing Java’s null).

When a tuple is written to the tuple space, the out method can specify either or both

the read-password and the remove-password to protect the tuple.

To read a tuple, the rd method takes a read-password beside the usual template. This

method constructs a template that contains the NULL in remove-password’s position

and the read-password in the right place. For removing a tuple, the situation is

23

similar. The in operation takes an extra parameter, the remove-password. The read-

password is filled in with the same value since I consider that a template that is

allowed to remove a tuple should also be allowed to read the tuple. In some cases one

of the two passwords expands in the other’s field from a semantic point of view. For

example, if a tuple has a read password but no remove-password, a template trying to

remove the tuple will need to have the read-password. Likewise, if a tuple has a read-

password and a remove-password, and the template provides the remove-password for

a read operation, access will be granted. Group operations are implemented similarly.

An outg protects each tuple written to the tuple space with the password(s) provided

(if any). The ing and rdg operations return only the tuples that satisfy the matching

criteria for both the data and security parts. Figure 3.3 shows examples of tuple

space access methods, involving passwords.

lts.out(ITuple tuple, char[] readPwd, char[] removePwd)
— writes a tuple to the tuple space and protects it against reading and/or
removing. Any combination of the two passwords is permitted.

lts.rd(ITuple template, char[] readPwd)
— reads a tuple from the tuple space if the tuple and the template match
(and the correct password is provided).

lts.in(ITuple template, char[] removePwd)
— removes a tuple from the tuple space if the tuple and the template match
(and the correct password is provided).

Figure 3.3: The tuple space interaction operations.

Even though the matching of the fields is carried out internally by Lime, the password

fields in particular showed that it is useful to have the possibility to chose the matching

policy specific to a particular field. This required an extension to Lime for the ability

to select among different matching rules on a field by field basis. First, a field in a

tuple may require the template to provide the exact value of the field for a match

to be declared (hereafter called exact value match). Second, the tuple may restrict

only the type of the template field to be the exact type of it’s own field. (hereafter

called exact type). Finally, the least constrained type of matching is when a tuple’s

field allows a wildcard in the template’s corresponding field. For example, the Java

Object object is a wildcard that will always match under these circumstances. This

type of matching takes advantage of Java’s OO polymorphism and this is why this

policy is called poly type.

24

When fields are added to a tuple, the type of matching can be specified for each

of them. Figure 3.4 shows how fields are added to tuples and how to specify the

matching policy for each of them. Field.EXACT VALUE, Field.EXACT TYPE and

Field.POLY TYPE are predefined integers in Field class that identify the matching

policies. The tuple passwords are transformed into fields subject to the exact value

policy and added at the end of the tuple when written to the tuple space.

Tuple t = new Tuple();
t.addActual(new Integer(1), Field.EXACT VALUE)
.addActual(new String(”WU”));

— creates a tuple and adds fields it. To match this tuple, a template will need
to have an exact value on its first field (that is an actual of type Integer
and value 1). Since the second field doesn’t have any matching policy specified,
the poly type is assumed.

Figure 3.4: Adding fields and the matching policy to a tuple.

3.5 Summary

This chapter presented a way to add security features to the Lime coordination model.

I used Lime because it is the first coordination model designed for ad hoc networks.

Later I used Limone and the mechanisms presented above transferred almost trans-

parently to the new coordination model. The overall architecture of secure Lime can

be observed in Figure 3.5. The application from the top layer has access to the API

that creates and manipulates (secure) tuples and tuple spaces. The secure tuples and

tuple spaces layer interfaces with Lime and is linked to the interceptors at the bottom

of the architecture via the security table (which contains the passwords for each pro-

tected tuple space). The interceptors are the last filter before a message carrying a

tuple or a command leaves a host. They encrypt the communication related to secure

tuple spaces. On the recipient side, the message works it way up to the application

level by clearing its way through the same layers traversed in reverse order, beginning

with being decrypted by the receiving interceptor (if applicable).

The security veneer provides mechanisms needed to control who can do what and how

with which tuples. I have showed that simple changes can transform a coordination

25

application

secure tuples
secure tuple spaces

Lime

security table

interceptor

application

secure tuples
secure tuple spaces

Lime

security table

interceptor

remote
integrations

Figure 3.5: Secure Lime architecture.

model into a platform suitable for the development of secure applications. The mech-

anisms are general and can solve real issues in terms of secure coordination in ad hoc

networks.

While not solving all issues that can arise related to security, this research provides

a basic level of security for interactions in mobile ad hoc networks. It especially

provides a solution to the problem of public key advertisement within the domain of

coordination in ad hoc networks. The major problem with the public key distribution

is associating a public key with the real owner of that key. By having agents advertise

their public keys in read-only tuples which cannot migrate from their own local tuple

space, the problem is solved. Once there is a solution for public key advertisement,

more sophisticated algorithms (almost any security algorithm) can be developed to

exchange private keys, etc.

The initial use of this security mechanisms was to secure coordination in Lime [80].

The mechanism transferred later to secure Limone [32] and can be used in a similar

way to secure the coordination model I developed, which is presented in Chapter 6.

The specific contribution of the work described in this chapter is the secure coor-

dination veneer which provides protected tuple space access, transparent encrypted

communication, and three levels of tuple access: free access, read-only (remove pass-

word protected), read protected (read password protected).

26

Research dissemination. This material is based on the research published in the

paper “Secure Sharing of Tuple Spaces in Ad Hoc Networks” published at the 2004

International Workshop on Security Issues in Coordination Models, Languages, and

Systems (28-29 June 2003, Eindhoven, The Netherlands) and “Coordination Mid-

dleware Supporting Rapid Deployment of Ad Hoc Mobile Systems”, published at the

ICDCS International Workshop on Mobile Computing Middleware (19-22 May 2003,

Providence, RI, USA). In combination with the work described in Section 4.3, a secure

service oriented computing middleware was described in “Secure Service Provision in

Ad Hoc Networks” published at the 2003 International Conference on Service Oriented

Computing (15-18 December 2003, Trento, Italy).

27

Chapter 4

Service Oriented Computing in Ad

Hoc Networks

4.1 Introduction

Service Oriented Computing (SOC) is the latest step in a progression of widely

used programming paradigms containing, among others, the object-oriented comput-

ing and component-oriented computing paradigms. The service oriented computing

paradigm is characterized by a minimalist philosophy, in that a user needs to carry

only a small amount of code in its local storage, and exploits other services by dis-

covering and using their capabilities to complete its assigned task.

Migrating service oriented computing to ad hoc networks is non-trivial and requires

a systematic rethinking of core concepts. Many lessons have been learned from the

work done on SOC in the wired setting, especially regarding description and matching

of services. However, the more demanding environment of an ad hoc wireless network

requires novel approaches to advertising, discovering, exploiting, and maintaining

services. I envision such ad hoc networks being used in a range of application domains,

such as response coordination by firemen and police at disaster sites or command and

control by the military in a battlefield. Such scenarios demand reliability despite the

dynamic nature of the underlying network.

The transition to mobile ad hoc networks is facilitated by the use of the previously

mentioned tuple space-based coordination models (Chapter 2, which provide support

28

for interactions in the new environment. The work described in this section consti-

tutes a layer on top of the secure coordination layer described in Chapter 3. The

coordination model ensures consistent interactions in the mobile ad hoc networking

environment and the security extensions provide for safe interactions among service

providers and clients.

A service oriented computing framework is a conglomerate of elements, with each

element fulfilling a very specific role in the overall framework. The salient elements

required for a viable service oriented computing framework are:

• The service description element is responsible for describing a service in a com-

prehensive, unambiguous manner that is machine interpretable to facilitate au-

tomation and human readable to facilitate rapid formulation by users. The aim

is to specify the functions and capabilities of a service declaratively using a

known syntax. A good service description mechanism must have a clear syntax

and well defined semantics which facilitate matching of services on a semantic

level.

• The service advertisement element is responsible for advertising a given service

description on a directory service or directly to other hosts in the network. The

effectiveness of an advertisement is measured as a combination of the extent of

its outreach and the specificity of the information it provides up front about a

service, which can help a user determine whether he or she would like to exploit

that service.

• The service discovery element is the keystone of a service oriented computing

framework and carries out three main functions. It formulates a request, which

is a description of the needs of a user. This request is formatted in a similar

manner to the service description. This element also provides a matching func-

tion that pairs requests to services with similar descriptions. Finally, it provides

a mechanism for the user to communicate with the service provider. A good

discovery mechanism provides a flexible matching algorithm that matches ad-

vertisements and requests based on their semantics and maximizes the number

of positive matches giving the user a more eclectic choice of services for his or

her needs.

29

• The service invocation element is responsible for facilitating the use of a ser-

vice. Its functions include transmitting commands from the user to the service

provider and receiving results. It is also responsible for maintaining the con-

nection between the user and the provider for the duration of their interaction.

A good invocation mechanism abstracts communication details from the user

and, in the case of network failure, redirects requests to another provider or

gracefully terminates.

• The service maintenance element is responsible for maintaining the service

throughout its entire life. Its functions include upgrading the functionality

offered to the clients, upgrading the quality of assistance already offered (e.g.,

encrypting the communication protocol used between the client and the server

while offering the same functionality). A good service maintenance mechanism

performs its tasks with no or little impact on the interaction with the clients it

is already serving.

• The service composition element provides mechanisms to merge two or more

services into a single composite service which combines and enhances the func-

tions of the services being composed. A good service composition mechanism

leverages off each of the elements listed above to provide automatic composition

of services without human intervention.

In the next section I describe how different earlier research efforts have addressed

the items from the list above, in an overview of the related work. Then, I present

how some of the components from above need to be reconsidered when developing a

SOC architecture for mobile ad hoc networks. After the related work overview and

motivation are presented, the remainder of the chapter is composed of two main parts:

how I have designed basic SOC components for ad hoc networks, and a fundamentally

new idea of mobile services realized in a “follow-me session” which provides (within

limits) continuous assistance to a client despite the changes in connectivity.

30

4.2 Related Work and Motivation

4.2.1 Related Work Overview

The SOC elements described previously in this chapter form the building blocks for

most service oriented computing models. Various models entail the use of some or

all of the elements described, depending on their complexity. I review some of the

more popular models as background to my work and highlight features unique to each

model.

The Service Location Protocol (SLP) [45] was developed by the SRVLOC work-

ing group of the Internet Engineering Task Force (IETF) with the idea of creating a

service oriented computing standard that was platform independent for the Internet

community. In SLP, every entity is represented as an agent. There are three kinds

of agents - User Agents, which perform service discovery on behalf of clients, Service

Agents which advertise locations and capabilities on the behalf of services and reg-

ister them with a central directory, and Directory Agents which accumulate service

information received from numerous Service Agents in their repository and handle

service requests from User Agents. An interesting feature of SLP is that it can op-

erate without the presence of a Directory Agent, i.e., it does not require a central

service registry to function. User Agents search for a Directory Agent by default but

if they do not receive any replies, they continue to operate directly with peer agents.

If a Directory Agent starts operating at some point in the future, it advertises its

presence and the User and Service Agents that receive the advertisement automat-

ically start using the Directory Agent as a central service repository. SLP registers

services using templates which follow a specific pattern. Requests are made using a

similar template though the parameters differ slightly. SLP’s ability to operate in the

absence of a Directory Agent makes it especially useful in ad hoc environments where

it is not feasible to have a central service registry. Overall, SLP offers a clean model

that is easy to conceptualize and, due to its design, can be implemented readily in

modern languages like C++ and Java.

Universal Description, Discovery and Integration (UDDI) [112] was formulated

jointly by IBM Corp., Ariba Inc., and Microsoft Corp. UDDI technology is aimed at

31

promoting interoperability among web services. It specifies two frameworks, one to

describe services and another to discover them. UDDI uses existing standards such

as Extensible Markup Language (XML) [121], Hypertext Transfer Protocol (HTTP),

and Simple Object Access Protocol (SOAP) [122]. The UDDI model envisions a cen-

tral repository which is called the UDDI Business Registry (UBR). A simple XML

document is used to specify the properties and capabilities of a service. Registra-

tion with the UBR is done using SOAP. Information present in a service description

can include things like the name of the business that provides the service, contact

information for people in charge of administering the service, and identifiers for the

service and descriptions. The UBR acts as a mediator and assigns a unique identifier

to each business and each service. Marketplaces, search engines and enterprize level

applications query the UBR for services, which they use to integrate their software

better with other business entities like suppliers, dealers, etc. The UDDI model is

distinctive in that its approach looks at service oriented computing from a business

process perspective. It envisions electronic interactions between businesses resulting

in trading of services and goods much like the business-to-business (B2B) model to-

day but with enhanced capabilities and features. With the backing of industry giants

like Microsoft and IBM, this technology evolved to become today’s web services.

Universal Plug and Play (UPnP) [75] was developed by Microsoft Corp. to facil-

itate seamless communication between networked devices in close proximity to each

other. UPnP leverages TCP/IP and the Internet for its communication needs. It

assumes a network that is dynamic with devices frequently joining or leaving. A

device, on joining a network, conveys its own capabilities upon request and learns

about the capabilities of other devices. When it leaves the network, a device does

so without leaving behind any explicit evidence that it was there. Entities in the

network may be controllable devices or controllers. Controllers actively search for

proximate devices. The network is “unmanaged” in that there is no DNS or DHCP

capability. Instead, a mechanism called AutoIP [77] is used to allocate IP addresses.

In UPnP a client, also called a control point, can undertake five kinds of actions.

The discovery action is based on the Simple Service Discovery Protocol (SSDP) [41].

It exchanges information about the device type, an identifier and a URL for more

detailed information. During the description action, the control point uses the URL

obtained during the discovery action to get a detailed XML description of the device.

32

Then the control point sends a control message encoded in XML to a Control URL

using SOAP to discover the actions and parameters to which the discovered device

responds. The event action consists of a series of events formatted in XML using the

General Event Notification Architecture (GENA) [20] which reports changes in the

state of the service. The presentation action consists of presenting a URL that can

be retrieved by a control point, presumably in a format that allows an end user to

control the discovered device. At this point UPnP assumes some external architecture

and protocol that handles subsequent interactions with the device. UPnP uses mul-

ticast for discovery and unicast for service utilization and event notification. Services

and controllers are written using an asynchronous, multithreaded application model.

UPnP requires a web server to transmit device and control descriptions, though this

server is not required to be on the device itself. This requirement means that UPnP

works best on the web and porting it to other environments, especially those with

low-power hosts, is non-trivial.

Salutation [100] is an open standard service discovery and utilization model formu-

lated by the Salutation Consortium. The vision for Salutation is not on the scale of

the World Wide Web. Instead, Salutation hopes to promote interoperability among

heterogeneous devices in settings such as corporate LANs where there is permanent

connectivity from either wired networks or wireless gateways and disconnection is

not an issue. In addition, Salutation strives to be platform, processor, and protocol

agnostic. Salutation has two major components: (1) the Salutation Manager (SLM)

which presents a transport independent API called the SLM-API and (2) The Trans-

port Manager (TM) which is dependent on network transport and presents a SLM-TI

(transport interface) between the Salutation Manager and the Transport Manager.

Services are registered via a local SLM or by a nearby SLM connected to a client.

Service discovery occurs when SLMs find other SLMs and the services registered with

them. Capability exchange is done by type and attribute matching. The SLM pro-

tocol uses Sun’s ONC RPC [106]. Periodic checks by the client ensure that it has

the most current list of available services. Salutation is interesting in that it solves

a highly focused but widely relevant problem. An ideal environment for a Salutation

deployment is a busy office space where there are a lot of computers, printers, fax

machines and other electronic devices. Using Salutation to automatically discover

33

and use devices within range eliminates the effort of individually configuring every

single device. This makes Salutation a useful productivity enhancing tool.

Jini [118] is a distributed service-oriented model developed by Sun Microsystems.

Services in a Jini system can be hardware devices, software components or a combi-

nation of the two. A Jini system has three types of entities; service providers, lookup

services and users. A service provider multicasts a request for a lookup service or

directly requests a remote lookup service known to it a priori. Once the handle to a

lookup service has been obtained, the service provider registers a proxy object and

its attributes with the lookup service. The proxy object serves as a client side handle

to the actual service. The user makes a request for some service by specifying a Java

type (or interface that the desired service must implement) and desired attributes.

Matching is done based on type and values. Once a candidate service is found, the

proxy object registered by the service provider is copied to the client using RMI [108].

Clients use the proxy object to interact with the service. The Jini model is designed

for ubiquitous computing and is intrinsically scalable. It is language and protocol

independent (though Java and TCP/IP seem to be natural choices for an implemen-

tation) and is resilient because multiple lookup services ensure that there is no single

point of failure. Jini holds much promise for middleware developers that use the Java

programming language, and has been formulated with Java-like languages in mind.

Also, Jini is unique in that it introduces the idea of shipping a proxy object to the

client where it is used as a handle to the actual service. The proxy approach allows

complex services to reside on a server at a well known location. The service then

simply has to encode its well known location within its proxy, and can then be called

from any client without that client having any knowledge of the actual location of the

service. It also mitigates the issue of establishing the protocol between the service

and the user since the proxy object hides all such communication from the end user.

As the SOC field has matured, most of the activity now gravitates around an area

known as web services which seems to be the convergence of lessons learned from

the research into the preliminary models described above. Web services represents a

branch of the service oriented computing paradigm, characterized by the standardiza-

tion of the elements enumerated above. Service description is realized using standards

like RDF [116] and WSDL [117], the advertisement and discovery are realized with

the help of UDDI [112] service registries. Invocation is realized via the SOAP [122]

34

protocol which carries XML[121] formatted messages encoding method invocations

and returned results. To ensure the semantic compatibility of message contents (i.e.,

to ensure that both parties understand the same thing when they read/write the

string “printer”), ontologies [55] are used and assumed to be known and understood

by both parties. To be part of web services, an application has to adhere to these

standards.

4.2.2 Challenges in Ad Hoc Networks.

The models above exhibit a common characteristic that makes them all fail in ad hoc

networks. The implicit assumption that the Internet is always there to help remote

parts find each other and stay in contact is a fundamental limitation when considering

the dynamic environment of ad hoc networks.

In an ad hoc network, the convenience of centralized architecture is lost. Centralized

service directories where providers advertise their services and clients connect to look

them up are not practical anymore. As in Figure 4.1, service advertisements can

remain in service registries long after their providers went offline or moved away and

disconnected. A lease mechanism (where a provider has to periodically renew the

lease of its advertisement or the registry will erase its ad upon expiration) can help

collect zombie ads but still does not solve the problem completely.

Another possible scenario is that a client and a service provider that could help the

client cannot begin their interaction because they need a service registry to introduce

them one to the other (Figure 4.2).

Architectures based on centralized lookup directories are no longer suitable. Mobile

ad hoc computing cannot rely on any fixed infrastructure. The interactions among

devices are peer-to-peer and entail no external infrastructure support. Since nodes are

mobile, the network topology may change rapidly and unpredictably over time. The

network is decentralized and all activities, including topology discovery and message

delivery must be carried out by the nodes themselves. The network structure at

any moment depends on the available direct connectivity between mobile devices and

35

service

range
communication

server

service
cannot use

client

lookup

Figure 4.1: A service advertisement is discovered but the service responsible is no
longer available.

service ad

service

could use

clientserver

communication
range

register

cannot

lookup

cannot

Figure 4.2: A client and a service provider need a service registry to establish contact.

36

thus all advertisement, discovery, and utilization scenarios have to be reconsidered to

account for the characteristics of this dynamic environment.

4.3 Runtime Environment

My model for SOC in ad hoc networks is inspired by Jini. In my architecture, a

service consists of some application running on a provider host and a service proxy

that the provider advertises. Interested clients may retrieve the service proxy and use

it locally. Next, I present a description of the software infrastructure required for a

SOC platform in ad hoc networks.

4.3.1 Service Repositories

Centralized service directories are suitable for wired networks where reliable, per-

manent connectivity ensures prompt access to dedicated directory hosts. However,

the dynamism of ad hoc networks makes centralized structures ineffective. Hence,

my design entails distributed service directories. Each host maintains a local service

directory. Hosts within communication range automatically share these directories

to form a federated service directory. A client query for services spans the entire

federated service directory. The content of the federated service directory is updated

atomically with any change in the configuration of the ad hoc network. The content

of the federated directory thus reflects any change in connectivity and real service

availability (i.e., there are no orphan advertisements).

Such a directory is implemented as a tuple space. Each host has its local service

directory in the form of a local tuple space. When hosts come within communication

range, they share their local directories and clients running on these hosts gain access

to the federated service directory. This transient sharing of tuple spaces assures

a consistent view and access to tuple space contents such that scenarios like those

depicted in figures 4.1 and 4.2 are no longer possible.

37

Figure 4.3: Transient sharing of tuple spaces with service advertisements and binary
code.

The architecture is depicted in Figure 4.3. The symmetric structure represents two

layers at which the sharing takes place. The top level represents the tuple space that

contains the service advertisements. As detailed in Subsection 4.3.2, these advertise-

ments are tuples. The top level tuple space (service directory) is visible to users, as

it represents the marketplace where clients and providers meet. The lower level is

hidden from the application programmers. The lower layer contains the binary code

associated with the serialized objects published in the top layer tuple spaces. The

bottom layer structurally mirrors the top layer. For each local tuple space at the

top layer, where tuples can be published, there’s a hidden local tuple space at the

bottom layer, which handles the code management for the tuples in the top layer

tuple spaces. Each object published in serialized form has to be accompanied by its

binary code, in case this code is not available on the machine where the object will

be downloaded and used. Because the binary code management is decoupled from

the application semantics, the management takes place in the lower level federated

tuple space, completely hidden from the user.

4.3.2 Service Advertisement

An advertisement has three parts: the proxy object, the descriptive profile of the

service being offered, and the binary for the proxy object (including the class clo-

sure). The proxy is the serialized form of the object that becomes the local handle

to the service on the client host (similar to a remote control handled by the user to

manipulate the TV set). The descriptive profile is a set of attribute-value pairs that

38

describe how well a service can perform a task. For example, for a service that offers

access to a printer, a possible attribute-value pair could be resolution:300dpi. The

binary is the machine code required to execute the proxy class.

To advertise a service, the service provider passes the proxy object and the attributes

to the system. The system automatically scans the proxy object and assembles a

list of all the classes that are in the closure of the proxy’s class (classes the proxy

instantiates as local object variables that are therefore dependencies of the proxy

object). It then packages the serialized form of the proxy and the descriptive profile

in a service advertisement tuple and places it in the local service directory. The

dependencies are placed directly into the code repository (which is also modeled as

a tuple space, shown as the lower level pie chart in Figure 4.3) by the system. An

argument can be made for packaging the proxy code as well as its dependencies in

a single executable archive, e.g., using JAR files in Java. However, in the interest of

flexibility, I did not want to restrict a client to obtaining the dependencies of a proxy

solely from the advertiser of the proxy. Further, not using JAR files allows the client

to obtain dependencies on demand. If a certain branch of execution in the proxy does

not require a dependency, then the client is not required to download it, thus saving

valuable resources.

4.3.3 Service Discovery

When hosts are connected, the service directory is federated across all connected

hosts. Hence, any other agent resident on a host that is connected can view the

service advertisement. However, simply viewing the advertisement is not enough. A

client must be able to request services that match its criteria. A client requests a

service by first formulating a template that describes the kind of service desired. A

service request template has two fields: the interface of the service desired, and a

set of minimum attributes that the service is required to meet. The tuple match-

ing mechanism compares service advertisement tuples in the service directory with

the provided service request template. If a match is found, a copy of the service

advertisement tuple that generated the match is sent back to the requesting client.

39

It should be noted that if more than one match is generated, then the system non-

deterministically selects one and returns it to the client. Optionally, the client can

request to have all the matches returned and do the filtering itself.

Upon receipt of the service advertisement, the client extracts the name of the service’s

proxy class from the advertisement and tries to instantiate the proxy locally. If the

binary code for the proxy is not present on the client the instantiation step raises an

exception. The system catches the exception and launches a discovery protocol to

find the required binary code. This process is identical to the process used to discover

the service advertisement except that the search is performed on the code directory.

Once the binary code has been discovered and retrieved by the client, it is installed

on the client.

The installation is light-weight, i.e., the proxy is not written to permanent storage

but is simply kept in memory. The reason I made the decision to not write the object

to persistent storage is because I regard services as software resources that are used

when and where needed and then discarded once their usefulness is at an end. Hence,

saving them on a hard disk or flash memory is not necessary, i.e., it would be the

same as always carrying all the needed applications on the portable device. I rely

on the operating system (Java Virtual Machine, actually) to page out the binaries if

available memory is low.

Discovering Dependencies. Once the proxy has been installed on the client, it is

loaded into the runtime environment. At this time, the binary code for the proxy

is parsed to determine if any additional code (dependencies) are required. If any

dependencies are required, the system launches the discovery protocol in the code

repository to discover the binary code for the dependencies and install them on the

client machine. This process is identical to the one used for discovering the binary

code for the proxy as described before.

By design, the architecture for discovering dependencies also supports service compo-

sition, since one proxy can have among its dependencies another proxy, representing

another self sufficient service. Figure 4.4 illustrates this feature. Each slice in the pie

chart represents the code repository local to each host, and the entire pie represents

the federated code repository. P 1
A is the proxy of a service advertised by a service

40

provider on host A depending on D1
A and P 2

B. D1
A is a dependency that the P 1

A

proxy needs and is advertised by the service provider on host A. P 2
B is a stand-alone

service which can be discovered and used independently by a client but, from P 1
A’s

perspective, it is just another dependency which is treated in a similar manner to D1
A.

= Proxy Component
Advertised by Host X

= External Component
Advertised by Host X

= A requires B to function

B
1

X
1

B
2

B
1

B
2

A
1

E
1

E
2

D
1

C
1

Host A

Host B

Host C

Host D

Host E

E
1

D
1

C
1

A
1

X
Y

BA

Figure 4.4: Federated code repository - proxies and their dependencies.

Once the installation has been completed, the client can interact with the proxy as if

it were a local object (recall that I assume that the client knows the interface of the

proxy). The proxy accepts calls from the client and services them locally or delegates

them to its parent service on a remote host.

4.3.4 Service Utilization

Once the proxy and its dependencies have been fetched and installed on the client,

the proxy can begin executing. At this stage, the client interacts with the proxy as

if it were the service itself. The client can call methods on the proxy which either

resolve the request locally or tunnel the request to the server on which its parent

service resides. While most of the time the proxy will connect back to the instance

of the server which published it, it is possible for one proxy to connect to another

instance of the same server, running on a different host. This is particularly useful in

ad hoc networks, where the client can be within proximity of different servers offering

similar functionality.

41

The communication protocol between the proxy and a server is entirely encapsulated

from the client, which is useful since ad hoc networks lack standardized application

level protocols such as SOAP [122] and in the absence of encapsulation, the client

would be required to be aware of multiple protocols. In my approach, the client is

only required to know the interface offered by the proxy (i.e., know how to manipulate

the proxy). This is reasonable since the client specifies the interface the proxy must

implement in the request.

Though fully encapsulated, the proxy-server protocol needs to address the issue of

temporary disconnections which can be caused by the client and server hosts moving

beyond communication range or by having the proxy reconnect to a different server.

In such cases, the client will only need to wait slightly longer for the result of a method

call to be returned, which is equivalent to a simple method call that takes a long time

to complete. The proxy object also needs to use a timer to avoid infinite blocking

during a method call on the proxy. When the time expires, the proxy searches for

another, similar, server. If this is not found within a specified period of time, the

system raises an exception. Figure 4.5 illustrates the phases of the proxy’s life cycle

described thus far.

4.3.5 Service Upgrade

Software upgrades due to bug fixes or to provide enhanced functionality are common-

place. Since a service is at its core a piece of software, it is possible that upgrades

may be required. One problem with the upgrade of a service software is that it could

make the proxy incompatible. Hence, the proxies may need to be upgraded at the

same time as the service itself. Performing such upgrades introduces several technical

challenges, including (1) ensuring that the upgrade takes place in a manner transpar-

ent to the client while minimizing the downtime of the proxy and (2) ensuring that

when the server side software is upgraded, in-progress requests from proxies that have

yet to be upgraded can still be handled (since it is unreasonable to expect that the

server and all its proxies can be upgraded in a single atomic step).

In this section I present a lightweight service update mechanism that can dynamically

upgrade the server as well as its proxies on client hosts. Transparency is achieved by

42

employing a dynamically generated facade to hold calls from the client application

temporarily while the old version of the proxy object is swapped for the new one.

Orphan calls are avoided due to tuple space–based communication which can hold

communications for short periods of time without losing them (similar to when there

is a temporary disconnection between client and service provider hosts). These calls

are picked up by the new version of the server and, since I require newer versions of

the server to be backwards compatible, it can service the calls and return the result

to the client. My approach can be divided into two distinctive parts: updating the

proxy used by a client and updating the server that the proxy interacts with. When

updating the proxy object, problems arise due to the fact that the client is actively

using it when the server decides the proxy needs to be upgraded. I aim to swap the

proxies in a manner transparent to the client. On the server side, the upgrade may

also trigger the upgrade of the proxies or may not affect the proxies currently in use.

Client
App.

Proxy
Component ServerService

Directory
Code

Repository

Advertise service

Advertise
Proxy

Advertise
dependencies

Request service

Return advertisement

Request binaries for proxy

Ship binaries to client

Request binaries for dependencies

Ship binaries to client
Instantiate Proxy

Call service
Call service

Return results
Return results

Search for binaries locally. If found,
proceed directly to instantiation step.

Figure 4.5: Proxy advertisement, discovery, installation, and utilization.

43

In the second case, the infrastructure aims to replace the server with its newer version

transparently even to its own proxies.

Updating the Proxy Object

Also in the interest of transparency, I impose the constraint that the external API

advertised by the proxy cannot change from one version to the next unless the new

interface extends the old one and hence is backward compatible. Recall that the

interface is specified by the client during the lookup process; since I upgrade the

proxy without notifying the client, the new proxy is required to provide the same

interface (or a subclass) to ensure that the client remains oblivious to the change.

Also, if the client is using the proxy directly, the upgrade cannot be transparent since

during the swap the reference to the proxy will not be valid. I solved the problem by

adding a layer of indirection between the client and the proxy. Using a combination

of the facade [103] and interceptor [102] design patterns, I developed an intermediary

wrapper layer that isolates the client from the proxy and handles the proxy upgrade

in a manner that is transparent to the client. This layer is generated automatically

when the service publishes its proxy object. When the client searches for the proxy

object, it receives and installs the proxy as well as the wrapper. The functionality

this wrapper provides is essentially to decouple the client from the proxy, to forward

the client’s calls to the proxy, to monitor the server’s decision to upgrade the proxy,

and to manage the proxy upgrade process. An overview of the architecture is shown

in Figure 4.6.

During the normal mode of operation, the wrapper is a simple pass through for calls

from client to proxy and for results from proxy to client. In parallel, the wrapper

monitors the service advertisement in the directory service. If an upgrade is initiated

on the server side, the old advertisement is removed and replaced with one containing

the new version of the proxy. The wrapper reacts to the replacement of the adver-

tisements and retrieves the new proxy. During the retrieval of the new proxy the

wrapper continues to function as a pass through. Once the wrapper has retrieved the

new proxy, it requests lock on the proxy from the synchronization logic module (which

ensures consistency during the updating process). The synchronization logic ensures

that the proxies are swapped when there is no activity from the client and no remote

44

Server

Proxy

Client

Synchronization Logic

Proxy Update
Mechanism

Call Forwarding
Mechanism

Service
Directory Client Call

Proxy
Update

Advertise
Proxy

React to
new proxy

Return
results

Method
Calls

Figure 4.6: Architecture supporting run-time service upgrades.

execution of some method in progress. A method call acquires a lock which guards

the exclusive access to the proxy and will not release it until the result is returned

from the proxy. During this time, even if the proxy has already been retrieved and is

available on the client host, the swap cannot proceed. Note that there can be at most

one call on hold per proxy. This is because there is only one client trying to access any

given instance of the proxy. A client cannot initiate a second call before the previous

one returns. I ensure that the wrapper does not return the flow of control back to

the client, and keeps the client blocked until the call returns by forcing a synchronous

behavior on the client side, even though the wrapper forwards the client’s call to the

proxy. This synchronization mechanism also ensures that it is not possible for a client

to send out a call using the old proxy and receive the answer from the new proxy.

Symmetrically, if a proxy upgrade is in progress, a method call cannot complete and

will be blocked by the same lock when it reaches the proxy. Once the swap is finished,

the lock is released and the method call is forwarded to the newly installed proxy.

Updating the Server

Upgrades on the server side assume that the server needs to go off line temporarily

and be restarted. Before the server goes off line, it removes the service advertisement

it registered from the service directory. Clients interested in the functionality offered

will not be able to discover the service during this stage, even though the server

may be running. At this stage of the process, the server ignores all incoming calls

45

from clients. At the same time, it continues to process the calls in progress, which

were generated by the old version of the proxy. Not performing this step can delay

the completion of the in-progress calls indefinitely (as the set of in-progress calls can

evolve over time, e.g., if new calls come in from clients before the server finishes the

calls it is currently working on) and thus defer the upgrade indefinitely. Once the

response to the last in-progress call from the old version of the proxy is serviced, the

server can go off line.

When the new server starts up, it advertises itself in the service directory and it makes

itself available to clients. The advertisement publishes the new proxy (if needed). The

proxy wrappers on clients which have the old version of the proxy react to the new

advertisement available in the service repository and upgrade the proxy if necessary.

It is important to note that the server is required to preserve backward compatibility

with previous versions of proxies. The reason for this is twofold. In the first case, the

old server may have ignored some calls from clients during its shutdown process. The

new server, when it comes up, finds these calls waiting to be addressed. Until these

calls are addressed, the wrapper on the client side keeps the client application blocked,

waiting for the method to return. While the wrapper may react to the presence of a

new proxy in the new server’s ad in the service directory, the most the wrapper can

do is fetch the new proxy on the client host and then block again, waiting for the call

to return. The server therefore has to be able to execute this call, which necessitates

that the server be able to read and understand the request, even if it was formulated

by an older version of the proxy.

Figure 4.7 shows the sequence of interactions between different parts of the system.

In the initial state, the client has already discovered the service and installed its

proxy. The first round trip of calls shows a complete path of interactions starting

with the client issuing a call, intercepted by the wrapper which obtains the lock from

the synchronization logic and then forwards the call to the proxy which sends it to

its server. The call return follows the same way back and releases the lock as it goes

through the wrapper to the client.

The second call (shown in Figure 4.7 below the dashed line) occurs at the same

time that the server is upgraded. In the scenario depicted, the proxy update request

arrives at the wrapper after the method call from the client already went through,

46

New
Server

Old
Server

Service
Directory

New
Proxy

Old
Proxy

Sync
Logic

Wrapper
(Fwd.)

Wrapper
(Update)

Method Call
Get Lock

Forward Method Call
Forward Method CallFwd.

Method Call

Results
Results

Results

Method Call

Results

Get Lock

Get Lock

Release Lock

Forward Method Call
Forward Method Call

Forward Method Call

Advertise New Server

Propagate Advertisement

Shut Down Old Proxy

Replace and Start New Proxy

Wait
For Lock

Release Lock

Declare
Imminent
Shutdown

Results
Results

Results

Results

Release Lock

Client

Figure 4.7: Interactions between components of the service upgrade mechanism.

47

towards the server. The wrapper therefore can only discover the new proxy and fetch

it locally, but has to wait for the method to return before it can proceed with the

proxy replacement process. Once the result of the call is returned and the lock is

released, the wrapper obtains the lock and swaps in the new proxy. Once the new

proxy is in place, the wrapper releases the lock which guarded the proxy replacement

and once again returns to the default operating mode of simply forwarding client calls

and results.

4.4 Follow-me Sessions

4.4.1 Services In the Presence of Mobility

In the dynamic environment of ad hoc networks, an interaction (defined as a bounded

sequence of message exchanges) between two hosts may need more time to complete

than the interval of connectivity between them. For reliable service provision, it is

desirable that an interaction between the client and the service provider, once begun,

reaches completion. In MANETs, physical movement of hosts is independent of appli-

cation semantics and I consider it undesirable for the application to impose mobility

restrictions. My solution is to have the client partially complete the task with the

help of some host, pause its work, and resume it on another host. This stretches the

processing of a task over multiple hosts as they fall within the client host’s commu-

nication range, each contributing pieces of computation towards finishing the entire

task.

The additional code required to support this kind of pause-transfer-resume computing

can make programming for mobile environments prohibitively complex. It is in the

interest of keeping programmer effort low that I introduce a layer of abstraction called

a follow-me session (FMS), defined as a mechanism that preserves the sense of

interaction between a client application and a service by masking the disconnections

between intervals of connectivity. In essence, “follow-me” sessions offer, within limits,

continuity of service provision despite changes in connectivity.

48

Observe that traditionally, a session is a lasting connection between a client and a

server host during which several packets of data are exchanged. Usually, a session

is not interrupted by a disconnection. However, in FMSs, the lasting connection is

between a client and a service as explained above, rather than a specific service pro-

cess or volunteer host. Since hosts can move in and out of communication range due

to physical mobility, the FMS must have the capability to span multiple connectiv-

ity intervals without severely disrupting the client-service interaction. I also impose

the restriction that all FMS functionality be built into the middleware layer with the

purpose of abstracting complexity associated with a decoupled and transient comput-

ing environment from the application programmer. Realization of such functionality

requires that the middleware be able to move the data and/or computation state of

the client-service interaction from one host to another.

This section describes a set of components that support the delivery of “follow-me”

sessions by using one or a combination of the following three strategies: 1) switching

on the fly to an alternate provider which offers a similar service on the fly, continuing

rather than restarting the execution on the new provider, 2) allowing the client to

temporarily disconnect from the service provider while the provider continues process-

ing, or 3) having the client take back the partial results temporarily until a suitable

alternate service provider can be found. The use of these mechanisms ensures that

the process offering a service can migrate from host to host, so that it is always on a

host that is in proximity to the client as the host on which the client resides moves

through space.

A summary of the basic mechanisms needed to deliver FMSs are presented in the

scenario depicted in Figure 4.8.

H1 H2 H3 H4

a cb ed f ihg

X ?

H4

j k l

Figure 4.8: Follow-me session components.

The circle represents the client application’s host. The horizontal dashed line rep-

resents the client hosts’s trajectory as it moves through space from location a to l.

49

As the client approaches host H1, it pushes the implementation of a service it needs

onto H1, while holding on to the proxy object which will be used to manipulate this

server remotely. The dashed arrows indicate how the service moves; a variation of

this scenario might allow the client to simply discover the service already running

on H1. The solid arrows denote the client’s interactions with the server dedicated to

carrying out the task, and are not related to session management. When the client

is in position c, the service migrates from H1 to H2 since the client will soon lose

connectivity to H1 but will remain connected to H2. The transfer from H1 directly

to H2 is possible because H1 and H2 are within communication range of each other.

When the client reaches location e, there is no host to which the service could jump

and therefore the client will “take back” the service (computation state and binary

code if the interaction started with the client discovering the service; if the client

pushed the service, the code transfer is not necessary as the client has it) and partial

results (the dashed arrow from H2 to the client). The client cannot run the service on

its own host because the resources available on that host do not allow it and there-

fore the client will only transport the service until a new host is found. At location

f the client pushes the server onto H3 where the client will manipulate it remotely

until the client reaches location h. The disconnection from H3 becomes imminent

but H4 advertises the same service. The client will continue its job using the service

advertised by H4, since it is much cheaper to migrate the computation state than the

entire service process, and have the new server resume from a predefined intermediary

progress point. While working with H4, the server’s host moves out of range but only

temporarily and the client knows it. If the application allows it, H4 can continue to

work on the task while the client crosses landmark j and the two are disconnected.

At k the client reconnects with H4. When the client interacts with H4 at location l

the task is completed, and the results are shipped back to the client.

4.4.2 Building Blocks

Before I address the strategies listed above, I will first introduce a few building blocks

that are necessary in the delivery of the FMS middleware.

50

Checkpointing

Checkpointing is a mechanism introduced to improve the fault tolerance of software

(an important reference on checkpointing related resources is [2]). It entails saving the

current state of a program and its data, including intermediate results to non-volatile

storage, so that if interrupted the program can be restarted at the last checkpoint. If a

program run fails because of some event beyond the program’s control (e.g. hardware

or operating system failure) then the processor time invested before the checkpoint

will not have been wasted. I address failures triggered by hosts’ disconnection while

a task is processed in a distributed manner.

If a client-service process interaction does not run to completion during a window of

connectivity, the task has to be completed during a subsequent window of connectivity

or in collaboration with another volunteer host. Using checkpoints, the interaction

can resume from an intermediary point (i.e., from the last checkpoint the execution

flow went through), and does not have to be restarted from the beginning.

At each checkpoint I record the state of the thread, including its program counter

and call stack, which are known as the execution state. Note that for the Java

implementation, I had to introduce an artificial program counter because the JVM

does not allow outside access to its program counter. This artificial program counter

is updated at each checkpoint (it actually tracks which checkpoint was cleared last).

The value of the artificial program counter is transferred to the destination host and

is used to resume the execution of the server process. As in any native programming

language, every time a method is invoked, a new frame (or entry) is created and

pushed to the top of the call stack. The frame, which contains the parameters of the

method call and local (temporary) variables, is destroyed when the method returns.

The data state is composed of the values of instance variables (live objects). These

are easier to transfer as serializable objects (I do require that these objects are all

serializable).

When the service process migrates from one volunteer host to another, the state

recorded at the last checkpoint visited is transferred. Any further computing is lost

as the session and state information resumes from that last checkpoint, e.g., if the

checkpoint is placed just before a for loop, the loop will be started from the beginning

51

when the execution is resumed at the destination host. If the checkpoint is added

immediately inside the loop, the execution resumes with the last iteration of the loop

executed on the initial volunteer host.

I approached these problems by choosing to instrument the bytecode of applications

rather than trying to manipulate them at runtime. This instrumentation process adds

bytecode to applications to add support for strong code migration, including code to

work around these technical limitations.

The programmer defines checkpoints by calling the addCheckpoint() method. While

appearing to the programmer to be an ordinary method call, it serves as a marker in

the bytecode to indicate the location of checkpoints. After compiling the Java source

code, the resulting bytecode is passed into the instrumenter, which converts the code

so that it is capable of being strongly migrated. This instrumenter is implemented

using the BCEL class file manipulation library [24]. Details about when happens

inside a checkpoint are available in the next subsection.

State Saving and Restoring

Checkpoints are places where instantaneous snapshots of the execution are taken.

Such a snapshot represents the computational state of the application when the ex-

ecution goes through the checkpoint. These places are potential interruption places,

the execution resuming from the last checkpoint cleared (the last computational state

known). The computational state can be saved and transferred such that the execu-

tion can resume on another machine, or can be resumed after a crash.

To do this, the instrumenter first collects a list of all the local variables in the current

method. It then adds a field for each of these local variables; these fields are used

later to store the state of the local variables. The instrumenter also inserts a field

to store an artificial program counter. The instrumenter then searches for all calls

to addCheckpoint(). At each checkpoint, the instrumenter inserts code to check a

do pause field, which indicates whether or not the application thread is being paused

so it can be migrated. If this field is set, then the method immediately returns. If it is

not, then the method copies all of the in-scope local variables to the fields described

52

above and then sets the artificial program counter to some unique value. Finally,

the instrumenter removes the call to addCheckpoint(), since it only serves to mark the

bytecode. The instrumenter also appends code at the end of the method to copy these

fields back into the corresponding local variables and jump to the checkpoint; these

“restoration points” provide a place for the thread to restore its state and return to

the last checkpoint it passed before being migrated. The bytecode instrumenter then

adds code to the beginning of the method to see if the paused field is set. If this is

the case, then the application jumps to the appropriate restoration point based on

the contents of the artificial program counter field. This has the indirect effect of

restoring the thread’s local variables and the JVM program counter.

Code Migration

An essential contributor to FMS is strong process migration. Strong migration entails

data state migration, execution state migration, and binary code transfer. Data state

migration transfers the state of an object’s instance variables when the binary code for

that object is already available on the destination machine. Execution state migration

entails transferring the (artificial) program counter and the call stack content. Binary

code transfer downloads the binary code of the process on the target machine, where

the loader can find it and load it into memory.

During migration, the serialization process wraps only the content of an object (values

of member variables) and not the bytecode from which the object was created. This

includes all objects inside the initial object. To transfer all the binary code needed

on the remote machine, I use a combination of reflection and exceptions to build

the closure of the classes that need to be migrated. I developed a custom class

loader [52] that is able to capture on the destination host all exceptions caused by

missing bytecode. After catching such an exception, I use reflection to build the list

of dependencies (instances of other classes the object that triggered the exceptions)

and send it to the the source volunteer host, requesting the missing bytecode. On the

source volunteer host, I inspect the advertised proxy using reflection when I publish

the service advertisement. I publish the code of all classes the proxy instantiates and

which are not part of the standard JDK or of the middleware (i.e., they may not be

53

available on a client machine). This code is downloaded, installed and loaded by the

custom class loader on the destination host.

Location Agnostic Protocols

A key element in the delivery of the context-aware session management is the com-

munication protocol between the client (proxy) and the server applications. All these

interactions logically belong to the same FMS. Therefore, the client side should not be

impacted by disconnection from service process, service process migration, or rebind-

ing to a new service process, as long as the session is in progress, i.e., it is preferable

for changes to be transparent. While the disconnection cannot be completely hidden

from the client application (when the client expects an immediate answer from a ser-

vice process on a disconnected volunteer host, there is nothing the middleware can

do to help), it can be masked as a delayed response until the two hosts in question

reconnect.

To deliver this, I employ location-agnostic communication protocols. The client ob-

tains a unique session identifier which is used to stamp all messages exchanged in a

working session. The client only knows that at the other end there is a service process

handling the requests belonging to this session. Similarly, the service process knows

to pick up and serve only messages marked with the appropriate session ID. Hence,

messages do not have to be addressed to a specific host or network location. If a

process migrates from one host to another, it will receive a message intended for it if

it uses the same criteria (in terms of content of the message). Similarly, if a client uses

context-sensitive binding (described in Section 4.4.3 to connect to a similar instance

of a service, it is not unreasonable to assume that it will have the same criteria as the

original instance of the service that was used, allowing messages to be propagated

automatically to the new instance of the service. This leads to a communication

protocol based on the content of the messages rather than the explicit destination

stamped on each message (content-based communication rather than point-to-point

communication).

This concept is illustrated in Figure 4.9. The producer (lower-left corner) publishes

data in tuples with the first field identifying the session to which they belong, and

54

Data Data template

DataData templateData

Com
mun

ica
tio

n c
ha

nn
el

<session ID = 7, some_payload>

<session ID = 7, **>

Tuple space

Figure 4.9: Content-based communication supported by tuple spaces helps deliver
location agnostic protocols.

some payload in the following field(s). A consumer (upper-right corner), reads data

belonging to the session identified by session ID = 7. Tuple space communication is

a natural environment for this type of interaction. Note that any other accessor of

the tuple space could pick up this message if interested in session 7. This allows the

client to change providers and not be impacted other than by the overhead induced

by the communication channel reconfiguration.

4.4.3 Mechanisms Employed for Continuous Service Provi-

sion

In this section I will present multiple mechanisms that can be employed to provide

continuous service to a client, despite the connectivity changes induced by the tost

mobility. Since not all mechanisms are always usable or some may yield better results

than others, a decision algorithm that helps choose the best option at a certain

moment is presented after the above mentioned mechanisms are described.

55

Context Sensitive Binding

Having presented the building elements needed for dynamically changing the service

provider, context-sensitive binding (CSB) is the first mechanism that uses them for

achieving the functionality of FMSs. CSB is a mechanism that decouples the inter-

face of a service from its realization. The realization of the interface is provided by

a changing set of service processes such that the best service process provides the

realization at any given time, where best is defined (for now) as the service process

on the volunteer host that is likely to remain connected to the client host for the

longest duration. This is a common sense metric that yields good results most of the

time, but is not the only metric possible and is not always the best. For example,

switching to a provider to which the client stays connected for a shorter period of

time, but which has a much faster progress rate might prove beneficial to the client.

Switching between service processes and volunteer hosts occurs dynamically and

transparently in a context-sensitive manner. Context-sensitive binding offers several

features:

• Policy based selection: the set of qualifying volunteer hosts is chosen based on

policies, e.g., “ensure that the client is always connected to a volunteer host

running the required service that is not more than 25m away.” When choosing

a volunteer host, the policy is the first filter that is applied after choosing a

set of service providers that already offer the needed functionality (i.e., this

step executes after the service query/discovery step) or that offer to run code

provided by the client.

• Metric based evaluation: once the set of candidates is determined, the best

volunteer host is chosen according to client-specified metrics (e.g., the client

works with the volunteer host that will stay connected to it for the longest

time).

• Transparent binding maintenance: context-sensitive binding provides for dy-

namic switching between volunteer hosts to provide the best available service

at any given time. Except for a small interval of time when the mechanism is

switching between volunteer hosts, continuous binding between the client and

56

the server is maintained. However, the switching of the volunteer host is masked

from the client by the middleware, so from the client’s perspective, the binding

appears continuous for the time interval it uses the service.

While CSB can be guided by any kind of policy, in the interest of a targeted and

complete treatment, I focus on spatiotemporal policies, as these are among the most

relevant in MANETs. CSB is responsible for changing the volunteer hosts and service

providers such that the momentary provider is the best available given a context. In

MANETs, the primary reason for context changes is physical mobility. As hosts move

in space, they encounter a changing set of hosts over a period of time. Once an initial

volunteer host is chosen, the client begins its interactions with the service process on

that volunteer host.

Periodically, a snapshot of the interaction is taken (using the checkpointing mech-

anism described earlier). In parallel, the CSB mechanism monitors the context to

check if the current volunteer host is still the preferred one. Changes of interest in

the context are changes in the knowledge base managed by the current host (e.g., the

current host learns more about its own future evolution in space, or learns more about

some other host’s motion profile). Unpredicted changes in connectivity are also of

interest (these can only be unpredicted encounters with some mobile host whose mo-

tion profile the current host doesn’t know; all other (dis)connections are anticipated

and accounted for in the decisions made about the FMS thus far). These changes can

lead to a re-evaluation of the future of the follow-me session.

Depending on whether or not the migration includes execution state migration, pro-

cess migration can be split in two types: weak and strong migration.

Weak migration requires that the process can run, but not resume, on a destina-

tion host. This involves making the code available on the destination machine and

restarting the process from the beginning, losing any progress the process may have

made before migration. The execution state is not transferred during weak migration.

Examples of weak migration are [9], [60]. In some cases, some initialization data can

be transferred along with the process but that does not account for complete execu-

tion state transfer. The process is restarted, except that the memory is initialized to

contain potential partial results (e.g., µCode [94]).

57

Strong migration [91], [43], [19] entails the migration of the execution state as well.

Processes can be stopped, transferred, and resumed on a new host. To deliver the

desired semantics, I developed a strong migration mechanism, implemented for Java

threads. While capturing and transferring the execution state, the program counter

of the Java virtual machine (JVM) and the call stack are captured and transferred

in a serializable format to the new destination. Strong mobility is more powerful but

it is also more expensive to deliver. It does, however, offer the pause-transfer-resume

semantics required by the FMSs.

I deliver strong migration in two forms: lightweight and heavyweight. Lightweight

migration entails only the transfer of state information. This is the preferred scenario,

as it incurs less overhead. This fortunate scenario requires the binary code of the

executing process to be available on the destination host. If this is the case, a thread is

stopped in a checkpoint, the state is saved and transferred in serializable format to the

target host, is restored there, and then the computation is resumed. When lightweight

migration is not possible, heavyweight migrations is needed, i.e., the binary code has

to be transferred as well. All mechanisms required to achieve lightweight/heavyweight

migration have been presented in the previous section. Figure 4.10 illustrates the CSB

idea and shows the usefulness of location-agnostic communication protocols.

Network

Client

Provider 1

Provider 2

X

reb
ind

ing

Figure 4.10: Context sensitive binding and location agnostic protocols.

To transfer the control from one host to another, whether code migration is required or

not (i.e., CSB needs a heavyweight migration or a lightweight migration suffices), the

58

application programmer creates mobile applications by extending the MobileThread

class, which adds several methods and fields to Java’s standard Thread class. The

programmer defines checkpoints by calling the addCheckpoint() method, which serves

as markers for allowed interruption points, as described before. The MobileThread

class also adds another two important methods to the standard Thread class: pause()

and unpause(). The pause() method sets the do pause (also introduced above) and

paused fields to true; the former tells the thread that it should stop execution as soon

as it reaches the next checkpoint, and the latter tells the thread that it should restore

its state when it is restarted. The unpause() method simply resets the do pause field to

false and restarts the thread; since the pause() call set the paused flag, the thread will

jump to the appropriate restoration point and return to the last checkpoint passed

before pausing. This way, rewritten applications can be migrated across hosts by

pausing the application thread, serializing it on the original host, deserializing it on

the new host, and unpausing it. This entire trick is needed because a thread cannot

be safely stopped from outside (i.e., all Java’s methods for stopping a thread without

killing it are deprecated, as they might leave the JVM in an inconsistent state). The

entire procedure described above simulates an external thread stop while in reality

the thread is requested to stop and it then stops by itself (i.e., from inside). At each

checkpoint the do pause flag is examined and this flag tells the thread whether to stop

or not and the thread does it itself.

The sequence of events during a process migration can be observed in Figure 4.11.

Temporary Disconnect

If the imminent disconnection between the client and the volunteer host is temporary,

i.e., they will reconnect in the near future, the system can opt for a temporary discon-

nection rather than moving the computation to another host. Under this scheme, the

middleware allows the client and the service process on the volunteer host to discon-

nect, but the service process continues executing for the duration of the temporary

disconnection. If the task completes while the hosts are disconnected, the results are

saved by the service process on the volunteer host. When the client reconnects, it

can retrieve the result, if available, or continue with direct interaction.

59

VH.A VH.B

Connectivity
Intervals from client’s

perspective

Interactions between
client

and volunteer host

Useful Work
vs. Overhead

Sequence of Events
a. Client connects to volunteer host VH.A
b. Client starts interaction with VH.A
c. Volunteer host VH.B moves into communication range
d. Sensing imminent disconnection, client directs VH.A to migrate data + execution state + binaries to VH.B using

strong process migration.
e. Migration to VH.B completed (Note it takes longer than CSB). Client disconnects from VH.A. VH.B takes up processing
f. Client begins to interact with VH.B
g. VH.B completes task and ships results to client. Interaction ends.

Time

VH.A

VH.B

Data +
Exec. State +

Binaries

a b c e f gd

Overhead Details

PM Packing
Transmission

PM Unpacking

Figure 4.11: Process migration.

There are two issues with this approach. The first relates to determining whether the

disconnection is temporary or not. This is determined by an analysis of the motion

profiles of the two hosts. Details will be covered in Section 4.4.4. The second is-

sue relates to potential communication between the client and service process during

the temporary disconnection. Clearly, no such communication can occur when the

client is disconnected from the volunteer host on which the service process is resident.

Hence, this option can only be used effectively for a special class of client-service

process interactions which consist of a single communication to initiate the interac-

tion and a single communication (with the result) at the end of the interaction. If

additional communication is required, then the processing will block until the two

60

hosts reconnect. While this approach is restrictive, it is attractive in that it results

in lower overhead (if the client reconnects before the service process finishes the task

or there is no communication required resulting in the process not blocking). If the

result is held on the volunteer host or some communication is required during the dis-

connection however, there is an overhead from the time at which the process finishes

or is interrupted, until the time the hosts reconnect.

The sequence of events during a temporary disconnection are presented in Figure

4.12.

VH.A VH.A

a b c e f g

Connectivity
Intervals from client’s

perspective

Interactions between
client

and volunteer host

Useful Work
vs. Overhead

Sequence of Events
a. Client connects to volunteer host VH.A
b. Client starts interaction with VH.A
c. Sensing imminent disconnection, client starts temporary disconnection protocol
d. Client disconnects from VH.A. Processing continues
e. Processing is complete. Results are held locally. Remaining time until reconnection is overhead
f. Client reconnects to VH.A. VH.A begins transmitting results
g. Transmission of results completed. Interaction ends.

d Time

VH.A

Overhead Details

No communication channel

Figure 4.12: Temporary disconnection.

The client could begin its interaction with the service process on volunteer host VH.A.

However, when a disconnection from volunteer host VH.A is imminent, the client can

61

switch to the service process on volunteer host VH.B. The partially computed results

and other data and execution state are migrated automatically from VH.A to VH.B

by the middleware.

Take Back

In the case that there are no neighboring volunteer hosts at the time of disconnection,

resulting in none of the above options being available, the middleware can opt to

temporarily suspend the interaction between the client and service process. The data

and execution state of the service process on the current volunteer host is shipped

to the client and stored on it. The client in the meantime continues to search for

alternate volunteer hosts. When such a volunteer host becomes available, the stored

state is transferred onto that volunteer host and processing is resumed. Note that I

do not consider the possibility of the client executing the code because if this were

an option, the client would not have needed to use a volunteer host in the first place.

This option is the most expensive in terms of overhead because it requires two mi-

grations: one to recover the process from the host it is executing on and another to

resume it later; and it offers no progress between those migrations because processing

is suspended until an alternate is found. Depending on how the interaction with the

service started (i.e., the service was discovered by the client or pushed by the client),

the transfer of binary code might be needed. The advantage of this option is that

it is always available, i.e., it is independent of other hosts in the MANET but it is

used only in the worst case scenario due to its high overhead. The sequence of events

during a take back can be observed in Figure 4.13.

4.4.4 Decision Algorithm

In the face of a disconnection, depending on the configuration of the mobile hosts

around the host which executes the client application, a decision has to be made as

to which of the available options from the ones described above should be followed

and which mobile host should be the next partner. The best choice is always desired,

but this may vary depending on the particularities of the application in discussion.

62

VH.A VH.B

Connectivity
Intervals from client’s

perspective

Interactions between
client

and volunteer host

Useful Work
vs. Overhead

Sequence of Events
a. Client connects to volunteer host VH.A
b. Client starts interaction with VH.A
c. Disconnection is imminent and no other host is in communication range. Begin migration of execution state to client.
d. Transfer of execution state completed. Client disconnects from VH.A. Execution of task is suspended.
e. Volunteer host VH.B moves into communication range. Client begins transferring execution state to VH.B
f. Client finishes transmitting execution state. Execution resumes on VH.B
g. Client interacts with VH.B.
h. VH.B completes interaction and ships results to client. Interaction ends.

VH.A

VH.B

Time
a b c e f gd

Overhead Details

PM/CSB
Packing

Transmission
To client

PM/CSB
Unpacking

Transmission
from client

Idle on
client

h

Figure 4.13: Take back.

Figure 4.14 shows four sample applications, each of them representative for its class,

as defined by two parameters: fixed length and connection needed.

The fixed length parameter dictates whether the application has a runtime imposed

“from outside”. For example, playing a song will take as long as the song is. In

this case, any machine whose performance is above the minimum necessary to play

the song is just as good and therefore more processor power or more memory will

not do the application any good. On the other hand, compressing a file can benefit

from more processor and/or memory. Similarly, some applications need the service

provider to always be in touch with the proxy manipulated by the client, such as

listening to the music. If the service server process has access to the music repository

63

connection

needed

fixed
length YES

YES

NO

NO

music
playback

radio show
recording

game
playing

file
compression

Figure 4.14: Types of applications.

but the client is disconnected and therefore cannot play the music for the human user

carrying the client’s machine, the service is useless. By contrast, recording a radio or

TV show (e.g., TIVO) doesn’t require this permanent connection. Once the service

is started, it can continue without tight monitoring. I will continue the presentation

assuming the situation when the task’s length is not fixed and the connection is not

strictly required. This is the most general case and all others are just biases of the

decision mechanism and will be mentioned at the appropriate moments.

Figure 4.15 shows a sample dynamic configuration of mobile hosts and a part of a

FMS spanning the [t0, t8] interval.

The top half of the picture (above the time axis) shows the FMS as it happens in

time. Each horizontal line represents an interval of connectivity between two hosts

(underneath the time axis are listed all pairs of hosts that are in direct contact during

each time interval) and how the FMS behaves during it (see the legend beneath the

picture for more details).

The FMS is captured while the client C works with H1 at t0. At t1 the scenario

indicates it starts to migrate to H3. From t2 to t6 it executes on H3 (including [t4, t5]

which represents a “temporary disconnect” interval). My follow-up ends at t8 where

FMS migrated meanwhile. The question is, “why did the FMS go to H3 and not to

H2 which was another option at t2?”

Zooming in on two consecutive collaboration intervals with two different servers, the

details look like those depicted in Figure 4.16. Each interaction interval is mainly

formed of three sub-intervals: the setup - A zone (when the FMS comes from another

64

0 1 2 3 4 5 6 7 8

C-H1

C-H2

C-H3

H1-H2

H1-H3

C-H4

H3-H4

C-H1 C-H1
C-H2
C-H3

H1-H2
H2-H3

C-H2
C-H3

H2-H3
C-H3 C-H3

C-H4
H3-H4

C-H3

C-H4
H3-H4

C-H4

Executing Process

Migrating Process

Disconnected
Executing Process

Figure 4.15: Sample FMS and mobile hosts configuration.

host and the computation is resumed), the useful work - B zone (the the service does

useful work for the client), and the cleanup - C zone (the FMS prepares to move on

or bring the final results back to the client). The thickness (vertical) of the bars in

the picture represents the performance while the length (horizontal) represents the

time needed to perform the operation.

The overhead is split in two parts: prepare to migrate (A2) /recover from migration

(C1) and the transfer itself (A1/C2). During A2 (/C1), the state saving (/restoring)

and serialization (deserialization) of transferables is being performed. A2 and C1 are

computational efforts and therefore are performed by each machine at the same speed

as the B region (giving the same performance). A1 and C2 overlap in time and have

the same progress rate as they represent the transfer between the two hosts. This

65

A C1B

CB

Prepare for migration

Migrate

Recover from migration

A2A1

C2

time

Figure 4.16: FMS transfer from one host to another.

is determined by the quantity of data to be transferred and the bandwidth available

between the two hosts. It is obvious that A1 is the same size (performance-wise and

duration) as the corresponding C1.

The bandwidth available between two machines can be evaluated at runtime by real

time tests. The quantity of the transfer can also be evaluated at runtime, by mea-

suring the size of the byte array to be transferred. This applies only to the very next

transfer and may not be accurate for the scheduling of the FMS behavior more than

two hops away (in the future). While the size of the code to be transferred can be

considered almost constant (and therefore figured once and reused), the computa-

tional state and especially partial results are more difficult to estimate. Depending

on the type of application, they may be constant (e.g., a service that plays an mp3

file will drag along the same file while migrating, and therefore its size is known). In

other cases, this can be roughly evaluated based on the application’s progress. For

example, a file being compressed has an initial size and decreases (roughly uniformly)

in time as the application makes progress. This way, the migration becomes cheaper

with every second of useful processing done on a volunteer host, the rate also being

computable. In other applications, the transfer becomes more expensive with time,

such as in the case of a radio show encoding service. The more the service records,

the larger the result file is. In this case, the size can also be estimated (e.g., given the

broadcast and compression parameters, the file grows by x kb per second of useful

work). There are also situations where this estimation is completely out of question,

as the dynamics of the data and computational state are untraceable.

66

Since this is not central to my research, details of such estimates are abstracted away

by using upper bounds on estimates as constant overhead penalties. E.g., for the tests

I developed, I measure how much time it takes to do a lightweight/heavyweight mi-

gration using a representative sized data file. The computational power of a machine

is also a parameter that influences the performance of a FMS. This effect is even more

difficult to estimate. In my tests I used the advertised CPU speed as reference data,

ignoring the instantaneous workload (which could make a 5GHz processor do worse

than a 100MHz processor with less workload). As described before, some applications

only require a minimum of resources (e.g., to be able to (de)compress mp3 files in

real time, a minimum system configuration requires a processor faster than n MHz

and a minimum of m MB of RAM memory; many applications have had their system

requirements advertised on their boxes for many years now) to even work, others work

under any conditions, just at different progress rates. For my decision algorithm, I

need the speeds of various volunteer hosts I can choose from (assuming the workload

takes a comparable toll from each of them). I use this to make a simple decision as to

whether a host can do a minimum-requirements-specified job and which of two hosts

can be expected to the faster one. Work related to evaluating the execution time of

some software can be found in [12], [31], [95], [71].

To present the algorithm, I will use the configuration depicted in Figure 4.17. On

the vertical axis are all pairs of hosts. The entire universe only contains four hosts

for this example. Host a is the reference host, where the client executes. Each pair

of hosts has its direct connectivity intervals depicted. A simple line means just that

the two hosts could talk in a peer-to-peer fashion. A box indicates that the FMS

could go there (e.g., the box that indicates that a and b could interact from t1 to t3,

including overhead). The black boxes represent the FMS in action, while the empty

(white) boxes, show where the FMS could go but it doesn’t. The arrows indicate how

the FMS transfers from one host to another under the client’s machine supervision.

The scenario starts with the client pushing the service onto host b. This is marked

as “discovery” on the picture and entails a heavyweight migration of the service. At

moment t2 the client has the option to continue working with b or to switch to c, which

has approached meanwhile. Host c already offers the same service, so a lightweight

migration suffices in this case (marked on the picture with “csb”). The a-b box has

become white as the action moved to the a-c box. The direct transfer from b to c was

67

cd

bd

bc

ad

ac

ab

aa
1 2 3 4 5 6 7 8 9 time

tm

csb
csb

csb csb

csb

tm

tm

csb

csb

csb

csb

csb

csb/results

-window of connectivity not involving the reference host (a)
-window of connectivity involving the reference host (a)
and active working session
-window of connectivity involving the reference host (a)
and potential for a FMS (but inactive)
-beginning/end of a window, where the migration happens
-temporary disconnection between the reference host (a)
and the partner volunteer host
- potential migration of the FMS

Figure 4.17: Sample mobile host configuration to illustrate the decision algorithm.

possible because of the window of opportunity b and c have directly, around moment

t2. Otherwise, the transfer would have evolved as though a had continued with b. At

moment t3, in the latter case, a would have to do a “take back” (a csb to itself) and

then another csb to c, because a direct transfer from b to c is not possible at moment

t3. At moment t4, host a could take back or could allow a temporary disconnect.

This is an example of a situation where the need connection flag advertised by the

application makes a difference in the decision process. Also at moment t2, the only

reason for having switched to host c was that c works faster than b (see the thicker

line). If the job had had a fixed length and b was obviously good enough to service the

client until moment t2, there wouldn’t have been any reason to switch to c as the extra

performance would not make any difference. The job is finished at moment t9 (when

the knowledge about the other hosts’ motion profiles ends as well, “by coincidence”).

The decision algorithm operates on the graph in Figure 4.18. The graph is built from

the depiction of the windows of opportunity depicted in Figure 4.17, obtained from

68

the analysis of the known motion profiles (hosts exchange motion profile information

when they meet; more details are available in the next chapter).

Each node in the directed acyclic graph is a host with which the reference host (host

a in this example, where the client executes) could be working at a certain moment.

A directed edge represents either a transition from one host to another or useful work

done for the client. Each such edge is labeled with its action to it left and the amount

of progress made to it right. The thick arrows follow the FMS described.

The best FMS path is the one that gives the result as fast as possible and as completely

as possible. That is the path that achieves the most useful work done per unit of

time. The algorithm will therefore search for the path with the greatest overall average

progress rate. For a fixed progress rate (e.g., for a real-time job such as live sound

feed recording) the highest overall progress rate is achieved when there are as few

migrations ar possible (and thus the gaps are few and the useful work accounts for

more of the time spent on the job). In the case where the job is flexible in terms of

performance, the highest progress rate is achieved by always choosing the host with

more computational power (of course, the extra performance has to offset the cost of

an otherwise unnecessary migration).

The times marked on the time axis represent important moments when a window

of opportunity opens or closes. This is when a migration can or has to happen and

choices have to be evaluated. Even though they are shown at the same distance, they

need not be.

Following the execution of the FMS on the decision graph in Figure 4.18, the first

decision has to be made at t2. To be able to make this decision, the algorithm looks

ahead to the point where the two branches converge in the same node again (the node

representing host c, just before t4). From all branches that start at t2 the amount

of progress yielded before the join is the decisive factor. In the example, p1+p3+p4

means more useful work done until just before t4 (where the c node spawns again

two edges) than p1+p2+p5 and therefore the path to the right (b-c-c-c) is chosen over

the one to the left (b-b-a-c-c). To achieve this, the algorithm eliminates the edges

that enter a join and lose the competition (such as the “Use c, p5” edge between t3

69

and t4). Working backwards in the graph all edges and nodes on losing branches are

“eliminated” until the node where the split happened is reached.

The same mechanism applies on the interval (just before) t4 - (just after) t5. The

same approach indicated the path to the right yields more progress. In this particular

split point, the need contact parameter takes precedence though, if specified. If the

service cannot be left unsupervised and permanent contact is required (which was

not the case in the example above), the FMS would have been taken back by a and

the execution path in the graph would have gone to the left.

If one of the branches that split up in a node then splits even further, the algorithm

is applied recursively on that section of the graph, the local best result is integrated

in the overall performance evaluation of the branch and then compared against the

scores reported by other branches. An interesting situation develops between t6 and

t8. A path splits to the right from c (going to c) and one to the left (going to a).

The left branch then splits again at node d just before t7. Applying the branch

evaluation/elimination selection process described above, the branches c-a-d-d-a and

c-c-c-a can be evaluated, and the latter wins (because, given the particularities of the

scenario and cabailities of the hosts involved on the two paths, c-c-c-a path records

more progress than the alternative path until t7 when they merge). During the edge

and node elimination step, only the d-a “CSB, 0” branch can be eliminated because

the node d in which originates is a split node. The real reason behind this maneuver

is that the branch this node is on (the one that started from c just before t6) meets

with the other one after t8 and the prefix of the branch evaluated so far (c-a-d-d) is

part of the rest of the potential execution trace until the next join. Eliminating the

d-a edge mentioned above, the two branches remaining are c-c-c-a-b-b-b (going right

from node c just before t6) and c-a-d-d-d-d-a-b (going left from node c just before t6).

The righthand side path wins again (as above, I assume the branch on the righthand

side achieves more progress until t8). By the end of the scenario, the useful work

invested to finish the task was p1+p3+p4+p6+p7+p8+p9+p10+p13++p15+p16 and the

overall progress rate is the sum divided by (t9-t1), which is the best progress rate that

could have been achieved.

An interesting observation is that the graph is a lattice (because the nodes are mo-

ments in time and there is a partial order relation over time) with only one source

70

and only one sink. This is because it is always the client who starts the FMS and

it is always the client who collects the results at the very end. The information on

which the construction of the graph is based is always considered accurate. This

means that it is not possible to expect a window of interaction between two hosts

because that is what their motion profiles indicates and the window not to happen.

The information may be incomplete in the sense that it ends before the job can be

finished (e.g., imagine the graph up to t7). In this case, the “take back” option is

always available. When there is no other option, the client can take back the FMS,

even if the job is not finished.

As time goes by and hosts move, the client’s host learns more about the motion

profiles of the hosts it meets and thus updates its knowledge base. The changes

incurred on the graph are of two types. First, the knowledge can expand the horizon

in the future. That means the graph can be extended downward, as time flows top to

bottom in Figure 4.18. Another way the graph can expand is sideways. There cannot

be discovered new windows of opportunity among hosts whose motion profiles the

current host already knows, for the part of the motion profile known (such windows

can be discovered after learning more about the motion profiles and expanding the

knowledge base in to the future). New hosts can come and create new interaction

opportunities. In Figure 4.19 there are two new windows of opportunity (shown by

the dashed outlines) discovered after a motion profile update (assume the a-d window

didn’t exist before).

The graph is updated by adding the corresponding branches in the right places. While

these can get quite complicated, they essentially represent alternate paths that can be

reduced as described before. Additionally, the entire optimal path computation has

the prefix propriety which means the optimal path does not need to be re-evaluated

before the moment when the new branch attaches to the graph. It also means that

when the new branch is accounted for, if it loses the bid, the effect does not propagate

downstream. The graph update has, therefore, a very localized effect. As time passes,

expired nodes in the graph are garbage collected to avoid an infinite growth.

Migratory services resemble distributable threads [] [] from Real-Time CORBA 1.2

[83]. A distributable thread is mapped to the execution of a local thread in a dis-

tributed system. A distributable thread has a unique ID similar to the unique ID of a

71

FMS. Each distributable thread has a single execution point in the entire system, like

a client interacts with a single service provider host. The distributable thread does

not migrate itself. It rather transfers the control to various remote processors where

parts of the code is executed similarly to a remote procedure call which behaves as a

local operation invocation. A mobile thread assisting a client in a FMS migrates itself

from machine to machine and does not perform remote calls and thus transferring

the execution to other threads.

4.5 Summary

In this chapter I have presented a complete architecture for service oriented comput-

ing in mobile ad hoc networks. I addressed issues that impact all aspects of SOC

in MANETs. I presented a completely distributed design for service directories that

guarantees the consistency of data offered to inquiring clients even with disconnec-

tions. I also presented a complete solution for service advertisement and discovery.

As my solution to SOC in MANETs entails code migration, I developed a complete

automated code management system. Binary files supporting the serialized objects

that are transferred between hosts are managed entirely transparent to the program-

mer that manipulates the serialized objects. As one such object might use more than

its own binary file, the entire closure of binary dependencies is handled in the same

transparent manner. The contribution also includes a complete solution for runtime

service upgrades. Both the server and the proxy can be swapped while the client is

making use of the service with little or no impact on the client (the impact should

be understood as being at most a delay). While these are issues one can encounter

in wired networks too, the dynamic character of MANETs inspired the development

of follow-me sessions.

The migration of services is a novelty I developed to address the issue of short con-

nectivity intervals in the new, dynamic environment. It eliminates the limitations

otherwise imposed by the duration of a window of opportunity, supporting (within

limits) continuous service provision in the presence of disconnections. A strong mi-

gration mechanism was employed so that execution can continue on the new host of

the server process rather than restarting it, offering a pause-transfer-resume behavior.

72

A decision algorithms using knowledge about host movement in space helps schedule

and optimize the future evolution of FMSs.

Research dissemination. This chapter is based on material published in “Service

Oriented Computing Imperatives in Ad Hoc Wireless Settings”, a book chapter pub-

lished in “Service-Oriented Software System Engineering: Challenges and Practices”

(Zoran Stojanovic and Ajantha Dahanayake, editors, Idea Group Publishing, Hershey,

PA, USA, April, 2005); “Service Provision in Ad Hoc Networks” published in the Pro-

ceedings of the 5th International Conference on Coordination Models and Languages

(8-11 April 2002, York, England); “An Architecture Supporting Run-Time Upgrade of

Proxy-Based Services in Ad Hoc Networks” published in the Proceedings of Pervasive

Computing Conference (21-24 June 2003, Las Vegas, NV, USA); “Knowledge Driven

Interactions with Services Across Ad Hoc Networks”, published in the Proceedings

of Second International Conference on Service Oriented Computing (15-18 Novem-

ber 2004, New York, NY, USA); “Automated Code Management for Service Oriented

Computing in Ad Hoc Networks” published as Washington University technical report

number WUCSE-2004-17. “Context Aware Session Management for Services in Ad

Hoc Networks” published in the Proceedings of the IEEE International Conference

on Services Computing (11-15 July 2005, Orlando, FL, USA - IEEE best student

paper award). An integration of the security mechanisms described in Chapter 3

and the service provision middleware described above was described and published

in “Secure Service Provision in Ad Hoc Networks” in Proceedings of the First Inter-

national Conference on Service Oriented Computing (15-18 December 2003, Trento,

Italy).

73

bt1

t2

t3

t4

t6

t5

t7

t8

t9

b

b

Progress=0

Progress = p1

c

c

Discover
service

Use b

Continue
to use b p2

CSB
0

Use c p3

a

b
CSB 0

c

c

Use c p4

c

a

c

CSB 0

Use c
p5

CSB
0 TD

p6

a

sleep 0 Use c p7

c
CSB

0 Use c
p8

c

a c

Use c

Use c

p9

p10CSB
0

a

d

d

TM
0

d

Use d p11

CSB
0Use d

p12

c

Use c p13

CSB
0

d

a

Use d

CSB 0

p14

b

CSB 0

b

Use b p15

b

b

b

0

0

CSB

CSB /get
results

Use b p16

Figure 4.18: The decision graph for the mobile hosts evolution depicted in the figure
above.

74

bc

ad

ac

ab

aa
1 2 3 4 5 6 7 8 9 time

discovery

csb
csb

csb csb

csb

csbh

csb

csb

csb

csb

csb

csb/results

4.5 6.5

ae

csb csbcsb

csb

csb

4.5+ε: CSB(a,e)
(4.5+ε) -> (6.5-ε): use e
6.5-e: CSB(e,a)

5+ε: CSB(e,a)
5+2ε: CSB(a,c)

6-ε: CSB(e,a)
6+ε: CSBh(a,d)

CSB(e,c) if woop(e,c)

CSBh(e,d) if woop(e,d)csbh

Figure 4.19: As motion profile information is learned, more woops can be discovered.

75

Chapter 5

Disconnected Routing

5.1 Introduction

The service oriented computing infrastructure described in the previous chapter is

designed to help improve the interaction among hosts at the application level. In

order for a distributed computing infrastructure to work, routing algorithms must

ensure inter-host reachability. Conventional wired networks are increasingly being

extended to include wireless links. It is important to distinguish between wireless

links that are essentially stable in time and space, and those that are not. With

wireless technology claiming an ever increasing share of the market, the interaction

patterns between hosts need to be re-examined to address additional issues raised by

this new environment. Former assumptions that made things easy or even possible in

the wired setting may simply cease to hold in a wireless world. Wireless technology

allows devices to become mobile. The topology of the network can change while

applications are running and while interactions between such mobile hosts are in

progress.

Modern wired computer networks provide a high degree of reliability and stability.

The interaction between two different hosts in a wired network is expected to succeed

and it is not believed that the normal operation of a host can make it, even tem-

porarily, unavailable to the rest of the network. Security and other considerations

may cause an application residing on a host to become unavailable during its normal

functioning but even such intervals tend to be reasonably well bounded in duration

and frequency. Furthermore, the interaction between hosts is stable: the party a host

76

interacts with is always found at the same IP address or under the same name, even

when the name is resolved to different addresses at different times (e.g., a host may

obtain its address from a DHCP server).

The stability of such an environment allows for efficient configuration of the traffic in

the network. The total set of possible routes is mostly static, hardcoded in configura-

tion files and scripts that do not change very often. While on-the-fly adjustment of

information about the set of available routes is possible, such adjustments generally

have a reactive flavor, e.g., in response to network congestion. Fundamentally, mod-

ern routing protocols in wired networks depend at least indirectly on a stable set of

physically reliable routes.

Nomadic networks, like the cellular telephony infrastructure or the pervasive wire-

less networks at universities, ensure communication between mobile devices such as

phones, laptops, and PDAs. Nomadic networks do this by maintaining connectivity

between each device and some part of a fixed infrastructure that acts as a commu-

nication liaison between such devices. Wireless devices connect to the infrastructure

via access points connected to other access points connected to other wireless devices

as they travel through physical space. Connectivity among devices is maintained by

routing algorithms that deliver messages between mobile devices over the fixed in-

frastructure. The physical position of each device accessing the fixed infrastructure

is important for routing packets to the access point closest to the device. The devices

are always connected, but move in space.

In ad hoc networks the infrastructure for communication is made entirely of mobile

hosts that interact in a peer-to-peer manner and route traffic for each other. There

is no fixed infrastructure on which the mobile hosts can rely for message delivery.

As long as two devices are connected (in direct contact or via multiple hops), they

can exchange information and interact as if they were wired. In ad hoc networks,

however, a stable multi-hop connection has severe temporal limitations, as well as

spatial limitations due to the ad hoc routing algorithms that have to be carried out

by the hosts themselves.

In this chapter I present an approach to increasing communication capabilities in

mobile ad hoc networks. This chapter describes three main contributions to the

77

state of the art in ad hoc networks. First, it formalizes the problem of message

delivery in the presence of disconnections between hosts, and illustrates the formalism

with examples. Second, it gives an algorithm for reliable message passing in the

face of temporally discontinuous connectivity, exploiting host motion and availability

profiles. Third, it offers an analysis of and refinements to that algorithm, based on

the amount of information needed about the temporal patterns of connectivity.

5.2 Motivation and Related Work

Ad hoc routing protocols currently available can be split into four categories, as shown

in Figure 5.1. In proactive protocol, nodes continuously search for routing information

which they store in tables such that every route is already pre-computed before it

is needed. The continuous table maintenance is a constant overhead and consumes

significant bandwidth. When using reactive protocols nodes start looking for a route

only when needed. While the bandwidth usage is significantly reduced (no continuous

network pinging and polling is needed to keep the table entries updated), there is a

delay every time a message has to be sent, as the entire route search is performed

reactively when a message is ready to go. The hybrid approach uses a combination

of proactive and reactive mechanisms in an effort to obtain better performance. All

protocols in these three categories discover fully connected routes, from the sender of

a message to the intended recipient.

Disconnected routing protocols send messages from source to destination without

requiring a fully connected route. They pass messages from host to host, and use

host mobility to their advantage, exploiting the continuously changing set of neighbors

of the host that has the message at each moment as an opportunity to deliver the

message to the destination host or at least to get the message closer to it.

DSDV [93] (Destination Sequenced Distance Vector) is based on the Bellman-Ford

algorithm. It maintains a list of all destinations and the number or hops to each

of them. In addition to Bellman-Ford, DSDV avoids loops. The periodic update’s

frequency can be customized, as well as the number of update intervals allowed to

transpire until a route is considered stale.

78

PROACTIVE

DSDV

WRP

CSGR

REACTIVE

AODV

TORA

ABR

DSR

HYBRID

ZRP

DISCONNECTED

Epidemic

Message relay

Figure 5.1: Routing protocols in mobile ad hoc networks.

WRP [81] (Wireless Routing Protocol) enforces consistency checks of the information

obtained by each host from its predecessor, to avoid the count to infinity problem 1.

WRP is a loop-free algorithm. It maintains four tables: a distance table, a routing

table, a cost table and a retransmission table.

CSGR [17] (Cluster Switch Gateway Routing) groups mobile nodes into clusters,

with each cluster having a leader. The routing is hierarchical. Inside each cluster,

CGSR uses DSDV. Each node maintains a list of cluster members and a routing table.

Cluster leaders have a higher resulting communication and computation load.

AODV [92] (Ad Hoc On Demand Distance Vector Routing) is a modification of

DSDV where the routes are discovered on demand. It uses broadcast for route requests

and sends failure notifications to upstream neighbors. It reduces bandwidth usage

and it is a loop-free algorithm. It uses cached information to respond to route requests

(which may be out of date until a failure notification is received).

TORA [89] (Temporary Ordered Routing Algorithm) offers localization of control

messages to a small set of hosts near the location of a topological change. This

algorithm requires that hosts clocks be synchronized. In its operation the algorithm

attempts to suppress, to the greatest extent possible, far-reaching propagation of

control messages. In order to achieve this, TORA does not use a shortest path

1Host B looses link to A (and sets the local routing table entry for A to infinity), but C still
thinks it has a route to A over B. C propagates this to B and B believes it can reach A over C. B
now adds its delay to C to the received value and saves the new (believed) connection to its routing
table (because it is smaller than infinity), creating a loop between B and C for all messages sent to
A. Step by step B and C now update each other’s routing tables, increasing the entry for A each
time until it reaches the value defined as infinity, causing the link to be recognized as broken.

79

solution. TORA instead builds and maintains a directed acyclic graph rooted at

a destination. Nodes are assigned heights in the spanning tree consisting of routes

between hosts and no two nodes may have the same height (the heights are calculated

using a combination of link failure times, host IDs and a reference level which can

be updated as the networks changes). Information may flow from nodes with higher

heights to nodes with lower heights. Information can therefore be thought of as only

flowing “down” the tree. By maintaining a set of totally-ordered heights at all times,

TORA achieves loop-free multipath routing, as information cannot “flow uphill” and

thus re-visit a node.

ABR [111] (Associativity Based Routing) is a loop-free algorithm that defines a

metric based on the degree of association stability. Each node broadcasts a beacon

with a certain periodicity. When the beacon is received by the host’s neighbors, they

update their associativity tables. Association stability is defined as the stability of

the connection between a node and another node over time and space. A high degree

of association indicates a low degree of mobility. The effect of the algorithm is thus

to discover long lived routes in the mobile ad hoc network.

DSR [61] (Dynamic Source Routing) is based on the concept of source routing. For

this protocol, mobile nodes are required to maintain route caches that contain the

source routes of which the mobile host is aware. Entries in the route cache are contin-

ually updated as new routes are learned. There are two major phases of the protocol -

route discovery and route maintenance. Route discovery uses route request and route

reply packets. Route maintenance uses route error packets and acknowledgements.

Like AODV, DSR uses cached information for routing, which results in uncontrolled

replies. It also suffers from scalability issues.

ZRP [46] (Zone Routing Protocol) is a hierarchic protocol. Mobile nodes are logi-

cally separated into zones, based on proximity. Each zone has a leader. ZRP uses

a proactive approach inside each local zone, and is reactive between zones. Since

hierarchical routing is used, the path to a destination may be suboptimal. Since each

node has higher level topological information, host memory requirements are greater.

80

Epidemic routing doesn’t build routes. Random pair-wise exchanges of messages

among mobile hosts promote eventual message delivery. It’s a trivial protocol over-

credited for its marginal contribution by too many. By simply spreading a message

around to any host that comes within range, it achieves a form of disconnected broad-

cast in a desperate hope that the destination is eventually reached.

Message relay [69] is an approach that entails changing the hosts’ desired movements

so that they can build routes as needed. The goal of the algorithm is to cause as

little inconvenience as possible when relocating hosts while trying to maximize their

connectivity and to find routes.

A more detailed presentation of each of the protocols above, as well as presentations

of many others, can be found at Secan Labs [1]. In mobile ad hoc networks, com-

munication paths are created, changed and destroyed at a much greater rate than in

conventional or nomadic networks. The message routing infrastructure is composed of

mobile participants, and therefore is itself subject to disconnections. A new approach

is therefore needed to describe the connectivity and communication paths between

mobile hosts in ad hoc networks.

In ad hoc networks, the mobility of hosts introduces the question of whether two hosts

can be connected at all. The attention shifts from maintaining stable connectivity

paths (i.e., paths that route the traffic between two hosts that are connected to the

network at the same time), to whether two hosts can communicate in an environment

with transient connectivity (i.e., a message can be delivered from one host to another

over a sequence of hosts which may or may not form a continuous path from source

to destination at all times during the delivery).

In conventional networks, two hosts can exchange messages if and only if a stable

path exists between them in the network topology. The ability to exchange messages

in that setting is reflexive, symmetric and transitive, at each hop and along the entire

path. However, in mobile ad hoc networks paths are not stable over time, as the

connectivity between any two hosts can vary due to the motions of those hosts or due

to their intervals of availability (e.g., due to power-saving modes).

When two hosts are in direct contact, messages can flow between them symmetrically,

i.e., as peer-to-peer communication. Ad hoc routing extends this symmetry across

81

multiple hops, but requires all hosts along the path to be connected throughout some

continuous interval of time.

However, there are reliable message delivery paths in ad hoc networks that are not

symmetric, and thus cannot be exploited by either peer-to-peer or ad hoc routing

approaches. In particular, messages that traverse a link before it goes down may be

delivered on that path, while messages that reach that link after the disconnection will

not. Therefore disconnection introduces non-symmetric message delivery semantics

for any path longer than one hop.

The following routing techniques leverage characteristic profiles of the motion and

availability of the hosts as functions of time to accomplish disconnected message de-

livery. Thus, these techniques do not need to rely on the availability of a reliable

end-to-end communication route during the process of communication. The only

thing these techniques must rely is pairwise connectivity of hosts, which can be in-

ferred from the hosts characteristic profiles.

5.3 Transient Connectivity

5.3.1 Connectivity Intervals and Message Paths

Figure 5.2 shows an example of temporally discontinuous intervals of direct connec-

tivity between hosts a, b, and c. At time t0, hosts a, b, and c are disconnected. From

t1 to t2, hosts a and b are connected and can exchange messages. From time t2 to t3

all hosts are disconnected, and so forth.

0 1 3 742 5 6 8

Figure 5.2: Connectivity intervals.

82

I define a connectivity interval for any two hosts to be a continuous time interval

they can use for effective communication. In practice, a connectivity interval is likely

to be shorter than the total time the two hosts can communicate directly, since the

beginning and the end of the direct connectivity period may incur overhead spent

to establish contact and to disconnect without loss of data or inconsistency of state.

However, because such overhead is a function of the connection and disconnection

protocols used, for the sake of generality in this paper I assume the connectivity

interval for two hosts is identical to the interval during which they can communicate.

Figure 5.3 shows the possible message exchanges that can take place between hosts

a, b, and c in intervals in which the connectivity is available as shown in Figure 5.2.

When two hosts are connected, a message can hop from one to the other, and the

sequence of connectivity intervals over time can be transformed into a directed graph.

a

b

c

t
0
 t
1
 t
3
 t
7
t
4

Time (t)

Figure 5.3: Connectivity intervals.

I define a message path between any two hosts to be any sequence of hops that a

message can follow over time from the source host to the destination host. This

should be understood differently from the ad hoc routing definition of a path. In ad

hoc routing the entire path has to be defined from start to end at a given moment in

time. My approach allows ad hoc routing to occur when hosts are directly connected

but also allows message delivery, even when (potentially all) hosts are disconnected

during an interval between when a host receives a message and when it transmits it

to the next host.

83

5.3.2 Discontinuities and Non-Symmetric Paths

Two hosts that are directly connected have symmetric message passing capabilities.

For example, in Figure 5.2 hosts a and b can exchange messages during interval [t1,

t2], as b and c can during [t3, t5], and so on. However, if no direct connection exists

between two nodes then messages may be able to pass between them in one direction

but not the other.

Figure 5.4 illustrates two disjoint connectivity intervals between three hosts d, e, and

f, where d and e are connected over [t0, t1], and e and f are connected over [t2, t3].

v1d

e

f

from t0 to t1
v1

d e f

from t1 to t2

v1

d e f

from t2 to t3

Figure 5.4: Mobile disjoint connectivity. The arrow indicates how the host moves,
while the dashed line indicates a wireless connection between two hosts.

Figure 5.5 shows the non-symmetric end-to-end message passing capability resulting

from the connectivity intervals shown in Figure 5.4, i.e., messages can be delivered

from d to f but not from f to d.

d

e

f

t
0
 t
1
 Time (t)
t
2
 t
3

Figure 5.5: Non-symmetric message paths.

5.4 Problem Formalization

The problem addressed by this chapter is to determine whether given

84

• a set of hosts N,

• a source host p ∈ N,

• a destination host q ∈ N,

• an initial moment t0, and

• characteristic profiles (here, of mobility and availability) over all hosts in N,

I can construct a path so as to ensure message delivery from p to q. In Section 5.5

I provide an algorithm based on this formalization, to decide whether for two hosts,

a message can travel from the first to the second under the restrictions imposed by

the characteristic profiles of the hosts. I also seek to build the set of paths a message

could follow from source to destination, if any.

I express the mobility of a host in terms of a function that maps time t ≥ t0 to

its physical position: mp(t) characterizes the mobility of host p. I formalize the

availability of a host (e.g., due to power saving modes) as a boolean function over

time: αp(t) is true if and only if host p is willing and able to communicate. Finally, I

formalize a characteristic profile πp(t) for host p as a function from time to the pair

consisting of p’s mobility and its availability: πp(t) = <mp(t), αp(t)>.

I formalize the direct connectivity of any two hosts p and q in N as a time-dependent

boolean relation Γpq(t) abstracted from their characteristic profiles πp(t) and πq(t).

Γpq(t) is true if and only if at time t both hosts are available and their Euclidian

distance is less than Rc, the communication range of a host (assumed to be known,

constant, and the same for all hosts), and false otherwise. I express this as:

Γpq(t) =|mp(t)−mq(t)| < Rc ∧ αp(t) ∧ αq(t)

I now formalize an end-to-end path relation κ between hosts p and r over the intervals

of connectivity generated by the relation Γ(t). In doing so, I remove the requirement

that the entire communication path be defined from source to destination uninter-

ruptedly. I say that hosts p and r are in relation κ if and only if a message leaving from

85

p can be delivered to r (directly or over a path that spans intervals of disconnection).

The formal expression of this definition is:

p κ r⇔ ∃ t0...tk monotonically non-decreasing moments in time, with t0 representing

the current moment, and ∃ n1...nk hosts chosen2 from the set of hosts N, such that

n1 = p, nk = r and Γn1,n2
(t1) ∧ ... ∧ Γni,ni+1

(ti) ∧ ... ∧ Γnk-1,nk
(tk-1).

At any given instant t, the direct connectivity relation Γ(t) is reflexive, also symmetric

and transitive, in that (1) a host is always connected to itself and retains messages

across intervals of unavailability, (2) if two hosts are connected they can communicate

bidirectionally, and (3), as in ad hoc routing, messages can flow from any member

of an instantaneously connected set of hosts to any other. As Figure 5.5 illustrates

however, the end-to-end path relation κ is reflexive but is neither symmetric nor

transitive.

5.5 Solution

5.5.1 Basic Global Oracular Algorithm

Figure 5.6 shows a more complex scenario involving eight hosts: a, b, c, d, e, f, g, and

h. The discussion begins with the moment t0 when host a wants to send a message to

host h. The top half of Figure 5.6 depicts the connectivity intervals graphically, while

the bottom half shows the pairs of hosts in Γ(t) during each interval (for readability

I show only one of every two symmetric pairs).

The timeline in Figure 5.6 is divided into discrete intervals according to the times

when at least one pair of hosts connects or disconnects. I assume sufficient time

during each interval for ad hoc routing to occur, i.e., messages can be exchanged

among all pairs of hosts in the transitive closure of Γ during that interval - the widths

of the intervals appearing in any of the figures in this section are not assumed to be

proportional to the duration of the interval.

2A given host in N may be chosen repeatedly in the sequence.

86

bc

fh

eh

t
0
 t
1

Time (t)

t
2
 t
3

cg

ad

ab

ce

gh

be

t
4
 t
5
 t
6
 t
7
 t
8
 t
9

gh

ab

be

ab

be

ab

ce

bc

ce

bc

cg

ad

ce

cg

ad

ce

cg

ad

be

fh

cg

be

fh

gh

eh

be

fh

gh

eh

ce

bc

co
n

n
ec

ti
vi

ty
 in

te
rv

al
s

G
am

m
a

(t
)

Figure 5.6: Sample pairwise connectivity (global view).

e

h

t
0
 t
1

Time (t)

t
2
 t
3

g

f

a

d

c

b

t
4
 t
5
 t
6
 t
7
 t
8
 t
9

ab

be

cg

ad

fh

gh

eh

ce

bc

Time (t)

h
o

st
s

ka
p

p
a

(t
)

Figure 5.7: Candidate paths for a message sent by host a.

If host a has a message to send, the paths the message could follow in the mobile hosts

initial configuration and subsequent evolution depicted in Figure 5.6 are illustrated in

87

Figure 5.7. A horizontal line in the upper half of Figure 5.7 means the corresponding

host has (could have) the message (one might infer that once a message touches a

host, the host will have it forever, which is not the case; Figure 5.7 only indicates that

once a message reaches a host, that host can pass it on at any later moment). The

arrows indicate how and when the message is transferred from a host to another. An

algorithm to build a tree of message delivery paths runs on the graph obtained from

the motion profiles known at a given moment, for various intervals for each host. The

graph is represented as a set of nodes and their respective adjacency lists. The motion

profiles lead to windows of communication opportunity across temporary links as can

be observed in Figure 5.6. The bottom part of Figure 5.7shows the Γ relations, which

identify dynamic links in the graph.

Using the connectivity intervals depicted in Figure 5.6, the following algorithm de-

scribes how to build a tree of message delivery paths from source a to destination h.

In the path tree, the root is the source host for the message and any path from the

root to a node in the tree represents a path a message could follow until it is delivered

to the destination or gets stuck without any chance for further progress.

The algorithm starts building the tree from the root at time t0. Each node contains

the ordered sequence of hosts the message has visited as of time ti. The algorithm

adds children to each node for each previously unvisited host the message can reach

next from that node until there are no more children to add to any node. Using the

previously defined formalization, this is expressed as follows. For example, assume a

node contains the marking <a,b,e>, because nodes a, b, and e, have already received

the message. Because during the interval [t2, t3] Γbc holds, I add a child node to the

tree, attached to the <a,b,e> node: <a,b,e,c>. I avoid adding a previously seen host

(which could result in undesirable looping of messages or unbounded recursion of the

algorithm itself) by recording the sequence of hosts seen so far. I also label each edge

in the tree with the earliest point in time when that transition can be taken, again

based on the ordering of connectivity intervals in relation κ.

Once the tree is built, a depth-first search ending in a leaf of the tree containing

the destination node will reveal the path the message needs to follow from source to

destination. Further analysis of the entire set of paths in the fully constructed tree

can allow for optimizations in terms of the number of hops or the set of hosts the

88

message will visit (e.g., the latter can be important for security reasons). If I label

each edge of the tree with the interval during which the extension can take place

(when the child node is added to the tree), then the end-to-end delivery time or the

time spent on each host can also be considered as constraints in the path selection

decision.

Figure 5.7 illustrates how my algorithm runs on the example input data, which con-

sists of an initial time t0, a set of hosts a, b, c, d, e, f, g, h, a source host a, a

destination host h, and the characteristic profiles of the hosts, πa(t), πb(t), πc(t),

πd(t), πe(t), πf(t), πg(t), and πh(t).

During the interval [t1, t2] hosts a, b, and e form a temporary ad hoc routing network,

and the message can be passed from a to b and from b to e. During the interval [t2,

t3] the message can be passed from either b or e to c. During the interval [t4, t5] the

message can be passed from a to d and from c to g. During the interval [t7, t8] the

message can be passed from either e or g to h and then from h to f.

The resulting tree of all message delivery paths from source host a is shown in Figure

5.8. If a particular destination host such as h is specified, the subtree of interest is one

in which all leaves are labeled with a sequence of host names ending in h, illustrated

by the dotted line in Figure 5.8.

t1-t2

t2-t3
t2-t3

t7-t8

t7-t8

t7-t8

t4-t5

t4-t5

t8-t9

t8-t9

t8-t9

t3-t4

Figure 5.8: Route-building tree.

89

5.5.2 Tree Algorithm Complexity Analysis

Message Complexity. Because edges in a global path tree (such as the one shown

in Figure 5.8) map one-to-one to message transmissions by the global algorithm, the

message complexity along any distinct path in my global algorithm is bounded by one

less than the height of the tree, i.e., |N|-1. The number of transmissions needed to

propagate a message from a source host to all other reachable hosts is also bounded

by |N| - 1 because in the presence of global information, transmissions are only made

to hosts that do not have the message, and after a transmission the number of hosts

that do not have the message is reduced by one.

Storage complexity. The principal issue for storage complexity is that of main-

taining characteristic profiles on the hosts. The best case occurs when a closed form

can be found for equations describing the characteristic profiles. For example, the

characteristic profiles of a set of small solar-powered monitoring satellites in orbit

around a space station might be described as a function of their orbits and the phases

of those orbits when they are in sunlight. In such a case, the storage complexity is

effectively linear in the number of profiles stored.

A similar argument can be made about the complexity of profiles that repeat over

time, but for which a closed form may not exist or for which storage needed for the

expression exceeds the storage needed to represent the profiles explicitly. In these

cases, the profiles can be stored as tables of values with entries for each relevant

segment of time in the repeated period. Although the storage requirements for these

profiles are again effectively linear in the number of profiles, the overhead per profile

is expected to be higher than for closed form equations.

The worst case storage complexity occurs when no temporal structure of the charac-

teristic profiles can be used to represent them efficiently. In that case, it may not be

possible to represent the entire future of the hosts, because the timeline is potentially

unbounded. In some cases, e.g., for factory robots that are powered down at the end

of a product assembly run, it may be possible though expensive to store the profiles

over a meaningful segment of time, though the storage required is linear in the number

of physical movements and availability transitions. Similarly, if characteristic profiles

evolve over time due to environmental influences or independent decisions by hosts,

90

e.g., for coordinated mission re-planning among mobile infantry squads, it may be

appropriate for each host to store profiles for each of the other hosts only up to the

time of some pre-defined future meeting.

Computational complexity. Computing even a single reliable path between source

and destination hosts a and h in the basic global algorithm can be factorial in the

number of hosts |N|. Specifically, because paths may not be symmetric, the number

of nodes in the path tree that must be computed is a function of the permutations of

hosts in the subset of N with a and h removed, N - {a,h}, plus one for the path tree

node containing only a.

If it is necessary to compute the best path between each pair of hosts, an upper bound

on the computational complexity to compute all paths in my global algorithm is given

by the formula (|N| - 2)! + 2. Fortunately, the global nature of the information means

that if it is in fact possible to obtain global and accurate information about the hosts

characteristic profiles, then it is also possible to compute the path tree off-line, choose

a path for each message, and simply give the paths to the appropriate source hosts.

This basic algorithm was a good learning exercise and proved that a solution to

context aware disconnected routing is possible. The poor performance of this first

algorithm motivated further research and the development of the improved algorithm

presented next.

5.5.3 Advanced Global Oracular Algorithm

The solution entails a search algorithm in a dynamic graph where edges appear or

disappear in a predictable manner over time, following a schedule obtained from the

motion profile analysis. Each node in the graph represents a host. An edge between

two nodes represents a link that has a specific lifetime. Because message delivery

has a temporal dimension, it is necessary to account for the correct succession of

links in a path from a temporal perspective. That means it is necessary to ensure

that a message that goes from a to c via b traverses the link ab before it traverses

the link bc. For this reason, it is possible to split the nodes from the tree generated

by the previous algorithm into “sub-nodes”. If the link ab is connected from t1 to

91

t3, I consider this to be a single link. Assuming the link breaks down at t3 and is

re-established at t5 until t7, I consider this to be a second link and therefore split

node b into two sub-nodes (b, t1) and (b, t2). This way, I can search for paths that

follow a correct succession in time. The expense is that the search space grows from

the total number of nodes, to the number of sub-nodes, determined by the temporary

links. This is an acceptable price to pay, as it accounts for the temporal aspect of the

problem without increasing the time complexity of the algorithm at a storage cost

bounded by the size of the space to explore, defined by the number of windows of

communication opportunity.

The result of the algorithm is a routing table for the current node. The table has the

structure illustrated in Figure 5.9. The table has a row for each host the current host

could send a message to. For example, considering s as the reference host, the first

row in s’s routing table contains two entries s can use to send a message to v. Each

entry represents an opportunity for s to send the message. The first field in an entry

is the ID of the host to which the message is forwarded first. For example, to send a

message to v, host s will forward it to a. Since this algorithm runs on every host, a

will have a similar entry for v and will forward the message to its next first hop. The

second field in an entry is the time when the message has to be sent. In the example,

s can send a message to v at send time1 and again at send time2. To send a message

to x, s will forward it to b at send time4. After that moment, the next delivery has to

go through c at send time5. The third field represents the delivery time. This is the

guaranteed latest moment when the message reaches the destination. According to s’s

calculation, the path will deliver the message sent at send time1 to v at receive time1.

It is possible that from the time the route is found until the moment the message

traverses a certain link on the way to destination, new information acquired by the

intermediary hosts can help deliver the message on a shorter/faster path, unknown

to the sender. If this does not happen, receive time from the routing table entry is

still a guarantee of worst case delivery. The last record shows the number of hops

from source to destination. Note that the entries in a row of the routing table can be

sorted for a variety of criteria, including earliest send time, earliest delivery time, or

lowest number of hops.

The algorithm described in Figure 5.10 was inspired by Dijkstra’s breadth-first search

algorithm, applied to dynamic graphs with temporal traversal dependencies, which

92

v: [a, send time1, receive time1, hops1], [a, send time2, receive time2, hops2]
w: [b, send time3, receive time3, hops3]
x: [b, send time4, receive time4, hops4], [c, send time5, receive time5, hops5]

Figure 5.9: The routing table built for reference node s.

builds the routing table for a reference node, to support connection-less message

delivery.

for ∀ (v, t) ∈ Adj(s, t)
start node ← v
start time ← t
enqueue(Q, (v, t, 1)) <1>
while Q 6= Φ
u ← head node(Q)
recv ← head time(Q)
hops ← head hops(Q)
for ∀ w ∈ Adj(u, recv) <2>
enqueue(Q, w, max(recv, timeuw), hops+1) <3>
insert routing(w, start node, start time, max(recv, timeuw), hops+1)
end for
dequeue(q)

end while
end for

Figure 5.10: The route table building algorithm.

The search starts from the current node, at the current moment. In the outer loop,

the algorithm explores one by one all sub-nodes the current node is (or will be)

connected to. This is necessary because each host reached from a certain first-hop

sub-node from the source will carry this first node in the routing table as the starting

point for message delivery. The parameters start node and start time are the same for

all nodes reached from a certain first-hop sub-node. This first sub-node is added to

the queue Q at the line labeled [3] in Figure 5.10.

As long as the queue is not empty, the algorithm explores hosts that can be reached

over paths starting from s through the current sub-node. The algorithm takes the

first node in the queue, the time it can be reached and the number of hops traveled

by a message to reach this node. It explores all sub-nodes that can be reached from

93

the current sub-node and therefore are adjacent to the current sub-node (line labeled

< 2 > in Figure 5.10). Adjacent sub-nodes are sub-nodes that are or will be in

contact with the current sub-node. The algorithm adds any such sub-node w that is

adjacent to the current sub-node u to the queue for later exploration and also marks

in s’s routing table that it can reach w from a certain start sub-node, with a message

sent at start time, over a certain number of hops (incremented every time a link is

traversed, when the algorithm reaches a sub-node that is added to the queue and

to the routing table). The time the sub-node is reached is max(recv, timeuw). The

reason for this is illustrated in Figure 5.11.

ab

bc

timet1 t2 t3 t6t5t4

Figure 5.11: Reachability time.

Host a can send a message to c through b. If a needs to send the message at t1, the

message is received by b at t1 and b can forward it to c at t2. If a sends out the

message only at t4, from b’s point of view the message is received at t4, after t2. For

situations like this, when the message reaches b while b is connected to its next hop

sub-node, it is necessary to consider the delivery time to c as max(t4, t2).

In the end, the first element of the queue is removed, as it represents the sub-node

that has just been explored.

5.5.4 Exchanging and Using Partial Information About the

Future

The knowledge base a host uses to find a route is made up of other hosts’ motion

profiles. This information is assumed to be accurate and that once learned, it doesn’t

change. The knowledge about the other hosts’ motion ends at different moments in

94

the future, depending on how much the current host was able to discover from other

hosts. This information can grow (extend at the far end of the timeline into the

future) but cannot change.

The message delivery paths that precede the moment when a host wants to send a

message are especially important, as they represent prior opportunities for hosts to

have exchanged information about their future behavior. At the point of wanting

to send a message, the source host can then exploit the information available up

to that point and plan its message delivery path accordingly, if possible. Several

optimizations can be done by a host learning information that is not known to other

hosts, including the ability to shortcut a path planned by another host when a better

plan is discovered – I call this particular optimization a path update, and describe its

use in greater detail in Section 5.5.5.

A key feature of this algorithm is that a host can send not only information about

itself, but information that it has learned from other hosts. When two hosts meet,

in addition to exchanging messages whose message delivery paths go from one to the

other, each host also sends all motion profiles it has learned. While useless information

can be exchanged, it’s still likely to be cheaper than calculating the differences and

sending only updates. At any point in time, a host can compute message delivery

paths over the set of hosts whose characteristic profiles it knows at that point. The

algorithm to construct those paths is thus the same as in Section 5.5.1, although the

domain of hosts over which the algorithm operates is restricted to the subset of hosts

whose profiles are known locally.

Assuming the same intervals of connectivity depicted in Figure 5.6, Figure 5.12 illus-

trates how the hosts learn each others’ profiles. For the sake of this discussion, I start

at time t0 with each host knowing only its own profile, and show how characteristic

profiles can be learned as time passes and interactions between hosts occur. Profiles

are passed between hosts during all intervals from t1 to t8 except [t3, t4] and [t5, t6].

It is also interesting to observe how the non-symmetric message delivery paths in κ

result in non-symmetric profile information across the hosts. For example, f, g, and

h all learned the profile for a, but a did not learn their profiles.

95

d

g

h

t
0
 t
1

Time (t)

t
2
 t
3

f

a

e

c

b

t
4
 t
5
 t
6
 t
7
 t
8
 t
9

gh

ab

be

ab

be

ab

ce

bc

ce

bc

cg

ad

ce

cg

ad

ce

cg

ad

be

fh

cg

be

fh

gh

eh

be

fh

gh

eh

ce

bc

le
ar

n
ed

 p
ro

fi
le

s

G

am
m

a
(t

)

b,e

a,e

a,b

h

g

c

c

c

a,b,e

d

a,b,c,e

a,b,c,e

g,h

g,h

g,h

g,h

f

a,b,c,e

a,b,c,e

f

f

f

f

Figure 5.12: Learning profile information.

It is particularly interesting to note that in Figure 5.12 even if a message can start

from a at time t0 and be delivered to h as early as t7, a is not able to discover that

information. Thus, it is important to consider not only which message delivery paths

exist between the hosts, but which hosts learn those paths and when. Only paths

that are learned prior to when a message needs to be sent can be exploited by this

version of my algorithm. The partial information held by the source node when it

needs to send a message determines which paths the source node can compute. If a

source node cannot compute a valid path due to incompleteness of its information,

even if that path should exist, then the only alternative is for that source node to

flood messages speculatively.

5.5.5 Recording the Past for Future Efficiency

With only local information, a source host may fail to compute any message delivery

path to a particular destination. In that case, the source host may resort to epidemic

routing, passing the message labeled only with the desired destination host (and not

a planned path to that destination host) to each new host it encounters. In other

96

cases, even if the message has a fully computed path, intermediary hosts may know a

better route (e.g., earlier delivery, fewer hops, etc.) to the destination than the route

initially computed by the sender.

For this reason, in addition to maintaining and exchanging sets of characteristic pro-

files, it can be useful to record the history of hosts each message has visited. In

this section I extend the algorithm presented in Section 5.5.4 as follows. I store the

sequence of hosts a message has transited within the message itself. When a host

forwards a message that does not have a planned message delivery path, it adds its

identity to the set of hosts recorded in the message. When the message is delivered,

the receiver also learns its history. All hosts share a common decision function to

rank such paths. A host that knows of a better path than the one in a message they

receive (I assume a planned path is better than not having one) will always perform

a path update, recording the new plan in the message and sending it to the next host

in the plan when it meets it.

Three kinds of information can be provided by recording a message’s history. First, if

hosts record the set of hosts a message has transited, a host that receives the message

can learn of other hosts having the message even though it may know nothing about

their characteristic profiles. Second, from the same information, a host can infer at

least partial information about which other hosts have been in contact previously,

i.e., if combined with hosts exchanging profiles, the message history can give each

host that receives it at least a partial representation of the information each previous

host knows about the others. Third, if hosts also record the time at which a message

traverses each host, and similarly stamp other information such as when host profiles

were exchanged, then information about the past can be correlated directly with in-

formation about the future. Recording the past history of messages can thus increase

the scope of information at each host, and offer future performance improvements,

particularly in message complexity.

As Figure 5.12 illustrates, hosts may know different subsets of the global set of char-

acteristic profiles. Using additional information which it has but which the sending

host does not have, an intervening host may be able to route a message along a bet-

ter path it computes, instead of the path originally given to it by the sender. Hosts

using only local information can therefore select paths that are closer to optimal if, as

97

described above, they are allowed to update path plans for messages sent from other

hosts.

For example, assume the governing path selection heuristic is “fewest hops” and

source host a computes its best path to destination host e through the set of hosts

whose profiles it knows, {b, c, d, e}, as abcde. Suppose that just after receiving the

message from host a and then disconnecting from host a, host b encounters a new

host, f, which knows it can deliver the message directly to e. In that case, host b could

update the planned path to be abfe and route the message through host f. Note that

an intervening host can only learn of a better path by meeting a host whose profile

was unknown to the sender (otherwise the sender would have already computed that

better path).

Recording the past can further improve future efficiency by eliminating double deliv-

ery if the two message delivery paths intersect. The two paths will intersect at the

destination but earlier intersection points (if any) can help cancel one of the redundant

delivery paths before the message reaches the destination thus limiting unnecessary

use of resources.

While dropping duplicates can potentially improve efficiency, it can also be a pitfall

leading to deadlock in the message delivery protocol. For example, consider the

scenario in Figure 5.13. Host a is the source of a message that leaves once through b

and once through c (e.g., through Epidemic Routing), on two message delivery paths

towards a common destination h. The two path intersect at d and f. It is possible

that the message coming on the route a-b-d-e-f-h reaches e when the message coming

on the route a-c-f-g-d-h is at g. In this situation, d will drop the message from g

because d has already seen it. Similarly, f will drop the message from e. This leads

to deadlock in the message delivery procedure.

It is possible to avoid the deadlock exemplified in Figure 5.13 by partially ordering

all message delivery paths from a given source to a given destination, and dropping

messages only on paths where another path from the source to the destination appears

earlier in the partial order. The greatest potential for savings occurs when the paths

are totally ordered, so that the message is delivered only along a single path, and the

98

a

c
 f

b

h

source

d

e

g

destination

Figure 5.13: Potential deadlock in message delivery.

message coming along the highest ranked route passes first through an intersection

point.

It is possible to achieve a partial ordering by simply assigning a non-negative integer to

each host, concatenating the host integers along each message delivery path to form

an |N|-ary numeric value for each path with earlier hosts in the path representing

higher-order digits, and having a host only drop the message if it knows a lower-

valued path can deliver it reliably. If the host numbers are made unique, then the

paths become totally ordered.

Unfortunately using this scheme alone unfairly causes traffic to be routed preferen-

tially through lower-numbered hosts which could lead to overloading particular hosts

or sub-networks. Such an arbitrary host numbering should therefore only be used if

needed to break ties between message delivery paths in other more suitable partial

orders. Two such partial orders are reasonably evident, one based on host bandwidth

and one based on times at which messages are transmitted.

First, hosts could be numbered according to decreasing bandwidth and then arbitrar-

ily among hosts with equivalent bandwidth. The host numbers at each hop would

be then concatenated as before to form the path numbers. Even though the message

routing is still unfair in this case, it is distributed more proportionally according to

the capabilities of the hosts. As with the arbitrary host numbering scheme, shorter

paths are preferred to longer ones, and higher-bandwidth hosts are preferred to lower-

bandwidth ones at each hop.

99

Second, path numbers could be generated by concatenating the times of the message

transmissions, but with the later transmission times representing higher-order digits

in the concatenation and the assembled digits placed to the right of the radix as a

floating point fraction, rather than as an integer. Although unlikely, it is possible

two message delivery paths could be temporally equivalent, in which case they can be

arbitrarily distinguished to form a total order by concatenating a unique lowest order

digit to the end of each. This construction does not prefer any hosts in particular,

nor does it prefer paths according to the number of hops they take. Rather, this

construction prefers paths where the delivery of the message to the destination is

earliest, then paths where the delivery time to the penultimate host in the path is

earliest, and so forth.

5.6 Complexity

The search space of the problem is a graph where nodes are hosts and links are con-

nections between nodes, established in a peer-to-peer fashion, as nodes come within

communication range while they move in space. Due to the temporal aspect of the

problem, I split a node in sub-nodes such that each node is represented by a different

sub-node for each moment when the node can be reached. This trick simplifies the

search that has to account for the temporal order in which links are traversed, without

increasing the complexity of the problem (it actually reduces it as it is not necessary

to verify which links can be considered for an outgoing message that has reached the

reference node at a certain moment). In this section I analyze the complexity of the

algorithms used to build a routing table, to lookup information in the table and to

maintain the routing table. For the rest of this analysis I will assume the routing

table entries are ordered by the send time field of the entries.

5.6.1 Building the Routing Table.

The algorithm for building the routing tables at start-up is a breadth-first search

algorithm, in which each link is traversed once. As each link represents a window of

communication opportunity (hereafter referred to as a “woop”) between two nodes,

100

the link is traversed during exploration only once because of the sub-nodes I in-

troduced. The complexity of the problem is thus O(‖ woops ‖), where ‖ woops ‖
represents the number of woops between all sub-nodes in the graph (the number of

edges in the graph). ‖ woops ‖ is a parameter that depends on the number of hosts

and on their mobility patterns, which is why it cannot be split further into tributary

components.

The insert routing routine adds an entry to an ordered list, which takes logarithmic

time. The worse case complexity is O(‖ woops ‖), when all entries are added to only

one list in the routing table, e.g., when all messages that originate on host a can reach

the rest of the world only after a first jump to host b (i.e., there is only one host that

ensures the communication between the reference host and the rest of the world).

Assuming a mobility model that allows a uniform distribution of communication op-

portunities, the complexity of the insert routing routine becomes O(log ‖woops‖
number of hosts

).

This means the complexity of the algorithm becomes O(‖ woops ‖ log ‖woops‖
number of hosts

).

Enqueueing and dequeueing elements into/from Q takes O(1) per enqueue or dequeue

operation.

5.6.2 Using the Table.

To send a message to a host h, a reference host a needs to retrieve information from

the row for h in its the routing table. The routing table is organized as a hash table

with entries representing routing paths being stored in lists for each host. The access

to such a list is O(1) because the hash table is indexed by the host name. In the list

of entries specific to a target host h, the head of the list offers the first opportunity

to send the message from the reference host (a), to the target host (h). I remind the

reader that I considered the lists to be sorted by the send time field of each entry,

which yields an O(1) access to the head of the list (first opportunity to send). If

the semantics of lookup are different (i.e., having earliest delivery time), the lists are

built to obey a different sorting (based on another field in each record), which takes

the same complexity as described in Subsection 5.6.1, and the lookup is also O(1).

For the case when the routing table is sorted on send_time but there is a need to

lookup a route that delivers the message the earliest (e.g., the earliest receive time),

101

the average complexity is O(‖woops‖
number of hosts

) inside a routing list (which takes O(1) to

find, because of the hash table). The worst case complexity is O(‖ woops ‖), when

all routes from the reference host have the first hop through the same intermediary

host (e.g., host b is the only one that connects the reference host a with the rest of

the world).

5.6.3 Maintaining the Table.

Once the initial routing table is populated, as hosts move in space and encounter

other hosts, they learn more about other hosts’ mobility and thus can enrich their

knowledge base and expand their routing tables. As a reference host meets another

host, the newly acquired information leads to the discovery of new woops. Running

the entire path search algorithm is too expensive for this incremental motion profile

learning. I identify the following possible scenarios:

New window of opportunity. Let’s assume that host a meets host b and the

result of motion profile information exchange is the discovery of a new window of

communication opportunity. For example, assume a discovers that c and d will be

able to talk in the in the interval (tm, tn). If both c and d are unknown to a, that

means they are not reachable from a and therefore this information can be ignored.

If one of the two is reachable from a, there must be a path that can take a message

from a to some host h who can talk to c (assume c is reachable from a). In this case d

is also reachable from a via a chain of nodes that reaches c. This means d is reachable

from a the same way c is, plus the link c-d. This means that a’s routing list for d is

the same as the routing list for c, plus the changes induced by the link c-d, e.g., the

number of hops is incremented by 1, and the delivery time is updated to indicate tm.

The operation takes O(‖woops‖
number of hosts

) in average and O(‖ woops ‖) in the worst case.

If both c and d are known and reachable from a, the appearance of a new window

between them allows the hosts reachable from a via c after tm to be reachable via c

too and vice versa. As can be observed in Figure 5.14, the d host can be reached from

c and the c host can be reached from d at tm. Subsequently, a can reach all hosts d

can reach after tm via c (and vice versa). In Figure 5.14, the c-d woop is shown to be

inserted in a’s d routing list. Additionally, all grey records from a’s c routing list are

102

c: (…) , (…), (…), ………. (…), (…), (…)

d: (…) , (…), (…), ………. (…), (…), (…)
(…)c-d woop

tm

Figure 5.14: The new window between c and d is discovered to take place at tm.

added to the d routing list, as they are reachable from d. The needed adjustments

are made at the insertion time (e.g., updating the number of hops). Although Figure

5.14 doesn’t show it, a similar construction exists for inserting records from the d list

into the c list.

The worst case complexity for this operation is O(‖ woops ‖ log ‖ woops ‖), because

the algorithm needs to consider each element in a routing list (after tm) and insert it

(binary insertion) into the other ordered routing list. This worst case happens when

the c− d window comes early in the send time-ordered lists such that there are many

entries after tm and the routing table is unbalanced such that most/all entries are in

the c and d lists. On average, the complexity is O(‖woops‖log‖woops‖
number of hosts

).

Merging two routing tables. As two hosts meet, everything reachable via one

of them becomes reachable from the other one too. The operations described above

repeat for all elements in a routing table. The complexity is the square of the com-

plexity for a single window of opportunity, as described above, both for the average

and for the worse case scenarios.

Deleting expired entries. As time passes, certain entries in the routing tables

become obsolete (represent links that cannot be used anymore) and will be garbage-

collected. The deletion expired entries entails the removal of the first entries in each

list in the routing table, whose send time value is older than the moment when the

garbage collector inspects them. This yields an average complexity of O(number of hostslog ‖
woops ‖) - for each host (i.e., list in the routing table), the garbage-collector needs

to search in the ordered list for the cut point. All records from that point to the

beginning of the list can be collected.

103

5.7 Summary

In this chapter I have presented a novel routing protocol suitable for mobile ad hoc

networks. While most ad hoc routing protocols today treat mobility as a source of

challenges, I use additional context information in the form of motion profiles, to

use host mobility to my advantage. This is a significant improvement over simply

spreading the message to everybody and hoping that the intended recipient will even-

tually receive it. My algorithm controls each route, beyond simply identifying each

host the message visits, but also indicating when and even where (physical location)

the message is located. On-the-fly route updates are presented as a variation of the

algorithm, where intermediary hosts may re-route a message in transit if they know

a better path to the destination. This may have side effects and should be used with

caution, especially if security is a concern.

Research dissemination. The chapter presented a basic algorithm that does the

job but at a potentially exorbitant cost. An improved algorithm and a detailed

complexity analysis are presented as well. The research presented in this chapter

was in part published in “Accommodating Transient Connectivity in Ad Hoc and

Mobile Settings” in the Proceedings of the Pervasive Computing Conference (Vienna,

Austria, 2004).

104

Chapter 6

Coordination Across Time and

Space

6.1 Introduction

Developing software for mobile devices is significantly more difficult than traditional

software development that targets fixed hosts. Significant effort is spent dealing

with issues not directly related to the application semantics, but rather induced by

the target operating environment. The service oriented computing infrastructure

described in Chapter 4 addresses issues specific to the distributed computing level

of abstraction. How messages are sent from one host to another is addressed by

the message routing layer and should not be a concern at the SOC layer. For this

reason, the message routing layer (Chapter 5 takes care of managing the motion

profile information, discovering routes, and forwarding messages. A coordination

layer between the SOC layer and the routing layer provides a level of abstraction

that offers the SOC layer a minimal interface consisting of powerful coordination

primitives, while taking care of all the details related to implementing those primitives

on top of the message routing layer and using the contextual information offered by

the motion profiles.

To address the complexities of ad hoc networks and attempt to hide them from the

application developer, coordination models stand in contrast to other alternatives

such as enhancements to the operating system, or specialized languages, in that coor-

dination models provide a clean separation between individual software components

105

and the interactions within their overall software organization. Coordination can ben-

efit the design, development, debugging, maintenance, and reuse of all complex dis-

tributed systems. Coordination models delivered in the form of middleware platforms

provide high-level abstractions while leveraging the existing software infrastructure.

When designed properly, middleware can divert attention from mundane concerns

like protocol development, to more fruitful areas involving application-specific goals.

Coordination models designed for distributed computing in wireless ad hoc networks

have been deployed in the past [80], [32], etc. Currently, coordination happens among

processes on the same host, on neighboring hosts that are in direct communication,

among processes on hosts members of a connected group, or among members of a

reachable group. Connectivity beyond immediate neighbors is facilitated by ad hoc

routing protocols which make the management of connected groups possible. A route

is valid as long as all segments are connected along the entire path between two hosts.

This makes distant coordination transfer transparent to multi-hop coordination.

However, not all mobility patterns offer the luxury of an uninterrupted multi-hop

path between every two end points. Since hosts are mobile, time and space play

an important role in their ability to coordinate. Previous coordination models do

not account for time and space explicitly. While all coordination models decouple

the computation from inter-component interactions, they restrict interactions to now

and here. The coordination happens now because all hosts are “present” here, i.e.,

all involved parties are in contact when the coordination happens because they run

on the same host, on nearby hosts, or are connected via a continuous multi-hop com-

munication path. The coordination model I introduce in this chapter moves concerns

of time and space management from the application level down into the coordination

layer. The application may make calls that have to be executed at a certain time,

at a certain location (physical area or host) but doesn’t have to worry about how

the calls travel to their destinations, nor does it have to keep track of time or handle

scheduling explicitly so that each call is issued at the appropriate moment. This de-

coupling further enhances the separation between each agent’s computation and the

intercommunication between agents by managing the spatio-temporal coordination

needs of applications. For example, my coordination model allows the applications to

say “turn off the lights in the garden at 22:00” and the application will no longer have

to be either available or present at 22:00 to issue the call. The application developer

106

will thus focus more on the application semantics related to the time and space, and

less on the low level mechanisms needed to deliver them.

To accomplish this, I make time and space explicit parameters of the coordination

primitives exposed to the application programmer, while hiding the complexities in-

troduced by the dynamic character of the mobile ad hoc networks. Particularly, I

consider that all relevant hosts are reachable from (but not necessarily connected to)

the reference host from the time and place where, at the moment when the coordi-

nation procedure has to be invoked, to the user-specified time and place where the

coordination should take place. For reachability, I include the possibility of a host

sending a message to another host. In most cases this is synonymous with having a

route from source to destination. While a route is generally considered to be an un-

interrupted communication path between the two end points, I focus on a particular

type of route, that may not be fully connected at all times, as described in Chapter

5. For example, Mom can tell Alice to ask Bob to turn off the light in the garden

at 22:00, after he walks the dog. Mom can talk to Alice now and she knows Alice

will talk to Bob who will walk the dog in the garden at 22:00. Mom doesn’t have

to talk to Bob directly, doesn’t have to go to the garden to talk to Bob (or turnoff

the lights herself), and she doesn’t need to wait until 22:00 to send the request to

Bob. All these are possible because Mom knows that Alice, who is in the same room

now, is on her way to Bob’s room where she will meet Bob and that Bob will go to

walk the dog in the garden at 22:00. The path from Mom to Bob is a disconnected

path. Alice is “connected” to Mom, picks up the message, then “disconnects” from

Mom and later “connects” with Bob and delivers Mom’s message. My model thus

acknowledges time and space as important elements of the coordination mechanism

in a mobile ad hoc network. It provides coordination among hosts that are reachable

but not necessarily through direct or even transitive immediate connection.

6.2 Motivation and Contribution

Applications that have a spatio-temporal dimension span a wide variety of domains.

Generally speaking, any application that runs on a mobile host and interacts with

another (mobile) host, or even a distributed application whose components run on

107

different hosts and need to communicate, can leverage the coordination model to be

presented below.

Coordination middleware facilitates application development by providing high-level

constructs such as channels [78], events [7], blackboards [27], or tuple spaces [37],

in place of lower-level constructs such as sockets. Tuple spaces and blackboards are

both shared-memory architectures in which nodes may insert and remove data. Tuple

spaces differ from blackboards in that they use pattern-matching for retrieving data;

in a blackboard, the data is stored in a global database and is generally accessed by

type alone. Channels are similar to sockets in that data is inserted at one end and is

retrieved from the other. They differ from blackboards or tuple spaces because the

latter two provide persistent storage.

Channels and events are the main means of interaction for remote entities using di-

rect coordination. Direct coordination relies on message passing and directly identifies

the collaborating partners. This presents several drawbacks in mobile wireless net-

works where repeated interactions require a stable network connection and therefore

are highly dependent on network reliability. Examples of such coordination models

are Sumatra [3] and Odyssey [85]. They exhibit a typical client-server model that can

be used for all sorts of interactions, while requiring a very precise specification of the

communication protocol. Agent TCL [43] and Ara [91] exhibit a rendez vous behavior

by establishing synchronous meetings (Agent TCL also supports asynchronous mes-

saging). Event-based direct coordination can be considered to be a particular type

of channel coordination where entities send and listen for events that control their

coordination. Examples of such models are JEDI [22] and IWIM [7]. Event-based

coordination models offer a publish-subscribe paradigm where nodes interact by ex-

changing events through a logically centralized event dispatcher. Nodes subscribe

to events using various representations of the event (e.g., regular expressions on the

event name). More details on event-driven coordination can be found in [70] and [79].

Backboard or tuple space coordination are forms of indirect coordination. Tuple

space associative coordination is probably the most popular approach for wireless

mobile environments. I only mention a few from the large set of tuple space coor-

dination models. MARS [15] provides logically mobile agents that migrate from one

node to another. Each node maintains a local tuple space that is accessed by agents

108

residing on it. An agent can coordinate only with agents that reside on the same

node and thus agent migration is required for inter-node coordination. Lime [80]

entails logically mobile agents executing on physically mobile hosts. Lime offers a

group membership paradigm where neighboring hosts form a group that shares one

or more logically centralized Linda-like tuple spaces. Reactive programming allows

the system to notify an agent when a particular tuple is in the tuple space, which

eliminates the need for polling. Other models that deliver tuple space coordination

are Limbo [25], TuCSoN [84], Jada [18], etc. Indirect coordination achieved through

blackboards or tuple spaces has the distinctive feature that it decouples in time and/or

space the agents that coordinate one with the other. For example, in Ambit [16], an

entity attaches a message to a system and another entity can retrieve and read the

message without associative access. In ffMAIN [90] agents interact via information

spaces using messages identified by a unique key, also with no associative mechanism

involved.

While some of these models are applicable to ad hoc networks, their coordination

capabilities have a certain scope. We can observe how the scope of coordination can

range from the local host (e.g., in MARS) to the vicinity of the current host defined

by direct connectivity (peer-to-peer 1-hop communication) to other hosts (e.g., in

Lime) or the immediate transitive closure of direct connectivity, spanning a subset of

hosts connected via multi-hop paths.

Consider the example illustrated in Figure 6.1. On the westbound side of highway

I44 there is an accident that blocks traffic completely. Given that the accident alone

blocked all traffic lanes (due to debris, oil/gas spills, and/or injured people that need

on-site medical assistance), the closing will take a significant amount of time to clear.

Meanwhile the traffic backs up behind the accident as cars approach the accident site.

Once on the highway, these cars to not have any other option but to wait for the road

to reopen. As more cars add to the road block, police, ambulance and towing vehicles

have an even harder time trying to reach the accident.

Fortunately, a traffic monitoring application that runs “on streets” can help reduce the

overall cost of the accident. The application involves vehicles in traffic and roadside

smart devices such as intelligent display panels or a smart scheduler embedded in

the traffic lights of an intersection. This distributed application may run all over the

109

Traffic
blocked

Traffic flowing

Crash

O
ut

go
in

g
flo

w
in

g

In
co

m
in

g
tra

ffi
c

Outgoing traffic

Incoming traffic

N

S

EW

Smart
intersection

“Dumb”
intersection

Wesbound
I44 blocked

I44

Figure 6.1: Traffic jam and smart intersection

110

city, providing drivers with traffic information similar to the traffic updates broadcast

every 10-15 minutes on radio stations. Eastbound traffic on I44 “sees” the accident

and delivers adequate notification messages to the smart intersection and beyond, to

incoming traffic, warning vehicles not to enter the highway. The smart intersection

will update the traffic light schedule and divert the traffic away from the blocked

stretch of highway. The vehicles passing through the smart intersection will pick up

the warning and spread it away from the smart intersection, warning all incoming

traffic such that a vehicle going North with the intention to continue West on I44 will

be informed about the accident and can make a left turn on the last street before the

highway.

At the same time, Joe, who lives in the house in the lower left corner of Figure 6.1,

has to decide every morning when he leaves for work on the route to follow to his

office. Do do this, he needs information about traffic in certain areas, at specific

moments (time interval(s)) in the morning, prior to his departure. While he has a

preferred route, due to traffic jams he may have to choose alternate routes and make

decisions several times on the way to office, similar to the one he makes when he

leaves the driveway. His preferred route would have him turn right and then left

to go North on 141 to take I44 West. The application that draws Joe’s route each

morning can also calculate alternate routes if needed, based on traffic flow information

it receives from. The application performs a path search in a weighted graph, where

the weights of edges are dynamically updated to reflect the flow of traffic during

the time interval of interest, in the area of interest. The values are input data for

the path search application which should not be concerned with the mechanics by

which these values are obtained, as the the mechanism has little in common with

the application semantics. The coordination layer underneath the application layer

should expose a high level interface which offers the application developer powerful

constructs that allow him to focus on the application semantics, while hiding the

low level implementation details from him. To do this, the coordination layer needs

contextual knowledge that helps proactive interaction scheduling.

The spatio-temporal aspect of information retrieval (and dissemination) can be ab-

stracted from the application and encapsulated as a novel capability of the coordi-

nation model. To provide this I use additional contextual information that allows

us to reach and interact with other hosts. Information about host motion profiles

111

helps me develop the spatio-temporal dimension of the coordination model. In the

first (simpler) example, Mom knows that Alice, who is now next to Mom, will soon

be next to Bob and therefore Alice could relay a message from Mom for Bob. Thus,

Mom reaches Bob through Alice. The communication route Mom-Alice-Bob is a dis-

connected communication path because when Alice is “connected” to Bob, she is no

longer “connected” to Mom. The information Mom has about Alice’s mobility and

Bob’s whereabouts is enough for her to determine that she can send Bob a message.

The notion of reachability over disconnected routes allows one to define a set of hosts

with which a reference host can interact and it also allows reasoning about moments

and/or places where interactions can take place. Previous coordination models have

used similar knowledge in a much more simple form. “Reachability” was defined using

the implicit knowledge that the processes run on the same host or on neighboring

hosts that can interact in a peer-to-peer manner. Ad hoc routing helped to extend

transparently the concept of reachability to a set of transitively connected hosts.

For example, for simple forms of data delivery, a one-way route is enough, while for

reading some data a looping path is needed (a forward path to carry the request and

a return path for the result). In the next section I present the coordination model I

developed on top of context-aware disconnected routes.

6.3 Spatio-Temporal Coordination

In this section I present CAST, a Linda-like spatio-temporal coordination model.

I assume a set of hosts, each with one active entity (an agent) and a local tuple

space. For the sake of simplicity, I will assume that only one tuple space exists per

host, although multiple tuple spaces identified by different names can co-exist without

affecting the coordination model. The same goes for multiple agents on a host. All

local tuple spaces form a universal tuple space, even if they are not all connected.

The universal tuple space is simply the collection of all (potentially isolated) local

tuple spaces.

Coordination operations are performed by a the agent on a host on the tuple space.

Operations can be performed on the tuple space, which makes them insensitive to the

112

network topology. They can also be performed on the local tuple space of another host

or on a projection of the universal tuple space defined by hosts that are reachable

from the host that initiates the operation. A reachability relation is defined over

disconnected communication routes, and is specific to each type of operation according

to the mechanics needed to implement the operation. Different operations exhibit

different patterns of interaction between hosts. For example, for a simple message

delivery, destination host b needs to be reachable from source host a. If a confirmation

for delivery is needed (or the result of a remote method invocation, for example, is

expected at the initiator), host b needs to be reachable from host a and host a needs

to be reachable from host b after b received the message from a (a loop in space and

time representing a round trip of a message from source to destination and back).

In order for a host to use this kind of reachability relation, it needs to have information

about its own motion profile and the motion profiles of other hosts with which it

develops such relations. This knowledge about host mobility helps discover both

connected and disconnected routes among hosts. These motion profiles are assumed

to be accurate, even if they are known only for a limited interval into the future. The

extent to which a host can take advantage of these relations depends on the amount

of knowledge it has about its own as well as the other hosts’ evolution in physical

space. Given the extension of these motion profiles in the future, the reachability

relations can also be extended in the future. Additionally, the reachability relations

can be defined between a source host and a target area (i.e., hosts that are or will be

in a designated physical space).

The spatio-temporal dimension of my coordination model also impacts the tuples in

the tuple spaces. My tuples can have a precisely defined lifetime. They can also

be bound to certain hosts (i.e., once they are written into some host’s local tuple

space, they stay there regardless of how their carrier host moves) or to a specific

location/area (e.g., they try to remain in a designated region by migrating from one

host to another if their current host is leaving the target area of interest).

113

6.3.1 Mobile Tuples

Tuples are arrays of objects that have types and values. Coordination is mediated by

tuple spaces, the tuples being the means by which hosts interact. A host can write,

read, or remove one or more tuples in/from the tuple space. In traditional tuple space

models, deployed mostly for environments where access to the tuple space is not an

issue, a host places a tuple in the tuple space (which can be easily managed at a

centralized location) and all other hosts have access to it (ignoring potential security

concerns that might filter the access to a tuple). In more recent models, such as

Lime [80] and Limone [32], the tuple space is implemented in a distributed fashion.

Each host has its own local tuple space which is shared with other hosts to which the

reference host is connected (peer-to-peer or over multi-hop routes). These local tuple

spaces are logically merged into a global federated tuple space. A tuple in a local

tuple space is accessible to all hosts that participate in the federated tuple space. By

default, a tuple is written in the local tuple space of the host that produced it, until it

is removed as a result of a coordination operation. It is possible for the producer host

to specify an explicit destination different from the local tuple space for the tuple,

and in that case the tuple will migrate to that destination upon being written to the

tuple space. The tuple only becomes available for coordination when it has reached

its destination. Such a tuple is bound to the host where it was deployed. It remains

on that host until a coordination operation removes it explicitly.

In CAST, the universal tuple space is a union of (potentially disconnected) local tuple

spaces. Local tuple spaces that reside on (peer-to-peer or transitively connected) hosts

form federated tuple spaces, restricted to islands of connectivity. Coordination can

occur among hosts that share a federated tuple space but it can also occur among

hosts that will never come in direct (peer-to-peer) or transitive (over multi-hop fully

connected routes) contact.

While traditional tuples are still available in CAST, my model also exhibits new types

of tuples. The tuples in my model are enriched with spatio-temporal qualifications

that describe the mobility, lifetime, and the location of each tuple. These qualifi-

cations are defined by the parent host of a tuple, when it writes the tuple to the

114

tuple space. The spatial qualifications determine the location where a tuple is writ-

ten, as well as the dynamics of the tuple during its lifetime. Based on their spatial

qualifications, tuples can be static or dynamic (the details are presented below).

out(tuple) tuple_birth tuple_death

time
delivery lifetime

Figure 6.2: The temporal qualifications of a tuple.

The temporal qualifications of a tuple define its temporal existence and entail two

parameters in the time domain: tuple birth and tuple death. The tuple is required to

be delivered prior to tuple birth and is available for coordination in the time interval

[tuple birth, tuple death], unless a coordination operation removes it during its lifetime.

Even if the tuple is delivered prior to tuple birth, it stays invisible in the tuple space

and therefore not accessible for coordination until tuple birth. At tuple death, the

tuple is removed from the tuple space and destroyed so it is again not available for

coordination (Figure 6.2).

Static Tuples

Static tuples are bound to the hosts where they are written. As was mentioned before,

when written to a tuple space, tuples can migrate at parent’s request to another host’s

local tuple space. This assumes that the parent of the tuple knows the name or ID

of the destination host and can address the tuple accordingly. CAST tuples can also

migrate to a specific physical location: CAST supports the migration of tuples to a

specific area, regardless of which hosts may be present in the designated area. The

motion profile analysis can reveal the path to a host that is in or will enter that

region. Combined with the tuple lifetime explicitly specified by the tuple’s creator,

the motion profile analysis and tuple delivery can be optimized to target the host that

spends as much as possible of the tuple’s life in the designated area of interest. When

delivered to a specific host, once the tuple reaches the destination host it stays there

until it is removed by a coordination operation or until the end of its defined lifetime

115

(until tuple death or until the host leaves the designated area, whichever occurs first),

and will not relocate to a different host that continues to stay in the designated area.

Dynamic Tuples

CAST also supports space-constraint tuples. These tuples are delivered to a certain

physical location and will do their best to stay within the designated area for as long

as they are alive, which gives them a dynamic character. While a host may leave an

area before the tuple is scheduled for destruction, the tuple may hop to another host

that will stay within the designated area longer. If there is no such host to pick up

the tuple, it will simply disappear when the last host that could have had it leaves

that area (note that while there may be hosts in the target area after a reference host

leaves, they may not be reachable from the host that needs to leave a tuple behind

and therefore the tuple cannot be transferred).

The spatio-temporal dimensions of the tuples presented so far can be found in the

coordination primitives the model exposes and are presented in the following sections.

Before I present the coordination primitives provided by my model, I first introduce

the notion of reachability, which helps me define the semantics of the said operations.

6.3.2 Reachability

It is essential for a host to be able to reach another host for coordination to take place

(or any other interaction for that matter). Therefore all coordination models entail a

certain notion of reachability, addressed in different ways. For simplicity, I consider

the coordination to happen among hosts, assuming one agent per host. In MARS [15],

an agent is said to be “reachable” and the reference agent can coordinate with it only

if they both run on the same host. In Lime [80] or Limone[32] “reachable” means that

agents run on hosts in direct (peer-to-peer) contact. This extends transparently to

hosts in transitive contact, where an ad hoc routing algorithm establishes a multi-hop

path between hosts, entailing mobile hosts that bridge the communication between the

two ends involved in coordination. It can be observed that the notion of reachability

is in strong correspondence with the existence of a communication route between

116

the entities involved in the process of coordination (be it a 0-hop route - agents on

the same host; or a 1-hop route - peer-to-peer communication - or multi-hop path;

transitive connectivity bridged by a chain of hosts in contact that can build a fully

connected path).

Figure 6.3 shows hosts a through d and the transient connections they establish as

they roam in space and come within each other’s communication range (e.g., a and b

can communicate directly from t1 to t2, from t3 to t4, etc). While a and c or d are

never in direct or transitive contact, they are in disconnected transitive contact. The

example depicted in Figure 6.3 will be used as the reference example for all remaining

discussions in this paper.

ab
bc
cd

t1 t5t4t3t2 t9t8t7t6 t10 t12t11

Figure 6.3: P2P interactions between a, b, c, and d.

The windows of peer-to-peer interaction opportunity depicted in the figure above are

extracted by each host based on the analysis of the set of motion profiles each host

knows. Figure 6.4 shows how each host learns the motion profiles of the others, based

on the mobility pattern depicted in Figure 6.3. While motion profiles can have a

certain extent (i.e., can describe the future movement for a certain interval in the

future), for this example I assume all four motion profiles are defined until at least

t12. Obviously, each host can use only the motion profiles known at a certain moment,

even if they terminate at different moments for different hosts. For the example used

in this paper all hosts learn the motion profiles of the others until at least t12.

As shown in the table in Figure 6.4, a and b exchange motion profiles at t1 when

they meet for the first time (each column in the table shows how a host learns the

motion profiles of other hosts.) At t3 they meet again and exchange motion profiles.

Meanwhile, host b met host c and learned its profile at t2. At t3, a learned c’s profile

from b. By t5 each host had the opportunity to learn the motion profiles of all others,

at least until t12. I assume the motion profiles are accurate and take an insignificant

117

a b c d
t1 ab ab c d
t2 ab abc abc d
t3 abc abc abcd abcd
t4 abc abcd abcd abcd
t5 abcd abcd abcd abcd

Figure 6.4: Motion profile information dissemination.

amount of time to transfer between hosts, compared to the period of time a pair of

hosts is connected during an interval of direct connectivity.

Figure 6.5: 1. Hosts a and d in their disjoint configurations at moment n. Host c is
connected to a at this time. 2. At moment n+1 host c is no longer in (transitive)
touch with a but it is with d.

At moment tn, a host a is in a configuration Πn(a), where it is connected directly

(P2P) to some hosts and indirectly (over multi-hop fully connected paths) to other

hosts. To a host d, the configuration Πn(d) represents an “island of connectivity” at

time tn (Figure 6.5).

Two hosts a and d are defined to be in relation ρn if the configuration Πn(a) contains

a host that will be part of configuration Πn+1(d). This means the host that bridges

Πn(a) and Πn+1(d) could deliver a message from a to d (host c in the example in

Figure 6.5).

a ρn d ≡ (Πn(a) ∩ Πn+1(d) 6= φ) (6.1)

This means that d is one-reachable from a (at most one configuration change is

needed). A multi-reachable relation can be defined formally as:

118

a ρn d ≡ (∃ c0, c1, ... ck, such that c0 = a

∧ ck = d ∧ ci ρi ci+1) (6.2)

Note that a ρn d does not imply d ρn a. Also, a ρn b and b ρn+k c, implies a

ρn c. It is always true that a ρn a.

Using the reachability notion defined in (6.1) and (6.2), I will define the semantics of

tuple space operations offered by my coordination model. Different operations on the

tuple space have different patterns of interaction with the tuple space (i.e., the host

that issues the operation may execute different protocols involving one or multiple

other hosts, depending on the type of operation). For each type of operation, from

motion profile analysis and inter-host patterns of interaction, I build an acquaintance

list. I populate this acquaintance list with hosts that could participate in that type of

operation, initiated from the current host. For example, assume an operation entails

the current host asking another host for an integer value, receiving that value, and

then sending back the integer multiplied by 2. This means the remote host has to be

3-reachable from the current host: the current host needs to send the request; then

it needs to obtain the integer; then it needs to send the doubled integer back. Note

that n-reachability entails n trips between two hosts and that each of the n trips can

start only after the previous one has ended (they are serialized in time).

Given the n-reachability problem (different hosts have different values for n with

respect to the current host, values that can change over time), each operation can

be described by a specific reachability constraint. That operation can be performed

by a current host only on other hosts that exhibit an n-reachability from the current

host, where n is a minimum imposed by each operation (n=3 in the example above

where I double the integer). Based on the n-directional reachability specific to each

operation, each host builds and maintains an acquaintance list that contains hosts

that can participate in specific types of operations from the current host’s perspective.

Thus, as along as a host d is 3-reachable from host a, d will be in a’s double-integer-

acquaintance-list :

119

d ∈ AQdouble integer(a) (6.3)

This list is dynamically updated, as more knowledge can be extracted from the motion

profiles (which are updated continuously at run time). While the maintenance of such

acquaintance lists may seem expensive, it is the goal of a coordination model to offer

a small yet powerful set of primitives. As we will see below, my coordination model

requires a maximum reachability of 3 for the primitives it offers.

6.3.3 The OUT Operations

The Linda out operation places a tuple in the tuple space. My general form for the

out operation is:

out(Tuple tuple, Mode mode Time tuple birth,

Time tuple death, Target target);

The default values for these parameters are “now” for tuple birth and “never” for

tuple death, and “current host” for target. These defaults help to emulate a traditional

tuple which is active as soon as it is placed in the tuple space, does not expire, and

stays in the local tuple space of the host that created it until it is explicitly removed.

The mode and target parameters affect tuple delivery. The target is a set of constraints

or properties the target host(s) need to have to be considered for delivery. By default,

the value of the target parameter is “current host”, meaning that the tuple is written in

the local tuple space of the host that created it. The parameter can also identify a set

of hosts based on the enumeration of their IDs or by describing a geographic restriction

of their physical location. The values accepted for mode are anycast or multicast.

Anycast delivery ships the tuple to any one host that satisfies the constraints (if a

specific host ID is specified, the delivery is equivalent to unicast). Multicast delivery

ships the tuple to all hosts that satisfy the filter constraints. The default value is

120

multicast (note that this value combined with the default value for target still identifies

only one host, the current host). In all cases, the selection process applies only to

hosts that are reachable from the parent of the tuple (are in the out-acquaintance-list

of the caller).

As was mentioned before, a host a is always reachable from itself, which is why a local

out is always successful. When the target information identifies anything but the local

host, the tuple needs to migrate to the final destination. The final destination has to

be 1-way reachable from the tuple producer.

a d
out

Figure 6.6: A one-way path is needed for a successful out from a to d.

In Figure 6.6, host a can write a tuple to host d if d is in a’s out-acquaintance-list at

the moment when the operation is issued:

(d ∈ AQout(a)) ≡ (a ρn d) (6.4)

If the tuple is written to a remote location, then the tuple is migrated as soon as a

disconnected path is found to the desired destination. CAST enables access to the

tuple in its destination local tuple space at the end of migration or at tuple birth,

whichever comes last.

If the tuple is a dynamic tuple, the target is a region, not a particular host. Depend-

ing on the mode parameter, the destination is one host chosen non-deterministically

among the hosts in AQout(a). Policies that bias the selection can be easily imple-

mented, e.g., pick the host that spends most of the tuple’s lifetime in the the desig-

nated area, or all hosts from AQout(a) in the designated area (these hosts can forward

copies of the tuple to other hosts in the designated area which couldn’t be reached

by the source host of the tuple). As these hosts move around, when they leave the

designated area they delete the tuples bound to that space and as they (re-)enter the

area will receive copies of the tuples bound to that space.

121

A variant of the out operation is the outg operation. The semantics are the same

with the only difference that outg writes multiple tuples at the same time, as opposed

to only one tuple. All tuples have the same lifetime, the same mode, and the same

target.

6.3.4 The RD Operations

The Linda rd operation reads from the tuple space a tuple that matches a given

template. If no such tuple is found, the operation blocks the caller until a matching

tuple appears. My general form for the rd operation is:

rd(Tuple template, Time op start, Time op stop,

Time op report, Target target);

The template represents a description of the tuple the operation is intended to return.

A template is an array of fields, like a tuple, each field containing a description of the

tuple field that is expected to be matched. The comparison is made pairwise, each

field in the template being compared against the corresponding field in the tuple.

For example, the tuple in Figure 6.7 matches the template below it. The template

requires that the first field in the tuple is of type Integer and has the value 25, which

matches exactly the first field in the tuple. The second field is required to be of type

String, but the value of that field is not enforced by the template. The second field

in the tuple matches this request, as it is of type String and has the value “Boat”.

The third field is not important from the tuple’s perspective. This is implemented

using Java’s Object.class which works as a wildcard that matches any type and does

not enforce any value.

<Integer(25), String("Boat"), Location("Pacific") >

<Integer(25), String.class, Object.class >

Figure 6.7: A tuple (top) and a template (below) matched by the tuple.

122

The template has to be explicitly specified in the method call, with all other param-

eters having default values. The op start and op stop parameters define the lifetime

of the call. After the call is issued, it becomes effective only at op start and searches

for a matching tuple until op stop. The rd operation is synchronous. This means

that it blocks the agent that issued the operation until it returns. The process that

invokes the rd operation is blocked as soon as it issues the operation, even if the

operation is scheduled to be activated later (e.g., there’s some time between when the

operation is issued and op start). The process is unblocked when the operation finds

and retrieves a matching tuple or at op stop (when the operation returns NULL). The

default values are “now” for op start and “never” for op stop, which help emulate the

traditional Linda rd operation which blocks the caller process until the tuple is found

(potentially forever). The op report parameter defines the time limit until which the

reference host is willing to wait for results. The value of op report has to be greater

than the value of op stop. Even if this is the case, it may be possible that the last

opportunity for a target host to send back a message that reaches the reference host

before op report is before op end. If this opportunity is missed, the result from this

target host’s perspective will be null, even if a tuple does become available before

op end.

The target parameter filters the hosts to which the call is addressed in a manner similar

to the target parameter used with the out operation. The set of target hosts verify

a certain property such as have certain IDs, or be at a certain location. By default,

the value of the target parameter is “all hosts,” which means “no restriction.” The rd

can be bound to a set of hosts, which makes it a static rd, e.g., I’m only interested in

the tuple that describes the temperature of a particular host, or to a specific physical

location, which makes it a dynamic rd, e.g., I need to read the temperature in a

certain room, no matter who is there to service my call. For a static read operation,

the set of hosts targeted by the call is known at the moment the call is issued (it

is an identifiable subset of the hosts in the rd-acquaintance-list of the reference host

at the moment the call is issued). Thus, the reference host can compute when the

last reply will come back from the target hosts and thus set the default value of the

op report parameter large enough to include that last reply message. For a dynamic

read operation, the set of target hosts is not known a priori by the reference host.

Furthermore, the set of target hosts changes dynamically, while the read operation is

123

active, as hosts enter or leave the designated target area. The default op report value

in this case is set to op stop plus some constant.

The rd operation does not have a mode parameter. The operation is forwarded to

all hosts (from the rd-acquaintance-list) that pass the target filters. If there is only

one such host, the operation has unicast semantics. This means the call has only

one target host where it is sent and from which a result is expected. If multiple

target hosts pass the target filter, the operation has anycast semantics. This means

the operation is forwarded to all those target hosts but only one result is expected in

return. Any host can send back a matching tuple. The first tuple that reaches the

reference host is returned to the application and the others are ignored. My model

does not support multicast semantics as the rd operation returns only one tuple by

definition, while multicast entails at least one tuple from each target host.

The operation blocks until a target host returns a matching tuple, or until the op-

eration expires. When the first result tuple (maybe the only one) comes back, the

operation forwards it to the application and discards the others (if any). As there

may be hosts that still look for matching tuples after another host has returned a

result, the rd requests they have received will be deleted if (1) their lifetime elapses,

or (2) the last opportunity for the target host to report back a result has passed (i.e.,

there is no known path back to the reference host in the known future), or (3) the

caller requests the call to be canceled. After obtaining a matching tuple, the initiator

sends cancelation requests to hosts that have not responded yet. The presence of a

target host in the rd-acquaintance-list of the initiator guarantees the return of a result

(for a period of time, if found) but does not guarantee the delivery of the cancelation

request. This request can be sent opportunistically and only helps where it is possible

to terminate rd operations on those hosts that may need more time to delete it under

circumstances (1) or (2).

The interaction pattern between two hosts participating in a rd operation entails a

round trip from caller to the target and back. The first segment of the trip (from

caller to the target or the rd operation) carries the request for the tuple (i.e., the rd

operation and its template parameter). The return segment of the trip brings back

the result (if multiple results come back from multiple hosts, the caller retains the

first of them and discards the others - as rd returns a copy of the tuple, the acceptance

124

a d
rd request

result

Figure 6.8: A round trip path is needed for a successful rd from a to d.

or the rejection of a tuple as a result of a rd does not affect the other hosts). Given

the hosts’ mobility, only hosts that can be part of such a round trip can be considered

as potential targets. Each host maintains a rd-acquaintance-list with hosts that can

participate in a rd operation initiated by the reference host. The filters specified by

the target parameter are applied to the following set of hosts.

(d ∈ AQrd(a)) ≡ (a ρn d) ∧ (d ρn+k a) (6.5)

For example, a rd with all parameters set to their default values will be forwarded to all

hosts that are in the current host’s rd-acquaintance-list at the moment the operation

was issued, will be host-bound, will be effective immediately, and will never expire.

A host that is the target of a rd operation will be subject to the call for as long as

a potential result could return to the reference host. Location-bound operations are

forwarded among hosts as they enter/leave the designated region. If at some moment

the last chance for a message to make a trip back to the reference host is lost (e.g.,

knowledge about motion profiles does not indicate the availability of a disconnected

path in the future from a target host to the reference host), the target host will discard

the rd operation. Thus, “never” is limited to the known near future. If there is no

known chance for the host to send back the tuple, there is no reason for the target

host to keep looking for the tuple on behalf of a beneficiary that cannot be reached

anymore. While the reference host may become reachable again in the future, if the

momentary knowledge does not reveal this detail, the operation is dropped at the

expiration of the last known route back.

125

A variant of the rd operation described above handles groups of tuples. While rd

retrieves one of the tuples that match its template, rdg returns all matching tuples

from a single host. This restriction is needed for consistency reasons. If I send the

request to multiple hosts and expect answers back from all of them it means I need

to keep the reference host blocked for as long as the operation is alive and collect

responses from all target hosts, as matching tuples become available. The operation

would unblock and return the control to the application that issued the call only after

that. This leads to inconsistent semantics as the result of such a rdg does not represent

the state of the system at a certain moment in time. A host could reply immediately

and send back a number of tuples while another target may need to wait for a while

before it finds any tuple to report. Meanwhile, the host that reported first may have

already removed some of its matching tuples. Thus, the result would be a union

of snapshots collected at different moment, but which appear as a consistent and

uniform result to the reference host. The snapshots logically capture a plausible state

of the system at a single moment, while in reality the system may have experienced

transformations during the collection of the results. The rdg operation can therefore

be sent to only one host. Both unicast and anycast semantics are available. The call

is synchronous. It blocks until op end or until at least a matching tuple is found. If

matching tuples are already available in the target tuple space, all matching tuples

are returned. Once a set of tuples is returned, the operation terminated (i.e., does not

continue to search for tuples until it’s lifetime expires in an attempt to return more

tuples - same consistency reasons described above). If no matching tuple is found by

op end, the operation returns NULL.

Modern coordination models inspired by the traditional Linda model (e.g, Lime,

Limone) also offer a probe variant of the traditional rd Linda operation. This vari-

ant, known as a read probe (rdp), is a non-blocking read that returns immediately a

matching tuple is available or NULL otherwise. My model does not offer a rdp oper-

ation explicitly. Since my rd operation has a very well defined lifetime, at op stop the

operation returns NULL if no tuple is found. If I make this op stop parameter equal

to the op start parameter, my rd operation behaves like a rdp that probes the tuple

space at op start. For this reason, I do not need to provide a separate rdp operation

explicitly.

126

6.3.5 The IN Operations

The Linda in operation reads and removes a tuple from the tuple space. This operation

is also synchronous, i.e., it blocks the reference host until a matching tuple becomes

available. The only difference from rd is that in also removes the tuple. My general

form for the in operation is:

in(Tuple template, Time op start, Time op stop,

Time op report, Target target);

The interaction pattern between two hosts participating in an in operation entails

a request message from the initiator, a response message back from the target host

and an acknowledgement message from the reference host to the target see Figure

6.9. Potential targets that could run this 3-reachable protocol are stored in the in-

acquaintance-list, managed by each host locally. All additional filters specified by the

target parameter are applied to this set of hosts.

a d

in

ack

t1

Figure 6.9: Three trips are needed for a successful in from a to d.

The three paths are needed for the following reason: suppose a host a issues an

in operation that spreads to hosts b, c, and d, which are in a’s in-acquaintance-

list (Figure 6.10). Differently from the rd operation (where the acceptance of some

host’s tuple and the rejection of the other hosts’ tuples did not impact the hosts that

provided the tuple, in this situation, the in operation has to remove the tuple from

the host that provided it and therefore it matters which host’s tuple is accepted). All

target hosts that have matching tuples report back the tuple availability. They all

127

a b c d

ininin

T2T1 T3

ack nack nack

Figure 6.10: Acknowledgements and negative acknowledgements.

delay access to their respective tuples by all other coordination operations that might

use those tuples (they essentially hold the operations until a decision can be made

about whether the tuple is or is not available to those operations). When a receives

notifications from hosts b, c, and d, a will pick one of them (the first one) and send

a positive acknowledgement to the host that sent the chosen notification (e.g., host

b) and negative acknowledgements back to all other hosts. When c and d receive the

NACK they unlock the operations that targeted the same tuple and allow them to

access those tuples in the tuple space (as they know a chose some other host’s tuple).

If such calls are on hold on b, they will continue their normal behavior as if the tuple

wasn’t there (remain blocked or return NULL, etc).

(d ∈ AQin(a)) ≡ (a ρn d) ∧ (d ρn+k a) ∧ (a ρn+k+l d) (6.6)

Both unicast and anycast semantics are available depending on the target parameter,

similar to the rd case. The in operation also has a group variant, called ing, with

semantics similar to rdg. A probe in can be achieved the same way I described the

probe read.

128

6.3.6 Reactions

The coordination primitives presented in sections 6.3.3, 6.3.4, and 6.3.5 are all syn-

chronous coordination mechanisms, i.e., the process that issued a call is blocked until

a response comes back. For a rd operation, the caller is blocked until one of the target

hosts sends back a matching tuple (if the expiration time of the call is “never”), or

until the time expires without finding a tuple, when the result is NULL. The calling

process is thus blocked for various lengths of time, depending on the type of the rd

(or in) operation and on the availability of matching tuples.

Reactions are a mechanism for asynchronous coordination. If the calling process

cannot afford to block, it can register a reaction that will look for a tuple that matches

a given template and that will execute a provided piece of code when the tuple is

found. The process continues execution as soon as it registers the reaction and does

not wait for the reaction to fire and/or for a matching tuple to appear. The general

form of a reaction is:

reaction(Tuple template, Time r start, Time r stop,

Mode mode, Type type, Target target, Handler code)

The reaction is active between r start and r stop, searches for tuples matching the

template among hosts that pass the target filters and executes the code when a tuple

is found. In the implementation, Handler is a type of object that has a run(...) method

which is called when the reaction is fired. The run(...) method contains the code that

is to be executed when the tuple is found, in a thread different from the thread that

registered the reaction (and that continued its execution after registration).

The mode parameter identifies any host (anycast semantics) or all hosts (multicast

semantics) that pass the target filter. The target filter can also identify hosts or

locations (i.e., the reaction can look for tuples on host x or “in the garage”). Unicast

semantics can be obtained using the anycast mode and ensuring that only one host

passes the target filter (e.g., enforcing a certain value for hostID).

129

The type parameter can take one of the the following two values: once (which is the

default value) or once-per-tuple. A once reaction deregisters itself automatically after

it fires once. A once-per-tuple reaction remains active as long as it is alive and fires

every time is finds a tuple that matches its template. The semantics for the various

combinations of values for mode and type can be best observed in Figure 6.11.

once reactions once-per-tuple reactions

anycast - sent to all hosts that qualify
- fires once and deregisters it-
self automatically
- only the first tuple is consid-
ered, the others are ignored

- sent to all hosts that qualify
- fires once for each matching
tuple
- the first tuple that reaches
the reference host selects the
target host to be considered
- tuples from other hosts are
ignored
- reactions on other hosts are
de-registered if possible

multicast - sent to all hosts that qualify
- fires once for each host and
deregisters itself locally

- sent to all hosts that qualify
- fires once for each matching
tuple on all target hosts

Figure 6.11: Types of reactions.

Installing a reaction is similar to a rd operation from the reachability point of view.

The target has to be 2-reachable from the source. The reference host needs to send

the template for the desired tuple and needs to be able to receive the notification

when the tuple appears at the remote location (it needs to be able to complete a

round trip to the target and back). A reaction can be removed explicitly by the

host that installed it. This means the host that installed the reaction needs to be

able to send a cancelation request to a target, which entails a one-way trip from the

current host to the target (a one-reachable relation). This comes in addition to the

2-reachable relation for installation (and is not required by the interaction pattern

that defines the minimum reachability for a successful installation). A reaction can be

removed implicitly, when its lifetime expires or when the target host loses any chance

to communicate with the initiator (i.e., does not know of any future disconnected

routes that might allow it to notify the source of the reaction that a matching tuple

has become available).

130

When a matching tuple is found, a copy is sent back to the host that installed the

reaction and the code is run on this host. This code might perform its own coordina-

tion operations on the tuple space, for example to attempt to remove the tuple that

triggered the reaction. All these operations are subject to their respective reachability

constraints and may or may not be able to be executed, even if the reaction did fire.

6.3.7 Acquaintance Lists

Now that I have described the semantics of the operations supported by the coordi-

nation model I can better describe the meaning and usefulness of the acquaintance

lists. Each host computes its own AQout(), AQrd(), and AQin() lists (implemented

as sets) based on the motion profiles it knows. These sets evolve over time as motion

profiles expire and new information is acquired. The table in Figure 6.12 shows how

the 3 acquaintance lists host a manages evolve over time, from t1 to t12, as new

information is acquired and paths are formed or lost. The motion profiles of the hosts

a, b, c, and d are assumed to generate the windows of opportunity depicted in Figure

6.3 in Section 6.3.2.

AQout(a) AQrd(a) AQin(a)
1 ab ab ab
2 ab ab ab
3 abc abc abc
4 abc abc abc
5 abcd abcd abcd
6 abcd abcd abc
7 abcd abcd abc
8 abc abc ab
9 abc abc ab
10 ab ab ab
11 ab ab ab
12 a a a

Figure 6.12: Acquaintance lists maintained by a.

If an operation is issued with a specific target host, that host must be present in the

operation’s respective AQ() list of the host that issues the operation at the moment

131

the request is sent. If no target host is specified, the operation will be addressed to

all hosts in the AQ() list. For example, in the table in Figure 6.12, host a cannot

write a tuple to host d at t3 because a hasn’t learned about the existence of host d

and it’s motion profile yet. Similarly, a can perform an in on host d at t5 but could

not do it anymore at any later moment (there will not be enough paths between a

and d for a successful in.)

6.4 Formal Specification of Key Semantic Constraints

In any system it is important to present the semantics of the primitives offered to the

user in a concise, correct, and complete form. In this section I present the formaliza-

tion of the key semantic constraints of the primitives offered by CAST.

Central to my model are the motion profiles. Knowledge about host motion profiles

allows me to investigate in the future, predict and schedule operations that happen at

specific moments, over specific periods of time, or at specific locations. The formal-

ization of host motion profiles allows me to develop the formal specification of all the

operation semantics exhibited by my model. Using the formalization of motion host

profiles I describe the semantics of the coordination operations by deriving a tuple’s

motion profile and specifying properties of a tuple (or template) in concordance with

the semantics of the operation that uses it.

Motion profile analysis at the host level allows me to discover whether there are paths

available from a reference host to one or more target hosts, paths that would allow

coordination primitives to be completed as expected. By associating a motion profile

with a tuple and/or template I obtain a method of specifying the semantics of all

coordination primitives supported by my model.

132

6.4.1 Static Primitives

Static primitives are coordination primitives offered by CAST, where the target is

statically identified when the operation is issued. A tuple is sent to a specific, pre-

defined set of hosts by a static out operation. A template also goes to a precisely

determined set of target hosts when it is sent out in search of matching tuples by

static in or rd operations, or by reactions.

Static OUT

Assuming a host a calls a static out:

a.out(value, b time, d time, mode, target)

value is the tuple that a writes to the tuple space. b time is the birth time when the

tuple is required to become active and available for coordination. d time is the tuple’s

death time when it is destroyed by its host, if it hasn’t been previously removed by

an in-like operation. mode is the known anycast/multicast parameter. target identifies

the recipients of the tuple. There is another important parameter which is implicit:

c time represents the creation time of the tuple. This is the moment when a calls the

out method to write the tuple to the tuple space. This parameter is important to

the formal specification of out and is different from b time, when the tuple becomes

active. The tuple is inactive, meaning it can travel to its target and, but cannot

participate in any coordination operations while in transit (and before it’s scheduled

b time).

The set of parameters that accompany a tuple is initialized when the tuple is created

with values readily available (e.g., its value) or computed by the middleware (e.g., its

profile):

• Tuple.value = value

133

• Tuple.b time = b time

• Tuple.d time = d time

• Tuple.mode = mode

• Tuple.target = Dest (set computed by the middleware)

• Tuple.profile = µ (profile computed by the middleware)

• Tuple.c time = c time

• Tuple.active = False

• Tuple.ID = new ID

• Tuple.location = current host (the host that created the tuple)

The ID of a tuple is a unique identifier which every tuple has. If the mode of the

operation is multicast, each copy of the tuple going out to a different target host has

a separate ID.

The tuple’s profile is defined as of c time and at that moment is the same as the

creator host’s profile:

Tuple.profile(Tuple.c time) = a.profile(Tuple.c time) (6.7)

At any moment before creation or after destruction of the tuple, its profile is unde-

fined:

∀t : t < Tuple.c time ∨ t > Tuple.d time ::

Tuple.profile(t) = ⊥ (6.8)

At any moment when the tuple’s profile is defined, the tuple’s location must be a

unique host (for multicast, there are multiple copies of the tuple sent along different

134

routes and therefore the specification stands, as each copy is a different tuple and

thus I do not have a single tuple travel along multiple paths simultaneously):

∀t : Tuple.profile(t) 6= ⊥ :: ∃!b such that

Tuple.location(t) = b (6.9)

During the tuple’s lifetime (i.e., when the tuple is active) its profile is the same

as the profile of the target host where it was send by its parent and the tuple is

active (available for coordination), unless the tuple is removed before the end of its

programmed lifetime. In this case, the profile becomes undefined again:

∀t : Tuple.b time ≤ t ≤ Tuple.d time :: ∃ d ∈ Dest such that

Tuple.profile(t) = d.profile(t)

∧Tuple.active = True (6.10)

∨ ∀ t′ > t, t′ ≤ Tuple.d time Tuple.profile(t′) = ⊥ (6.11)

At any time, the profile of the tuple is the profile of the host the tuple resides on.

For example, if hosts a and b travel together (i.e., one next to the other, significantly

closer than the communication range), if host b carries the tuple, the tuple’s profile

will be that of host b’s, even though both a and b have equal access to the tuple:

∀t Tuple.profile(t) = (Tuple.location(t)).profile(t) (6.12)

A tuple transfers from one host to another only when the two hosts are within com-

munication range. Assuming time to be discrete, the transfer can take place by having

the tuple change hosts between moments t and t+1. This is possible if the profiles of

the two hosts involved intersect at those moments:

135

∀ a, b, t, such that Tuple.location(t) = a ∧

Tuple.location(t + 1) = b, then

a.profile(t) ∼= b.profile(t)

∧ a.profile(t + 1) ∼= b.profile(t + 1) (6.13)

The boolean operator ∼= used above means that the two profiles intersect but are

not equal. The two hosts come within communication range, can travel as close as

touching each other, but still maintain their own separate motion profiles.

Obeying the formal specifications from above, the tuple travels from the host that

creates it (the reference host) to its destination host(s). The destination is prepared

in the Dest set by the middleware:

Dest = {a | a = host

∧P (a) = True for ∀ predicate P ∈ target

∧ a reachable from reference host before

Tuple.b time} (6.14)

With the Dest set built as specified above, the target is picked from Dest as follows:

if Tuple.mode is unicast pick any host from Dest; if Tuple.mode is multicast pick every

host from Dest.

The outg operation’s formal semantics are the same as the formal semantics described

above for out, with the only mention that value stands for a group of tuples instead

of only one. All tuples in the group go where a single tuple would have gone, and live

like a single tuple would have lived.

136

Static RD

In the rd call I have an extra parameter:

a.rd(value, b time, d time, s time, mode, target)

The s time parameter represents a time limit until the operation is willing to stay

blocked and wait for a response to return. This has to allow for an answer to propagate

back from a target to the reference host. Since the propagation time is affected by the

connectivity of the hosts, I have to explicitly account for the delay incurred by host

mobility, after a result was found and sent back. For the static case, this parameter

is redundant as the exact configuration or paths can be determined and the precise

return moment of the result is known. As will be shown in the formal specification

of the dynamic call, since the target and/or the return paths may not be fully known

to the reference host, this parameter becomes very important.

The first part of a rd operation is very similar to an out operation. It entails sending

a template to a certain destination. The template “survives” at the destination for

a predetermined period of time or until it matches a tuple. My formal specification

begins after the template has reached its target.

Each template has a Template ID, similar to how tuples have Tuple IDs. The difference

is that all templates sent out by an operation have the same ID. For example, two

successive rd operations will send out templates with different IDs, even if their values

are equal. A multicast rd targeting multiple hosts sends out multiple templates, all

of them having the same ID.

Once at its destination, a match between a tuple and a template is declared at a

moment m time if the conditions below are met:

∃m time ∈ [Tuple.b time, Tuple.d time]

137

∩[Template.b time, Template.d time]

such that

Tuple.profile(m time) = Template.profile(m time)

∧Tuple.value
.
= Template.value (6.15)

The
.
= boolean operator above means “matches”. The semantics of the

.
= operator

are defined as follows: a tuple Tuple matches a template Template if they have the

same length (i.e., same number of fields) and each field in Tuple matches (type and

value) the corresponding field in the Template:

(Tuple.value
.
= Template.value) ≡

Tuple.length = Template.length

∧∀ i = 1...Tuple.length

{ ((Tuple.field[i]).value = (Template.field[i]).value

∨ (Template.field[i]).value = not specified)

∧((Tuple.filed[i]).type ' (Template.field[i]).type)}

(6.16)

The ' operator means polymorphic type matching, returning True if the left operand

is of the same type or a sub-type of the right operand. For example, assuming the

Java class hierarchy, (String ' String) = True, (String ' Object) = True, (String '
Integer) = False.

After m time when the matching happens, a copy of the tuple travels from the target

host where it was found back to the reference host who issues the rd operation in a

similar manner a tuple travels following an out operation or in a similar manner the

template traveled from the reference host to the target host where it found the tuple.

The copy of the tuple that goes back to the reference host is in inactive state such that

it cannot be involved in any coordination primitive on its way back to the reference

138

host where it is consumed by the operation that triggered the copy of retrieval of the

tuple:

∀ t > m time TupleCopy.active(t) = False (6.17)

When the tuple reaches the reference host (i.e., the host that issued the call), the

tuple is consumed by the host and does not have a life in the local tuple space of the

reference host.

∀ t > t′ such that TupleCopy.location(t′) = ref host,

TupleCopy.profile(t) = ⊥ (6.18)

Once a target host finds a matching tuple, the rd request has to be canceled on the

other target hosts, as the reference host only needs one response. All other templates

with the same ID are canceled:

∀h ∈ Dest send “cancel < Template.ID > ” (6.19)

Static IN

The static in operation’s formal semantics are the same as the rd operation’s with the

only difference that Tuple is removed from the target’s local tuple space.

Static reactions

The static reaction’s formal specification is similar to a rd operation’s specification.

The only difference is that a reaction does not block the reference host while waiting

139

for a matching tuple, but entails no differences in the manner the template travels,

the matching happens, or the result returns.

6.4.2 Dynamic Primitives

The core difference from the static case is that the Dest set is fully determined and

fixed in the static case, while in the dynamic case the set can change over time and

include hosts the reference host does not know about. The target of a dynamic out

operation is an area and not a specific set of hosts, as in the static case. Similarly,

templates sent out by dynamic rd and in search for matching tuples in target areas

rather than target set of hosts. As the target is an area which can even change over

time, the set of hosts included in this area can change without the full knowledge of

the reference host.

Dynamic OUT

A unicast dynamic out identifies a target host (h) whose motion profile places it inside

the target area when the tuple is scheduled to activate at b time:

h.profile(Tuple.b time) ∈ Area(t) (6.20)

Once h is identified, the tuple is sent in a manner similar to static out.

a.out(value, b time, d time, mode, Area)

The target area (i.e., the Area parameter above) is a function of time which, evaluated

at some moment t, yields the area of interest where the tuple is intended to be active.

This can change over time or the temporary host of the tuple can move towards the

140

edge of the target area, with the intent to leave it. In this case, the tuple moves to

another host, which stays within the designated area for a longer time, if available,

otherwise, the tuple is destroyed, as it should not be available outside the designated

space.

∀ t : t ∈ [b time, d time] ::

{(Tuple.location(t)).profile(t) ∈ Area(t)

∧Tuple.active(t) = True} (6.21)

∨Tuple.active(t) = False (6.22)

The above specification shows that a host can continue to carry the tuple even if it

goes outside the target area. The tuple is inactive but it becomes active again if the

host re-enters the target area. Just like in the static out case, the tuple is destroyed

at d time.

An interesting situation can occur when a host carrying an inactive tuple (e.g., the

host has left the target area and the tuple has changed to inactive state) meets a host

headed for the target area. In this case, the tuple is copied to the inbound host, still

in inactive state, and will become active when the newcomer enters the designated

area:

∀ t, t′, a, b, such that Tuple.location(t) = a

∧ a.profile(t) 6∈ Area(t), b.profile(t) 6∈ Area(t)

∧ a.profile(t) ∼= b.profile(t)

∧ t < t′ ≤ d time, b.profile(t′) ∈ Area(t′)

Tuple′ = Tuple ∧ Tuple′.location(t) = a

∧Tuple′.location(t + 1) = b (6.23)

141

Host b receives a copy of Tuple because at t’ (which is during the tuple’s lifetime)

host b will be inside Area. The new tuple is in inactive state.

The transfer above happens only if host a has enough information from the motion

profile analysis to find that the tuple can re-enter the target area. If this information

is not available by d time the tuple is destroyed. Also, the tuple is destroyed if the

lifetime is “forever” but the host doesn’t seem to re-enter the area again (based on

the limited motion profile information it has at the moment it leaves the target area),

nor it knows any host entering the area and to which it can give the tuple:

∀ t > t′, t < d time, a, such that

{a.profile(t′) ∈ Area(t′)

∧ a.profile(t′ + 1) 6∈ Area(t′ + 1)

∧[a.profile(t) 6∈ Area(t)

∧(6 ∃b such that a.profile(t) ∼= b.profile(t)

∧∃t′′ > t, t′′ < d time such that

b.profile(t′′) ∈ Area(t′′))]}

Tuple.profile(t) = ⊥ (6.24)

Dynamic RD and IN

Dynamic rd and in are similar to dynamic out. Their templates behave just like the

tuple of a dynamic out operation does. A template is active inside the designated

area, inactive outside it, has a b time and d time and once a matching tuple is found,

the behavior obeys the specifications from the static case, where the result comes

back to the reference host and cancelation requests are sent out.

142

Dynamic reactions

Similar to static reactions, dynamic reactions do not block the reference host while

waiting for a tuple, but they can hover around the target area like a dynamic tuple

or a template from a dynamic rd or in.

6.5 Summary

In this chapter I have presented a novel coordination model that learns from previ-

ously developed coordination model for mobile ad hoc networks Lime and Limone, all

inspired by the original Linda. The model provides synchronous and asynchronous,

single tuple and group coordination tuple space coordination primitives. It makes the

time and space parameters explicitly available to the programmer using the model.

CAST provides, like all coordination models, a separation of concerns between the

computation that happens at layers above from communication concerns sealed below.

CAST is the first coordination model that defines a lifetime motion profile for tuple

and templates which can specifically send a tuple to a host or physical geographic

area, and specify a pre-determined active period when the tuples are available for

coordination and when the templates look for matching tuples.

143

Chapter 7

Future Work

The research I have described provides a solution to several problems for service ori-

ented computing in ad hoc networks. The SOC architecture is built on top of a

disconnected routing algorithm which also provides support for the context aware

coordination model presented in this document. One of the key novelties in my work

is the use of contextual information in the form of motion profiles to schedule interac-

tions among hosts. All information used from the motion profiles has been assumed

accurate and immutable. While these assumptions supported the development of the

infrastructure and algorithms presented, they also represent steps away from reality.

To make my approach more applicable to real life scenarios, assumptions about the

quality of the contextual information have to be relaxed and even eliminated. Further

investigations will target the notion of uncertainty in mobility prediction and all the

side effects that propagate from the network layer up to the distributed system.

Disconnected Routing. The disconnected route discovery method I presented re-

lies on motion profile information to identify periods of time when two hosts promise

to be at a distance shorter than a certain threshold considered the communication

range. In reality, this information is only approximative. For example, buses have an

advertised schedule and try to stick to it, but even the most accurate transportation

services cannot guarantee precision to the second. While mobile hosts deviate from

their advertised motion profiles, this has an effect on the windows of communication

opportunity. Some may disappear, some new may be created. While the new win-

dows may be opportunities to taken advantage of, missing windows of communication

opportunity can definitely cause serious problems.

144

As each location information (current host location read from a GPS or projected

host location based on future motion profile) is affected by an error, there is a certain

probability that the value is true, and a certain probability that the real value is

nearby the theoretical value. The real values are sprinkled around the theoretical

value, following a certain error model. To model this, I plan to use probability density

functions which help us describe how far the real values are from the theoretical values,

and how they are distributed.

Host A is located somewhere around the point where it thinks it is. In Figure 7.1,

the location of host A is somewhere in the gray patch labeled A. The ideal location is

at the center of the patch. The darker the color, the higher the probability for A to

be there. The probability decreases (uniformly in all directions) as we look further

away from the ideal location. The same type of error affects host B, depicted to the

right of A. The problem reduces to what are the chances that hosts A and B are

“around there”, with errors controlled by (1) a distribution model (in Figure 7.1 both

hosts’ locations are shown as governed by a Gaussian probability density function)

(2) a mean equal to the ideal value advertised and (3) standard deviations assumed

known. Assuming a model where the distance between the hosts compared to the

communication range decides whether the hosts can communicate or not, the new

question is “what is the probability that the distance between A and B is shorter than

the communication range r?”

A B

Figure 7.1: Both A’s and B’s locations can be affected by errors.

Associating a probability with each projected link leads to a probability of delivery

along each computed route. The participants above can define their comfort threshold

and decide when to risk sending the message and when not to.

145

The size of a window of communication opportunity can also be affected by the motion

profiles and location estimation errors. While throughout the document I silently

assumed that a window is comfortably large (or transfers are negligibly short), this

is also an assumption to be taken into account. The size does matter. This has to be

taken into account in an effort to address scenarios closer to what real life throws at

us.

Disconnected Coordination. The ripple effect of introducing the probabilities in

the routing layer propagates into the coordination layer. A probability-based spatio-

temporal coordination model is the next natural step. Tuple delivery probability,

the success chance of a coordination primitive and, more importantly, clearly defined

semantics for the situations where a link is lost against the favorable odds. Recovery

from link failure is an issue that can and has to be addressed at the coordination

layer.

Service Oriented Computing. The uncertainty from the layers below definitely

influences all layers above, including the SOC layer. At this level, the SOC archi-

tecture could provide the applications with APIs that expose the probabilities in

discussion and provide the application developers with the possibility to define a

minimum comfort level (communication probability threshold).

Regarding the follow-me sessions, unexplored directions include the study of software

composition. The service could be formed of parts originating on different hosts or

may even be built of other stand-alone services. The migration and integration of

such parts are part of my future research plans.

Also related to follow-me sessions, I intend to research the possibility of expanding

the mechanisms that can be employed during a FMS. For example, in Figure 7.2,

two new types of interactions are depicted, neither of them currently covered by the

researched presented.

When the client (the round circle at the bottom traveling left to right) is about to

disconnect from H1, the options currently available are take back, temporary discon-

nect or context-sensitive binding (to H2), while the client passes through location b.

The new feature would allow H1 to continue processing the client’s job while using

H2 as an intermediary for (disconnected routing). Obviously, the link between the

146

H4 H8

H1

H1

H1H2

a cb d e

H3 H9

f

Figure 7.2: Extending the FMS.

client and the server’s host could expand more than only one intermediary host. An-

other part of my future research will involve the scenario depicted on the righthand

side part of the same Figure 7.2. The service could follow a loop including multiple

volunteer hosts (from H4 to H8) with no connection to the client’s machine. This

is currently not possible, as the client holds a close control over the FMS, without

allowing it to “go away”.

147

Chapter 8

Conclusions

This dissertation takes the first steps in studying the spatio-temporal service provision

in mobile ad hoc networks. Addressing issues from routing protocols in wireless ad

hoc networks through coordination models and service-oriented computing specific

challenges, I believe this work provides a glimpse of a compelling new information

dissemination paradigm, coordination mechanism, and anytimme/anywhere service

provision. It also helps to lay a solid foundation for future research. I believe this

work will lead to more interesting and fruitful explorations in the spatio-temporal

dimensions of the interactions in mobile ad hoc networks.

148

References

[1] http://wiki.uni.lu/secan-lab/secan-lab.html. Web Page, 2005.

[2] http://www.checkpointing.org/. Web Page, 2005.

[3] Anurag Acharya, M. Ranganathan, and Joel Saltz. Sumatra: A Language for
Resource-aware Mobile Programs. In J. Vitek and C. Tschudin, editors, Mobile
Object Systems: Towards the Programmable Internet, volume 1222, pages 111–
130. Springer-Verlag: Heidelberg, Germany, 1997.

[4] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. Scheduling and simulation:
How to upgrade distributed systems. In Proceedings of the Ninth Workshop on
Hot Topic in Operating Systems, May 2003.

[5] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts,
Architectures and Applications. Springer Verlag, 2004.

[6] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. Daml-s: Web
service description for the semantic web. In Proceedings of the 1st International
Semantic WebConference, 2002.

[7] Farhad Arbab. The iwim model for coordination of concurrent activities. In
Proceedings of the First International Conference on Coordination Models, Lan-
guages and Applications, number 1061 in Lecture Notes in Computer Science,
pages 34–56. Springer-Verlag, 1996.

[8] Joachim Baumann, Fritz Hohl, Nikolaos Radouniklis, Kurt Rothermel, and
Markus Strasser. Communication concepts for mobile agent systems. In MA
’97: Proceedings of the First International Workshop on Mobile Agents, pages
123–135. Springer-Verlag, 1997.

[9] Joachim Baumann, Fritz Hohl, and Kurt Rothermel. Mole - concepts of a
mobile agent system. In Proceedings of the 2nd ECOOP Workshop on Mobile
Object Systems, 1997.

[10] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, May 2001.

149

[11] Premysl Brada. Component change and verification in sofa. In Proceedings of
SOFSEM 1999, number 1725 in LNCS. Springer Verlag, 1999.

[12] Maciej Brzezniak and Norbert Meyer. Evaluation of execution time of mathe-
matical library functions based on historical performance information. In Pro-
ceedings of 5th International Conference on Parallel Processing and Applied
Mathematics, LNCS, pages 161–168. Springer Verlag, 2004.

[13] Matthew Burnside, Dwaine Clarke, Todd Mills, Srinivas Devadas, and Ronald
Rivest. Proxy-based security protocols in networked mobile devices. In Pro-
ceedings of Selected Areas in Cryptography, 2002.

[14] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. The impact of the
coordination model in the design of mobile agent applications. In Proceedings of
the 22nd International Computer Software and Application Conference, pages
436–442, 1998.

[15] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. MARS: A pro-
grammable coordination architecture for mobile agents. IEEE Internet Com-
puting, 4(4):26–35, 2000.

[16] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of
Software Science and Computation Structures: First International Conference,
FOSSACS ’98. Springer-Verlag, Berlin Germany, 1998.

[17] C. Chiang, H. Wu, W. Liu, and M. Gerla. Routing in clustered multihop, mobile
wireless networks. In IEEE Singapore International Conference on Networks,
pages 197–211, 1997.

[18] Paolo Ciancarini and Davide Rossi. Jada - coordination and communication
for java agents. In Proceedings of the Second International Workshop on Mobile
Object Systems, number 1222 in Lecture Notes in Computer Science, pages
213–226. Springer-Verlag, 1997.

[19] Mark Claypool and David Finkel. Transparent process migration for distributed
applications in a Beowulf cluster. In Proceedings of the International Networking
Conference, July 2002.

[20] J. Cohen and S. Aggarwal. General event notification architec-
ture. http://www.globecom.net/ietf/draft/draft-cohen-gena-p-base-01.html,
July 1998.

[21] Jonathan Cook and Jeffrey Dage. Highly reliable upgrading of components.
In Proceedings of the 1999 International Conference on Software Engineering,
pages 203–212, 1999.

150

[22] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI event-
based infrastructure and its application to the development of the opss wfms.
IEEE Transactions on Software Enggineering, 27(9):827–850, 2001.

[23] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph, and
Randy H. Katz. An architecture for a secure service discovery service. In Mobile
Computing and Networking, pages 24–35, 1999.

[24] Markus Dahm. Byte code engineering with the bcel api. Technical Report
B-17-98, Freie Universitat Berlin, Institut fur Informatik, 2001.

[25] N. Davies, S. Wade, A. Friday, and G. Blair. Limbo: A Tuple Space Based Plat-
form for Adaptive Mobile Applications. In Proceedings of the International Con-
ference on Open Distributed Processing/Distributed Platforms (ICODP/ICDP
’97), pages 291–302, Toronto, Canada, May 1997.

[26] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas,
and Tatu Ylonen. Simple public key certificates. Internet Draft
http://world.std.com/cme/spki.txt, 1999.

[27] Robert Engelmore and Tony Morgan. Blackboard systems. Addison-Wesley
Publishing Company, 1998.

[28] Pasi Eronen, Christian Gehrman, and Pekka Nikander. Securing ad hoc jini
services. In NordSec2000, 2000.

[29] Pasi Eronen, Johannes Lehtinen, Jukka Zitting, and Pekka Nikander. Extending
jini with decentralized trust management. In The Third IEEE Conference on
Open Architectures and Network Programming (OPENARCH), 2000.

[30] Pasi Eronen and Pekka Nikander. Decentralized jini security. In Network and
Distributed System Security, 2001.

[31] Meik Felser, Michael Golm, Christian Wawersich, and Jrgen Kleinoder. Ex-
ecution time limitation of interrupt handlers in a java operating system. In
Proceedings of 10th ACM SIGOPS European Workshop, 2002.

[32] Chien Liang Fok, Gruia-Catalin Roman, and Greg Hackmann. A lightweight
coordination middleware for mobile computing. In Proceedings of the 6th In-
ternational Conference on Coordination Models and Languages, volume 2949 of
Lecture Notes in Computer Science, pages 135–151. Springer Verlag, 2004.

[33] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Rapid develop-
ment and flexible deployment of adaptive wireless sensor network applications.
In Proceedings of the 24th International Conference on Distributed Computing
Systems (ICDCS’05), pages 653–662, 2005.

151

[34] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Software support
for application development in wireless sensor network. In Mobile Middleware,
chapter 7H. CRC Press, 2005.

[35] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding Code
Mobility. IEEE Transactions on Software Engineering, 24(5):342–361, 1998.

[36] L. G.DeMichiel, L. U. Yalcinalp, and S. Krishnan. Enterprise java beans spec-
ification. Sun Microsystems, 2000.

[37] David Gerlenter. Generative communication in linda. ACM Computing Surveys,
7:80–112, January 1985.

[38] Christopher Gill, Yamuna Krishnamurthy, Douglas Schmidt, Irfan Pyarali,
Louis Mgeta, Yuanfang Zhang, and Stephen Torri. Enhancing adaptivity via
standard dynamic scheduling middleware (to appear). Journal of the Brazilian
Computer Society, 2005.

[39] Silvia Giordano, Ivan Stojmenovic, and Ljubica Blazevic. Position based routing
algorithms for ad hoc networks: a taxonomy. citeseer.ist.psu.edu/496653.html,
July 2001.

[40] Y. Goland, T. Cai, P. Leach, and Y. Gu. Simple service discovery protocol.
http://www.upnp.org/download/draft cai ssdp v1 03.txt, April 1998.

[41] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright. Sim-
ple service discovery protocol/1.0: Operating without an arbiter.
http://www.upnp.org/download/draft cai ssdp v1 03.txt, 2001.

[42] Li Gong. A secure identity-based capability system. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 56–63, 1989.

[43] R. S. Gray. Agent Tcl: A flexible and secure mobile-agent system. In Fourth
Annual Tcl/Tk Workshop (TCL 96), pages 9–23, 1996.

[44] Matthias Grossglauser and David N. C. Tse. Mobility increases the capacity of
ad-hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4):477–
486, August 2002.

[45] E. Guttmann, C. Perkins, J. Veizades, and M. Day. Service location protocol.
IETF Internet Draft, RFC 2608, 1999.

[46] Zygmunt J. Haas, Marc R. Pearlman, and Prince Samar. The zone routing
protocol for ad hoc networks. IETF Internet Draft, July 2002.

152

[47] Radu Handorean, Chris Gill, and Gruia-Catalin Roman. Accommodating tran-
sient connectivity in ad hoc and mobile settings. In Alois Ferscha and Friede-
mann Mattern, editors, Proceedings of the Second International Conference on
Pervasive Computing (Pervasive 04), number 3001 in Lecture Notes in Com-
puter Science, pages 305–322. Springer-Verlag, 2004.

[48] Radu Handorean, Jamie Payton, Christine Julien, and Gruia-Catalin Roman.
Coordination middleware supporting rapid deployment of ad hoc mobile sys-
tems. In Proceedings of the ICDCS Workshop on Mobile Computing Middleware,
pages 362–368. IEEE Computer Society, 2003.

[49] Radu Handorean and Gruia-Catalin Roman. Service provision in ad hoc net-
works. In Proceedings of 5th International Conference on Coordination Models
(COORDINATION 2002), number 2315 in LNCS, pages 207–219. Springer-
Verlag, 2002.

[50] Radu Handorean and Gruia-Catalin Roman. Secure service provision in ad
hoc networks. In Proceedings of The First International Conference on Service
Oriented Computing (ICSOC 03), number 2910 in Lecture Notes in Computer
Science, pages 367–383. Springer-Verlag, 2003.

[51] Radu Handorean and Gruia-Catalin Roman. Secure sharing of tuple spaces in
ad hoc settings. In Riccardo Focardi and Gianluigi Zavattaro, editors, Electronic
Notes in Theoretical Computer Science, volume 85. Elsevier, 2003.

[52] Radu Handorean, Rohan Sen, Greg Hackmann, and Gruia-Catalin Roman.
Automated code management for service oriented computing in ad hoc net-
works. Technical Report WU-CSE-2004-17, Washington University in Saint
Louis, 2004.

[53] Radu Handorean, Rohan Sen, Gregory Hackmann, and Gruia-Catalin Ro-
man. Context aware session management for services in ad hoc networks. In
JD Cantarella, editor, Proceedings of the 2005 IEEE International Conference
on Services Computing, volume I, pages 113–120. IEEE Computer Society, July
2005.

[54] Michael Hicks, Jonathan Moore, and Scott Nettles. Dynamic software updat-
ing. In Proceedings of the ACM SIGPLAN Workshop on Types in Compilation,
September 2000.

[55] I. Horrocks. Daml+oil: A description logic for the semantic web. IEEE Bulletin
of the Technical Committee on Data Engineering, 2002.

[56] Qingfeng Huang, Christine Julien, and Gruia-Catalin Roman. Relying on safe
distance to achieve partitionable group membership in ad hoc networks. IEEE
Transactions on Mobile Computing, 3(2):192–205, 2004.

153

[57] Qingfeng Huang, Chenyang Lu, and Gruia-Catalin Roman. Mobicast: Just-in-
time multicast for sensor networks under spatiotemporal constraints. In Lecture
Notes in Computer Science, number 2634. Springer-Verlag, April 2003.

[58] Jean-Pierre Hubaux, Levente Buttyan, and Srdan Capkun. The quest for secu-
rity in mobile ad hoc networks. In ACM MobiHOC Symposium, 2001.

[59] Tomasz Imielinski and Julio Navas. Gps-based addressing and routing.
http://rfc2009.x42.com/, 1996.

[60] D. Johansen, R. van Renesse, and F. B. Schneider. An introduction to the
TACOMA distributed system–version 1.0. Technical Report 95-23, University
of Tromso, Norway, 1995.

[61] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc
wireless networks. Mobile Computing, 353, 1996.

[62] G. Karjoth, D.B. Lange, and M. Oshima. Mobile agents and security. Lecture
Notes in Computer Science, 1419:188–205, 1998.

[63] Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for
wireless networks. In Mobile Computing and Networking, pages 243–254, 2000.

[64] Ralph Keller and Urs Hölzle. Binary component adaptation. Lecture Notes in
Computer Science, 1445:307–324, 1998.

[65] Ralph Keller and Urs Hölzle. Binary component adaptation. Lecture Notes in
Computer Science, 1445:307–324, 1998.

[66] Young-Bae Ko and Nitin H. Vaidya. Geocasting in mobile ad hoc networks:
Location-based multicast algorithms. 1999.

[67] Butler Lampson. Protection. In 5th Princeton Conference on Information
Sciences and Systems, volume ACM Operating Systems Rev. 8, pages 18–24,
1971.

[68] Vincent Lenders, Polly Huang, and Men Muheim. Hybrid Jini for limited de-
vices. In Proceeding of the IEEE International Conference on Wireless LANs
and Home Networks, 2001.

[69] Qun Li and Daniela Rus. Communication in disconnected ad hoc networks
using message relay. Parallel and Distributed Computing, 63:75–86, January
2003.

[70] Theophilos Limniotes, Costas Mourlas, and George A. Papadopoulos. Event-
driven coordination of real-time components. In Proceedings of the 22nd In-
ternational Conference on Distributed Computing Systems Workshops. IEEE
Computer Society, 2002.

154

[71] Bjorn Lisper. Fully automatic, parametric worst-case execution time analysis.
In Proceedings of the 3rd International Workshop on Worst-Case Execution
Time Analysis, pages 77–80, 2003.

[72] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Tuples on the air: a
middleware for context-aware computing in dynamic networks. In Proceedings of
the 2nd International Workshop on Mobile Computing Middleware at the 23rd
International Conference on Distributed Computing Systems (ICDCS), pages
342–347, 2003.

[73] Martin Mauve, Jorg Widmer, and Hannes Hartenstein. A survey on position-
based routing in mobile ad hoc networks. IEEE Network Magazine, 15(6):30–39,
November 2001.

[74] Vladimir Mencl, Zuzana Petrova, and Frantisek Platil. Update description
language, June 1999.

[75] Microsoft-Corporation. Universal plug and play device architecture.
http://www.upnp.org/download/UPnPDA10 20000613.htm, June 2000.

[76] SUN Microsystems. Javaspace specification.

[77] S. Miller. The autoip publisher page. http://www.autoip.net, October 2003.

[78] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, parts i and ii. Information and Computation, 100(1):1–40, 1992.

[79] Gianluca Moro and Antonio Natali. On the event coordination in multi-
component systems. In Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering, pages 315–322. ACM Press,
2002.

[80] A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime: A middleware for physical
and logical mobility. In Proc. of the 21st Int’l Conf. on Distributed Computing
Systems, pages 524–533, April 2001.

[81] Shree Murthy and J. J. Garcia-Luna-Aceves. An efficient routing protocol for
wireless networks. Mobile Networks and Applications, 1(2):183–197, 1996.

[82] Julio C. Navas and Tomasz Imielinski. GeoCast – geographic addressing and
routing. In Mobile Computing and Networking, pages 66–76, 1997.

[83] Review Draft of the 1.2 revision to the Real-Time CORBA Specification.
http://www.omg.org/docs/ptc/01-08-34.pdf.

155

[84] Andrea Omicini and Franco Zambonelli. The TuCSoN coordination model for
mobile information agents. In Proceedings of the 1st Workshop on Innovative
Internet Information Systems, Pisa, Italy, June 1998.

[85] General Magic Odyssey Page. http://www.genmagic.com/agents/odyssey.html.

[86] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of
web services capabilities. In Proceedings of the 1st International Semantic Web
Conference, 2002.

[87] George Papadopoulos. Models and technologies for the coordination of internet
agents: A survey, 2000.

[88] George A. Papadopoulos and Farhad Arbab. Coordination models and lan-
guages. In 761, page 55. Centrum voor Wiskunde en Informatica (CWI), 31
1998.

[89] Vincent D. Park and M. Scott Corson. A highly adaptive distributed routing
algorithm for mobile wireless networks. In Proceedings of INFOCOM’97, pages
1405–1413, 1997.

[90] P.Domel, A.Lingnau, and O.Drobnik. Mobile agent interaction in heterogeneous
environments. In Springer Verlag, editor, Proceedings of the 1st International
Workshop on Mobile Agents, number 1219, pages 136–148, Stuttgart, Germany,
April 1997.

[91] Holger Peine and Torsten Stolpmann. The architecture of the Ara platform for
mobile agents. In Radu Popescu-Zeletin and Kurt Rothermel, editors, First In-
ternational Workshop on Mobile Agents MA’97, volume 1219 of Lecture Notes
in Computer Science, pages 50–61, Berlin, Germany, April 1997. Springer Ver-
lag.

[92] Charles Perkins. Ad-hoc on-demand distance vector routing. In MILCOM ’97
panel on Ad Hoc Networks, 1997.

[93] Charles Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. In ACM SIGCOMM’94
Conference on Communications Architectures, Protocols and Applications,
1994.

[94] G. P. Picco. µCode: A lightweight and flexible mobile code toolkit. In Pro-
ceedings of the 2nd International Workshop on Mobile Agents, volume 1477 of
LNCS, pages 160–171, September 1998.

[95] Peter Puschner and Alexander Vrchoticky. An assessment of task execution time
analysis. In Proceedings of the 10th IFAC Workshop on Distributed Computer
Control Systems, pages 41–45, 1991.

156

[96] Marija Rakic and Nenad Medvidovic. Increasing confidence in off-the-shelf
components: A software connector-based approach. In Proceedings of the 2001
Symposium on Software Reusability, pages 11–18, 2001.

[97] Ronald L. Rivest and Bulter Lampson. Sdsi - a simple dis-
tributed security infrastructure. Presented at CRYPTO’96 Rumpsession
(http://citeseer.nj.nec.com/ rivest96sdsi.html).

[98] Gruia-Catalin Roman and H. Conrad Cunningham. Mixed programming
metaphors in a shared dataspace model of concurrency. IEEE Transactions
on Software Engineering, 16(12):1361–1373, 1990.

[99] Manuel Roman and Roy Campbell. Gaia: Enabling active spaces. In Proceedings
of the 9th ACM SIGOPS European Workshop, pages 229–234, 2000.

[100] Salutation-Consortium. The salutation consortium homepage.
http://www.salutation.org, October 2003.

[101] Tomas Sander and Christian F. Tschudin. Protecting mobile agents against
malicious hosts. Lecture Notes in Computer Science, 1419:44–60, 1998.

[102] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture, volume 2, chapter 2, pages 109–141. John Wiley
and Sons Ltd., 2000.

[103] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture, volume 2, chapter 2, pages 47–75. John Wiley
and Sons Ltd., 2000.

[104] Rohan Sen, Radu Handorean, Gregory Hackmann, and Gruia-Catalin Roman.
An architecture supporting run-time upgrade of proxy-based services in ad hoc
networks. In Hamid R. Arabnia and Laurence T. Yang, editors, Proceedings of
Pervasive Computing Conference, pages 689–696. CSREA Press, 2004.

[105] Rohan Sen, Radu Handorean, Gruia-Catalin Roman, and Chris Gill. Service-
Oriented Software System Engineering: Challenges and Practices, chapter Ser-
vice Oriented Computing Imperatives in Ad Hoc Wireless Settings, pages 247–
269. Idea Group, 2005.

[106] J. Srinivas. Open network computing remote procedure call protocol specifica-
tion. http://www.ietf.org/rfc/rfc1831.txt, August 1995.

[107] Ivan Stojmenovic. Position-rased routing in ad hoc netowkrs. IEEE Commu-
nications Magazine, 2002 2002.

[108] Sun-Microsystems. Java remote method invocation page. http://java.sun.com/
products/jdk/rmi/, October 2003.

157

[109] Clemens Szyperski. Component Software, Beyond Object-Oriented Program-
ming. ACM Press - Addison-Wesley, 1997.

[110] Clemens Szyperski. Foundations of Component-based Systems, chapter Com-
ponent Software and the Way Ahead, pages 1–20. Cambridge University Pres,
2000.

[111] Chai-Keong Toh. A novel distributed routing protocol to support ad-hoc mobile
computing. In Fifteenth Annual International Phoenix Conference on Comput-
ers and Communications, pages 480–486, 1996.

[112] UDDI-Organization. Uddi technical white paper. http://www.uddi.org/pubs/
Iru UDDI Technical White Paper.pdf, 2000.

[113] A. Vahdat and D. Becker. Epidemic routing for partially connected ad hoc
networks. Technical Report CS-200006, Duke University, 2000.

[114] Marco Vettorello, Christian Bettstetter, and Christian Schwingenschlgl. Some
notes on security in the service location protocol version 2 (slpv2). In Proc.
Workshop on Ad hoc Communications, in conjunction with 7th European Con-
ference on Computer Supported Cooperative Work (ECSCW’01), 2001.

[115] W3C-Metadata-Activity. Resource description framework schema specification
1.0. http://www.w3.org/TR/2000/CR-rdf-schema-20000327/, March 2000.

[116] W3C-Semantic-Web-Activity. Worldwide web consortium page on resource de-
scription framework. http://www.w3.org/RDF/, October 2003.

[117] W3C-XML-Activity-On-XML-Protocols. W3c recommendation: Web services
description language 1.1. http://www.w3.org/TR/wsdl, October 2003.

[118] Jim Waldo. The Jini Architecture for Network-Centric Computing. Communi-
cations of the ACM, 42(7):76–82, 1999.

[119] Palm Source Website. http://www.palmsource.com/palmos/, January 2005.

[120] P. Wyckoff. Tspaces. IBM System Journal, 37(3):454–474, 1998.

[121] XML-Core-Working-Group. W3c recommendation: Xml version 1.0 second
edition. http://www.w3.org/TR/2000/REC-xml-20001006, October 2000.

[122] XML-Protocol-Working-Group. W3c recommendation: Soap version 1.2 parts
0-2. http://www.w3.org/TR/SOAP/, June 2003.

[123] Yuanfang Zhang, Bryan Thrall, Stephen Torri, Christopher Gil, and Chenyang
Lu. A real-time performance comparison of distributable threads and event
channels. In Proceedings of the 11th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 497–506, 2005.

158

[124] Wenrui Zhao and Mostafa H. Amma. Message ferrying: Proactive routing
in highly-partitioned wireless ad hoc networks. In Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems, 2003.

159

Vita

Radu Handorean

Date of Birth 19 December 1975

Place of Birth Brasov, Romania

Degrees B.Sc. Politehnica University, Bucharest, Romania, June 1999

M.Sc. Washington University, St. Louis, USA, May 2003

D.Sc. Washington University St. Louis, USA, December 2005

December 2005

Short Title: SOC in AHN Handorean, D.Sc. 2005

	Context Aware Service Oriented Computing in Mobile Ad Hoc Networks
	Recommended Citation
	Context Aware Service Oriented Computing in Mobile Ad Hoc Networks

	tmp.1469562486.pdf.IQVRM

	Abstract: Abstract: These days we witness a major shift towards small, mobile devices,

capable of wireless communication. Their communication capabilities

enable them to form mobile ad hoc networks and share resources and

capabilities.

Service Oriented Computing (SOC) is a new emerging paradigm for

distributed computing that has evolved from object-oriented and

component-oriented computing to enable applications distributed

within and across organizational boundaries. Services are autonomous

computational elements that can be described, published, discovered,

and orchestrated for the purpose of developing applications.

The application of the SOC model to mobile devices provides a

loosely coupled model for distributed processing in a resource-poor

and highly dynamic environment. Cooperation in a mobile ad hoc

environment depends on the fundamental capability of hosts to

communicate with each other. Peer-to-peer interactions among hosts

within communication range allow such interactions but limit the

scope of interactions to a local region. Routing algorithms for

mobile ad hoc networks extend the scope of interactions to cover all

hosts transitively connected over multi-hop routes. Additional

contextual information, e.g., knowledge about the movement of hosts

in physical space, can help extend the boundaries of interactions

beyond the limits of an island of connectivity.

To help separate concerns specific to different layers, a

coordination model between the routing layer and the SOC layer

provides abstractions that mask the details characteristic to the

network layer from the distributed computing semantics above.

This thesis explores some of the opportunities and challenges raised

by applying the SOC paradigm to mobile computing in ad hoc networks.

It investigates the implications of disconnections on service

advertising and discovery mechanisms. It addresses issues related to

code migration in addition to physical host movement. It also

investigates some of the security concerns in ad hoc networking

service provision. It presents a novel routing algorithm for mobile

ad hoc networks and a novel coordination model that addresses space

and time explicitly.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email: Corresponding Author: radu.handorean@wustl.edu
	Date: December 7, 2005
	Author: Authors: Radu Handorean
	Title: Context Aware Service Oriented Computing in Mobile Ad Hoc Networks
	ReportNumber: 2005-58
	DepartmentName: Department of Computer Science & Engineering

