
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2005-56 

2005-11-01 

Agimone: Midddleware Support for Seamless Integration of Agimone: Midddleware Support for Seamless Integration of 

Sensor and IP Networks Sensor and IP Networks 

Gregory Hackmann, Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu 

The scope of wireless sensor network (WSN) applications has traditionally been restricted by 

physical sensor coverage and limited computational power. Meanwhile, IP networks like the 

Internet offer tremendous connectivity and computing resources. This paper presents Agimone, 

a middleware layer that integrates sensor and IP networks as a uniform platform for flexible 

application deployment. This layer allows applications to be deployed on the WSN in the form of 

mobile agents which can autonomously discover and migrate to other WSNs, using a common 

IP backbone as a bridge. It facilitates data sharing between WSNs and the IP network through 

remote tuple... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

Recommended Citation Recommended Citation 
Hackmann, Gregory; Fok, Chien-Liang; Roman, Gruia-Catalin; and Lu, Chenyang, "Agimone: Midddleware 
Support for Seamless Integration of Sensor and IP Networks" Report Number: WUCSE-2005-56 (2005). All 
Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/972 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/972?utm_source=openscholarship.wustl.edu%2Fcse_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/972 

Agimone: Midddleware Support for Seamless Integration of Sensor and IP Agimone: Midddleware Support for Seamless Integration of Sensor and IP 
Networks Networks 

Gregory Hackmann, Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu 

Complete Abstract: Complete Abstract: 

The scope of wireless sensor network (WSN) applications has traditionally been restricted by physical 
sensor coverage and limited computational power. Meanwhile, IP networks like the Internet offer 
tremendous connectivity and computing resources. This paper presents Agimone, a middleware layer 
that integrates sensor and IP networks as a uniform platform for flexible application deployment. This 
layer allows applications to be deployed on the WSN in the form of mobile agents which can 
autonomously discover and migrate to other WSNs, using a common IP backbone as a bridge. It 
facilitates data sharing between WSNs and the IP network through remote tuple space operations, 
allowing sensors to easily defer expensive computations to more-powerful devices. We demonstrate the 
expressiveness of Agimone’s programming model by examining a prototype cargo-tracking application 
that has been deployed using this system. We also provide an empirical evaluation of Agimone using a 
series of benchmarks deployed on two WSNs consisting of MICA2 sensor nodes connected by an IP 
network. These benchmarks show that inter-network tuple space operations take 10ms, and that one-way 
agent migrations between two different WSNs take approximately 83ms. 

https://openscholarship.wustl.edu/cse_research/972?utm_source=openscholarship.wustl.edu%2Fcse_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/972?utm_source=openscholarship.wustl.edu%2Fcse_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2005-56

Agimone: Middleware Support for Seamless Integration of Sensor and IP
Networks

Authors: Gregory Hackmann, Chien-Liang Fok, Gruia-Catalin Roman, Chenyang Lu

Corresponding Author: ghackmann@wustl.edu

Web Page: http://mobilab.wustl.edu/projects/agilla/index.html

Abstract: The scope of wireless sensor network (WSN) applications has
traditionally been restricted by physical sensor coverage and
limited computational power. Meanwhile, IP networks like the
Internet offer tremendous connectivity and computing resources. This paper presents Agimone, a middleware
layer that integrates sensor and IP networks as a uniform platform for flexible application deployment. This layer
allows applications to be deployed on the WSN in the form of mobile agents which can autonomously discover
and migrate to other WSNs, using a common IP backbone as a bridge. It
facilitates data sharing between WSNs and the IP network through remote tuple space operations, allowing
sensors to easily defer expensive computations to more-powerful devices.
We demonstrate the expressiveness of Agimone's programming model by examining a prototype cargo-tracking
application that has been deployed using this system. We also provide an empirical evaluation of Agimone using
a series of benchmarks deployed on two WSNs consisting of MICA2 sensor nodes connected by an IP network.
These benchmarks show that inter-network tuple space operations take 10ms,
and that one-way agent migrations between two different WSNs take approximately 83ms.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



1

Agimone: Middleware Support for Seamless
Integration of Sensor and IP Networks

Gregory Hackmann, Chien-Liang Fok, Gruia-Catalin Roman and Chenyang Lu
Department of Computer Science and Engineering

Washington University in St. Louis
Campus Box 1045, One Brookings Drive

St. Louis, MO 63130-4899, USA
{ghackmann, liang, roman, lu}@wustl.edu

Abstract

The scope of wireless sensor network (WSN) applications has traditionally been restricted by physical sensor coverage and
limited computational power. Meanwhile, IP networks like the Internet offer tremendous connectivity and computing resources.
This paper presents Agimone, a middleware layer that integrates sensor and IP networks as a uniform platform for flexible
application deployment. This layer allows applications to be deployed on the WSN in the form of mobile agents which can
autonomously discover and migrate to other WSNs, using a common IP backbone as a bridge. It facilitates data sharing between
WSNs and the IP network through remote tuple space operations, allowing sensors to easily defer expensive computations to
more-powerful devices. We demonstrate the expressiveness of Agimone’s programming model by examining a prototype cargo-
tracking application that has been deployed using this system. We also provide an empirical evaluation of Agimone using a
series of benchmarks deployed on two WSNs consisting of MICA2 sensor nodes connected by an IP network. These benchmarks
show that inter-network tuple space operations take 10ms, and that one-way agent migrations between two different WSNs take
approximately 83ms.

Keywords: Agimone, Agilla, Limone, integration, WSN, middleware, mobile agents

Technical Areas: Wireless Sensor Networks, Mobile Agent Middleware

I. I NTRODUCTION

Wireless sensor networks (WSNs) consist of tiny sensors embedded within the environment. Example applications include

habitat monitoring, microclimate research, surveillance, medical care, structural monitoring, and cargo tracking [10], [25],

[16], [19], [15]. Many of these applications require that sensor nodes be deeply embedded in areas where they are difficult

to physically access, such as scattered in forests or embedded in the sides of large cargo containers. In such a scenario, it is

impractical to physically gather the nodes in order to collect data or deploy new applications.

This necessitates WSN systems where the nodes operate for very long periods of time without physical access. Data collection

and application deployment is done over wireless networks. WSN systems must also be flexible enough to adapt to changing

user requirements without completely reprogramming the sensors. However, typical WSN platforms often lack sufficient support

for flexible application deployment. For example, the TinyOS [17] operating system hard-wires software components. Once

deployed, application behavior can only be marginally tweaked by changing specific parameters defined prior to deployment.

To complicate matters, the power consumption of these sensors must be very low so that they can be deployed for months

or even years without battery replacement. This requires that memory and other computational resources be scarce, and radio

communication range and reliability be sacrificed [31]. These limitations impose severe restrictions on the complexity and

scope of applications that can be realistically deployed on WSN systems.

Many of these restrictions can be eased by logically combining multiple, physically disconnected WSNs using a common

IP network, such as the Internet. For example, WSNs can be used for cargo tracking and monitoring by attaching sensors



2

to individual cargo containers. However, these containers are frequently too far apart to be covered by a single WSN, since

they are housed in separate warehouses and eventually relocated by boat or rail. Thus, the sensors form multiple independent

WSNs which are unable to directly communicate with each other. The utility of the cargo tracking application would greatly

increase if the user could issue a query — such as searching the containers for a specific item — simultaneously to all of

these containers, even though their WSNs are not physically connected.

PCs with attached WSN gateways, or embedded devices like Stargate [1], can act as gateways between the IP network

and their respective WSNs. By coordinating these disjoint networks to act as a single logical network, sophisticated WSN

applications can be developed. Such applications are no longer restricted in scope to sensors within their own WSN: hundreds

or thousands of nodes located in clusters around the world can collaborate autonomously on a single task.

However, communication and coordination between these networks is a complex undertaking, since WSNs are constantly

being formed and reshaped as the application evolves. Nodes on the WSN must be able to determine the availability of other

WSNs at run-time. Further, agents should be able to engage in transactions over the IP network without being affected by

temporal disconnections and other short-term communication failures. For these WSN applications to be useful to clients on

the IP network, application developers must be able to channel data between devices on the IP network and nodes in the WSNs

in a simple and straightforward manner.

Middleware aims to meet these needs, providing high-level programming constructs that greatly simplify WSN application

development and increase utility. To address the limitations of existing WSN middleware systems, we have developed a

middleware called Agilla [12] for deployment on wireless sensors like the MICA2 platform. Limone [11], a lightweight

middleware for communication and coordination over IP networks, provides a similar programming model and benefits to

devices ranging from PDAs to desktop computers. Both middleware use a mobile agent-based paradigm, where programs are

composed of agents that can migrate across nodes.

Though these middleware offer similar programming models, they partition the application into two sets of distinct, incom-

patible APIs and data structures. This discrepancy is not limited to these two particular middleware platforms. WSN operating

systems like TinyOS offer such different APIs and capabilities from general-purpose operating systems like Windows and

Linux, that the need for two incompatible development platforms is inevitable. Traditionally, developers have been forced

to manually develop a translation layer for each application that crossed middleware boundaries, a tedious and error-prone

procedure.

The main contribution of this paper is providing a general-purpose model which WSN devices can use to exploit the vast

computational resources — including other WSNs — found in IP networks such as the Internet. We have developed Agimone,

a thin and reusable integration layer between the Agilla and Limone middleware, which facilitates agent interactions that cross

middleware boundaries. In Section II, we discuss the shortcomings of the current state-of-the-art, and explain the motivation

behind creating a general-purpose integration layer. Section III provides a brief overview of the programming models used

by Agilla and Limone. Section IV describes the architecture of our integration layer. Section V presents a cargo tracking

application that highlights the capabilities and expressiveness of Agimone. A performance evaluation is provided in Section

VI. We discuss related middleware systems in Section VII. Finally, we conclude in Section VIII.



3

II. PROBLEM STATEMENT

As the number and size of WSN deployments increase, so does the capacity for sophisticated WSN applications. This

potential remains largely untapped due to the difficulty in distributing and coordinating applications across WSN boundaries.

In this section, we discuss how this potential can be more-easily realized using a middleware system that integrates IP networks

and WSNs.

A. Cargo Tracking: A Motivating Application

Consider the problem of cargo tracking. Cargo tracking is vital for national security and useful for shippers and their

customers. 7 million cargo containers arrive annually into the United States, making it impossible to manually inspect every

container. Instead, each shipping container can be equipped with a sensor, which will form a WSN with the other sensors

and monitor the containers’ contents. These sensors will need to be accessed by many different types of users — such as

customs agent, shipping companies, and customers — who have different and evolving requirements. It is impossible to predict

the needs of all these users ahead-of-time, so simple, inexpensive application re-deployment is paramount. Mobile agents are

invaluable for this scenario. Each authorized user can deploy custom mobile agents to query the sensors on the containers.

These agents can be deployed over-the-air inexpensively, and multiple overlapping applications can be deployed simultaneously

by different parties.

However, complex applications cannot be built using only sensors and their wireless radios. The limited communication range

of individual sensors forces WSN networks to form in physically-localized clusters. In many applications, it is unreasonable

to expect the user to interact individually with each of these clusters. The current state-of-the-art is to logically connect these

WSNs over an IP network.

For example, in the cargo tracking application described above, the nodes will form WSNs in localized clusters. Base stations

in each cluster are connected together using a common IP network. Queries take the form of mobile agents that traverse each

of these clusters. These queries should be able to migrate autonomously between the clusters using the IP network as a bridge.

WSN nodes should also be able to easily share data, such as alert messages, with devices on the IP network.

B. Challenges

These application needs are essential, but at the same time difficult to satisfy. Since the devices that populate these two kinds

of networks have such vastly different capabilities, it is impractical to deploy a uniform software layer across all devices. Today,

this problem is largely tackled by partitioning the network into devices hosted on WSNs and the IP network, with separate

software support platforms for each. Application-specific software is used to pass messages and translate queries between these

two classes of devices.

However, using an application-specific translation layer is unwieldy at best. Writing such a support layer requires pro-

gramming experience with both types of devices. Using an application-specific solution also often involves modifying and

re-deploying this support layer whenever the application’s features or protocols change. This is unacceptable for applications

which have a constantly-evolving set of capabilities, like cargo tracking.



4

Node (1,1)

Tuple SpaceNeighborsNeighbors

Node (2,1)

NeighborsNeighbors

migrate

remote 
access

Tuple Space

Fig. 1. The Agilla Middleware Architecture

Mobile Host 1 Mobile Host 2

migrate
remote 
access

TS

AQ
L

TS

AQ
L

TS

AQ
L

TS

AQ
L

TS

AQ
L

TS

AQ
L

TS

AQ
L

TS

AQ
L

Fig. 2. The Limone Middleware Architecture

In this work, we aim to develop a middleware platform that supports seamless integration of WSNs and IP networks into

a uniform software platform. Our middleware provides several services that facilitate the development of WSN applications

which exploit the IP network as a resource for computation and communication. Mobile agents within a WSN are provided

with a list of all other WSNs attached to the same IP network. Agents can autonomously migrate over the IP network to any

of the WSNs advertised in this list. Finally, we provide a common data space where devices on the IP network and WSNs

can share messages and data. These services offer application developers a straightforward yet powerful programming model

for implementing complex WSN applications, like the cargo tracking given above.

III. B ACKGROUND

This section provides a brief overview of the programming models offered by Agilla and Limone. More details on the

implementation are available in [12] and [11].

A. Agilla

Agilla programs consist of mobile agents that coordinate through tuple spaces. Agilla’s architecture is shown in Figure 1.

Each agent is hosted on a virtual machine with dedicated instruction and data memory. As an agent executes, it may execute

special instructions that allow it to interact with the environment and move across nodes. Multiple agents can coexist on a

single node. Agilla provides agents with local data storage in the form of a heap and operand stack. Agilla agents use a

stack-based architecture and are programmed in a bytecode language based on that of Maté [21], but tailored to the mobile

agent paradigm. Like Maté, most Agilla instructions fit in a single byte. Agilla is available for the Mica2, MicaZ, Tyndall25

nodes and is distributed through TinyOS’ CVS respository [2] within the moduletinyos-1.x/contrib/wustl . See Agilla’s

website [3] for more details.

Agilla’s tuple spaces offer a lightweight shared data space where the datum is a tuple that is accessed via pattern matching.

This allows one agent to insert a tuple containing data (such as a sensor reading) and another to later retrieve it without the

two knowing each other, thus achieving a high level of decoupling. Unlike messages passed over sockets, tuples placed in a

tuple space survive temporal disconnections, which frequently occur due to node mobility or unreliable links.



5

1: pushn mrk // string “mrk”
2: pushcl 15 // integer 15
3: pushc 2 // length of tuple (2 fields)
4: out // out (<15, “mrk”>)

Fig. 3. Agilla out Code Snippet

1: pushn mrk // string “mrk”
2: pusht VALUE // type VALUE(integer)
3: pushc 2 // length of template (2 fields)
4: rd // rd (<VALUE, “mrk” >)

Fig. 4. Agilla rd Code Snippet

Operation Parameters Return Value Description
out tuple none place the tuple in the local tuple space
in template tuple remove a matching tuple from the local tuple space,

or wait until one exists (blocking)
rd template tuple copy a matching tuple from the local tuple space,

or wait until one exists (blocking)
inp template tuple ornull search for a matching tuple in the local tuple space,

remove it if found (non-blocking)
rdp template tuple ornull search for a matching tuple in the local tuple space,

copy it if found (non-blocking)
rout destination, tuple none perform anout operation on the destination node’s tuple space
rinp destination, template tuple ornull perform aninp operation on the destination node’s tuple space
rrdp destination, template tuple ornull perform ardp operation on the destination node’s tuple space

Fig. 5. Agilla Tuple Space Operations

Each sensor in the WSN has a single local tuple space. Tuple spaces offer many of the same programming benefits as shared

data systems, but with far less message-passing required at run-time. Data is stored in the form of fields; tuples containing

one or more fields can be added to the tuple space using theout primitive. In Agilla, tuple fields contain 16 bits of data, using

a handful of well-known data types (integer, string, sensor reading, etc.).<15, “mrk”> is an example of a such a tuple; it

contains the integer 15 in the first field, and the string “mrk” in the second. Figure 3 gives a snippet of Agilla code that places

this tuple in the sensor’s tuple space. (Note that, due to Agilla’s stack-based architecture, the fields are pushed onto the stack

in reverse order.)

rd andin operations respectively remove and copy tuples from a tuple space. These operations are parameterized by patterns

that specify forms of tuples that match, ortemplates. In Agilla, templates take the same form as tuples. However, agents may

fill a template’s field with a type (e.g.,VALUE or STRING) rather than a specific value. This indicates that any value is

acceptable, as long as the field’s data type is correct.<VALUE, “mrk”> is an example of a template that matches the tuple

<15, “mrk”>. Agilla compares fields pair-wise according to the order that they are added to the tuple. Thus, the template

<“mrk”, VALUE> does not match the tuple<15, “mrk”>. The code snippet in Figure 4 gives an example of ard operation

that copies a tuple matching the template<VALUE, “mrk”> from the sensor’s tuple space.

If a matching tuple is not available whenrd or in are executed, then the operations will block until one is placed in the

tuple space. Since this behavior is not always desirable, Agilla offers agents additional tuple-space primitives which perform

“probing” (i.e., non-blocking) tuple removals and copies. To allow agent interactions that span sensors, Agilla also provides

tuple space operations which manipulate tuple spaces residing on remote sensors. These operations are summarized in Figure

Operation Parameter Description
smove destination strong move
wmove destination weak move
sclone destination strong clone
wclone destination weak clone

Fig. 6. Agilla Agent Migration Operations



6

ETuple tuple = new ETuple();
tuple.addField(new EField(“ID”, 15));
// Field <ID: 15>

tuple.addField(new EField(‘Flag”, “mark”));
// Field <Flag: “mark”>
getTS().out(tuple);
// out(<ID: 15, Flag: “mark”>

Fig. 7. Limoneout Code Snippet

ETemplate template = new ETemplate();
template.addConstraint(new EConstraint(“ID”, Integer.class,

new DefaultConstraintFunction()));
// Match field ID containing any Integer
template.addConstraint(new EConstraint(“Flag”, String.class,

new EquivalencyConstraintFunction(“mark”)));
// Match field flag containig exactly “mark”
ETuple tuple = getTS().rd(template);
// rd a tuple matching the above template

Fig. 8. Limonerd Code Snippet

5. Finally, Agilla offers areactionmechanism, where a piece of code is executed when a specified type of tuple is placed in

the local tuple space.

All tuple space operations occur atomically. It is not possible for an agent to see a partially inserted tuple, or for a single

tuple to be partially removed or removed more than once. Since tuple spaces are local, atomicity is enforced by serializing the

operations. If the operation blocks, its execution is delayed until after the matching tuple arrives in the tuple space. If there are

multiple operations and reactions waiting for the same tuple, all reactions are notified, but the blocked operations are executed

sequentially until all pending operations are executed, or the tuple is removed by anin or inp.

Agilla agents may move or clone onto other hosts in the WSN using eitherweakor strongmigration operations as shown

in Figure 6. Weak migrations include only the agent’s code, so any computations must restart from the beginning on the new

host. Strong migrations include computational state as well as code, so computations can resume after the agent is migrated.

Because Agilla agents run on top of a virtual machine, agents can migrate between devices of different hardware architectures,

provided that the radios are compatible.

B. Limone

Limone provides a similar agent-based programming model using tuple spaces for inter-agent communication. Its architecture

is shown in Figure 2. Limone provides the same primitive local and remote tuple space operations as Agilla, as well as a

reaction mechanism analogous to the one in Agilla. However, each Limone agent has its own dedicated tuple space, whereas

(due to memory limitations) all Agilla agents on a single host share one tuple space. Limone also provides a pluggable device

discovery mechanism, where each agent-specifiedprofile is automatically propagated to other interested agents as new agents

enter or leave the network.

Limone’s tuple contents do not suffer from many of the restrictions imposed their Agilla counterparts. Fields in Limone

tuples are indexed by a user-specified name rather than by numerical order. These fields can contain any Java data type of any

size. An example of a Limone tuple is<ID: 15, Flag: “mark”>; this tuple contains a field named “ID” with the Integer value

15, and another field named “Flag” with the String value “mark”. The code fragment in Figure 7 demonstrates how to place

this tuple in the agent’s tuple space.

Similarly, Limone templates are more flexible than Agilla templates. Limone templates consist of a series ofconstraints.

These constraints describe the names of fields; the types of values they should contain; and aconstraint function. These

functions provide more fine-grained control over pattern matching than is possible in Agilla. For example, the constraint<“ID”,

Integer, GreaterThanConstraint(10)> matches fields named “ID” that contain an Integer greater than 10. Most constraints use



7

IP Network

WSN 1

Limone

Registry

Base

Station

WSN

Gateway

Sensor

WSN 2

Fig. 9. Agimone Network Architecture

WSN Gateway

Agilla
Agent

Limone 
TS

Agilla 
TS

AgimoneAgent

Limone 
TS

AgimoneAgent

Agilla 
TS

IP

Agilla 
TS

Limone 
Registry

WSN Gateway

Agilla
Agent

Agilla 
TS

Agilla
Agent

Agilla 
TS Agilla

Agent

Agilla 
TS

WSN 1 WSN 2

Fig. 10. Agimone System Components

either DefaultConstraintFunction (match any value, as long as the type is correct), or EquivalencyConstraintFunction (match

only if the field contains the specified value). The template<< ID, Integer, DefaultConstraintFunction()>, <Flag, String,

EquivalencyConstraintFunction(“mark”)>> is an example of a template that matches the tuple<ID: 15, Flag: “mark”>. In

Figure 8, we see Limone code that attempts to copy a tuple matching this template out of the agent’s tuple space.

IV. A RCHITECTURE OFINTEGRATION LAYER

We have constructed the Agimone architecture (shown in Figure 9) which integrates the Agilla and Limone middleware

platforms. Each WSN is associated with a base station such as a laptop or a Stargate. The WSNs are populated with Agilla

agents which perform computations and collect sensor data. Inter-agent communication is facilitated by Agilla tuple spaces.

Each node in the WSN hosts one Agilla tuple space, and up to three Agilla agents.

The IP network and WSNs are spanned by WSN gateways attached to these base stations: sensors can communicate with

a nearby gateway wirelessly, while the base stations communicate with their attached gateways using a wired interface (e.g.,

UART or USB). The base stations communicate with each other over the IP network using Limone. Communication in Limone

is performed using tuple spaces; each Limone agent is provided with its own Limone tuple space.

WSNs may discover each other using a beaconing scheme where multicast routing is supported, or a centralized service

directory elsewhere. We have implemented a simple prototype Limone service registry that is suitable for a small number

of agents. However, it is not designed to scale for deployment on larger networks like the Internet. Since Limone’s discov-

ery mechanism is pluggable, applications that require a greater degree of scalability can replace this registry with a more

sophisticated protocol, like WSDL [30] or Bonjour [8].



8

1: pusht STRING // typeSTRING
2: pushc 1 // length of template (1 field)
3: pushloc UART X UART Y // base station’s location
4: rrdp // rrdp (base station,<STRING>)

Fig. 11. WSN Discovery Code Snippet

Agimone is populated with the following components, as shown in Figure 10:

• TheAgimoneAgent s are specific Limone agents which allow Agilla tuples and agents to traverse the IP network. These

agents serve as the basis for the Agimone integration layer. Each base station hosts oneAgimoneAgent .

• The Agilla and Limone tuple spaces, as described above.

• The Limone registry allows remote WSN discovery. Each application shares a single Limone registry. This registry is

optional on IP networks where multicast broadcasts are supported.

In the remainder of this section, we will describe the services Agimone provides in further detail.

A. WSN Discovery

Since new WSNs are being formed and destroyed as the applications evolve, it is often necessary for agents in the WSNs

to be aware of these changes at run-time. This is accomplished using aWSN advertisementscheme. Each base station’s

AgimoneAgent encapsulates information about the corresponding WSN in a WSN advertisement message. This WSN

advertisement describes the WSN’s properties to Agilla agents. Since different applications may be interested in different

properties of the WSNs, this advertisement is application-specific. For example, agents that comprise a cargo tracking application

may only be interested in knowing the location of each network. Thus, the WSN advertisements contain a 3-character string

describing their locations, such as “dok” (dock) or “shp” (ship).

When a new WSN connects to the IP network, its correspondingAgimoneAgent begins beaconing a well-known Limone

registry with messages containing this WSN advertisement. The Limone registry in turn forwards these advertisements to other

hosts on the Limone network. Similarly, the Limone registry notifies Limone agents when hosts leave the Limone network.

AgimoneAgent s use these notifications to store up-to-date copies of all other WSN advertisements in their base station’s

Agilla tuple space.

Agilla agents can access the base station’s tuple space by performing remote tuple space operations with the special destination

address (UARTX, UART Y). Thus, they can select an appropriate WSN advertisement using arrdp operation. The example in

Figure 11 shows such arrdp operation, which tries to locate any WSN advertisement containing just a string. If this operation

succeeds, then a tuple containing a matching WSN advertisement is placed on the top of the Agilla agent’s operand stack.

B. Migration Across WSNs

Once an Agilla agent has a WSN advertisement on the top of its operand stack, it can proceed to migrate to the WSN

with the assistance of theAgimoneAgent . The agent migration procedure is detailed in Figure 12. WSN advertisements are

distributed in Steps 1 and 2, and placed in the base stations’ tuple space in Step 3. The Agilla agent selects one of these WSN

advertisements in Step 4.



9

Limone 
Registry Agilla Agent

WSN Advertisement

AgimoneAgent

Limone TS Agilla TS

(5) migrate

(2) new advertisement

(3) out

Limone TS Agiila TS

(1) advertise

(7) out

(6) forward

(8) react

(9) forward

Agilla TS

(4) rd

WSN 1

IP

Agilla TS

(10) migrate

WSN 2

Fig. 12. Agilla Agent Migration Across Different WSNs

1: pusht STRING // typeSTRING
2: pushc 1 // length of template (1 field)
3: pushloc UART X UART Y // base station’s location
4: rrdp // rrdp (base station,<STRING>)
5: rjumpc ADFOUND
6: halt // if matching tuple not found, halt
7: ADFOUND pushloc UART X, UART Y // base station’s location
8: smove // strong migrate the agent to base station

Fig. 13. Migration Code Snippet

Once an Agilla agent has selected a satisfactory WSN advertisement, it performs a strong migration to the WSN gateway,

as shown in Step 5. Sample code to perform this operation is listed in Figure 13. This migration request is forwarded to the

AgimoneAgent executing on the base station in Step 6. TheAgimoneAgent extracts the destination WSN advertisement

from the top of the agent’s operand stack. It then encapsulates the Agilla agent into a Limone tuple of the form<Agent:

(encapsulated agent)>. In Step 7, it places this tuple into the tuple space of theAgimoneAgent residing in the destination

network.

When theAgimoneAgent initializes on the base station, it installs a reaction on its tuple space that notifies it of new

tuples in the form<Agent: Agilla Agent>. Thus, in Step 8, theAgimoneAgent on the base station of the destination WSN

is notified of the arrival of the encapsulated Agilla agent. It extracts the Agilla agent from its tuple space and injects it into

the WSN gateway in Step 9. In Step 10, the agent migrates into the new WSN, where it resumes its computation.

C. Cross-Middleware Interactions Via Tuple Spaces

Because of the limited computational powers of wireless sensors, Agilla agents may wish to use devices on the IP network

as a computational resource. By the same token, a Limone agent may wish to exploit the sensing resources of a remote WSN.

Both goals can be achieved by providing Limone agents with access to the Agilla tuple space that resides on each base station.

This gives both types of agents a common data space for exchanging messages. However, directly exposing the Agilla tuple



10

space API to Limone agents has some undesirable side effects. For example, Limone agents would only be able to make their

Agilla tuple spaces accessible to the WSN if they had some form of direct communication with the sensors. If a Limone agent

resided on a host outside of the communication range of the desired WSN, or if the host were simply not equipped with a

WSN gateway, then it could not interact with the Agilla agents in that WSN.

Instead, theAgimoneAgent exposes each base station’s Agilla tuple space to the Limone network by wrapping it in the

Limone tuple space API. Other Limone agents communicate with Agilla agents by performing remote tuple-space operations

on AgimoneAgent ’s Limone tuple space. TheAgimoneAgent captures the Limone tuple space API calls and translates

them to their Agilla equivalents, which it forwards to the Agilla tuple space API. Hence, when a Limone agent places tuples in

the AgimoneAgent ’s tuple space, these tuples are made available to any Agilla agent in the corresponding WSN. Similarly,

tuples placed into the base station’s tuple space by Agilla agents are made available to remote Limone agents. These Limone

agents need not have a WSN gateway attached to their host, since theAgimoneAgent will interact with the WSN on their

behalf.

However, translating Limone tuple space operations to their Agilla counterparts is not always straightforward. As discussed

earlier in Section III, there are restrictions placed on the contents of Agilla tuples and templates that are not present in Limone.

For example, a Limone agent may attempt to place the tuple<ID: 3.14, Flag: “mark”> in the tuple space. Since Agilla does

not have a floating-point data type, there is no way to convert this Limone operation into an Agilla tuple space operation.

Clearly, there does not always exist a 1-to-1 mapping from Limone tuples and templates to their Agilla equivalents, due to the

disparities between nodes in the WSN and those on the IP network.

To resolve this problem, theAgimoneAgent ’s tuple space uses Limone’s rejection mechanism to filter incoming tuple

space operations. This mechanism allows agents to reject any operations issued on their tuple space from remote agents. The

AgimoneAgent places the following restrictions on all incoming tuples and templates:

• Fields cannot be named arbitrarily. Instead, the field names must impose a numerical order on the fields, as required by

Agilla. That is, exactly one field must be named “1”, exactly one field must be named “2”, etc.

• Fields may only use the data types recognized by Agilla.

• The only constraint functions which are allowed areDefaultConstraintFunction (i.e., match by type) or

EquivalencyConstraintFunction (i.e., match exactly by value).

If a Limone tuple space operation contains a tuple or template that does not conform to these specifications, it cannot be

converted to an Agilla tuple space operation. Any such tuple space operations will be rejected by theAgimoneAgent .

Conforming operations are converted to their Agilla counterparts and forwarded to the Agilla tuple space. The results of the

operation are converted from Agilla tuples to Limone tuples (using the naming and data type conventions specified above) and

sent back to the originator of the request.

As discussed earlier, theAgimoneAgent ’s tuple space is also used to migrate encapsulated agents. TheAgimoneAgent

includes a special case to accept tuples containing these agents. However, since these tuples do not conform to the restrictions

listed above, they are immediately discarded after the enclosed agent is injected into the network.



11

D. Implementation Details

Agilla and Limone have been implemented and deployed on a wide variety of hardware. Agilla consists of two parts: a

NesC-based portion that is installed on sensors, and a Java-basedAgentInjector that is installed on base stations. Since

RAM and ROM are at a premium on many sensor devices, Agilla is necessarily compact: it consumes 49.66KB of flash

ROM and 3.07KB of RAM. Agilla has been ported to several different sensor architectures, including MICA2, MICAZ, and

Tyndall25. For this paper, we used a CVS snapshot of Agilla 3.0, which can be downloaded from [4].

The Limone and Agimone packages are developed in Java according to the Java 2 Micro Edition Personal Profile 1.0 [29]

specification. This allows Limone and Agimone to be deployed on devices like PDAs and Stargates which cannot host full

Java 2 Standard Edition runtimes. Since Personal Profile is a subset of the Java 2 Standard Edition specification, Limone and

Agimone can also be deployed on desktop and laptop computers. Limone was designed for deployment on storage-constrained

devices like PDAs; hence, the .JAR file containing its Java bytecode consumes only 132KB of storage space. Agimone is even

more compact: its .JAR file consumes less than 13KB of storage space. Since Agimone is implemented as a Limone agent, it

operates on any platform supported by Limone. We have successfully deployed Limone to many different operating systems,

including Windows Mobile, Windows XP, Linux, Solaris, and Mac OS X.

V. CASE STUDY: CARGO TRACKING

Using the architecture described in the previous section, we can implement a wide range of complex WSN applications.

Cargo tracking is an example of an application that is well-suited for implementation using Agimone. As discussed in Section

II, cargo containers can be equipped with sensors that form WSNs in localized clusters. Many of these containers are located in

remote warehouses and vehicles. Thus, it is paramount that users be able to interact with these WSN clusters without needing

to be within the WSN’s communication range. This can be achieved by connecting the WSNs’ base stations together using a

common IP network, then deploying Agimone to these base stations so that queries may traverse either network as needed.

In this section, we present a prototype application that uses mobile agents to track cargo. This application was previously

implemented using Limone and Agilla [15], and deployed on a testbed of 12 MICA2 motes. In the first version of this program,

the two middleware were poorly-integrated. Queries and responses were passed across middleware boundaries using a custom

Limone agent developed specifically for this application. This agent had to be modified and re-deployed each time a new

type of query was added to the application, adding significant overhead to the development process. For this paper, we have

augmented parts of the cargo tracking application to take advantage of Igillimone’s capabilities. The modified agent code,

which we will present in this section, is much cleaner as a result.

A. Watchdog Agents

Sensors attached to shipping containers can be equipped with various inexpensive sensor boards. These boards can be

monitored for unusual readings to try to detect attempted intrusions into the containers. For example, a user could “arm” a

container by deploying a watchdog agent that collects light data from a sensor installed on the inside of a cargo container. If

the container is opened, then the sensor sends an alert tuple to the nearest base station, which in turn propagates the tuple to



12

1: pushloc [destination]
2: smove // move from base station to destination sensor
3: LOOP pushc PHOTO
4: sense
5: pushcl 850
6: cgt
7: rjumpc OPENED // if light sensor reading> 850, goto OPENED
8: rjump LOOP // else goto LOOP
9: OPENED pushc 17
10: pushc 1
11: out // out (<“al1”>)
12: addr
13: pushn al1
14: pushc 2
15: pushloc UART X UART Y
16: rout // rout (UART, <”al1”, address>)
17: halt

Fig. 14. Light Sensor Watchdog Code

public void agentInit(){
ETemplate alertTemplate = new ETemplate();
alertTemplate.addConstraint(new EConstraint(“1”, AgillaString.class,

new DefaultConstraintFunction()));
alertTemplate.addConstraint(new EConstraint(“2”, AgillaValue.class,

new DefaultConstraintFunction()));
// Make a template for tuples with a field “1” containing an AgillaSTRING
// and a field “2” containing an AgillaVALUE

Reaction resultsReaction = new Reaction(new ReactivePattern(new ProfileSelector(),
Reaction.ONCEPERTUPLE, alertTemplate), this);

getRR().registerReaction(resultsReaction);
// Install a reaction that notifies us when a matching tuple is produced

}

public void reactsTo(ReactionEvent re){
ETuple t = re.tuple();
AgillaString alertType = (AgillaString)t.getField(“1”).getValue();
AgillaValue alertSource = (AgillaValue)t.getField(“2”).getValue();
// Extract the contents of the tuple from the event

...
}

Fig. 15. Client-Side Alert Reaction Code

security personnel over the IP network. Light sensor readings are only an example of the kinds of environmental readings that

could be used: many other kinds of intrusions can be detected, limited only by the kinds of sensor boards that are commercially

available.

We have implemented two prototype agents that monitor the sensor’s accelerometer and light readings, respectively. In the

interest of space, we will only examine the latter agent here. Figure 14 provides the code for the light-monitoring agent. Its

implementation is fairly straightforward, owing to the features offered by Agimone discussed in Section IV. The agent first

moves to the sensor that it intends to monitor. It loops, repeatedly reading the light sensor until its reading goes above a fixed

threshold. When this happens, it places a tuple in its own tuple space that records the event. It also places an alert tuple in

the base station’s tuple space.

Because Agilla tuple space on the base station of each WSN is exposed to the IP network as a Limone tuple space, it is easy

for clients on the IP network to gain access to the alerts that the sensors create. Figure 15 gives an example of how a remote

client on the IP network can react to the creation of these tuples. In the client’sagentInit() method, we create a Limone

template that describes the alert tuple’s format: a string in the first field that contains the alert type, and an integer value in

the second field that contains the sensor’s address. The client registers this reaction with the Limone middleware. Limone



13

automatically forwards this reaction registration to all other Limone agents on the IP network, including theAgimoneAgent

that “owns” the Agilla tuple space on each base station.

When the Agilla agent places an alert tuple in the base station’s tuple space, the reaction fires. Limone invokes the client

Limone agent’sreactsTo() method when this happens. In this method, we extract the two fields from the tuple that created

the event. We can then do whatever kind of processing we desire with this information (e.g., display it in a GUI, log it to

disk, and notify security personnel).

The functionality provided by Agimone reduces the effort needed to develop this application to a minimum. The Agilla agent

contains only 17 lines of code, and yet is able to interface with the sensor’s low-level sensing and communication hardware.

Further, the Limone client requires only 7 lines of code to automatically receive notification messages sent by the sensors,

and another 4 lines of code to extract its contents. As a result, this agent was developed in only a few hours. A comparable

application written using NesC would likely require much more code, as well as custom Java or C code to interface with the

base station over the IP network. An application of this size would likely also need significant debugging after development. In

contrast, Agimone provides applications with a reusable and robust middleware platform that exhibits a high degree of network

integration.

B. Intrusion Search Agent

The watchdog agents keep a record of all anomalous behavior in the sensors’ tuple spaces. A user, such as a shipping company

or a port authority, may want to search all the containers for possible tampering. Consider a scenario where containers are

being moved between a ship and a loading dock, each of which has a corresponding base station. These locations are out of

WSN communication range with each other, so the boxes in each location form a separate WSN. The WSNs are bridged by

an long-range IP network, such as 802.11b or Ethernet, between their respective base stations.

Though users can search both WSNs for intrusions simultaneously, a comprehensive search may be unnecessarily expensive.

Ideally, the scope of such a search should be determined at runtime. For example, assume that the containers on the ship are

far more likely to be tampered with than the containers on the dock. Rather than searching both WSNs separately, it is better

to only search the containers on the ship first. If one of the containers on the ship has been tampered with, then the search

should automatically expand to the containers on the dock, in order to determine the scope of the security breach.

This behavior can be achieved by deploying a mobile agent that spreads across a single WSN, looking in each sensor’s

tuple space for a recorded anomaly, and notifying the user as records are found. If one is found, then the agent migrates to

the other WSN. Once there, it repeats the search on the second WSN.

The code fragment shown in Figure 16 attempts to migrate the agent between WSNs. Again, this code is fairly straightforward,

building on the simple examples given in Section IV. Our base stations’ advertisement tuples contain a single field with the

string “dok” or “shp”. Accordingly, our agent performs arrdp operation on the base station’s tuple space, using a template that

matches tuples containing a single string. If a matching tuple is found, then Agilla places the tuple on the top of the agent’s

operand stack. The agent then attempts to issue ansmoverequest to migrate to the base station. As described in Section IV-B,

the agent will migrate over the IP network to the WSN corresponding to the advertisement tuple at the top of its operand stack.



14

1: pusht STRING
2: pushc 1
3: pushloc UART X UART Y
4: rrdp // rrdp (UART, <string>)
5: rjumpc ADFOUND
6: halt // if matching tuple not found, halt
7: ADFOUND pushloc UART X UART Y
8: smove // strong move to UART
9: rjumpc MIGRATEOK
10: halt // if migration failed, halt
11: MIGRATEOK pushcl START
12: jumps // goto START

Fig. 16. Intrusion Search Migration Code Snippet

1: START pushn mrk
2: pushcl [search id]
3: pushc 2
4: rdp // rdp (<search ID, “mrk”>)
5: rjumpc FOUND
6: rjump NOMARK
7: FOUND halt
8: NOMARK pushn mrk
9: pushcl [search id]
10: pushc 2
11: out // out (<search ID, “mrk”>)

Fig. 17. Intrusion Search Preamble

If the migration is successful, then the agent will jump back to the start of its execution and search the destination network

for intrusions.

To prevent agents from traversing the same WSN twice, the agent’s code begins with the snippet listed in Figure 17. Each

query is given a unique 16-bit numeric ID. When the agent arrives in a WSN, it attempts to read a “marker” tuple containing

this ID from the base station’s tuple space. If it succeeds, then it knows that the network has already been traversed, and it

dies. Otherwise, it places the marker in the base station’s tuple space to prevent any further copies from traversing the WSN.

Since each marker includes the query’s unique instance ID, later queries will not be stopped by the markers left by a previous

query.

Like in the last example, the client can use Limone’s reaction mechanism to automatically aggregate the results sent from

the WSNs. A single reaction, like the one in Figure 15, will collect all matching tuples that are placed in any base station’s

tuple space, regardless of which WSN produced the tuple.

Again, Agimone’s functionality and reusability greatly simplify the development of this application. Agilla agents can migrate

between WSNs using only 23 lines of Agilla code. No additional support code had to be written or installed on the base station

to handle these migrations.

VI. PERFORMANCEEVALUATION

We evaluated our system by deploying it on two WSNs connected by an IP network. The WSNs are composed of MICA2

motes and are separated by using different radio channels. Each WSN has a single gateway that is attached to an IBM R40

laptop via a 115.2Kbps serial link. The laptops are connected via a standard 100Mbps wired Ethernet network. Since they are

on the same subnet, a Limone registry is not required; they discover each other using regular multicast beacons. The laptops

are identically configured with a 1.5GHz Intel Pentium M processor, 512MB of RAM, Windows XP and Java Standard Edition

5.0. All latencies are measured using Java’sSystem.nanoTime() method which uses the system’s most accurate timer.

This section presents micro-benchmarks examining the primitives that cross network boundaries. These benchmarks can be

divided into three categories: tuple space operations, agent migration operations, and overall performance.

A. Tuple Space Operations

In these benchmarks, we measure the cost of tuple space operations which cross middleware boundaries. Specifically, we

evaluate operationsrinp , rrdp , androut . These operations can be executed in both directions; they may be performed by the



15

1: BEGIN pushcl 100
2: START copy
3: pushc 0
4: ceq
5: pushc END
6: jumpc // jump to END after doing n rrdp(uart)
7: pusht string
8: pushc 1
9: pushcl uart
10: rrdp // do a rrdp(uart)
11: rjumpc FOUND
12: pushc 25
13: putled // toggle red LED if rrdp fails
14: rjump CONTINUE
15: FOUND pop
16: pop // remove tuple
17: CONTINUE dec
18: pushc START
19: jumps // jump back to START
20: END pushcl uart
21: smove // migrate to the base station
22: halt

Fig. 18. Therrdp Benchmark Agent.

1: BEGIN pushcl 100
2: START copy
3: pushc 0
4: ceq
5: pushc END
6: jumpc // jump to END after doing n rrdp(uart)
7: pusht string
8: pushc 1
9: pushc 1
10: cpull // set condition = 1
11: rjumpc FOUND
12: pushc 25
13: putled // toggle red LED if rrdp fails
14: rjump CONTINUE
15: FOUND pop
16: pop // remove tuple
17: CONTINUE dec
18: pushc START
19: jumps // jump back to START
20: END pushcl uart
21: smove // migrate to the base station
22: halt

Fig. 19. Therrdp Baseline Agent.

Operation latency (ms)
(Mote-to-PC)
rinp 10.64± 0.15
rrdp 10.35± 0.06
rout 10.37± 0.07

Operation latency (ms)
(PC-to-Mote)
rinp 10.98± 0.17
rrdp 11.26± 0.19
rout 10.85± 0.07

Fig. 20. The Latency of Remote Tuple Space Operations

AgimoneAgent on the tuple space belonging to the WSN gateway (PC-to-Mote), or by an Agilla agent on the base station’s

tuple space (Mote-to-PC).

Mote-To-PC. The first set of benchmarks determine the latency of the remote tuple space operations when the initiator is an

Agilla agent residing on the WSN gateway and the destination is the attached base station. Since modifying the implementation

of Agilla may affect the results, we inferred the latency by injecting two agents, a benchmark and baseline, onto the gateway.

The benchmark agent performs a tuple space operation 100 times before migrating back to the base station. The baseline agent

is identical to the first, except it performs a dummy operation in place of the tuple space operation. This allows us to isolate

the cost of the tuple space operation from the rest of the overhead associated with executing the agent. For example, the agents

used to evaluaterrdp are shown in Figures 18 and 19. Notice that on line 10, the benchmark agent performsrrdp whereas

the baseline agent only performscpull, which is a local operation whose overhead is negligible, since it is several orders of

magnitude lower [12]. Thus, by comparing the lifespan of the two agents, the latency ofrrdp can be calculated.

Three sets of agents were produced, one for each operation. Each benchmark of 100 operations is repeated 10 times, and

the average latency is calculated. The results are shown in Figure 20. They show that all operations consume approximately

10 to 11 ms on average, with therinp operation being slightly more expensive than the other two.

PC-To-Mote. The second set of benchmarks determine the latency of remote tuple space operations when the initiator is

the AgimoneAgent on the base station, and the destination is the gateway. Since these operations start and end on the same

device, their latency can be directly measured. The base station’s tuple space is initialized by populating it with tuples for

the rinp and rrdp operations to consume. For each instruction, we measured the time it takes to execute them 20 times, and



16

Source Agilla 
WSN

Destination
Agilla WSN

Agilla

Limone

Agilla

Limone

1) Mote-to-PC

Limone IP 
Network2) Agilla-to-Limone

3) PC-to-PC

4) Limone-to-Agilla

5) PC-to-Mote

Fig. 21. The Five Stages of an Inter-WSN Agent Migration Operation.

divided the result by 20 to get the average. This process is repeated 20 times; the results are shown in Figure 20. The cost of

these operations is roughly the same, regardless of direction.

B. Agent Migration Operations

Agent migration operations enable agents located in one WSN to migrate across an IP network into another WSN. These

operations includesmove (strong move) andsclone (strong clone). They are identical in that both operations capture the

agent’s state and code and transfer them to the destination WSN. They differ in thatsmoveterminates the agent on the source

node, whereassclonedoes not. Since both operations are identical in terms of performance, onlysmove is considered in the

benchmarks that follow.

From an Agilla agent’s perspective, an inter-WSN agent migration occurs in an atomic step, e.g., by executing instruction

smove. However, as discussed in Section IV, there are in reality many steps involved. We group these steps into the five

distinct stages shown in Figure 21. During stage one (Mote-To-PC), the migrating agent moves from the source mote onto

the attached base station. During stage two (Agilla-to-Limone), the agent is encapsulated within a Java object and passed to

the AgimoneAgent . This is the point where the agent passes from the Agilla realm into the Limone realm. During stage

three (PC-to-PC), the agent is migrated from theAgimoneAgent at the source base station to the tuple space located at the

destination. During stage four (Limone-to-Agilla), the destination’sAgimoneAgent reacts to the agent tuple, extracts the

migrating agent, and passes the agent to Agilla’sAgentInjector . This is when the agent passes from the Limone realm

back into the Agilla realm. Finally, during stage five (PC-to-Mote), the agent is injected into the destination WSN. Each of

these stages is considered separately in the benchmarks that follow.

Unless otherwise stated, the benchmarks use the bouncing agent shown in Figure 22. The bouncing agent consists of 16

bytes of state, and 20 bytes of code for a total of 36 bytes, or two TinyOS messages. When it arrives on a mote, it queries

the WSN gateway for an advertisement tuple consisting of a string (lines 1-4). If it finds an advertisement, it migrates to the

WSN being advertised (lines 13-16). If it fails to find such a tuple, it toggles the mote’s red LED, sleeps for a half second,

and repeats (lines 7-12). Note that since theAgimoneAgent does not include the local WSN’s advertisement in the base

station’s tuple space, the bouncing agent is guaranteed to only discover a remote WSN’s advertisement tuple, and will thus



17

1: BEGIN pusht string
2: pushc 1
3: pushcl uart
4: rrdp // search for advertisement tuple
5: pushc FOUND
6: jumpc // jump to FOUND if found
7: pushc 25
8: putled // blink red LED if not found
9: pushc 4
10: sleep
11: pushc BEGIN
12: jumps
13: FOUND pushcl uart
14: smove // migrate to remote WSN
15: pushc BEGIN
16: jumps // after moving, repeat

Fig. 22. The Bouncing Agent Use for Evaluating Inter-WSN Migration Performance

Stage Name Unfiltered Latency Filtered Latency # Points Filtered
1 Mote-to-PC 36.12± 1.19ms 35.56± 0.58ms 2
2 Agilla-to-Limone 1.03± 0.16ms 307.11± 1.59µs 182
3 PC-to-PC 19.45± 0.26ms 19.11± 0.15ms 19
4 Limone-to-Agilla 1.13± 0.16ms 830.05± 2.26µs 12
5 PC-to-Mote 28.16± 5.92ms 23.72± 0.56ms 3

Fig. 23. The Latency of Each Agent Migration Stage

bounce between two WSNs indefinitely.

A summary of all the results are shown in Figure 23. Note the column listing the number of points filtered. These

were outlier points with values orders of magnitude above the mean. They are most likely caused by inaccuracies in Java’s

System.nanoTime() method and garbage collection. Since these points are relatively sparse, we filtered them out when

presenting the graphs below. The latencies of both the filtered and unfiltered data are listed. Details of each stage are now

presented.

Stage 1: Mote-to-PC.Measuring the latency of an agent moving from the gateway onto the attached base station is

challenging because it starts and ends on different systems with clocks that are difficult to synchronize. To overcome this

problem, we used a technique similar to that used in measuring the Mote-to-PC tuple space operations. Specifically, when an

agent initiates a migration, it first performs arrdp on the base station’s tuple space to find the destination WSN’s advertisement

tuple. We exploit this by measuring the time from when therrdp request is received to when the agent arrives on the base

station. Since the latency of therrdp is known from the benchmarks presented in Section VI-A, the latency of the mote-to-pc

migration can be calculated. The experiment is repeated 1000 times; the results are shown in Figure 24. Note that the figure

shows filtered data where extraneous points with values several orders of magnitude above the average are removed. With the

extraneous points, the average latency is41.29± 1.13ms. Without them, the average latency is40.73± 0.52ms.

In this benchmark, we begin measuring the time from when therrdp operation arrives at the base station. Thus, the results

of the rrdp operation must return to the sensor before the migration actually begins. We can approximate the time spent

actually migrating by subtracting half the cost of a mote-to-PCrrdp operation, or5.18± 0.03ms, from the benchmark results.

This gives us a migration latency of36.12± 1.19ms for the unfiltered results, and35.56± 0.58ms for the filtered results.

Stage 2: Agilla-to-Limone.When the migrating agent arrives on the PC, it is encapsulated in a JavaAgent object and passed

to theAgimoneAgent . Since this only involves invoking the constructor forAgent and a method call onAgimoneAgent ,



18

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Round

La
te

nc
y 

(m
s)

Fig. 24. Stage 1 Latency (Mote-to-PC)

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Round

La
te

nc
y 

(m
s)

Fig. 25. Stage 3 Latency (PCtoPC)

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Round

La
te

nc
y 

(m
s)

Fig. 26. Stage 5 Latency (PC-to-Mote)

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

Round

La
te

nc
y 

(µ
s)

Fig. 27. Stage 2 Latency (Agilla-to-Limone)

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

Round

La
te

nc
y 

(µ
s)

Fig. 28. Stage 4 Latency (Limone-to-Agilla)

the cost of passing the agent across middleware boundaries should be negligible relative to the other stages. To measure this, a

bouncing agent is injected into the network and the time from when the last migration message is received on the base station,

to whenAgimoneAgent ’s callback method begins executing is recorded. This experiment is repeated 1000 times; the results

are shown in Figure 27. Note that the results included 182 extraneous data points, which is more than any other stage. This

is most likely stemming from inaccuracies in Java coupled with the very small reading. With the spikes the average latency

is 1.03 ± 0.16ms. With the spikes filtered out, the average latency is307.11 ± 1.59µs. The large difference in filtered and

unfiltered results is due to the number of extraneous points in the data set.

Stage 3: PC-to-PC.When theAgimoneAgent receives the migrating agent, it saves the agent within a Limone tuple and

places it in the destination base station’s tuple space using Limone’srout operation. The latency of migrating an agent over

the IP network is measured by bouncing an agent between twoAgimoneAgent s. The total time is halved to obtain the one

way latency. This process is repeated 1000 times; the results are shown in Figure 25. With the extraneous points, the average

latency is19.45± 0.26ms. With the spikes filtered out, the average latency is19.11± 0.15ms.

Stage 4: Limone-to-Agilla. When the tuple containing the migrating agent is placed within the destination base station’s

tuple space, theAgimoneAgent on the base station reacts to this tuple by extracting the agent and passing it to Agilla’s

AgentInjector . Like Agilla-to-Limone, this process occurs entirely on the base station, so its latency should be negligible

relative to the other stages. For this stage, the time from when the tuple is placed into the tuple space to when the agent is passed

to the AgentInjector is recorded. This experiment is repeated 1000 times; the results are shown in Figure 28. With the

extraneous points, the average latency is1.13±0.16ms. Without the extraneous points, the average latency is830.05±2.26µs.



19

As expected, this is negligible relative to the other stages. Notice that this stage is significantly longer than Agilla-to-Limone.

This is because the Limone middleware must perform some computations to decide which local agents to propagate the

reactions to, which involves consulting several local data structures, e.g., a reaction registry.

Stage 5: PC-to-Mote.When theAgentInjector receives the migrating agent, it injects the agent into the local WSN.

Like Mote-to-PC, measuring this latency directly is difficult. The latency is indirectly calculated by taking advantage of the

fact that, upon injection, the bouncing agent immediately performs arrdp on the base station’s tuple space searching for a

network advertisement tuple. For each round, the time from when the agent is injected to whenrrdp request arrives is recorded.

This experiment is repeated 1000 times; the results are shown in Figure 26. With the extraneous points, the average latency is

33.33± 5.86ms. Without the extraneous points, the average latency is28.89± 0.50ms.

As with stage 1, we include half of a Mote-to-PCrrdp operation in this benchmark. Subtracting half the cost of this

operation, we get28.16±5.92ms for the unfiltered results, and23.72±0.56ms for the filtered results. This is slightly less than

stage 1 because the majority of the processing is done by the sender, which in this stage is a laptop as opposed to a sensor.

C. Overall Performance

The following benchmarks evaluate the latency of common sequences of operations. The first set of benchmark (In-and-Out)

answers the following question: what is the minimum amount of time it will take for an agent to enter a WSN and return? In a

real-world scenario, the agent will perform some application-specific operations while in the network. However, for evaluation

purposes, we inject an agent that immediately migrates back onto the base station after it arrives on a mote. The second set of

benchmarks (End-to-End) evaluates how long it takes for an agent residing in one WSN to migrate into another WSN and back.

The previous section analyzed each stage of the migration process individually; theoretically, the In-and-Out and End-to-End

delays will be the sum of their individual stages. These benchmarks serve to validate the results of previous benchmarks.

While Agimone simplifies programming and increases network flexibility, its use of virtual machines results in some overhead.

To quantify this overhead, a native-code implementation of In-And-Out and End-to-End is tested and the results are plotted

along with the Agimone results. Instead of using agents, the native code implementation only exchanges data. However, the

amount of data exchanged is the equal to the amount of data and code sent by the mobile agent solution.

Finally, all of the previous benchmarks used the same 36-byte bouncing agent. To gain insight on how the size of the

agent affects inter-WSN migration latency, the last benchmark (Exploding-Agent) repeats the End-to-End experiment, but with

successively larger agents.

In-and-Out. This benchmark measures the time from when a bouncing agent is injected onto the gateway to when it returns.

Note that when the agent arrives on the gateway, it must first perform arrdp on the base station’s tuple space to determine

the destination WSN’s advertisement tuple. Thus, this benchmark measures the aggregate of the Mote-to-PC, PC-to-Mote,

Limone-to-Agilla, and Agilla-to-Limone migration operations, and the Mote-to-PC tuple space operation. The benchmark is

repeated 1000 times and the results are shown in Figure 29. The average In-and-Out latency is62.18 ± 6.09ms unfiltered,

56.56± 0.27ms filtered. This is approximately the aggregate of the constituent stages (stages 1, 2, 3, and 4).

The native implementation of In-and-Out consists of a Java application on the base station that queries the attached gateway



20

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000
Round

La
te

nc
y 

(m
s)

Agimone
Native Implementation

Fig. 29. The In-and-Out Agent Migration Latency.

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000
Round

La
te

nc
y 

(m
s)

Agimone
Native Implementation

Fig. 30. The End-to-End Migration Latency

sensor by sending it two TinyOS packets totalling 36 bytes. Each message is acknowledged before the next message is sent.

Once the gateway receives the query, it responds with another two TinyOS packets totalling 36 bytes. The benchmark starts

the timer when the query is issued, and stops it when the response is received. This process is repeated 1000 times; the results

are shown in Figure 29. The native implementation has an average latency of30.09 ± 0.51ms, which is27.39ms faster than

the Agimone implementation.

End-to-End. The End-to-End latency is measured by injecting a bouncing agent into the WSN and recording the times

when theAgimoneAgent passes it to theAgentInjector (stage 4 of the migration). The intervals between these times

represent the agent’s round-trip time. The benchmark monitors the bouncing agent as it makes 1000 round-trips; the results

are shown in Figure 30. The average end-to-end round trip time is179.19± 9.96ms unfiltered, and164.75± 0.96ms filtered.

This closely matches the aggregate of the various stages involved.

The native implementation of End-to-End does everything In-And-Out does except, after receiving the query results from

the local gateway, the base station sends a 36-byte packet over the IP network to a remote base station. When the remote base

station receives this packet, it queries its local gateway and sends a 36-byte reply. The benchmark starts the timer just prior

to quering the local gateway, and stops it when the reply from the remote base station is received. This process is repeated

1000 times; the results are shown in Figure 30. The native implementation has an average latency of86.36± 2.15ms, which

is 78.39ms faster than the Agimone implementation.

Exploding-Agent. Until now, all aforementioned benchmarks used the relatively small bouncing agent. To gain insight on

how the size of the agent affects the latency of inter-network migration, this benchmark repeats End-to-End with successively

larger agents. The agent size is increased by inserting variables onto the agent’s heap, stack, and reaction registry. Each agent

is allowed to bounce between two WSNs 10 times, and the agent’s round-trip time is recorded. The results are shown in

Figure 31. They show that the cost of agent migration is roughly linear with the agent’s size. As the size of the agent increases,

its migration time is dominated more by the slow mote-to-mote and mote-to-PC stages.

The benchmarks presented in this section provide a general overview of Agimone’s performance and overhead. All inter-

network tuple space operations, regardless of direction, take about 10.5ms.rinp takes slightly longer thanrout and rrdp



21

0

50

100

150

200

250

300

350

36 66 96 126 156 186 216

Size of Agent (Bytes)

La
te

nc
y 

(m
s)

Fig. 31. End-to-End Latency vs. Size of Agent

because it has to remove a tuple, which involves more bookkeeping. A mobile agent takes about 82.5ms to migrate from

one WSN to another. Of this, approximately 60ms is spent moving to and from the WSN and its base station, and 20ms is

spent traversing the IP network. The latency of migrating into a WSN and back is about 60ms. Of this, most of the time

(>57ms) is spent on the serial link between the base station and WSN gateway. The actual transition from Agilla to Limone

takes about307µs, while going from Limone to Agilla takes about830µs. The overhead of Agimone compared to native code

varies depending on the task. In the two operations presented, In-And-Out and End-to-End, there was a 27.39ms and 78.39ms

increase in execution time relative to native code, respectively. Native code, however, is not nearly as flexible as mobile agents,

and presumably requires more development time. Finally, an agent’s migration latency increases linearly with its size.

VII. R ELATED WORK

There are a number of middleware systems that increase the flexibility of WSNs by enabling in-network reprogramming.

They include XNP [5], Deluge [18], Maté [21], SensorWare [6], Impala [23], and Smart Messages [20]. There are also a

number of coordination middleware designed for IP networks. They include JEDI [9], LIME [26], and MARS [7]. These

middleware systems are either targeted for WSNs, or IP networks, but not the integration of heterogeneous networks. Recent

efforts at building systems that integrate the two types of networks are more closely related to our work.

The Hourglass [28] and Stream-based Overlay Networks (SBONs) [27] systems cooperate to integrate multiple WSNs with

the Internet. Specifically, they form an overlay network over the Internet consisting of servers that are connected to various

WSNs. The system routes data streams generated by nodes within a WSN to applications on the Internet that require the data.

The servers within the overlay network provide resource registration and discovery services. They are capable of dynamically

adapting to network conditions by installing stream operators like data filters and aggregators to the source, for example, to

reduce network usage in times of congestion. The Hourglass-SBON system differs from Agimone by focusing on delivering

data streams generated within WSNs to consumers on the Internet. It is tailored specifically to data-streaming applications.

Agimone, on the other hand, is a general-purpose middleware system that focuses on providing a seamless infrastructure for

mobile agents to migrate and cooperate across WSNs and IP networks.



22

Tenet [14] provides a two-tiered architecture where the lower tier consists of resource-poor sensors and the higher tier

consists of relatively powerful computers connected via an IP network. The higher tier computers aremastersthat control

the sensors, which are directly addressable and contain a library of generic functions. Masters send sensors tasks that activate

these functions in an application-specific way. Tenet restricts the sensors to perform simple functions and organize into routing

trees anchored at the masters. It uses a well-tested routing structure within the resource-poor sensors and moves much of

the complexity associated with application development onto second-tier devices that can be more easily debugged, thus

simplifying application development. Unlike Agimone, Tenet reprograms the sensors using tasks that cannot control where

they are executed or carry state across nodes. Therefore, Agimone provides a more flexible infrastructure for deploying adaptive

applications. Also Tenet uses messages as the basic unit of communication. Message passing tightly couples communicating

entities; both must be present for information to be exchanged. Agilla uses tuple spaces that decouple communication between

agents residing on different networks further ensuring system flexibility.

SERUN [22] uses a three-level network architecture where the lowest level consists of cheap low-power sensors that gather

data, the middle level consists of more capablemicroserversthat process the data, and the highest level consists of PC-class

systems where end-users can issue queries. When a query is issued, a task is sent to a microserver. The microserver runs the task

by querying one or more sensors and processing the data according to the instructions within the task. To save energy, SERUN

codifies the tasks as multiple publish-subscribe components, and forming a service composition graph on each microserver.

When a task is received, the microserver attempts to add the task’s components to the graph so as to reuse as much sensor data

as possible. SERUN differs from Agimone in that it moves much of the application-specific code away from the low-power

sensors and onto the microservers, and its tasks cannot autonomously migrate across microservers.

IrisNet [13] diverges from traditional WSNs consisting of resource-poor devices by proposing an Internet-scale sensor network

consisting of desktop PCs with low-cost sensors, e.g., web cams. The IrisNet platform provides a query service for obtaining

sensor data from anywhere on the Internet. Functionally, it is similar to TinyDB [24] in that it treats the network as a database,

and allows users to query for data. However, IrisNet is larger scale and operates on relatively powerful machines. It is tailored to

meet the unique challenges associated with an Internet-scale application, e.g., security, privacy, data robustness, and saleability.

IrisNet differs from Agimone by transforming the IP network into a giant sensor network. Agimone is complimentary to IrisNet

in that it may provide a mechanism for seamlessly integrating an IrisNet with resource-poor WSNs.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we have presented Agimone, a middleware system for integrating WSNs over the Internet and other IP networks.

We have implemented an efficient integration layer that integrates Agilla and Limone, two existing mobile agent middleware

platforms. By adapting an existing cargo tracking application to use Agimone, we have demonstrated how developers can easily

take advantage of the functionality we provide. Our empirical performance data demonstrates the efficiency of our middleware

on existing sensor and base station hardware. Tuples can cross middleware boundaries in approximately 10.5ms, and agents

can migrate between WSNs and back in 82.5ms. Though there is some runtime overhead associated with using mobile agents

as compared to native code, the increase in developer productivity outweighs this performance penalty for all but the most



23

time-critical of applications.

There are two specific areas in Agimone that merit continued development. First, though Agilla’s mobile agent paradigm

greatly simplifies WSN application development, agents must be developed directly in Agilla bytecode. This procedure can

be disorienting at first for developers who are not accustomed to working at a bytecode level. WSN application development

could be made even more straightforward by implementing a high-level language which compiles to Agilla bytecode.

Second, the Limone registry used for centralized service discovery is not designed with scalability in mind. It is unclear

how well the registry will perform when many agents are connected. This shortcoming can be resolved by adapting a more

robust device discovery mechanism, like WSDL, to implement the Limone device discovery API. By implementing these new

device discovery providers, WSN applications could be more easily deployed to large IP networks like the Internet.

ACKNOWLEDGMENT

This research is supported by the Office of Naval Research under MURI research contract N00014-02-1-0715 and by the

the NSF under NOSS contract CNS-0520220. Any opinions, findings, and conclusions expressed in this paper are those of the

authors and do not necessarily represent the views of the research sponsors. We would also like to thank Boeing Corporation

for their support on an earlier version of the cargo tracking application.

REFERENCES

[1] http://platformx.sourceforge.net/ .

[2] http://sourceforge.net/cvs/?groupid=28656.

[3] http://mobilab.wustl.edu/projects/agilla.

[4] http://mobilab.wustl.edu/projects/agilla/download/index.html .

[5] http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf .

[6] BOULIS, A., HAN , C.-C.,AND SRIVASTAVA , M. Design and implementation of a framework for efficient and programmable sensor networks. InProc.

of MobiSys(May 2003), USENIX, pp. 187–200.

[7] CABRI , G., LEONARDI, L., AND ZAMBONELLI , F. MARS: A programmable coordination architecture for mobile agents.Internet Computing 4, 4

(2000), 26–35.

[8] CHESHIRE, S. DNS-based service discovery. Tech. rep., Apple Computer, Inc., 2005.

[9] CUGOLA, G., NITTO, E. D., AND FUGGETTA, A. The JEDI event-based infrastructure and its application to the development of the OPSS WFMS.

IEEE Transactions on Software Engineering 27, 9 (September 2001), 827–850.

[10] CULLER, D., ESTRIN, D., AND SRIVASTAVA , M. Overview of sensor networks.IEEE Computer 37, 8 (2004), 41–49.

[11] FOK, C.-L., ROMAN , G.-C.,AND HACKMANN , G. A Lightweight Coordination Middleware for Mobile Computing. InProceedings of the 6th Internation

Conference on Coordination Models and Languages (Coordination 2004)(February 2004), R. DeNicola, G. Ferrari, and G. Meredith, Eds., no. 2949 in

Lecture Notes in Computer Science, Springer-Verlag, pp. 135–151.

[12] FOK, C.-L., ROMAN , G.-C.,AND LU, C. Rapid development and flexible deployment of adaptive wireless sensor network applications. InProceedings

of the 24th International Conference on Distributed Computing Systems (ICDCS’05)(June 2005), IEEE, pp. 653–662.

[13] GIBBONS, P., CARP, B., KE, Y., NATH , S., AND SESHAN, S. Irisnet: An architecture for a worldwide sensor web.IEEE Pervasive Computing

(October-December 2003), 22–33.

[14] GOVINDAN , R., KOHLER, E., ESTRIN, D., BIAN , F., CHINTALAPUDI , K., GNAWALI , O., RANGWALA , S., GUMMADI , R., AND STATHOPOULOS, T.

Tenet: An architecture for tiered embedded networks. Tech. Rep. CENS-TR-56, UCLA CENS, November 2005.

[15] HACKMANN , G., FOK, C.-L., ROMAN , G.-C., LU, C., ZUVER, C., ENGLISH, K., AND MEIER, J. Demo abstract: Agile cargo tracking using mobile

agents. InProceedings of the 3rd Annual Conference on Embedded Networked Sensor Systems (SenSys’05)(November 2005), ACM, p. 303.



24

[16] HE, T., KRISHNAMURTHY, S., STANKOVIC , J. A., ABDELZAHER, T., LUO, L., STOLERU, R., YAN , T., GU, L., HUI , J., AND KROGH, B. Energy-

efficient surveillance system using wireless sensor networks. InMobiSYS ’04: Proceedings of the 2nd international conference on Mobile systems,

applications, and services(New York, NY, USA, 2004), ACM Press, pp. 270–283.

[17] HILL , J., SZEWCZYK, R., WOO, A., HOLLAR , S., CULLER, D., AND PISTER, K. System architecture directions for networked sensors. InArchitectural

Support for Programming Languages and Operating Systems(2000), pp. 93–104.

[18] HUI , J., AND CULLER, D. The dynamic behavior of a data dissemination protocol for network programming at scale. InProceedings of the 2nd

international conference on Embedded networked sensor systems(2004), ACM Press, pp. 81–94.

[19] JUANG, P., OKI , H., WANG, Y., MARTONOSI, M., PEH, L. S.,AND RUBENSTEIN, D. Energy-efficient computing for wildlife tracking: design tradeoffs

and early experiences with zebranet.SIGPLAN Not. 37, 10 (2002), 96–107.

[20] KANG, P., BORCEA, C., XU, G., SAXENA , A., KREMER, U., AND IFTODE, L. Smart messages: A distributed computing platform for networks of

embedded systems.Special Issue on Mobile and Pervasive Computing, The Computer Journal 47(2004), 475–494.

[21] LEVIS, P., AND CULLER, D. Mat́e: a tiny virtual machine for sensor networks. InASPLOS-X: Proceedings of the 10th international conference on

Architectural support for programming languages and operating systems(New York, NY, USA, 2002), ACM Press, pp. 85–95.

[22] L IU , J., CHEONG, E., AND ZHAO, F. Semantics-based optimization across uncoordinated tasks in networked embedded systems. Tech. Rep. MSR-TR-

2005-46, Microsoft Research, One Microsoft Way, Redmond, WA 98075, April 2005.

[23] L IU , T., AND MARTONOSI, M. Impala: A middleware system for managing autonomic, parallel sensor systems. InACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming(2003).

[24] MADDEN, S., FRANKLIN , M., HELLERSTEIN, J.,AND HONG, W. The design of an acquisitional query processor for sensor networks. InProceedings

of the 2003 ACM SIGMOD Int. Conf. on Management of Data(2003), pp. 491 – 502.

[25] MALAN , D., FULFORD-JONES, T., WELSH, M., AND MOULTON, S. Codeblue: An ad hoc sensor network infrastructure for emergency medical care.

In Proceedings of the MobiSys 2004 Workshop on Applications of Mobile Embedded Systems (WAMES 2004)(June 2004).

[26] PICCO, G., MURPHY, A., AND ROMAN , G.-C. LIME: Linda meets mobility. InProc. of the 21st Int’l. Conf. on Software Engineering(May 1999).

[27] PIETZUCH, P., LEDLIE, J., SHNEIDMAN , J., ROUSSOPOULOS, M., WELSH, M., , AND SELTZER, M. Network-aware operator placement for stream-

processing systems. InProceedings of the 22nd International Conference on Data Engineering (ICDE’06, to appear)(April 2006).

[28] SHNEIDMAN , J., PIETZUCH, P., LEDLIE, J., ROUSSOPOULOS, M., SELTZER, M., AND WELSH, M. Hourglass: An Infrastructure for Connecting Sensor

Networks and Applications. Tech. Rep. TR-21-04, Harvard, 2004.

[29] SUN M ICROSYSTEMS, INC. Personal profile.http://java.sun.com/products/personalprofile/index.jsp .

[30] W3C-XML-ACTIVITY-ON-XML-PROTOCOLS. W3c recommendation: Web services description language 1.1. http://www.w3.org/TR/wsdl, October

2003.

[31] ZHAO, J.,AND GOVINDAN , R. Understanding packet delivery performance in dense wireless sensor networks. InProc. of the ACM SenSys(2003).


	Agimone: Midddleware Support for Seamless Integration of Sensor and IP Networks
	Recommended Citation
	Agimone: Midddleware Support for Seamless Integration of Sensor and IP Networks

	tmp.1469562486.pdf.Q4PQW

