
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-49

2005-10-31

MobiQuery: A Spatiotemporal Query Service for Mobile Users in MobiQuery: A Spatiotemporal Query Service for Mobile Users in

Sensor Networks Sensor Networks

Guoliang Xing, Sangeeta Bhattacharya, Chenyang Lu, Octav Chipara, Chien-Liang Fok, and Gruia-

Catalin Roman

This paper presents MobiQuery, a spatiotemporal query service that allows mobile users to

periodically collect sensor data from the physical environment through wireless sensor

networks. A salient feature of \MQ is that it can meet stringent spatiotemporal performance

constraints, including query latency, data freshness, and changing areas of interest due to user

mobility. We present three just-in-time prefetching protocols that enable MobiQuery to achieve

desired spatiotemporal performance despite low node duty cycles, while significantly reducing

communication overhead. We validate our approach through both theoretical analysis and

extensive simulations under realistic settings including varying user movement patterns and

location errors.

... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Xing, Guoliang; Bhattacharya, Sangeeta; Lu, Chenyang; Chipara, Octav; Fok, Chien-Liang; and Roman,
Gruia-Catalin, "MobiQuery: A Spatiotemporal Query Service for Mobile Users in Sensor Networks" Report
Number: WUCSE-2005-49 (2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/966

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/966?utm_source=openscholarship.wustl.edu%2Fcse_research%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/966

MobiQuery: A Spatiotemporal Query Service for Mobile Users in Sensor Networks MobiQuery: A Spatiotemporal Query Service for Mobile Users in Sensor Networks

Guoliang Xing, Sangeeta Bhattacharya, Chenyang Lu, Octav Chipara, Chien-Liang Fok, and Gruia-Catalin
Roman

Complete Abstract: Complete Abstract:

This paper presents MobiQuery, a spatiotemporal query service that allows mobile users to periodically
collect sensor data from the physical environment through wireless sensor networks. A salient feature of
\MQ is that it can meet stringent spatiotemporal performance constraints, including query latency, data
freshness, and changing areas of interest due to user mobility. We present three just-in-time prefetching
protocols that enable MobiQuery to achieve desired spatiotemporal performance despite low node duty
cycles, while significantly reducing communication overhead. We validate our approach through both
theoretical analysis and extensive simulations under realistic settings including varying user movement
patterns and location errors.

https://openscholarship.wustl.edu/cse_research/966?utm_source=openscholarship.wustl.edu%2Fcse_research%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/966?utm_source=openscholarship.wustl.edu%2Fcse_research%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages

MobiQuery: A Spatiotemporal Query Service for
Mobile Users in Sensor Networks1

Guoliang Xing; Sangeeta Bhattacharya; Chenyang Lu
Octav Chipara; Chien-Liang Fok, Gruia-Catalin Roman

This paper presents MobiQuery, a spatiotemporal query service that allows mobile users to peri-

odically collect sensor data from the physical environment through wireless sensor networks. A

salient feature of MobiQuery is that it can meet stringent spatiotemporal performance constraints,

including query latency, data freshness, and changing areas of interest due to user mobility. We

present three just-in-time prefetching protocols that enable MobiQuery to achieve desired spa-

tiotemporal performance despite low node duty cycles, while significantly reducing communication

overhead. We validate our approach through both theoretical analysis and extensive simulations

under realistic settings including varying user movement patterns and location errors.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols—Ap-
plications

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Sensor Networks, Spatiotemporal Query, Mobile User

1. INTRODUCTION

As large-scale wireless sensor networks make it possible to monitor the physical environ-
ment at unprecedented spatial and temporal granularities, a key research challenge is to
develop data services that deliver information to mobile users at the right time and right
location. In this paper, we propose a new data service for mobile users in sensor networks
called spatiotemporal query. In contrast to existing data services that generally assume
fixed areas of interest [Intanagonwiwat et al. 2000; Madden et al. 2002; Ye et al. 2002;
Kim et al. 2003; Yao and Gehrke 2002], spatiotemporal query is motivated by a class of
mission-critical applications in which mobile users need to continuously gather real-time
information from their vicinity. For example, a fireman fighting a wild fire may request
a periodic update of a temperature map within one mile around his current location to re-
main alert to the surrounding fire conditions. As the fireman moves, the query area changes
accordingly. As another example, a robot in a search and rescue operation needs to con-
tinuously query surrounding sensors for information about nearby dangers and survivors
as it moves in a dynamic environment. Based on the query results, the robot can locate
survivors and find the best rescue route through motion planning [Li et al. 2003; Alankus
et al. 2005]. Queries in the above application class are subject to the following common
constraints.

—Spatial constraints: Only the nodes inside the query area corresponding to the user’s
current position should contribute to the query result. Involving more nodes wastes
precious energy without improving the quality of service. Furthermore, it is desirable

1Guoliang Xing is with City University of Hong Kong. The other authors are with Washington University in St.
Louis. This work is funded in part by the NSF under an ITR grant # CCR-0325529 and the ONR under MURI
research contract # N00014-02-1-0715.

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · A Spatiotemporal Query Service

to aggregate data from enough nodes in the current query area to improve the fidelity of
the query result.

—Temporal constraints: A query is also subject to temporal constraints in terms of query
deadlines and data freshness. A query result must be delivered to the user by the end
of each query period. Moreover, sensor data must be fresh. The freshness of a sensor
datum is defined by its maximum validity interval after it is read from the sensor.

Meeting these constraints is crucial for the mission-critical applications that rely on sur-
rounding sensor data to maintain spatiotemporal context awareness. For example, a fire-
man may be endangered by a quickly evolving wild fire if the query results are aggregated
from old sensor readings, are delivered too late, are aggregated from sources at wrong
locations, or if too few nodes in the current query area contribute to the results.

Meeting all the spatiotemporal constraints is especially challenging in wireless sensor
networks due to their severe power and resource constraints. Although the temporal con-
straints require the nodes to respond to a query in a timely fashion, the low node duty cycles
forced by the power constraint can significantly increase the communication delay. Let’s
consider the following example to better understand the fundamental tension between the
constraint on communication delay and the requirement of extended network lifetime2. For
a MICA2 mote to remain operational for 450 days, the duty cycle needs to be lower than
1% [Polastre et al. 2004]. The maximum communication delay between nodes operating
in a duty cycle depends on the length of active window. The active window of S-MAC [Ye
et al. 2004] is 150 ms in its MICA implementation. Consequently, the sleep period is at
least 15s and the communication with sleeping nodes is subject to a maximum delay of
15− 0.15 = 14.85s. Such a long latency is intolerable to mobile users that must maintain
real-time context awareness in response to rapidly changing environments. In addition,
a spatiotemporal query service faces the challenge of reducing communication overhead
caused by the continuous queries from mobile users.

The key contributions of this paper are as follows. (1) We design a new spatiotem-
poral query service called MobiQuery that allows a mobile user to periodically query a
surrounding area under spatiotemporal constraints (see Section 4). (2) We propose a novel
just-in-time prefetching scheme that can meet stringent spatiotemporal constraints despite
the long communication delays caused by low node duty cycles. Furthermore, our analysis
shows that an advantage of just-in-time prefetching is that it significantly reduces com-
munication overhead caused by continuous queries from mobile users (see Section 6). (3)
We present three just-in-time prefetching protocols, Directional Tree Creation (DTC), Di-
rectional Tree Maintenance (DTM) and Omni-directional Tree Creation (OTC) to support
MobiQuery. DTC can achieve satisfactory spatiotemporal performance under extremely
low node duty cycles. DTM can further reduce communication overhead when query areas
overlap while OTC is particularly robust against unpredictable user movement patterns (see
Section 5). (4) We validate the design of MobiQuery through theoretical analysis and ex-
tensive simulations under realistic settings. For example, our simulation results show that
both DTM and OTC successfully deliver over 85% of the query results to a user querying
its surrounding area with 150m radius twice every second, even when the wake-up delay is
as high as about 15s, the user changes its motion pattern about every 60s, and the location

2While the example is based on low-power MACs (e.g., S-MAC [Ye et al. 2004]) on MICA2 motes, MobiQuery
is designed to work with a broad class of MACs that employ periodic sleep schedules like 802.11 PSM.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 3

error is as large as 10m. (see Section 7).
The rest of the paper is organized as follows. We present related work in Section 2

followed by problem formulation in Section 3. The architecture of MobiQuery is discussed
in Section 4. We then present the design of the three prefetching protocols in Section 5,
followed by a theoretical analysis of the protocols in Section 6. Simulation results are
discussed in Section 7, followed by conclusions in Section 8.

2. RELATED WORK

Several data query services have been developed for sensor networks [Intanagonwiwat
et al. 2003; Madden et al. 2002; Ye et al. 2002; Kim et al. 2003]. Directed Diffusion
[Intanagonwiwat et al. 2003] is a data-centric communication paradigm that allows for
in-network data aggregation. TinyDB [Madden et al. 2002] is an energy-efficient query
service for sensor networks. However, unlike MobiQuery, both TinyDB and Directed Dif-
fusion assume fixed query areas and are not designed to handle moving users or query
areas. It has been shown in [Kim et al. 2003] that Directed Diffusion is unsuitable for
mobile users. TTDD [Ye et al. 2002] and SEAD [Kim et al. 2003] are data services that
allow mobile users to collect data from fixed areas. TTDD builds a virtual grid to deliver
the data to mobile sinks. SEAD maintains a routing tree for mobile users and uses data
caches to balance latency and energy consumption. Unlike these protocols, MobiQuery is
designed to query an area that moves with the user. Dealing with both user mobility and
time-varying data sources introduces new challenges to data services.

Earlier projects on tracking in WSNs also deal with the mobility of objects. The so-
lutions in [Li et al. 2002; Zhao et al. 2002; Blum et al. 2003; Aslam et al. 2003] do not
employ wake-up protocols to handle sleeping nodes. As a result, they may suffer from
poor tracking performance when nodes sleep most of the time and cannot contribute to
the tracking process. For example, He et al. [He et al. 2004] observed that the sleeping
schedule severely affects the tracking performance of their surveillance system when an
object moves fast.

Several recent projects have studied wake-up protocols for object tracking [Zhang and
Cao 2004; Pattem et al. 2003; Gui and Mohapatra 2004]. Gui et al. propose a wake-
up mechanism to achieve specified quality of surveillance for moving objects [Gui and
Mohapatra 2004]. A selective sensor activation scheme is proposed in [Pattem et al. 2003]
to achieve tradeoffs between energy and quality of tracking. DCTC [Zhang and Cao 2004]
is an object tracking protocol that maintains a tree around the predicted route of a moving
target. The above protocols, however, were not designed for spatiotemporal queries. More
importantly, they were best-effort solutions that are not designed to meet spatiotemporal
constraints. As a result, they may not be able to maintain the desired tracking performance
in the face of fast objects and/or low network duty cycles. The ability to meet stringent
spatiotemporal constraints differentiate our protocols from the above work.

Mobicast [Huang et al. 2003] bears some resemblance to this work. Mobicast is a spa-
tiotemporal multicast protocol designed for disseminating data to a changing area just in
time. Mobicast deals only with data dissemination, while MobiQuery collects data from
a moving area in addition to dissemination. Moreover, Mobicast does not consider node
duty cycles while MobiQuery uses a novel prefetching scheme to overcome the long com-
munication delays due to node duty cycles.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · A Spatiotemporal Query Service

3. PROBLEM FORMULATION

In this section we introduce the spatiotemporal query model, formalize its spatiotem-
poral requirements and discuss the assumptions underlying the design of MobiQuery. A
user issues a spatiotemporal query to periodically collect data from sensors in surrounding
areas while moving through a sensor field. A spatiotemporal query Q has six parameters:
(θ, F, A(Pu(t)), Tp, Tf , Tlife), which are provided by the user based on application
requirements. θ is the type of sensor data being queried. F is an aggregation function that
is applied to the results inside the network; in-network aggregation is a well-investigated
technique utilized by existing data services [Madden et al. 2002] to reduce bandwidth con-
sumption. A(Pu(t)) is a function defining the query area relative to the user’s position,
Pu(t), at time t. For simplicity, we assume A(Pu(t)) is a circle with radius Rq centered
at Pu(t) in the rest of the paper, although our design can be easily extended to other types
of query areas. Tp is the query period. The user expects to receive a new result by the
end of each query period. Tf specifies the data freshness constraint, i.e., a query result is
acceptable only if it is aggregated from sensor readings no more than Tf seconds old. Tlife

is the lifetime of the query. As a query usually spans multiple query periods, a query may
collect query results from multiple query areas in its lifetime. In the rest of this paper, a
query instance refers to the process of collecting a query result from a query area within
one period, and so a query may comprise multiple query instances.

Before formalizing the requirements of a spatiotemporal query, we first define the fol-
lowing notation.
—V denotes the set of nodes in the network. Pi denotes the location of node i, i ∈ V .
—ϕk denotes the result that is received by the user from the network for the kth query

instance.
—N(ϕk) is the set of nodes whose sensor readings are contained in ϕk (after being aggre-

gated by function F).
—ts(ϕk) represents the earliest time instance that a reading aggregated in ϕk is taken by a

node in N(ϕk).
—tr(ϕk) is the time instance that ϕk is received by the user.

The objective of our problem is to satisfy the following constraints for a spatiotemporal
query, Q(θ, F, A(Pu(t)), Tp, Tf , Tlife), issued by the user at time instance t0:

∀k, 1 ≤ k ≤ bTlife

Tp

c, t0 + (k − 1)Tp ≤ tr(ϕk) ≤ t0 + kTp (1)

∀k, 1 ≤ k ≤ bTlife

Tp

c, t0 + kTp − Tf ≤ ts(ϕk) ≤ t0 + kTp (2)

∀k, 1 ≤ k ≤ bTlife

Tp

c, ∀i ∈ N(ϕk), Pi ∈ A(Pu(t0 + (k − 1)Tp)) (3)

Eqn. (1) and (2) specify the temporal constraints of the query result. That is, for the kth

query instance, a query result ϕk is expected to be received at or before deadline t0+k ·Tp,
and the data in the result is at most Tf old. Eqn. (3) specifies the spatial constraint of the
query result. That is, for the kth query period, all and only nodes within the query area
(defined according to the user’s location at the beginning of the period) should contribute
to the query result.

To solve this problem, we make some assumptions about the underlying sensor net-
ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 5

work: 1) all nodes have synchronized clocks, 2) each node knows its own location through
a localization service, and 3) to prolong the network lifetime, the network runs a power
management protocol that selects a small subset of nodes to keep active while the remain-
ing nodes operate in a synchronized duty cycle. The active nodes form a backbone network
that allows the communication delay between any two nodes to remain in the order of one
duty cycle. A number of existing power management protocols [Chen et al. 2001; Xing
et al. 2005; Xu et al. 2001] maintain such backbones.

4. SYSTEM ARCHITECTURE

MobiQuery is spread across two types of devices: a proxy and nodes of the sensor network.
A proxy is a mobile device (such as a PDA or laptop) carried by the user as it moves
through a sensor field. The query gateway on the proxy serves as the interface between
the proxy and the nodes in the network. Three components of MobiQuery reside on the
nodes: prefetching, query dissemination and data collection. In addition, MobiQuery also
works with power management protocols on nodes and an optional motion predictor on the
proxy.

The query gateway issues queries to the network for the user. If a motion profile is avail-
able, the query gateway appends it to the query, before issuing the query to the network.
Note that a user only needs to submit a query once at the beginning of the query. Mobi-
Query will periodically deliver new query results to the user until the query expires. In
the network, MobiQuery handles a spatiotemporal query, by first alerting nodes in future
query areas about the query, using a technique called prefetching. MobiQuery then uses
the query dissemination and data collection components to establish a query tree that ag-
gregates the sensor readings from the nodes in a query area and delivers them to the user,
when the user reaches the query area.

4.1 Motion Predictor

The motion predictor generates a motion profile that specifies the user’s future movement.
MobiQuery uses the motion profile to predict future query areas. However, this component
is optional, and MobiQuery can operate without a motion profile. Note that this component
resides on the proxy carried by the user, which typically has more processing power than
the network nodes.

4.1.1 Generation of Motion Profiles. We discuss two ways of generating motion pro-
files. First, a motion profile can be generated based on the recent movement history of
the user obtained from a GPS in the proxy or a location service [Hightower and Borriello
2001]. Second, autonomous robots usually generate motion profiles based on motion plan-
ning [Latombe 1991] and control their future movement accordingly. In such cases, the
motion planner can provide the motion profiles to MobiQuery without incurring additional
overhead.

As a simple example, a motion profile P includes a velocity−→v , assuming the user moves
at −→v in the future. −→v can be estimated based on two previous user positions (p1, t1) and
(p2, t2), where pi (i = 1, 2) is the user position at time ti. Let δ = t2− t1. Then −→v can be
estimated as−→v =

−−→p1p2

δ
, where δ represents the sampling period of user positions. δ affects

the accuracy of the motion prediction and is a system parameter of the motion predictor.
Intuitively, when there are errors in location readings (e.g., p1 and p2), a small δ may result
in high prediction errors. The proxy periodically monitors the user’s position and issues a

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · A Spatiotemporal Query Service

new motion profile whenever the user diverges from the motion profile by a threshold.

4.1.2 Motion Profile Model. A motion profile P in MobiQuery is defined by the 4-
tuple (ps, pe, ts, te) where ps, pe are two points in space that denote the user location at
times ts and te respectively. The user is thus predicted to travel along a straight line from
ps to pe within time [ts, te]. Each motion profile P is also associated with a third timing
parameter tg , which specifies when P is generated. Let Ta = ts − tg . Ta represents how
early the proxy receives P before P takes effect and is referred to as the advance time of
P .

When P is generated by a motion planner, Ta is positive since P is always created before
the user takes the planned path. In contrast, when P is generated based on movement
history, Ta is negative because the motion profile is available only after one sampling
period. In this case, part of P ([ts + Ta, ts] (Ta ≤ 0)) has expired by the time the proxy
receives P .

MobiQuery uses the history based approach to generate the motion profile. The user
position is obtained at every sampling period Ts from GPS. Ts is lower bounded by the
delay in acquiring a location reading of the user location. For example, obtaining an initial
location reading takes about 8s [Papyrus 2004]. The recent experiments on Leadtek GPS
with Berkeley motes show that the lag of location readings is about 2 ∼ 3s when the
user walks briskly [Firebug-Project 2004]. MobiQuery monitors the distance between the
current user location obtained at each sampling period and the location predicted by the
current motion profile, and generates a new motion profile, if the distance is greater than a
threshold. Our experiments in Section 7.4 show that MobiQuery can achieve satisfactory
performance when working with this simple motion prediction technique. We note that
more complex techniques [Aljadhai and Znati 2001] can be used to improve the accuracy
of the motion prediction.

4.2 Prefetching, Query Dissemination and Data Collection

Prefetching is a method that alerts nodes in future query areas about the user query so that
they can respond to the query in time. It is a key component of MobiQuery and enables
MobiQuery to meet the spatiotemporal constraints of a query despite the extremely low
node duty cycles. To understand why prefetching is necessary, we consider the following
simple example. Assume that the nodes in a network are active for 150ms in every 15
seconds and that the user needs to query the nodes in its vicinity every 5 seconds. If the user
disseminates the query at the beginning of each query period, due to the sleep schedule, on
average only 1/3 of the nodes can be woken up by the end of the query period. Prefetching
solves this problem by alerting the sleeping nodes about the query beforehand, enable them
to wake up at the right time to participate in the query. Two possible prefetching schemes
are discussed next.

Greedy Prefetching. Nodes in all future query areas can be alerted in an as-soon-as-
possible fashion. This approach maximizes the slack time at successive query areas in
order to meet query deadlines. However, it can cause high communication overhead per
period and excessive network contention as a query may be disseminated in adjacent query
areas simultaneously. We formally analyze the communication overhead under greedy
prefetching in Section 6.2.

Just-In-Time Prefetching. This scheme alerts nodes just-in-time to respond to the query.
It uses a hold and forward strategy where the forwarding is paced in order to reduce com-
ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 7

Tf freshness requirement of query results Tsleep sleep period
Ta advance time of motion profile Ts sampling period of motion profile
Tlife lifetime of a user query Tcollect duration of data collection process
Tp period of user query Na average number of active nodes per query area
valt speed of alert message Tsetup delivery delay of setup message in a query area
vuser speed of user Rp max distance between a pickup point and collector node
Rc communication range of nodes Tdelay max delivery delay of query results set by the user

Table I. Symbols used in protocol design and analysis.

munication overhead and network contention. When the motion profile is available, it
reduces the cost caused by user motion changes by sending a cancel message along the
abandoned path to stop the previous prefetching process. However, the cancellation mech-
anism is not effective for greedy prefetching because the query is distributed to most of the
query areas on the path by the time a motion change occurs.

The query dissemination component of MobiQuery is responsible for distributing the
query to a query area, and building a routing tree for data collection. In data collection, the
nodes perform a measurement and send their data via the routing tree to the user.

5. PROTOCOL DESIGN

In this section, we present three prefetching protocols: Directional Tree Creation (DTC),
Directional Tree Maintenance (DTM), and Omni-directional Tree Creation (OTC). Both
DTC and DTM calculate the user’s path based on the user’s motion profile. DTC wakes up
nodes ahead of the user and creates a new query tree in each query area along the predicted
path, while DTM maintains a single tree that moves with the user. DTM can significantly
reduce the communication overhead and network contention when the query areas overlap.
OTC on the other hand assumes no knowledge of user motion profile and wakes up nodes
in a circular region that covers all possible future query areas ahead of time. Operating
without the user’s motion profile, OTC is therefore robust to user’s motion changes and
location errors. Table I lists all the symbols used in protocol design and analysis.

5.1 Directional Tree Creation

DTC wakes up nodes along the predicted user path based on a motion profile. After re-
ceiving the query and the motion profile from the proxy, DTC uses the motion profile to
predict locations called pickup points where the user expects to receive the query result in
each query period. An alert message containing the query specification and the motion
profile is then relayed by the network to each future pickup point using an area anycast [He
et al. 2005]. The area anycast delivers the alert message to a node within a certain dis-
tance, Rp, of the pickup point. To guarantee the delivery of the alert message, Rp should
be selected based on the density of the sensor network. For instance, when the deployment
region has sensing coverage, i.e., every point in the region is within the sensing range of
at least one node, Rp can be set to the sensing range. This is because the sensing coverage
guarantees that there exists a node within the sensing range of any point. The first node
within Rp of the pickup point that receives the alert message is called a collector node. It
is responsible for relaying the alert message to the next pickup point, distributing the query
to its query area, and aggregating the results in time for delivery to the user when the user
reaches the pickup point The process of forwarding the alert message along the predicted
user path is illustrated in Fig. 1.

Upon receiving the alert message, a collector node floods a setup message with the
ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · A Spatiotemporal Query Service

x x

Rq

Rp x

xcollector node
pickup
point

query area
boundary

prefetch
propagation

predicted user path

Fig. 1. The process of forwarding an alert message along the predicted path.

query specification to all the nodes in its query area. Each active node sets the first node
from which it receives the message as its parent 3. The active nodes store the message
and deliver it to the sleeping nodes when they wake up. Upon receiving the message, the
sleeping nodes set the active node from which they first receive the message as their parent,
and then reconfigure their sleep schedule to wake up at time kTp − Tf if the message
from the collector node is for the kth query period. Note that this is the earliest time
any node can perform measurements without violating the freshness constraint. Sleeping
nodes are restricted to be leaves of the query tree to allow them to quickly go back to
sleep after measuring and transmitting a single sensor reading. The constitutes the query
dissemination phase.

In the data collection phase, each leaf node in the kth query area takes a sensor reading
at time kTp− Tf , and sends it to its parent. Each parent node collects data reports from its
children until its sub-deadline. It then performs its own sensor measurement, aggregates
its data with the data reports from its children, and sends the aggregated data report to its
parent. The sub-deadline of each parent node is chosen to allow data aggregation while
meeting the temporal constraints. DTC uses the following heuristic to assign node u’s
sub-deadline, du(k), for the kth query area:

du(k) =

{

k · Tp if parent is user

k · Tp − |up|
Rp+Rq

· Tf otherwise
(4)

where Rp+Rq is the maximum distance between a node in the query area and the collector
node that resides within Rp range of the pickup point. |up| is the Euclidean distance
between u and the collector node p. Eqn. (4) ensures that the further a node is from the
pickup point, the quicker it will timeout and forward the result to its parent, which increases
the likelihood of aggregation and timely delivery of query results to the user.

The DTC protocol is shown in Fig. 2. DTC supports both the greedy and just-in-
time prefetching schemes discussed in Section 4.2. In the rest of this paper, DTC with
greedy and just-in-time prefetching are denoted by DTC-GP and DTC-JIT, respectively.
In DTC-GP, each collector node forwards the alert message to the next collector node
immediately after receiving it. In contrast, DTC-JIT holds the message for a certain amount
of time before forwarding it. The time to forward the message without violating the query

3Several existing techniques may be used to eliminate asymmetric links from the tree [He et al. 2004]. Another
potential issue is that the tree may need to be reconfigured when the underlying power management protocol
dynamically puts an active node to sleep in order to achieve load balancing [Chen et al. 2001]. To avoid the
overhead of tree reconfigurations, parent node stays awake until the end of the current query instance.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 9

When alert message is received

(1) Calculate the next pickup point, P , using the motion profile.
(2) If in greedy mode, send an anycast alert message to P . If in JIT mode, set ForwardTimer

to fire at time given by (13).
(3) Broadcast a setup message.
(4) Set SendTimer to fire at data collection time given by (4).

When setup message is received

(1) If in query area, set sender as parent. Rebroadcast the setup message if active node.
(2) Set SendTimer to fire at data collection time given by (4).

When ForwardTimer fires

(1) Send an anycast alert message to P .

When SendTimer fires

(1) If sleeping node, wake up (turn on the radio).
(2) Send query result to parent.

Fig. 2. DTC Protocol.

deadlines, referred to as prefetch forwarding time, is a key design parameter of DTC-JIT.

5.1.1 Prefetch Forwarding Time Analysis. The prefetch forwarding time should be
early enough so that the next query result can be delivered to the user in time, and also
late enough to achieve just-in-time prefetching. We first make the following assumptions:

Tcollect ≤ Tf (5)

Tsetup ≤ Tf (6)

vuser < valt (7)

Tcollect is the duration of the data collection process. Tcollect ≤ Tf is necessary to meet
both the freshness and the deadline constraints. Otherwise it is impossible for the net-
work to deliver a query result to the user before the data becomes too old. This condi-
tion is enforced by the sub-deadline assignment discussed earlier. Similarly, we assume
Tsetup ≤ Tf . Tsetup is the time it takes to create the partial query tree composed of only
active nodes in a query area, and is usually shorter than the data collection delay because
the tree is set up as soon as possible and does not incur any aggregation delay. Moreover,
only active nodes communicate during Tsetup, which involves fewer hops than in data
collection. vuser and valt in (7) denote the speed of the user and the alert message, re-
spectively. valt is defined as the distance between two consecutive collector nodes divided
by the communication delay between them. Intuitively, (7) is necessary for the network
communication to be able to catch up with the user. This assumption is reasonable because
an alert message is always forwarded by active nodes, without wake-up delays.

Our goal is to derive tsend(k−1) which is the time at which the (k−1)th collector node
should forward the alert message to the kth collector node such that the deadline of the
kth query result (k ·Tp) is met. We first derive the time (denoted by trecv(k)) by which the
kth collector node should receive the alert message in order to meet the deadline. Upon
receiving the alert message, the kth collector node needs to set up the query tree and to
collect the data before the deadline k ·Tp. Hence the query deadline is met if the following
inequality holds:

trecv(k) ≤ k · Tp − Ttree − Tcollect (8)

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · A Spatiotemporal Query Service

where Ttree denotes the time taken to create the query tree composed of all nodes in the
query area. Ttree equals the sum of Tsetup and the delay in waking up all sleeping nodes,
which is upper bounded by the sleep period Tsleep:

Ttree ≤ Tsetup + Tsleep (9)

From (9) and (6), we have:

Ttree ≤ Tsetup + Tsleep ≤ Tf + Tsleep (10)

Based on (10), (5) and (8), the deadline k · Tp will be met if the following condition holds:

trecv(k) ≤ k · Tp − Tsleep − 2 · Tf (11)

The time it takes the alert message to travel between the two considered collector nodes
is vuser·Tp

valt
< Tp. Hence, the alert message will be received before trecv(k) by the kth

collector node if:

tsend(k − 1) ≤ trecv(k)− Tp (12)

Based on (12) and (11), the deadline k · Tp will be met if the prefetch forwarding time of
the (k − 1)th collector node satisfies the following condition:

tsend(k − 1) ≤ (k − 1) · Tp − Tsleep − 2 · Tf (13)

We note that this bound is not tight as DTC-JIT may still meet query deadlines even if
DTC forwards the alert message at a later time. However, our simulation results in Sec-
tion 7.2 show that this bound is sufficient for DTC-JIT to achieve significant performance
improvement over DTC-GP.

5.2 Directional Tree Maintenance

Although DTC can enhance the performance of spatiotemporal queries, it may incur high
communication overhead and network contention when many consecutive query areas
overlap each other because it creates a new query tree in each query period. DTM ad-
dresses this drawback by maintaining a single moving tree that is rooted at the user and
travels along with the user. Like DTC, DTM depends on the user motion profile. In DTM,
the query dissemination process is broken up into two phases: the initial tree building
phase, followed by the tree maintenance phase. The data collection phase is similar to that
in DTC.

In the tree building phase, DTM creates a spanning tree in the first query area after the
user issues a query message that contains the query parameters and the user motion profile.
Active nodes receiving the query message set the user or an active neighbor that is closer
to the user location, as their parent. These nodes then propagate the query information
through broadcasted join messages. Active nodes in the current or future query areas join
the tree upon receiving a join message, by either setting the source node or a neighbor
that is closer to the pickup point of the first query area that they are a part of, as their
parent. Note that the join message contains the user motion profile and hence each node
can compute the future query areas and pickup points. Like in DTC, only active nodes
form the internal nodes of the tree. Active nodes hold the join message and deliver it to the
sleeping nodes when they wake up. Sleeping nodes thus form the leaves of the tree.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 11

1

2

5

7

8

6

3

4

P1

(a) Tree building phase.

1

2

5
7

8

6

9 11

10

3

4

P1
P2

P3

(b) Tree maintenance phase.

Fig. 3. DTM tree building and maintenance. P1, P2 and P3 are three pickup points along the user
trajectory. Dark gray nodes denote query tree nodes that are in the current query area (shown by a
solid circle). The query subtree root is denoted by a black node. The subtree root has the user as
its parent. Lightest gray nodes denote nodes that are a part of the query tree but do not belong to
the current query area. These nodes are connected to the tree using dashed arrows. Nodes that were
in the previous query area (shown by a dotted circle) but are no longer in the current query area are
shaded in light gray.

In the tree maintenance phase, nodes are woken up along the predicted user path and the
tree moves in the direction of user motion through node additions and deletions. This is
achieved as follows. On receiving a join message, a node u in a future query area joins the
existing query tree by first computing the earliest query period j that it participates in, and
then selecting an active neighbor closest to the jth pickup point as its parent. The node
then performs the following actions: (1) it precomputes its parents for all query periods
that it participates in, (2) it rebroadcasts the join message at time tjoin(j) (derived in Sec-
tion 5.2.1) if it is an active node, (3) after sending the result for the jth query period at
time du(j) (given below), it adjusts its parent for the next query period that it participates
in. Note how the tree grows by node additions and by local parent adjustments. Moreover,
nodes that are not in any future query area automatically drop out of the tree. Thus, local
computations on each node, based on neighborhood information and knowledge of the user
motion profile, allow the query tree to move in the right direction without incurring extra
communication overhead.

The tree maintenance phase is robust to join message loss, since the same message is
broadcasted by a number of nodes, which leads to redundant messages. Therefore, to
reduce overhead, a node does not retransmit the join message. Also, in DTM, a node
always chooses the user if it is within the communication range of the pickup point, or the
active neighbor closest to the pickup point, as its parent. However, if it is the closest to
the pickup point but is not within the communication range of the pickup point, it is in a
network void. Network voids can lead to cycles on the tree, thus reducing data fidelity.
DTM prevents cycles by disallowing nodes within network voids from being parents in
the query tree. Each node checks if it is within a network void with respect to each query
period it participates in, and includes such information in the join message. A node only
selects a node that is not within a network void, as its parent. When a node on the tree
finds itself in a new network void (e.g., due to the change of query period), it notifies
its neighbors by broadcasting a message. On receiving this message, the node’s children
select new parents that are not within network voids.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · A Spatiotemporal Query Service

The data collection process in DTM is similar to that in DTC. Query results are aggre-
gated via the query tree and delivered to the user by the root of the tree. Sleeping nodes
are restricted to be the leaves of the query tree and hence wake up at time k · Tp − Tf to
send the kth query result. Active nodes send the query result according to a sub-deadline
assignment scheme to facilitate data aggregation. Thus, an active node u sends the result
for the kth query period to its parent at time du(k), given by:

du(k) =

{

k · Tp if parent is user

k · Tp − |up|
Rq

· Tf otherwise
(14)

The DTM protocol is shown in Fig. 4 and the tree building and tree maintenance phases
are illustrated in Fig. 3(a) and Fig. 3(b), respectively. Fig.3(a) shows the initial query tree
that is formed in query area 1, in response to a query message broadcasted by the user.
The query tree consists of a single network query tree that is rooted at node 1. As seen in
the figure, the query tree contains nodes that belong to query area 1 (nodes colored dark
gray), like nodes 1-6 and also some nodes that belong to query area 2 (colored very light
gray, with dashed arrows), like nodes 7 and 8. Nodes that do not belong to query area 1
(e.g., 7, 8) join the tree on receiving a join message, by selecting a parent that is closest to
the pickup point of the first query area that they are part of. For example, node 8 selects
node 7 as its parent, since among its neighbors, node 7 is the closest to the pickup point
of query area 2 (P2), which is the first query area that node 8 belongs to. Even though
nodes that do not belong to query area 1 are part of the tree, they do not participate in the
data collection phase for query area 1. Once the nodes in query area 1 transmit the sensor
data to their respective parent, they adjust their parent pointer to point to the neighbor that
is closest to P2. For example, in Fig. 3(b), node 3 changes its parent pointer from node
1 to node 4, node 1 sets it parent to node 3 while node 6 finds itself to be the closest to
the second pickup point P2 among its neighbors, and hence becomes the new root. Nodes
like 2 (colored light gray) that do not belong to any future query area drop out of the tree
while nodes like 9, 10 that belong to query area 2 get added to the tree. Nodes in query
area 2 that are not part of the tree along with nodes like 11 that belong to the third query
area get added to the tree when nodes belonging to query area 2 that are already part of the
tree (like nodes 7, 8) broadcast a join message at time tjoin(2). The above process repeats
when the user reaches P2 and so on.

5.2.1 Forwarding Time Analysis. Nodes in future query areas are woken up by for-
warding the join message ahead of the user. The time to forward this message is critical
for a query to meet its spatiotemporal constraints, and can be derived similarly as the for-
warding time of DTC because the just-in-time prefetching scheme is employed by both
protocols. However, DTM allows for a later forwarding time because the processes of dis-
seminating the query to a future area and setting up the tree are combined in a single step in
DTM while they are separate in DTC. Specifically, the time at which a node rebroadcasts
the join message to notify its neighbors to join the tree, tjoin(k) (where k is the first query
area that it is a part of), must satisfy:

tjoin(k) ≤ (k − 1)Tp − Tf − Tsleep (15)

We can see the forwarding time of DTM is Tf later than that of DTC (see (13)). The
detailed derivation can be found in [Bhattacharya et al. 2005], and is omitted here due to
space limitation.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 13

When join message is received

(1) Accept if participating in current or future query
area.

(2) For each query period k that this node is a part
of
(a) Set active neighbor closest to the kth

pickup point as parent.
(b) If this node itself is the closest to the kth

pickup point, set user as parent.
(3) If active node, calculate tjoin(k) according to

(15) and set timer JoinTimer to fire at tjoin(k).
(4) Calculate time to send result according to (14)

and set timer SendTimer to fire at the right time.
(5) If sleeping node, switch to sleep schedule.

When JoinTimer fires

(1) Broadcast Join message.

When SendTimer fires

(1) If sleeping node, wake up.
(2) Send query result to parent.
(3) Adjust parent for next query period.
(4) If sleeping node, switch to sleep.

Fig. 4. DTM Protocol.

When query message is received

(1) If there is a neighbor closer to the user, set it
as parent, else set user as parent.

(2) If active node, calculate n using (21) and send
setup message.

(3) If sleeping node, switch to sleep after nTp s.

When setup message is received

(1) Accept if in query area.
(2) Set node source as parent.
(3) Rebroadcast the setup message if active node.
(4) Set SendTimer to fire at data collection time

(given by (16)).

When SendTimer fires

(1) Send result to parent.
(2) If leaf and active node, broadcast wake-up

message.

When wake-up message is received

(1) Accept if in circle C.
(2) Rebroadcast the message if active node.
(3) If sleeping node, switch to sleep after nTp s.

Fig. 5. OTC Protocol.

5.2.2 Discussion. DTM works only when the query areas overlap and hence the join
messages can be forwarded continuously along the user’s path. To address this limitation,
we can choose DTM or DTC based on knowledge of whether the query areas overlap or
not, which can be obtained from the user’s motion profile. An alternative solution, which
is robust to user motion changes, is to use a hybrid form of DTM and DTC where a single
moving query tree is maintained as long as the query areas overlap, and a tree per query
area is maintained otherwise. The switching between DTM and DTC can be done as
follows. If the next query area does not overlap with the current one, only the node whose
parent is the user sends an anycast alert message to the node closest to the pickup point
of the next one. This results in conversion from DTM to DTC. Once the query areas start
overlapping, DTC can be converted once again to DTM, by having the node closest to the
pickup point of the query area overlapping the next query area, broadcast join messages to
create the single moving tree.

5.3 Omni-directional Tree Creation

Both DTM and DTC assume the availability of a user motion profile. In situations where
the user movement pattern is highly unpredictable, or the motion history information has
high location error, it is not possible to wake up just the right nodes ahead of time. How-
ever, if the maximum user speed is known, we can wake up all the nodes in a circle C
centered at the current user location, henceforth called wake-up area, such that nodes in
n future query areas in C, are ready to aggregate and provide the query result to the user,
irrespective of the user’s actual speed and direction of motion. This is the approach taken
by OTC. The constant n is called wake-up horizon; it is dependent on the node duty cycle
and is chosen such that nodes in the nth query area are woken up by the time the user

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · A Spatiotemporal Query Service

reaches the query area.
In OTC, nodes are not aware of the user location ahead of time and hence learn about a

pickup point only when the user reaches the pickup point and issues a new query instance.
After the user arrives, nodes deliver the query result to the user within a certain delay
Tdelay which is set by the user. The query message contains the parameters described in
Section 3 except Tf , which is replaced by Tdelay , along with vmax and puser, where vmax

is the maximum user speed and puser is the user location. A query tree is built at each
pickup point, in response to a query message, by flooding a setup message in the query
area. The message contains query information, the pickup point number and the value of
the wake-up horizon. Each node u on the tree then calculate the time du(k) after which
the result needs to be sent to the parent as follows:

du(k) =

{

k · Tp + Tdelay if parent is user

k · Tp +
Rq−|up|

Rq
· Tdelay otherwise

(16)

Once the result is sent, active leaf nodes further broadcast a wake-up message containing
Tp, n, puser, and R, where R is the radius of the circle C. The message is flooded in the
circle C. All future participating nodes are woken up ahead of time, and go back to sleep
only after nTp seconds. R is chosen such that sleeping nodes in the nth query area relative
to the current query area are woken up by the time the user reaches the query area. Thus,

R = nvmaxTp +Rq (17)

where nvmaxTp is the distance between the nth pickup point and the current pickup point
while Rq is the maximum distance of a node in the nth query area from the corresponding
pickup point.

Let t(d) represent the time taken by a message to travel distance d. t(d) can be calculated
by:

t(d) ≤ αd d

Rc

eτ (18)

where Rc is the communication range, α is the network dilation and τ is the one-hop
broadcast delay. Network dilation is defined as the upper bound on the ratio of the hop
count between any two nodes to the minimum hop count d d

Rc
e between them, where d is

the Euclidean distance between two nodes. Network dilation is shown to be bounded in
sensor networks with sensing coverage [Xing et al. 2004]. For networks without sensing
coverage, the network dilation can be measured as shown in [Huang et al. 2003]. In our
simulations, we use the network dilation bound as given in [Xing et al. 2004] and mea-
sure the one-hop broadcast delay by timestamping messages and calculating the delay in
message reception.

The time it takes the user to travel R is nTp, while the time it takes a message to travel R
is bounded by t(nTpvmax+Rq)+Tsleep+ε where ε is the additional time taken by a node
to send out a wake-up message. Since a node sends out a message only after sending the
query result, we have ε ≤ Tdelay , where Tdelay (defined in Section 5.3) is the maximum
delay between the time when the user issues the query at a pickup point and when the
query result is received. Since the message should reach the nodes before the user gets to
the pickup point,

nTp ≥ t(nTpvmax +Rq) + Tsleep + Tdelay (19)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 15

Applying (18) in (19), we see that the timing constraints of the query will be met, if

nTp ≥ α(
nTpvmax +Rq

Rc

+ 1)τ + Tsleep + Tdelay (20)

In our protocol we use the minimum n that satisfies this inequality, denoted as n∗. Thus,

n∗ =
α(Rq +Rc)τ + (Tsleep + Tdelay)Rc

Tp(Rc − ατvmax)
(21)

From (17) and (21), the radius of the wake-up area can be derived:

R =
α(Rq +Rc)τ + (Tsleep + Tdelay)Rc

Rc − ατvmax

· vmax +Rq (22)

6. ANALYSIS

In this section, we analyze MobiQuery under the three prefetching protocols: DTC, DTM,
and OTC. In Section 6.1, we derive the warmup interval during which sleeping nodes
cannot be woken up in time and hence MobiQuery only yields best-effort performance. In
Section 6.2, we analyze the communication overhead of the three protocols.

6.1 Warmup Interval

MobiQuery may experience warmup intervals denoted by Tw, during which not all the re-
quired nodes are alerted about the query through prefetching, and hence some query results
may violate query deadlines. DTM and DTC experience a warmup interval every time the
user motion profile changes while OTC experiences it only once at the start of the query.
During the warmup interval, prefetching cannot be performed in time, i.e., conditions (13),
(15), and (19) do not hold for DTC, DTM, and OTC, respectively. Thus, the protocols
use greedy prefetching during this period and switch to just-in-time prefetching once the
prefetching conditions hold. We now analyze the upper bound on Tw for DTC, DTM and
OTC, labeled Tw−DTC , Tw−DTM and Tw−OTC , respectively. This bound quantifies the
robustness of DTC and DTM in the presence of user motion changes. Its significance is
however reduced for OTC, which just experiences a warmup interval at the start, irrespec-
tive of the user motion pattern. We first evaluate Tw for DTC (Tw−DTC), followed by that
for DTM and OTC.

Suppose DTC receives a new motion profile Ta seconds before the motion change occurs
and the warmup interval lasts Tw−DTC seconds since the motion profile is issued. Let pk
denote the pickup point where the warmup interval ends. The user needs to travel a distance
of vuser ·(Tw−DTC+Ta), where vuser is the user velocity, to reach pk from the point where
it receives the motion profile. We approximate the locations of collector nodes with those
of the corresponding pickup points. Then, the time it takes the alert message to reach pk,
Tp−DTC , is as follows:

Tp−DTC =
vuser · (Tw−DTC + Ta)

valt

(23)

where valt is the velocity of the alert message. After the message reaches the pickup point,
it takes Ttree +Tf seconds to build the query tree and collect the results. In the worst case,
the deadline of the last query period in the warmup interval cannot be met. Hence, we
have:

Tw−DTC + Ta ≤ Tp−DTC + Ttree + Tf (24)

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · A Spatiotemporal Query Service

Solving Tw−DTC using (24) and (23):

Tw−DTC ≤
Tsleep + 2Tf − (1− vuser

valt
) · Ta

1− vuser
valt

(25)

Thus, Tw−DTC becomes zero when Ta = (2Tf + Tsleep)/(1 −
vuser

valt
). That is, when the

motion of the user can be predicted early enough, the query does not incur any warmup
interval. In addition, valt À vuser holds in practice. As a quantitative estimation of
vuser

valt
, let us consider the following simple example on MICA2 motes [Crossbow 2003].

Suppose two consecutive collector nodes are 100m apart and there are 5 hops between
them. The size of an alert message is 60 bytes. The bandwidth of a mote is 38.4 Kbps
[Crossbow 2003]. To account for routing/MAC overhead and contention delay, we assume
the effective bandwidth of a mote is 5 Kbps. Then valt can be calculated as follows:

valt =
100m

5× (60 bytes× 8)/5000 bps
× 3600s

1000× 1.6
≈ 469mph

Obviously, valt is much greater than the velocity of a human or a vehicle. Approximating
vuser

valt
to zero, we get Tw−DTC ≈ Tsleep + 2Tf − Ta.

The warmup interval of DTM is similar to that of DTC because both protocols employ
greedy prefetching in the warmup phase. The two protocols’ operation in the warmup
phase, however, differs in how the nodes are woken up. Nodes in DTM are woken up in
the broadcast process that spans multiple adjacent query areas while an unicast is used in
DTC to first notify adjacent query areas which is then followed by a broadcast process
within each query area to wake up nodes. A quantitative example, similar to the one
given earlier in this section, can show that the speed of broadcast messages is orders of
magnitude higher than that of the user. Therefore, the nodes in DTM are woken up at
roughly the same time as in DTC, from the user’s perspective. As a result, the warmup
interval of DTM can be obtained using a derivation similar to that for DTC and hence,
Tw−DTM = Tw−DTC ≈ Tsleep + 2Tf − Ta.

We now derive the warmup interval of OTC denoted by Tw−OTC . OTC alerts nodes by
broadcasting wake-up messages to all nodes in a query area. Suppose k is the last query
period within the warmup interval. The time it takes to alert the nodes in the first k query
periods, Tp−OTC , can be derived as follows:

Tp−OTC =
vuser · Tw−OTC

vmsg

+
Rq

vmsg

+ Tsleep (26)

where the first term is the time taken by a wake-up message to reach the kth pickup point.
The second term, Rq

vmsg
, is the time taken to alert the rest of the active nodes in the kth

query area. vmsg represents the broadcast speed of the wake-up message. We assume the
process of broadcasting the wake-up message from the pickup point to the active nodes in
a query area incurs the same delay as the data collection process in which each node sends
its result to the user at the pickup point, because these two processes involve a similar
amount of communication. According to the design of OTC presented in Section 5.3, the
data collection process must complete within Tdelay seconds specified by the user. Hence,
Rq

vmsg
< Tdelay . The third term in (26), Tsleep, is the wake-up delay of the sleeping nodes

in the query area. Since the query tree in a query area is created only after the user reaches
the corresponding pickup point, the deadline of the last period in the warmup interval, i.e.,
ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 17

the kth query period, cannot be met when Tw−OTC ≤ Tp−OTC . Tw−OTC can be solved
from this inequality and (26), as shown below:

Tw−OTC ≤
Tsleep + Tdelay − (1− vuser

vmsg
) · Ta

1− vuser
vmsg

≈ Tsleep + Tdelay (27)

As seen above, Tw−DTC , Tw−DTM and Tw−OTC are affected by the node sleep period
Tsleep. As expected, the longer the sleep period, the longer the warmup interval. Moreover,
Tw−DTC and Tw−DTM also depend on the advance time Ta. The warmup interval is
reduced, when the motion profile is obtained before the start of the motion profile, i.e.
Ta > 0. However, when the motion profile is obtained using the history based prediction
method (as explained in Section 4.1.2), Ta = −Ts < 0 and the warmup interval increases
with Ts. Let us consider the following example. Suppose that the nodes wake up every
Tsleep = 9s, the freshness requirement (Tf) is 0.5s and that a query result must be returned
to the user within Tdelay = 0.5s after the user issues a new query instance. Also, let us
assume that a motion predictor based on history is used to generate user motion profiles
and that the user’s location is sampled from a GPS every Ts = 12s. Thus, the advance
time of the motion profile, Ta, is equal to −Ts = −12s. It is important to note that the
choice of Ts is a tradeoff between the length of the warmup period and the amount of
location error. The shorter the sampling period, the shorter the warmup period but larger
the location error. In this example, we choose a value of Ts that reduces the location error.
The warmup interval of different protocols can be calculated as follows:

Tw−DTC = Tw−DTM = Tsleep + 2Tf − Ta = 9 + 2 · 0.5 + 12 = 22s

Tw−OTC = Tsleep + Tdelay = 9 + 0.5 = 9.5s

For example, assuming the user maintains approximately the same velocity for 4 minutes,
the warmup interval corresponds to 9.2% of the duration of the query in DTC and DTM,
and 4% of the duration of the query in OTC. Furthermore, in practice, the query areas based
on a new motion profile and the ones based on the previous motion profile may overlap,
which reduces the effect of the warmup interval during motion changes.

6.2 Communication Overhead

In this section, we analyze the communication overhead incurred by the different protocols.
We quantify the communication overhead of a protocol by the average number of control
messages sent during a query period. This metric is also related to the likelihood of network
contention. In particular, due to low node duty cycles, the setup of a query tree may last
multiple query periods resulting in interference among adjacent query areas. Therefore, a
protocol that sends fewer control messages per query period likely causes a lower level of
network contention among overlapping query areas. In the rest of this section, we assume
that there are an average of Na active nodes in each query area and that the total number
of active nodes that participate in the query is Np.

6.2.1 Number of Control Messages Sent by DTC. We now analyze the number of con-
trol messages sent by DTC-GP and DTC-JIT. Our analysis shows that although just-in-
time prefetching sends the same total number of control messages as greedy prefetching
, it incurs smaller per-period communication overhead by scheduling the transmissions of
control messages at the right time.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · A Spatiotemporal Query Service

Since each active node in DTC-GP sends a setup message for each query area that it
is a part of, the total number of setup messages sent during a query is Na ·

Tlife

Tp
. The

time interval during which these messages are sent is vuser · Tlife/valt + Tsetup + Tsleep,
in which vuser · Tlife/valt is the time taken by the alert message to travel from the first
pickup point to the last, Tsleep is the wake-up delay of the sleeping nodes in the last query
area, and Tsetup is the delay of delivering the setup message to all active nodes in the last
query area. As discussed in Section 5.1.1, Tsetup ≤ Tf . The communication overhead of
DTC-GP, CGP , can be calculated as the total number of control messages divided by the
number of query periods it takes to send these messages:

CGP =
Na · Tlife

Tp
· Tp

vuser ·Tlife

valt
+ Tsleep + Tsetup

≤ Na

vuser
valt

+
Tsleep+Tf

·Tlife

≈ Na ·
Tlife

Tsleep + Tf

(28)

We now derive the number of setup messages sent by DTC-JIT, which is denoted by CJIT .
It is easy to see that the total number of control messages sent by DTC-JIT is the same as
in DTC-GP. However, the time it takes to send these message is much longer, which results
in a lower per-period communication overhead and network contention level. As discussed
in Section 5.1, DTC-JIT only sends one alert message and hence builds only one tree in
every query period after the warmup interval. In other words, each active node under DTC-
JIT sends only one setup message in each period, resulting in the same number of setup
messages for every query period. Hence, CJIT is simply Na. From (28), we can see that
the average number of control messages sent by DTC-GP per period is Tlife

Tsleep+Tf
times

that of DTC-JIT. This result shows that just-in-time prefetching significantly reduces the
per-period communication overhead by delaying transmissions of control messages.

6.2.2 Number of Control Messages Sent by DTM. We have showed that just-in-time
prefetching effectively reduces per-period communication overhead compared to greedy
prefetching. DTM can further reduce communication overhead because, unlike in DTC,
a node in DTM broadcasts only a single join message even when it lies within multiple
query areas. As a result, DTM generates much less network traffic and hence much lower
network contention. For the convenience of discussion, we define the non-overlapping
factor β as the ratio of total area of the region that falls into at least one query area to
the total area of all query areas. β is within (0, 1] and quantifies the level of non-overlap
between adjacent query areas. When there is no overlap between any two adjacent query
areas, β = 1. The total number of join messages sent by DTM is Np. We assume that the
active nodes in the network are distributed uniformly. Hence:

Np = β · Tlife

Tp

·Na (29)

The number of join messages sent by DTM per query period, CDTM , can be calculated as
follows:

CDTM =
Np

Tlife

Tp

=
Na · β · Tlife

Tp

Tlife

Tp

= β ·Na (30)

As discussed in Section 6.2.1, the number of control messages sent by DTC per period is
Na. Thus, DTM causes a lower communication overhead when query areas overlap (i.e.,
ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 19

β < 1).

6.2.3 Number of Control Messages Sent by OTC. According to Fig. 5, in each query
period of OTC, each active node in the query area sends a setup message and each active
node in the wake-up area C sends a wake-up message. Hence the total number of control
messages is approximately equal to Na ·

R2

R2
q

where R is the radius of wake-up area defined

in (17)4. Although the total number of control messages sent by OTC is higher than DTM,
the control messages are sent over a larger geographic region. As a result, the contention
level of OTC is moderate compared to DTM. This intuition is confirmed by our simulation
results presented in Section 7 which show that OTC’s performance is comparable to that
of DTM.

7. SIMULATION RESULTS

We implemented the three prefetching protocols in NS-2. We first evaluate the proposed
protocols with accurate user motion profiles in Sections 7.2 and 7.3. The best protocols are
then evaluated in a more realistic scenario where the user’s motion profiles are inaccurate,
i.e., the user location readings may have errors and the user may diverge from the motion
profile due to unexpected motion changes, Section 7.4.

We use the following metrics in our performance evaluation: (1) The data fidelity of a
query instance, defined as the ratio of the number of nodes that contribute to a query result
to the total number of nodes in a query area. (2) The success ratio of a query, defined
as the ratio of the number of query instances that meet deadlines and whose data fidelity
exceed a threshold, to the total number of query instances. The success ratio indicates the
overall quality of service received by the user. (3) The average energy consumption of
each node normalized by the total number of query results received by the user. (4) The
communication overhead of a protocol, defined as the total number of control messages
sent by a protocol, normalized by the total number of query results received by the user.

7.1 Experimental Settings

In each simulation, 200 nodes are randomly distributed in a 450m × 450m region. IEEE
802.11 with the extended power saving mode (PSM) from [Chen et al. 2001] is used as
our MAC protocol. The active window in PSM is 100ms. The sleep period varies from 3s
to 15s, which results in duty cycles from 3.3% to 0.67% for sleeping nodes. The radius
of a query area is 150m. Coverage Configuration Protocol (CCP) [Xing et al. 2005] is
used as the power management protocol. CCP maintains network connectivity and sensing
coverage through a backbone. The communication and sensing range in CCP are set to
105m and 50m, respectively. Under these settings, a query tree has about 2 ∼ 4 levels.
The node bandwidth is 2 Mbps. Each simulation lasts for 400 seconds. Each data point is
the average of results under three different network topologies.

In Sections 7.2 and 7.3 where we consider the knowledge of an accurate motion profile,
the user starts from a corner of the region and moves in a random direction with a speed
randomly chosen within a range. Three speed ranges are used, 3 ∼ 5m/s, 6 ∼ 10m/s
and 16 ∼ 20m/s, corresponding to a walking human, a running human and a vehicle
with moderate speed, respectively. If the user hits the boundary of the region before the

4The formula gives an upper bound on the overhead of OTC as non-leaf nodes on query tree do not send wake-up
messages.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · A Spatiotemporal Query Service

DTC-JIT

DTC-GP

NP

1512963

Sleep Period (second)

16~20
6~10

3~5
User Speed Range (m/s)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Success Ratio

Fig. 6. Success ratios of MobiQuery under
DTC-GP, DTC-JIT, and No-prefetching.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140 160 180 200

D
at

a
Fi

de
lit

y

Sequence Number of Periods

DTC-GP
DTC-JIT

Fig. 7. Dynamic data fidelity of DTC-GP
and DTC-JIT. The sleep period is 15s and
the user speed is 3 ∼ 5m/s.

simulation ends, it changes it’s direction toward a random point within the region. The
user changes its direction and speed every 50 seconds. The motion profile that specifies
the complete user path is provided to each protocol at the beginning of the simulation.
Details of how inaccurate motion profiles are generated are provided in Section 7.4.

7.2 Advantage of Just-in-time Prefetching

We first study the advantage of just-in-time prefetching against greedy prefetching by com-
paring DTC-JIT against DTC-GP as DTC-JIT is the simplest protocol among all proposed
just-in-time protocols. Detailed performance comparison between DTC-JIT, DTM and
OTC is presented in Section 7.3. We set the threshold for data fidelity at 95%, in the suc-
cess ratio metric. A protocol called No-prefetching (NP) is implemented as the baseline
for our performance evaluation. In NP, no prefetching is used and the user broadcasts a
query to the network at the beginning of each query period. In this set of simulations,
query period and data freshness constraints are set to 2s and 1s, respectively.

Fig. 6 shows the average success ratios of NP, DTC-GP and DTC-JIT. The success ratio
of DTC is nearly 100% in all settings, even when the sleep period is as long as 15s, i.e.,
7.5 times the query period. In sharp contrast, the success ratio of NP remains below 35%
due to the high packet loss rate. NP performs worse when the sleep period or user speed
increases. Packet losses in NP are mainly due to packet collisions because setup messages
are broadcast to the nodes in different query areas within a very short period of time. The
success ratio of DTC-GP reaches about 90% when the sleep period is shorter than 9s and
decreases when the sleep period becomes longer. DTC-GP performs consistently worse
than DTC-JIT due to packet losses caused by packet collisions.

To examine the dynamic behavior of MobiQuery, we plot the data fidelity at each pickup
point in Fig. 7. Both DTC-JIT and DTC-GP suffer from an initial warmup phase in which
about 5 queries have relatively low data fidelity, which conforms to the analytical warmup
interval in Section 6.1. DTC-JIT achieves a data fidelity of 100% in most periods after the
warmup phase. In contrast, the performance of DTC-GP varies significantly during a query,
with its data fidelity dropping to almost zero in several query periods. We observed that the
severe performance degradation is caused by excessive network contention which results
in significant packet loss during query dissemination. This result conforms to our analysis
on communication overhead in Section 6.2. The high performance variation of DTC-GP
ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 21

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 3 6 9 12 15
Sleep Period (s)

S
uc

ce
ss

 R
at

io

OTC
DTM
NP
DTC

Fig. 8. Success ratios of DTC, DTM and
OTC. The user speed is 3 ∼ 5m/s. The
query period is 0.5s.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 3 6 9 12 15
Sleep Period (s)

Fr
ac

ti
on

 o
f

S
et

up
 M

es
sa

ge
s

pe
r

Q
ue

ry
 P

er
io

d

Received on Time
Received Late
Dropped

Fig. 9. The fractions of setup messages per
query period that is dropped, received late
and on time under DTC.

makes it unsuitable for mission-critical applications that require predictable performance
assurance.

7.3 Comparison of DTC, DTM and OTC

In the previous section, we showed the advantage of just-in-time prefetching over greedy
prefetching. In this section, we compare the three just-in-time prefetching protocols, DTM,
OTC, and DTC (we omit the JIT in DTC-JIT in the rest of this section). We evaluate the
effect of various factors on the performance of the three protocols, including query period,
sleep period, and user speed. In these simulations, the data freshness constraint is set to
0.5s which represents a tighter temporal constraint for the query results. The threshold of
data fidelity is set to 90% for the success ratio.

Fig. 8 shows the average success ratios of all protocols with different sleep periods,
when the query period is 0.5s. The success ratio of NP remains below 10% in all settings,
which clearly indicates that the prefetching mechanism used by other protocols is crucial
in networks with low duty cycles. The performance of DTC drops quickly when sleep
period increases. This is due to its high communication overhead, which causes more
packets to be dropped or delayed, thus decreasing the data fidelity, as the sleep period
increases. This explanation is validated by Fig. 9. The figure shows that the fraction of
setup messages5 that are dropped/delayed per query period increases as the sleep period
increases. As a result, the fraction of setup messages received per query period and hence
the data fidelity decreases as the sleep period increases. Unlike DTC, OTC maintains
a success ratio of above 90% in most settings. Its performance degrades slightly when
the sleep period becomes shorter. This result can be explained as follows. OTC wakes
up sleeping nodes before a tree is created. As the sleep period becomes shorter, more
traffic (i.e., overhead packets of 802.11 PSM and CCP) is generated by the active nodes
in the network, resulting in higher network contention during tree creation. In contrast,
DTM achieves a success ratio of nearly 100% in all settings since it requires much lower
bandwidth.

7.3.1 Effect of User Speed. Fig. 10 shows the performance of the different protocols
when the user moves at different speeds. Four speed ranges: 3m/s ∼ 5m/s, 6m/s ∼ 10m/s,
16m/s∼ 20m/s and 36m/s∼ 40m/s are used, which correspond to the speeds for walking or

5Setup messages are used to build the tree per query area in DTC.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · A Spatiotemporal Query Service

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3~5m/s 6~10m/s 16~20m/s 36~40m/s

S
uc

ce
ss

 R
at

io

User Speed (m/s)

DTM Ts=9s
DTM Ts=15s

OTC Ts=9s
OTC Ts=15s

DTC Ts=9s
DTC Ts=15s

Fig. 10. Effect of User Speed. The sleep
period is 9s. The query period is 1s.

0.01

0.1

1

10

100

OTC DTC DTM

O
ve

rh
ea

d

Exp-Tp=0.5s
Exp-Tp=1s
Th-Tp=0.5s
Th-Tp=1s

Fig. 11. The number of control messages
per query instance. The sleep period is 9s,
the user speed is 3 ∼ 5m/s.

jogging, running, driving at moderate speed and driving at high speed, respectively. When
the user speed increases, the distance between two consecutive query areas becomes larger,
which reduces the level of network contention and hence results in higher query success
ratios. Although DTC delivers above 90% of the query results under all user speeds when
the sleep period is 9s, its performance degrades significantly when the sleep period is
15s. This is because DTC fails to wake up many sleeping nodes in time due to the high
network contention level caused by its high communication overhead. On the other hand,
the success ratio of both DTM and OTC remains above 90% under all settings. This result
shows that both protocols adapt successfully to different ranges of user speeds by waking
up sleeping nodes in advance, with moderate communication overhead.

7.3.2 Communication Overhead. As mentioned earlier, we define the overhead as the
total number of messages (except query messages and query results) sent by a protocol,
normalized by the total number of query results received by the user. Fig. 11 shows the
different protocol overheads when the sleep period is 9s. Along with the experimental
results we also plot the expected overhead of the protocols based on our theoretical analysis
in Section 6.2. Note that the Y-axis of the figure is in log-scale due to the high variance
in the overhead of the protocols. Several interesting results can be seen from Fig. 11.
First, DTM incurs much lower communication overhead than the other protocols. This
is due to the low overhead of query tree maintenance in DTM. OTC, on the other hand,
incurs the highest overhead among the three protocols since it wakes up a large number of
nodes due to lack of knowledge of the user motion profile. Even though OTC has a higher
communication overhead, it is offset by its better performance in comparison to DTC, as
seen in Fig. 8. Second, the overheads of all protocols except DTM are independent of
the query period. In the case of DTM, according to the analytical result (Eqn. (30)) in
Section 6.2, the overhead is proportional to the non-overlapping factor, β, defined as the
ratio of total area of the region that falls into at least one query area to the total area of all
query areas. β is determined by the query radius and the distance between two consecutive
query areas which in turn is proportional to the query period. Consistent with the analysis,
the number of control messages per query result in DTM drops roughly by half (from 0.14
to 0.069) when the query period decreases from 1s to 0.5s, which demonstrates that DTM
can effectively reduce the overhead by taking advantage of overlap between adjacent query
areas. The simulation results are very close to the theoretical bound for all protocols.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 23

0

0.1
0.2
0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

OTC DTC DTMN
od

e
E

ne
rg

y
C

os
t p

er
 Q

ue
ry

 R
es

ul
t

(J
)

Tp=1s
Tp=0.5s

Fig. 12. Total network energy consump-
tion per query result. The sleep period is
9s, the user speed is 3 ∼ 5m/s.

0

5

10

15

20

25

30

35

0 3 6 9 12 15
Sleep Period (s)

Q
u

er
y

P
er

io
d

s

OTC
Theoretical Worst Case
DTM
DTC
Max-OTC
Max-DTM
Max-DTC

Fig. 13. Warmup interval. Query period is
0.5s and the user speed is 3 ∼ 5m/s.

7.3.3 Energy Consumption. We used the energy model of Cabletron 802.11 network
card [Chen et al. 2001]. In accordance with this model, the power consumption of transmit,
receive, idle and sleeping modes were set to 1400mW, 1000mW, 830mW and 130mW
respectively. Fig. 12 shows the per node energy expenditure of the different protocols,
normalized by the total number of query results received by the user, when the sleep period
is 9s. As seen in the figure, OTC has the highest energy expenditure among the protocols.
This is to be expected, since in OTC, a large number of nodes are woken up due to the lack
of a user motion profile. DTM has the lowest energy expenditure as expected, since it has
a much lower overhead than the other protocols as shown in Fig. 11.

7.3.4 Warmup Interval. Fig. 13 shows the average and maximum warmup intervals of
the different protocols, obtained in our experiments. We compare these warmup intervals
with the theoretical worst case values presented in Section 6.1. Due to the particular set-
tings of the experiments, the theoretical worst case warmup intervals of all three protocols
evaluate to the same values and hence is plotted as a single curve in the figure. As ex-
pected, the maximum warmup intervals of all three protocols remain within the theoretical
bounds under varying sleep periods. The average warmup intervals of the protocols are
significantly lower than the worst case values indicating better average performance than
the theoretical bounds. This is expected as the theoretical bounds are derived based on
worst-case scenarios.

7.3.5 Effect of Node Density. Fig. 14 shows the success ratios of the different pro-
tocols under varying node densities. The success ratio of a particular protocol remains
nearly constant under different node densities and drops drastically only when the number
of nodes drops to 50. This is because, despite the different network densities, the under-
lying power management protocol (CCP) maintains the sensing coverage of the network
deployment region using roughly the same number of active nodes. We plot the number of
active nodes in the network under different node densities in Fig. 15. We can see that the
number of active nodes remains nearly constant (∼ 60) as long as the the total number of
node is greater than 50 nodes. As a result, the protocols perform similarly as long as the
region is sensing-covered. This result is consistent with the analysis in Section 6.2, which
shows that the overhead of the protocols is only dependent on the density of active nodes.
When the total number of nodes falls to 50, the region is no longer sensing-covered and
hence all nodes are activated by CCP. As a result, routing voids exist in such a case, which

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · A Spatiotemporal Query Service

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

200 150 100 50
Number of Nodes

S
uc

ce
ss

 R
at

io

OTC
DTM
DTC

Fig. 14. Success ratio for different node
densities. The query period is 0.5s, the
user speed is 3 ∼ 5m/s, and the sleep pe-
riod is 9s.

0

10

20

30

40

50

60

70

200 150 100 50
Total Number of Nodes

N
um

be
r

of
 A

ct
iv

e
N

od
es

Fig. 15. Number of active nodes for vary-
ing node densities.

causes packet loss and lower success ratios for all protocols. 6 According to our analysis
in Section 6.2, all three protocols incur less overhead and expect to perform better when
the number of active nodes is smaller.

The results in this section indicate that 1) DTM and OTC are more robust to effects of
sleep periods and user speed than DTC; 2) DTM incurs the minimal overhead and energy
expenditure among all protocols; 3) the simulation results match the analytical results in
Section 6.

7.4 Performance under Inaccurate Motion Prediction

In this section, we evaluate the performance of the proposed protocols under a more prac-
tical scenario where the user’s motion profile is obtained using user motion history (as
explained in Section 4.1.2) and is hence inaccurate, due to location errors and unexpected
motion changes. The parameters of the motion predictor of MobiQuery discussed in Sec-
tion 4.1.2 are set as follows. The user’s location is sampled from a GPS every Ts = 12s,
and two location readings are extrapolated for a time Texp = 50s to obtain a user motion
profile. Everytime the GPS is sampled, the location reading is compared with the current
user location calculated from the motion profile and a new motion profile is generated if
the difference exceeds a threshold of 20m.

As shown in the previous sections, NP and DTC cannot provide satisfactory performance
even with accurate motion profiles. Hence, we focus on the performance of OTC and DTM
in this section. The results are the average of 5 runs under different network topologies.
We set the threshold of data fidelity at 80% for the success ratio metric.

7.4.1 Effect of Location Error. Fig. 16 shows the performance of DTM and OTC
under different location errors. As expected, location error has minimal impact on OTC,
since OTC does not make use of the user motion profile, and always wakes up nodes in a

6We note that the number of active nodes required to cover the deployment region depends on the spatial distri-
bution of nodes. According to [Kershner 1939], when the circles are placed on hexagons, the number of circles
required to cover a region is minimum, which is approximately 2A

√
3/(9r2) where A is the area of the re-

gion and r is the radius of the circles. In our settings, the sensing range is 50m and the area of deployment
region is 450m × 450m, and the minimum number of active nodes is about 32. The number of active nodes
in our simulations therefore corresponds to reasonable densities given the random node distribution used in our
simulations.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20

S
uc

ce
ss

 R
at

io

Location Error (m)

DTM Ts=6
DTM Ts=12

OTC Ts=6
OTC Ts=12

Fig. 16. Success ratios with location er-
rors. The query period is 0.5s, the user
speed is 3 ∼ 5m/s, and the sleep period is
15s.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 6 8 10 12

S
uc

ce
ss

 R
at

io

Num of Motion Changes

DTM Ts=6
DTM Ts=12

OTC Ts=6
OTC Ts=12

Fig. 17. Success ratios vs. num of motion
changes. The query period is 0.5s, the user
speed is 3 ∼ 5m/s, and the sleep period is
15s.

large area around the user that covers all possible user locations during the next few query
periods. DTM, on the other hand, performs very well for location errors less than 15m
(typical GPS location error is 10m-15m [Cooksey 2004]), and is able to deliver 80% of
the query results successfully. These results show that the design of DTM is robust to
moderate location errors.

7.4.2 Effect of Motion Changes. Next, we evaluate the performance of the protocols
under different number of changes in the user’s velocity. The user moves in a straight line
at a constant speed until it makes a turn and chooses a new speed. Fig. 17 shows the
performance of the protocols when the number of turns increases from 4 to 12 within a
simulation time of 500s. The location error for all the simulation runs is fixed at 10m.

As expected, the performance of OTC is not affected by the user motion changes. DTM
performs slightly worse than OTC, because when the user makes a turn, the partial query
tree that resides around the original predicted path becomes invalid and new nodes have to
be woken up in order to form a query tree around the new predicted path. Consequently,
some sleeping nodes along the new path may not be woken up early enough to respond to
the query. However, DTM still maintains a success ratio over 80% in all settings.

8. CONCLUSION

In this paper, we present a new spatiotemporal query service called MobiQuery that allows
a mobile user to periodically query a surrounding area and propose three novel just-in-
time prefetching protocols, Directional Tree Creation (DTC), Directional Tree Mainte-
nance (DTM) and Omni-directional Tree Creation (OTC) to achieve desired spatiotempo-
ral performance. Furthermore, we provide theoretical analysis on several important factors
that are critical to the practical performance of MobiQuery in WSNs including warmup
interval and communication overhead. We evaluate MobiQuery with different prefetching
strategies through extensive simulations under realistic settings including low node duty
cycles, frequent user motion changes, and significant location errors. Our results show that
1) DTC can achieve satisfactory spatiotemporal performance under extremely low node
duty cycles and erroneous/late prediction of the user’s movement; 2) DTM can further
reduce communication overhead and network contention caused by continuous queries
to overlapping query areas; and 3) OTC is particularly robust against unpredictable user
movement patterns and location errors. Our analysis and simulation results provide guid-

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · A Spatiotemporal Query Service

ance for choosing different prefetching protocols under different application requirements
and network settings.

REFERENCES

ALANKUS, G., ATAY, N., LU, C., AND BAYAZIT, O. B. 2005. Spatiotemporal query strategies for navigation
in dynamic sensor network environments. In IEEE RSJ International Conference on Intelligent Robots and
Systems (IROS).

ALJADHAI, A. R. AND ZNATI, T. 2001. Predictive mobility support for qos provisioning in mobile wireless
environments. JSAC 19(10).

ASLAM, J., BUTLER, Z., CONSTANTIN, F., CRESPI, V., CYBENKO, G., AND RUS, D. 2003. Tracking a
moving object with a binary sensor network. In Proceedings of the first international conference on Embedded
networked sensor systems. ACM Press, 150–161.

BHATTACHARYA, S., XING, G., LU, C., ROMAN, G.-C., HARRIS, B., AND CHIPARA, O. 2005. Dynamic
wake-up and topology maintenance protocols with spatiotemporal guarantees. In International Conference on
Information Processing in Sensor Networks (IPSN).

BLUM, B., NAGARADDI, P., WOOD, A., ABDELZAHER, T., SON, S., AND STANKOVIC, J. 2003. An entity
maintenance and connection service for sensor networks. In MobiSys.

CHEN, B., JAMIESON, K., BALAKRISHNAN, H., AND MORRIS, R. 2001. Span: An energy-efficient coordina-
tion algorithm for topology maintenance in ad hoc wireless networks. In MobiCom.

COOKSEY, D. 2004. Online report-http://www.montana.edu/places/gps/understd.html: Understanding the global
positioning system (gps).

CROSSBOW. 2003. Mica and mica2 wireless measurement system datasheets.
FIREBUG-PROJECT. 2004. http://firebug.sourceforge.net/gps tests.htm.
GUI, C. AND MOHAPATRA, P. 2004. Power conservation and quality of surveillance in target tracking sensor

networks. In Proceedings of the 10th annual international conference on Mobile computing and networking.
HE, T., KRISHNAMURTHY, S., STANKOVIC, J. A., ABDELZAHER, T., LUO, L., STOLERU, R., YAN, T., GU,

L., HUI, J., AND KROGH, B. 2004. Energy-efficient surveillance system using wireless sensor networks. In
Mobisys.

HE, T., STANKOVIC, J. A., LU, C., AND ABDELZAHER, T. F. 2005. A spatiotemporal communication protocol
for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems 16, 10.

HIGHTOWER, J. AND BORRIELLO, G. 2001. Location systems for ubiquitous computing. IEEE Computer 34, 8.
HUANG, Q., LU, C., AND ROMAN, G.-C. 2003. Spatiotemporal multicast in sensor networks. In Sensys.
INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. 2000. Directed diffusion: a scalable and robust

communication paradigm for sensor networks. In MobiCom.
INTANAGONWIWAT, C., GOVINDAN, R., ESTRIN, D., HEIDEMANN, J., AND SILVA, F. 2003. Directed diffu-

sion for wireless sensor networking. IEEE/ACM Trans. Netw. 11, 1.
KERSHNER, R. 1939. The number of circles covering a set. Amer. J. Math. 61.
KIM, H. S., ABDELZAHER, T. F., AND KWON, W. H. 2003. Minimum-energy asynchronous dissemination to

mobile sinks in wireless sensor networks. In Sensys.
LATOMBE, J.-C. 1991. Robot Motion Planning. Kluwer Academic Publishers.
LI, D., WONG, K., HU, Y. H., AND SAYEED, A. 2002. Detection, classification and tracking of targets in

distributed sensor networks. IEEE Signal Processing Magazine 19 (2).
LI, Q., ROSA, M. D., AND RUS, D. 2003. Distributed algorithms for guiding navigation across a sensor network.

In MobiCom.
MADDEN, S., FRANKLIN, M. J., , HELLERSTEIN, J. M., AND HONG, W. 2002. Tag: a tiny aggregation service

for ad-hoc sensor networks. In OSDI.
PAPYRUS. 2004. Gps specification 2004.
PATTEM, S., PODURI, S., AND KRISHNAMACHARI, B. 2003. Energy-quality tradeoffs for target tracking in

wireless sensor networks. In The 2nd International Workshop on Information Processing in Sensor Networks
(IPSN). Palo Alto,CA.

POLASTRE, J., SZEWCZYK, R., SHARP, C., AND CULLER, D. 2004. The mote revolution: Low power wireless
sensor network devices. In Hot Chips 16.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Guoliang Xing et al. · 27

XING, G., LU, C., PLESS, R., AND HUANG, Q. 2004. On greedy geographic routing algorithms in sensing-
covered networks. In Fifth ACM Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc). Tokyo,
Japan.

XING, G., WANG, X., ZHANG, Y., LU, C., PLESS, R., AND GILL, C. 2005. Integrated coverage and connec-
tivity configuration for energy conservation in sensor networks. ACM Transactions on Senor Networks 1, 1,
36–72.

XU, Y., HEIDEMANN, J., AND ESTRIN, D. 2001. Geography-informed energy conservation for ad hoc routing.
In MobiCom.

YAO, Y. AND GEHRKE, J. 2002. The cougar approach to in-network query processing in sensor networks.
SIGMOD Rec. 31(2), 9–18.

YE, F., LUO, H., CHENG, J., LU, S., AND ZHANG, L. 2002. A two-tier data dissemination model for large-scale
wireless sensor networks. In MobiCom. 148–159.

YE, W., HEIDEMANN, J., AND ESTRIN, D. 2004. Medium access control with coordinated, adaptive sleeping
for wireless sensor networks. IEEE/ACM Transactions on Networking.

ZHANG, W. AND CAO, G. 2004. Dctc: Dynamic convoy tree-based collaboration for target tracking in sensor
networks. IEEE Transactions on Wireless Communications 3(5).

ZHAO, F., SHIN, J., AND REICH, J. 2002. Information-driven dynamic sensor collaboration for tracking appli-
cations. IEEE Signal Processing Magazine.

ACM Journal Name, Vol. V, No. N, Month 20YY.

	MobiQuery: A Spatiotemporal Query Service for Mobile Users in Sensor Networks
	Recommended Citation
	MobiQuery: A Spatiotemporal Query Service for Mobile Users in Sensor Networks

	tmp.1469562486.pdf.TL6LN

	Abstract: Abstract: This paper presents MobiQuery, a spatiotemporal query service that allows mobile users to periodically collect sensor data from the physical environment through wireless sensor networks. A salient feature of \MQ is that it can meet stringent spatiotemporal performance constraints, including query latency, data freshness, and changing areas of interest due to user mobility. We present three just-in-time prefetching protocols that enable MobiQuery to achieve desired spatiotemporal performance despite low node duty cycles, while significantly reducing communication overhead. We validate our approach through both theoretical analysis and extensive simulations under realistic settings including varying user movement patterns and location errors.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: October 31, 2005
	Author: Authors: Xing, Guoliang; Bhattacharya, Sangeeta; Lu, Chenyang; Chipara, Octav; Fok, Chien-Liang; Roman, Gruia-Catalin
	Title: MobiQuery: A Spatiotemporal Query Service for Mobile Users in Sensor Networks
	ReportNumber: 2005-49
	DepartmentName: Department of Computer Science & Engineering

