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Abstract

My research predominantly focuses on micromagnetic simulations of cobalt nanopar-

ticles. These simulations are carried out by using the Object-Oriented MicroMagnetic

Framework (OOMMF) distributed by the National Institute of Standards and Tech-

nology (NIST). In performing these simulations, observations of skyrmionic states

were observed for large enough nanoparticles. Skyrmions are magnetic vortex states

which have a core that is antiparallel with the outermost local magnetic moments.

These states are being explored as an exciting branch of research that are applicable

in many applications including, but not limited to, magnetic storage devices. Most

simulations were carried out using a hemispherical geometry because collaborators

at the University of Tennessee, Knoxville use laser-induced dewetting to create ar-

rays of hemispheres on the nanometer scale. In conjunction with these simulations,

we have performed analytical and numerical calculations of the demagnetizing factor

of a hemispherical particle. The demagnetizing factor of a system is a parameter

that characterizes shape anisotropy and is useful in calculating the energy of a uni-

formly magnetized body. Demagnetizing factors have been calculated for different

geometries, but never for a hemisphere.
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Other projects that my research includes research into rogue waves and a mapping

between classical and quantum systems. The rogue wave work deals with analysis of

the Nonlinear Schrödinger Equation and developing new forms of rogue wave solu-

tions. This process includes focussing on the time-reversal invariance of the Nonlinear

Shrödinger Equation and also generalizes a wave form known as compactons to gener-

ate approximate, traveling wave solutions that are like a rogue wave in nature. These

can be applied to oceanic, optical, and even economical situations. The mapping that

we have generalized here indicates that classical and quantum correlation functions

can be calculated from one another simply by allowing time to go to imaginary time,

and taking the real part of the expression. This is partially based on previous work

in a more specific version of this mapping, but generalizes it to any operator rather

than specifically the density operator.
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Chapter 1

Synopsis

This thesis studies and predicts many non-trivial patterns in classical, oceanic,

optical, magnetic, and glassy systems. These non-trivial patterns apply to skyrmions

in magnetic systems, spatio-temporal correlation functions, rogue waves in various

systems. Below, we detail the specific patterns that we analyze in the chapters.

In Chapter 2, background theory is discussed for all other chapters. This back-

ground in this chapter starts with the history and derivation of the equations of motion

for oceanic and optical rogue waves (Content of Chapter 3). This is followed by the

theory behind the micromagnetic framework used to model cobalt hemispheres. This

route to skyrmionic textures is the simplest to date. This is coupled with a description

of the history of skyrmions in nuclear physics and their appearance in experiments

and theory (Chapter 5). Finally, the theory behind “dynamical heterogeneities” (that

embody non-trivial spatial and temporal patterns in super-cooled liquids) and jam-

ming is discussed in classical and quantum systems (Content of Chapter 6).
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In Chapter 3, by employing a mapping to classical anharmonic oscillators, we

explore a class of solutions to the Nonlinear Schrodinger Equation (NLSE) in 1+1

dimensions and, by extension, asymptotically in general dimensions. We discuss

a possible way for creating approximate rogue wave-like solutions to the NLSE by

truncating exact solutions at their nodes and stitching them with other solutions to

the NLSE. The resulting waves are similar to compactons with the notable difference

that they are not localized, but extend over all of space. This is a unique approach

that differs substantially from most for work to date. Compactons are a soliton on a

constant background, but a soliton on periodic background is a much better model

to an ocean state. We discuss rogue waves in a φ4 field theory in the context of

a discretized Lagrangian and rogue wave behavior is shown to evolve into a steady

state. Due to time-reversal invariance of this theory, the steady state found could

alternatively evolve into a rogue wave (i.e. to a large wave that seems to appear out

of a smooth periodic background).

In Chapter 4, an analytic expression for the spatially dependent demagnetizing

factor is calculated. Also presented is a discussion of a method for numerically calcu-

lating the spatially averaged demagnetizing factor of a general geometry, which is then

applied to the case of a hemisphere. The method that we introduce in this thesis is a

more direct method for numerically calculating the spatially averaged demagnetizing

factor than existing methods.

In Chapter 5, new methods for magnetic skyrmion generation and customiza-

tion are suggested. Skyrmionic behavior was numerically observed in minimally cus-

3



tomized simulations of cobalt spheres, hemispheres, ellipsoids, and hemi-ellipsoids.

These skyrmions are observed in a range of diameters from approximately 40 nm to

120 nm simply by applying a field.

In Chapter 6, we report dynamical heterogeneities in quantum systems. To this

end, we use a correspondence between viscous classical and quantum many-body

systems. We illustrate that, even in the absence of imposed disorder, many continuum

systems (and possible lattice counterparts) may exhibit such “quantum dynamical

heterogeneities” at zero temperature. These non-trivial spatio-temporal correlations

capture these spatially non-uniform dynamics, at a given instant. While the static

length scales accompanying this phenomenon do not seem to exhibit a clear divergence

in standard correlation functions, the length scale of the dynamical heterogeneities

can increase dramatically. We furthermore suggest how a hard core bosonic system

can undergo a zero temperature quantum critical metal-to-insulator-type transition

with an extremely large effective dynamical exponent z > 4 that is consistent with

length scales that increase far more slowly than the relaxation time as a putative

critical transition is approached. We suggest ways to analyze experimental data in

order to adduce such phenomena.

In Chapter 7, a brief summary of the results is presented.

4



Chapter 2

Background

2.1 Rogue Waves

2.1.1 History of Oceanic Rogue Waves

Rogue waves, also known as freak waves or extreme waves, are large waves that

seemingly appear out of nowhere. Roughly speaking, the literature describes a rogue

wave to be somewhere at least two and four times the size of surrounding waves and

being short temporally. Sailors have told stories of tall “walls of water” that seem

to appear out of nowhere, but like most stories from sailors, were mostly assumed to

be hyperbole. Similar stories to “holes in the ocean” have also been told, but were

equally dismissed for the most part. There are a few stories, though that could not be

denied, and led to the scientific community taking rogue waves more seriously. The

earliest of these stories was the story of the MS München.

5



2.1 Rogue Waves

Figure 2.1: Image of the MS München taken in 1978. The location of the lifeboat is
indicated with the arrow (15).

The Wreck of the MS München

The MS München was a German freight ship active in the 1970s (29). Around

the middle of December in 1978, the MS München vanished without a trace. It was

sailing through a large storm in the North Atlantic when it vanished into the sea.

Search efforts never found the entire ship, but a lifeboat, complete with some steel

pins that held the lifeboat in place were found. The steel pins were clearly bent from

their natural position. The lifeboats typically hung approximately 20 meters above

the water level, so for the pins to be bent in such a way, a very large force would need

to be exerted upon them 20 meters above the water level.

At the time of the sinking of the MS München, the science behind rogue waves

was not understood, and for the most part were believed to be tall tales of sailors.

As the science was explored more thoroughly, the cause of the force evinced by the

bent steel pins was believed to be a rogue wave. However, this is far from conclusive

6



2.1 Rogue Waves

proof of the existence of oceanic rogue waves.

The Draupner Wave

The first actual measurement of an oceanic rogue wave came on New Year’s Day

of 1995 off the coast of Norway. An instrument used to measure the surface elevation

of the ocean surrounding the Draupner gas platform recorded a large wave that was

between two and three times the size of the background waves. This wave has come

to be known as the Draupner wave or New Year’s wave. The waveform for this wave

is shown in Fig (2.2). With the measurement of this wave, the tall tales from the

sailors started to be taken more seriously and the search for nonlinear models for the

ocean began in earnest.

Derivation of the Nonlinear Model for the Ocean Surface

The evolution of an ocean wave can be modeled using the Nonlinear Schrödinger

Equation which is derived from Laplace’s Equation with specific boundary conditions

and assumption of infinite depth. This was first done by Zakharov (66). Starting

with the hydrodynamic potential, Φ(~r, z, t), and the shape of the surface of the fluid,

η(~r, t), with r =
√
x2 + y2, the system of equations takes the form,

~∇2Φ +
∂2Φ

∂z2
= 0, (2.1)

7



2.1 Rogue Waves

(a)

(b)

Figure 2.2: Plot of the elevation of the surface of the ocean near the Draupner platform
off the coast of Norway in the North Sea. The typical wave height in this wave train
is less than ten meters, as shown in (a). The Draupner wave, though is nearly 20
meters in height (b). This is known as the first recording of an oceanic rogue wave.
Image taken from (60).

8



2.1 Rogue Waves

with boundary conditions,

∂η

∂t
=

√
1 + (~∇η)2

∂Φ

∂η

∣∣∣∣
z=η

=
∂Φ

∂z
− ~∇ · η~∇Φ|z=η, (2.2)

∂Φ

∂t
+ gη = −1

2
(~∇Φ)2|z=η −

1

2
(
∂Φ

∂z
)2

∣∣∣∣
z=η

+ α~∇ ·
~∇η√

1 + (~∇η)2

, (2.3)

and condition at infinity (the assumption of an infinitely deep ocean),

Φ→ 0 as z → −∞. (2.4)

It can be shown that these equations can be written in the form of Hamilton’s

equations with η being a generalized momenta and Ψ(~r, t) = Φ(~r, z, t)|z=η being a

generalized coordinates. Specifically,

∂η

∂t
=
δE

δΨ
, (2.5)

∂Ψ

∂t
= −δE

δη
, (2.6)

where E is the energy of the system and the δ represents the variational derivative.

After some transformations, one obtains the equation for an envelope of the wave

packet, b(x, y, t) of the form (66),

9



2.1 Rogue Waves

∂b

∂t
+ c

∂b

∂x
− i

2

(
λ||
∂2b

∂x2
+ λ⊥

∂2b

∂y2

)
= −iw|b|2b. (2.7)

Here, w is a nonlinearity constant, λ|| and λ⊥ are eigenvalues of the tensor Dαβ =

∂2ω/∂kα∂kβ and ω and k are the wave frequency and wavevector respectively.

To simplify this equation, we introduce the variables,

ξ = x− ct, (2.8)

R = ξ cosα + y sinα, (2.9)

λ = λ|| cos2 α + λ⊥ sin2 α, (2.10)

where c is the velocity of the wave, ξ is the comoving coordinate, and R is a combined

position coordinate. This gives the final result of the Zakharov paper,

∂Ψ

∂t
− iλ

2

∂2Ψ

∂R2
= −w|Ψ|2Ψ. (2.11)

2.1.2 Optical Rogue Waves

Ocean waves are not the only context in which rogue waves have been observed.

Optical rogue waves are phenomena that have been observed in experiments (58;

10



2.1 Rogue Waves

57; 20; 31; 13; 11; 4). One primary distinction between optical rogue waves and

oceanic rogue waves is that the Nonlinear Schrödinger Equation describes the enve-

lope function of optical waves whereas in the oceanic context, it describes the wave

itself. Generation of optical rogue waves requires generating supercontinua in the

modulation instability regime (58).

Modulation Instability

Modulation instability in optical waves is a phenomenon where the steady state

of a system becomes unstable which gives rise to soliton fission and breakdown of

waves into wave trains. Several different effects need to be present in order to sup-

port modulation instability, including anomalous group velocity dispersion and the

Kerr effect. Anomalous dispersion is characterized by an inverse relation between

wavelength and group velocity or, in other words, a direct relation between group

velocity and wavevector. The Kerr effect exists in media where the index of refrac-

tion depends directly on the intensity of the light traveling through it. This implies

a critical amplitude below which no effect is seen.

To see how this works, one can start with the Nonlinear Schrödinger Equation as

given in (2),

i
∂ψ

∂z
=

1

2
β2
∂2ψ

∂t2
− γ|ψ|2ψ, (2.12)

11



2.1 Rogue Waves

where ψ is the envelope function of the optical wave, z is the direction of propagation

along a fiber, β2 is the group velocity dispersion parameter, and γ is the nonlinearity

parameter responsible for self-phase modulation. For a time independent steady state,

the solution is simply given by,

ψ =
√
P0e

iγP0z, (2.13)

where P0 is the incident power.

In order to test stability, a small perturbation of the form of a(z, t) is added to

the steady state solution of Eq. (2.13). Linearizing in the small perturbation gives a

differential equation for a,

i
∂a

∂z
=

1

2
β2
∂2a

∂t2
− γP0(a+ a∗). (2.14)

Assuming the general solution is oscillatory,

a(z, t) = a1 cos(Kz − Ωt) + ia2 sin(Kz − Ωt), (2.15)

where K and Ω are the wave number and frequency of the perturbation, respectively.

Putting Eq. (2.15) into Eq. (2.14) has a nontrivial solution only when the dispersion

12



2.1 Rogue Waves

relation,

K = ±1

2
|β2|Ω[Ω2 + sgn(β2)Ω2

c ] (2.16)

is satisfied and Ωc = 4γP0/|β2| = 4/|β2|LNL. LNL is the length scale over which

nonlinear effects are important.

Where the instability arises is in the case where β2 < 0 (which corresponds to

anomalous dispersion) and Ω < Ωc. This leads to it becoming imaginary and the

small perturbation grows exponentially with z. The power-dependent phase shift

from the nonlinearity is from the Kerr effect.

Supercontinua

Supercontinua are pulses that are broadened in their spectra when exiting a non-

linear fiber compared to when it enters the fiber. Observation of supercontinua first

came in the late 1960s (3) and since has been observed in solids, liquids (28), and

gases (17; 32). The primary effects that give rise to supercontinua generation include,

but are not limited to self-phase-modulation (3; 28; 17), self-focusing (17; 56), and

nonlinear effects. In the literature, there is a wide range of widths that are claimed

to be a supercontinuum and there is no definite threshold that separates broadening

of the spectrum from a supercontinuum. An example of a supercontinuum is shown

in Fig. (2.3) and is taken from (33).

13



2.1 Rogue Waves

Figure 2.3: Example of a supercontinuum taken from (33). The initial pulses sent
through the fiber were peaked about 815 nm and remnants of that are still evident
in the supercontinuum. Intensity is still significant between 630 nm and 966 nm,
however.
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2.2 Micromagnetic Simulation Background

Figure 2.4: Near the peak wavelength of the supercontinuum, the behavior is basically
Gaussian. Closer to the extreme values of the wavelength, the statistics exhibit L-
shaped statistics. Figure taken from (33)

Statistics

Rogue waves are very rare, but very extreme events. The understanding of how

frequently rogue waves occur is important to being able to predict them and poten-

tially to control them in a laboratory situation. According to a study by Kasparian

et al. (33), it is found that the relation between the size of rogue wave events and the

frequency at which they occur follow L-shaped statistics. This is the same type of

behavior as popularity of books and music, size and frequency of power outages, mag-

nitudes and frequency of earthquakes, size of craters on the moon, and solar flares.

The distributions from (33) are shown in Fig. (2.4).

2.2 Micromagnetic Simulation Background

And we now discuss magnetic patterns in nanoparticles. Arrays of metallic nanopar-

tices have been suggested to be useful in many contexts including, but not limited to

high-density magnetic storage devices (64; 10), surface plasmon waveguides (47; 38),
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2.2 Micromagnetic Simulation Background

and high-efficiency flat-panel displays (22). To accomplish these goals, many parame-

ters need to be controlled to ensure proper functionality. These variables include size,

shape, composition, crystal structure, and spacing between particles. Many meth-

ods have been suggested to accomplish this, but one promising avenue of research is

through laser-induced dewetting (25; 27; 23; 26; 24; 30; 62; 37; 36) which we discuss

next.

2.2.1 Self-Assembled Nanoparticle Arrays

In the field of nanotechnology, ability to achieve ordered arrays of nanoparticles in

a fast, cost-effective manner is a coveted achievement. The process of laser-induced

dewetting takes advantage of instabilities in a thin film, for example spinodal dewet-

ting which occurs when attractive intermolecular forces exceed the stabilizing effect

of interfacial tension (52; 51; 53; 63).

The progression from thin film to the final result of an array of nanoparticles can

be seen in Fig. (2.5). As the pictures go from left to right, there is an increase in the

number of laser pulses. This progression for the uniform laser case starts with the

nanohole state which consists of the thin film with holes in it, resembling the surface

of a sponge. Following the nanoholes, comes cells which are large defined gaps with

no sign of the initial film. The polygon state is characterized by smaller shapes with

some of their edges breaking into nanoparticles. Finally, the resulting state is an

array of nanoparticles.

This progression for the two-beam interference case starts with the nanostripe
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2.2 Micromagnetic Simulation Background

Figure 2.5: As the pictures go from left to right, there is an increase in the number
of laser pulses. This shows the progression from thin film to nanoparticle array
for the uniform laser and two-beam interference cases. Image courtesy of Ramki
Kalyanaraman.

state which consists of the thin stripes in a regular pattern. Following the nanostripes

comes nanowires which are shorter and thinner versions of the nanostripes. The

ellipses configuration is characterized by nanoparticles which have a more irregular

shape. Finally, the resulting state is an array of nanoparticles. It is clear from

the image that the two-beam interference case has a more regular arrangement of

particles.

17
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2.2.2 OOMMF Theory

For the purposes of this research, the Object Oriented Micromagnetic Framework

(OOMMF) 1.2a distribution as provided from NIST was utilized (19). The OOMMF

code numerically solves the Landau-Lifshitz Ordinary Differential Equation given by,

d ~M

dt
= −|γ̄| ~M × ~Heff −

|γ̄|α̃
Ms

~M ×
(
~M × ~Heff

)
, (2.17)

where ~M is the magnetization, γ̄ is the Landau-Lifshitz gyromagnetic ratio, Ms is the

saturation magnetization, α̃ is the damping coefficient, and Heff is the effective field

given by derivatives of the Gibbs free energy.

On a conceptual level, the first term on the right hand side of the Landau-Lifshitz

Equation is a torque term. The second term is a damping term. This damping term

has not been derived from first principles, but is added in as an empirical observation.

The Gibbs free energy, in this case, is given by (14),

G =

∫ (
1

2
C

[(
~∇α
)2

+
(
~∇β
)2

+
(
~∇γ
)2
]

+ wa −
1

2
~M · ~H ′ − ~M · ~H0

)
dV (2.18)

where α, β, and γ are the directional cosines, C is proportional to the exchange

stiffness constant and depends on the crystal structure, wa is the crystalline anisotropy

term, ~H ′ is the demagnetization field, and ~H0 is the external magnetic field.
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2.2 Micromagnetic Simulation Background

Directional cosines represent the cosine of the angle between a given vector with

the three important unit vectors for a given crystal structure. The easiest way to

compute these is to calculate the normalized dot product between the given vector and

each unit vector. In the simple case of a cubic lattice, these unit vectors correspond

to the vectors, x̂, ŷ, and ẑ. For a generic vector, ~A = Axx̂+Ayŷ+Az ẑ, the directional

cosines take on the form of

α =
Ax√

A2
x + A2

y + A2
z

(2.19)

β =
Ay√

A2
x + A2

y + A2
z

(2.20)

γ =
Az√

A2
x + A2

y + A2
z

. (2.21)

The crystalline anisotropy term can be expressed in terms of anisotropy constants,

K1 and K2, and directional cosines as,

wa = K1

(
α2β2 + β2γ2 + γ2α2

)
+K2α

2β2γ2. (2.22)

Crystalline anisotropy describes the preferred directions of magnetization, known

as easy axes, that arise from the crystal structure of the metal. These easy axes can

arise in the form of a single axis that is a preferred direction or in the form of an easy

plane where all directions are equally favored in the plane.
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2.2 Micromagnetic Simulation Background

In the simulations, a metastable state was determined to have been reached when

the maximum torque experienced by any one magnetic moment dropped below 0.2

deg/ns. Once this level of torque was reached, the magnetic state data were saved

to a file along with the other properties of the system, including but not limited to,

the energies associated with each contribution, overall magnetization, and number of

iterations. The magnetic field was then changed to the next value and the iterations

continued until saturation of the magnetization was obtained. The magnetic field

steps were chosen such that half the steps (typically, a few hundred) were during

the increasing field portion and the other half in the decreasing field portion. The

data stored in the file were used later to generate the hysteresis plots, track the

energy changes associated with the field variations, and the spatial orientations of

the magnetic moments. Unless specified otherwise, the parameters chosen in the

simulations correspond to those for cobalt, as shown in Table (5.1).

The parameters are sent to the code in the form of a “.mif2” file. This is a file

form that is developed for the purposes of the OOMMF code. It is a cross between a

list of parameters with a source code for the simulation itself. It can contain routines,

variables, and calculations, but it also contains values for constants to be used in the

simulation. An example of a “.mif2” file in the MIF2.1 format is shown in Appendix

A.

In modeling the magnetic nanoparticles, we observed a non-trivial patterned mag-

netic state known as a skyrmion.
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2.2.3 History of Skyrmions

Skyrmions were first introduced by Tony Skyrme in 1962 as a solution to a La-

grangian which approximates QCD at low energies (46; 55). They were introduced

in an attempt to describe baryons and their interactions. Although skyrmions were

not recognized immediately as a state that could appear in many contexts, in the

past few decades much work has gone into showing that they can appear in a number

of diverse fields. These fields include liquid crystals (65), Bose-Einstein condensates

(34; 41; 67), thin magnetic films (35), quantum Hall systems (59; 12; 50; 5), and

potentially vortex lattices in type II superconductors (1; 6).

This dissertation deals with the magnetic skyrmionic state which is a vortex state

where the outermost spins are antiparallel to the vortex core. This can be visualized

in imagining water flowing down the drain in a bath tub. Imagining the vectors

pointing in the direction of flow of the water, the flow is directly downwards in the

center. As the distance from the drain increases, the flow moves more in plane and

goes around either clockwise or counterclockwise. This analogy breaks down, however,

as the distance from the drain continues to increase, the flow of the water would have

to begin moving upwards, which clearly does not happen in the context of the water

in the drain. In this analogy, the local magnetic moments are being translated into

the local velocity vectors. A visual representation of this from the literature can be

seen in Fig. (2.6).
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2.2 Micromagnetic Simulation Background

Figure 2.6: Image of a magnetic skyrmion. Color corresponds to z-component of local
magnetic moment.
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2.3 Correlations, Patterns, and Transitions in Low

Temperature Quantum Systems

Classical amorphous systems have received much attention in recent years, specif-

ically those that exhibit so-called jamming transition. This transition reflects the

system’s ability to support yield stress. We discuss a very general relation between

low temperature quantum systems and classical viscous systems. This comes in the

form of patterns associated with spatio-temporal correlations functions. These pat-

terns include the jamming transition and dynamical heterogeneities.

2.3.1 Jamming Transition

To picture the jamming transition, one simply needs to picture a number of coins

on a tabletop. As the number of coins increase, the chance of any coin to move

without colliding with another coin decreases. At a certain density of coins, for any

coin to move across the table, all the coins would need to change their position in

order to accommodate that.

The jamming transition arises in a number of different systems including, but not

limited to, traffic, granular materials, glasses, and close-packed spheres (39; 45; 44;

42; 43; 40). It has been proposed that this transition is a new type of phase transition

to a solid state(8; 61). Coupled with this transition are diverging length scales (54; 9)

and diverging time scales (21; 9).

The phase diagram of the jamming transition can be visualized in a three dimen-
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Figure 2.7: Phase diagram for the jamming transition.

sional plot of temperature, load (stress), and inverse density. This can be seen in Fig.

(2.7).

2.3.2 Dynamical Heterogeneities

Dynamical heterogeneity is a concept describing non-uniform dynamcs in amor-

phous systems, including but not limited to, glassy systems (16; 18; 49; 48). When in

a liquid phase, a system will have a broad distribution of relaxation times and behav-
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iors across the whole system. As the system approaches an amorphous solid state,

however, particles cease to move. and are constantly on the move which prevents

any one location from staying constant for too long. This is what gives rise to the

transient nature of dynamical heterogeneities. This variation can be visualized in a

vector plot of velocities in a system as shown in Fig. (2.8).

Dynamical heterogeneity is typically measured via a four-point correlation func-

tion. This effectively quantifies the time and length scales associated with the density

fluctuations. This can be written as

C4(~r, t) = 〈 1

V

∫
d~Rδρ(~R, 0)δρ(~R, t)δρ(~R + ~r, 0)δρ(~R + ~r, t)〉

−〈 1

V

∫
d~Rδρ(~R, 0)δρ(~R, t)〉〈 1

V

∫
δρ(~R + ~r, 0)δρ(~R + ~r, t)〉 (2.23)

where δρ is a density fluctuation.

To characterize the strength of the correlation, integration over the spatial coor-

dinate is needed which allows one to define a four-point susceptibility. This suscepti-

bility has a maximum at the typical relaxation time for glassy systems. This can be

expressed as

χ4(t) =

∫
d~rC4(~r, t) (2.24)
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Figure 2.8: Spatial map of single particle displacements in the simulation of a
Lennard-Jones model of a supercooled liquid in two spartial dimensions. Arrows
represent the displacement of each individual particle in a trajectory of duration
comparable to the typical structural relaxation time. This map reveals that particles
with different mobilities are spatially correlated. Image used with permission of (7)
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which is sometimes expressed in terms of the non-averaged correlation function,

C(t) =
1

V

∫
d~rδρ(~r, 0)δρ(~r, t) (2.25)

χ4(t) = N
(
〈C2(t)〉 − 〈C(t)〉2

)
. (2.26)
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Chapter 3

Periodic Solutions and Rogue

Wave Type Extended Compactons

in the Nonlinear Schrodinger

Equation and φ4 Theories

3.1 Introduction

The Nonlinear Schrodinger Equation (NLSE) is a very versatile equation used in

many branches of physics, dictating the behavior of wave packets in weakly nonlinear

media. It represents the evolution of optical waves in a nonlinear fiber (26; 16; 3; 13;

18; 27; 8), the envelope of wave packets in ocean waves in an infinitely deep ocean

(5; 4; 2; 21; 24), various biological systems, and the price of options in economics
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(17; 30). One common way of solving the NLSE is through the Inverse Scattering

Transform which uses the idea of Lax pairs. (29; 22)

A very open problem associated with the NLSE is the development of rogue waves

appearing in different media (20; 15; 25; 14). Rogue waves are large waves that

seem to appear from nowhere and are, at least, 2-4 times larger in amplitude than

surrounding waves. They are often preceded by a large depression referred to as a

“hole in the sea” in oceanic terms. This is likely a nonlinear effect in most cases.

3.2 Nonlinear Schrodinger Equation in 1+1 Di-

mensions

We consider the NLSE with a drift velocity and general nonlinearity in the presence

of an external potential U and an additional source term g. In general dimensions,

i
∂

∂t
Ψ = [−ic∂Ψ

∂x
− ε∇2Ψ− λF (|Ψ|2)Ψ

+U(~r, t)Ψ + g(~r, t)], (3.1)

where ε and λ are tunable real parameters, F is a general function of the squared

modulus, and c is the velocity along the drift axis (chosen to be the x-axis). The

general “source” term g does not make an appearance in usual NLSE. However, it

can be treated following the transformation of the NLSE to a mechanical problem

which underlies a central part of this work. We will ignore g and consider its effect
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3.2 Nonlinear Schrodinger Equation in 1+1 Dimensions

only in a separate later discussion. In 1+1 dimensions, we choose the ansatz

Ψ(x, t) = e−iωtu(x− ct)eiδ (3.2)

with real u(x) ≥ 0 and eiδ an arbitrary phase. This gives rise to an ordinary differ-

ential equation in u,

ωu = −εd
2u

dx2
− λF (u2)u+ U(x, t)u. (3.3)

Following a Galilean boost to the moving frame, x → (x − ct), and a subsequent

interchange of space with time, Eq. (3.3) is the equation of motion for a nonlinear

oscillator of spring stiffness ω subjected to an external linear force of strength U .

Under this interchange, the term εd
2u
dx2

corresponds to the inertial term of the mass

times the acceleration, and [ωu + λF (u2)u] is an effective internal forcing term. In

this form, the strength of the nonlinearity is proportional to λ. In what follows, we

first consider the case of U = 0 and then comment on non-zero U . Eq. (3.3) is that

of a classical particle in an effective potential given by

Veff (u) =
ω

2
u2 + λ

∫ u

dv[F (v2)v]. (3.4)
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3.2 Nonlinear Schrodinger Equation in 1+1 Dimensions

The energy of a classical oscillator is a constant of motion. In this case, the corre-

sponding “energy” is given by

E = Veff (u) +
ε

2
(
du

dx
)2. (3.5)

A particular case is that of solitons for which u→ 0 at large |x− ct| (or large times

in the corresponding mechanical problem) and consequently E = 0. General periodic

solutions appear for general non-zero E.

Rewriting Eq. (3.3), we have

∫
dx = ±

∫ u dv√
2E
ε
− ω

ε
v2 − λ

ε

∫ w d(v′2)
dx

F (v′2)dv′
. (3.6)

Figure 3.1: Plot of the effective potential shown in Eq. (3.4) for a cubic non-linearity
(F = u2) for ω = 2 (single minimum) and ω = −2 (double minimum) with λ = 1.
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3.2 Nonlinear Schrodinger Equation in 1+1 Dimensions

For definitiveness, we consider the cubic nonlinearity F (u2) = u2 in our Eq.(3.6).

The effective potential is then Veff = ωu2/2 + λu4/4. This effective potential is

plotted in Fig. (3.1) for ω = ±2 and λ = 1. In general, when ω < 0, we have a

double minimum of Veff (u). In such cases, when E < 0, u is restricted to be positive

definite. When ω > 0, we have a single miniumum at the origin (u = 0). In all cases,

as we increase the value of E, more values of u become possible (E ≥ Veff (u)). A

transition in the form of the effective potential (from a double well form to a single

minimum) occurs at ω = 0. In passing, we note that this is similar to what occurs in

Ginzburg-Landau theories when the coefficient of the quadratic term (in this case ω)

switches sign at the transition. We find that in the case of F (u2) = u2,

u = −

√
−ω
λ

+

√
4Eλ+ ω2

λ
×

cn(

√√
4Eλ+ ω2

ε
(x− ct), 1

2
− ω

2
√

4Eλ+ ω2
) (3.7)

where cn is a Jacobi Elliptic Function. This is consistent with companion works

(9; 10). The Jacobi Elliptic Functions are doubly periodic in (x−ct). In this case, the

periodicity of the Jacobi Elliptic integral allows a harmonic (Fourier series) expansion

of u (1).
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3.3 NLSE in d+1 dimensions

3.3 NLSE in d+1 dimensions

We consider the NLSE of Eq.(3.1) in d+1 space-time dimensions. With r = |~r|,

~r = rn̂, and angular momentum operator, ~L, in d spatial dimensions, the Laplacian

becomes ∇2 = ∂2

∂r2
+ d−1

r
∂
∂r
− ~L2

r2
. If ~L2Ψ is bounded in the co-moving frame at speed

c, for asymptotically large r along any direction n̂ on the unit sphere, Eq.(3.1) reads

i
∂

∂t
Ψ(r, n̂) = [−ε ∂

2

∂r2
Ψ(r, n̂)

−λF (|Ψ|2)Ψ(r, n̂) + U(~r, t)Ψ(r, n̂)]. (3.8)

Along any direction n̂, self-consistent solutions are enabled by the solution of the

1+1 dimensional NLSE with the corresponding potential U . Here,“self-consistency” is

meant to imply the resulting wavefunction Ψ has dependence on n̂ such that L2Ψ(r, n̂)

is bounded. If we consider the substitution of φ = rψ in the specific case of d=3

dimensions, we see that Eq.(3.8) is equal to

r∂tφ = −∂2
rφ+

L2

r2
φ+ Uφ+

λ

r2
|φ|2φ. (3.9)

Since
∫
|ψ|2r2dr is equal to a constant, this implies that

∫
|φ|2dr is a constant,

or in other words, φ goes as 1/rα for large r where α > 1/2. This implies that for

large r, the nonlinear term goes as 1/r2+3α and can be treated as a perturbation to

the LSE.
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3.4 Noise

This also has implications for the small r limit as well. This limit needs to be

broken down into cases where l = 0 and l > 0. For the case of l = 0, this simply

is the case of the normal NLSE in 1+1 dimensions and have the same results as in

Eq. (3.7) where x− ct is replaced by r. In the case where l 6= 0, though, φ must go

to zero as r → 0 in order to prevent the divergence caused by L/r2. If this is the

case, the nonlinear term goes to 0 faster than the other terms and thus can, again, be

considered as a perturbation to the LSE. With an ansatz of the form of Eq.(3.2), i.e.,

Ψ(x, t) = e−iωt(
∑

m um(r)eimφ)eiδ with the cylindrical coordinates (r, φ) taken in the

moving frame at velocity c along the drift (x-) axis, a series of nonlinear equations is

obtained. 1

3.4 Noise

For a non-zero U in Eq.(3.1) that depends only on the coordinates in the drifting

frame at speed c, the mechanical analogue problem of Eq.(3.3) along the radial di-

rection (or, in general, in 1+1 or 2+1 dimensions) is that of an anharmonic oscillator

subjected to a linear force uU(t). When U 6= 0, the NLSE is sometimes referred to as

the Gross-Pitaevskii equation. Anderson localization (6; 11; 12; 19; 28) will occur for

random U(t). This means that an instanton-like solution of the mechnical problem

is non-zero only in a finite interval of time. This corresponds to a spatial localization

of the wavefunction Ψ over the finite interval of |~r− ctêx| with êx a unit vector along

1In the case of 2+1 dimensions, this takes the form: ωnm(r) = [(− d2

dr2 + 1
r

d
dr )um +

λ
∑

m1,m2
um1um2um−m1+m2 ]
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3.4 Noise

the drift direction.

Next, we briefly consider the case of a periodic potential U of period a for λ = 0.

The invariance of the second order differential equation of motion of Eq.(3.3) under

translations by a implies that independent linear solutions scale as µx/aΠ(x) with

general complex µ which may be of unit modulus or real. The case with complex

|µ| = 1 constitutes a mechanical analogue of Bloch’s theorem. Normalization demands

that for an ideal periodic potential, |µ| = 1. For real µ with |µ| > 1, there is an

instability (parametric resonance) wherein u exhibits unbounded increase. Such a

case indeed occurs for a linear oscillator when the potential is U = h cos γx with

|γ − 2
√
ω/ε| < h

√
ω/4ε wherein when coupled to the unperturbed u, the noise term

uU acts as a periodic external force with a Fourier component having a period that

is close to that of the natural resonant period of the unperturbed oscillator. This

leads to large oscillations. A similar resonant Fourier component is generated by a

cubic term in u. It is conceivable that such a situation is emulated for nearly periodic

U over some spatial range also in the presence of non-linearities. We speculate that

noise and effects from the ocean floor along with collisions with other waves may act

as effective boundary conditions on the waves similar to those discussed in (7) which

may trigger wave amplification in some cases.
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3.5 Source terms

3.5 Source terms

Following the outlined prescription of converting the NLSE with the ansatz of

Eq.(3.2) into a classical mechanical problem where the spatial coordinate of the NLSE

in the moving frame is replaced by a time coordinate, f becomes an external force. In

particular, if in the 1+1 dimensional rendition of Eq.(3.1) we have g = eiωtf(x− ct),

then instead of Eq.(3.3) we will have, in the moving frame at speed c, ωu = −εd2u
dx2
−

λF (u2)u+Uu+ f(x). Under the interchange of space with time, this corresponds to

a classical non-linear oscillator subjected to external forces (Uu + f). The results of

the classical analysis are then replicated. For instance, in the case of U = λ = 0 and

an oscillatory external “force” f = f0 cos Ωt, a resonance appears when Ω =
√
ω/ε

wherein u ∼ t sin(Ωt+φ). The solution of the homogeneous equation (with a vanishing

U = f = 0) is that of Eq.(3.6). Whenever the “force” f is of the form of the

homogeneous solution, a resonance appears. In the case of a cubic non-linearity

(λ 6= 0), a resonance occurs when f is of the form of Eq.(3.7).

3.6 Rogue Wave Type Solutions

We consider emulating rogue waves by spatially stitching solutions together at

common nodes. Following the formalism associated with compactons (23), we con-

sider wavefunctions which are piecewise continuous with cutoffs at the nodes. We

can truncate the function, u, at the nodes and append on another function of our

choosing with minimal error as long as the value of the function and its derivative
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3.6 Rogue Wave Type Solutions

at these points is close to zero. This process differs from the process used to create

compactons in that the wavefunction extends over all space and is not confined to a

localized region. The process that we briefly describe produces an approximate so-

lution to the NLSE (including, as a particular case, the linear Schrodinger equation)

with deviations from a solution of the form of Eq.(3.3) only in the vicinity of the

nodes. The initial form of these solutions can be expressed as

Ψ(x, 0) =



u1(x) x < x1

u2(x) x1 < x < x2

u3(x) x2 < x

(3.10)

where the common nodes of the function u2 and u1 and u3 are, respectively, denoted

by x1 and x2. In higher dimensions, {xi} denote the coordinates of planes (either

Euclidean, spherical or other) along which these solutions are stitched. Here, {ui}

correspond to our solutions of the form of Eqs.(3.6, 3.7). We note that perfect nodes

where the function and its derivative are exactly zero cannot exist, because for u

of the form given in Eq.(3.7), the derivative is non-zero at all zeros of the function.

Below, we once again set ε = λ = 1 and consider the cubic NLSE in the absence of

an external potential.

As ω becomes increasingly negative, the oscillations become narrower and taller as

in Fig. (3.2(a)). For negative ω, negative E is allowed so long as E > ω
λ
. A form for

negative E is shown in Fig. (3.2(b)). Although wavefunctions Ψ formed by piecewise
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3.6 Rogue Wave Type Solutions

Figure 3.2: Plots of the function u at t = 0 for λ = 1, ε = 1, and (a) E = 10−6,
ω = −102 and(b) E = −10−5, ω = −3.
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3.6 Rogue Wave Type Solutions

Figure 3.3: Plot of |Ψ| of Eq. (3.10) with c = 1, ω2 = −10, ω1 = ω3 = −1, E = 10−12,
and x1 = 5.5 and x2 = 20. In this plot, we shift (x− ct− x0)→ x with x0 = 15.
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3.6 Rogue Wave Type Solutions

stitching such solutions are special, it is clear that in order to have transient rogue

wave type phenomena, the current ~j cannot be spatially uniform (with a velocity c)

in the rogue wave region. Far away where the current is of uniform speed c, it is of

the form given by Eqs.(3.6, 3.7).

A wave u2 of large amplitude by comparison to u1 and u3 emulates a rogue wave.

A plot of Ψ(x, t = 0) is provided in Fig. (3.3). The continuity equation ∂ρ
∂t

+ ~∇·~j = 0

with the density given by ρ = |Ψ|2 and the current ~j = iε(Ψ~∇Ψ∗ − Ψ∗~∇Ψ) applies

to the NLSE. For wavefunctions of the form of Eq.(3.10) with real ui, the current

~j = 0 at all points apart from the nodes. If an interpolating form is chosen near the

nodes, the current j assumes non-zero values only in the regions close to the nodes.

If we consider the co-moving frame and define P =
∫ x2
x1
ρ dx where ρ = |ψ|2, then

integrating the continuity equation gives

dP

dt
= j1 − j2 (3.11)

where j1 andj2 are the currents at x1 and x2, respectively. If we consider a rogue wave

centered about x = 0 extending from x = −a to x = a and define Po =
∫ X+a

X−a ρ dx

with X � 0, then with P the integral over the region of extension of the rogue wave,

we can define the lifetime τ of the rogue wave as the time for P in the region of the

wave to arrive at Po. We then find that

τ =

∫ P

Po

dP

j2 − j1

(3.12)
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3.6 Rogue Wave Type Solutions

Alternatively, to avoid the possible problem of slow convergence to Po, we can

consider the half life of the rogue wave:

τ1/2 =

∫ P

(P+Po)/2

dP

j2 − j1

(3.13)

We can concretely see the behavior of a rogue wave type solution by evolving

rogue wave initial conditions according to the linear, free-particle Schrodinger equa-

tion (LSE). The behavior of wavefunctions under the LSE should give us qualitative

understanding of the time evolution of rogue waves. One aspect of the LSE that is

worth noting at this point is it’s time-reversal symmetry.

In the co-moving frame, we can write down rather general initial conditions for a

rogue wave as ψ(x, 0) = cos x+αe−x
2
, with (1 +α)2 the amplitude of the rogue wave

relative to the background, typically between 2 and 4. Evolving ψ(x, 0) according to

the LSE, we find that

ψ(x, t) = e−
i
2
t cosx+ α

e
−x2
1+2it

√
1 + 2it

(3.14)

The amplitude of the rogue wave at the origin is

|ψ(0, t)|2 = 1 +
α2

√
1 + 4t2

+ α

√
1− 2it√
1 + 4t2

e
i
2
t + c.c. (3.15)

After an initial drop in amplitude, the amplitude of the oscillations at x = 0 decays

to zero as 1√
t
.

47



3.7 The NLSE and Rogue Waves in a φ4 Model

For this case, we can also calculate the current discussed above which can be found

analytically to have the magnitude.

j(x, t) = − iε

(1 + 4t2)3/2
e
− it

2
− 2x2

1+4t2α

(
8ie

it
2 txα

+2
(
e

x2

1+2it

√
1− 2it(1 + 2it) + ieit+

x2

1−2it

√
1 + 2it(i+ 2t)

)
x cos(x)

−
(
e

x2

1+2it

√
1− 2it− eit+

x2

1−2it

√
1 + 2it

) (
1 + 4t2

)
sin(x)

)
. (3.16)

This can then be used to calculate the halflife of the rogue wave solutions as

discussed in Eq. (3.13).

3.7 The NLSE and Rogue Waves in a φ4 Model

We next consider the φ4 theory given by the Lagrangian density

L =
1

2
∂µφ∗∂µφ−

m2

2
|φ|2 − λ

4!
|φ|4, (3.17)

with φ a complex scalar field and implicit summation over space-time coordinates µ.

The Euler-Lagrange equation, in the non-relativistic limit, is a NLSE with a potential

shift, m:

iφt = −∇
2

2m
φ+

λ

12m
|φ|2φ+mφ (3.18)
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3.7 The NLSE and Rogue Waves in a φ4 Model

Solutions are given by those of Eq. (3.1 ) with F = |Ψ|2 multiplied by e−imt. If we

discretize the φ4 Lagrangian density and consider a 2-dimensional lattice of points

with spacing ∆, the imaginary time (t = iτ) Lagrangian becomes

L =
∑
i,j

[
1

2
|φ̇ij|2 +

16 +m2∆2

2∆2
|φij|2 +

λ

4!
|φij|4

]
(3.19)

− 1

∆2

∑
α

δαφijφkl

where the indices i, j denote the two Cartesian coordinates of points in the plane,

α denotes each pair (i, j), (k, l), and δα is zero for non-adjacent and one for adjacent

oscillator pairs.

In the linear (λ = 0) case, the system is quadratic and solvable by diagonalization.

We analyzed the time evolution for different parameters by a perturbative scheme in

λ. In order to underscore the ubiquitous nature of rogue waves (including, as noted

in some of our earlier discussions (e.g., Eq.(3.10), their presence already at the linear

level), we plot below the evolution of an initial rogue wave state for the coupled

linear oscillator Lagrangian of Eq. (3.19) with the parameters m = 2 and ∆ = 1.

The even appearance and low amplitude of the surface at large times illustrates that,

already at a linear level (i.e., that with λ = 0), the dispersion of the normal modes

of the unperturbed sysetm (λ = 0) enables an evolution of steady states into rogue

wave configurations. As the theory is time-reversal invariant, we can conclude that a

steady state given by Fig. (3.4(b)) could evolve into the rogue wave in Fig. (3.4(a)).
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3.7 The NLSE and Rogue Waves in a φ4 Model

Figure 3.4: (a) shows a region of the cell surrounding an initial Gaussian rogue wave
on a cosine background where (i, j) denote Cartesian coordinates and |φ|2 denotes
the modulus of the squared amplitude. (b) shows the same system at large times
(t = 60, 000 iteration steps).
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3.8 Conclusions

We investigated the NLSE by considering a corresponding classical mechanics

problem of non-linear oscillators. The focus was on determining oscillatory waves

with a general drift velocity c. By invoking this analogy,

(1) We determined solutions to general NLSE with a general drift velocity c in 1+1

dimensions for an arbitrary non-linearity F in Eq.(3.1) . The general result is that of

Eq.(3.6).

(2) We discussed solutions in general dimensions for large radial coordinates.

(3) We discussed the effects of noise and external sources.

(4) We demonstrated that solutions could potentially be truncated and attached to

each other (as in Eq. (3.10) in order to create approximate solutions that behave very

much like a rogue wave. We thus introduced the notion of “generalized compactons”

which unlike usual compactons (and solitons) have a non-zero (periodic) background.

The lifetime of such solutions scales as the reciprocal of difference in currents in

the vicinity of the stitching points as given by Eq.(3.12). We qualitatively saw the

behavior of the amplitude of a rogue wave over time by solving the linear Schrodinger

equation for rogue wave-like initial conditions.

(5) We, specifically, employed considerations of the continuity equation to discuss life-

times of rogue wave type states. (6) We reported on the appearance of rogue waves in

φ4 theories. Specifically, we modeled rogue waves in a system of coupled oscillators.

We showed that this approach allows initial rogue wave-like conditions to evolve into
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3.8 Conclusions

what appears to be a steady state. By time-reversal invariance of the equations of

motion, we can conclude that rogue waves can evolve out of a steady state of that

form.
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Chapter 4

The Demagnetizing Factor of a

Hemisphere

4.1 Introduction

Demagnetizing factors have been an area of study for more than a century. Earliest

theoretical work dates back to Thompson (21) and Maxwell (14) whereas experiments

date back to Rowland (17) with ballistic galvanometers. Determining demagnetizing

factors can be very complicated, and thus only a select number of geometries have

ever been calculated. The results for a general ellipsoid can be found in work from

Osborne (15). The results for a circular cylinder can be found in work from Chen et

al. (7). The case of a transversely magnetized, infinite prism is found in work from

Brown (5) and the case of a square-faced prism can be found in work from Joseph (11).

The general rectangular prism is calculated by Aharoni in (1). Analytical expressions
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4.2 Origin of Demagnetization Energy

for the demagnetization factor for objects devoid of symmetry (irregular shaped) are

impossible to derive.

As shown in experiments (13; 12), self-organized nanoparticles on low energy

substrates form hemispherical shapes, the most natural shape for particles to form

due to surface tension effects. Understanding the magnetic behavior of a hemisphere

is very important in the field of micromagnetics.

4.2 Origin of Demagnetization Energy

The origin of the demagnetization energy can be derived from the interaction of

a lattice of dipoles at T=0 (6). The potential energy of such a system is given by

U = −1

2

∑
i

~mi · ~h′i, (4.1)

where ~h′i is the field at position i from all other dipoles. This field can be written as

~h′i = ~H ′ +
4

3
π ~M + ~h′′i , (4.2)

where ~H ′ is the megascopic field from the poles due to ~M , and ~h′′i is the field of the

dipoles local to site i. In general, ~h′′i depends on the crystal lattice structure. In the

continuum limit, the sum becomes an integral of the form
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4.2 Origin of Demagnetization Energy

U = −1

2

∫
~M · ( ~H ′ + 4

3
π ~M + ~h′′i )dV. (4.3)

The second term in this expression is a constant proportional to M2
s and can be

ignored. The third term depends only on the crystal structure and local magnetization

and is usually grouped with the crystalline anisotropy energy, leaving

U = −1

2

∫
~M · ~H ′dV. (4.4)

The calculation detailed below follows the series of steps outlined in Stoner’s paper

on calculating the demagnetizing factor of the general ellipsoid (18), which draws an

analogy between magnetic and gravitational potentials and relating the demagnetizing

field to the second derivative of the magnetic potential. In general, the demagnetizing

field can be related to the demagnetization factor via Hi = −NiMi, where Hi is the

i-th component of the demagnetizing field, Ni is the demagnetizing factor in the i-th

direction, and Mi is the i-th component of the magnetization. When using cgs units,

the demagnetizing factors in each direction sum to 4π. Some literature chooses to

use mks units such that the demagnetizing factors sum to 1, and those are typically

denoted by Di rather than Ni. For the remainder of this paper, the 4π normalization

will be maintained.
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4.3 Results

Starting with the expression for the gravitational potential of a hemisphere as

given by (16),

U(R, r, z) = −1

3
πGρ(−r2 + 2z2 + 3R2 +

2R3

√
r2 + z3

) +

1

3
Gρ

1

z
√

(R + r)2 + z2

(
− z2(3r2 + 3z2 +R2)K + 3z2(r2 + z2 + 2rR +R2)E

−(r2 − 2z2 − 3R2 +
2R3

√
r2 + z2

)(r2 + z2 + rR− (r +R)
√
r2 + z2)Π1

+(−r2 + 2z2 + 3R2 +
2R3

√
r2 + z2

)(r2 + z2 + rR + (r +R)
√
r2 + z2)Π2

)
(4.5)

where r =
√
x2 + y2, R is the radius of the hemisphere, r < R, and z < 0, K is the

complete elliptic integral of the first kind, E is the complete elliptic integral of the

second kind, and Π is the complete elliptic integral of the third kind, and

K = K

(
4Rr

(R + r)2 + z2

)
(4.6)

E = E

(
4Rr

(R + r)2 + z2

)
(4.7)

Π1 = Π

(
2r

r +
√
r2 + z2

,
4Rr

(R + r)2 + z2

)
(4.8)

Π2 = Π

(
2r

r −
√
r2 + z2

,
4Rr

(R + r)2 + z2

)
(4.9)

The demagnetizing factor of any cartesian direction can be calculated by taking

the second spacial derivative of the magnetic potential relative to that coordinate.
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The magnetic potential is the gravitational potential in the case where G = ρ = 1.

The final derivative expressions are too lengthy to present here, but checks can be

made to ensure that these are indeed the correct expressions, such as evaluating the

demagnetization factor in the x-direction at the origin and at the apex of the hemi-

sphere, (0, 0,−R). These will have values of 2π
3

and 5π
√

2
6

, respectively as described

in (9).

In order to take the limit approaching the origin, one can simplify the expression

for the demagnetizing factor when all coordinates are equal (x = y = z), do a series

expansion around z = 0, and keep the leading order terms, obtaining 2π
3

. Similarly,

for the case of the apex of the hemisphere, one can set z = −R and x = y and again

take the limit as y goes to zero. A series expansion about y = 0 can be written and

keeping the leading order terms, the value of 5π
√

2
6

is obtained.

It is most useful to report an expression for the demagnetizing factor averaged over

the sample volume rather than a spatially dependent expression, so that a purely

geometrical quantity can be defined. In the case of a hemisphere, the geometry

is uniquely specified by one parameter, R. Because the demagnetizing factor is a

dimensionless quantity, the spatially averaged demagnetizing factor is independent of

the radius of the hemisphere in question. Therefore, calculating the spatially averaged

demagnetizing factor of one hemisphere, is true for all hemispheres. Integrating the

demagnetizing factor over the volume of the hemisphere analytically proves to be

cumbersome, so numerical integration found the spatially averaged demagnetizing

factor of a hemisphere for the x-direction to be 〈Nx〉 ≈ 3.898.
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4.4 General Method for Calculating Demagnetiz-

ing Factors

Another way to calculate a spatially averaged demagnetizing factor in a system of

arbitrary geometry is to calculate the demagnetization energy of a saturated system

numerically. For a system with a uniform magnetization, the field and exchange ener-

gies are zero and thus all energy lies in the demagnetization energy. By systematically

adjusting the spatial parameters that determine the geometry of the system, one can

map how each parameter modifies the demagnetization energy of the system overall.

The demagnetizing energy density of a system that is uniformly magnetized is

given by the expression

εD =
1

2
µ0M

2
sNi, (4.10)

where Ni is the demagnetizing factor in the direction of the uniform magnetization.

In general, the demagnetizing factor can be spatially dependent, but in simple cases

it is a constant. Without knowing the demagnetizing factor when integrating over

the volume, one obtains,

ED =
1

2
µ0M

2
s 〈Ni〉. (4.11)
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One possible way to do this, and the way used in this work, is to use the Object

Oriented Micro-Magnetic Framework (OOMMF) simulation code (8). OOMMF nu-

merically solves the Ginzburg-Landau-Lifshitz equation by minimizing energy terms

including, but not limited to, field energy, demagnetization energy, and exchange en-

ergy. One can apply arbitrarily large fields to a system of any geometry, and the code

will provide a numerical value for the demagnetization energy.

Because OOMMF calculates ED numerically, one can solve for the spatially aver-

aged demagnetizing factor as it changes with the parameters determining the shape of

the system. In other work done by these authors, simulations of Cobalt hemispheres

were done, from which, spatially averaged demagnetizing factors were obtained (10).

To ensure that the energy density of the perfectly saturated state was obtained, fits

to the data were done of the form of arctangents and the limit as the field approached

infinity was used as shown in Fig. (4.1).

Through simulations of hemispheres of various radii, the demagnetization energy

of a single domain state is known within the saturation regions of the hysteresis curves.

As expected the plot of the demagnetization energy versus the radius cubed gives a

linear relationship and from the slope, the demagnetization factor of a hemisphere

can be calculated. Applying the field along the x-, y-, and z-directions gives the

demagnetizing factors in each of these directions. The validity of this method can be

checked to ensure they are normalized to 4π and can be calculated directly through

numerics and the analytic method discussed above.

This can be seen in Fig. (4.2) where the demagnetization energy is plotted versus
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4.4 General Method for Calculating Demagnetizing Factors

Figure 4.1: Plot of demagnetization energy density in J/m3 versus magnetic field
strength. Data points shown in red and the fit is shown in blue. To obtain the
demagnetization energy density of the saturated state, the limit as the field went to
infinity was taken.
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the radius of the hemisphere cubed. This is for the case of the field applied in the z-

direction, which corresponds to the axis perpendicular to the face of the hemisphere,

thus giving the demagnetizing factor in that direction. The slope of this line is

1.1948× 10−21J/nm3. From this slope, A, and the relationship

〈Nz〉 =
A

1/(8π)µ0M2
s × (2/3)π

= 6.32453. (4.12)

Because the demagnetizing factors normalize to 4π and the x- and y-directions

are symmetric with each other, it can be determined that Nx = Ny ≈ 3.121, approx-

imately 20% different from the analytic calculation of Nx ≈ 3.898.

Figure 4.2: Plot of demagnetization energy versus radius (of hemisphere) cubed. The
field is applied perpendicular to the plane of the face of the hemisphere.
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4.4 General Method for Calculating Demagnetizing Factors

Figure 4.3: Plot of demagnetization energy versus radius (of hemisphere) cubed. The
field is applied in the plane of the face of the hemisphere.

Similarly, this method can be recreated for the set of data where the field is applied

in the plane of the face of the hemisphere. When doing this analysis, the slope of

the plot is 7.322 × 10−22J/nm3. Using Eq. (4.12) and the slope from Fig. (4.3),

the demagnetizing factor in the x-direction, thus equivalently in the y-direction, is

3.568, which corresponds to a demagnetizing factor in the z-direction of 5.430. This

is approximately 8% different from the analytical calculation of Nx ≈ 3.898. The gap

between these values and the true value as calculated from the analytic expression can

be closed by simulating more radii and with finer grid spacing as to better approximate

the continuum limit.
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4.5 Using Shape Function Formalism

An extensive body of work has been created by Beleggia et al. in (2; 19; 20; 3; 4)

where a formalism is introduced to calculate the demagnetization factor of general

geometries. This is done by introducing a shape function D(~r) which is equal to unity

inside of the shape and zero outside.

Beleggia et. al. calculated demagnetizing factors using the formalism of shape

functions in real space and shape amplitudes in Fourier space. Using this formalism

to calculate the demagnetizing factor for a hemisphere is as follows. The shape

amplitude for a hemisphere is given by a limiting case of Eq (30) in reference (19),

D(k) = 2π
∞∑
l=0

(−i)l[Pl−1(0)− Pl+1(0)]Pl(cos θ)κl(k,R), (4.13)

where Pi are the Legendre Polynomials and κl(r, R) =
∫ R

0
dρρ2jl(kρ) and jl are the

spherical Bessel functions.

This implies that the demagnetizing factor can be calculated as a function of the

radius, r. The spatially dependent demagnetizing factor in the x-direction can be

calculated from

N(r) =
1

2π

∫
d3~k

D(k)

k2
k2
xe
i~k·~r. (4.14)
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Expressing the exponential as plane waves,

ei
~k·~r = 4π

∞∑
l=0

iljl(kr)
+l∑

m=−l

Y ∗lm(θ′, φ′)Ylm(θ, φ), (4.15)

gives a product of infinite sums. Although this method will give the correct expression

for the demagnetizing factor in the x-direction, it is significantly more laborious than

our direct method discussed above.

4.6 Using Shape Anisotropy to Control Jumps in

Hysteresis

Shape anisotropy can offer favored directions which can be aligned at different

angles to each other. Having an array of nanoparticles with a variance in the level

of anisotropy, a customized hysteresis loop could be created. When applying a field

along the easy axis of a shape, the hysteresis behavior of that shape will be of the

square loop type. When applying a field perpendicular to the easy axis, it will feature

an intermediate region between flipping where the magnetization switches to be per-

pendicular to the field. Combining these behaviors together gives rise to a hysteresis

loop with jumps which can be customized in several ways. The level of anisotropy

will control the field at which the jumps will occur and the number of particles with

a given level of anisotropy will control the size of the jump.
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Figure 4.4: Hysteresis loop for two hemiellipsoids, one oblate and one prolate. As
can be seen at the points labeled, there is slow divergence from the saturation as the
prolate hemiellipsoid saturates perpendicular to the field (a), the oblate hemiellipsoid
has uniform flipping (b), and finally the prolate hemiellipsoid saturates again (c).

A trivial example of this is shown in the case of having two hemiellipsoids of

rotation where the major axis is equal to 20 nm and the minor axis is equal to 5 nm.

For one of the hemiellipsoids, it is rotated about the major axis and for the other

ellipsoid, it is rotated about the minor axis, allowing one to be prolate and the other

oblate. This will give rise to a hysteresis behavior given shown in Fig. (4.4). As

can be seen, there is a slow divergence from saturation as the prolate hemiellipsoid

begins to saturate perpendicular to the field (a), followed by the avalanche flipping

of the oblate hemiellipsoid (b), and finished with a slow saturation of the prolate

hemiellipsoid (c).
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4.7 Conclusions

There are many different cases where having a numerical value for a demagne-

tizing factor for a certain geometry is very important, such as for calculating the

demagnetizing energy. The method presented above is a general method for obtain-

ing a numerical value for the demagnetizing factor of any arbitrary geometry. This

method is verified against the calculation of the demagnetizing factor of a hemisphere

analytically.
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Chapter 5

Demagnetization Borne Microscale

Skyrmions

5.1 Introduction

A skyrmion, theorized first by Skyrme in 1962 (24), is a state with a vectorial

order parameter which is aligned at the system boundary at an opposite direction to

what the order parameter assumes at the origin. Skyrmions may appear in diverse

arenas, such as elementary particles (24; 2; 11; 5; 26), liquid crystals (27), Bose-

Einstein condensates (13; 20; 28), thin magnetic films (15), quantum Hall systems

(25; 6; 21; 3), and potentially vortex lattices in type II superconductors (1; 4). Being

able to experimentally observe or generate skyrmions is a current research thrust

(24; 24; 2; 11; 5; 26; 27; 13; 20; 28; 15; 25; 6; 21; 3; 1; 4; 19; 22; 14).

In the arena of magnetic systems that we will focus on in this work, earlier works
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5.1 Introduction

examined large scale skyrmions (9) including large scale textures in patterned vortices

as in, e.g., the last figure of Kisielewski et al. (16)(where interesting textures are seen

in the figure yet not noted to be skyrmionic). These earlier works did not focus on

the ubiqutuous role of demagnetization energy in creating skyrmions nor examined

the topological character of such created states. The effect that we advance in this

work constitutes a general way of generating skyrmions. Skyrmions may be simply

generated by merely applying a field. This way of creating skyrmions is far simpler

than considerations presented in other recent works.

In this work we demonstrate via micromagnetic simulations that achieving a

skyrmion is as simple as creating a nanoparticle of many possible geometries, which is

large enough to support a single vortex but small enough to prevent multiple vortices.

The demagnetization energy allows for the formation of a vortex at zero-field. We

find that as the field increases such that it lies in a direction opposite to the core,

the magnetization at the edges may realign itself parallel to the field direction more

readily than the magnetization next to the core. Immediately prior to annihilation of

the vortex (i.e., the flipping of the magnetization at the system core to become paral-

lel to the applied field direction), the skyrmionic state is most notable. We observed

this, relatively ubiquitous, effect in systems with disparate geometries- spheres, hemi-

spheres, ellipsoids, and hemi-ellipsoids. It may be possible to generalize this process

so as to experimentally synthesize a skyrmion lattice by simply creating an array

of nanoparticles with tunable size and spacing, such as by self-organzation (18; 17).

Preliminary simulations of a two-by-two grid of Cobalt hemispheres of radius 20 nm
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with varying inter-hemisphere separation indicate that beyond a threshold distance of

twice the radius, an array of skyrmions is formed. As the center to center separation

is steadily increased, the skyrmionic state becomes more lucid. For small separations,

interactions partially thwart the creation of the individual skyrmions.

As is well known, we can quantify a skyrmionic state by calculating the Pontryagin

index (also known as a winding number) that is given by (10)

Q =
1

8π

∫
d2xεijM̂ · (∂iM̂ × ∂jM̂). (5.1)

In this expression, εij is the two dimensional anti-symmetric tensor and M̂ is the

normalized magnetization. For a single skyrmion, this winding number (or topological

charge) is equal to unity. Skyrmions are characterized by the non-trivial homotopy

class π2(S2). This homotopy class is characterized by an integer that, for this case, is

the Pontryagin index. States with different integer skyrmion number (the Pontryagin

index) cannot be continuously deformed into one another.

In the current context, the skyrmionic state resides on a two dimensional plane.

On each spatial point of the plane, there is a three dimensional order parameter which,

in our case, is the magnetization ~M . Topologically, a skyrmion is a magnetic state

such that when it is mapped onto a sphere (via stereographic projection) resembles a

monopole or hairy ball. This means that on mapping from a flat space to the surface

of a sphere, the individual magnetic moments will always point perpendicular to the
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surface of the sphere, much like a magnetic monopole.

The above topological classification is valid for an “ideal” skyrmion on an infinite

two-dimensional plane or disk with the condition that the local moment ~M(~r) at

spatial infinity (irrespective of the location ~r on the infinite disk) all orient in the same

direction: limr→∞ M̂(~r) = M̂0. In such a case M̂0 corresponds to the magnetization

at the “point at infinity”. On applying a stereographic projection of the infinite

plane onto a unit sphere, M̂0 maps onto the magnetization at the north pole of

the unit sphere while the oppositely oriented M̂ at the origin corresponds to the

magnetization at the south pole. In such a case, the winding number is identically

equal (in absolute value) to unity. In many physically pertinent geometries, including

the systems simulated in this work, there are finite size limits which only allow the

magnetization ~M to exhibit the trend of approaching a uniform value ~M0 as one

moves away from the center of the system. In this case, the integral in Eq. 5.1 is not

an integer. However, it is clear that, in the limit of infinite planar size, these states

would become ideal skyrmions and the winding number Q would approach an integer

value.

The remainder of this article is organized as follows. In Section 5.2, we provide

necessary background. We briefly describe the simulations employed in this work

and discuss energetic considerations. Section 5.3 reports on our central result—the

numerical observation of skyrmions. We discuss a higher dimensional generalization

and the possibility of generating skyrmion lattices. We conclude in section 5.4 with

a summary of our results.

76



5.2 Theory

5.2 Theory

5.2.1 Simulation Theory

In this work of simulating magnetic states of nanoparticles, the Object Oriented

Micromagnetic Framework (OOMMF) 1.2a distribution as provided from NIST was

utilized (8). The OOMMF code numerically solves the Landau-Lifshitz Ordinary

Differential Equation given by,

d ~M

dt
= −|γ̄| ~M × ~Heff −

|γ̄|α̃
Ms

~M ×
(
~M × ~Heff

)
(5.2)

where ~M is the magnetization, γ̄ is the Landau-Lifshitz gyromagnetic ratio, Ms is the

saturation magnetization, α̃ is the damping coefficient, and Heff is the effective field

given by derivatives of the Gibbs free energy. The Gibbs free energy, in this case, is

given by (7),

G =

∫ (
1

2
C

[(
~∇α
)2

+
(
~∇β
)2

+
(
~∇γ
)2
]

+ wa −
1

2
~M · ~H ′ − ~M · ~H0

)
dV (5.3)

where α, β, and γ are the directional cosines, C is proportional to the exchange

stiffness constant and depends on the crystal structure, wa is the crystalline anisotropy

term, ~H ′ is the demagnetization field, and ~H0 is the external magnetic field. The
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crystalline anisotropy term can be expressed in terms of anisotropy constants, K1

and K2, and directional cosines as,

wa = K1

(
α2β2 + β2γ2 + γ2α2

)
+K2α

2β2γ2. (5.4)

In the simulations, a metastable state was determined to have been reached when

the maximum torque experienced by any one magnetic moment, measured in degrees
ns

,

dropped below 0.2. Once this level of torque was reached, the magnetic state data

were saved to a file along with the other properties of the system, including but not

limited to, the energies associated with each contribution, overall magnetization, and

number of iterations. The magnetic field was then changed to the next value and the

iterations continued until saturation of the magnetization was obtained. The magnetic

field steps were chosen such that half the steps (typically, a few hundred) were during

the increasing field portion and the other half in the decreasing field portion. The

data stored in the file were used later to generate the hysteresis plots, track the

energy changes associated with the field variations, and the spatial orientations of

the magnetic moments. Unless specified otherwise, the parameters chosen in the

simulations correspond to those for Cobalt, as shown in Table (5.1).
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parameter value used in this work

Exchange Stiffness Constant (A) 2.5× 10−11 J
m

Saturation Magnetization (Ms) 1.4× 106 A
m

Damping Constant (α̃) 0.5

Landau-Lifshitz Gyromagnetic Ratio (γ̄) 2.21× 105 m
A·s

Stopping Torque (dm
dt

) 0.19deg
ns

Table 5.1: Table of parameters used in the simulations of particles in this work.
The exchange stiffness constant, saturation magnetization, and crystalline anisotropy
constant are material specific and are chosen for Cobalt. The damping constant,
Landau-Lifshitz-Giblert gyromagnetic ratio, and stopping torque are material inde-
pendent parameters.

5.2.2 Energy Considerations

In our simulations, we considered field, demagnetization, and exchange energies.

For simplicity, we neglected crystalline anisotropy effects. The field tries to align the

local magnetic moments parallel to it while exchange effects favor an alignment of the

magnetic moments with their nearest neighbors. The (universally geometry borne)

demagnetization energy directly relates to dipole-dipole interactions (7). Demagne-

tization energy is often the dominant term for long range behaviors while exchange

effects tend to dominate at short spatial scales.

As is well known, the competition between the long range and the short range

energy contributions leads to the creation of domain walls. The demagnetization

favors oppositely oriented moments at the expense of exchange effects that favor slow

variations amongst neighbors. Ultimately, this tradeoff gives rise to domain walls in

micromagnetic systems.

The potential energy from demagnetization of a system is given by
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EM = −1

2

∑
i

~mi · ~h′i, (5.5)

where ~h′i is the effective field at position i that originates from all other dipoles. This

field can be written as

~h′i = ~H ′ +
4

3
π ~M + ~h′′i , (5.6)

where ~H ′ is the megascopic field from the poles due to ~M outside of a physically small

sphere around site i. The second term subtracts the effective field inside an arbitrary

small region (or sphere) centered about point i, and ~h′′i is the field at site i created

by dipoles inside this region. In general, ~h′′i depends on the crystal lattice structure.

In the continuum limit, the sum becomes an integral of the form,

EM = −1

2

∫
~M · ( ~H ′ + 4

3
π ~M + Λ · ~M)dV. (5.7)

The tensor Λ in the third term depends only on the crystal structure and local

magnetization and can grouped with crystalline anisotropy. This tensor also van-

ishes for cubic crystals identically. The second term in this expression is a constant

proportional to M2
s and can be ignored leaving,
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EM = −1

2

∫
~M · ~H ′dV . (5.8)

The demagnetization field, ~H ′, can equivalently be derived from Maxwell’s equa-

tions. It can be expressed as the negative gradient of a potential, U that satisfies the

equations,

∇2Uin = γB ~∇ · ~M (5.9)

∇2Uout = 0, (5.10)

with the surface boundary conditions,

Uin = Uout (5.11)

∂Uin
∂n
− ∂Uout

∂n
= γB ~M · ~n. (5.12)

where the constant γB is, in our units, 4π.

Lastly, the potential needs to be regular at infinity, such that |rU | and |r2U |

are bounded as r → ∞. Our simulations directly capture the demagnetization field

effects.

From the standpoint of energy, for a skyrmion to be possible, the dimensions of the
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ellipsoid must be larger than the critical dimensions at which vortices can nucleate in

a given system. For example, for the hemispherical geometry, with the typical values

of Table 5.1, the critical radius was found to be 19 nm. For larger radii, vortices are

the preferred state before reaching zero field. The vortex will nucleate such that the

core is parallel to the field and the remainder of the vortex lies in the plane perpendic-

ular to the field. Once the field begins to oppose the direction of the moments at the

core, the energy cost of eliminating the core is significantly higher than allowing the

outer magnetic moments to align more with the field. When the exchange energy cost

of the skyrmionic state becomes greater than the demagnetization energy for a uni-

form magnetization, the core flips, annihilating the skyrmion, and the magnetization

saturates. Immediately, prior to this, though, a skyrmionic state can be achieved.

Ezawa (9) raised the specter of a skyrmionic state in thin films via the computation

of the energy of such assumed variational states within a field theoretic framework of

a non-linear sigma model. Dipole-dipole interactions may stabilize such a state below

a critical field. Our exact numerical calculations for the evolution of the magnetic

states demonstrate that not only are skyrmionic states viable structures, but are

actually the precise lowest energy state for slices of hemispheres and other general

structures.
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5.3 Results and Discussion

5.3.1 Observation of a Skyrmion

As our numerical simulations vividly illustrate, just prior to the annihilation of

the vortex, the magnetic moments at the edge of the system start to orient themselves

in a direction opposite to that in the core. On increasing the radius of the simulated

hemispheres and spheres, the configurations next to the basal plane better conformed

to the full skyrmion topology (i.e., that on an infinite plane). It should be noted here,

that as the radius of a hemisphere increases, the crossover to a double vortex state

will eventually occur, but if one vortex is maintained, in the limit of large radii, a full

skyrmion would be expected. This may be possible in materials with large exchange

constant and small saturation magnetization. In what follows, we will employ the

typical values appearing in Table (5.1). The skyrmion state for the bottom layer

(basal plane) of a hemisphere of radius 24 nm is shown in Fig. (5.1).

A similar configuration was observed in simulation runs for nanospheres. For

a sphere, symmetry does not favor any particular direction, but that symmetry is

broken once a field is applied. Skyrmions were observed in runs of spheres large

enough to support a vortex which corresponds to a radius of ≈ 15 nm. As the radius

of the sphere increases, the edge magnetic moments and the core magnetic moments

become more antiparallel. A skyrmion in a sphere of radius 59nm is shown in Fig.

(5.2).

Once skyrmions were observed in these systems, it begged the question, “Do these
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Figure 5.1: Vector plot of the skyrmion state for the bottom slice of a hemisphere of
radius 24 nm. Not all local magnetic moments are shown for the sake of clarity.

Figure 5.2: Vector plot of the skyrmion state in a sphere of radius 59nm. The slice is
along the equator of the sphere. Only a subset of local magnetic moments is shown
for clarity.
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occur in ellipsoids and hemi-ellipsoids?” Upon examining this, indeed skyrmions can

be observed in oblate ellipsoids and hemi-ellipsoids as shown in Figs. (5.3, 5.4).

Figure 5.3: Vector plot of the skyrmion state in an ellipsoid with major axis of 20nm
and minor axis of 15nm. The slice is along the equator of the ellipsoid. Only a subset
of local magnetic moments is shown for clarity.

To verify that these are structures approach those of skyrmions and to quantitively

monitor their deviations from an ideal skyrmionic state (for which the Pontryfin

index is unity),we computed the Pontryagin index at different cross sections of the

hemisphere in an attempt to determine how close to an ideal skyrmion these states

are. These cross sections were those of the hemisphere with planes parallel to the

basal plane(i.e., that at the base of the hemisphere). For a hemisphere with radius

30 nm, we calculated the skyrmion number Q for thirty individual parallel layers

vertically separated by 1 nm. We numerically evaluated the integral of Eq. (5.1) for

all of these layers and examined how it changes as the field increases from 0 to 0.6 T .
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Figure 5.4: Vector plot of the skyrmion state in a hemi-ellipsoid with major axis of
20nm and minor axis of 15nm. The slice is along the base of the hemi-ellipsoid. Only
a subset of local magnetic moments is shown for clarity.

These data are shown in Fig. (5.5).

Visualizing this in the geometry of the hemisphere specifically, one can look at how

the Pontryagin index varies along various planes of a hemisphere, starting from the

equator and moving to the pole. It can be clearly seen that the skyrmionic behavior

exists for most of the height of the hemisphere and only the cap deviates from the

rest of the system. The size of this cap depends on the given field strength as can be

seen in the case of 0 field (Fig. (5.6(a))) and with a field of 0.6 T (Fig. (5.6(b))). At

higher fields, prior to the annihilation of the vortex, the Pontryagin index approaches

an integer value, as expected for an ideal skyrmionic state.

Performing similar analysis on the hemi-ellipsoids and visualizing the Pontryagin

index and its variance with height, it can be seen that the same behavior exists in a
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Figure 5.5: Plot of the Pontryagin index versus the z-coordinate of the slice taken
from the hemisphere of radius 30 nm. These are shown for increasing field from zero
field (dark blue dot-dash line), 0.2 T (green dotted line), 0.4 T (red dashed line), and
0.6 T (teal solid line).
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Figure 5.6: Three dimensional plots of the Pontryagin index for a hemisphere of radius
30 nm at (a) zero field and (b) 0.6 T
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less extreme way than the hemispheres. This behavior can be seen in Fig. (5.9) for

hemi-ellipsoids of fixed 30 nm major axis and varying minor axis.

In examining the hysteresis behavior of the hemi-ellipsoids, one can see a trend as

the z-dimension goes from the hemisphere radius (20 nm) to the minimum simulated

size of 5 nm. This trend shows a movement from extensive vortex and skyrmionic

behavior in the more hemispheric geometries and less vortex and skyrmionic behavior

in the more ellipsoidal geometries.

Although it will not be considered in this work, crystalline anisotropy could influ-

ence the formation of skyrmions in a number of ways. In the case of a single crystal,

the vortex state would be more difficult to nucleate and thus the skyrmionic state

is less energetically favorable. When many crystalline grains are present, the results

discussed here are valid as the large number or randomly oriented crystals will, on

average, not favor any direction, and thus will not favor any one direction.

5.3.2 Generalization to a Hedgehog

These results lead to the question of whether this can be generalized to more than

two dimensions. The natural generalization from the two-dimensional skyrmion to

a three-dimensional magnetic state would be the hedgehog. The hedgehog resides

in three spatial dimensions coupled with a three dimensional order parameter. The

canonical example of a hedgehog is ~M = Msr̂ where the magnetization always points

outwards. A skyrmion is related to a hedgehog via a stereographic projection from

the sphere onto a plane where the south pole of the hedgehog projects to the core of
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Figure 5.7: Plot of the Pontryagin index and how it varies with height inside hemi-
ellipsoids of 30 nm radius major axis and the minor axis is 15 nm. This is shown
for a field equal to 0.2 T pointing in the negative z-direction (perpendicular to the
face of the hemi-ellipsoids). As will be noted, the existence of skyrmionic behavior is
not prevalent in the more flattened hemiellipsoinds and vanishes at this field between
minor axis 15nm and 10nm. The associated partial hysteresis loops for each of these
hemi-ellipsoid runs are shown in Fig (b).
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Figure 5.8: Plot of the Pontryagin index and how it varies with height inside hemi-
ellipsoids of 30 nm radius major axis and the minor axis of 10 nm (a). This is shown
for a field equal to 0.2 T pointing in the negative z-direction (perpendicular to the
face of the hemi-ellipsoids). As will be noted, the existence of skyrmionic behavior is
not prevalent in the more flattened hemiellipsoinds and vanishes at this field between
minor axis 15nm and 10nm. The associated partial hysteresis loops for each of these
hemi-ellipsoid runs are shown in Fig (b).
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Figure 5.9: Plot of the Pontryagin index and how it varies with height inside hemi-
ellipsoids of 30 nm radius major axis and the minor axis of 5 nm (a). This is shown
for a field equal to 0.2 T pointing in the negative z-direction (perpendicular to the
face of the hemi-ellipsoids). As will be noted, the existence of skyrmionic behavior is
not prevalent in the more flattened hemiellipsoinds and vanishes at this field between
minor axis 15nm and 10nm. The associated partial hysteresis loops for each of these
hemi-ellipsoid runs are shown in Fig (b).
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the skyrmion on the plane and the north pole of the hedgehog projects to the points

at infinity on the plane. Calculating the demagnetizing field for this state in a sphere

gives rise to a potential and field equal to

U(r) = γBMs(r −R), (5.13)

~H = −γBMsr̂, (5.14)

where r is the radial coordinate and R is the radius of the hedgehog.

Plugging this into Eq. (5.8), one finds the energy of the hedgehog to be 2πM2
s (4π/3)R3.

Comparing this to the energy of the uniformly magnetized state, (1/2)(4π/3)2M2
sR

3,

it can easily be seen that the hedgehog has three times the energy of the uniform

state. This, combined with the fact that the exchange energy and the field energy

will favor the uniform state, the hedgehog state will not be possible in a sphere.

If one were to continuously deform the hedgehog by rotating the local magnetic

moments by π/2 such that ~M = Msf(z)φ̂ where f(z) is a function that goes to

0 as z → 0 such that the exchange energy does not diverge, one would find the

demagnetization energy of that state to be identically 0. The field energy in this

system is also 0 for a field that is applied along the z-axis. The exchange energy is

given by (4π/3)RC where C is the exchange stiffness constant. The total energy of

this state is equal to the exchange energy, and comparing this to the uniform state,

a hedgehog of this form is favorable for,
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R ≥
√

C
2πµ0M2

3
−MH0

. (5.15)

For C = 2.5 × 10−11J/m and Ms = 1.4 × 106A/m as it is for Cobalt, at 0 field,

this radius works out to be ≈ 3.5µm.

5.3.3 Skyrmion Array

It is illuminating to consider the possibility of an array of skyrmions. As briefly

discussed below, we find that effective particle interactions may thwart the creation

of a skyrmion lattice when these particles are not far separated. However, for suf-

ficiently large center to center separations, a Skryme lattice may be achieved. In

preliminary simulations of arrays of nanoparticle arrays, simulations of a two-by-two

grid of hemispheres of radius 20 nm with a variable separation show that a center

to center separation of four times the radius is close enough that the nanoparticles

still interact magnetically and prevent the formation of an array of skyrmions. As ex-

pected, further separation should approach the the single particle result of skyrmions,

as we briefly discuss next.

The transition from the array of particles which support individual vortices to

the array of particles that are clearly interacting with each other can be seen in Fig.

(5.11). In this figure, the annihilation of the vortices can be seen as the particles

realign their magnetization to form a state where the local magnetization orients
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in the counterclockwise direction from particle to particle, yet within each particle,

when moving in the counterclockwise direction, the local magnetization changes from

oriented in the negative z-direction to the positive z-direction.

In repeating these simulations for a 3x3 array of hemispherical nanoparticles as

shown in Fig. (5.12), the same behavior was observed. This array was similar to the

2x2 array in that it had nanoparticles with diameters of 40 nm and center to center

separation of 80 nm. The annihilation of the vortices occurred at a slightly larger

field (0.08T rather than 0.1T).

The stability of the skyrmion state depends on the separation distance between

the nanoparticles. Existence of these states has been studied at a range of center-

to-center separations spanning 50 nm to 200 nm, and the critical field at which the

skyrmions are no longer energetically favorable is plotted versus the center-to-center

separation in Fig. (5.10).

5.4 Conclusion

We conclude with a brief synopsis of our findings. We carried a systematic numer-

ical study of the magnetization of small nanoparticles in the presence of an external

magnetic field. These systems were simulated for different sizes and geometry (sphere,

hemisphere, ellipsoids). Our analysis ignored anisotropy (crystalline, strain, etc.) ef-

fects. We find that, as has been widely reported in the literature (23; 12), beyond a

critical diameter, the particles enter into a single vortex state under zero external field;
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Figure 5.10: Plot of critical field at which skyrmions are no longer energetically
favorable versus the center-to-center separation.

multiple vortices are possible for much larger particles. Our key new result concerns

the creation of skyrmions in the single vortex state. As the field is increased, vortex

annihilation is accompanied by the formation of a skyrmionic state wherein the mag-

netization of the vortex core points to a direction opposite to that at the edge of the

nanoparticle. Our result illustrates how geometry plays a pivotal role. Spheres and

hemispheres more readily achieve skyrmionic states than higher eccentricity ellipsoids.

Our preliminary results suggested that for center to center separations larger than

twice the particle diameters, an array of skyrmions may be realized. More detailed

studies of skyrmion lattices for such particle arrays are planned for the future.
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5.4 Conclusion

Figure 5.11: Vector plot of a 2x2 array of hemispheres with radius 20nm and center to
center separation 80nm at fields of 0.12T pointing in the negative z-direction (a) and
0.1T pointing in the negative z-direction (b). Colorscale corresponds to z-component
of the local magnetic moment in units of A/m.
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Figure 5.12: Vector plot of a 3x3 array of hemispheres with radius 20nm and center to
center separation 80 nm at fields of 0.1 T pointing in the negative z-direction (a) and
0.08T pointing in the negative z-direction (b). Colorscale corresponds to z-component
of the local magnetic moment in units of A/m.
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Chapter 6

An exact mapping between

dissipative classical and quantum

systems and its consequences-

quantum critical jamming and

quantum dynamical heterogeneities

6.1 Introduction

A prominent centerpiece in the understanding of numerous systems is Landau

Fermi-liquid theory (LFT); this theory allows the understanding of phenomena such

as conventional metals and low temperature He-3 liquids. LFT is centered on the
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premise that the low energy states of interacting electron systems may be captured

by long-lived fermionic quasi-particles with renormalized parameters (e.g., effective

masses that differ from those of the bare electron). The last three decades have seen

the discovery of materials in which electronic behavior deviates from simple LFT.

These “singular” or “non-Fermi liquids” (NFL) include the high-temperature cuprate

superconductors and “heavy fermions” (in which the effective electron mass becomes

very large). While there are clear indications of changes in the dynamics in these

systems–including putative quantum critical points (1; 2)– there is, in most cases, no

clear experimentally measured length scale that exhibits a clear divergence. A quan-

tum critical point is associated with a continuous phase transition at (absolute) zero

temperature. Typically, this may occur in a system whose transition temperature is

driven to zero by doping or the application of magnetic fields or pressure. Within a

quantum critical regime, response functions follow universal power law scaling in both

space and time. Specifically, at a quantum critical point, the effective infrared (IR)

fixed point theory exhibits scaling invariance in space-time: t → λt, x → λ1/zx with

a dynamical exponent z that can, depending on the theory at hand, assume various

canonical values. Unlike classical critical points whose associated critical fluctuations

are confined to a narrow region near the phase transition, quantum critical fluctu-

ations appear over a wide range of temperatures above the quantum critical point.

These fluctuations may generally lead to a radical departure of the system’s electronic

properties from standard LFT type behavior. These features are anticipated to be

common across many strongly correlated electronic systems and may be associated,
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in some electronic systems, with a change of Fermi surface topology (3).

Many NFL systems exhibit numerous phases (including, quite notably, supercon-

ductivity). Indeed, competing orders and proliferation of multiple low energy states

can lead to glassy behavior (4). The length scales characterizing these electronic sys-

tems undergo a much milder change than the corresponding changes in the dynamics.

All of this suggests an effective infrared (IR) fixed point quantum field theory is in-

variant under scaling in time but not in space- i.e., the effective dynamical exponent

z →∞. Response functions such as those of the marginal fermi liquid form describing

cuprates show a marked frequency dependence but essentially no spatial momentum

dependence. In this work, we will derive quantum systems with dynamical exponents

z � 1.

It is natural to look elsewhere in physics where similar phenomena appear. One

arena immediately comes to mind. In classical structural glasses there is a dramatic

change in the dynamics as a supercooled liquid is quenched into a glass without the

appearance of easily discernible large changes in measurable standard static length

scales. While the ergodicity breaking that accompanies a glass transition cannot

occur in a finite size system, it essentially mandates the appearance of a diverging

static length scale (5), but such divergent length scales generally do not simply man-

ifest themselves in bare standard correlation functions. General correlation functions

which may monitor subtle changes include the “point to set” (6) correlations and

others. Practically, in most instances (7) no clear signatures of a divergent length

scales are easily seen in standard static two-point correlation functions.
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A far more transparent growth in length scales is seen from four-point correlation

functions that quantify the change in correlations as the system evolves in time. These

correlation functions afford a glimpse into the length and time scaling which describe

dynamical heterogeneities that characterize the spatially non-uniform rate of change

or dynamics in the system. The length scale associated with these heterogeneities

was seen to grow as the characteristic relaxation times increased.

We may use similar correlation functions to characterize strongly correlated elec-

tronic systems in which there are strongly discernible changes in the dynamics but no

obvious experimentally accessible tools that point to accompanying divergent length

scales in a general way (8). To our knowledge, to date, dynamical heterogeneities (nor

general static measures such as those of the point-to-set method) have not been sys-

tematically probed for in electronic systems nor has their existence been established

as a matter of principle in quantum system. Initial ideas concerning non-uniform

doping-driven heterogeneities were discussed in (9). In this work, we flesh out the

blueprint for a proof outlined in (10) and we will provide concrete “matter of prin-

ciple” theoretical testimony of quantum dynamical heterogeneities in clean systems

and related properties in quantum many body systems.

As is well appreciated, non-uniform spatial systems often exhibit interesting dy-

namical properties. For times shorter than the equilibration times, the auto-correlation

of local fluctuations

C(t) = 〈δφ(x, 0)δφ(x, t)〉. (6.1)
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plays the role of an “order parameter.” This two-point correlation forms an analogue

of the Edwards-Anderson (11) order parameter that appears in spin glasses. When

they decay slowly with the time separation t, these autocorrelation functions clearly

illustrate the presence of long range temporal correlations. The spatial correlation

amongst pair products of time separated products of fields (such as those in Eq.

(6.1)) at different spatial sites is a four point correlation function (12) that attempts

to measure cooperation

G4(x− y, t) = 〈δφ(x, t)δφ(x, 0)δφ(y, t)δφ(y, 0)〉 − C2(t). (6.2)

This quantity relates the dynamics at two different spatial points x and y.

6.2 Quantum dynamical heterogeneities and quan-

tum critical Jamming

In order to illustrate how, as a matter of principle, the physics of such classical

dissipative systems can appear in clean quantum systems at zero temperature, we

employ the mapping (13; 14; 15; 16) between classical viscous systems and quantum

many body systems. Below (and in Section E), we briefly review this mapping and

then discuss new consequences.
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6.2.1 Lightning review of dissipative classical to quantum

mapping and a new simple generalization

The crux of the mapping between dissipative classical systems and many body

bosonic theories (13; 14; 15) is the realization that the equation of motion for a

dissipative classical system is a first differential equation in time as is the Schrödinger

equation. Using this equivalence, systems obeying the Langevin equation,

γi
dxi
dt

= − ∂

∂~xi
VN(~x1, ..., ~xN) + ηi(t), (6.3)

[with γi being the coefficients of friction, ηαi (t) the Gaussian noise with 〈ηαi (t)ηβj (t′)〉 =

2Tclγiδijδαβδ(t − t′) where Tcl the effective temperature of the classical system and,

α, β = 1, 2, . . . , d with d being the spatial dimensionality] can be exactly mapped

(13; 14; 15) onto a many body system of bosons with mass mi = γi/(2Tcl) at zero

temperature which is governed by the Hamiltonian

H =
∑
i

1

γi

[
−Tcl

∂2

∂~x2
i

− 1

2
∇2
iVN +

1

4Tcl
(∇iVN)2

]
≡

∑
i

p2
i

2mi

+ VQuantum({~x}). (6.4)

The many body quantum potential VQuantum({~x}) is constructed from the the gra-

dients of the classical potential energy VN as identified in Eq. (6.4). Under this

mapping, a dissipative classical system with a potential energy VN that captures re-

pulsive hard core spheres maps onto a bosonic system at zero temperature with (as
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is apparent in the many body potential energy VQuantum) similar dominant hard-core

interactions. (15) In the Section E, we summarize, following (15), key aspects of this

mapping. We now proceed to set the stage for our new result and its consequences.

In what follows, we trivially generalize earlier results for the dynamical structure

factor and consider a general classical expectation value of the form

Gclassical(t) = 〈O(t)O(0)〉 (6.5)

where O(t) is any quantity. We may trivially replicate the steps of Biroli et al. (15)

and extend these for general O (instead of the density function as considered in their

work). We furthermore relate this result to a rather simple “complexification” of the

time coordinate (or Wick-type rotation) in going from general classical correlation

functions of the form of Eq. (6.5) to their corresponding bosonic counterparts. The

final result is rather simple (Eq.(6.8)). If the spectral decomposition of Eq. (6.5) is

given by

Gclassical(t) =

∫ ∞
0

dω W (ω)e−ωt, (6.6)

then the corresponding quantum response functions of operators Ô, in the ground

state |0〉 of a bosonic system governed by the potential energy of Eq. (C.11), will be
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given by

RQuantum(t) =

∫ ∞
0

dω

2π
W (ω) cosωt. (6.7)

The derivations of Eqs.(6.6,6.7) are carried in the Section E (see Eqs. (E.20, E.34)

respectively).

Comparing Eqs. (6.6, 6.7), we see that, for any quantity Oq(t) if the quantum

correlation function GQuantum(~q, t) is evaluated with the quantum many body potential

VQuantum({~x}) of Eq. (C.11) while the classical correlation function is computed for a

system with a potential Vclassical({~x}) then a very simple relation exists,

RQuantum(t) =
1

2
(Gclassical(it) +Gclassical(−it)). (6.8)

[Alternatively, for a real W (ω), this is given by the real part of Gclassical(it).] Eq. (6.8)

is a key result of this work. In Section E, we provide a more detailed derivation of

Eqs. (6.6, 6.7) that lead to Eq. (6.8). More general relation for correlation functions

in systems with time dependent Hamiltonians (concerning evolving the system out of

equilibrium classically or out of its ground state quantum mechanically) appear in Eqs.

(E.17, E.21, E.22). Typically, in glassy systems, the correlation function of Eq. (6.5)

is a superposition of many decaying modes- i.e., W is non-trivial distribution with

finite width. As evident from Eqs. (6.6, 6.7), this distribution of modes will persist in
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the corresponding quantum problem. For instance, if Gclassical = A exp[−(t/τ)a] then

RQuantum = Ae(− t
τ

)a cos πa
2 cos

[( t
τ

)a
sin

πa

2

]
. (6.9)

With the aid of the general relation of Eq. (6.8) (contrary to stated in (15)), the

quantum correlation function that corresponds to a general stretched exponential

correlation function in the classical arena can be computed analytically and is, indeed,

given by Eq.(6.9). A trivial yet important particular realization of Eq. (6.8) is that

of static correlations (t = 0) which, as is evident from Eq. (6.8), are identical in the

classical and quantum systems.

6.3 Glassy quantum dynamics

Response functions in systems of variable plasticity such as various glass formers

as their temperature is lowered (as well as various electronic systems) indicate, in

a nearly universal fashion, the presence of a distribution of local relaxation times

that lead to, e.g., the canonical Cole-Cole or Cole-Davidson and related forms as

we briefly elaborate. In an over-damped dissipative system, an impulse (e.g., an

external electric field or an elastic deformation) at time t = 0 leads to a response

g(t) which at later times, scales as gsingle ∼ exp(−t/τ) where τ is the (single) re-

laxation time. When Fourier transformed to the complex frequency (ω) plane, this

leads to gsingle(ω) = g0/(1 − iωτ). In systems that exhibit a distribution (P (τ ′) of

local relaxation events, the response functions attain the form
∫
dτ ′P (τ ′) exp(−t/τ ′).
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6.3 Glassy quantum dynamics

Empirically, in dissipative plastic systems, relaxations scale as (exp(−t/τ)a) with a

power 0 < a < 1 that leads to a “stretching” (slower decay) of the response function

as compared to its single over-damped mode form of exp(−t/τ). This stretched ex-

ponential and other similar forms of the response function capture the epitome of the

distribution of relaxation times. Two widely used relaxation time distributions are

the Cole-Cole (CC) and Davidson-Cole (DC) functions that describe a superposition

of over-damped oscillators.(17; 18) With g(ω) = g0G(ω), where g0 is a constant, these

two forms are given by different choices for the function G,

GCC(ω) = 1/[1− (iωτ)α],

GDC(ω) = 1/[1− iωτ ]β. (6.10)

Values of α and β that differ from unity qualitatively play the role of the real-time

stretching exponent c. This distribution of relaxation times might be associated with

different local dynamics (dynamical heterogeneities) to which we will turn shortly in

subsection 6.3.1.

In the absence of imposed external disorder, when fluid components fall out of

equilibrium by sufficient rapid cooling (so-called “super-cooling”) to low enough tem-

peratures, the resultant state is termed a “glass”. As liquids are supercooled, their

characteristic relaxation times and viscosity may increase dramatically.

Empirically, there are two time scales that govern the dynamics of supercooled

liquids. These are called the α and β relaxation times. The α relaxation is asso-
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6.3 Glassy quantum dynamics

ciated with cooperative motion and the dramatic viscosity increase (especially so in

the “fragile” glass-formers). Empirically, the α relaxation times are given by Vogel-

Fulcher-Tammann form for glasses (19),

τ(T ) =


τ0 e

∆/(T−T0) for T > T0,

∞ for T ≤ T0.

(6.11)

Here, T0 is the temperature at which the relaxation times would truly diverge and

∆ is an energy scale. It is noteworthy that there are other relaxation forms such as

those of the mode coupling theory (20).

By a trivial application of our result of Eq. (6.8), all of these lead to quantum

zero-temperature counterparts.

6.3.1 Quantum dynamical heterogeneities

Our key result of Eq. (6.8) provides a natural bridge between classical and quan-

tum correlations between disparate operators {Ô(t)}. The remainder of this work

will largely focus on consequences of this relation. From it, correlation times {τα}

that appear in the classical problem will rear their head in the quantum problem (and

vice versa).

We now focus on an intriguing aspect of classical glasses which by virtue of the

relation of Eq. (6.8) [as alluded to in (10)] leads to the appearance of new dynamical

correlations in quantum systems. Disorder free models for classical glass formers
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(including various simulated quenched systems such as those endowed with various

classical potentials VN (e.g., (22)) that do not permit simple crystalline orders) are

known to exhibit “dynamical heterogeneities” (DH)- a non-uniform distribution of

local velocities (21) with the location of the more rapidly moving particles changing

with time. By invoking Eq. (6.8), we see that Quantum dynamical heterogeneities

(10) appear in their corresponding zero temperature quantum counterparts. That

is, in disorder free quantum systems derived (via Eq. (6.4)) from the corresponding

classical systems, zero point dynamics is spatially non-uniform.

The presence of DH is seen by numerous probes (21). One often used metric is

that of the four-point correlations of Eq. (6.2) in various guises. These correlation

functions are of the form of Eq. (6.5) with O(t) denoting the overlap between fields

φ when these are separated in time,

O(t) = φq(t)φ−q(0)− 〈φq(t)〉〈φ−q(0)〉, (6.12)

with ~q any wave-vector. Typically, φ is set equal to the particle density ρ. When Eq.

(6.12) is substituted into Eq. (6.5), the Fourier space correlation functions (denoted

Sclassical
4 (~q, t) below) typically have an Ornstein-Zernicke type or similar related forms,

e.g., (23)

Sclassical
4 (~q, t) =

χ4(t)

1 + q2ξ4(t)2
, (6.13)
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with the length scale ξ4(t) representing the size of the typical dynamical hetero-

geneities when the system is examined at two times separated by an interval t. We

may next invoke Eq. (6.8) to generate the quantum counter-part of Eq. (6.13) (or of

any other related form) and Fourier transform to real space to obtain, in the notation

of Eq. (6.2), the spatial bosonic correlation function GQuantum
4 (~x − ~y, t) associated

with the potential VQuantum of Eq.(C.11). The Fourier integral will be dominated by

momentum space poles at q = ±iξ−1
4 . It is clear that in employing the transformation

of Eq. (6.8), GQuantum
4 (~x−~y, t) will exhibit exponential decay with the very same cor-

relation length ξ4 that is present in the classical system. This affords a direct proof of

the dynamical length scales ξ4 in all zero temperature quantum counter-parts (given

by Eq. (6.4)) to any dissipative classical system that is known to exhibit these (and

there are numerous known classical systems that exhibit dynamical heterogeneities

(21)).

6.3.2 Rapidly increasing time scale with concomitant slowly

increasing length scales in quantum glasses

There is a proof that a growing static length scale must accompany the diverging

relaxation times of glass transitions (5). Some evidence has indeed been found for

growing correlation lengths (static and those describing dynamic inhomogeneities)

(27; 28; 29). As we noted earlier in this work, correlation lengths were studied via

“point-to-set” correlations (6; 30) and pattern repetition size (31). Other current
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common methods of characterizing structures include (a) Voronoi polyhedra, (32; 33;

34), (b) Honeycutt-Andersen indices (35), and (c) bond orientation (36): all centering

on an atom or a given link. More recent approaches include graph theoretical tools

(37). Not withstanding current progress, it is fair to say that currently most “natural”

textbook type length scales do not increase as dramatically as the relaxation time does

as a liquid is supercooled towards the glass transition temperature.

It is worthwhile to highlight that one of the most pertinent naturally increasing

length scales is that associated with the typical size of the dynamical heterogeneity

(i.e., ξ4 of Eq. (6.13)). Similar to other measures, this typical length scale does not

increase as rapidly as the characteristic relaxation time does as the glass transition

is approached. Recent work for a three-dimensional bi-disperse repulsive glass (38)

[with the pair potential V (|~x|) = ε(σab/r)
12 between two particles (a, b) of two possible

types ((a, b) ∈ 1, 2) with σab = (σa + σb)/2 and σ2/σ1 = 1.2)], suggests that

τ ∼ exp(kξθ) (6.14)

with θ ' 1.3 and k a constant. (An alternate assumed algebraic form τ ∼ ξz4 leads

to an extremely large dynamical exponent z ' 10.8.) In these cases, the dynamics

changes dramatically with little notable change in the spatial correlation length.
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6.3.3 Quantum Critical Jamming

The mapping between dissipative classical and quantum systems also suggests a

new quantum critical point in related systems. The classical jamming transition (39;

40; 41; 42; 43; 44; 45; 46; 47; 48) of hard spheres/disks from a jammed system at high

density to an unjammed one with spatially heterogeneous motion at lower densities is

a continuous transition with known critical exponents, both static (40) and dynamic

(48). Replicating the mapping of the previous subsection (and, in particular, Eq.

(6.8) therein), we may derive an analog quantum system harboring a zero temperature

transition with similar critical exponents. The classical zero temperature critical point

(“point J”) (39; 40) may rear its head anew in the form of quantum critical jamming

(at a new critical point—“Quantum point J”) of the bosonic systems with dynamical

exponents as we may ascertain from those reported for the classical jamming system

(48). The classical zero temperature system (Tcl = 0) maps, according to Eq. (6.4),

onto a quantum system in the large mass limit. Bosons at infinite mass are not

trivial due their statistics Specifically, for a system of mono-disperse soft spheres

with a repulsive force that is linear in the amount of compression, it was found that

the correlation length ξ and relaxation time τ scale (48) as

ξ ∼ (ρJ − ρ)−0.7,

τ ∼ (ρJ − ρ)−3.3. (6.15)
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In Eq. (6.15), ρ denotes the density with ρJ being the critical density at the jamming

transition. Eq. (6.15) describes how the spatial and time scales diverge as the density

is increased and approaches (from below) the density at the jamming transition.

Taken together, these imply that, on approaching the transition, the relaxation time

increases much more rapidly than the correlation length, τ ∼ ξz with a very large

effective dynamical exponent z ' 4.6. By use of Eq. (6.8), the same behavior is to be

expected for the quantum system governed by the corresponding quantum potential

VQuantum. In physical terms, for charged bosons, the jamming transition constitutes

a transition from a metallic system (when the system is unjammed and behaves as a

fluid) to a jammed state (an insulator). As in earlier sections, we see that time scales

increase far more precipitously than spatial correlation lengths.

6.4 Lattice systems

Thus far, we focused on continuum viscous classical systems which, as we have

seen, mapped onto continuum bosonic systems. We briefly remark on classical lattice

systems which similarly exhibit dynamical heterogeneities and a jamming type tran-

sition. Refs.(51; 52) studied, respectively, the 2DN3 and 3DN2 models on the square

and cubic lattice models in D = 2 and D = 3 dimensions. In the N3 model, particles

are endowed with hard core repulsive interactions that extend up to a distance of three

steps on the lattice. Similarly, in the N2 model particles cannot be nearest neighbors

nor next nearest neighbors (i.e., the repulsive hard-core interactions extend up to a
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distance of two steps on the lattice). Thus, similar to the continuum systems that we

discussed earlier, these models may be regarded as that of classical hard core spheres.

Following the mapping reviewed earlier, the quantum counterpart of such systems is

that of dominant hard sphere interactions. In the classical systems, simulation starts

(51; 52) with an infinitely fast quenching wherein particles are added whenever pos-

sible and diffuse otherwise; this process is halted when the desired density is reached.

A clear increase was noted in the length scales that characterize the dynamical het-

erogeneity (51; 52). The continuum jamming transition discussed earlier may have

a lattice counterpart for Cooper pairs as we now elaborate on. A natural quantum

counterpart to the N3 (N2) model is given by an extended Bose Hubbard (53; 54)

type model with infinite hard core repulsions,

H = −t
∑
〈ij〉

(b†ibj + h.c.) + U
∑
i

ni(ni − 1) +
∑
ij

Vijninj, (6.16)

where Vij → ∞ for lattice sites i and j which are fewer than four (or three) steps

apart and the onsite Hubbard repulsion U is divergent (U → ∞) as well. The Hub-

bard term leads to a penalty only when there is a double or higher occupancy. Based

on our considerations thus far, we expect to obtain the quantum bosonic counterpart

to the classical jamming transitions found in the classical 2DN3 and 3DN2 mod-

els. This bosonic system may have all of the characteristics of the classical jammed

system including dynamical heterogeneities and a large dynamical exponent z. For

completeness, we briefly comment on the difference between the lattice system of
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Eq. (6.16) and the “Bose glass” first introduced in (53). The Bose glass appears

in the bare (i.e., that with Vij = 0) disordered rendition of Eq. (6.16) with the

general Bose Hubbard Hamiltonian (with general finite repulsion U) being further

augmented by a local chemical potential term −
∑

i µini wherein µi is a spatially

non-uniform random quantity. By contrast, the lattice Hamiltonian of Eq. (6.16) as

well as the continuum models that we discussed in earlier sections are free of disorder.

The amorphous characteristics that these clean systems may exhibit are borne out of

“self-generated” randomness (55)—not randomness that is present in the parameters

defining the system.

6.5 Electronic systems with pairing interactions

Up to now, building on and extending the mapping between classical dissipative

systems and zero temperature bosonic theories, we focused on hard core bosons. We

now turn to the ground states of Fermi systems. In particular, in this section, we will

consider standard electronic systems with pairing interactions,

H =
∑
~k,σ

ε~kc
†
~kσ
c~kσ +

∑
~k,~l

V~k,~lc
†
~k↑
c†
−~k↓

c−~l↓c~l↑, (6.17)

where σ =↑, ↓ is the spin polarization index and Vkl is the interaction strength between

the Cooper pairs

|~k ↑;−~k ↓〉 and |~l ↓;−~l ↑〉. As is well known (and is readily verified), the following
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Fermi billinears

b
†
~k = c†~k↑c

†
−~k↓

,

b~k = c−~k↓c~k↑ (6.18)

corresponding to the creation/annihilation of Cooper pairs satisfy hard core Bose

algebra. We next consider what occurs if, within the ground state, the occupancies of

the single particle states are correlated inasmuch as the electronic states on which the

standard pairing Hamiltonian of Eq. (6.18) operates can be created by applications

of Cooper pair creation operators on the vacuum (i.e., if the ground state is invariant

under the combined operations of parity P (~k → −~k) and time reversal T (σ → −σ)).

When the ground state is strictly invariant under the combined effect of these PT

symmetries we may express the Hamiltonian of Eq. (6.17) as a bilinear in the hard

core Bose operators,

H =
∑
~k,~l

(2ε~kδ~k,~l + V~k,~l)b
†
kbl. (6.19)

As is well known, the hard core Bose algebra of the b
†
~k and b~k operators is identical

to that of the spin S = 1/2 raising and lowering operators S+
~k

and S−~k . Thus, Eq.

(6.19) is equivalent to an XY model. In situations in which the band dispersion ε~k

is nearly flat (and may be omitted for fixed particle number), in determining the

ground state(s), we must only find the pairing V that affects pair hopping. Similar
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considerations apply in real-space when Coopers are short ranged and may be replaced

by real-space hard-core bosons. Hard core real space contact interactions correspond

to uniform V~k,~l (independent of ~k and~l) as in the BCS form for the pairing interactions.

In such cases, whenever the system is dominated by hard core contact interactions

between bosons, replicating our analysis thus far, at zero temperature, the system

may undergo a jamming type transition at sufficiently high densities and display

rapidly increasing relaxation times concomitant with spatial correlations that do not

increase as dramatically as the relaxation times do on approaching this transition.

6.6 Conclusions

The central result of this work is the exact correspondence of Eq. (6.8). This

equality relates (i) the autocorrelation function of Eq. (6.5), for any quantity O

when evaluated for the classical dissipative system of Eq. (6.3) with a many body po-

tential energy VN , to (ii) the autocorrelation function of the very same corresponding

quantum operator Ô in a bosonic system governed by the Hamiltonian of Eq. (6.4).

When fused with known results for dissipative classical systems, this extremely versa-

tile equality immediately leads to numerous effects which we introduced and readily

proved as a matter of principle. These include:

• Quantum dynamical heterogeneities (QDH). We illustrated that similar to classi-

cal systems even in the absence of disorder, bosonic systems can, at zero temperature,

exhibit spatially non-uniform zero point motion. Of course, in translationally invari-
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ant systems, the average (time averaged) dynamics is uniform. However, at any given

time, there are particles that move more rapidly than others.

• The length scale characterizing the zero temperature QDH, the four-point cor-

relation length ξ4 (a trivial analog of its classical counterpart) may increase as the

dynamics of the clean Bose system becomes progressively sluggish. However, albeit its

rise, this length scale may increase much more slowly than the relaxation time. The

far more rapid increase of the relaxation time as compared to readily measured length

scales is a hallmark of many electronic systems. Cast in terms of quantum critical

scaling (if and when it might be realized), the effective dynamical exponent z captur-

ing the relation between correlation lengths and times τ ∼ ξz, is very large (z � 1).

Other relations such as those of Eq. (6.14) may hold once they are established for

viscous classical systems.

• Similar to classical systems, quantum systems may jam at high densities notwith-

standing zero point motion. The character of the jamming transition in zero tempera-

ture quantum systems is identical to that of that of their corresponding counterparts.

As the classical systems exhibit a critical point at the jamming transition (at “point

J”) so do their bosonic counterparts. As a result, we established the existence of a

new quantum critical point—associated with a quantum critical jamming of a hard

core Bose system. As in the other systems that we discuss the characteristic relax-

ation time diverges more precipitously than the correlation length on approaching the

transition (“Quantum point J”) with a large effective dynamical exponent z ' 4.6.

• The off-lattice theories that we discuss above may have a broad applicability
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as continuum theories describe the same physics as their lattice renditions do in

the vicinity of critical points. In Section 6.4, we discussed specific possible lattice

renditions.

• The results that we derived for zero temperature bosonic theories suggest similar

features in electronic systems. In some cases, as discussed in Section 6.5, finding the

ground states interacting electronic systems can be cast in terms of a corresponding

zero temperature hard-core Bose problem.

Thus, with the aid of the viscous classical-many body quantum correspondence of

Eq. (6.8), we trivially established all of these results sans the need to perform various

standard and far more laborious computations for quantum systems.
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Chapter 7

Conclusion

This dissertation presents new results dealing with the appearance of patterns

(both classical and quantum) in diverse arenas including classical and quantum sys-

tems. These patterns included solving the Nonlinear Schrödinger Equation in the

context of rogue waves. It also included results dealing with magnetic behavior of

Cobalt nanoparticles with a focus on hemispherical particles and a focus on the effects

of demagnetizing energy. Lastly, this dissertation predicts appearance of quantum

“dynamical heterogeneities” in systems.

In Chapter 3, the Nonlinear Schrödinger Equation was solved in a very general

fashion. These solutions were used to generate approximate solutions in the form of a

generalized compacton where the rogue wave is surrounded by a periodic background

rather than a constant background. This was followed by a discussion of the case

of d + 1 dimensions and external noise and source terms were discussed. Next, the

connection to φ4 field theories is drawn as the Nonlinear Schrödinger Equation is the
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nonrelativistic equation of motion of a φ4 theory. Finally, a possible way for rogue

waves to appear as the opposite of a dissipative process due to the time-reversal

invariance of the theory.

In Chapter 4, the general expression for the demagnetizing factor of a hemisphere

is calculated and given in its full spatially dependent form in Appendix B. This is

verified by taking limits for the apex and the center of the base of the hemisphere

which can be verified by basic electrodynamics. This is further checked by introducing

a new method for numerically calculating the demagnetizing factor for a general

geometry. Included in this chapter is a brief discussion of using shape anisotropy to

create controlled hysteresis loops with jumps at certain field strengths.

In Chapter 5, observations of skyrmions in simulations of Cobalt nanoparticles

were discussed. The observation of the skyrmions were significant because they are

stabilized by a balance of only field, demagnetization, and exchange energies. In

the past, complicated balancing of other anisotropies were needed to allow for the

skyrmionic state. Lastly, arrays of skyrmions were analyzed along with the stability

of the skyrmion state in these arrays.

In Chapter 6, a very general result was derived allowing a mapping between clas-

sical and quantum systems. This mapping can be used to translate classical systems

that are easy to generate results into quantum systems of fermions and bosons which

can be quite difficult. This general mapping allows for results to be derived dealing

with quantum jamming and dynamical heterogeneities.
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Appendix A

Sample MIF 2.1 File Used for

OOMMF Simulations

In this section is contained an example input file for the OOMMF simulations

done in this work. This specific file generates a Cobalt hemisphere of radius 10 nm

going through a range of fields starting at 2T in the negative z-direction, going up to

2T in the positive z-direction, and then back down to 2T in the negative z-direction.

# MIF 2.1

# This file converted from MIF 1.1 format by MIF Conversion utility 1.2.0.1

# Original file: /Users/patrickjohnson/Downloads/oommf/Disk5by10.mif

#

# Cobalt Info

#

set PI [ expr { 4*atan(1.) } ]
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set MU0 [ expr { 4*$PI*1e-7 } ]

proc Hemi { radius x y z xmin ymin zmin xmax ymax zmax} {

global RegionArray

set distance [expr {$x*$x+$y*$y+$z*$z}]

set radius2 [expr {$radius*$radius}]

if {$distance<$radius2} {

if {$z >0} {

return 1

}

}

return 0

}

Specify Oxs ScriptAtlas:hemisphere {

xrange {-12e-9 12e-9}

yrange {-12e-9 12e-9}

zrange {-2e-9 12e-9}

regions { cobalt }

script args { rawpt minpt maxpt}

script { Hemi 10e-9 }

}

Specify Oxs RectangularMesh:mesh {

cellsize {1e-9 1e-9 1e-9}
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atlas :hemisphere

}

Specify Oxs UniformExchange {

A 2.5E-11

}

Specify Oxs Demag {}

Specify Oxs UZeeman:extfield0 [ subst {

comment {Field values in Tesla; scale to A/m}

multiplier [ expr {1/ $ MU0 } ]

Hrange {

{0 0 -2 0 0 2 200}

{0 0 2 0 0 -2 200}

}

}]

Specify Oxs EulerEvolve {

do precess 1

gamma LL 2.21e5

alpha 0.5

}

Specify Oxs TimeDriver {

basename Hemisphere10nmZ-Field/Hemisphere10nmZ-Field

vector field output format {binary 4}
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scalar output format %.15g

evolver Oxs EulerEvolve

mesh :mesh

stopping dm dt 0.19819739783994714

stage count 401

Ms {Oxs AtlasScalarField {

atlas :hemisphere

values {

universe 0

cobalt 1400E3

} } }

m0 { Oxs UniformVectorField { norm 1 vector { -0.8 0.6 0} } }

}

Destination archive10nmZ-Field:data mmArchive new

Destination archive10nmZ-Field:mag mmArchive new

Schedule DataTable archive10nmZ-Field:data Stage 1

Schedule Oxs TimeDriver::Magnetization archive10nmZ-Field:mag Stage 1

##########################################

# Unused fields:

Ignore {

totalfieldoutputformat: binary 4

}
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To comment on the different parts of this file. It begins with a comment section

as designated by the # sign followed by descriptions of the generation of the file.

Following that is the setting constant parameters such as π and µ0.

The “proc Hemi” section of the file determines the geometry of the system. In the

example file shown here, it is a hemisphere geometry. The arguments being passed

to this routine are the radius, the Cartesian coordinates, and the range of Cartesian

coordinates as determined by the “Oxs ScriptAtlas” routine. The specifications of

arguments “rawpt minpt maxpt,” specifies that the script will be passed the raw

coordinates (x, y, z), the minimum values for the coordinates (xmin, ymin, zmin),

and the maximum values for the coordinates (xmax, ymax, zmax). The mathematics

calculates the distance from the current point to the origin and decides whether it is

inside or outside the hemisphere and returns a 1 for inside and 0 for outside.

The “Oxs ScriptAtlas:hemisphere” routine specifies the size of the system by spec-

ifying what range all the coordinates span along with radius, which is specified in the

“script {Hemi 10e-9}” as 10 nm in this file.

The “Oxs RectangularMesh” routine specifies the rectangular grid spacing for the

simulation in nanometers.

The “Oxs UniformExchange” routine specifies the exchange stiffness constant in

J/m.

The “Oxs UZeeman:extfield0” routine sets the value for the field in Tesla. The

“Hrange” field sets the beginning and then ending value of the field and how many

steps into which to break the range up.
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The “Oxs EulerEvolve” routine specifies the constants in the Landau-Lifshitz-

Gilbert Equation including the Landau-Lifshitz gyromagnetic ratio and the damping

constant, α.

The “Oxs TimeDriver” routine specifies many different parameters. The “base-

name” parameter specifies the value of the filename to be built off of by the code.

The “stopping dm dt” parameter specifies the value of the maximum torque experi-

enced by any one spin before the code considers the system close enough to a steady

state. The “stage count” specifies how many steps will be taken in the simulation.

This can be calculated by taking the sum of the number of steps in the “Hrange”

field plus one. The value next to “cobalt” specifies the saturation magnetization in

A/m. The “m0” parameter sets the initial state of the system. The “Destination”

and “Schedule” commands dictate where the data is to be saved.
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Appendix B

Full Expresion of Demagnetization

Factor of a Hemisphere in the

X-Direction

Written below is the full expression for the demagnetizing factor of a hemisphere

in the x-direction.

〈Nx〉 =
107∑
i=1

Ai (B.1)

Using the shorthand:
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r =
√
x2 + y2

K = EllipticK

[
4Rr

(R + r)2 + z2

]
, E = EllipticE

[
4Rr

(R + r)2 + z2

]
Π1 = EllipticPi

[
2r

r +
√
r2 + z2

,
4Rr

(R + r)2 + z2

]
Π2 = EllipticPi

[
2r

r −
√
r2 + z2

,
4Rr

(R + r)2 + z2

]
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A1 =
1

3
π

(
2 +

6R3x2

(r2 + z2)5/2
− 2R3

(r2 + z2)3/2

)

A2 =
4x2 (R + r) zK

r
(
(R + r)2 + z2

)3/2

A3 = − 2zK√
(R + r)2 + z2

A4 = −x
2 (R + r)2 z (R2 + 3r2 + 3z2)K

r2
(
(R + r)2 + z2

)5/2

A5 =
x2z (R2 + 3r2 + 3z2)K

3r2
(
(R + r)2 + z2

)3/2

A6 = −x
2 (R + r) z (R2 + 3r2 + 3z2)K

3r3
(
(R + r)2 + z2

)3/2

A7 =
(R + r) z (R2 + 3r2 + 3z2)K

3r
(
(R + r)2 + z2

)3/2

A8 = −
z (R2 + 3r2 + 3z2)

(
16R2x2 (R2 − r2 + z2)

2
)

(E −B22K)

24Rr3B2
22 ((r +R)2 + z2)7/2

A9 = −4Rz (R2 + 3r2 + 3z2)

r3 ((r +R)2 + z2)5/2

E −B22K

24RrB22

× (B1 +B21)
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B1 =
(
r2 − x2

)
z4 − (r +R)2

(
r4 + 4rRx2 +R2x2 − r2

(
R2 + 3x2

))

B21 = 2
(
r2R(r +R)−

(
3r2 + 3rR +R2

)
x2
)
z2

B22 =

(
1− 4Rr

(R + r)2 + z2

)

A10 = −

(
4x2z (−r2 +R2 + z2)

r ((r +R)2 + z2)3/2

)
E −B22K

2rB22

A11 =
(
R2 + 3r2 + 3z2

)(4x2z (−r2 +R2 + z2)

r ((r +R)2 + z2)3/2

)
E −B22K

24r3B22

A12 = −z (R2 + 3r2 + 3z2)

24RrB22

B2

(
E −K

8Rr
B2 +

B2K

(r +R)2 + z2
− (E −B22K)

8Rr
B2

)

B2 =
4Rx (−r2 +R2 + z2)

r ((r +R)2 + z2)

A13 =
3x2 (R + r)2 z (R2 + r2 + 2Rr + z2)E

r2
(
(R + r)2 + z2

)5/2

A14 = −
2x
(
2x+ 2Rx

r

)
(R + r) zE

r
(
(R + r)2 + z2

)3/2
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A15 = −x
2z (R2 + r2 + 2Rr + z2)E

r2
(
(R + r)2 + z2

)3/2

A16 =
x2 (R + r) z (R2 + r2 + 2Rr + z2)E

r3
(
(R + r)2 + z2

)3/2

A17 = −(R + r) z (R2 + r2 + 2Rr + z2)E

r
(
(R + r)2 + z2

)3/2

A18 =

(
2− 2Rx2

r3
+ 2R

r

)
zE√

(R + r)2 + z2

A19 =
z (R2 + r2 + 2Rr + z2)

2r4

(E −K)

((r +R)2 + z2)5/2
× (B1 +B21)

A20 =
z (2xr + 2Rx)

4Rr2

√
(R + r)2 + z2B2 (E −K)

A21 = −xz ((R + r)2 + z2)
3/2
B2 (E −K)

8Rr3

A22 =
z ((R + r)2 + z2)

5/2
B2

2

64R2r2B22

(
1

8Rr
(E −K)− E −B22K

(R + r)2 + z2

)

A23 =
−3R2 + r2 − 2z2 + 2R3

√
r2+z2

3z
√

(R + r)2 + z2

(B3 +B27)Π1
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B3 = 2 +
x2 (R + r)

(r2 + z2)3/2
− 2x2

r
√
r2 + z2

− R + r√
r2 + z2

B27 =
x2
√
r2 + z2

r3
−
√
r2 + z2

r
− Rx2

r3
+
R

r

A24 =

(
4x− 4R3x

(r2+z2)3/2

)
B26Π1

3z
√

(R + r)2 + z2

A25 = −
2x (R + r)

(
−3R2 + r2 − 2z2 + 2R3

√
r2+z2

)
B26Π1

3rz
(
(R + r)2 + z2

)3/2

A26 =

(
2 + 6R3x2

(r2+z2)5/2
− 2R3

(r2+z2)3/2

)
B25Π1

3z
√

(R + r)2 + z2

A27 = −
2x (R + r)

(
2x− 2R3x

(r2+z2)3/2

)
B25Π1

3rz
(
(R + r)2 + z2

)3/2

B25 =
(
r2 +Rr + z2 − (R + r)

√
r2 + z2

)

B26 =

(
2x+

Rx

r
− x (R + r)√

r2 + z2
− x
√
r2 + z2

r

)

A28 =
x2 (R + r)2

(
−3R2 + r2 − 2z2 + 2R3

√
r2+z2

)
B25Π1

r2z
(
(R + r)2 + z2

)5/2
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A29 = −
x2
(
−3R2 + r2 − 2z2 + 2R3

√
r2+z2

)
B25Π1

3r2z
(
(R + r)2 + z2

)3/2

A30 =
x2 (R + r)

(
−3R2 + r2 − 2z2 + 2R3

√
r2+z2

)
B25Π1

3r3z
(
(R + r)2 + z2

)3/2

A31 = −
(R + r)

(
−3R2 + r2 − 2z2 + 2R3

√
r2+z2

)
B25Π1

3rz
(
(R + r)2 + z2

)3/2

A32 = B4B5

 x

r2
−

(
x
r

+ x√
r2+z2

)
r +
√
r2 + z2

( 2r

r +
√
r2 + z2

E +B6K +B7Π1

)

B4 =
2
(
−3R2 + r2 − 2z2 + 2R3

√
r2+z2

)
(

3z
√

(R + r)2 + z2

)

B5 =

(
2x+ Rx

r
− x(R+r)√

r2+z2
− x

√
r2+z2

r

)
2B6

(
−1 + 2r

r+
√
r2+z2

)

B6 =
4Rr

(R + r)2 + z2
− 2r

r +
√
r2 + z2

B7 = − 4Rr

(R + r)2 + z2
+

4r2(
r +
√
r2 + z2

)2

A33 = B4B26

B2

(
E

−1+ 4Rr

(R+r)2+z2

+ Π1

)
2B6
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A34 =
B9B8

2B6

E + 1
2r

(
r +
√
r2 + z2

)
B6K + 1

2r

(
r +
√
r2 + z2

)
B7Π1(

−1 + 2r
r+
√
r2+z2

)


A106 =
B9

2B6

B2

(
E

−1 + 4Rr
(R+r)2+z2

+ Π1

)

B8 = −
2r
(
x
r

+ x√
r2+z2

)
(
r +
√
r2 + z2

)2 +
2x

r
(
r +
√
r2 + z2

)

B9 =
r2 +Rr + z2 − (R + r)

√
r2 + z2

3z
√

(R + r)2 + z2

(
4x− 4R3x

(r2 + z2)3/2

)

A35 =
B10B8(E + 1

2r

(
r +
√
r2 + z2

)
B6K + 1

2r

(
r +
√
r2 + z2

)
B7Π1)

2B6

(
−1 + 2r

r+
√
r2+z2

)

B10 =
2x (R + r)

(
−3R2 + r2 − 2z2 + 2R3

√
r2+z2

)
B25

3rz
(
(R + r)2 + z2

)3/2

A36 = B10

B2

(
E

−1+ 4Rr

(R+r)2+z2

+ Π1

)
2B6

A37 = B11
B2(B2 −B8)

2B2
6

(
E

−1 + 4Rr
(R+r)2+z2

+ Π1

)

A38 =
B11

2B6

4R(B1 +B21)

r3 ((r +R)2 + z2)3

(
E

−1 + 4Rr
(R+r)2+z2

+ Π1

)

144



B11 =
−3R2 + r2 − 2z2 + 2R3

√
r2+z2

3z
√

(R + r)2 + z2

B25

A39 = −B11

B2
8(E + 1

2r

(
r +
√
r2 + z2

)
B6K + 1

2r

(
r +
√
r2 + z2

)
B7Π1)

2B6

(
−1 + 2r

r+
√
r2+z2

)2

A40 = −B11

(B2 −B8)B8(E + 1
2r

(
r +
√
r2 + z2

)
B6K + 1

2r

(
r +
√
r2 + z2

)
B7Π1)

2B2
6

(
−1 + 2r

r+
√
r2+z2

)

B12 =
2

r3
(
r +
√
r2 + z2

) (r5 (−1 + 4x2) + r (−x2 + r2 (−1 + 4x2)) z2

(r2 + z2)3/2

)

B28 =
2

r3
(
r +
√
r2 + z2

) (r2 − x2 + 2r2x2 +
r2 (−1 + 2r2)x2

r2 + z2

)

A41 = B11 (B12 +B28)
E + 1

2r

(
r +
√
r2 + z2

)
B6K + 1

2r

(
r +
√
r2 + z2

)
B7Π1

2B6

(
−1 + 2r

r+
√
r2+z2

)

A42 = −B11B2

(
B2E

B2
22

−
(
(R + r)2 + z2

)
B2 (E −K)

8RrB22

− B2

2B6

(
E

−1 + 4Rr
(R+r)2+z2

+ Π1

))

A43 = B11
−B2

2B6

B8

(
E + 1

2r

(
r +
√
r2 + z2

)
B6K + 1

2r

(
r +
√
r2 + z2

)
B7Π1

)
2B6

(
−1 + 2r

r+
√
r2+z2

)

A44 =
B11B8

2B6

(
−1 + 2r

r+
√
r2+z2

) 1

8Rr

(
(R + r)2 + z2

)
B2 (E −K)
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A45 =
B11B8

2B6

(
−1 + 2r

r+
√
r2+z2

) 1

2r

(
r +
√
r2 + z2

)
(B2 −B8)K

A46 =
B11B8

2B6

(
−1 + 2r

r+
√
r2+z2

) 1

2r

(
x

r
+

x√
r2 + z2

)
B6K

A47 = − B11B8

2B6

(
−1 + 2r

r+
√
r2+z2

) 1

2r3
x
(
r +
√
r2 + z2

)
B6K

A48 =
B11B8

2B6

(
−1 + 2r

r+
√
r2+z2

) ((R + r)2 + z2
) (
r +
√
r2 + z2

)
B2B6

16Rr2B22

(E −B22K)

A49 =
B11B8

(
r +
√
r2 + z2

)
2B6

(
−1 + 2r

r+
√
r2+z2

) 1

2r

−B2 −
8r2
(
x
r

+ x√
r2+z2

)
(
r +
√
r2 + z2

)3 +
8x(

r +
√
r2 + z2

)2

Π1

A50 =
B11B8

2B6

(
−1 + 2r

r+
√
r2+z2

) 1

2r

(
x

r
+

x√
r2 + z2

)
B7Π1

A51 = − B11B8

2B6

(
−1 + 2r

r+
√
r2+z2

) 1

2r3
x
(
r +
√
r2 + z2

)
B7Π1

A52 = B13

B8

(
E + 1

2r

(
r +
√
r2 + z2

)
B6K + 1

2r

(
r +
√
r2 + z2

)
B7Π1

)
2B6

(
−1 + 2r

r+
√
r2+z2

)


A107 =
B13

2B6

B2

(
E

−1 + 4Rr
(R+r)2+z2

+ Π1

)

146



B13 =
B11B8

2B6

(
−1 + 2r

r+
√
r2+z2

) 1

2r

(
r +
√
r2 + z2

)
B7

A53 =

(
3R2 − r2 + 2z2 + 2R3

√
r2+z2

)
B3Π2

3z
√

(R + r)2 + z2

A54 = −

(
4x+ 4R3x

(r2+z2)3/2

)(
2x+ Rx

r
+ x(R+r)√

r2+z2
+ x

√
r2+z2

r

)
Π2

3z
√

(R + r)2 + z2

A55 = −
2x (R + r)

(
3R2 − r2 + 2z2 + 2R3

√
r2+z2

)(
2x+ Rx

r
+ x(R+r)√

r2+z2
+ x

√
r2+z2

r

)
Π2

3rz
(
(R + r)2 + z2

)3/2

A56 =

(
−2 + 6R3x2

(r2+z2)5/2
− 2R3

(r2+z2)3/2

) (
r2 +Rr + z2 + (R + r)

√
r2 + z2

)
Π2

3z
√

(R + r)2 + z2

A57 = −
2x (R + r)

(
−2x− 2R3x

(r2+z2)3/2

) (
r2 +Rr + z2 + (R + r)

√
r2 + z2

)
Π2

3rz
(
(R + r)2 + z2

)3/2

A58 =
x2 (R + r)2

(
3R2 − r2 + 2z2 + 2R3

√
r2+z2

) (
r2 +Rr + z2 + (R + r)

√
r2 + z2

)
Π2

r2z
(
(R + r)2 + z2

)5/2

A59 = −
x2
(

3R2 − r2 + 2z2 + 2R3
√
r2+z2

) (
r2 +Rr + z2 + (R + r)

√
r2 + z2

)
Π2

3r2z
(
(R + r)2 + z2

)3/2

A60 =
x2 (R + r)

(
3R2 − r2 + 2z2 + 2R3

√
r2+z2

) (
r2 +Rr + z2 + (R + r)

√
r2 + z2

)
Π2

3r3z
(
(R + r)2 + z2

)3/2
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A61 = −
(R + r)

(
3R2 − r2 + 2z2 + 2R3

√
r2+z2

) (
r2 +Rr + z2 + (R + r)

√
r2 + z2

)
Π2

3rz
(
(R + r)2 + z2

)3/2

A62 = B14

B8

(
E + 1

2r

(
r −
√
r2 + z2

)
B6K + 1

2r

(
r −
√
r2 + z2

)
B7Π2

)
2B6

(
−1 + 2r

r−
√
r2+z2

)

B14 =
2
(

3R2 − r2 + 2z2 + 2R3
√
r2+z2

)(
2x+ Rx

r
+ x(R+r)√

r2+z2
+ x

√
r2+z2

r

)
3z
√

(R + r)2 + z2

A63 = B14
B2

2−B6

(
E

−1 + 4Rr
(R+r)2+z2

+ Π2

)

A64 = B15
B2

2−B6

(
E

−1 + 4Rr
(R+r)2+z2

+ Π2

)

A65 = B15

B8

(
r −
√
r2 + z2

)
2B6

(
−1 + 2r

r−
√
r2+z2

) ( E

r −
√
r2 + z2

+
1

2r
B6K +

1

2r
B7Π2

)

B15 =
2
(
−2x− 2R3x

(r2+z2)3/2

) (
r2 +Rr + z2 + (R + r)

√
r2 + z2

)
3z
√

(R + r)2 + z2

A66 = B16
B2

2−B6

(
E

−1 + 4Rr
(R+r)2+z2

+ Π2

)

B16 = −
2x (R + r)

(
3R2 − r2 + 2z2 + 2R3

√
r2+z2

) (
r2 +Rr + z2 + (R + r)

√
r2 + z2

)
3rz

(
(R + r)2 + z2

)3/2
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A67 = B17

B8(E + 1
2r

(
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√
r2 + z2

)
B6K + 1

2r

(
r −
√
r2 + z2

)
B7Π2)

2B6

(
−1 + 2r
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√
r2+z2

)

A68 = −B17
B2(B8 −B2)

2B2
6

(
E

−1 + 4Rr
(R+r)2+z2

+ Π2

)

B17 =

(
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√
r2+z2

) (
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√
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)
3z
√

(R + r)2 + z2

A69 = B17
4R

r3 ((r +R)2 + z2)3

B1 +B21

2B6
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E
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+ Π2

)

A70 = −B17

B2
8

(
E + 1

2r

(
r −
√
r2 + z2

)
B6K + 1

2r

(
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√
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)
B7Π2

)
2B6

(
1− 2r
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√
r2+z2

)2

A71 = B17

(B8 −B2)B8

(
E + 1

2r

(
r −
√
r2 + z2

)
B6K + 1

2r

(
r −
√
r2 + z2

)
B7Π2

)
2B2

6

(
−1 + 2r

r−
√
r2+z2

)

B18 = −
2
(
r5 + r3z2 + rx2z2 + r4

√
r2 + z2 + r2z2

√
r2 + z2 − x2z2

√
r2 + z2

)
r3 (r2 + z2)3/2 (−r +

√
r2 + z2

)

A72 =
B18

(
E + 1

2r

(
r −
√
r2 + z2

)
B6K + 1

2r

(
r −
√
r2 + z2

)
B7Π2

)
2B6

(
−1 + 2r
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√
r2+z2

)
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2B6

B2E
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A74 = −B17
B2

2B6
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8RrB22
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(

E
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+ Π2

)
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E + 1
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(
r −
√
r2 + z2

)
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)
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)
2B6

(
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√
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)
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1

8Rr
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B2 (E −K)
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1
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r −
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(
x
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2x
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√
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))K
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1

2r

(
x
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− x√
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A80 = −B17B8
1
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x
(
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√
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√
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1
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√
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)
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8Rx (R + r)(

(R + r)2 + z2
)2 −

4Rx

r
(
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) − 8r2
(
x
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− x√

r2+z2

)
(
r −
√
r2 + z2
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8x(
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1
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(
x
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1
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x
(
r −
√
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1

2r
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B7

B2

2B6

(
E

−1 + 4Rr
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+ Π2

)
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E(

r −
√
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1

2r
B6K +

1

2r
B7Π2

)
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(
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2B6
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√
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) B17
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2B6

(
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r−
√
r2+z2

)
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6

(
E
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+ Π1

)

B20 =
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−3R2 + r2 − 2z2 + 2R3

√
r2+z2

)
B25

3z
√

(R + r)2 + z2
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4R
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E
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151



A89 = −
B20B

2
8

(
r +
√
r2 + z2

)
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Appendix C

The Fokker Planck of the

dissipative classical system and its

relation to a Quantum Hamiltonian

In what follows, we highlight features of the mapping (1; 2; 3) between classical

dissipative systems and bosonic systems. We first set the preliminaries following

(2). Given the initial value of x(t) at time t = t0, the time dependent probability

distribution P(x, t;x0, t0) for the stochastic vector x(t) is given by

P(x, t;x0, t0) = 〈
N∏
i=1

δ[xi(t)− xi]〉η,x0 (C.1)
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where 〈−〉η,x0 denotes the average over the noise given the initial conditions at time

t = t0. The average of a general function O(x(t)) is then

∫
dxP(x, t;x0, t0)O(x) = 〈O(x(t))〉η,x0 . (C.2)

It is convenient to write P(x, t;x0, t0) in a Dirac notation as

P(x, t;x0, t0) = 〈x|P̂ (t, t0)|x0〉. (C.3)

Time translation invariance and the Markov property of P ,

∫
dx′N〈x|P̂ (t, t′)|x′〉〈x′|P̂ (t′, t0)|t0〉

=

∫
dx′NP(x, t;x′, t′)P(x′, t′;x0, t0)

= P(x, t;x0, t0) (C.4)

imply that

P̂ (t, t0) = T e−
∫ t
t0
HFP (t′)dt′

(C.5)

with an operator HPF a “Fokker-Planck” Hamiltonian and T is the time ordered

operator. We now return to our particular classical to quantum mapping The sum-

mary below closely follows this mapping as presented by Biroli et al. (3). In what

follows, we set P = P̂ (t, t0)|x0〉. For the classical dissipative system of Eq. (6.3), the
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probability distribution P ({~x}) evolves according to the Fokker-Planck equation

∂P

∂t
= −HFPP, (C.6)

where the Fokker Planck operator is

HFP = −
∑
i

1

γi

∂

∂~xi

[
∇iVN + T

∂

∂~xi

]
. (C.7)

Eq. (C.7) follows from a direct differentiation of Eq. (C.1) while invoking Eq. (6.3) for

the derivatives of the coordinates xi(t) in the argument of the delta functions. The

operator HFP is non-Hermitian and for each eigenvalue generally has different left

and right eigenvectors. The Fokker-Planck equation can be mapped into a Hermitian

Hamiltonian by (4)

H = eVN/(2T )HFP e
−VN/(2T ). (C.8)

A direct substitution leads to the quantum many body Hamiltonian of Eq. (6.4).

Note that VN is, thus far, completely general. This potential energy may include

one body interactions (i.e., coupling to an external source), pair interactions between

particles, and three- and higher-order particle interactions.

We consider what specifically occurs when the classical potential energy in Eq.

(6.3) is the sum of pair interactions,

VN({~x}) =
1

2

∑
i 6=j

Vij(~xi − ~xj). (C.9)

156



For such systems, the quantum many body Hamiltonian of Eq. (6.4) explicitly con-

tains an effective potential which is the sum of two and three body interactions,

VQuantum({~x}) =
∑
i

1

γi

[
−1

2
∇2
iVN +

1

4T
(∇iVN)2

]
= −1

2

∑
i 6=j

1

γi
∇2Vij(~xi − ~xj)

+
1

4Tcl

∑
i;j 6=i;j′ 6=i

[
1

γ1

~∇iVij(~xi − ~xj)

·~∇iVij′(~xi − ~xj′)
]
. (C.10)

For a given classical two body potential in d dimensions which is both transla-

tionally and rotationally invariant, V (~x) = V (|~x|), the resulting quantum potential

energy (3)

VQuantum({~x}) =
1

2

∑
i 6=j

vpairQuantum(~xi − ~xj)

+
∑

i;j 6=i;j′ 6=i

v3−body
Quantum(~xi − ~xj, ~xi − ~xj′);

vpair(~x) = −∇2V (~x) +
1

2
[∇V (~x)]2

= −d− 1

r
V ′(r)− V ′′(r) +

1

2
[V ′(r)]2;

v3−body(x, x′) =
1

4
∇V (x) · ∇V (~x′)

=
1

4

~x

r
· ~x
′

r′
V ′(r)V ′(r′), (C.11)

with r = |~x|. For a classical potential V (r) = V0 exp(−λ[(r/σ)2−1]) the corresponding
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pair term in Eq. (C.11) is

vpair(r) = [2λd− 4λ2r2]V (r) + 2λ2r2[V (r)]2. (C.12)

In the limit λ→∞, the classical system corresponds to a hard sphere system with a

σ the hard sphere radius and the quantum potential of Eq. (C.12) similarly exhibits a

dominant hard sphere repulsion (augmented by an attractive potential at the sphere

boundaries that is of range 1/λ).

For general VN({~x}), the Fokker-Planck operator of Eq. (C.7) has non-negative

eigenvalues (1; 2). The zero eigenvalue state—i.e., the ground state—which according

to Eq. (C.6) corresponds to a stationary (time independent) probability distribution

P . This is the equilibrium Boltzmann distribution

P equil({x}, t) =
1

ZN
e−βVN({x}), (C.13)

with ZN the partition function associated with VN({~x}) as is readily rationalized by

the following argument. For a finite size system, the linear eigenvalue equation

(HFP )bcPc = −εcPc, (C.14)

with the matrix row/column indices b and c denoting classical configurations, has a

(finite size) matrix HFP that has positive off-diagonal elements and negative diagonal

entries. Specifically, in Eqs. (C.6,C.14), the transition matrix HFP has entries that
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relate the probabilities of going from state b to state c in a given (infinitesimal) time

interval. If these states are different (b 6= c) then clearly (HFP )bc > 0. The diagonal

elements (HFP )bb provide the probabilities of “leaking out” of state b and going to all

other states c 6= b. From all of this it follows that

(HFP )bb = −
∑
b′ 6=b

(HFP )bb′ < 0. (C.15)

Detailed balance, i.e., that fact that the probability of going from b to c is same as

that of going from c to b asserts that

(HFP )bce
−βEb = (HFP )cbe

−βEc . (C.16)

In this classical system of Eq. (6.3), the energies of the classical states Ec are simply

given by VN({~x}) evaluated for the classical configurations c. With the aid of Eqs.

(C.15, C.16), it is easy to see that the column vector P equil
c = Z−1

N exp(−βEc) (i.e.,

the distribution of Eq. (C.13)) is a null eigenvector of Eq. (C.14). This probability

eigenvector corresponds, of course, the equilibrium Boltzmann distribution. The fac-

tor of Z−1
N is inserted to ensure normalization of the classical probabilities (for any

eigenstate):
∑

c Pc = 1. Now, we can add a constant to the finite dimensional matrix

HFP → HFP − const. ≡ H
′

FP (C.17)

to generate a matrix (−H ′FP ) that has all of its elements positive (−H ′FP )bc > 0.
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Specifically, to this end, in Eq. (C.17 we can chose const. to be any constant

larger than the sign inverted smallest off-diagonal element of (−HFP ), i.e., const. >

−minb 6=c{HFP}bc. For such a positive matrix, we can apply the Perron-Frobenius

theorem which states that the largest eigenvector of (−H ′FP ) is non-degenerate and

that eigenvector is the only eigenvector that has all of its elements positive with all

other orthogonal eigenvectors having at least one negative element. Clearly, all of

the eigenvectors of HFP and H
′
FP are identical with the corresponding eigenvectors of

both operators merely shifted uniformly by const.. With all of the above in tow, we

see that P equil corresponds to the largest eigenvector of (−H ′FP ) and is thus also the

largest eigenvector of (−HFP ). As P equil was the null eigenvector of HFP , it follows

that all other eigenvalues of Eq. (C.14), ε > 0, are positive and, according to Eq.

(C.6) and explicit earlier discussions evolve with time as exp(−εt) →t→∞ 0. Thus,

physically (as it to be expected) at long times the system attains its equilibrium con-

figuration of P equil. In the corresponding zero-temperature quantum problem, the

dominant classical equilibrium state with a lowest energy. We will thus label it in

Appendix E by |G〉. The transformation of Eq. (C.8) relates the operators in the

classical Fokker-Planck and zero temperature quantum problem to one another. The

transformation for the right eigenvectors P of HFP , which we explicitly denote below

as |−〉FP , to the eigenvectors of the quantum Hamiltonian H is trivially

|−〉FP → exp(−VN/(2T )))|−〉FP = |−〉Quantum. (C.18)
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Similarly, the left eigenvectors (〈−|FP ) of HFP are to be multiplied by exp(VN/(2T )))

in order to pass to left eigenstates the quantum problem. (In the quantum problem

defined by H, the left and right eigenstates are trivially related to each other by

Hermitian conjugation.) Applying Eq. (C.18) to the null right eigenstate of the

Fokker Planck Hamiltonian of Eq. (C.13), we see that the quantum eigenstate of H

corresponding to this classical equilibrium state is given by

Ψ0({~x}) =
1√
ZN

exp(− 1

2T
VN({~x})). (C.19)

The prefactor in Eq. (C.19) is set by the normalization of this quantum state. When

comparing Eqs. (C.13,C.19) to one another, we see that this wavefunction is re-

lated to the classical equilibrium probability eigenvector by the appealing relation

Ψ0({~x}) =
√
P equil({~x}) .When VN({~x})) is symmetric under the interchange of par-

ticle coordinates, the resulting wavefunction may describe bosons. For a classical

potential which is the sum of pair potentials, a substitution of Eq. (C.9) into Eq.

(C.19) leads to a Jastrow type wavefunction.
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Appendix D

Simple examples of classical to

quantum correspondence and some

aspects

D.0.1 Free particles

For a single free quantum particle (VQuantum = 0 in Eq. (6.4)) in d spatial dimen-

sions.

In what follows we consider two cases:
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Zero energy bound state

For a short range attractive potential the zero energy eigenstate outside the po-

tential, up to volume normalization factors, given by

Ψ0(~x) =
A

|~x|d−2
. (D.1)

Invoking Eq. (C.19), we see that, in this case,

V free
N ({~x}) = 2T (d− 2) ln |~x|. (D.2)

Indeed substituting Eq. (D.2) into Eq. (6.4) and recalling that, in its scalar “S-wave”

(or “` = 0”) representation, the Laplacian is given by ∇2 = d2

dr2
+ d−1

r
d
dr

, it is readily

verified, as it must self-consistently be, that the corresponding quantum potential

VQuantum = 0 in the region outside the range of the interaction.

Completely free particle

The case of a system with a zero potential everywhere, the wave-function is a con-

stant in real space. By Eq.(C.19), the classical potential energy vanishes everywhere.

By Eq. (6.4), the same also occurs for the quantum potential which is everywhere

zero.
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D.0.2 Localization and delocalization

A general localization in the quantum problem will appear whenever a correspond-

ing one occurs in the classical system. That is, if

h(R) =

∫
r>R

ddxe−βVN({~x})∫
ddxe−βVN({~x}) (D.3)

tends to zero in the limit of large R, i.e., limR→∞ h(R) = 0 then a localized state

is present. From Eqs. (C.12,C.19), in a system with pair interactions, a localized

ground state may appear only if

lim
r→∞

dvpair(r)

dr
> 0. (D.4)

D.0.3 Scaling invariance of time and space

As is well known, for a homogeneous classical potential VN({~x}) which scales as

a power (say, p) of the spatial coordinates |~x|, the equations of motion are invariant

under a simultaneous rescaling of the time coordinates. This analysis is typically

done for inertial systems. When replicated for the over damped system of Eq. (6.3),

we find that

~xi → a~xi, t→ bt, (D.5)
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where b plays the role of λ and a plays the role of λ1/z from before, leads to an

invariance of Eq. (6.3) if b = a2−p. By contrast, in the corresponding quantum

problem of the Schrödinger equation with the Hamiltonian of Eq. (6.4), a scaling

such as that of Eq.(D.5) is possible only for a single case: that of a potential VN({~x})

that is a logarithmic function of its arguments (or a constant). For this particular case,

we find that b = a2. Correspondingly, akin to subsection D.0.1, for this particular

case, the time scales as t ∼ |x|2 as in diffusion or the free particle quantum problem.

D.0.4 Relation between the classical and quantum potentials

and Eikonal approximation to the Schrödinger equa-

tion

Below we briefly review the eikonal approximation and then discuss its relation

to the connection between the classical and quantum many body potentials as seen

in Eqs. (6.4, C.19).

We write the wavefunction as a function of only the phase (the eikonal approxi-

mation) where, as throughout, we set ~ = 1.

Ψ0 = AeiS (D.6)

and substitute this into the Schrödinger equation with the Hamiltonian in the second
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line of Eq. (6.4) then we have

1

2m

∑
i

(∇iS)2 + VQuantum({~x}) +
∂S

∂t

=
i

2m

∑
i

∇2
iS. (D.7)

For time independent solutions, ∂S
∂t

= 0 and from Eq. (D.7) trivially becomes

VQuantum({~x}) =
∑
i

[
i

2m
∇2
iS −

1

2m
(∇iS)2]. (D.8)

If we now make the correspondence iS ↔ −βVN/2 then Eq. (D.6) becomes Eq. (C.19)

and correspondingly Eq. (D.8) becomes Eq. (6.4) relating the quantum potential

energy VQuantum to the classical potential energy VN.
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Appendix E

Derivation of the quantum to

classical correspondence for

general two operator correlators

The central role of this appendix is the derivation of Eqs.(E.22,6.8) (or, more

precisely, the derivation of Eqs. (E.17, E.21) that lead to Eq. (E.22) and Eqs.

(6.6,6.7) that lead to Eq. (6.8)). The sole assumption made in the below derivation

of Eqs. (E.17, E.21, E.22) is that the classical system starts from its equilibrium

state and then evolved with some general (time dependent) potential VN(t). This

will be mapped onto analytic continuations of the correlation and response functions

of a quantum system that starts at time t = 0 in its ground state of Eq. (C.19)

and then evolved with the corresponding (time dependent) Hamiltonian H(t). It

is important to emphasize that we make no assumptions regarding the final (and
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intermediate) states. The classical (quantum) system need not stay in equilibrium

(or ground state) as it evolves in time. In Eqs. (6.6,6.7,E.22) we elaborate on the

consequences for a time independent Hamiltonian.

Before detailing the derivation, we we collect basic relations discussed in Appendix

C with several new definitions,

P ({x}, t) = 〈{x}|P (t)〉, (E.1)

PG({x}, t) = 〈{x}|G〉 =
e−VN({x})/T

ZN
, (E.2)

HFP |G〉 = 0, (E.3)

〈+|{x}〉 = 1, (E.4)

H = eVN/2THFP e
−VN/2T . (E.5)

These will serve as a point of departure for the calculations in this appendix.

Equation (E.1) represents a general probability distribution in bra-ket notation.

Equation (E.2) defines the ground state distribution as a Boltzmann distribution in

bra-ket notation. Equation (E.3) defines the ground state as the eigenvector of the

Fokker-Planck Hamiltonian with zero eigenvalue. Equation (E.4) defines the state

|+〉 to be the uniform state such that |+〉 =
∫
d{x}|+〉. Equation (E.5) can be used

to find a relationship between HFP and H†FP .

As H is Hermitian,
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H† = e−VN/2TH†FP e
VN/2T = H = eVN/2THFP e

−VN/2T . (E.6)

Left multiplying by eVN/2T and right multiplying by e−VN/2T gives the relation,

H†FP = eVN/THFP e
−VN/T . (E.7)

Before detailing the mapping, one must first prove that the state |+〉 is a left

eigenstate of the Fokker-Planck Hamiltonian with zero eigenvalue. Beginning with a

simple extension of the definition of the ground state,

HFP |G〉 = 0→ 〈G|H†FP = 0. (E.8)

As shown in Equation (E.7), this is equivalent to

〈G|eVN/THFP e
−VN/T = 0, (E.9)

which (from Eqs.(E.2, E.4)) implies that

Z−1
N 〈+|HFP e

−VN/T = 0. (E.10)
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This illustrates that the uniform state is a left eigenvalue of the Fokker-Planck Hamil-

tonian with zero eigenvalue (i.e., 〈+|HFP = 0). Note that this uniform state is a left

null eigenstate for all Fokker-Planck Hamiltonians.

We will now illustrate our central result of Eq. (6.8). Towards this end, we write

anew the classical correlation function of Eq. (6.5),

Gclassical(t) = 〈O1(t)O2(0)〉. (E.11)

By Bayes’ theorem, the joint probability distribution,

P ({x}, {y}) = P ({x}|{y})P ({y}), the probability of finding coordinates {x} at time t

and coordinates {y} at time 0 is given by product the conditional probability of finding

{x} at time t given {y} at time 0 with the probability of attaining {y} at time t = 0.

As discussed in Appendix C), the ground state has a probability distribution given by

a Boltzmann distribution Z−1
N e−βUN ({y}) [see Eq. (E.2)]. The conditional probability

P ({x}|{y}) can be expressed in terms of the matrix element of T e−
∫ t
0 HFP (t′)dt′ (where

T is the time ordering operator) as this conditional P satisfies Eq. (C.6). This implies

the form of the expectation value of Eq. (E.11),

Gclassical(t) =

∫
d{x}d{y}O1P ({x}, {y})O2

=

∫
d{x}d{y}O1P ({x}|{y})O2P ({y})

=

∫
d{x}d{y}O1〈{x}|T e−

∫ t
0 HFP (t′)dt′|{y}〉O2

e−βVN({y})

ZN
. (E.12)
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Note that in the last line of Eq. (E.12) we assume that the initial state y at time

t = 0 is in thermal equilibrium. As stated earlier, this is the sole assumption made in

this derivation. For a time dependent VN (and thus a time dependent Fokker-Planck

operator).

Eq. (E.4) asserts that
∫
d{x}〈{x}| = 〈+|. Invoking this along with Eq. (E.2), we

have

Gclassical(t) = 〈+|O1T e−
∫ t
0 HFP (t′)dt′O2|G〉. (E.13)

As is evident from Eq. (E.10), inserting an exponentiation of HFP to the right of

the state 〈+| leads to a multiplication by unity. Thus Eq. (E.13) can be rewritten as

Gclassical(t) = 〈+|T e
∫ t
0 HFP (t′)dt′O1T e−

∫ t
0 HFP (t′)dt′O2|G〉. (E.14)

With the aid of Eq. (E.5), we can express this quantity in terms of the quantum

Hamiltonian H instead of HFP ,

Gclassical(t) = 〈+|e−VN/(2T )T e
∫ t
0 H(t′)dt′O1T e−

∫ t
0 H(t′)dt′eVN/(2T )O2|G〉, (E.15)

Multiplying and dividing by
√
ZN ,
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Gclassical(t) = 〈+|e
−VN/(2T )

√
ZN

T e
∫ t
0 H(t′)dt′O1T e−

∫ t
0 H(t′)dt′O2

√
ZNe

VN/(2T )|G〉. (E.16)

As discussed in Appendix C (in particular, Eq. (C.19)), the ground state of the

quantum system is given by |0〉 =
√
ZNe

VN/(2T )|G〉, and invoking Eqs. (E.2,E.4), we

can rewrite Eq. (E.16) as

Gclassical(t) = 〈0|T e
∫ t
0 H(t′)dt′O1T e−

∫ t
0 H(t′)dt′O2|0〉. (E.17)

Note that in this equation, the expectation value is written as in a quantum Dirac

form. |0〉 is the ground state of the quantum system and H is the Hamiltonian of the

quantum counterpart. Our results above are general. We will shortly use Eq. (E.17)

in order to relate it to correlations in the quantum system.

We next comment on the particular case of a time independent H with a fixed

spectrum {|n〉}. It is important to emphasize that unlike our general result of Eq.

(E.17) above, such a situation does not encompass a multitude of glassy and other

systems which are driven out of equilibrium by time dependent processes and in which

the probability distribution is not given by the Boltzmann distribution. In our above

derivation, we assumed that the system starts from an equilibrium state and is then

acted on by a time dependent Hamiltonian which might (or might not) drive it out

of equilibrium. An identical result holds if we start from a non-equilibrium state and

173



then drive the system at a final time t to an equilibrium state. (In this latter case,

in Eq. (E.12), the role of the coordinates {x} and {y} is inverted: the probability

distribution of the final state P ({x}) will be given by a Boltzmann distribution and,

similar to before, P ({x}|{y}) = 〈{x}|T e−
∫ t
0 HFP (t′)dt′ |{y}. Bayes’ theorem asserts as

earlier that the joint probability distribution over which the average in Eq. E.12) is

performed is given by P ({x}, {y}) = P ({x}|{y})P ({x}).

Next, we insert a resolution of the identity,
∑

n |n〉〈n| = I, leading to

Gclassical(t) =
∑
n

〈0|O1|n〉〈n|O2|0〉e−t(En−E0). (E.18)

Defining

O12(ω) = 2π
∑
n

〈0|O1|n〉〈n|O2|0〉δ(En − E0 − ω), (E.19)

we can express Eq. (E.18) as

Gclassical(t) =

∫ ∞
0

dω

2π
O12(ω)e−ωt. (E.20)

We recognize O12(ω) as the distribution function W (ω) in Eq. (6.6).

In the quantum arena, it is clear that for a system initially prepared in the ground

state |0〉 and then evolved with some Hamiltonian H(t), the corresponding correlation
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function is given by

GQuantum = 〈0|T ei
∫ t
0 H(t′)dt′O1T e−i

∫ t
0 H(t′)dt′O2|0〉. (E.21)

By comparing Eq. (E.17) with Eq. (E.21), it is seen that

GQuantum(t) = Gclassical(it). (E.22)

We next turn to the quantum response function RQuantum that monitors the change

in the average value of O1 as a result of a perturbation O2. Specifically, we consider

the Hamiltonian

Htot = H +H
′

(E.23)

where H ′ is a small perturbation which can be expressed as H ′ = −λO2. We next

review standard protocol for computing the lowest order the deviation

δ〈O1(t)〉 = 〈O1(t)〉λ − 〈O1(t)〉0 (E.24)

which we will evaluate within the ground state |0〉. This is readily computed in the

interaction picture where we evolve with the time ordered exponential T exp(−iH ′t),

〈O1(t)〉λ = 〈
(

1− i
∫ t

dt′ λ(t) O2(t′)

)
O1(t)

(
1 + i

∫ t

dt′ λ(t) O2(t′)

)
〉. (E.25)
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Collecting terms to lowest order we have

δ〈O1(t)〉 ≈ i

∫ t

dt′ λ(t′) 〈[O1(t),O2(t′)]〉

= i

∫ ∞
0

dτ λ(t− τ) 〈[O1(τ),O2(0)]〉

≡
∫ ∞
−∞

dτ λ(t− τ) RQ(τ) (E.26)

As O1(t) = T e−i
∫ t
0 H(t′)dt′O1T ei

∫ t
0 H(t′)dt′ , from the last line of Eq. (E.26),

RQuantum = iΘ(t)〈0|
[
T ei

∫ t
0 H(t′)dt′O1T e−i

∫ t
0 H(t′)dt′ ,O2

]
|0〉. (E.27)

Comparing Eqs. (E.17, E.27), we see that

RQuantum = iΘ(t)(Gclassical(it)−G∗classical(it))

= −2Θ(t)=Gclassical(it). (E.28)

Our results above are general1. We next comment on the particular case of a

time independent H with a fixed spectrum {|n〉}. Expanding the expectation value

and splitting it into two separate expectation values, and inserting a resolution of the

identity
∑

n |n〉〈n|,
1Eq. E.28 and Eq. 6.8 are generally equivalent (i.e., also for time dependent Hamiltonians) as

can be shown by writing the step function and the imaginary part of the correlation function as
their Fourier counterparts and using the Kramers-Kronig relations. This is included for pedagogical
purposes.
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RQuantum = iΘ(t)
∑
n

(
〈0|eiHtO1|n〉〈n|e−iHtO2|0〉

−〈0|O2e
iHt|n〉〈n|O1e

−Ht|0〉
)

(E.29)

Allowing H to operate on the states and pulling out the exponentials,

RQuantum = iΘ(t)
∑
n

〈0|O1|n〉〈n|O2|0〉 sin(t(En − E0)). (E.30)

Using the definition of O12(ω) in Eq. (E.19), this is equal to:

−2Θ(t)

∫ ∞
0

dω

2π
O12(ω) sin(ωt). (E.31)

Taking the imaginary part of the Fourier Transform of this function, one is left

with

R′′Quantum(ω) =
1

2
sgn(ω)O12(|ω|). (E.32)

Using the fluctuation-dissipation theorem, we can relate the quantum correlation

function to the imaginary part of the quantum response function by SQ(q, ω) =
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1
2
sgn(ω)R′′Quantum(q, ω) = 1

2
O12(|ω|). Thus,

RQuantum =

∫ ∞
−∞

dω

2π
SQ(q, ω)e−iωt. (E.33)

Only the even part survives, and

RQuantum =

∫ ∞
0

dω

2π
O12(ω) cos(ωt). (E.34)

This constitutes the derivation of Eq. (6.7) with the distribution function W (ω) given

by O12(ω).

Taken together Eqs.(E.20, E.34) lead to Eq. (6.8).
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Appendix F

Arbitrary Number of

Time-Ordered Operators

A derivation similar to that in Appendix E can be done for a correlation function

of an arbitrary number of operators. In the classical case, the correlation function

takes the form of

Gcl = 〈O1(t1)O2(t2)...On(tn)〉, (F.1)

where Oi are arbitrary operators and t1 < t2 < ... < tn.

Similar to Appendix E, by Bayes’ theorem this correlation function is given by
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∫
d{x1}d{x2}...d{xn}On〈{xn}|T e

−
∫ tn
tn−1

HFP (t′)dt′ |{xn−1}〉

On−1...〈{x2}|T e−
∫ t2
t1
HFP (t′)dt′|{x1}〉O1

e−βUN ({x1})

ZN
. (F.2)

By similar identity matrix integrations as before, this can be simplified into the

form of

〈+|T e−
∫ t1
tn
HFP (t′)dt′OnT e

−
∫ tn
tn−1

HFP (t′)dt′On−1...T e−
∫ t2
t1
HFP (t′)dt′O1|G〉. (F.3)

Transforming to the quantum Hamiltonian and quantum ground state yields

〈0|T e−
∫ t1
tn
H(t′)dt′OnT e

−
∫ tn
tn−1

H(t′)dt′On−1...T e−
∫ t2
t1
H(t′)dt′O1|0〉. (F.4)

The results up to this point are completely general. If we were to assume a time

independent Hamiltonian, though, the analysis of previous examples can be followed

by inserting a series of identity matrices

∑
n,m,...l

〈0|On|n〉〈n|On−1|m〉...〈l|O1|0〉

×e−(t1−tn)E0e−(tn−tn−1)En ...e−(t2−t1)El . (F.5)
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Defining a function of the form,

O1...n =
∑
n,m,...l

〈0|On|n〉〈n|On−1|m〉...〈l|O1|0〉

(2π)nδ(E0 − En − ωn)δ(En − Em − ωn−1)...δ(El − E0 − ω1), (F.6)

one can write the classical correlation function in the form,

Gcl =
∑

n,m,...,l

∫
dω1

2π

∫
dω2

2π
...

∫
dωn
2π
O1...ne

ω1t1eω2t2 ...eωntn . (F.7)

For the quantum correlation function case, one starts with the linear quantum

response function will be set by

〈0|[T eitnHOnT e−itnH , [T eitn−1HOn−1T e−itn−1H ,

...[T eit2HO2T e−it2H , T eit1HO1T e−it1H ]]]|0〉. (F.8)

The series of commutators will give the operators in various orders. The process

for any given order is the same. We now consider so examining a specific order of

operators that will appear,
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GQuantum = 〈0|T eitnHOnT e−itnHT eitn−1HOn−1T e−itn−1H ...T eit1HO1T e−it1H |0〉.(F.9)

The results up to this point are completely general. If we were to assume a time

independent Hamiltonian, though, the analysis of previous examples can be followed

by inserting complete sets of states leads to

∑
n,m,...,l

〈0|On|n〉〈n|On−1|m〉...〈l|O1|0〉ei(t1−tn)E0ei(tn−tn−1)En ...ei(t2−t1)El . (F.10)

Using Eq. (F.6), this can be written as,

GQuantum =
∑

n,m,...,l

∫
dω1

2π

∫
dω2

2π
...

∫
dωn
2π
O1...ne

iω1t1eiω2t2 ...eiωntn . (F.11)

Combining this with the other orders of operators from the commutator will ul-

timately give rise to exponentials that will be negative conjugates of the the ones in

Equation (F.11) which will effectively change the exponentials to sine functions. The

rest of the derivation is the same as Appendix E. Comparing Eqs. (F.7, F.11), we

arrive at our result concerning arbitrary order (n) correlation functions for interact-

ing many body systems. In order to go from the classical to the quantum system,

we replace the times {ta}na=1 by {ita}na=1 to go from the classical to the many body
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quantum problem.
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