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Abstract

A key challenge for distributed real-time and embedded
(DRE) middleware is maintaining both system reliability
and desired real-time performance in unpredictable envi-
ronments where system workload and resources may fluc
tuate significantly. This paper presents FC-ORB, a real-
time Object Request Broker (ORB) middleware that em
ploys end-to-end utilization control to handle fluctuations in
application workload and system resources. The contribu-
tions of this paper are three-fold. First, we present a novel
utilization control service that enforces desired CPU utiliza-
tion bounds on multiple processors by adapting the rates
of end-to-end tasks within user-specified ranges. Second
we describe a set of middleware-level mechanisms designe
to support end-to-end tasks and distributed multi-processor
utilization control in a real-time ORB. Finally, we present
extensive experimental results on a Linux testbed. Our re-
sults demonstrate that our middleware can maintain desired
utilizations in face of uncertainties and variations in task
execution times, resource contentions from external work-
loads, and permanent processor failure. FC-ORB demon
strates that the integration of utilization control, end-to-end
scheduling and fault-tolerance mechanisms in DRE middle-
ware is a promising approach for enhancing the robustness
of DRE applications in unpredictable environments.

1 Introduction

Distributed real-time and embedded (DRE) applications
have stringent requirements for end-to-end timeliness and
reliability whose assurance is essential to their proper op-

eration. In recent years, many DRE systems have become

open to unpredictable operating environments where both
system workload and platform may vary significantly at run

time. For example, the execution of data-driven applica-
tions such as autonomous surveillance is heavily influenced
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ures, software faults, and cyber attacks.

While DRE middleware has shown promise in improv-
ing the real-time properties of many applications, existing
middleware systems often do not work well in unpredictable
environments due to their dependence on traditional real-
time schedulability analysis. When accurate knowledge
about workloads and platforms is not available, a DRE ap-
plication configured based on schedulability analysis may
suffer deadline misses or even system crash [18]. A critical
challenge faced by application developers is to achieve
bustguarantees on real-time performance in unpredictable
environments. Since in DRE systems, an end-to-end ap-
plication that violates its real-time properties is equivalent

(5]0 (or sometimes even worse than) an application that does

ot perform its computation, utilization guarantees affect
directly the availability of the end-to-end application.

This paper presents the design and empirical evaluation
of an adaptive middleware callédC-ORB(Feedback Con-
trolled ORB) that aims to enhance the robustness of DRE
applications. The novelty of FC-ORB is the integration
of end-to-end scheduling, adaptive QoS control, and fault-
tolerance mechanisms that are optimized for unpredictable
environments. Specifically, this paper makes three contri-
butions.

e End-to-End Real-Time ORBDur ORB service sup-
ports end-to-end real-time tasks based on the end-to-
end scheduling framework [16]. The FC-ORB ar-
chitecture is designed to facilitate efficient end-to-end
adaptation and fault-tolerance in memory-constrained
DRE systems.

e End-to-End Utilization Control The utilization con-
trol service enforces desired CPU utilizations in a
DRE system despite significant uncertainties in system
workloads. The core of the utilization control service
is a distributed feedback control loop that coordinates

adaptations on multiple interdependent processors.

by sensor readings. External events such as detection of an

intruder can trigger sudden increase in system workloads.
Furthermore, many mission-critical applications must con-
tinue to provide real-time services despite hardware fail-

e Adaptive Fault Tolerance FC-ORB handles proces-
sor failures with an adaptive strategy that combines re-

configurable utilization control and task migration. A



unique feature of our fault tolerance approach is that it T
i i _ti ; H i 12 Remote
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FC-ORB has been implemented and evaluated on a | '21 ®  Subtask
Linux platform. Our experimental results demonstrate that
FC-ORB can significantly improve the end-to-end real-time P, P, P,
performance of DRE middleware in face of a broad set of Figure 1. An example DRE application

dynamics including uncertainties and fluctuations in task
execution times, resource contention from external work-
loads, and processor failures. FC-ORB demonstrates thapf a task7; may be dynamically adjusted within a range
the integration of utilization control, end-to-end schedul- [Rmin,i; Rmaz,i]. This assumption is based on the fact that
ing and fault-tolerance mechanisms in DRE middleware is the task rates in many DRE applications (e.qg., digital con-
a promising approach for enhancing the robustness of DREtrol [20][27], sensor update, and multimedia [4]) can be dy-
applications in unpredictable environments. namically adjusted without causing system failure. A task
The rest of the paper is organized as follows. Section 2running at a higher rate contributes a higher value to the
describes the design of the FC-ORB architecture. Sectionapplication at the cost of higher utilization. For instance,
3 presents the experimental results. Section 4 highlightsalthough a digital control system usually has better control
the contributions of FC-ORB by comparing it with related performance when it executes at a higher rate, it can usually

works. Section 5 concludes the paper. remain stable when executing at a lower rate.
Each taskT; is subject to an end-to-end soft deadline
2 Design of the FC-ORB Architecture related to its period. FC-ORB implements the end-to-end

scheduling approach [31] to meet task deadlines. The dead-
. . o line of a task is divided into subdeadlines of its subtasks
In this section, we first introduce the end-to-end task [9][22]. The release guard protocol is used to synchro-
model and scheduling framework supported by FC-ORB. 74 the execution of subtasks such that each subtask can be
We then describe the main components of FC-ORB: the ,,qeleq as a periodic task. Hence, the problem of meeting
end-to-end ORB service, the utilization control service, and o qeadiine is transformed to the problem of meeting the
the adaptive fault-tolerance mechanisms. subdeadline of each subtask. A well known approach for
o meeting the subdeadlines on a processor is to ensure that its
2.1 Applications utilization remains below its schedulable utilization bound
[13][15]. Therefore the end-to-end scheduling approach en-
FC-ORB supports an end-to-end task model [16] em- ables FC-ORB to meet end-to-end deadlines by controlling
ployed by many DRE applications. An application is com- the utilizations of all processors in the system.
prised ofm periodic taskqT;|1 < i < m} executing om
processorg P;|1 < i < n}. TaskT; is composed ofachain 2.2 Middleware Support for End-to-End Tasks
of subtaskqT;;|1 < j < n;} which are implemented as a
sequence of object operations on different processors. The |n this subsection we first present how FC-ORB im-

invocation of a subtask;;(1 < j < n,) is triggered by its  plements end-to-end tasks, and then introduce the priority
predecessol;;_; through a remote operation request. A management strategy.

non-greedy synchronization protocol called release guard
[31] is used to ensure that the interval between two consec-
utive releases of the same subtask is not less than its period.
Hence, all the subtasks of a periodic task share the same ratBigure 2 illustrates the FC-ORB implementation of the ex-
as the first subtask. In FC-ORB, the rate of a task (and allample DRE application shown in Figure 1. Each subtask is
its subtasks) can be adjusted by changing the rate of its firstexecuted by a separate thread whose priority is decided by
subtask. An example DRE application with two end-to-end a priority manager. In Figure 2, each dashed box spanning
tasks running on three processors is shown in Figure 1.  from the application layer to the ORB core layer represents
Our application model has two important properties. a subtask in Figure 1. Every subtask is associated with a
First, while each subtask;; has anestimatedexecution separate Reactor [23] to create timeout events and to man-
time c;; available at design time, i@actual execution time age communication connections.
may be different from its estimation and may vary at run-  As shown in Figure 2, the first subtask of a task is imple-
time. Such uncertainty is common for DRE systems op- mented with a periodic ACE timer, a Reactor and a Connec-
erating in unpredictable environments. Second, the ratetor [24]. The timer periodically triggers a local operation

2.1 Implementation of End-to-End Tasks



rates of end-to-end tasks. This may cause the middleware
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G PeriodcTima E Aiing Queve to change the priorities of all its subtasks, e.g., when the
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isfy the special requirements posed by rate adaptation and
. APPLICATION ) (. APPLICATION APPLICATION end-to-end scheduling, our ORB service is configured with
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other processor are served by a thread with a real-time pri-
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' [ A A I A processor. Currently the priority manager only supports the
ossssien W osUssrsiem UBsrerem RMS policy, although the following discussions are also

applicable to other rate- or deadline-dependent scheduling
policies (note that task deadlines are usually related to their
periods). There are several advantages of using server-

(e.g., a method of an object) which implements the func- declared priority model in the FC—ORB. sy;tem. First, each
tionality of this subtask. Following the execution of this Processor is able to change thread priorities locally, based

operation, a one-way remote operation request is pushed®" the current rates of the subtasks located on it, SO a pro-
through the Connector to the succeeding subtask that is 1o-C€SSOr only needs to know the local subtasks. This makes
cated on another processor. The succeeding subtask enf€ System more scalable to large applications. Moreover,
ploys an Acceptor [24] to accept the request from its pre- the server-dec]ared model has !egs overhee_ld becausg |t.does
ceding subtask. Each pair of Connector and Acceptor main-"0t have to adjust a thread's priority every time the priority
tains a separate TCP connection to avoid priority inversion Of its predecessor subtask is changed, as it would do with
in the communication subsystem. The release guard proto!N€ client-propagated model.
col enforces that the interval between two successive invo- The thread-per-priority concurrency architecture has
cations of a same subtask is lower bounded by its period.been adopted in existing DRE middleware (e.g., [26]). In
Earlier research has shown that the release guard protocdhis model,the same thread is responsible for executing all
can effectively reduce the end-to-end response time and jit-Subtasks with a same priority. This is because the work-
ter of tasks in DRE systems [31]. FC-ORB implements the l0ad is assumed to use only a limited number of fixed task
release guard protoc0| with a FIFO Waiting gueue and one-rates. However, this concurrency architecture is not suit-
shot ACE timers. Upon recei\/ing a remote operation re- able for rate adaptation. Due to rate adaptation, the rates
quest, a subtask compares the current time with the last in-2nd thus the priorities of subtasks vary dynamically at run-
vocation time of this operation. Based on the release guardtime. In such situations, the thread-per-priority architecture
rules [31], the subtask either immediately invokes the re- would require the ORB to dynamically move a subtask from
quested operation or enqueues this request to the waiting®ne thread to another thread which can introduce significant
queue if the request arrives too early. When the requestoverhead.
is enqueued, a one-shot ACE timer is registered with the To avoid this problem FC-ORB implements the thread-
Reactor to trigger the requested operation at the time thatper-subtask architecture that executes each subtask with
equals the last invocation time plus the task’s period. After a separate thread. FC-ORB adjusts the priorities of the
the one-shot timer fires and the enqueued request is servedhreads only when therder of the task rates is changed.
a remote operation request is sent to the next subtask in th&Vhile the task rates may vary at every control period, the
end-to-end task chain. An end-to-end real-time task is fin- order of task rates often changes at a much lower frequency.
ished when the execution of its last subtask is finished. Therefore, the thread-per-subtask architecture enables FC-

ORB to adapt task rates in a more flexible way, with less

overhead.

A potential advantage of the thread-per-priority archi-

The integration of end-to-end scheduling and utilization tecture is that it may need fewer threads to execute ap-
control introduces new challenges to the design of schedul-plications. However, as FC-ORB is targeted at memory-
ing mechanisms in ORB middleware. For instance, the constrained networked embedded systems that commonly
rate adaptation mechanism adopted by FC-ORB and sev-have limited number of subtasks on a processor, each sub-
eral other projects [18][19] may dynamically change the task can be easily mapped to a thread with a unique native

Figure 2. FC-ORB’s end-to-end architecture

2.2.2 Priority Management



thread priority even in a thread-per-subtask architecture.  from the controller; and (4) the priority manager on each
processor check and adjust the thread priorities based on

2.3 End-to-End Utilization Control Service the new task rates if necessary.

FC-ORB allows users to specify a set of application pa- 2.3.2 Control Components
rameters in a configuration file that is used to initialize the \yq o\ present the details of each utilization control com-
middleware when the system is started. Configuration pa—ponent
rameters include the desired CPU utilization on each pro-
cessor, and the allowed range of rate for each real-time task. o Controller: The controller is implemented as a single-

The utilization control service dynamically enforces the de- thread process. It employs a Reactor to interact with all
sired CPU utilizations on all processors by adapting the processors in the system. Each time its periodic timer
rates of real-time tasks within the specified ranges, despite  fjres, it sends utilization requests to all application pro-
significant uncertainties and fluctuation in system workload cessors through the feedback lanes. The incoming
and platform. Therefore, to guarantee end-to-end deadlines,  replies are registered with the Reactor as events to be
the application users only need to specify the utilization ref- handled asynchronously. This enables the controller to
erence of each processor to a value below its schedulable  ayoid being blocked by an overloaded application pro-
utilization bound. cessor. After it collects the replies from all processors,
In the rest of this subsection we first give an overview of it executes avlodel Predictive Contro{MPC) algo-
the feedback control loop of the utilization control service, rithm proposed in [19] to calculate the new task rates.
and then describe each component of the loop in detail. Then, for each task whose rate needs to be changed,
the controller sends the task’s new rate to all proces-
2.3.1 Feedback Control Loop sors that host one or more subtasks of the tasks whose
rates have been changed. If a processor does not reply
The utilization control service implements the EUCON al- in an entire control period, its utilization is treated as
gorithm [19] as a distributed feedback control loop in the 100%, as the controller assumes this processor is satu-
middleware. As shown in Figure 3, the feedback control rated by its workload.

loop is composed of a utilization monitor, a rate modulator o ) o ]
and a priority manager on each processor, and a centralized ® Utilization Monitor: The utilization monitor uses the

controller. /proc/stat file in Linux to estimate the CPU utilization
As shown in Figure 3, the three components of the feed- in each sampling period. The /proc/stat file records
back control loop on an application processor (i.e., a pro- the number of jiffies (usually 10ms in Linux) when
cessor executing applications and the ORB) are executed ~ the CPU is in user mode, user mode with low priority
by a separate thread called ttentrol thread This control (nice), system mode, and when used by the idle task,

thread has the highest priority in the middleware systemso  Since the system starts. At the end of each sampling
that the feedback control loop can be executed in overload ~ Period, the utilization monitor reads the counters, and
conditions, when it is needed most. The controller is imple- estimates the CPU utilization as 1 minus the number
mented as an independent process that can be deployed ona  Of Jiffies used by the idle task in the last sampling pe-
separate processor or on an application processor. The con-  fiod divided by the total number of jiffies in the same
troller also serves as a coordinator of the FC-ORB system.  Period.

Every application processor in the system tries to connect
with the controller through a TCP connection (calfedd-
back lang when the node is started. Once all application
processors are connected to the controller, the whole sys-
tem starts to run the configured application.

The feedback control loop is invoked in the end of every
sampling period. It works as follows: (1) the utilization
monitor on each processor sends its utilization in the last e Priority Manager: All processors in FC-ORB as-
sampling period to the controller; (2) the controller collects sign priorities to their subtasks based on a real-time
the utilizations from all processors, computes the new task scheduling algorithm (e.g., RMS). It is important to
rates, and sends the new task rates to the rate modulators strictly enforce the scheduling algorithm to achieve de-
on all processors where the tasks are running; (3) the rate  sired real-time performance. However, as a result of
modulators on processors that host the first subtasks of tasks  rate adaptation, a task with a rate higher than another
change the rates of the first subtasks according to the input  task could be assigned a lower rate in the next sampling

e Rate Modulator: A Rate Modulator is located on
each processor. It receives the new rates for its re-
mote invocation requests from the controller through
the feedback lane, and resets the timer interval of the
first subtask of each task whose invocation rate has
been changed.
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period. Consequently, the priority of this task has to utilization control so that applications can maintain desired
be adjusted at run-time. The priority manager on eachreal-time properties despite processor failure. Finally, the
processor checks the rate order of all subtasks on thisFC-ORB controller can automatically reconfigure itself at
processor. If the rate order of two or more subtasks runtime to rebuild its control model, in order to effectively
is reversed, the priority manager reassigns the correctcontrol the DRE system whose deployment is changed due

priorities for the threads of those subtasks. to processor failure.
In our replication mechanism, a subtask may have a
2.4 Fault Tolerance backup subtask located on a different processor. For exam-

ple, the subtasi3; shown in Figure 1 can have a backup
subtaskl ; located on processadr . As a result, when pro-
cessorP; fails because of hardware failure, the execution
of subtaski’ 3 is migrated to processdar to continue auto-
matically. Similar to theCOLD_PASSIVEeplication style

A robust DRE middleware must maintain both reliabil-
ity and real-time properties required by the applications
despite partial system failures. Traditional fault-tolerance

mechanisms usually focus on reliability aspects of the sys- qi | I I 'sub
tem based oentity redundancyNo single point of failure, used in Fault-Tolerant CORBA (FT-CORBA) [6], all sub-

transparent failover and transparent redirection and reinvo-g"SkS are asbsumed to bt? stiteleﬁg éexcept the f:ondngcu%ns
cation are among the requirements of a fault-tolerant ORB P€tWeen subsequent subtasks which are maintained by the
[6]. However, less attention has been paid to maintaining middleware) so that the overhead of active state synchro-

desired real-time properties in face of faults. nization is avoided.

Before describing the fault tolerance techniques in FC- ~ The failover mechanism works as follows. In the normal
ORB, we first introduce the fault model. FC-ORB is de- mode, each subtask pushes remote operation requests only
signed to handle persistent single processor failure. We asfo the primary instance of its successor. As a result, the
sume that the communication between the remaining pro-Packup instance does not receive any requests and its thread
cessors does not fail and the network is not overloaded.remains idle. After a processor fails, the predecessor of a
Our assumption regarding the network is reasonable for aSUbtaSk located on the failed processor detects the commu-
common class of DRE Systems where processors are Connication failure based on the Underlying socket read/write
nected with a switched/fast Ethernet LAN with sufficient errors. The predecessor immediately switches the connec-
bandwidth. tion to the backup instance of its successor and sends the

FC-ORB improves system robustness in terms of both 'émote operation requests to it. In the case when the faileq
reliability and real-time properties by integrating three com- Processor hosts the first subtask of a task, the controller acti-
plementary mechanisms. First, FC-ORB provides replica- vates the backup instance of the su_btask. Consequently, the
tion for subtasks and support transparent failover to backup€xecution of the end-to-end tasks is resumed after a tran-
subtasks located at different processors in face of procesSI€ntinterruption.
sor failure. Second, after a processor fails, the remaining As a part of the fault-tolerant support, the controller in
processors may experience dramatic workload increase du¢he utilization control service has been designed to be self-
to the activation of the backup subtasks, which may causeconfigurable. This is important because the control algo-
them to miss deadlines or fail. A unique feature of FC-ORB rithm relies on knowledge about the subtask allocation in
is that it can effectively handle the workload increase via order to compute correct task rates [19]. When the con-



troller detects communication failure with a processor in the ture. All the code is open-source and can be downloaded
system, it first cancels the periodic timer to pause the feed-from http://deuce.doc.wustl.edu/FG®RB/FC-ORB;/.

back control loop. In its internal control model, it then re-

moves the failed processor and moves the subtasks locateg Empirical Evaluation

on the failed processor to the corresponding backup pro-
cessors. After rebuilding the control model, the controller
re-initializes itself and restarts the timer to resume the feed-
back control loop.

A disadvantage of the centralized control scheme is that
the controller becomes a single point of failure. To mitigate
this problem, FC-ORB can be easily extended to replicate
the controller as well. In the extension, FC-ORB can ac-
tively maintain the state consistency between the primary
controller and the backup controller, in a way similar to the
ACTIVEreplication style used in FT-CORBA [6]. When the
controller executes in replicated mode, all processors sen
their CPU utilizations to both the primary and the backup
controllers at every sampling instant. The backup controller
performs control computation just like the primary con-
troller. The difference is that the backup controller dnes All experiments are conducted on a testbed of five ma-
send the resultant new task rates to any processor. Instead, P

it uses this method to keep the state variables in the backupCh'nes' All applications and the ORB service run on

controller consistent with the primary controller. The pri- & Linux cluster composed of four Pentium-1V: machines:

mary and backup controllers can exchange heartbeat mesRO"> Harry, Norbert and Hermione. Ron and Hermione are

sages in every sampling period. Once the backup controllezrzhs.OGHZ and I—!arrydanqtrl]\lg;bzeééare 2553622523:\;%”';2&'
stops receiving heartbeats from the primary controller, the CNINES aré equipped wi cache an '

backup controller takes over the utilization control service. andtLun PKUT.T L'Tvxzéfl'zz' TE.e con:;ogi;EBlocatﬁd ond
This feature will allow FC-ORB to maintain control of the 2o el mentium- Z machine wi cache an

: : 256MB RAM. The controller machine runs Windows XP
entire system even after controller failures. Professional with MATLAB 6.0. The four machines in the
cluster are connected via an internal switch and communi-
cate with the controller machine through the departmental
100Mbps LAN.

FC-ORB 1.0 has been implemented in C++ using ACE  All the experiments run a medium-sized workload that
5.4 on Linux. FC-ORB is based on the FCS/nORB middle- comprises 12 tasks (with a total of 25 subtasks). The tasks
ware [18] which integratessingle-processdieedback con-  include 8 end-to-end tasks (tasksto 7x) and 4 local tasks.
trol scheduling service and a light-weight real-time ORB Figure 4 shows how the 12 tasks are distributed on the 4 ap-
middleware called nORB [30]. FC-ORB is specialized for plication processors. A processor failure incident on Nor-
memory-constrained DRE systems by supporting a smallerbert is emulated in Experiment IV to test FC-ORB'’s fault-
set of features than general-purpose DRE middleware sucholerance capability. Hence in Figure 4, we also show the
as TAO. The entire FC-ORB middleware (excluding the configured backup subtasks for all subtasks on Norbert that
code in ACE library and IDL library) is implemented in belong to an end-to-end task. There is no backup subtask
7017 lines of C++ code. The controller is implemented for local taskli; ; as we assume that the local task is spe-
in 1995 lines of C++ code. FC-ORB currently implements cific to Norbert. The workload parameters are detailed in
the control algorithm based on the constrained least squarélable 1.
solver (sqlin) in MATLAB. The controller process opens a The subtasks on each processor are scheduled by the
MATLAB process at start time. In the end of each sampling RMS algorithm [15]. Each task’s end-to-end deadline is
period, the controller collects the utilizations from applica- d; = n;/r;(k), wheren; is the number of subtasks in task
tion processors and calls the solver in MATLAB with the T; andr;(k) is the current rate df;. Each end-to-end dead-
utilizations as parameters. The solver computes the controline is evenly divided into subdeadlines for its subtasks. The
input and return it to the controller. We choose the MAT- resultant subdeadline of each subtd3kequals its period,
LAB solver as a proof of concept because it is a highly op- 1/r;(k). Hence the schedulable utilization bound of RMS
timized and widely used solver. We plan to replace MAT- [15], B = m(2'/™—1) is used as the utilization set point on
LAB with a native implementation of the solver in the fu- a processor, where: is the number of subtasks (including

In this section, we present the results of five sets of ex-
periments run on a distributed testbed with five machines.
Experiments | and Il evaluate FC-ORB's performance when
task execution times deviate from their estimations and
change dynamically at run-time, respectively. Experiment
Il examines FC-ORB’s capability to handle disturbances
from external workloads. Experiment IV tests FC-ORB’s
robustness in face of processor failure. Experiment V mea-
sures the overhead introduced by utilization control. Fi-

ally, Experiment VI compares the code size of FC-ORB
cﬂ/ith other ORB middleware systems.

3.1 Experimental Setup

2.5 Implementation



Normal subtask T;,
' _j  Backup subtask T’

Hermione

Figure 4. A medium size workload

or changed dynamically in a run. In the following we use
inversed etf(ietf) because DRE systems commonly have
undesired oscillation when execution times are underesti-

Table 1. Workload parameters

Estimated Execution| Initial | Min Max ) - ;
Subtask Time (ms) Rate | Rate| Rate mated (i.eetf > 1). Speuflcal!y,zeftij(k:) = 1/etf;; (k).
Ti(1254; | 35 | 55 | 55] 45| 3.33 | 0.33 | 18.18 We compare FCORB against a ba_selme called OPEN.
Ty (1.2 55 | 45 200 | 020 | 18.18 In OPEN, the utilization control service of FC-ORB is
Ts.(1.2) 65 | 45 2.50 | 0.25 | 15.38 turned off and the middleware becomes a representative
Ti(1,2,3} 35 | 45 | 25 1.71 | 0.17 | 22.22 real-time ORB without control. OPEN uses a typical open-
T5 (1,2,3} 115] 75 | 65 1.00 | 0.10| 8.70 loop approach to assign task rates base@stimatedex-
Ts,{1,2,3} 35 | 55 | 45 2,51 | 0.25| 18.18 ecution time to achieve the desired utilizations. OPEN re-
Tr (1,2} 65 | 105 1.72 | 0.17 | 9.52 sults in desired utilization when estimated execution times
Ts (1,2 S|4 2.01 | 0.20 | 13.13 are accurate (i.e., whemtf = 1). However, it causes un-
To, 45 2.02 | 0.20 | 22.22 derutilization when execution times are overestimated (i.e.,
Tio,1 45 173 | 017 22.22 ietf > 1), and over-utilization when execution times are
T 45 2.52 | 0.25 | 22.22 underestimated (i.eiet f < 1). This is a common problem
Tiza 45 150 | 0.15 | 22.22 faced by application developers because it is often difficult

to estimate a tight bound on execution times, especially in

] - __unpredictable environment where execution times are heav-
backup subtasks) on this processor. Specifically, the ut|I|za-i|y influenced by the value of sensor data or user inpuit.
tion set points for the four experiment processors are: Ron

(72.4%), Harry (72.4%), Norbert (74.3%) and Hermione
(72.4%). All (sub)tasks meet their (sub)deadlines if the de-

sired utilization on every processor is enforced. The sam- | this subsection we evaluate FC-ORB'’s performance
pling period of the utilization control service™s = 4sec-  \yhen task execution times deviate from the estimations.
onds. In each run of this experiment, all subtasks share a fixed
To evaluate the robustness of FC-ORB when executionexecution-time factori¢tf).
times deviate from the estimations, the execution time of  First, we run experiments for OPEN which chooses task
each subtaskK’;; can be changed by tuning a parameter rates based on estimated execution times so that the esti-
called theexecution-time factoret f;;(k) = a;;(k)/csj, mated utilizations of all processors equal their set points.
wherea;; is the actual execution time df;;. The execu- While the system achieves the desired utilizations in the
tion time factor étf) represents how much the actual execu- ideal case wheietf = 1, all processors freezes when we
tion time of a subtask deviates from the estimation. &tie  set theietf to 0.5. This is not surprising, because the actual
(and hence the actual execution times) may be kept constanéxecution time of every subtask in the systentvitce its

3.2 Experiment I: Uncertain Execution Times
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Figure 5. CPU utilizations under FC-ORB when task execution times deviate from estimations

estimated execution time wheat f = 0.5. Consequently, 0.9 ' ' ' '

the requested utilization on each processor is about 145%

(twice of the desired utilization). Since all FC-ORB threads os L |

run at real-time priorities that are higher than the kernel pri- §

ority on Linux, no kernel activities are able to execute caus- & B S S S

ing the system to crash. This result shows that uncertain- = o, L+~ ~ — - - . + T 1

ties in workloads can significantly degrade the robustness 2

of applications on DRE middleware. On the other hand, the E

utilizations of all processors drop to only around 18% under O o6l -

OPEN when the actual execution times are ontyuarter Deviation ——

of their estimationsi¢tf = 4). This results in a extremely v —

underutilized system and unnecessarily low task rates. 0.5 o '2 '4 '6 '8 10
In contrast, FC-ORB achieves the desired utilizations on Inversed execution-time factor

all processors even when execution times deviate signifi-  Figure 6. CPU utilization average and devia-

cantly from the estimations. Figure 5(a) shows the utiliza-  tion on Harry under different execution-time

tions for FC-ORB when the average execution time of ev-  factors

ery subtask is twice its estimation. In the beginning, all

processors are overutilized because of the initial task ratesg wide range of operating conditions. Interestingly, when

The utilization control service quickly decreases the task the ietf is lower or equal to 0.33, the system freezes due

rates until the utilizations of all processors converge to the to the extremely high utilization in the beginning of the run.

desired levels in around 400 seconds. Figure 5(b) showsgven though the control thread runs at highest real-time pri-

the utilizations of all processors when the execution time ority, the communication subsystem of Linux runs only at

of every subtask is severely overestimated ( = 4). In kernel priority. Therefore, the control thread of FC-ORB

this case, all processors are initialized underutilized due tojs plocked on communication because the Linux kernel is

the low execution times. FC-ORB then increases the taskpreempted by the middleware threads. As a result, the sys-

rates until the utilizations of all processors converge to the tem fails to recover promptly from overload when th# is

set points roughly at 500 seconds. In this experiment, theequal to or lower than 0.33, even with the help of FC-ORB.

utilization control service successfully prevents the system |n addition, as observed in [19], the EUCON algorithm can

from crashing and underutilization via rate adaptation. cause performance oscillation when execution times are un-
To examine FC-ORB ’s performance under different ex- derestimatedi¢tf < 1). Therefore, application developers

ecution time factors, we plot the mean and standard de-should use pessimistic estimations of task execution times

viation of utilization on Harry during each run in Figure in FC-ORB . A fundamental advantage of FC-ORB is that

6. Every data point is based on the measured utilizationit does not cause system underutilization even when task

u(k) from time 1200 seconds to 1600 seconds to excludeexecution times are severely overestimated.

the transient response at the beginning of each run. FC-

ORB consistently achieves the desired utilizations for all 3.3 Experiment II: Varying Execution Times

tested execution-time factors within the f range[0.5, 10]

which corresponds to 20 times increase in execution times. The second set of experiments tests FC-ORB ’s ability to

This result shows that FC-ORB can provide robust guaran-provide robust performance guarantees when task execution

tees on system reliability and real-time performance undertimes varydynamicallyat run-time. To investigate the ro-



bustness of FC-ORB we create two scenarios of workloadtion time of 100ms every 500ms. In the second set of runs,
fluctuation. In the first set of runs, the average execution the external processperiodicallyinvokes another function
times on all processors change simultaneously. In the secwith arandomexecution time. Both the request interarrival
ond set of runs, only the execution times on Ron changetime and the execution time follow exponential distributions
dynamically, while those on the other processors remain un-with mean values of 50ms and 10ms, respectively.

changed. The first scenario represeagitsbal load fluctua- The workload controlled by FC-ORB has &t f = 2.
tion, while the second scenario represdatsl fluctuation Here we manually configure the task rates in OPEN such
on a part of the system. that the workloads achieve the desired utilizations without

Figure 7(a) shows a typical run of OPEN under global the external disturbances. As shown in Figure 8(a), the sys-
workload fluctuation. Theetf is initially 2. At 600 seconds, tem does achieve the required performance initially. How-
itis decreased to 1.33, which corresponds to a 50% increas@ver, at time 240sec, 360sec, 480sec and 600sec, the exter-
in the execution times of all subtasks. At time 1000sec, the nal task is activated sequentially on Ron, Harry, Norbert and
ietf is increased to 3 to emulate a 56% decrease in execuHermione. Consequently, the utilizations of all processors
tion times. OPEN fails to achieve the desired utilizations are raised to 100%. In contrast to OPEN, Figure 8(b) shows
due to the lack of dynamic adaptation. In sharp contrastthat FC-ORB successfully maintains the desired utilizations
to OPEN, FC-ORB effectively maintains the desired uti- and thus tolerates the external resource contention. Similar
lizations on all processors under the same workload. Assituations occur for aperiodic disturbance, except that in this
shown in Figure 7(b), theetf changes to 1.33 at 600 sec- case, both OPEN and FC-ORB have higher fluctuation. De-
onds such that all processors are suddenly overloaded FCspite noise introduced by the aperiodic requests, FC-ORB
ORB responds to the overload condition by decreasing taskstill successfully maintains the CPU utilization under 80%
rates which causes the utilizations on all processors to re-most of the time and achieves the desired CPU utilizations
converge to their set points within 100 seconds (25 control on average.
periods). At 1000 seconds, the utilizations on all processors
drop sharply due to the 56% decrease in execution times3 5 Experiment IV: Processor Failure
causing FC-ORB to dramatically increase task rates until
the utilizations re-converge to their set points.

In each run with local workload fluctuation, as shown in
Figure 7(c), thaetf on Ron follows the same variation as

the global fluctuation, while all the other processors have a; \inate the process which carries FC-ORB and the appli-

fixed |.e.tf qf 2. As shown in Flgurg 7(d), U,“der FC'ORB cation. The CPU utilization of Norbert immediately drops
the utilization of Ron converges to its set point after the sig- to almost zero because no other application is running on
nificant variation of execution times at 600sec and lOOOsec,Norbert All subtasks on Norbert have backup subtasks lo-

respectively. We also observe that the other processors eXzated on other processors as shown in Figure 4, except the

perience only slight utilization fluctuation after the execu- local taskT’ Their preceding subtasks on other proces-
tion times change on Ron. This result demonstrates that o

FC-ORB effectivelv handles the interd denci sors detect the communication failure with Norbert and then
} etiectively handles the interdependencies among,q yirect the remote operation requests to the backup sub-
processors during rate adaptation.

tasks. Hence, the load of Norbert is distributed to the other
) ) 3 processors in the system.
3.4 Experiment lll: External Disturbances As demonstrated in Figure 9, the CPU utilizations of the
other 3 processors increase simultaneously after the fail-
We now evaluate FC-ORB under resource contention ure of Norbert. At the same time, the controller on the
from external workloads that are not controlled by FC- control processor re-configures itself to rebuild its control
ORB. Such external disturbances may be caused by a vamodel after it detects the communication failure with Nor-
riety of sources including (i) processing of critical events bert. Thanks to the utilization control service, the high uti-
that must be executed at the cost of other tasks, (ii) varyinglizations on the other 3 processors quickly converge to the
workload from a different subsystem (e.g., legacy software desired utilization bounds within 100sec which ensures de-
from a different vendor), and (iii) software faults or adver- sired end-to-end real-time performance. Our results demon-
sarial cyber attacks. To stress-test FC-ORB, we emulate thestrate that the system successfully recovers from a processor
external disturbances using a high priority real-time processfailure of a processor and the utilization of the remaining
to compete with FC-ORB for CPU resource. To investi- processors converges to a desirable state that ensures the
gate the robustness of FC-ORB we create both periodic andeal-time properties of the end-to-end application.
aperiodic disturbances. In the first set of runs, the external The fault injection using th&ill command allows us to
proceseriodicallyinvokes a function with dixed execu- focus on the robustness of the utilization control service

In this experiment we evaluate FC-ORB'’s ability to re-
cover from processor failure. At 800 seconds, we emulate
the failure of Norbert by using the Linukill command to
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Figure 8. CPU utilizations of all processors under external disturbances (

(d) FC-ORB with aperiodic disturbance

ietf =2)

rather than the error detection method. Error detection is arobustness can be extended to more realistic processor crash
complementary problem to the FC-ORB adaptation for er- failures assuming an appropriate error detection method.
ror recovery. Our experimental evaluation of the FC-ORB The time required for error recovery will include both the



k. .
PPN A AL N h i i et Dt Table 2. The detailed overhead

CPU utilization

Monitor (ms) Actuator (ms) | Controller (ms)
Processor| Avg Dev Avg Dev Avg Dev
0 : Ron 0.090 | 0.013 | 19.078| 18.160
0O 200 400 600 80 1000 1200 1400 1600 Harry 0.096 | 0.013 ] 34.389 | 33.305
Time (sec) Norbert 0.094 | 0.012 | 39.460 | 37.223
‘ - Hermione | 0.088 | 0.013 | 27.924 | 25.951
ron ———-harry ------ norbert hermione ‘
Controller 4.566 | 0.189

Figure 9. The CPU utilization of all processors
while Norbert has a system failure ( ietf = 2) The actuator has the dominant overhead because it in-
volves relatively more complicated operations. The rate
time needed for error detection and the convergence of themodulator and the priority manager are the two main con-
utilization control service. Formally evaluating the avail- tributors to the actuating overhead. Our implementation
ability of the distributed application requires the definition uses the ACE functiomesettimer.interval to reset the
of an appropriate benchmark [1][21], and is a subject of fu- timers and the ACE functiothr_setprioto adjust the thread

ture work. priorities in FC-ORB. In most cases, only the rate modula-
tor is invoked to adapt the task rates by adjusting the inter-
3.6 Experiment V: Overhead val of the timers. In some periods when the order of the task

rates has been reversed, the priority manager is invoked to

The utilization control service necessarily introduces adjust the priorities of the real-time threads. The overhead
overhead. This overhead is caused by several factors includof adjusting thread priorities is much larger than resetting
ing the timers associated with FC-ORB, the utilization mon- timer intervals and so the standard deviation of the actuat-
itoring, the control computation, the rate enforcement and ing overhead is large.
the thread priority adjustment. Utilization controlisaviable ~ To estimate the average computation overhead of the
middleware service only if the overhead it introduces is suf- controller, we measure the execution time of the least square
ficiently low. To measure the overhead accurately, we adoptsolver [19] in MATLAB which dominates the computation
a time stamping approach. Firstly, we differentiate all con- cost on the control processor. In order to minimize the time
trol service related code from other FC-ORB code. Then, delay caused by the IPC between the controller program and
time stamps are taken at the starting point and at the finish-the MATLAB process in each remote command call, we use
ing point of each segment of the control service code to get@ single MATLAB command to run this least square solver
the execution time of the control service. Since the utiliza- for 1000 times as a subroutine. The resultis then divided by
tion control service runs at the highest Linux real-time pri- 1000 to get the execution time of a single execution of the
ority, the code segment between two timestamps will not be |€ast square computation. As shown in Table 2, the over-
preempted during its execution. Hence, the time-stampedhead of the controller is stable with small deviation and its
result accurately reflects the real execution overhead. amount is between that of the monitor and the actuator.

To achieve fine grained measurements, we adopt a Overall, the execution time overhead of all control com-
nanosecond scale time measuring function cajkttirtime ponents in our experiments is around 44ms per sampling
This function uses an OS-specific high-resolution timer that Period, corresponding to 1.1% utilization given a sampling
returns the number of clock cycles since the CPU was pow-Period of 4 seconds. We believe this amount of overhead is
ered up or reset. Thgethrtimefunction has a low overhead ~ acceptable in a wide range of DRE applications.
and is based on a 64 bit clock cycle counter on Pentium
processors. With the clock counter number divided by the 3.7 Experiment VI: Code Size
CPU speed, we can get reasonably precise and accurate time
measurements. As FC-ORB is targeted at embedded systems, code size

Table 2 lists the average and standard deviation of thebecomes a very important part of the overall memory foot-
overhead of the utilization monitor, the actuator (including print since typically all code of an embedded system is
the rate modulator and the priority adjuster) and the con- preloaded into its memory before execution. We com-
troller of the utilization control service. All results in the pare the code size of FC-ORB with two other real-time
table are obtained from over 600 continuous sampling pe-embedded middleware called nORB [30] and FCS/nORB
riods. The overhead of the utilization monitor is very low [18]. nORB is a light-weight real-time ORB based on a
because it just executes around 20 lines of code to read thelient/server architecture. It does not support end-to-end
utilization data from the Linux system filproc/stat tasks. FCS/nORB integrates a feedback control real-time



800

T components. FC-ORB has several important features that
& 0 distinguishes itself from earlier work on adaptive middle-
% 400 || — ware. First, FC-ORB integrates the end-to-end schedul-
= ing service with a utilization control service. This inte-
8 200 — ] grated approach enables the middleware to meet end-to-end
© 0 deadlines by dynamically controlling the utilizations on in-
FCSMORB nORB FC-ORB dividual processors. Second, in contrast to earlier works
that rely on heuristics-based adaptive techniques, FC-ORB
Figure 10. Code size comparison with other implements control algorithms that has been rigorously de-
embedded middleware signed and analyzed based on a control-theoretic approach.

Finally, FC-ORB enhances traditional fault-tolerance mech-
scheduling service with nORB. Its key difference from FC- anisms with utilization control techniques to handle proces-
ORB is that its can only control the real-time performance sor failures.

(utilization or deadline miss ratio) of single server. We Several other projects also applied control theoretic ap-
choose NORB and FCS/nORB as baselines for comparisorproaches to real-time systems. For example, Steere, et al.,
because they are specialized for memory-constrained emdeveloped a feedback based CPU scheduler [29] that coor-
bedded systems. Earlier results [30] showed that nORB hasiinated allocation of CPU cycles to consumer and supplier
significantly smaller code size than general-purpose DREthreads in a modified Linux kernel. Abeni, et al., presented
middleware such as TAO [26]. analysis of a reservation-based feedback scheduler in [3].
Figure 10 shows the code size of a same application im-Authors of [17] proposed a set of feedback control real-time
plemented on different middleware. To have a fair compar- scheduling algorithms that provide deadline miss ratio and
ison, we measure the average code size of the client andtilization guarantees for single-processor systems. Feed-
server for NnORB and FCS/nORB. For FC-ORB , we mea- back control real-time scheduling has also been extended to
sure the average code size on the four machines used in ouiandle distributed systems [19][28]. For systems requiring
experiments. Interestingly, Figure 10 shows that FC-ORB discrete control adaptation strategies, hybrid control theory
has the minimum code size, despite the fact that it pro- has been adopted to control state transitions among different
vides more sophisticated services (e.g., release guard angdystem configurations [2][12]. A key difference between
end-to-end control) than nORB and FCS/nORB. The re- the work presented in this paper and the related work is that
duction in code size is attributed to simplification of the we describe the design and evaluation of a utilization con-
ORB implementation. For example, in FCS/NORB, each trol service in an ORB middleware, while the related work
subtask is executed by a pair of threads connected throughs based either on simulations or kernel implementations.
a FIFO queue. The separation of worker/timer threads andORB middleware is a particularly suitable layer for man-
connection threads in FCS/nORB prevents the worker/timer agingend-to-endadaptation in distributed systems since it
threads from being blocked by communication subsystemsogperates at a broader (distributed) scope than stand-alone
when the network is overloaded. In FC-ORB, we choose operating systems.
to replace the thread pair with a single thread because FC- |, oy earlier work we studied EUCON [19] only

ORB is not designed to handle overloaded networks. through control-theoretic analysis and simulation results.
FC-ORB implements and empirically evaluates the end-to-
4 Related Work end utilization service on an ORB middleware and a physi-

cal testbed. Furthermore, we also extend the EUCON algo-

Adaptive midd|eware is emerging as a core bu||d|ng r|thm W|th Controller reconﬁguration and rep|icati0n teCh-
block for DRE systems. For example, TAO [26], dynam- hiques for handling processor failures.
icTAO [11], ZEN [10], and nORB [30] are adaptive mid- Agilos [14] and ControlWare [32] were two earlier
dleware frameworks that can (re)configure various proper-control-based middleware framework for QoS adaptation.
ties of ORB middleware at design- and run-time. Higher- They are targeted at multimedia and Internet servers instead
level adaptive resource management frameworks, such asf DRE applications. FCS/nORB [18] is another real-time
QuO [33], Kokyu [5] and RT-ARM [8], leverage lower-level ORB middleware that features a feedback control real-time
mechanisms provided by ORB middleware to (re)configure scheduling service. However, FCS/nORB only controls the
scheduling, dispatching, and other QoS mechanisms inreal-time performance of a single server in a Client/Server
higher-level middleware. ORB services such as the TAO environment. In contrast, FC-ORB provideseamd-to-end
Real-Time Event Service [7] and TAO Scheduling Ser- utilization control service in a peer-to-peer architecture for
vice [5] offer high-level services for managing reliability DRE systems. A key feature of FC-ORB is that it can effec-
and real-time properties of interactions between applicationtively coordinate the adaptation on multiple interdependent
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5 Conclusions

In summary, we have designed and implemented FC-
ORB, areal-time ORB middleware with a novel end-to-end
utilization control service. Our experiments on a physical applications. InwWorkshop on Middleware for Distributed
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lizations on all processors in a DRE system, even when task [9] B.Kao and H. Garcia-Molina. Deadline assignment in a dis-
execution times deviate significantly from their estimated tributed soft real-time systeniEEE Transactions on Paral-
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. ) configurable real-time object request brokers. Sympo-
nal dl_sturbances,_ (3) FC-ORB enha_nces the robustness of sium on Object-Oriented Real-Time Distributed Compuyting
real-time properties to processor failures; (4) the middle- pages 437—447, 2002.
ware layer instantiation of the end-to-end utilization control [11] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The case for
service only introduces a small amount of processing and reflective middleware.Commun. ACM45(6):33-38, June
memory overhead. These results demonstrate that the in- 2002.
tegration of end-to-end utilization control, fault-tolerance [12] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu. Hy-
mechanisms, and end-to-end scheduling in ORB middle- brid supervisory utilization control of real-time systems. In
ware is a promising approach to achieve robust real-time IEEE RTAS2005. o _ o
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we plan to enhance FC-ORB to incorporate other adaptation. . SetS With arbitrary deadline. IEEE RTSS1990.
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