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Abstract

Many real-time systems must control their CPU utiliza-
tions in order to meet end-to-end deadlines and prevent over-
load. Utilization control is particularly challenging in dis-
tributed real-time systems with highly unpredictable work-
loads and a large number of end-to-end tasks and processors.
This paper presents the Decentralized End-to-end Utilization
CONtrol (DEUCON) algorithm that can dynamically enforce
desired utilizations on multiple processors in such systems.
In contrast to centralized control schemes adopted in earlier
work, DEUCON features a novel decentralized control struc-
ture that only requires localized coordination among neigh-
bor processors. DEUCON is systematically designed based
on recent advances in distributed model predictive control
theory. Both control-theoretic analysis and simulations show
that DEUCON can provide robust utilization guarantees and
maintain global system stability despite severe variations in
task execution times. Furthermore, DEUCON can effectively
distribute the computation and communication cost to dif-
ferent processors and tolerate considerable communication
delay between local controllers. Our results indicate that
DEUCON can provide scalable and robust utilization con-
trol for large-scale distributed real-time systems executing in
unpredictable environments.

1 Introduction

Recent years have seen rapid growth of Distributed Real-
time Embedded (DRE) applications executing inunpre-
dictableenvironments in which workloads are unknown and
vary significantly at run-time. Such systems include data-
driven and open systems whose execution is heavily influ-
enced by volatile environments. For example, task execu-
tion times in vision-based feedback control systems depend
on the content of live camera images of changing environ-
ments [11]. Likewise, the supervisory control and data ac-
quisition (SCADA) systems for power grid control may ex-
perience dramatic load increase during a cascade power fail-
ure [8]. Furthermore, as DRE systems become connected
to the Internet, they are exposed to load disturbances due to
variable user requests and even cyber attacks [8]. As such

systems become increasingly important to our society, a new
paradigm of real-time computing based onAdaptive QoS
Control (AQC)has received significant attention. In contrast
to traditional approaches to real-time systems that rely on
accurate knowledge about system workload, AQC can pro-
vide robust QoS guarantees in unpredictable environments
by adapting to workload variations based on dynamic feed-
back. A key advantage of AQC is that it adopts a control-
theoretic framework for systematically developing adapta-
tion strategies. This rigorous design methodology is in sharp
contrast to heuristic-based adaptive solutions that rely on ex-
tensive empirical evaluation and manual tuning.

In this paper, we focus on an important instance of AQC
called utilization control for distributed soft real-time sys-
tems. The goal of utilization control is to enforce desired
CPU utilizations on all the processors in a distributed system
despite significant uncertainties in system workloads. Uti-
lization control can be used to enforce appropriate schedula-
ble utilization bounds on all processors to guarantee end-to-
end task deadlines. It can also enhance system survivability
by providing overload protection against workload fluctua-
tion.

DRE systems introduce many new research challenges
that have not been addressed in earlier work on single-
processor systems. First, they requiremulti-input-multi-
output (MIMO)control solutions to manage the system QoS
on multiple processors. Second, the QoS of different pro-
cessors are oftencoupledwith each other due to complex
interactions among distributed application components. In
particular, many DRE systems employ the commonend-to-
end task model[17], where a task may comprise of a chain of
subtasks on different processors. In such systems, the CPU
utilizations of different processors cannot be controlled in-
dependently from others. For example, changing the rate
of a task will affect the CPU utilizations of all the proces-
sors where its subtasks are located. Therefore, the coupling
among processors must be modeled and addressed in the de-
sign of QoS control algorithms. Finally, a utilization con-
trol algorithm must be highly scalable in order to handle
large DRE systems (e.g. power grid management and smart
spaces). A centralized control algorithm is often inadequate
for such systems since its communication and computation



overhead usually depends on the size of theentireDRE sys-
tem.

In this paper, we present theDecentralizedEnd-to-end
Utilization CONtrol (DEUCON) algorithm for large DRE
systems with end-to-end tasks. In sharp contrast to earlier
solutions based on centralized control schemes [20], DEU-
CON employs a completelydecentralizedcontrol approach
that can scale well in large distributed systems and tolerate
individual processor failures. Specifically, the contributions
of this paper are four-fold.

• We propose a new approach for decomposing the global
multi-processor utilization control problem into local
subproblems to facilitate the design of decentralized
control solutions.

• We describe the DEUCON algorithm featuring a novel
peer-to-peer control structure that enforces desired uti-
lizations of multiple processors through localized coor-
dination among controllers.

• We give control analysis based on thedistributed model
predictive control(DMPC) theory [7] which establishes
the stability properties of the DEUCON algorithm in
face of uncertain task execution times.

• We present simulation results showing that DEUCON
can provide robust statistical utilization guarantees
to multiple processors through task rate adaptation1,
while achieving scalability by effectively distributing
the computation and communication overhead to local
controllers.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 formulates the end-to-end
utilization control problem. Section 4 describes an existing
centralized utilization control algorithm as a starting point
for this work. Section 5 presents the design and analysis of
DEUCON. Section 6 evaluates DEUCON with simulations.
The paper concludes with Section 7.

2 Related Work

Traditional approaches for handling end-to-end tasks such
as end-to-end scheduling [29] and distributed priority ceil-
ing [23] rely on schedulability analysis, which requiresa
priori knowledge about worst-case execution times. When
task execution times are highly unpredictable, such open-
loop approaches may severely under-utilize the system. An
approach for dealing with unpredictable task execution times
is resource reclaiming [5][26]. A drawback of existing re-
source reclaiming techniques is that they often require mod-
ifications to low-level scheduling mechanisms in operating

1Other control strategies such as task migration, quality level adaptation
and possible combinations of them are subjects of our future research.

systems. In contrast, the feedback control approach and rate
adaptation techniques adopted in this paper can be easily im-
plemented at the application or middleware layer on top of
COTS platforms [19].

Control theoretic approaches have been applied to a num-
ber of computing systems. A survey of feedback perfor-
mance control in computing systems is presented in [1]. Sev-
eral projects that applied control theory to real-time schedul-
ing and utilization control are directly related to this paper.
Steere et al. and Goel et al. developed feedback-based
schedulers [10] [28] that guarantee desired progress rates for
real-time applications. Abeni et al. presented control analy-
sis of a reservation-based feedback scheduler [2]. Authors
of [18] developed feedback control scheduling algorithms
that controlled the CPU utilization and deadline miss ratio.
These algorithms have been implemented as a middleware
service called FCS/nORB [19]. Feedback control schedul-
ing has also been successfully applied to processor power
control [32] and digital control applications [9] [25]. All
the aforementioned projects focused on controlling the per-
formance ofsingle-processor systems. Their algorithms are
based on single-input-single-output linear control techniques
which are not applicable to DRE systems with multiple pro-
cessors.

Two recent papers [27][15] proposed feedback control
scheduling algorithms for distributed real-time systems with
independenttasks. These algorithms do not address the de-
pendencies among processors caused by end-to-end tasks
commonly available in DRE systems. Our earlier work pro-
duced EUCON (End-to-end Utilization CONtrol) [20] that
is the first utilization control algorithm designed for DRE
systems with end-to-end tasks. This control algorithm has
also been validated and extended in a real middleware sys-
tem [30]. EUCON manages and coordinates the adaptation
of multiple processors with acentralizedcontroller that can-
not scale effectively in large-scale DRE systems because its
communication and computation overhead depends on the
size of anentireDRE system. We discuss EUCON in more
detail in Section 5.

3 End-to-End Utilization Control

In this section, we formulate the end-to-end utilization
control problem for DRE systems.

3.1 Task Model

We adopt an end-to-end task model [17] implemented by
many DRE applications. A system is comprised ofm pe-
riodic tasks{Ti|1 ≤ i ≤ m} executing onn processors
{Pi|1 ≤ i ≤ n}. TaskTi is composed of a chain of sub-
tasks{Tij |1 ≤ j ≤ ni} located on different processors. The
release of subtasks is subject to precedence constraints, i.e.,
subtaskTij(1 < j ≤ ni) cannot be released for execution



until its predecessor subtaskTij−1 is completed. If a non-
greedy synchronization protocol (e.g., release guard [29]) is
used to enforce the precedence constraints, all the subtasks of
a periodic task share the same rate as the first subtask. There-
fore, the rate of a task (and all its subtasks) can be adjusted
by changing the rate of its first subtask. In this paper, the pro-
cessorPj hosting the first subtask of a taskTi is calledTi’s
master processorand we sayPj mastersTi. Only a task’s
master processor can change its rate.

Our task model has two important properties. First, while
each subtaskTij has anestimatedexecution timecij avail-
able at design time, itsactualexecution time may be differ-
ent from its estimation and vary at run time. Modeling such
uncertainty is important to DRE systems operating in unpre-
dictable environments. Second, the rate of a taskTi may be
dynamically adjusted within a range[Rmin,i, Rmax,i]. This
assumption is based on the fact that the task rates in many
applications (e.g., digital control [21][24], sensor update,
and multimedia [3][4]) can be dynamically adjusted without
causing system failure. A task running at a higher rate con-
tributes a higher value to the application at the cost of higher
utilizations.

We assume that each taskTi has asoft end-to-end dead-
line related to its period. In an end-to-end scheduling ap-
proach [29], the deadline of an end-to-end task is divided into
subdeadlines of its subtasks [12][22]. Hence the problem of
meeting the deadline can be transformed to the problem of
meeting the subdeadline of each subtask. A well known ap-
proach for meeting the subdeadlines on a processor is to en-
sure its utilization remains below its schedulable utilization
bound [13][16].

3.2 Problem Formulation

Utilization control can be formulated as a dynamic con-
strained optimization problem. We first introduce several no-
tations.Ts, the sampling period, is selected so that multiple
instances of each task may be released during a sampling pe-
riod. ui(k) is the CPU utilization of processorPi in thekth

sampling period, i.e., the fraction of time thatPi is not idle
during time interval[(k − 1)Ts, kTs). Bi is the desired uti-
lization set point onPi. rj(k) is the invocation rate of task
Tj in the(k + 1)th sampling period.

Given the utilization set point vector,B = [B1 . . . Bn]T

and the rate constraints[Rmin,j , Rmax,j ] for each taskTj ,
the control goal atkth sampling point (timekTs) is to dy-
namically choose task rates{rj(k)|1 ≤ j ≤ m} to minimize
the difference betweenBi andui(k) for all processors:

min
{rj(k)|1≤j≤m}

n∑

i=1

(Bi − ui(k + 1))2 (1)

subject to constraints

Rmin,j ≤ rj(k) ≤ Rmax,j (1 ≤ j ≤ m)

Model
Predictive
Controller

mmn R

R

R

R

B

B

max,

1max,

min,

1min,1

)(

)(1

ku

ku

n

)(

)(1

kr

kr

m 

 

Distributed System
(m tasks, n processors)

Utilization
Monitor

Rate
Modulator

UM UM

RM

Feedback Loop

Precedence Constraints

Subtask

Control
Input

Controlled
Variables

Model
Predictive
Controller

mmn R

R

R

R

B

B

max,

1max,

min,

1min,1

)(

)(1

ku

ku

n

)(

)(1

kr

kr

m 

 

Distributed System
(m tasks, n processors)

Utilization
Monitor

Rate
Modulator

UM UM

RM

Feedback Loop

Precedence Constraints

Subtask

Control
Input

Controlled
Variables

...

...

...

...

...

Figure 1. EUCON’s feedback control loop with a cen-
tralized controller

The rate constraints ensure all tasks remain within their
acceptable rate ranges. The optimization formulation maxi-
mizes task rates by making the utilization of each processor
as close to its set point as allowed by the constraints. The de-
sign goal is to ensure that all processors quickly converge to
their utilization set points after a workload variation, when-
ever it is feasible under the rate constraints. Therefore, to
guarantee end-to-end deadlines, a user only needs to specify
the set point of each processor to be a value below its schedu-
lable utilization bound. Utilization control algorithms can be
used to meet all the end-to-end deadlines by enforcing the set
points of all the processors in a DRE system.

4 EUCON: A Centralized Algorithm

In this section, we briefly describe the EUCON algorithm
[20], which provides a starting point and baseline for our
work.

As shown in Figure 1, EUCON features a feedback con-
trol loop composed of a centralized model predictive con-
troller (MPC) and a utilization monitor and rate modula-
tor on each processor. EUCON is invoked periodically at
each sampling pointk. The controlled variables are the uti-
lizations of all processors,u(k) = [u1(k)...un(k)]T . The
control inputs from the controller are the change in task
rates∆r(k) = [∆r1(k) . . .∆rm(k)]T , where∆ri(k) =
ri(k)− ri(k − 1) (1 ≤ i ≤ m).

The feedback control loop works as follows: (1) the uti-
lization monitor on each processorPi sends its utilization
ui(k) in the last sampling period[(k − 1)Ts, kTs) to the
centralized controller; (2) the controller collects the utiliza-
tion vectoru(k) = [u1(k) . . . un(k)]T including the utiliza-
tions of all processors, computes a new rate change vec-
tor ∆r(k) = [∆r1(k) . . .∆rm(k)]T , and sends the new
task ratesr(k) = r(k− 1) + ∆r(k) to the rate modula-
tors on master processors (i.e., processors that master at least
one task); and (3) the rate modulators on master processors
change the rates of tasks according tor(k). The details of
the controller design in EUCON are described in [20].



EUCON relies on a centralized controller to manage the
adaptation of multiple processors in a DRE system. A cen-
tralized control scheme has several disadvantages. First, the
run-time overhead depends on the size of an entire DRE sys-
tem. Specifically, the worst-case computational complexity
of a model predictive controller is polynomial in the total
number of tasks and the total number of processors in the sys-
tem. Furthermore, since every processor in the system needs
to communicate with the controller in every sampling period,
the processor executing the controller can become a commu-
nication bottleneck. Therefore, a centralized control scheme
cannot scale effectively in large DRE systems. Second, the
control design of EUCON assumes that communication de-
lays between the control processor and other processors are
negligible compared to the sampling period of the controller.
This assumption may not hold in networks with significant
delays such as the Internet and wireless sensor networks. In
addition, the processor executing the controller is a single
point of failure. The entire system will lose the capability to
adapt to the environment if it fails.

Centralized solutions are therefore not suitable for large-
scale DRE systems (e.g., wide-area power grid manage-
ment). In this paper we focus on developingdecentralized
control algorithms to improve the scalability and reliability
of adaptive utilization control in DRE systems.

5 Design of DEUCON

In contrast to the centralized control scheme adopted by
EUCON, DEUCON employs a peer-to-peer control structure
with a separate local controllerCi on each master processor
Pi. Each controller only coordinates with a small number
of processors called its (logical)neighbors. A fundamental
design challenge is to achieve system stability and desired
utilizations without global information. In this section, we
present the design of DEUCON based on a distributed model
predictive control (DMPC) framework. As a foundation of
our control design, we first present a dynamic model of the
entire system and an approach for decomposing the global
system model into localized control subproblems. We then
describe the design and control analysis of the DEUCON al-
gorithm based on the dynamic models.

5.1 Global System Model

In a control-theoretic methodology a control algorithm
should be designed based on a model of the system. As de-
scribed in [20], a DRE system can be approximated by the
following globalsystem model:

u(k + 1) = u(k) + GF∆r(k) (2)

The vector∆r(k) represents the changes in task rates.
Thesubtask allocation matrix, F, is ann×m matrix, where
fij = cjl if a subtaskTjl of taskTj is allocated to processor

Pi, andfij = 0 if no subtask of taskTj is allocated to pro-
cessorPi. F captures thecouplingamong processors due to
end-to-end tasks.G = diag[g1 . . . gn] wheregi represents
the ratio between the change in the actual utilization and its
estimation. The exact value ofgi is unknowndue to the un-
predictability in execution times. Note thatG describes the
effect of uncertainty in workload on the utilization of a DRE
system. As an example, Figure 2 shows a DRE system with
five processors and five tasks. It is modeled by (2) with the
following parameters:

u(k) =




u1(k)
u2(k)
u3(k)
u4(k)
u5(k)



,G =




g1 0 0 0 0
0 g2 0 0 0
0 0 g3 0 0
0 0 0 g4 0
0 0 0 0 g5



,

F =




c11 0 0 0 c51

c12 c22 0 0 0
0 c21 c31 0 0
0 0 c32 c41 0
0 0 c33 c42 0



,

∆r(k) =




∆r1(k)
∆r2(k)
∆r3(k)
∆r4(k)
∆r5(k)




5.2 Problem Decomposition

Although our previous work showed that the above global
system model is sufficient for designing a centralized con-
troller for EUCON [20], it cannot be used for designing de-
centralized control algorithms because it includes informa-
tion about the entire system. To address this problem, we
propose a new approach to decompose the global utilization
control problem into a set of localized subproblems.

From a local controllerCi’s perspective, the goal of de-
composition is to partition the set of system variables into
three subsets, includinglocal variableson host processor
Pi, neighbor variablesonPi’s neighbors, and all other vari-
ables in the system.Ci’s subproblem only includes its lo-
cal and neighbor variables. A key feature of our decomposi-
tion scheme is that it balances two conflicting goals. On one
hand, the number of neighbor variables should be minimized
to improve system scalability. On the other hand, the neigh-
bor variables must capture the coupling among processors
so that local controllers can achieve global system stability
through coordination in their neighborhoods.

We give several definitions before presenting our decom-
position scheme.

Definition 1: ProcessorPj is Pi’s direct neighborif (1) Pj
has a subtask belonging to an end-to-end task mastered byPi
and (2)Pj is notPi itself.
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Figure 2. Data exchange between C1 and its neigh-
bors (other data exchanges are not shown)

Definition 2: Theconcerned tasksof Pi are the tasks which
have subtasks located onPi or Pi’s direct neighbors.

Definition 3: ProcessorPj is Pi’s indirect neighborif (1)
Pj is the master processor of any ofPi’s concerned tasks and
(2) Pj is notPi’s direct neighbor orPi itself.

For example, we consider controllerC1 in the system
shown in Figure 2.P1 has one direct neighbor (P2) due to
taskT1 mastered byP1. Its concerned tasks includeT1, T5

andT2 (which has a subtask on direct neighborP2). Hence
P3, the master processor ofT2, isP1’s indirect neighbor.

The subproblem of a controller includes a set of utiliza-
tions ascontrolled variables, and a set of task rates asma-
nipulated variables. In our decomposition scheme, the con-
trolled variables of controllerCi includeui(k), the host pro-
cessorPi’s utilization, andUDi(k), the set of utilizations of
Pi’s direct neighbors.UDi(k) are consideredCi’s neigh-
bor variables because they are affected by the rates of tasks
mastered byPi. Since each concerned task contributes to
the utilizations ofPi and/or its direct neighbors,Ci’s ma-
nipulated variables include the rates of all ofPi’s concerned
tasks. Note that a concerned task may be mastered byPi it-
self, its direct neighbor, or its indirect neighbor. For example,
C1 has two controlled variables,u1(k) andu2(k), and three
manipulated variablesr1(k), r2(k) andr5(k).

Let us setNRi(k) includes the rates of all ofPi’s con-
cerned tasks, and setNUi(k) = UDi(k) ∪ {ui(k)}, the
subproblem ofCi then becomes the following localized con-
strained optimization problem within its neighborhood:

min
NRi(k)

∑

ul(k)∈NUi(k)

(Bl − ul(k + 1))2 (3)

subject to

Rmin,j ≤ rj(k) ≤ Rmax,j (rj(k) ∈ NRi(k))

In contrast to the global model (2) used in EUCON, each
controller in DEUCON has a localized model which only in-
cludes its local and neighbor variables. This local model of
Ci is described as:

nui(k + 1) = nui(k) + GiFi∆nri(k) (4)

wherenui(k) andnri(k) are vectors comprised of all ele-
ments inNUi(k) andNRi(k), respectively.Gi andFi are
defined in the same way asG andF in (2), but include only
the processors inNUi(k) and the task rates inNRi(k).

For example, the controllerC1 shown in Figure 2 is mod-
eled with the following parameters.

nu1(k) =
[
u1(k)
u2(k)

]
,G1 =

[
g1 0
0 g2

]

F1 =
[
c11 0 c51

c12 c22 0

]
,∆nr1(k) =




∆r1(k)
∆r2(k)
∆r5(k)




From (4),C1’s local model is

u1(k + 1) = u1(k) + g1(c11∆r1(k) + c51∆r5(k))
u2(k + 1) = u2(k) + g2(c12∆r1(k) + c22∆r2(k))

5.3 Localized Feedback Control Loop

We now present DEUCON’s localized feedback control
loop based on our decomposition scheme. The execution of
a controllerCi at each sampling pointk includes three steps:

1. Local control computation:Ci executes an MPC algo-
rithm to solve its local subproblem. The feedback input
to the control algorithm includes (1)ui(k) from the lo-
cal utilization monitor, (2) a set ofpredicted utilizations
UD′i(k) of its direct neighbors, and (3) the rates of con-
cerned tasks,NRi(k − 1) in the last sampling period.
The output from the controllerCi includes the new rates
for concerned tasks,NRi(k). The details of the control
algorithm are presented in Section 5.4.

2. Local actuation:The rate modulator onPi changes the
rates of the set of tasks mastered byPi according to the
control input fromCi. The other task rates in the control
input will be ignored because they are not mastered by
Pi.

3. Data exchange among neighbors:Ci sends itspredicted
utilizationat the next sampling point,u′i(k+1), to other
controllers of which it serves as a direct neighbor.Ci
also sends the rates of tasks mastered byPi to those
controllers which have these tasks as their concerned
tasks. In addition,Ci receives new predicted utiliza-
tions from its direct neighbors, and the actual rates of
the concerned tasks which are not mastered by itself,
from its direct and indirect neighbors. They will be used
for the local control computation at the next sampling
point (k + 1).

Compared to centralized control schemes, a fundamen-
tal advantage of DEUCON is that both the computation and
communication overhead of a controller depends on the size
of its neighborhood instead of the entire system. This feature
allows DEUCON to scale effectively in many large DRE sys-
tems.



Another important advantage of DEUCON is that it can
tolerate considerable network delays. Note that in step 1, the
predictedutilizationsUD′i(k) (instead ofUDi(k)) are pro-
vided byCi’s direct neighbors in the previous sampling pe-
riod. This is becauseUDi(k) is not instantaneously available
toCi at timekTs due to network delays.UD′i(k) is predicted
based onUDi(k − 1) at time(k − 1)Ts, as a substitute for
UDi(k) to be transmitted over the network during interval
[(k − 1)Ts, kTs). Each elementu′j(k) ∈ UD′i(k) is calcu-
lated using the following reference trajectory from measured
utilizationuj(k− 1) to its set pointBj over the followingP
sampling periods.

refj((k − 1) + l|k − 1) = Bj − e−
Ts
Tref

l
(Bj − uj(k − 1))

(1 ≤ l ≤ P ) (5)

whereTref is the time constant that specifies the speed of
system response.P is called theprediction horizon. The
notationx((k−1)+l|k−1) means that the value of variablex
at time((k−1)+l)Ts depends on the conditions at time(k−
1)Ts. The value ofrefj(k|k− 1) is assigned tou′j(k). Since
UD′i(k) can take the whole last sampling period to transmit,
DEUCON can tolerate much longer communication delays
than EUCON which assumes the delays to be negligible.

DEUCON is also a valid way to avoid single point of fail-
ure. Once a controller fails due to the failure of its host
processor, all tasks on the host processor are immediately
migrated to other proper processors in the system. The lo-
cal controllers on these processors automatically adapt their
control models to effectively manage the migrated tasks. As
a result, the system’s fault-tolerance capability is improved.

5.4 Controller Design

DEUCON employs a local controller on eachmasterpro-
cessor. Non-master processors do not need controllers be-
cause they cannot change the rate of any task. For the exam-
ple shown in Figure 2, processorsP1, P3 andP4 each have a
controller, whileP2 andP5 do not have controllers because
they are not master processors for any tasks. This feature
reduces the overhead of DEUCON.

We design a model predictive control algorithm [6]
for controller Ci. We choose model predictive con-
trol because it can deal with coupled MIMO con-
trol problems with constraints on the actuators. At
every sampling point, the controller computes an in-
put trajectory in the followingM sampling periods,
e.g., ∆nri(k),∆nri(k + 1|k), . . .∆nri(k + M− 1|k),
that minimizes the following cost function under the rate con-
straints.

Vi(k) =
∑P
l=1 ‖nui(k + l|k)− refi(k + l|k)‖2

+
∑M−1
l=0 ‖∆nri(k + l|k)−∆nri(k + l− 1|k)‖2 (6)

whereP is theprediction horizon, andM is thecontrol hori-
zon. The first term in the cost function represents thetrack-

ing error, i.e., the difference between the utilization vector
nui(k + l|k), which is predicted based on (7), and the refer-
ence trajectoryrefi(k + l|k) defined in (5). The controller
is designed to track the exponential reference trajectory that
converges to the set points so that the closed-loop system be-
haves like a desired linear system. By minimizing the track-
ing error, the closed-loop system will also converge to the uti-
lization set points. The second term in the cost function rep-
resents thecontrol penalty. The control penalty term causes
the controller to minimize the changes in the control input.

The controller predicts the cost based on the followingap-
proximatemodel:

nui(k + 1) = nu′i(k) + Fi∆nri(k) (7)

The above model has two differences from theactual sys-
tem model (4). First, the utilizations of direct neighbors are
approximated by their predicted utilizationsnu′i(k), where
nu′i(k) is a vector comprised of all elements inNU ′i(k). As
discussed in Section 5.3, this approximation allows DEU-
CON to tolerate network delays. Second, because the
real system gainsGi in system model (4) are unknown
in unpredicted environments, our controller assumesGi =
diag[1 . . . 1], i.e., the controller assumes that the estimated
execution times are accurate. Although this approximate
model is not an exact characterization of the real system,
the closed-loop system under our controller can still maintain
stability and guarantee desired utilization set points as long
asGi are within a certain range (see analysis and simulation
results in Sections 5.5 and 6.2). This is due to the coordi-
nation scheme and online feedbacks used in our distributed
model predictive control algorithm.

The controller computes the input trajectory
∆nri(k),∆nri(k + 1|k), . . .∆nri(k + M− 1|k) that
minimizes the cost function subject to the rate constraints.
This constrained optimization problem can be transformed
to a standard constrained least square problem. Controller
Ci can then use a standard least-square solver to solve
this problem on-line. The detailed transformation is not
shown due to space limitations. The worst-case computation
complexity of the solver is polynomial in the numbers
of tasks and processors in the localized model (7). More
specifically, our constrained least-square optimization is
a convex nonlinear optimization, for which interior point
methods requireO(n) Newton iterations [31], where n is
the number of optimization variables. Since each Newton
iteration requiresO(n3) algebraic operations, the worst-
case computation complexity of the solver is cubic in the
number of tasks and processors in the localized model.

Once the input trajectory is computed, only the first el-
ement∆nri(k) is applied as the control input and sent to
the rate modulators. At next sampling point, the prediction
horizon slides one sampling period and the control input is
computed again as a solution to the constrained optimization
problem based on the utilization feedbacks from its direct



neighbors and itself.

5.5 Stability Analysis

A fundamental benefit of the control-theoretic approach is
that it enables us to prove the utilization guarantees provided
by DEUCON despite uncertainties in task execution times.
We say that a DRE system isstableif the utilizationsu con-
verge to the desired set pointsB, that is,limk→∞ u (k) = B.
In this subsection we present stability analysis that allows
users to analytically assess the robustness of DEUCON for
their system with a range of uncertainties in term of task ex-
ecution times. To ensure that the system can be stabilized,
the constrained optimization problem must be feasible, i.e.,
there exists a set of task rates within their acceptable ranges
that can make the utilization on every processor equal to its
set point. If the problem is infeasible, no controller can guar-
antee the set point through rate adaptation. In this case, the
system may switch to a different control adaptation mecha-
nism (e.g., admission control or task reallocation). Hence-
forth, our stability analysis assumes that the rate constraints
are not activated.

In DEUCON, each controller solves a finite horizon opti-
mal tracking problem. Based on optimal control theory [14],
the local control decision is a linear function of the current
value and the set points of the utilization of the local CPU,
the utilizations of its direct neighbors and the previous deci-
sions for its manipulated tasks and concerned tasks. We now
outline the process for analyzing the stability of the system
controlled by DEUCON.

1. Compute the feedback and feed-forward matrices for
each local controlleri by solving its local control input
∆nri based on the local system model (4) and reference
trajectory (5). The solution is in the following form:

∆nri (k) = Kinui (k) + Hi∆nri (k− 1) + EiBi

(8)

2. Construct the feedback and feed-forward matrices for
the whole system (2) based on those for local system
models derived in Step 1.

∆r (k) = Ku (k) + H∆r (k− 1) + EB (9)

This is a dynamic controller. The stability analysis
needs to consider the composite system consisting of
the dynamics of the original system and the controller.

3. Derive the closed-loop model of the composite system
by substituting the control inputs derived in Step 2 into
theactualsystem model described by (2). The closed-

loop composite system is in the form
[

u (k + 1)
∆r (k)

]
=

[
I + GFK GFH

K H

] [
u (k)

∆r (k− 1)

]

+
[

GFE
E

]
B (10)

whereI is the identity matrix. Note that the closed-loop
system model is a function ofG.

4. Derive the stability condition of the closed-loop system
(10) given a range ofG values. According to the control
theory, if all poles locate inside the unit circle in the
complex space and the DC gain matrix from the control
to the state is the identity matrix, the state of the system,
i.e., the processor utilizations, will converge to the set
point.

The details of the above steps are not shown due to space
limitations. We have developed a MATLAB program to per-
form the above stability analysis procedure automatically.

Example We now apply the stability analysis approach to
the example system described in Figure 3. The system has
21 tasks and 10 processors. We set the prediction horizon
P = 2 and the control horizonM = 1. The time constant of
the reference trajectory isTref/Ts = 4. The weights on all
terms are 1. The parameters in the model for the controller
on ProcessorP1 are

nu1 (k) =
[
u1 (k) u2 (k) u3 (k)

]T

G1 =



g1 0 0
0 g2 0
0 0 g3




F1 =



c11 c21 c31 c42 0 0 0 0
0 0 c32 c41 c51 c62 0 0
0 c22 c33 0 0 c61 c71 c83




∆r1 (k) = [∆r1 (k) ∆r2 (k) ∆r3 (k) ∆r4 (k)
∆r5 (k) ∆r6 (k) ∆r7 (k) ∆r8 (k)]T

B1 =
[
B1 B2 B3

]T

The solution for the controller onP1 is of the form

∆nr1
1 (k) =



k1

11 k1
12 k1

13
...

...
...

k1
81 k1

82 k1
83


nu1 (k)+



h1

11 · · · h1
18

...
. ..

...
h1

81 · · · h1
88


∆nr1 (k− 1)



e1

11 e1
12 e1

13
...

...
...

e1
81 e1

82 e1
83


B1(11)

The superscript1 denotes that the solution is for the con-
troller onP1.
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Figure 3. A medium size workload
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Following Step 2, we construct the feedback and feed-
forward matrices for (9). Since controllerC1 manipulates
the control variables∆r1, ∆r2 and∆r3, the first three rows
of the matrixK is constructed by the first three rows ofK1

as 

k1

11 k1
12 k1

13 0 · · · 0
k1

21 k1
22 k1

23 0 · · · 0
k1

31 k1
32 k1

33 0 · · · 0


 .

Similarly, the first three rows of the matricesH andE are
constructed as



h1

11 · · · h1
18 0 · · · 0

h1
21 · · · h1

28 0 · · · 0
h1

31 · · · h1
38 0 · · · 0




and


e1

11 e1
12 e1

13 0 · · · 0
e1

21 e1
22 e1

23 0 · · · 0
e1

31 e1
32 e1

33 0 · · · 0


 .

The matricesK, H and E can be completed by the cor-
responding matrices from controllers on other processors.
Then, we can derive the composite system (10).

The poles are functions of the system gains inG. The
closed-loop system has 31 poles. Our MATLAB program

allows us to analyze the system stability under anyG. For
example, Figure 4 shows the root locus of the closed-loop
system by DEUCON for the case that all non-zero elements
of G have the same value, denoted byg. Root locus is the
trajectory of the poles of the closed-loop system asg varies.
The dotted circle is the unit circle. It shows that all poles are
within the unit circle for0 < g < 2. The DC gain of the
closed-loop system is the identity matrix for0 < g < 2.
Therefore, the system is stable. Our analysis proves that
DEUCON can provide robust utilization guarantees to the
example system even when actual execution times deviate
significantly from the estimation. For instance, our results
indicate that DEUCON can converge to the desired utiliza-
tions on all processors even if the execution time of every
task is 90% lower (g = 0.1) or 90% higher (g = 1.9) than the
estimation as long as the range of task rates are not violated.
We validate this analysis through simulations presented in
Section 6.

6 Simulation Results

In this section, we first describe the simulation settings.
We then compare the performance and overhead of DEU-
CON and EUCON. We choose EUCON as the baseline for
performance as it is the only available utilization control al-
gorithm for DRE systems with end-to-end tasks. Previous re-
sults showed that EUCON significantly outperformed a com-
mon open-loop approach that assigned fixed task rates based
on estimated execution times [20].

6.1 Simulation Setup

Our simulation environment is composed of an event-
driven simulator implemented in C++ and a set of controllers
implemented in MATLAB (R12). The simulator implements
the utilization monitors, the rate modulators and the dis-
tributed real-time system with an interface to the controllers.
The subtasks on each processor are scheduled by the Rate
Monotonic Scheduling (RMS) algorithm [16]. The prece-
dence constraints among subtasks are enforced by the release
guard protocol [29]. The controllers are based on thelsqlin
least square solver in MATLAB. The simulator opens a MAT-
LAB process and initializes all the controllers at start time.
In the end of each sampling period, the simulator collects the
local utilization, the predicted neighborhood utilizations and
the concerned task rates for each controller, and then calls the
controller in MATLAB. The controllers compute the control
input, ∆r(k), and return it to the simulator. The simulator
then calls the rate modulators on each processor to adjust the
rates of its mastered tasks.

Each task’s end-to-end deadlinedi = ni/ri(k), whereni
is the number of subtasks in taskTi. Each end-to-end dead-
line is evenly divided into subdeadlines for its subtasks. The
resultant subdeadline of each subtaskTij equals its period,
1/ri(k). The schedulable utilization bound of RMS [16],



Bi = mi(21/mi − 1) is used as the utilization set point on
each processor, wheremi is the number of subtasks onPi.
All (sub)tasks meet their (sub)deadlines if the utilization set
point on every processor is enforced2.

A medium size workload (as shown in Figure 3) is used
in our experiments. It includes 21 tasks (with a total of 40
subtasks) executing on 10 processors. There are 14 end-to-
end tasks running on multiple processors and 7 local tasks.
The controller parameters used for this workload include the
prediction horizon as 2 and the control horizon as 1. The
control periodTs = 1000 time units. The time constantTref
used in (5) is set as 4. Specific parameters of tasks are not
shown due to space limitations.

To evaluate the robustness of DEUCON when execution
times deviate from the estimation, the execution time of each
subtaskTij can be changed by tuning a parameter called the
execution-time factor,etfij(k) = aij(k)/cij , whereaij is
the actual execution time ofTij . The execution time factor
represents how much the actual execution time of a subtask
deviates from the estimated one. The execution time factor
(and hence the actual execution times) may be kept constant
or changed dynamically in a run. When all subtasks share a
same constantetf, it equals to the system gain on every pro-
cessor in the model, i.e.,etf = gii(1 ≤ i ≤ m). In the
following we use theinversed etf(ietf) because we are more
interested in the situation when execution times are overesti-
mated (i.e.etf < 1)3. Specifically,ieftij(k) = 1/etfij(k).

6.2 System Performance

In this subsection we present two sets of simulation exper-
iments. The first one evaluates DEUCON’s system perfor-
mance when task execution times deviate from the estima-
tion. The second experiment tests DEUCON’s ability to pro-
vide robust utilization guarantees when task execution times
vary dynamically at run-time.

6.2.1 Steady Execution Times

In this experiment, all subtasks share a fixed execution-time
factor (ietf) in each run. Since it is commonly difficult to
precisely estimate the execution times of real-time tasks in
DRE system, we stress-test DEUCON’s performance when
real execution time significantly deviate from their estima-
tions. Figures 5(a) and (b) show the utilizations of proces-
sorsP1 to P5 when execution times of tasks areone-eighth
of their estimations. In this case, we can observe a notice-
able difference in the transient state between DEUCON and
EUCON. While the utilizations of EUCON follow the same
trajectory, utilizations of DEUCON diverge in the middle of

2Other utilization bounds [13] can be used by DEUCON when the sub-
deadlines of subtasks are not equal to their periods

3In general, as discussed in [20], algorithms based on model predictive
control and distributed model predictive control cause oscillation when the
execution times are underestimated (i.e.etf > 1).
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Figure 5. CPU utilization of P1 to P5 (ietf=8)
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Figure 6. The average and deviation of the CPU uti-
lization of P1 with different execution times

the run and then converge to their set points in the end. The
reason for this divergence is that each controller in DEU-
CON only utilizes local information and makes local deci-
sion. Despite this slight difference in the transient state, all
utilizations converge to their set points within similar settling
times. Both DEUCON and EUCON achieve desired utiliza-
tion guarantees in steady states.

To examine DEUCON’s performance under different ex-
ecution time factors, we plot the mean and standard devia-
tion of utilization onP1 during each run in Figure 6. Every
data point is based on the measured utilizationu(k) from
time 200Ts to 300Ts to exclude the transient response in
the beginning of each run. Both EUCON and DEUCON
achieve desired utilizations for all tested execution-time fac-
tors within theietf range[0.5, 10]. In this range, the aver-
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age utilizations under EUCON and DEUCON remain within
±0.012 to the utilization set points and the standard devia-
tions remain below 0.025. However, whenietf = 8, DEU-
CON’s performance is slightly worse than that of EUCON,
as its average utilization is 0.012 lower than its set point. In
addition, EUCON has a high deviation whenietf = 9, be-
causeP1 has a longer settling time under EUCON. As a re-
sult, the system is still in its transient state for part of the
interval [200Ts, 300Ts]. We also observe that both EUCON
and DEUCON suffer a standard deviation of±0.025 when
ietf = 0.5. However, as a key benefit, both EUCON and
DEUCON can achieve desired utilizations even when execu-
tion times are severely overestimated. This capability is in
sharp contrast to open-loop approaches which are based on
schedulability analysis. Open-loop underutilizes the proces-
sors in such cases.

To further investigate the CPU utilizations on other pro-
cessors, Figure 7 plots the average utilizations of all proces-
sors whenietf is 5. The deviations of all utilizations are less
than 0.008. We observe that onP2 to P7, the difference be-
tween the utilizations and the set points for DEUCON are
slightly larger than that of EUCON. However, all the differ-
ences are within the±0.009 range. In practice, such small
steady-state errors can be handled by setting the set points to
slightly lower than the schedulable utilization bounds.

In summary, the simulation results demonstrate that DEU-
CON can achieve almost the same performance as EUCON,
for a wide range ofietf ([0.5, 10] in our experiments). We
also note that the range ofietf corresponds to a system gaing
in a range[0.1, 2]. Therefore, our simulation results validate
the correctness of our stability analysis presented in Section
5.5.

6.2.2 Varying Execution Times

In this experiment, execution times varydynamicallyat run-
time. To investigate the robustness of DEUCON we tested
two scenarios of workload fluctuation. In the first set of runs,
the average execution times on all processors change simul-
taneously. In the second set of runs, only the execution times
onP10 change dynamically, while those on the other proces-
sors remain unchanged. The first scenario representsglobal
load fluctuation, while the second scenario representslocal
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Figure 8. CPU utilization of P6 to P10 when execution
times fluctuate at run-time

fluctuation on a part of the system.
Figure 8(a) shows a typical run with global workload fluc-

tuation. Theietf is initially 1.0. At time 100Ts, it is de-
creased to 0.56, which corresponds to an 79% increase in the
execution times of all subtasks such that all processors are
suddenly overloaded. DEUCON responds to the overload
by decreasing task rates which causes the utilizations on all
processors to re-converge to their set points within 20Ts. At
time 200Ts, the ietf is increased to 1.67 corresponding to a
66% decrease in execution times. The utilizations on all pro-
cessors drop sharply, causing DEUCON to dramatically in-
crease task rates until the utilizations re-converge to their set
points4. The system maintains stability and avoids any sig-
nificant oscillation throughout the run, despite the variations
in execution times.

In each run with local workload fluctuation, theietf onP10

follows the same variation as the global fluctuation, while all
the other processors have a fixedietf of 1.0. As shown in
Figure 8(b), the utilization ofP10 converges to its set point
after the significant variation of execution times at 120Ts and
250Ts, respectively. We also observe that the other proces-
sors experience only slight utilization fluctuation after the
execution times change onP10. This result demonstrates
that DEUCON effectively handles the coupling among pro-
cessors during rate adaptation. The performance results of
DEUCON in this experiment are very close to EUCON’s per-

4Only the results ofP6 to P10 are included in Figure 8 for clarity. Per-
formance ofP1 toP5 are similar.
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Figure 10. Controller execution time in MATLAB

formance reported in [20].

6.3 Overhead

As discussed in Section 4, a major limitation of a central-
ized controller is that the run-time overhead is related to the
size of the entire system. In contrast, the overhead of each
local controller in DEUCON is just a function of its neigh-
borhood size. Figure 9 compares the size of the entire system
with the neighborhood size of each processor for the medium
size workload. The centralized EUCON controller needs to
model all the 10 processors and the 21 tasks in the system.
In contrast, the average for DEUCON controllers is only 2.6
processors and 7.1 tasks, corresponding to a reduction by
74% and 66%, respectively.

To estimate theaveragecomputation overhead of the con-
trollers, we measure the execution time of the least square
solver which dominates the computation cost on a 2GHz
Pentium IV PC with 256MB RAM. In order to minimize the
effect of the time delay caused by the IPC communication
between the simulator and the MATLAB process, we use a
single MATLAB command to run this least square solver for
1000 times as a subroutine. The data shown in Figure 10 is
the average of those 1000 runs. The average execution time
of all controllers in DEUCON is only 62% of EUCON’s cen-
tralized controller. We note that the speedup in execution
times is not strictly polynomial in the numbers of neighbors
and concerned tasks as one would expect from the theoreti-
cal complexity of MPC algorithms. This is attributed to dif-
ference between theaverageexecution time of MATLAB’s
lsqlin solver and theworst-casecomputational complexity.
In addition, the initialization cost in the optimization calcu-
lations is not negligible for relatively small scale problems in
our workload.

We now investigate DEUCON’s communication overhead.
As mentioned in Section 5, a controller’s communication
overhead is a function of the number of processors commu-
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Figure 11. Estimated communication overhead

nicating with it5. To estimate communication overhead due
to utilizations exchange, we count the number of processors
from which a controller receives predicted utilizations. This
is equal to the number of direct neighbors of the controller.
To estimate communication overhead due to task rates ex-
change, we count the processors from which a controller re-
ceives the actual rate changes for one or more of its con-
cerned tasks. The set of processors communicating with a
controller is the union of these two processor sets. From Fig-
ure 11 we can see that DEUCON’s average estimated per-
controller communication overhead is 33% of the EUCON
controller’s communication overhead.

6.4 Scalability

Our final set of simulations evaluates the scalability of
DEUCON in large systems. Figure 12 shows the direct
neighborhood size, the number of concerned tasks, and the
number of processors communicating with a controller under
DEUCON as the number of processors increases from 100 to
1000 and the number of subtasks increases from 500 to 5000.
Every result is the average value of all controllers in the sys-
tem. Each task has 5 subtasks. All subtasks are randomly
allocated to processors such that there are 5 subtasks on each
processor. We can see that the size of direct neighborhood
remains almost constant despite the ten-fold increase in the
number of processors. At the same time, the number of con-
cerned task and the number of processors communicating
with a controller increase very slowly. Even in the system
with 1000 processors, a controller only communicates with
less than 34 processors. Therefore the per-controller over-
head of DEUCON is almost independent of the total size of
the system. This result indicates that DEUCON can scale
effectively in large system. In addition, we observe that real-
world systems may allocate subtasks in a clustered fashion,
i.e., all subtasks of a subsystem tend to share several proces-
sors and only a small number of tasks run across multiple
subsystems. We expect such clustered allocation to result in
even smaller neighborhood size than the random allocation
in our simulations.

5Multiple data values (utilizations and/or rates) from a same processor
can be easily combined to a single message in a real system implementation.
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Figure 12. Scalability of DEUCON under Random
Subtask Allocation

7 Conclusions

We have presented the DEUCON algorithm for dynami-
cally controlling the utilization of DRE systems. DEUCON
features a novel decentralized control structure to handle
the coupling among multiple processors due to end-to-end
tasks. Both stability analysis and simulation results demon-
strate that DEUCON achieves robust utilization guarantees
even when task execution times deviate significantly from
the estimation or changes dynamically at run-time. Further-
more, DEUCON can significantly improve the system scal-
ability by distributing the computation and communication
cost from a central processor to local controllers distributed
in the whole system and tolerating network delays.
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