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Abstract systems become increasingly important to our society, a new
paradigm of real-time computing based Auaptive QoS

Many real-time systems must control their CPU utiliza- Control (AQC)has received significant attention. In contrast
tions in order to meet end-to-end deadlines and prevent overto traditional approaches to real-time systems that rely on
load. Utilization control is particularly challenging in dis-  accurate knowledge about system workload, AQC can pro-
tributed real-time systems with highly unpredictable work- vide robust QoS guarantees in unpredictable environments
loads and a large number of end-to-end tasks and processoryy adapting to workload variations based on dynamic feed-
This paper presents the Decentralized End-to-end Utilizationpack. A key advantage of AQC is that it adopts a control-
CONtrol (DEUCON) algorithm that can dynamically enforce theoretic framework for systematically developing adapta-
desired utilizations on multiple processors in such systemstion strategies. This rigorous design methodology is in sharp
In contrast to centralized control schemes adopted in earliercontrast to heuristic-based adaptive solutions that rely on ex-
work, DEUCON features a novel decentralized control struc-tensive empirical evaluation and manual tuning.
ture that only requires localized coordination among neigh-  |n this paper, we focus on an important instance of AQC
bor processors. DEUCON is systematically designed basegalled utilization control for distributed soft real-time sys-
on recent advances in distributed model predictive controltems. The goal of utilization control is to enforce desired
theory. Both control-theoretic analysis and simulations showcpu utilizations on all the processors in a distributed system
that DEUCON can provide robust utilization guarantees and despite significant uncertainties in system workloads. Uti-
maintain global system stability despite severe variations injization control can be used to enforce appropriate schedula-
task execution times. Furthermore, DEUCON can effectivelyple utilization bounds on all processors to guarantee end-to-
distribute the computation and communication cost to dif-end task deadlines. It can also enhance system survivability
ferent processors and tolerate considerable communicationhy providing overload protection against workload fluctua-
delay between local controllers. Our results indicate that tjgn.
DEUCON can prOVide scalable and robust utilization con- DRE Systems introduce many new research Cha”enges
trol for large-scale distributed real-time systems executing inthat have not been addressed in earlier work on single-

unpredictable environments. processor systems. First, they requireilti-input-multi-
_ output (MIMO)control solutions to manage the system QoS
1 Introduction on multiple processors. Second, the QoS of different pro-

cessors are oftenoupledwith each other due to complex

Recent years have seen rapid growth of Distributed Realinteractions among distributed application components. In
time Embedded (DRE) applications executing unpre-  particular, many DRE systems employ the comneon-to-
dictableenvironments in which workloads are unknown and end task moddlL7], where a task may comprise of a chain of
vary significantly at run-time. Such systems include data-subtasks on different processors. In such systems, the CPU
driven and open systems whose execution is heavily influ-utilizations of different processors cannot be controlled in-
enced by volatile environments. For example, task execudependently from others. For example, changing the rate
tion times in vision-based feedback control systems dependf a task will affect the CPU utilizations of all the proces-
on the content of live camera images of changing environ-sors where its subtasks are located. Therefore, the coupling
ments [11]. Likewise, the supervisory control and data ac-among processors must be modeled and addressed in the de-
quisition (SCADA) systems for power grid control may ex- sign of QoS control algorithms. Finally, a utilization con-
perience dramatic load increase during a cascade power faitrol algorithm must be highly scalable in order to handle
ure [8]. Furthermore, as DRE systems become connectethrge DRE systems (e.g. power grid management and smart
to the Internet, they are exposed to load disturbances due tepaces). A centralized control algorithm is often inadequate
variable user requests and even cyber attacks [8]. As sucfor such systems since its communication and computation



overhead usually depends on the size ofdhtre DRE sys-  systems. In contrast, the feedback control approach and rate
tem. adaptation techniques adopted in this paper can be easily im-
In this paper, we present thHeecentralizedEnd-to-end  plemented at the application or middleware layer on top of
Utilization CONtrol DEUCON) algorithm for large DRE  COTS platforms [19].
systems with end-to-end tasks. In sharp contrast to earlier Control theoretic approaches have been applied to a num-
solutions based on centralized control schemes [20], DEUber of computing systems. A survey of feedback perfor-
CON employs a completelglecentralizectontrol approach  mance control in computing systems is presented in [1]. Sev-
that can scale well in large distributed systems and tolerateral projects that applied control theory to real-time schedul-
individual processor failures. Specifically, the contributions ing and utilization control are directly related to this paper.
of this paper are four-fold. Steere et al. and Goel et al. developed feedback-based
schedulers [10] [28] that guarantee desired progress rates for
e We propose a new approach for decomposing the globajeal-time applications. Abeni et al. presented control analy-
multi-processor utilization control problem into local sjs of a reservation-based feedback scheduler [2]. Authors
subproblems to facilitate the design of decentralizedof [18] developed feedback control scheduling algorithms
control solutions. that controlled the CPU utilization and deadline miss ratio.
These algorithms have been implemented as a middleware

* We describe the DEUCON algorithm featuring a noveI. service called FCS/nORB [19]. Feedback control schedul-

peer—to—peer cqntrol structure that enforces QeS|red utI'ing has also been successfully applied to processor power
lizations of multiple processors through localized coor-

o control [32] and digital control applications [9] [25]. All
dination among controllers. the aforementioned projects focused on controlling the per-
formance ofsingleprocessor systems. Their algorithms are
based on single-input-single-output linear control techniques
which are not applicable to DRE systems with multiple pro-
cessors.

Two recent papers [27][15] proposed feedback control
e We present simulation results showing that DEUCON scheduling algorithms for distributed real-time systems with
can provide robust statistical utilization guaranteesindependentasks. These algorithms do not address the de-
to multiple processors through task rate adaptafion pendencies among processors caused by end-to-end tasks
while achieving scalability by effectively distributing commonly available in DRE systems. Our earlier work pro-
the computation and communication overhead to localduced EUCON (End-to-end Utilization CONtrol) [20] that
controllers. is the first utilization control algorithm designed for DRE
systems with end-to-end tasks. This control algorithm has
The rest of this paper is organized as follows. Section 2a|so been validated and extended in a real middleware sys-
reviews related work. Section 3 formulates the end-to-endem [30]. EUCON manages and coordinates the adaptation
utilization control problem. Section 4 describes an existingof multiple processors with eentralizedcontroller that can-
centralized utilization control algorithm as a starting point not scale effectively in large-scale DRE systems because its
for this work. Section 5 presents the design and analysis otommunication and computation overhead depends on the
DEUCON. Section 6 evaluates DEUCON with simulations. sjze of anentire DRE system. We discuss EUCON in more
The paper concludes with Section 7. detail in Section 5.

e We give control analysis based on tistributed model
predictive controlDMPC) theory [7] which establishes
the stability properties of the DEUCON algorithm in
face of uncertain task execution times.

2 Related Work 3 End-to-End Utilization Control

Traditional approaches for handling end-to-end tasks such In this section, we formulate the end-to-end utilization
as end-to-end scheduling [29] and distributed priority ceil-
ing [23] rely on schedulability analysis, which requiras
priori knowledge about worst-case execution times. When3_l Task Model
task execution times are highly unpredictable, such open-
loop approaches may severely under-utilize the system. An We adopt an end-to-end task model [17] implemented by
approach for dealing with unpredictable task execution timesmany DRE applications. A system is comprisedrofpe-
is resource reclaiming [5][26]. A drawback of existing re- iogic tasks{T;|l < i < m} executing onn Processors
source reclaiming techniques is that they often require mod- Pl <i< ﬁ}_ TaskT: is composed of a chain of sub-
ifications to low-level scheduling mechanisms in Operati”gtaslks{l_“--\l_<j < ;) Ioéated on different processors. The

1] = = I .

10ther control strategies such as task migration, quality level adaptatiorf€/€ase of subtasks is subject to precedence ConStra|nt§a €.,

and possible combinations of them are subjects of our future research. ~ subtaskZ;;(1 < j < n;) cannot be released for execution

control problem for DRE systems.
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until its predecessor subtagk; ; is completed. If a non- Controlled (9

greedy synchronization protocol (e.g., release guard [29]) is un.(k) (mljtfézgu;edriél:;?rs)

used to enforce the precedence constraints, all the subtasks of : ’ ‘I’ i

a periodic task share the same rate as the first subtask. ThereH Rt le:| M [um] ] [uw] ﬂ

fore, the rate of a task (and all its subtasks) can be adjusted P T‘L _

by changing the rate of its first subtask. In this paper, the pro- LB L Ruan Rran Lmu:.awr [ru=

cessorP; hosting the first subtask of a tagk is calledZ;’s £ ) '

master processoand we sayP; mastersT;. Only a task’s control | - T oo

master processor can change its rate. Input ; '(k)
Our task model has two important properties. First, while "

each subtasl{;; has anestimatedexecution timer;; avail- . .

able at design time, itactual execution time may be differ- Figure 1. EUCON's feedback control loop with a cen-

ent from its estimation and vary at run time. Modeling such tralized controller

uncertainty is important to DRE systems operating in unpre-

dictable environments. Second, the rate of a tBskay be

dynamically adjusted within a rand®,,;.i, Rinaz,i). This The rate constraints ensure all tasks remain within their

assumption is based on the fact that the task rates in manycceptable rate ranges. The optimization formulation maxi-

applications (e.g., digital control [21][24], sensor update, mizes task rates by making the utilization of each processor

and multimedia [3][4]) can be dynamically adjusted without as close to its set point as allowed by the constraints. The de-

causing system failure. A task running at a higher rate consign goal is to ensure that all processors quickly converge to

tributes a higher value to the application at the cost of highettheir utilization set points after a workload variation, when-

utilizations. ever it is feasible under the rate constraints. Therefore, to
We assume that each tagk has asoftend-to-end dead- guarantee end-to-end deadlines, a user only needs to specify

line related to its period. In an end-to-end scheduling ap-the set point of each processor to be a value below its schedu-

proach [29], the deadline of an end-to-end task is divided intojaple utilization bound. Utilization control algorithms can be

subdeadlines of its subtasks [12][22]. Hence the problem o{;sed to meet all the end-to-end deadlines by enforcing the set

meeting the deadline can be transformed to the problem ofoints of all the processors in a DRE system.

meeting the subdeadline of each subtask. A well known ap-

proach for meeting the subdeadlines on a processor is to ey  EUCON: A Centralized Algorithm

sure its utilization remains below its schedulable utilization

bound [13][16].

In this section, we briefly describe the EUCON algorithm
3.2 Problem Formulation [20], which provides a starting point and baseline for our
work.

Utilization control can be formulated as a dynamic con- As shown in Figure 1, EUCON features a feedback con-
strained optimization problem. We first introduce several no-trol loop composed of a centralized model predictive con-
tations. T, the sampling period, is selected so that multiple troller (MPC) and a utilization monitor and rate modula-
instances of each task may be released during a sampling p&er on each processor. EUCON is invoked periodically at
riod. u,(k) is the CPU utilization of processd?; in the kth each sampling point. The controlled variables are the uti-
sampling period, i.e., the fraction of time th&t is not idle lizations of all processorax(k) = [uy(k)...u,(k)]". The
during time interval(k — 1)T, kTs). B; is the desired uti- control inputs from the controller are the change in task
lization set point onP;. (k) is the invocation rate of task ratesAr(k) = [Ari(k)... Ar,(k)]", where Ar;(k) =

T; in the (k + 1)*" sampling period. ri(k) —ri(k—=1) (1 <i<m).
Given the utilization set point vectoB = [B; ... B,]T The feedback control loop works as follows: (1) the uti-
and the rate constraint®,,,in ;, Rmaa,;] for each task;, lization monitor on each processé} sends its utilization

the control goal ak!" sampling point (timekT}) is to dy- (k) in the last sampling periof(k — 1)T, kT) to the
namically choose task ratés; (k)|1 < j < m} to minimize  centralized controller; (2) the controller collects the utiliza-

the difference betweeB; andu; (k) for all processors: tion vectoru(k) = [uy (k) . .. u,(k)]" including the utiliza-
tions of all processors, computes a new rate change vec-
" tor Ar(k) = [Ar(k)...Ar,(k)]T, and sends the new
. 2 m
{Tj(kﬁgljgm}z(& —ui(k +1)) @ task ratesr(k) = r(k — 1) + Ar(k) to the rate modula-
=1 tors on master processors (i.e., processors that master at least
subject to constraints one task); and (3) the rate modulators on master processors

change the rates of tasks according-t&). The details of
Riing <1j(k) < Rpmaz,; (1<7<m) the controller design in EUCON are described in [20].



EUCON relies on a centralized controller to manage theP;, and f;; = 0 if no subtask of task; is allocated to pro-
adaptation of multiple processors in a DRE system. A cen-cessorP;. F captures theouplingamong processors due to
tralized control scheme has several disadvantages. First, thend-to-end tasksG = diag[g; . . . g»] whereg; represents
run-time overhead depends on the size of an entire DRE syghe ratio between the change in the actual utilization and its
tem. Specifically, the worst-case computational complexityestimation. The exact value ¢f is unknowndue to the un-
of a model predictive controller is polynomial in the total predictability in execution times. Note thé&t describes the
number of tasks and the total number of processors in the syffect of uncertainty in workload on the utilization of a DRE
tem. Furthermore, since every processor in the system needsystem. As an example, Figure 2 shows a DRE system with
to communicate with the controller in every sampling period, five processors and five tasks. It is modeled by (2) with the
the processor executing the controller can become a commuellowing parameters:

nication bottleneck. Therefore, a centralized control scheme u (k) g 0 0 0 O
cannot scale effectively in large DRE systems. Second, the uz(k) 0 g2 0 0 O
control design of EUCON assumes that communication de- u(k) = | us(k) |,G=] 0 0 g3 0 0 |,
lays between the control processor and other processors are ug (k) 0 0 0 g2 O
negligible compared to the sampling period of the controller. us (k) 0 0 0 0 ugs
This assumption may not hold in networks with significant e 0 0 0 ¢
delays such as the Internet and wireless sensor networks. In cla ¢ 0 0 0
addition, the processor executing the controller is a singlef = | 0 ¢y, ¢33 0 0 |,
point of failure. The entire system will lose the capability to 0 0 ¢392 cig O
adapt to the environment if it fails. 0 0 ¢33 ca2 O

Centralized solutions are therefore not suitable for large- Ary (k)
scale DRE systems (e.g., wide-area power grid manage- Ary(k)
ment). In this paper we focus on developidgcentralized Ar(k) = | Ars(k)
control algorithms to improve the scalability and reliability Ary(k)
of adaptive utilization control in DRE systems. Ars (k)

Design of DE N "

5 esign o uco 5.2 Problem Decomposition

In contrast to the centralized control scheme adopted by

EUCON, DEUCON employs a peer-to-peer control structure
with a separate local controll€r; on each master processor

Although our previous work showed that the above global
system model is sufficient for designing a centralized con-

P;. Each controller only coordinates with a small number troller for EUCON [20], it cannot be used for designing de-

of processors called its (logicafigighbors A fundamental c_entralized control_ algorithms because it incl_udes informa-
design challenge is to achieve system stability and desiredfOn about the entire system. To address this problem, we
utilizations without global information. In this section, we PrOPOSe anew approach to decompose the global utilization
present the design of DEUCON based on a distributed modef°ntrol problem into a set of localized subproblems.
predictive control (DMPC) framework. As a foundation of ~ From a local controlleC;’s perspective, the goal of de-
our control design, we first present a dynamic model of theCOMPOsition is to partition the set of system variables into
entire system and an approach for decomposing the g|0b&{hree .subsets, |_nclud|ntg>cal vapableson host processor
system model into localized control subproblems. We then!i> Neighbor variableson P;’s neighbors, and all other vari-

describe the design and control analysis of the DEUCON al-2bles in the systemC;’s subproblem only includes its lo- -
gorithm based on the dynamic models. cal and neighbor variables. A key feature of our decomposi-

tion scheme is that it balances two conflicting goals. On one
5.1 Global System Model hand, the number of neighbor variables should be minimized
to improve system scalability. On the other hand, the neigh-
In a control-theoretic methodology a control algorithm bor variables must capture the coupling among processors
should be designed based on a model of the system. As deo that local controllers can achieve global system stability
scribed in [20], a DRE system can be approximated by thethrough coordination in their neighborhoods.
following global system model: We give several definitions before presenting our decom-

position scheme.
u(k+1) = uk) + GFAr(k) 2

The vectorAr(k) represents the changes in task rates.Definition 1: Processor’; is P;’s direct neighborif (1) P;
Thesubtask allocation matrid, is ann x m matrix, where ~ has a subtask belonging to an end-to-end task masterggd by

fij = ¢;1 if a subtaskT;; of taskT} is allocated to processor @nd (2)P; is not P itself.



= Control signal for C;
------ + Precedence constraint

r1(k) @ Subtask
1 u'y(k+1), *
C, Cs C,
I r2(K)
T,,® ®T,, @ L @
Ts@ Tre o1 @ ®
Py P, Ps P, Py

Figure 2. Data exchange between (; and its neigh-
bors (other data exchanges are not shown)

Definition 2: Theconcerned tasksf P, are the tasks which
have subtasks located &% or P;’s direct neighbors.

Definition 3: Processot; is P;’s indirect neighborif (1)
P; is the master processor of any®fs concerned tasks and
(2) P; is not P;’s direct neighbor ot; itself.

For example, we consider controlléF, in the system
shown in Figure 2.P; has one direct neighboi§) due to
task7; mastered byP;. Its concerned tasks includg, Ts
andT; (which has a subtask on direct neighld®y). Hence
P3, the master processor 6%, is P;’s indirect neighbor.

The subproblem of a controller includes a set of utiliza-

tions ascontrolled variablesand a set of task rates ama-

nipulated variables In our decomposition scheme, the con-

trolled variables of controlle€’; includew;(k), the host pro-
cessorP;’s utilization, andU D; (k), the set of utilizations of
P;’s direct neighbors.U D; (k) are considered’;'s neigh-

wherenu; (k) andnr;(k) are vectors comprised of all ele-
ments inNU, (k) and N R;(k), respectively.G; andF; are
defined in the same way & andF in (2), but include only
the processors iNU; (k) and the task rates iV R; (k).

For example, the controller; shown in Figure 2 is mod-
eled with the following parameters.

w0 = | o= 5, l (k)

ci1 0 cs } ,Anry(k) = | Ara(k)

F =
1 |: Cl12 C22 0 AT5(I€)

From (4),C1’s local model is

ul(k + 1) = Ul(k) + g1 (CllAT’l(k) + C51A7’5(k))
u2(k‘ + 1) = u2(k) + gz(cleTl(k) + C22AT2(k))

5.3 Localized Feedback Control Loop

We now present DEUCON's localized feedback control
loop based on our decomposition scheme. The execution of
a controllerC; at each sampling poiritincludes three steps:

1. Local control computation”; executes an MPC algo-
rithm to solve its local subproblem. The feedback input
to the control algorithm includes (), (k) from the lo-
cal utilization monitor, (2) a set qfredicted utilizations
U D! (k) of its direct neighbors, and (3) the rates of con-
cerned tasksNR;(k — 1) in the last sampling period.
The output from the controller; includes the new rates
for concerned tasksy R; (k). The details of the control

bor variables because they are affected by the rates of tasks ~@lgorithm are presented in Section 5.4.

mastered byP;. Since each concerned task contributes to

the utilizations of P, and/or its direct neighborg};'s ma-
nipulated variables include the rates of all@fs concerned
tasks. Note that a concerned task may be masterdd by

self, its direct neighbor, or its indirect neighbor. For example,

C4 has two controlled variables; (k) andus(k), and three
manipulated variables, (k), ro (k) andrs (k).

Let us setVR;(k) includes the rates of all aP;’s con-
cerned tasks, and s&U;(k) = UD;(k) U {u;(k)}, the
subproblem of”; then becomes the following localized con-
strained optimization problem within its neighborhood:

. _ 2
NIE&) Z (B —w(k +1)) (3)
ul(k)GNUl(k)
subject to

Rmin,j S Tj(k) S Rmnm,j (T](k) € NRl(k))

2. Local actuation:The rate modulator o®; changes the
rates of the set of tasks masterediyaccording to the
control input fromC;. The other task rates in the control
input will be ignored because they are not mastered by
P;.

3. Data exchange among neighbors; sends itpredicted
utilizationat the next sampling point;(k+ 1), to other
controllers of which it serves as a direct neighb6t,
also sends the rates of tasks mastered’pyo those
controllers which have these tasks as their concerned
tasks. In addition(C; receives new predicted utiliza-
tions from its direct neighbors, and the actual rates of
the concerned tasks which are not mastered by itself,
from its direct and indirect neighbors. They will be used
for the local control computation at the next sampling
point (k + 1).

In contrast to the global model (2) used in EUCON, each Compared to centralized control schemes, a fundamen-
controller in DEUCON has a localized model which only in- t&l advantage of DEUCON is that both the computation and
cludes its local and neighbor variables. This local model ofcOmmunication overhead of a controller depends on the size

C; is described as:

nu;(k + 1) = nu; (k) + G;F;Anr;(k) (4)

of its neighborhood instead of the entire system. This feature
allows DEUCON to scale effectively in many large DRE sys-
tems.



Another important advantage of DEUCON is that it can ing error, i.e., the difference between the utilization vector
tolerate considerable network delays. Note that in step 1, thexu; (k + 1/k), which is predicted based on (7), and the refer-
predictedutilizations U D (k) (instead ofU D;(k)) are pro-  ence trajectoryefi(k + 1|k) defined in (5). The controller
vided by C;’s direct neighbors in the previous sampling pe- is designed to track the exponential reference trajectory that
riod. This is becausE D; (k) is not instantaneously available converges to the set points so that the closed-loop system be-
to C; attimekT, due to network delayd/ D, (k) is predicted  haves like a desired linear system. By minimizing the track-
based orUD;(k — 1) at time(k — 1)T, as a substitute for ing error, the closed-loop system will also converge to the uti-
UD,;(k) to be transmitted over the network during interval lization set points. The second term in the cost function rep-
[(k — 1)T§, kTs). Each element’ (k) € UD;j(k) is calcu-  resents theontrol penalty The control penalty term causes
lated using the following reference trajectory from measuredthe controller to minimize the changes in the control input.

utilizationw; (k — 1) to its set pointB; over the followingP The controller predicts the cost based on the follovapg
sampling periods. proximatemodel:
Ts
refj((k—1)+1k—1) = B, —efml(Bj —uj(k —1)) nu;(k + 1) = nui(k) + F;Anr;(k) (7
(1=<i<Pp) ©) The above model has two differences from #wtual sys-

whereT,.; is the time constant that specifies the speed oftem model (4). First, the utilizations of direct neighbors are
system responseP is called theprediction horizon The  approximated by their predicted utilizations:;(k), where
notationz((k—1)-+1|k—1) means that the value of variabte ~ nuj(k) is a vector comprised of all elementsNU; (k). As
attime((k—1)-+1)T, depends on the conditions at tirfie— discussed in Section 5.3, this approximation allows DEU-
1)T. The value of-ef; (k|k — 1) is assigned ta/ (k). Since ~ CON to tolerate network delays. Second, because the
UD|(k) can take the whole last sampling period to transmit, real system gaingz; in system model (4) are unknown
DEUCON can tolerate much longer communication delaysin unpredicted environments, our controller assui@gs=
than EUCON which assumes the delays to be negligible. ~ diag[1...1], i.e., the controller assumes that the estimated
DEUCON is also a valid way to avoid single point of fail- execution times are accurate. Although this approximate
ure. Once a controller fails due to the failure of its host model is not an exact characterization of the real system,
processor, all tasks on the host processor are immediatelthe closed-loop system under our controller can still maintain
migrated to other proper processors in the system. The lostability and guarantee desired utilization set points as long
cal controllers on these processors automatically adapt theiasG; are within a certain range (see analysis and simulation
control models to effectively manage the migrated tasks. Agesults in Sections 5.5 and 6.2). This is due to the coordi-
aresult, the system’s fault-tolerance capability is improved. nation scheme and online feedbacks used in our distributed
) model predictive control algorithm.
5.4 Controller Design The controller computes the input trajectory
Anri(k), Anrj(k + 1|k),... Anrj(k+ M —1]k) that
minimizes the cost function subject to the rate constraints.

Shis constrained optimization problem can be transformed

C?euzﬁot\?v?]yir?i?ns:ecgan?oecies;g;e P?f :%?S(;;? Lg:/i‘;xa% a standard constrained least square problem. Controller
P 19 P o3 4 C; can then use a standard least-square solver to solve
controller, while P, and P do not have controllers because this problem on-line. The detailed transformation is not

they are not master processors for any tasks. This featurghown due to space limitations. The worst-case computation
reduces the overhead of DEUCON. P : P

) - . complexity of the solver is polynomial in the numbers
o ol & e e Cont) S 1 of ks and processors i e loalied model (7). are
trol because itl . can deal with coupled MIMO con- specifically, our constrgmed .Ieast-squa.re qptlm|zat|on IS
trol problems with constraints on the actuators At 2 Convex non!mear opt|m|zat|9n, fgr which ‘interior po'lnt
every sampling point, the controller computes .an in- methods reqwrej(_n)_ Ne_wton lterations [_31]’ where n is
out trajectory in the, following M sampling periods fche n_umber of optimization varlfables. S|_nce each Newton
e.g. Anri(k), Anry(k + 1]k) Anry(k + M — 1[k) '’ iteration reqU|r¢sO(n3) alggbralc operatlon_f,, the.wprst—
e =TS A P ' case computation complexity of the solver is cubic in the
that_m|n|m|zes the following cost function under the rate con- number of tasks and processors in the localized model.
straints. Once the input trajectory is computed, only the first el-
Vi(k) :ZlP:l |nu;(k + 1|k) — ref;(k + 1|k)||? ementAnr; (k) is applied as the control input and sent to
M—1 9 the rate modulators. At next sampling point, the prediction
+ om0 |Anri(k+1jk) — Anr;(k +1-1]k)[|" (6) horizon slides one sampling period and the control input is
whereP is theprediction horizonandM is thecontrol hori- computed again as a solution to the constrained optimization
zon The first term in the cost function represents titaek- problem based on the utilization feedbacks from its direct

DEUCON employs a local controller on eactasterpro-
cessor. Non-master processors do not need controllers b



neighbors and itself. loop composite system is in the form

y | u(k+1)
5.5 Stability Analysis Ar(k) |~
I+ GFK GFH u (k)
A fundamental benefit of the control-theoretic approach is K H Ar(k—1)
that it enables us to prove the utilization guarantees provided GFE
by DEUCON despite uncertainties in task execution times. + { E } B (10)
We say that a DRE systemssableif the utilizationsu con-
verge to the desired set poirs that is,limy .. u (k) = B. wherel is the identity matrix. Note that the closed-loop

In this subsection we present stability analysis that allows system model is a function @.

users to analytically assess the robustness of DEUCON for . » .

their system with a range of uncertainties in term of task ex- 4 Derive the stability condition of the closed-loop system
ecution times. To ensure that the system can be stabilized, ~(10) given arange d& values. According to the control
the constrained optimization problem must be feasible, i.e.,,  theory, if all poles locate inside the unit circle in the
there exists a set of task rates within their acceptable ranges ~ OMPplex space and the DC gain matrix from the control
that can make the utilization on every processor equal to its 0 the state is the identity matrix, the state of the system,
set point. If the problem is infeasible, no controller can guar- -6~ the processor utilizations, will converge to the set
antee the set point through rate adaptation. In this case, the POINt.

system may switch to a different control adaptation mecha- The details of the above steps are not shown due to space

nism (e.g., admission control or task reallocation). Hence4imitations. We have developed a MATLAB program to per-

forth, our stability analysis assumes that the rate constraintgym the above stability analysis procedure automatically.
are not activated.

In DEQCON, each controller solvgs a finite horizon opti- Example We now apply the stability analysis approach to
mal tracking problem. Based on optimal control theory [14], ihe example system described in Figure 3. The system has

the local control decision is a linear function of the current 51 t53sks and 10 processors. We set the prediction horizon
value and the set points of the utilization of the local CPU, p _ 9 gnd the control horizod/ — 1. The time constant of

the utilizations of its direct neighbors and the previous deci-ine reference trajectory i,.; /T, = 4. The weights on all

sions for its manipulated tasks and concerned tasks. We NOrms are 1. The parameters in the model for the controller
outline the process for analyzing the stability of the systemg, ProcessoP, are

controlled by DEUCON.

nug (k) = [ (k) us(k) ws(k)]”
1. Compute the feedback and feed-forward matrices for (g1 0 0
each local controllef by solving its local control input G = 0 g2 O
Anr; based on the local system model (4) and reference L 0 0 gs
trajectory (5). The solution is in the following form: [ c11 21 c31 c2 O 0 0O 0
F, = 0 0 c32 ca1 51 2 0 O
Anr; (k) = Kinu; (k) + H; Anr; (k — 1) + E;B; L 0 cog c33 0 0 Cg1 C71 €83
®)  Ari(k) = [Ar (k) Ary(k) Arg(k) Ary (k)
. Ars (k) Arg (k) Arq (k) Arg (k)T
2. Construct the feedback and feed-forward matrices for B B B BT
the whole system (2) based on those for local system 1 = [ B B: By]
models derived in Step 1. The solution for the controller oR; is of the form
ki kly ki
Ar(k)=Ku (k) + HAr(k— 1)+ EB (9)
Anr} (k) = : nu; (k)+
This is a dynamic controller. The stability analysis ki, ki, ki
needs to consider the composite system consisting of  p1 ... pl el, el el
the dynamics of the original system and the controller. . Anry (k—1) : : : Bil1)
hgy - hgg €31 €i  €s3

3. Derive the closed-loop model of the composite system
by substituting the control inputs derived in Step 2 into The superscripti denotes that the solution is for the con-
the actual system model described by (2). The closed- troller on P;.
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Figure 3. A medium size workload
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Figure 4. The root locus of the closed-loop system

1

allows us to analyze the system stability under &hy For
example, Figure 4 shows the root locus of the closed-loop
system by DEUCON for the case that all non-zero elements
of G have the same value, denoted jyRoot locus is the
trajectory of the poles of the closed-loop systeny amries.

The dotted circle is the unit circle. It shows that all poles are
within the unit circle for0 < g < 2. The DC gain of the
closed-loop system is the identity matrix for< ¢ < 2.
Therefore, the system is stable. Our analysis proves that
DEUCON can provide robust utilization guarantees to the
example system even when actual execution times deviate
significantly from the estimation. For instance, our results
indicate that DEUCON can converge to the desired utiliza-
tions on all processors even if the execution time of every
task is 90% lower (g = 0.1) or 90% higher (g = 1.9) than the
estimation as long as the range of task rates are not violated.
We validate this analysis through simulations presented in
Section 6.

6 Simulation Results

In this section, we first describe the simulation settings.
We then compare the performance and overhead of DEU-
CON and EUCON. We choose EUCON as the baseline for
performance as it is the only available utilization control al-
gorithm for DRE systems with end-to-end tasks. Previous re-
sults showed that EUCON significantly outperformed a com-
mon open-loop approach that assigned fixed task rates based
on estimated execution times [20].

Following Step 2, we construct the feedback and feed-6.1 Simulation Setup

forward matrices for (9). Since controllér; manipulates
the control variabled\r, Ar, andArs, the first three rows
of the matrixK is constructed by the first three rowskf

as
kiy
k1
k3

constructed as

and

€31

The matricesK, H and E can be completed by the cor-

1
k3o

Similarly, the first three rows of the matricé$ andE are

€32

1
k33

1
h%8
hss

1
€13
€33

0
0
0

0
0
0

0
0
0

0
0
0

o

0
0
0

Our simulation environment is composed of an event-
driven simulator implemented in C++ and a set of controllers
implemented in MATLAB (R12). The simulator implements
the utilization monitors, the rate modulators and the dis-
tributed real-time system with an interface to the controllers.
The subtasks on each processor are scheduled by the Rate
Monotonic Scheduling (RMS) algorithm [16]. The prece-
dence constraints among subtasks are enforced by the release
guard protocol [29]. The controllers are based onldudin
least square solver in MATLAB. The simulator opens a MAT-
LAB process and initializes all the controllers at start time.

In the end of each sampling period, the simulator collects the
local utilization, the predicted neighborhood utilizations and
the concerned task rates for each controller, and then calls the
controller in MATLAB. The controllers compute the control
input, Ar(k), and return it to the simulator. The simulator
then calls the rate modulators on each processor to adjust the
rates of its mastered tasks.

Each task’s end-to-end deadlidg = n;/r;(k), wheren;

responding matrices from controllers on other processorsis the number of subtasks in tagk Each end-to-end dead-
Then, we can derive the composite system (10).

The poles are functions of the system gaingGn The

line is evenly divided into subdeadlines for its subtasks. The
resultant subdeadline of each subtd3k equals its period,

closed-loop system has 31 poles. Our MATLAB program 1/r;(k). The schedulable utilization bound of RMS [16],



B; = m;(2'/™ — 1) is used as the utilization set point on
each processor, where; is the number of subtasks dn.
All (sub)tasks meet their (sub)deadlines if the utilization set
point on every processor is enforéed

A medium size workload (as shown in Figure 3) is used
in our experiments. It includes 21 tasks (with a total of 40

CPU utilization

0 50 100 150 200 250 300

subtasks) executing on 10 processors. There are 14 end-t

end tasks running on multiple processors and 7 local tasks Time (sampling period)
The controller parameters used for this workload include the (a) DEUCON
prediction horizon as 2 and the control horizon as 1. The 1

control periodl’; = 1000 time units. The time constaft.. s
used in (5) is set as 4. Specific parameters of tasks are nc

shown due to space limitations. é PT  ____p2
To evaluate the robustness of DEUCON when execution § _______ P3  —.—._P4
times deviate from the estimation, the execution time of eact © —e—. PS5
subtaskl’;; can be changed by tuning a parameter called the ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300

execution-time factoret f;; (k) = a;;(k)/cij, wherea;; is _ _ _
the actual execution time ;. The execution time factor Time (sampling period)

represents how much the actual execution time of a subtask (b) EUCON

deviates from the estimated one. The execution time factor ~ Figure 5. CPU utilization of P; to P; (ietf=8)
(and hence the actual execution times) may be kept constant 0.8

or changed dynamically in a run. When all subtasks share a ' ' ' '
same constardtf, it equals to the system gain on every pro-
cessor in the model, i.eetf = gii(1 < i < m). Inthe or8r P
following we use thénversed etf(ietf) because we are more ~ § [
interested in the situation when execution times are overesti- § 076 - 3
mated (i.eetf < 1). Specificallyieft;;(k) = 1/et f;; (k). = ‘ J I
o 074}

6.2 System Performance 5 L

In this subsection we present two sets of simulation exper- 072 DEE%@%O:NEEYV/%Z%%E T
iments. The first one evaluates DEUCON's system perfor- EUCON Average -------
mance when task execution times deviate from the estima- 07 - - - = po-:t """""""" .

tion. The second experiment tests DEUCON's ability to pro-
vide robust utilization guarantees when task execution times
vary dynamically at run-time.

Inversed execution time factor (ietf)

Figure 6. The average and deviation of the CPU uti-
6.2.1 Steady Execution Times lization of P, with different execution times

In this experiment, all subtasks share a fixed execution-time . o

factor (etf) in each run. Since it is commonly difficult to the run and then converge to their set points in the end. The
precisely estimate the execution times of real-time tasks if€ason for this divergence is that each controller in DEU-
DRE system, we stress-test DEUCON'’s performance wher"ON only utilizes local information and makes local deci-
real execution time significantly deviate from their estima- Sion. Despite this slight difference in the transient state, all
tions. Figures 5(a) and (b) show the utilizations of proces-Utilizations converge to their set points within similar settling
sorsP; to Ps when execution times of tasks avae-eighth ~ times. Both DEUCON and EUCON achieve desired utiliza-
of their estimations. In this case, we can observe a noticelion guarantees in steady states. _

able difference in the transient state between DEUCON and To examine DEUCON's performance under different ex-
EUCON. While the utilizations of EUCON follow the same €ecution time factors, we plot the mean and standard devia-

trajectory, utilizations of DEUCON diverge in the middle of tion of utilization onP; during each run in Figure 6. Every

data point is based on the measured utilizatigh) from
20ther utilization bounds [13] can be used by DEUCON when the sub- time 2007, to 3007, to exclude the transient response in

deadlines of subtasks are not equal to their periods the beginning of each run. Both EUCON and DEUCON
3In general, as discussed in [20], algorithms based on model predictive . . e ! . .

control and distributed model predictive control cause oscillation when thea“-:h'e\/e desired utilizations for all tested execution-time fac-

execution times are underestimated (egf > 1). tors within theiet f range[0.5, 10]. In this range, the aver-
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Figure 7. Average CPU utilization (ietf=5) (a) Global fluctuation
age utilizations under EUCON and DEUCON remain within
+0.012 to the utilization set points and the standard devia- g
tions remain below 0.025. However, whéttf = 8, DEU- g
CON's performance is slightly worse than that of EUCON, 3
as its average utilization is 0.012 lower than its set point. In &
addition, EUCON has a high deviation whétt f = 9, be- .
causeP; has a longer settling time under EUCON. As a re- 0 0 100 150 200 250 300
sult, the system is still in its transient state for part of the Time (sampling period)
interval [2007, 3007;]. We also observe that both EUCON (b) Local fluctuation onP; o

and DEUCON suffer a standard deviation-66.025 when

ietf = 0.5. However, as a key benefit, both EUCON and o )

DEUCON can achieve desired utilizations even when execufigure 8. CPU utilization of - F to P1p when execution

tion times are severely overestimated. This capability is inimes fluctuate at run-time

sharp contrast to open-loop approaches which are based on

schedulability analysis. Open-loop underutilizes the proces-

sors in such cases. fluctuation on a part of the system.

To further investigate the CPU utilizations on other pro-  Figure 8(a) shows a typical run with global workload fluc-

cessors, Figure 7 plots the average utilizations of all procestuation. Theietf is initially 1.0. At time 1007, it is de-

sors wherietf is 5. The deviations of all utilizations are less creased to 0.56, which corresponds to an 79% increase in the

than 0.008. We observe that é# to P, the difference be- execution times of all subtasks such that all processors are

tween the utilizations and the set points for DEUCON aresuddenly overloaded. DEUCON responds to the overload

slightly larger than that of EUCON. However, all the differ- by decreasing task rates which causes the utilizations on all

ences are within the-0.009 range. In practice, such small processors to re-converge to their set points withifi, 2@\t

steady-state errors can be handled by setting the set points tome 2007, theietf is increased to 1.67 corresponding to a

slightly lower than the schedulable utilization bounds. 66% decrease in execution times. The utilizations on all pro-

In summary, the simulation results demonstrate that DEU-cessors drop sharply, causing DEUCON to dramatically in-

CON can achieve almost the same performance as EUCON;rease task rates until the utilizations re-converge to their set

for a wide range ofetf ([0.5,10] in our experiments). We points'. The system maintains stability and avoids any sig-

also note that the range ietf corresponds to a system gajn  nificant oscillation throughout the run, despite the variations

in a rang€0.1, 2]. Therefore, our simulation results validate in execution times.

the correctness of our stability analysis presented in Section In each run with local workload fluctuation, tiegf on Py

5.5. follows the same variation as the global fluctuation, while all
the other processors have a fixiedf of 1.0. As shown in

) . : Figure 8(b), the utilization of?;; converges to its set point

6.2.2 Varying Execution Times after the significant variation of execution times at T2and

2507, respectively. We also observe that the other proces-

time. To investigate the robustness of DEUCON we tested®©'S experience only slight utilization fluctuation after the
execution times change aof;y. This result demonstrates

two scenarios of workload fluctuation. In the first set of runs, ! ;
the average execution times on all processors change simuf’at DEUCON effectively handles the coupling among pro-

taneously. In the second set of runs, only the execution timeS€SSOrs during rate adaptation. The performance re,sults of
on Py, change dynamically, while those on the other proces-PEUCON in this experiment are very close to EUCON's per-

sors remain .unchan.ged. The first Scena”_o repreml 40nly the results ofP to P1o are included in Figure 8 for clarity. Per-
load fluctuation, while the second scenario represkemtsl formance ofP; to Ps are similar.

In this experiment, execution times vatynamicallyat run-
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Figure 9. Entire system size vs. neighborhood size
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nicating with if. To estimate communication overhead due

to utilizations exchange, we count the number of processors
w ﬂ_H_H_H» ﬂ_w from which a controller receives predicted utilizations. This
IR NN is equal to the number of direct neighbors of the controller.
PL. P2 P3 P4 PS5 PG P7 P8 PO Pl AVG EUCON To estimate communication overhead due to task rates ex-
Processor change, we count the processors from which a controller re-
ceives the actual rate changes for one or more of its con-
cerned tasks. The set of processors communicating with a
controller is the union of these two processor sets. From Fig-
ure 11 we can see that DEUCON's average estimated per-
controller communication overhead is 33% of the EUCON
controller's communication overhead.

o
~

Time (ms)
o
N

o

Figure 10. Controller execution time in MATLAB

formance reported in [20].
6.3 Overhead

As discussed in Section 4, a major limitation of a central-
ized controller is that the run-time overhead is related to the .
size of the entire system. In contrast, the overhead of eacﬁ'4 Scalability
local controller in DEUCON is just a function of its neigh-
borhood size. Figure 9 compares the size of the entire system

with the neighborhood size of each processor for the mediu EUCON in large systems. Figure 12 shows the direct

size workload. The centralized EUCON controller needs to _ .

: neighborhood size, the number of concerned tasks, and the
model all the 10 processors and the 21 tasks in the SySterT}iumber of processors communicating with a controller under
In contrast, the average for DEUCON controllers is only 2.6 P 9

) ' DEUCON as the number of processors increases from 100 to
processors and 7.1 tasks, corresponding to a reduction b .
; 000 and the number of subtasks increases from 500 to 5000.
74% and 66%, respectively.

: : Every result is the average value of all controllers in the sys-
To estimate thaveragecomputation overhead of the con-
o tem. Each task has 5 subtasks. All subtasks are randomly
trollers, we measure the execution time of the least squar

solver which dominates the computation cost on a 2GHZ%Ilocated to processors such that there are 5 subtasks on each
P processor. We can see that the size of direct neighborhood

Pentium IV PC with 256MB RAM. In order to minimize the . . . .

) . .. _remains almost constant despite the ten-fold increase in the
effect of the time delay caused by the IPC communication :

. number of processors. At the same time, the number of con-
between the simulator and the MATLAB process, we use a o
single MATLAB command to run this least square solver for cerned task and the number of processors communicating
10(?0 times as a subroutine. The data shov:/qn in Figure 10 ig\"th a controller increase very slowly. Even in the system

' gure 19 1%ith 1000 processors, a controller only communicates with
the average of those 1000 runs. The average execution ti
: . ) éss than 34 processors. Therefore the per-controller over-
of all controllers in DEUCON is only 62% of EUCON's cen- : : .
. . . _head of DEUCON is almost independent of the total size of

tralized controller. We note that the speedup in execution

. ) . - . the system. This result indicates that DEUCON can scale
times is not strictly polynomial in the numbers of neighbors

and concerned tasks as one would expect from the theorethﬁ\ﬁeCtively in large system. In addition, we observe that real-
. . PE . .. world systems may allocate subtasks in a clustered fashion,
cal complexity of MPC algorithms. This is attributed to dif-

ference between thaverageexecution time of MATLAB'S i.e., all subtasks of a subsystem tend to share several proces-

. . . sors and only a small number of tasks run across multiple
Isglin solver and thawvorst-casecomputational complexity. . )
" L . T subsystems. We expect such clustered allocation to result in
In addition, the initialization cost in the optimization calcu-

lations is not negligible for relatively small scale problems in even smaller neighborhood size than the random allocation
9'g y P in our simulations.
our workload.

We now investigate DEUCON’s communication overhead.
As menthned n S.ectlon 5, a controller's communication SMultiple data values (utilizations and/or rates) from a same processor
overhead is a function of the number of processors commuean be easily combined to a single message in a real system implementation.

Our final set of simulations evaluates the scalability of
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Figure 12. Scalability of DEUCON under Random
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7 Conclusions

We have presented the DEUCON algorithm for dynami-

cally controlling the utilization of DRE systems. DEUCON
features a novel decentralized control structure to handlg14] F. Lewis and V. Syrmos.Optimal Control, Second Edition
the coupling among multiple processors due to end-to-end
tasks. Both stability analysis and simulation results demon-[15]
strate that DEUCON achieves robust utilization guarantees

even when task execution times deviate significantly from
the estimation or changes dynamically at run-time. Further-
more, DEUCON can significantly improve the system scal-
ability by distributing the computation and communication (17

(5]

(6]
(7]

(8]
9]

(10]

(11]

(12]

(13]

(16]

cost from a central processor to local controllers distributed[18]
in the whole system and tolerating network delays.
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