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ABSTRACT OF THE DISSERTATION

MCFlow: Middleware for Mixed-Criticality Distributed Real-Time Systems

by

Huang-Ming Huang

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2012

Research Advisor: Professor Christopher D. Gill

Traditional fixed-priority scheduling analysis for periodic/sporadic task sets is based

on the assumption that all tasks are equally critical to the correct operation of the

system. Therefore, every task has to be schedulable under the scheduling policy, and

estimates of tasks’ worst case execution times must be conservative in case a task

runs longer than is usual. To address the significant under-utilization of a system’s

resources under normal operating conditions that can arise from these assumptions,

several mixed-criticality scheduling approaches have been proposed. However, to date

there has been no quantitative comparison of system schedulability or run-time over-

head for the different approaches.

In this dissertation, we present what is to our knowledge the first side-by-side im-

plementation and evaluation of those approaches, for periodic and sporadic mixed-

criticality tasks on uniprocessor or distributed systems, under a mixed-criticality

scheduling model that is common to all these approaches. To make a fair evaluation of
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mixed-criticality scheduling, we also address some previously open issues and propose

modifications to improve schedulability and correctness of particular approaches.

To facilitate the development and evaluation of mixed-criticality applications, we

have designed and developed a distributed real-time middleware, called MCFlow, for

mixed-criticality end-to-end tasks running on multi-core platforms. The research pre-

sented in this dissertation provides the following contributions to the state of the art

in real-time middleware: (1) an efficient component model through which dependent

subtask graphs can be configured flexibly for execution within a single core, across

cores of a common host, or spanning multiple hosts; (2) support for optimizations to

inter-component communication to reduce data copying without sacrificing the abil-

ity to execute subtasks in parallel; (3) a strict separation of timing and functional

concerns so that they can be configured independently; (4) an event dispatching

architecture that uses lock free algorithms where possible to reduce memory con-

tention, CPU context switching, and priority inversion; and (5) empirical evaluations

of MCFlow itself and of different mixed criticality scheduling approaches both with a

single host and end-to-end across multiple hosts. The results of our evaluation show

that in terms of basic distributed real-time behavior MCFlow performs comparably

to the state of the art TAO real-time object request broker when only one core is used

and outperforms TAO when multiple cores are involved. We also identify and catego-

rize different use cases under which different mixed criticality scheduling approaches

are preferable.
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Chapter 1

Introduction

1.1 Mixed-Criticality Scheduling

Traditional fixed-priority scheduling analysis for periodic task sets assumes that all
tasks are equally critical to a system’s correct operation; thus, every task has to be
schedulable under a chosen scheduling policy. To meet this assumption, the estimation
of worst case execution time for tasks has to be conservative in order to accommodate
the special case when a task runs longer than average. Such a conservative approach
can in turn lead to under-utilization of system resources (e.g., CPU cycles) under
normal operating conditions.

Mixed criticality models. To address this issue, Vestal et al. [95, 21] and de Niz
et al. [39, 63] have developed alternative mixed-criticality models for systems in which
tasks are not equally critical. In the first model [95, 21], each task τi may have a set
of alternative execution times Ci(`), each having a different level of confidence `. A
task τi is also assigned a criticality level ζi, which corresponds to the required level
of confidence for the task and is used in schedulability analysis.

The second model [39, 63] (de Niz Model) is a special case of the first one, where each
task can specify only two execution times: a normal worst case execution time Cn

i

and an overload budget Co
i . Assuming all confidence and criticality levels are positive

integers, with larger values indicating higher confidence and higher criticality, the

1



Table 1.1: A two task example from [63]

Task Cn Co Period Criticality
τh 4 6 10 High
τl 2 3 5 Low

( )

!"#$%&'()#*+(,'-

!

!"#!$%&"'(%))

"#$%&'($)*+,-.-)-.$&
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/')0+,-.-)-.$&+1.20#+3-#4'(+5-'2

0 5 10

Tuesday, March 22, 2011

(a) Criticality Monotonic

( )

!"#$%&'()#*+(,'-

!

!"#!$%&"'(%))

"#$%&'($)*+,-.-)-.$&

0 5 10
/')0+,-.-)-.$&+1.20#+3-#4'(+5-'2

0 5 10

Tuesday, March 22, 2011

(b) Rate Monotonic

( )

!"#$%&'()#*+(,'-

!

!"#!$%&"'(%))

"#$%&'($)*+,-.-)-.$&

0 5 10
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!"#!$%&"'(%))

0 5 10
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0 5 10

Tuesday, March 22, 2011

(c) Rate Monotonic under overload

Figure 1.1: Two tasks example under various scenarios (from [63])

execution times of a task τi are

Ci(`) =

Cn
i if ζi > `,

Co
i otherwise.

(1.1)

Mixed criticality enforcement. To ensure that no lower-criticality task prevents
a higher-criticality task from meeting its deadline, a scheduler could use the criticality
of a task directly as its scheduling priority. However, this would unnecessarily penalize
lower criticality tasks when the system is not overloaded.

Lakshmanan [63] gave an example with 2 tasks to illustrate this issue, which is shown
in Table 1.1 where the deadlines and periods of tasks are equal and the priorities are
assigned in rate-monotonic order (with higher priority assigned to higher frequency
tasks). Each task in the mixed-criticality model has two execution time specifica-
tions: worst case execution time under non-overload conditions (Cn) and an overload
execution budget (Co) which gives an upper bound for how much a task can be
overloaded.

Figure 1.1a shows that lower-criticality task τl misses its deadline under non-overloaded
conditions when the task priorities are assigned according to their criticality levels.
However, if the rate-monotonic policy is used, both τl and τh can meet their dead-
lines as shown in Figure 1.1b. On the other hand, when τl is overloaded, the purely

2



rate-monotonic scheduling policy can lead to criticality inversion by allowing τl to
meet its deadline while the higher-criticality task τh misses its deadline (shown in
Figure 1.1c).

To improve the schedulability of lower-criticality tasks while preserving the mixed-
criticality scheduling guarantee, numerous theoretical approaches [95, 21, 39, 66, 19,
50] have been proposed. Despite their potential to improve schedulability of mixed-
criticality task sets, however, to date there has been no practical comparison of the
system schedulability or run-time implementation overhead implications for these dif-
ferent approaches. In addition, some of the proposed mixed-criticality scheduling ap-
proaches contain unresolved issues which can affect the correctness of system schedu-
lability analysis. In Chapter 3, we discuss the details of existing mixed-criticality
approaches, their issues, and how we can improve them.

1.2 MCFlow

Real-time middleware, which is software that mediates the interactions between real-
time applications and operating systems that support them, offers a potentially suit-
able setting in which to implement and evaluate diverse mixed-criticality real-time
scheduling approaches. However, as computers have evolved from uni-processor
to multi-core platforms, traditional real-time distributed middleware such as RT-
CORBA has not kept pace with that evolution. For example, traditional real-time
middleware requires explicit concurrency management and synchronization control
which may scale poorly as the number of cores in a host increases.

The emergence of multi-core platforms also makes new applications, such as high
fidelity real-time testing of civil structures [87], possible through parallel execution
of subtasks of computations. As was noted in [92, 54], for example, the scale of
civil structures such as buildings and bridges often makes it infeasible to test them
fully through empirical techniques alone so that rate dependent physical elements
often must be integrated with complex numerical computations, for which parallel
execution of their subtasks is crucial to meet timing (e.g., to preserve realistic physical
dynamics) and scalability constraints.

3



A new generation of real-time middleware is thus needed that can support and opti-
mize parallel execution of subtasks from multiple (potentially mixed-criticality) real-
time tasks, in distributed systems spanning multiple hosts and multiple processor
cores within each host. The contributions of this dissertation are implemented within
MCFlow, a middleware designed specifically to: (1) execute and coordinate mixed-
criticality directed acyclic graphs of soft real-time subtasks efficiently and in parallel
across multi-core processors; (2) provide a simple and intuitive programming model
within which an application’s subtasks may be implemented and inter-connected in
a type-safe manner according to their data dependences and other precedence con-
straints; (3) facilitate system integration and deployment through automatic code
generation from a deployment plan specification; and (4) provide mechanisms needed
to implement and evaluate a wide range of mixed-criticality scheduling policies.

1.3 System Model

We consider a distributed real-time environment consisting of a collection of hosts.
Each host may have one or more processor cores, and the hosts are connected by a
common network. We consider distributed real-time applications made up of tasks,
each of which can be represented as a directed acyclic graph (DAG) in which the ver-
texes of each DAG represent subtasks and the edges represent precedence constraints
among the subtasks. We say that the subtasks from the same task are dependent
due to their precedence constraints (e.g., a subtask may depend on data output by
other subtasks for its inputs). In our system model, the subtasks may be allocated
freely to different cores on different hosts. Thus, dependences between subtasks may
need to be enforced within a single processor core, between cores on the same host, or
between hosts. We use the term team to denote a set of dependent subtasks allocated
on the same host, which belong to the same end-to-end task.

As Figure 1.2 illustrates, an initial subtask does not depend on any other subtask,
an intermediate subtask has at least one other subtask on which it depends and at
least one other subtask that depends on it, and a terminal subtask has no other
subtasks that depend on it. Our system model allows tasks to have multiple initial,
intermediate, and terminal subtasks, so that arbitrary DAGs are supported.
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subtasks

intermediate
subtasks

terminal
subtasks

initial
synchronizer
(optional)

terminal
synchronizer
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Figure 1.2: Task model in MCFlow

However, to meet application synchronization requirements or even to simplify anal-
ysis, for many systems it may be useful to consider the common special cases where a
task has a single initial subtask, a single terminal subtask, or both. The component
encapsulation model and middleware architecture discussed in Sections 2.1 and 2.2
make it straightforward to adapt any general task DAG to have a single initial sub-
task and a single terminal subtask by connecting an optional initial synchronizer
subtask to the task’s initial subtasks, and connecting the task’s terminal subtasks to
an optional terminal synchronizer subtask, as shown in Figure 1.2. For simplicity, we
henceforth assume that each task has a single initial subtask and a single terminal
subtask, unless stated otherwise.

1.3.1 Mixed-Criticality Uniprocessor Systems

In this subsection, we present the mixed-criticality task model for a single processor
in a single host as was formalized by [50] and explain related terms and concepts that
are used in this dissertation.

We consider a system which consists of a set of mixed-criticality (MC) recurrent tasks
scheduled preemptively on a single processor. Let L be a positive integer indicating
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the number of confidence levels in the system. A mixed-criticality recurrent task is
defined as a 4-tuple: τi ≡ 〈Ti, Di, Ci, ζi〉, where

• Ti ∈ R+ is the period of τi.

• Di ∈ R+ is the relative deadline of τi; we assume Di ≤ Ti unless otherwise
specified.

• ζi ∈ {0, 1, 2, · · · , L− 1} is the criticality level of τi with larger value indicating
higher criticality.

• Ci ∈ RL
+ is a vector of worst case execution time (WCET) estimations of τi in

each confidence level. An estimation of a higher confidence level represents a
more pessimistic estimation. That is, the constraint Ci(`1) ≤ Ci(`2) holds if
`1 < `2.

Each mixed-criticality recurrent task τi consists of an infinite number of jobs, where
each MC job τi,j can be characterized by a 4-tuple: τi,j ≡ 〈ai,j, di,j, Ci, ζi〉, where

• ai,j ∈ R+ is the arrival time of τi,j.

• di,j ∈ R+ is the deadline of τi,j with the constraint di,j = ai,j +Di.

• ζi ∈ {0, 1, 2, · · · , L− 1} is the criticality level which inherits from τi.

• Ci ∈ RL
+ is a vector of worst case execution time estimations of τi,j in each

confidence level, inheriting from the WCET vector of τi.

A mixed-criticality recurrent task τi is called periodic if every two consecutive jobs
τi,j and τi,j+1 satisfy the condition ai,j+1 = ai,j+Ti. A mixed-criticality recurrent task
τi is called sporadic if any two consecutive jobs τi,j and τi,j+1 satisfy the condition
ai,j+1 ≥ ai,j + Ti.

Given a collection of jobs, we say that the behavior of the jobs is criticality-λ if none of
the execution times of any job τi,j exceeds Ci(λ). Under a given scheduling algorithm,
a job τi,j is schedulable if and only if for any possible criticality-λ behaviors of the
system τi,j always completes before its deadline. A task τi is schedulable if and only
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if all the jobs released by τi are schedulable. A mixed-criticality system is schedulable
if and only if all the tasks in the system are schedulable.

1.3.2 Mixed-Criticality End-to-End Systems

We consider distributed real-time applications made up of end-to-end tasks, each of
which consists of subtasks and can be represented as a directed acyclic graph (DAG) in
which the vertexes of each DAG represent subtasks and the edges represent precedence
constraints among the subtasks. We call a real-time system a mixed-criticality end-
to-end system if it occupies of more than one processor and has end-to-end tasks of
different criticalities. The following definitions further explain the mixed-criticality
end-to-end model.

• The system consists of a set of processors and a set of tasks.

• Each task τi consists of a set of subtasks τi,1, τi,2 · · · τi,n which forms a chain
where τi,j+1 is directly dependent on τi,j 1.

• Subtasks are statically assigned to processors: given a subtask τi,j, we use the
notation Pr(τi,j) to represent the processor to which τi,j is allocated. Given a
processor PRk, we use τi,j ∈ PRk to represent the relation that τi,j is allocated
to processor PRk.

• Each task τi is periodic, with a period Ti and a criticality level ζi. That is, all
subtasks of τi share the same period and criticality level. In addition, each task
has a relative end-to-end deadline Di, by which the last subtask in the chain
must complete its execution.

• Each task τi has a criticality level ζi.

• Each subtask τi,j has a set of worst case execution times Ci,j(ζi) for each criti-
cality level.

1The analysis can be extended to tasks in which subtasks form an acyclic graphs with the help of
longest path traversal in graphs. We avoid discussing such extensions for simplicity of presentation.
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• Resource sharing between subtasks is not explicitly considered. If resource
contention arises between subtasks of the same processor, the priority ceiling
protocol [86] can be used to bound the blocking factor which can then be added
to the scheduling analysis.

When processors are connected via a network, the cost of communication must be
explicitly considered. In the simplest case, the maximum communication delay can be
directly added to the worst execution time and overload budget. If multiple subtasks
share the same processor and a dedicated DMA controller is used for the network
communication in the processor, one can use critical sections to model the access to
the controller and again adopt the priority ceiling protocol [86] to bound the blocking
time. If a prioritized shared bus is used communication, the bus itself can be modeled
as a processor with multiple subtasks executed on it.

1.4 Basic Middleware Requirements

In this section we describe requirements for the design and implementation of real-
time middleware for dependent task graphs on multi-core platforms. These require-
ments fall into three main categories: encapsulation, which guides the component
design presented in Section 2.1, and real-time capabilities and performance optimiza-
tion which motivate the middleware architecture presented in Section 2.2.

Encapsulation Real-time middleware must provide suitable mechanisms to encap-
sulate subtasks (hide unneeded details while revealing other necessary ones), under a
model to which schedulability analysis can be applied readily. In addition, real-time
middleware must separate distinct application concerns so that they can be config-
ured independently. To facilitate software reuse, the subtask implementation should
be independent from the graph topology. That is, a subtask implementation should
be agnostic to whether another subtask is upstream or downstream from it, or to
how many immediate upstream or downstream subtasks it has. Subtasks should be
encapsulated to provide location transparency so that the communication between
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subtasks is independent of how a subtask implementation obtains its input or gener-
ates its output. Deadlines and other constraints should be specified separately and
used by the middleware rather than being entangled within the subtasks’ implemen-
tations. Type safety also must be enforced between subtasks, i.e., the data sent from
an upstream subtask must be acceptable to its downstream subtasks.

Real-time capabilities We adopt a fixed priority periodic task model under which
real-time middleware must provide ways to specify subtask priorities and strictly en-
force them when dispatching subjobs, including avoiding any possible priority inver-
sions. In addition, a release guard protocol [91] is used to avoid scheduling anomalies
due to subjob release time jitter. The release guard protocol thus enforces an in-
dividual release time for each subjob, according to the system model described in
Section 1.3.

Performance optimizations In addition to the requirements for encapsulation
and real-time capabilities, which are common to most kinds of real-time middleware,
the following optimizations are specific for dependent task graphs running on dis-
tributed multi-core platforms. First, empirical studies [23, 98] have shown that the
costs of thread migration on a multi-core platform can be unpredictable and can in-
troduce meaningful overhead. Therefore, the middleware architecture should avoid
thread migration if possible. Second, memory sharing among threads may require ex-
tensive synchronization and locking control, and may experience unpredictability and
additional costs because of cache effects. Third, since resource allocation and deal-
location times can be large and unpredictable, real-time middleware should provide
suitable interfaces for reserving required resources in advance to avoid unnecessary
resource allocation or deallocation. In addition, the middleware should be able to
customize communication between subtasks on the same core or on different cores of
the same host, rather than always using common inter-process communication (IPC)
mechanisms such as sockets or pipes which can incur larger and more variable delays.
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1.5 Contributions of This Work

The primary contribution of this work is a practical implementation and evaluation
of different mixed-criticality scheduling approaches, atop a real-time capable version
of the commonly available Linux operating system. To our knowledge this is the
first system implementation and comparative evaluation of different mixed-critical
scheduling approaches for periodic tasks. Specifically, our contributions are six-fold.

• Extensions and improvement of the zero-slack scheduling algorithm and analysis
to (i) accommodate execution of tasks beyond their deadlines and (ii) refine
the calculation of zero-slack instants to account for forms of interference not
considered in previously published analyses.

• Improved scheduling analysis for fixed-task priority and fixed-job priority mixed-
criticality scheduling approaches. Especially, our schedulability evaluations
show that our improved analysis can greatly enhance the schedulability of fixed
job priority mixed criticality task sets.

• Simulations of schedulability under different approaches to mixed-criticality
scheduling, which show that fixed-job priority based mixed-criticality scheduling
algorithms provide best schedulability. However, they do not dominate other
approaches in the distributed end-to-end cases.

• A specially designed middleware, MCFlow, to help the development of real-time
applications with mixed-criticality end-to-end task sets on multicore platforms.
MCFlow provides an efficient component model through which computations
can be configured flexibly for execution within a single core, across cores of
a common host, or spanning multiple hosts. Application components do not
need to be modified in order to cope with the different synchronization mecha-
nisms between cores or hosts when the allocation of subtasks to CPUs changes.
MCFlow does this for them transparently, and also enforces a strict separation
of timing and functional concerns so that they can be configured independently.
MCFlow provides a novel event dispatching architecture that where possible
uses lock free algorithms to reduce memory contention, CPU context switch-
ing, and priority inversion. To our knowledge, no other real-time middleware
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is specifically designed to support directed acyclic real-time task graphs in dis-
tributed platforms consisting of multi-core hosts or to support mixed-criticality
task scheduling.

• Our empirical evaluation of MCFlow in comparison to TAO [57], a widely used
standards-based middleware for distributed real-time applications, shows that
MCFlow performs comparably to TAO when only one core is used, and out-
performs TAO when multiple cores are involved, due to the multi-core specific
optimizations available in MCFlow.

• Our further evaluation of mixed-criticality scheduling atop MCFlow, which
demonstrates a wide-range of mixed-criticality scheduling policies can be re-
alized efficiently and effectively in real-time middleware. Our results show that
the mixed-criticality scheduling approach with highest run-time cost imposes
only 0.3% additional overhead, which demonstrates the viability of such ap-
proaches in practice.

1.6 Dissertation Organization

This dissertation is structured as follows.

In Chapter 2, we introduce the general architecture of MCFlow. We discuss (1) how to
map end-to-end tasks into MCFlow component model, (2) the interfaces of MCFlow
components, (3) how MCFlow enforces type safety and (4) MCFlow deployment plans
which specify interconnections between user defined components, and a configuration
tool to generate programs from a deployment plan. Next, we describe key design and
implementation details of MCFlow. MCFlow’s dispatching subsystem, which enforces
real-time execution of subtasks, is in particular a notable advance in the state of the
art in real-time middleware design. We conclude the chapter with experiments that
evaluate MCFlow’s performance and validate its design and implementation.

In Chapter 3, we discuss the mixed criticality scheduling of periodic or sporadic tasks
on uniprocessor and end-to-end systems. First, we introduce a classification of existing
mixed-criticality scheduling approaches on uniprocessor systems. Next, we present
existing mixed-criticality scheduling approaches in detail and discuss unresolved issues
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in some of those approaches. We then provide improvements to address those issues.
Last, we focus on scheduling mixed-criticality end-to-end tasks in distributed real-
time systems where a task may span several processors or hosts with precedence
constraints. Most of the mixed-criticality scheduling approaches for uniprocessors
need certain adaptations before they can be applied to end-to-end tasks. We discuss
those adaptations for the end-to-end task model, and what modifications are needed
to the analysis of mixed-criticality scheduling on uniprocessors before it can be applied
to end-to-end systems.

In Chapter 4, we present an evaluation of different approaches to mixed-criticality
scheduling in terms of task schedulability. Subsequently, we describe mixed critical-
ity support in MCFlow and an evaluation of enforcement mechanisms for the various
mixed-criticality scheduling approaches. Chapter 5 surveys related work and Chap-
ter 6 summarizes the contributions of this dissertation and offers concluding remarks.
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Chapter 2

Basic MCFlow Design and
Performance Evaluation

MCFlow is a distributed real-time middleware specially designed to support the de-
velopment of mixed-criticality end-to-end tasks running on multi-core platforms. In
this chapter, we introduce the component models used by MCFlow and how the
model facilitate the separation of timing and functional concern so they can config-
ured independently. Next, we discuss the general architecture of MCFlow and various
optimizations to inter-component communications. Finally, we conclude this chapter
with empirical evaluations of MCFlow under the traditional (i.e., single criticality)
real-time environment.

2.1 Encapsulation via Components

As we have described in Section 1.4, real-time middleware must provide suitable
mechanisms to encapsulate subtasks under a model to which schedulability analysis
can be applied readily. To address the encapsulation requirement, MCFlow provides
a component model within which subtask implementations written by application de-
velopers are encapsulated. Unlike other popular component middleware approaches,
in which an abundance of features comes at a significant cost in code size and poten-
tial run-time overhead and jitter, MCFlow takes a minimalist approach in which each
component is a class that must specify only its inputs, outputs, configuration param-
eters, and runtime execution code. Conceptually, each component is an object with
special interfaces that determine how its input and output types should be initialized.
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«component»
Source

+ typename config_type
+ typename output_type

+ Source(conf : config_type*)
+ init_output(out : output_type&)
+ do_work(out : output_type&)

«component»
Sink

+ typename config_type
+ typename input_type

+ Sink(conf : config_type*)
+ init_input(in : input_type&)
+ do_work(in : input_type&)

«component»
Intermediate

+ typename config_type
+ typename input_type
+ typename output_type

+ Sink(conf : config_type*)
+ init_input(in : input_type&)
+ init_output(out : output_type&)
+ do_work(in : input_type&, out : output_type&)

Figure 2.1: MCFlow component model

Unlike traditional object oriented frameworks, MCFlow does not enforce any inheri-
tance hierarchy on the components but rather uses interface polymorphism based on
template wrapper classes to encapsulate subtasks so that they can be invoked directly
by a dispatcher as described in Section 2.2.3.

Components in MCFlow are classified into three categories (source, intermediate
and sink) depending on whether they generate output and/or consume input data.
Every component must provide an associated type called config_type and a con-
structor that accepts a pointer to its config_type. This allows developers to control
the initial states of their components, such as the maximum size of a matrix or the
parameters of a differential equation. The values of these configuration parameters
are provided by a deployment plan as is described in Section 2.1.4.
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2.1.1 Component Interfaces

MCFlow is designed to support both real-time performance and flexible component-
based design. As described in Section 1.4, dynamic memory allocation may introduce
high cost and jitter, and yet to forbid the use of dynamic memory at all could seriously
impact the flexibility of component design. One standard way to address this issue is
to estimate an upper bound on the size of memory required overall, and to preallocate
enough memory at initialization time.

This rationale gives rise to the design of MCFlow’s component interface: the separa-
tion of input and output initialization from the construction of the component. An
application can utilize the config_type to set the memory size at configuration time.
The input and output initialization interfaces allow MCFlow to provide appropriately
sized (e.g., as in [24]) input and output ring buffers that support the optimizations
described in Section 2.2.2. The separation of input and output initialization pro-
vides greater freedom for the framework to optimize the input and output buffers
without complicating the component interface itself. Notice that whether to use
a maximum memory reservation strategy at component initialization time or to use
dynamic memory allocation is left to the discretion of the application developer. For
systems with more stringent timing constraints advance reservation may be appropri-
ate, while for applications with looser constraints the flexibility offered by dynamic
memory allocation may be the dominant concern. MCFlow provides a convenient
interface so that a developer can choose which memory allocation strategy to use
based on the specific requirements of their application.

MCFlow application components are written in C++. To provide type safety, increase
reusability, and avoid the overhead of virtual function calls, MCFlow does not enforce
any inheritance hierarchy on the components but rather uses interface polymorphism
based on template wrapper classes to encapsulate subtasks so that they can be invoked
directly by a dispatcher as is described in Section 2.2.3.

Consider, for example, an intermediate component that may compute a Fast Fourier
Transform (FFT). Note that without optimization such a component could lead to
extensive memory movement among input and output buffers. There are two po-
tential sources of such memory copying. First, an upstream subtask must copy its
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Program 1 Example Intermediate Component
struct FFT_Component
{

// declare parameters for component
// configuration
struct config_type {

int max_size;
};

using std::vector;
typedef vector<double> input_type;
typedef vector<double> output_type;

FFT_Component(config_type* conf)
: max_size_(conf->max_size){}

// used to initialize input buffer
void init_input(vector<double>& i)

{ i.reserve(max_size_); }

// used to initialize output buffer
void init_input(vector<double>& o)

{ o.reserve(max_size_); }

// used to define component behavior
void do_work(vector<double>& input,

vector<double>& output)
{ ... }

int max_size_;
};
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output result to the input buffer of its downstream subtask. Second, the downstream
component may write to its own output buffer even if it can reuse its own input buffer.

Program 1 shows an example of an intermediate component that computes a Fast
Fourier Transform (FFT).

One solution to this problem is to define the input and output types as pointers
instead of value types. However, that would require both upstream and downstream
components to change their declarations to use pointers. Declaring the input_type

or output_type to be a reference is not an option, because a reference type in C++
is not default constructible or reassignable; for example it could cause compiler errors
if the framework tried to create an array of references. To address this issue, MCFlow
provides a simple template wrapper class ref_t that encapsulates a pointer so that
it is reassignable and can be implicitly converted to a reference type.

In Program 1, if we change the line typedef vector<double> input_type to typedef
ref_t<vector<double> > input_type, memory copying from the upstream subtask
to the downstream subtask can be avoided. If we also change the output_type type-
def and the second parameter of do_work to use the ref_t type and write output =

input; as the last statement of the do_work function, we can achieve the effect of
in-place memory modification.

2.1.2 Interface Type Safety

MCFlow also enforces compatibility of output and input between subtasks through
its component interfaces. For example, the connection between two components is
only valid if the upstream component’s output type for that connection is assignable
to the downstream component’s input type. To overcome a potential limitation with
this approach on the reusability of components, MCFlow also allows adapters for
component connections to be specified. An adapter is a C or C++ function that
takes the output of an upstream component and coverts it into the input of a down-
stream component. MCFlow’s connection ports are essentially data members of the
user defined types named input_type or output_type within each component class.
Instead of copying the entire output from an upstream component to a downstream
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component, a port allows the application developer to selectively connect part of an
upstream component’s output to all or part of a downstream component’s input as
long as the connection is type safe.

Since we allow components to share memory via their input and output interfaces, the
lifetime of the validity of the shared memory becomes a potential issue. In MCFlow,
each job execution is implicitly associated with a sequence number. The major pur-
pose for the sequence number is to index the corresponding ring buffer for input and
output queues. As long as the queue size is greater than the maximum pipeline level
of any end-to-end task, the output data of the first subtask won’t be overwritten until
the last subtask of the end-to-end task has finished its work. Therefore the memory
passed from an upstream subtask will always be valid until it finishes executing its
current job. However, it is not safe to save the pointer to the memory and use it for
the next occurrence of the job. In that case, the component should always copy the
memory buffer’s contents into its local state variables.

2.1.3 Component Communication

One of the most important features of MCFlow is that it allows communication
between components to be automatically optimized regardless whether it involves
intra-core, inter-core or network communication. Communication is implemented by
a set of template wrapper classes for the components. These wrapper templates
are highly modular and are specialized for different categories of components and
their supported communication schemes. Table 2.1 shows the list of MCFlow wrap-
pers for components. The source_worker, intermediate_worker and sink_worker

are designed specifically for source, intermediate and sink components respectively.
The servant_worker and proxy_worker templates are used for receiving and send-
ing network messages. The interthread_preparer, intrathread_preparer and
servant_preparer listed on the first row of Table 2.1 are used to customize and po-
tentially optimize how a component gets its input. For example, the C++ expression
intermediate_worker<FFT_Component, interthread_perparer> represents a sub-
task which accepts input and produces output when none of the communication with
its upstream subtasks is through the network. If the inputs were from the network
instead of intra-host communication, we would change the second template parameter
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Table 2.1: Valid preparers for MCFlow worker components

interthread_preparer intrathread_preparer servant_preparer

source_worker
intermediate_worker

√ √ √

sink_worker
√ √ √

servant_worker
√

proxy_worker
√

to be servant_preparer. Based on (1) the type of each component a wrapper tem-
plate is designed for, and (2) the allowed type of inputs for the component, Table 2.1
shows the valid combinations to wrap a component class as a dispatchable subtask.

2.1.4 Deployment Plan and Code Generation

To make connections between subtasks even more transparent, MCFlow provides a
deployment tool which reads the specification of a deployment plan and generates
appropriate C++ source files and Makefiles according to its contents. A deployment
plan’s specification includes: (1) the hosts in the execution environment and their
network addresses; (2) all end-to-end tasks and the subtasks they contain; (3) for each
subtask the type of component used, the values for each field in the config_type, on
which host and core the subtask should be executed, and the priority of the subtask;
and (4) the connections between the subtasks.

2.2 Middleware Architecture

MCFlow enforces a crucial separation of concerns between its task management and
dispatching subsystems, as Figure 2.2 illustrates. The task management subsystem
creates, initializes and terminates the subtasks on each host. If a subtask throws
an unrecoverable exception, the task management subsystem releases all resources
previously acquired by that subtask’s team. The dispatching subsystem is designed
specifically to enforce real-time requirements and apply performance optimizations
discussed in Section 1.4. In particular, all threads in the dispatching subsystem, and
the memory resources they use, are strictly and unchangeably pinned to a specific
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Figure 2.2: MCFlow host architecture (the squiggly arrows represent threads)
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Figure 2.3: Example MCFlow initialization flow

priority and processor core. In both the task management and dispatching subsys-
tems, events (e.g., from network I/O) are demultiplexed onto threads using the Linux
epoll APIs according to the reactor architectural pattern [84] as is commonly the
case in other real-time middleware architectures [57].

2.2.1 Task Management Subsystem

The creation and destruction of subtasks in a host is done by the task management
subsystem. The host where an end-to-end task originates creates the subtasks as-
signed to it and issues initialization requests to other hosts in the system. Upon
acknowledgement from the downstream hosts, it activates its local task dispatching
subsystem to start real-time execution of the end-to-end task. Figure 2.3 shows an
example initialization process for an end-to-end task with 5 subtasks spanning 3 hosts.

Termination of each end-to-end task is executed at its real-time priority. This is to
ensure that all the subjobs have stopped executing and their subtasks can be safely
deallocated. Termination may be initiated either by an upstream data source or
by run-time exceptions from downstream subtasks. During team termination, the
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team manager first sends a termination request to all the downstream subtasks, to
be executed at their real-time priorities. Upon receiving the termination request, a
subtask will stop accepting any new inputs and will pass the request to its successors.
In addition, it sends an asynchronous notification2 to the team manager to indicate
that the subtask has stopped. Once the team manager receives all notifications from
all subtasks in the team, it can deallocate resources reserved for the team.

2.2.2 Dispatching Subsystem

The dispatching subsystem prioritizes execution of subtasks using priority lanes as is
shown in Figure 2.4. Each priority lane is a collection of threads which are allowed
to share resources without contributing to priority inversion [80]. Instead of using a
dedicated thread with a fixed priority to receive IPC messages, it allocates multiple
threads to receive and handle messages at different priorities. Each supplier or con-
sumer in the figure represents an upstream or downstream subtask, and each proxy
or servant actually sends or receives data through an IPC channel. Priority lanes
are widely used to avoid inter-process priority inversion, though different inter-thread
communication (ITC) mechanisms may be used to deliver messages from servants to
consumers.

For example, TAO’s Real-Time Event Service [51] uses the ITC mechanism shown in
Figure 2.5 to support event multicast, filtering, and correlation, through queues for
consumers at different priorities within a single processor.

To support allocation of threads onto multiple processors, MC-ORB [98] uses a half-
sync/half-async concurrency architecture [84] for receiving network requests, in which
a dedicated thread decides in which core and at which priority each request should
be handled, and then pushes each request to a designated thread pool as is shown
in Figure 2.6. This supports thread migration and allows adaptive run-time load
balancing of subtasks, but suffers two additional context switches for each subtask
(in contrast to our system model in which requests are delivered directly to subtasks),
which may impact timing guarantees especially with large numbers of subtasks.

2We use an eventfd that is provided by the current Linux kernel for lightweight event notification;
it is also possible to implement asynchronous notification using a pipe in an older kernel, but with
a higher cost.
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MCFlow instead relies on static task allocation at configuration time so that it can op-
timize inter-thread communication. For each subtask Ti,j, every subtask in Pre(Ti,j)
is given a distinct network address and identifier for the host and core where Ti,j
should be run. The network request is then delivered directly to the appropriate
core, rather than going through an intermediate thread to dispatch the request. This
design choice allows efficient dispatching of network events without the extra context
switches in MC-ORB.

Neither TAO’s Real-Time Event Service nor MC-ORB optimizes inter-core commu-
nication, and therefore the data exchanged between subtasks must be marshaled and
demarshaled even if the suppliers and consumers are on the same host. This can
be very inefficient if a large amount of data needs to be exchange among dependent
subtasks, which is a common case for computations like the numeric simulations men-
tioned in Section 1.2. Other alternatives like direct function calls passing native C++
pointers or reference counted smart pointers are possible within a single process, but
they may reduce parallelism and incur variable costs for dynamic memory allocation
and deallocation.

To alleviate the need for either data marshaling and demarshaling or memory alloca-
tion and deallocation, MCFlow uses the novel ITC mechanism shown in Figure 2.7.
Unlike TAO’s Real-Time Event Service or MC-ORB where consumer side queues are
shared, in MCFlow each consumer has its own type-specific input queue and each
supplier has its own type-specific output queue. Since both input queues and output
queues are type-specific, data can be copied directly between them in a type-safe
manner without marshaling and demarshaling.

MCFlow uses a simple lock free ring buffer to avoid mutex synchronization. If a
consumer has multiple suppliers, the consumer will be dispatched if and only if all its
suppliers have copied data into its input queue. Each entry in the consumer queue
may have multiple data fields, where each field is used for a specific supplier as shown
in Figure 2.8.

To synchronize data merging from multiple suppliers, each job has a sequence number
that indexes the input and output queues. The supplier queues are also implemented
as ring buffers, and use this index to retain the data for as long as the consumers
need it. A sufficient size for the supplier queue can be calculated automatically [24] by
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the deployment tools described in Section 2.1.4, from the supplier subtask’s relative
deadline, its period, and the depth of the task graph in that host. The memory passed
from an upstream subtask moves from queue to queue but will always be valid until
the current job finishes execution. MCFlow also ensures that no two elements in a
supplier or consumer ring buffer share the same cache line, by padding each element
in the buffer so that its size is a multiple of the hardware cache line size, which thus
avoids the false sharing problem [30] for access to the buffer.

2.2.3 Subtask Release Mechanism

In MCFlow a dispatcher coordinates all subtasks allocated to a specific core at a
particular priority. As Figure 2.2 illustrates, each dispatcher has an associated de-
multiplexor for passing subtask invocation requests to it (according to the reactor
architectural pattern [84] in which asynchronously arriving events, e.g., for network
I/O, are demultiplexed by invoking specific event handlers that have registered to
receive those events). In MCFlow subtasks are dispatched in this manner, and a
demultiplexor can be configured either with a single thread (in which case the differ-
ent subtasks are dispatched sequentially in FIFO order) or using the leader/followers
pattern [84] with multiple concurrent threads waiting for events. The leader/followers
configuration can be especially useful when subtasks can block in certain system calls.

Each dispatcher also manages a FIFO subtask queue and a timer queue to control
when each subtask can be executed. When a subtask finishes its execution, it copies
its outputs to the input queues of its immediate downstream subtasks, as described
in Section 2.2.2, and then inserts those subtasks into the subtask queues of their
corresponding dispatchers. After that, it sends asynchronous notifications to their
designated demultiplexors. Once a demultiplexor thread picks up the notification,
it processes the notification in the following steps: (1) the thread pops a subtask
from subtask queue; (2) the thread checks whether the popped subtask is still being
processed (by reading an atomic in-processing flag); this step is required when the
leader/followers pattern is applied; in this case, multiple threads exist for the same
core/priority and two subjobs may be executing concurrently if one thread is still
processing a subjob when another notification is sent and is picked up by another
thread; (3) if the subtask is not being processed, the thread then checks whether
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the subtask is periodic and whether the release time for the subtask has expired;
(4) if the release time has expired, the in-processing flag is set and the subtask is
executed in the thread; otherwise the subtask is inserted into the timer queue, to be
executed when the timer expires; (5) after the subtask finishes executing, it checks
whether there are more inputs to be consumed and keeps executing until no inputs
are available; (6) the in-processing flag is cleared before the thread waits again for
events.

Step 3 is required to enforce release-guard semantics [91] across distributed or multi-
core systems so that intervals between release times of jobs in any subtask are never
less than the period of the subtask [69]. Besides waiting for the period boundary
before the next subjob of a subtask can be executed, the release-guard protocol also
allows a subjob to be executed earlier than the periodic boundary when the CPU
becomes idle. To implement this feature, another idle thread with the lowest real-
time priority for each CPU waits on a prioritized demultiplexor. Whenever the timer
queue size changes, the dispatcher sends a notification to the idle thread with the new
size of the queue. The idle thread can only receive those notifications when there are
no other real-time subjobs executing in the CPU. Once the idle thread receives the
notification, it will then send an idle notification to the highest priority dispatcher
that has a nonzero timer queue size. That dispatcher will then dispatch the subtask
with the earliest expiration in its timer queue. The dispatching scenario is similar
for network triggered subtasks. In this case, the subtask is notified directly upon
readability of the socket instead of upon the receipt of an asynchronous notification.

2.3 Performance Evaluation

In this section, we evaluate the performance of MCFlow for dispatching real-time
subtasks in parallel. We examine the end-to-end latency for a single flow application
and the deadline miss ratios for a multi-flow application.

Of the alternative middleware architectures discussed in Section 2.2.2, we compare
MCFlow to TAO [57] RT-CORBA object request broker, to judge how much of an
improvement MCFlow offers compared to a state of the art real-time middleware for
distributed real-time systems. We chose TAO as a baseline because it is widely used
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and is reasonably representative of other real-time ORBs such as nORB [90] and
MC-ORB3 [98].

In Section 2.3.1, we evaluate how well MCFlow can reduce the latency of a basic
distributed real-time task with dependent parallel subtasks. Section 2.3.2 describes
experiments designed to examine MCFlow’s ability to parallelize subtasks across dif-
ferent number of cores. The multi-flow experiments in Section 2.3.3 evaluate how well
MCFlow enforces priorities among different tasks.

The experiments described in this section were performed on two 6-core Intel core i7
980 3.3GHZ CPUs with hyper-threading enabled. Both machines ran Ubuntu Linux
10.04 with the 2.6.33-29-realtime Kernel (with the PREEMPT_RT Patch [82]). In
this section, we use CPUs to refer to the number of logical processors recognized by
the operating system, rather than the number of physical cores.

Tω

Tα

Tm

Ts

T0 T1 Tn−1

CPU0 CPU0 CPU1 CPUn−1

· · ·

Client Server

Figure 2.9: Single task experiment setup

We measure the latency of an end-to-end task spanning two hosts, as is shown in
Figure 2.9. The server receives data from a client and splits the subtask computations
onto a number of CPUs, merges their output into a combined result, and sends it

3While MC-ORB supports core-specific assignment of threads, it also may migrate threads dy-
namically to balance utilization at run-time, which would violate our system model assumptions
described in Section 1.3.
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back to the client. To evaluate how computation splitting itself affects performance,
we vary the number of subtasks and the number of CPUs used together. We use Tα
and Tω to represent the data source and sink subtasks on the client; Ts and Tm to
represent the data splitting and merging subtasks on the server; and Ti (where i = 0

to n − 1) for the parallel subtasks on the server. The data transmitted from Ts to
each Ti, and from each Ti to Tm are 64 bytes long. The data transmitted from Tα to
Ts and from Tm to Tω are 64n bytes long. No extra computation is done in Tα and
Tω. The computation times for parallel subtasks T0 throughTn−1 and also Ts and Tm
are all 5 µs.

2.3.1 Latency Comparison

We compare the latency of these applications using MCFlow and TAO. The MCFlow
version has two configurations: the first uses all of the optimizations described in
Section 2.2, while the second configuration (denoted MCSock) uses only sockets for
inter-component communication. These configurations are compared to examine how
much the inter-core communication optimizations can improve system performance.

The TAO version also consists of two different configurations. The first uses one ORB
per CPU (denoted as TAO-MORB), with each ORB allocated only one thread. Each
thread is pinned to a particular CPU to avoid migration. All subtasks are assigned to
their corresponding ORBs. The collocation strategy [79] used for this configuration is
“per-ORB” which means the requests are optimized to use direct function calls when
the caller and callee are registered with the same ORB. The second configuration
uses the leader/followers pattern with only one ORB per application and n threads
(denoted as TAO-SORB). In this configuration, a subtask can’t be run on a fixed
CPU. No collocation optimization is used for this configuration; if it did, all CORBA
invocations would become function calls and thus the entire server could only run in
one thread.

Figure 2.10 shows the average time from when Ts receives a request to when Tm sends
a reply. Figure 2.11 shows the average time from when Ts finishes its own computation
to when Tm receives the last message from any Ti,∀i = 0, · · · , n− 1. The error bars
in each of these figures show the (small) standard deviation for each data point.
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Figure 2.10: Average server response time latency per invocation
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Figure 2.11: Average parallel subtask release to termination latency per invocation

30



Figures 2.10 and 2.11 show little difference in performance for MCFlow and TAO-
MORB when there is only one CPU. However, the latency for each point along the
TAO-MORB curve grows far faster than its MCFlow counterpart as the number of
cores onto which tasks are split increases. Both MCSock and TAO-MORB use sockets
as their only mechanism for inter-core communication, and thus the gap between
MCSock and TAO-MORB stems from factors other than inter-core communication.
This difference is due at least in part to the smaller memory and CPU footprint
of MCFlow compared to TAO since as we note in Section 2.2.2, MCFlow avoids
marshaling and demarshaling and other unnecessary features within a single host. In
our testing, the sizes of the client and server versions of MCFlow were 700K and 718K
bytes; the sizes for TAO were 1793K and 2072K bytes. In addition, the TAO version
requires ancillary dynamic link libraries to run while MCFlow requires nothing but
the standard libstdc++.

Notice that the single ORB version of TAO always performs worse than the per CPU
ORB version: because an ORB maintains resources that need to be synchronized
among threads, using only a single ORB may incur significant synchronization over-
head. In contrast, the per CPU ORB version duplicates resources to each CPU and
thus avoids such resource contention, much in the way MCFlow duplicates resources
as we noted in Section 2.2.
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Figure 2.12: Round trip latency comparison
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Figure 2.12 shows the average time measured in the client from when Tα sends a
request until when Tω receives a reply. The results shown in Figure 2.12 demonstrate
that end-to-end latency differences between MCFlow and TAO are small with between
one to four CPUs. This is largely because the round-trip network communication
cost dominates the end-to-end latency. However, as the number of parallel subtasks
increases MCFlow’s ability to parallelize real-time subtasks efficiently across cores
becomes the dominant factor.

2.3.2 Speedup Comparison

In the previous comparisons, we showed how the communication cost increases when
the same amount of data is being transmitted on each connection, so that the total
data size increases linearly with the degree of parallelism. The experiment in this
subsection uses a fixed workload which does not vary with the number of cores used,
and equally splits the work among cores to evaluate how workload spreading can
reduce the end-to-end latency.

The experiment setup is similar to that of the previous experiment; however, Ts
and Tm are only used to separate and merge data to and from the cores, and no
extra workload is generated in those two subtasks. A workload of roughly 1000 µs is
divided equally among n cores and processed by parallel subtasks T0 to Tn−1. The
data generated by Tα is 480 bytes long and is equally split among T0 to Tn − 1.

Figure 2.13 shows that with up to 6 CPUS, the response time for MCFlow and for
TAO with one ORB per CPU decreases when more cores are used, with MCFlow
again providing lower response times. However, there is a slight increase in response
times with more than 6 cores. This is due to the fact that our test machine is actually
a 6 core machine with hyper-threading enabled. The response time for the TAO Single
ORB configuration increases after 4 cores, again due to the higher synchronization
overhead mentioned in Section 2.2.
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Figure 2.13: Latency comparison server result

2.3.3 Real-Time Performance

We also designed the following experiment to examine how well MCFlow can preserve
the priority constraints of an application. In this experiment, we created end-to-end
tasks with three different priorities: high, medium and low. All the subtasks of the
high priority task have higher priority than those of the other two end-to-end tasks;
similarly, all subtasks of the low priority task have lower priority than those of the
other two.

Similar to the previous experiment, each end-to-end task spans two hosts and one
host is used for a client which only sends periodic requests to server. The server
again splits the workload onto multiple CPUs, merges the result and sends it back to
the client. In our experiment, all the client subtasks are on the same machine and all
server subtasks are on the other. The topology of each end-to-end task is similar to
Figure 2.9; however, different CPU assignments and workloads are used.

Table 2.2 shows the CPU assignment and the workload in µs for each subtask of
the high, medium, and low priority tasks. The frequencies of the high and medium
priority tasks are fixed at 200Hz and 100Hz respectively. We vary the frequency of
the low priority task and observe its effect on the rest of the system.
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Table 2.2: (CPU, workload in µs) for each task’s subtasks

High Med Low
Ts (0, 900) (1, 900) (2, 900)
Tm (0, 900) (1, 1800) (2, 900)
T0 (0, 1800) (0, 0) (0, 1800)
T1 (1, 1800) (1, 1800) (1, 900)
T2 (2, 1800) (2, 1800) (2, 4500)
T3 (3, 1800) (3, 1800) (3, 3600)

Table 2.3: Tasks deadline miss ratios

High Med Low
50 Hz 0 0 0
60 Hz 0 0 0
70 Hz 0 0 0.06
80 Hz 0 0 0.75
90 Hz 0 0 1.0

We assume the deadline of each task is equal to its period. The real-time performance
of the tasks in this experiment is summarized in Table 2.3. When the rate of the low
priority task is below 70 Hz, there are no deadline misses. With an increase in
the low priority task’s rate, it begins to miss deadlines but the other two tasks do
not. Similarly, the response times of the high and medium priority tasks, shown in
Table 2.4, remain stable even as the low priority task’s rate increases.

Table 2.4: Average response times in µs

High Med Low
50 Hz 3918 8127 14918
60 Hz 3929 8065 12615
70 Hz 3926 8063 12881
80 Hz 3931 8129 13574
90 Hz 3928 8045 18919
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Chapter 3

Mixed-Criticality Scheduling

In this chapter, we discuss the mixed criticality scheduling of periodic or sporadic tasks
on uniprocessor and end-to-end systems. First, we introduce a classification of existing
mixed-criticality scheduling approaches on uniprocessor systems. Next, we present
existing mixed-criticality scheduling approaches in detail and discuss unresolved issues
in some of those approaches. We then provide improvements to address those issues.
Last, we focus on scheduling mixed-criticality end-to-end tasks in distributed real-
time systems where a task may span several processors or hosts with precedence
constraints. Most of the mixed-criticality scheduling approaches for uniprocessors
need certain adaptations before they can be applied to end-to-end tasks. We discuss
those adaptations for the end-to-end task model, and what modifications are needed
to the analysis of mixed-criticality scheduling on uniprocessors before it can be applied
to end-to-end systems.

3.1 Classification of Mixed-Criticality Scheduling Ap-

proaches

In recent years, several algorithms and approaches have been published which focus on
the scheduling of mixed-criticality uniprocessor systems. In this chapter, we classify
these approaches according to their run-time enforcement mechanisms and means of
priority assignment. Run-time enforcement mechanisms determine how long a job
can execute and when a job should be aborted or terminate. Priority assignment
determines the precedence of execution among jobs which are eligible to run at any
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given time. Notice that run-time enforcement mechanisms and priority assignment
are not always orthogonal, as some run-time enforcement mechanisms can only be
coupled with certain priority assignment strategies.

3.1.1 Run-Time Enforcement Mechanisms

• Zero Slack Scheduling (ZSS): Each task has a fixed zero-slack instant which
is offset by a time interval relative to the release time of a job and is not
associated with the run-time progression of the job. A job which has not signaled
completion after its zero slack instant is said to be in critical mode. Whenever
a job enters its critical mode, all lower criticality tasks should be suspended. In
section 3.2, we discuss zero slack scheduling in detail.

• Period Transformation (PT): The periods of some tasks are equally divided into
several segments. The execution time of a task within a period is also equally
distributed into the segments to become the execution budgets of the task in
the segment.

• Static Mixed Criticality (SMC): all jobs of a task τi can execute up to their
representative execution time Ci(ζi), but are prevented from executing further.

• Adaptive Mixed Criticality (AMC): There is a system wide criticality level in-
dicator, initialized to 0. Whenever the criticality level indicator is κ, and there
exists a task τi which executes up to Ci(κ) without signaling completion, the
criticality level indicator is increased to κ + 1 and all tasks whose criticality
levels are less than or equal to κ would be prevented from execution.

3.1.2 Priority Assignment

The purpose of priority assignment is to determine which job has precedence when
more than one job is eligible for execution. According to [21], priority assignment
algorithms for a periodic or sporadic mixed-criticality system can be categorized into
three different classes: fixed task priority (FTP), fixed job priority (FJP) and dynamic
priority.
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Fixed Task Priority (FTP): For fixed task priority assignment, all jobs of the
same task are statically assigned the same priority. The most basic strategies for
FTP are rate monotonic (RM) and criticality monotonic (CM) which assign higher
priority to higher rate or higher criticality tasks, respectively. Other mixed-criticality
scheduling algorithms are also designed to assume a specific priority assignment strat-
egy. For example, zero slack scheduling is coupled with rate monotonic assignment;
period transformation chooses criticality monotonic assignment but transforms the
task periods so that it can behave in a rate monotonic fashion. Traditionally, in
rate monotonic scheduling (RMS) and criticality monotonic scheduling (CMS), their
respective priority assignment strategy is coupled with a run-time enforcement mech-
anism which allows jobs to executed up until they finish. In this dissertation, we will
follow this tradition (i.e., RMS=RM+SMC, CMS=CM+SMC) for the convenience of
our discussion.

Another notable strategy is Audsley’s priority assignment method which is based on
two important observations: (1) the response time of a task τi is determined if the set
of its higher priority tasks (Hi) is known, regardless of the relative priority ordering
within Hi; and (2) if a task is schedulable at a given priority level, then it remains
schedulable when it is assigned a higher priority. The algorithm operates in increasing
priority order, at each step selecting a task and, if it is schedulable, assigning it the
current priority and then moving to the next higher priority; otherwise, another task
is selected at the current priority level. The algorithm terminates when all tasks are
assigned priorities or when no remaining task is schedulable at the current priority.

Audsley’s approach can be coupled with SMC or AMC to improve schedulability over
RMS or CMS. However, Audsley’s approach requires scheduling analysis to check
whether a task can be schedulable at a given priority. Given a task τi, a scheduling
analysis is used to calculate the response time Ri of τi. If Ri is smaller than the
respective deadline Di of τi, then τi is considered schedulable.

For the rest of this dissertation, the acronym FTP will specifically refer to Audsley’s
priority assignment approach unless otherwise specified.
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For CMS, RMS and FTP-SMC, the response time R∗i of a task τi is τi’s worst case
execution time Ci(ζi) plus the ζi confidence level time demand for Hi; i.e.,

R∗i = Ci(ζi) +
∑
τj∈Hi

⌈
R∗i
Tj

⌉
Cj(ζi). (3.1)

As for period transformation, the response time of τi is the fixed point of

Ri =
∑

τj :πj≥πi

(⌈
Ri

Tj

⌉
Cj(ζi) + min

(⌈
Ri mod Tj

Tj/nj

⌉
Cj(ζj)

nj
, Cj(ζi)

))
, (3.2)

To determine whether a task is schedulable, we can simply check if the computed
response time of a task is smaller than its deadline.

On the other hand, the response time analysis for ZSS and FTP-AMC are a lot more
complicated. ZSS was proposed by de Niz et al. [39] in the effort to overcome the
limitations of DM and PT. However, there still exist some issues with their scheduling
method and analysis. In Section 3.2, we discuss those issues and how to address them.
Barauh et al. [19] provided two sufficient analysis methods for a two-criticality FTP-
AMC system. In Section 3.3, we generalize Barauh’s analysis to systems with more
than 2 criticality levels; in addition, we refine Barauh’s second method to provide a
tighter bound than the original.

Fixed Job Priority (FJP): A fixed job priority strategy assigns priorities to each
job of a system regardless whether two jobs are of the same task. Since jobs of the
same task may have different priorities, the priority assignment (at least in part) needs
to be deferred to run-time instead of binding it statically as in FTP. On the other
hand, fixed job priority will dominate fixed task priority in terms of schedulability in
theory because every FTP assignment is also an FJP assignment [21]. However, given
a task Γ which is FTP schedulable, whether an FJP specific assignment algorithm can
always find a feasible job priority assignment for Γ without resolving FTP analysis is
yet another question. We discuss FJP further in Section 3.4.
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Table 3.1: Summary of approaches for periodic or sporadic mixed-criticality tasks

SMC PT ZSS AMC
CM Vestal2007 [95] Vestal2007 [95]
RM Vestal2007 [95] Niz2009 [39]

FTP Vestal2007 [95] Baruah2011 [19]
Audsley Baruah2008 [21]

Baruah2011 [19]
FJP Audsley Baruah2008 [21] Li2010 [66]

Guan2011 [50]
DP EDF Baruah2008 [21]

Dynamic Priority: Dynamic priority refers to the strategies in which priorities of
jobs can change between their release time and completion time. Strictly speaking, all
the previously discussed mixed-criticality scheduling algorithms except RMS, CMS
and FTP-SMC can be considered to be dynamic priority according to the above
definition, because those algorithms require the scheduler to abort and/or suspend
jobs before the jobs’ completion under certain conditions. For sake of discussion,
however, we exclude job abort/suspend as a form of priority change. Thus, we restrict
dynamic priorities to the earliest deadline first (EDF) strategy.

EDF has been proved to be optimal for uniprocessor single-criticality systems. That
is, a task set which is un-schedulable under EDF will not be schedulable under any
other scheduling policies for uniprocessor systems. However, that property does not
hold for mixed criticality systems. In [21], Barauh et. al. proved FTP and DP
are incomparable because there exist task sets which are FTP-schedulable (or FJP-
schedulable) but not DP-schedulable, and vice versa. In addition, they proved a task
is DP-schedulable if and only if it is schedulable under the traditional EDF analysis.
That is, the execution time specification of different confidence levels can not help
schedulability as it does for FTP and FJP. Therefore, we will not further discuss DP
for the rest of the dissertation.
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Figure 3.1: Two tasks example under ZSRM scheduling policy

3.2 Zero-Slack Scheduling and our Improvements

Zero-slack scheduling is a bi-modal scheduling policy, where every task has a normal
mode and a critical mode. When a task is in its normal mode, it is scheduled based
on its priority (assigned by a rate-monotonic or deadline-monotonic policy). When
a task τi is in critical mode, the scheduler will suspend all lower-criticality tasks; in
other words, τi will steal slack from lower-criticality tasks when it is in critical mode.

Figure 3.1 shows four scenarios using zero-slack rate-monotonic (ZSRM) scheduling
for the task set example from Table 1.1. In these scenarios, τh switches from normal
mode to the critical mode at time 6, and preempts τl to continue its execution. The
instant to switch mode by a task is called the zero-slack instant (ZSI). As we can see,
both τl and τh can finish before their deadlines when there is no overload; moreover,
τh will never miss its deadline under overload conditions and thus this approach also
avoids criticality inversion.

There are also two important issues with the zero-slack scheduling approach which
must be addressed in practice to ensure that overloaded lower-criticality tasks cannot
impair the schedulability of higher-criticality tasks: (1) since it is difficult to simply
halt threads safely atop commonly available operating systems, the implicit assump-
tion that real-time tasks that miss their deadlines are simply dropped rather than
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being allowed to continue to run must be removed; (2) a particular form of inter-
ference that is not accounted for in the previously published analyses of zero-slack
scheduling also must be addressed.

The center piece of zero-slack scheduling [39] is to decide the zero-slack instant (ZSI)
of each task. Each ZSI may be computed offline and then provided to the scheduler
for run-time enforcement. The objective of the ZSI computation is to find the latest
possible instant for a task τi to switch mode to reduce its impact on the schedulability
of lower-criticality tasks while still maintaining the schedulability of τi. In [39], de
Niz et al. detailed such an algorithm for calculating ZSIs for independent task sets
on uniprocessor systems.

The algorithm starts with the worst case assumption that τi is only executed in
critical mode. Based on this assumption, it computes the time ki needed for a job
Ji,1 of τi to execute up to its overload budget Co

i under interference from its higher-
criticality tasks. Let the release time of Ji,1 be time 0 and the deadline of τi be Di.
Then t = Di − ki is the instant that Ji,1 can switch from the normal mode to the
critical mode, so that Ji,1 will meet its deadline even when it is overloaded. However,
setting the ZSI of τi to Di − ki so that Ji,1 switches mode at that time may be too
pessimistic because Ji,1 may have executed for a certain amount of time in normal
mode and thus the time budget in critical mode can be over-estimated. To reduce
this pessimism, the algorithm finds the minimum amount (θi) of slack available for
a task in normal mode and then deducts that slack from the overload budget. With
the reduced budget in critical mode, the ZSI Zi of τi then can be moved closer to the
deadline. The algorithm repeats this recalculation of ki and Zi until no more slack is
available in normal mode for τi.

How much slack is available for a task τi to be executed in normal mode is affected
by the ZSIs of other tasks which may interfere with τi. That is, there are dependency
for ZSI calculations among tasks. To make the ZSI of a task as late as possible, the
algorithm calculates the ZSIs of all tasks with an assumption of maximum interference
(i.e., θi = 0 for all τi), updates θi with each computed ZSI, re-calculates all ZSIs
with the updated θi, and then continues until the ZSIs of all tasks converge. Since
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the algorithm relies on the convergence of ZSIs, [39] also provides a proof that the
algorithm will converge as long as the deadline of each task is less than its period4.

3.2.1 Execution After a Missed Deadline

The original zero-slack scheduler [39] is based on the scheduling guarantee that if a
task τi is admitted, it will be able to run up to its overloaded budget Co

i within its
deadline as long as no higher-criticality task is overloaded. A task is referred to as
schedulable if it satisfies this scheduling guarantee. However, this is based on the
assumption that no lower-criticality task misses its deadline or that if it does it is
simply dropped rather than allowing it to execute beyond its deadline.

Table 3.2: A two task ZSRM example

Task Cn Co Period Criticality Priority ZSI
τ1 4 5 9 2 Low 6
τ2 2 3 5 1 High 0

J1,1τ1

τ2

5 15100

J2,1 J2,2

Z1 Z1

20

J2,3

J1,2 J1,3

J2,4J2,5

Z1

Criticality

High

Low

normal mode critical mode

Figure 3.2: Zero-slack rate-monotonic scheduling of the task set in Table 3.2

Figure 3.2 illustrates that, in the example task set shown in Table 3.2, the overloading
of a lower-criticality task could trigger the deadline miss of a higher-criticality task
under the original zero-slack scheduling approach in [39]. In this example, all jobs of
τ1 are overloaded and run for 5 time units, and J2,1, J2,2, and J2,3 are also overloaded
and run for 3 time units. From Figure 3.2, we can see that job J1,2 misses its deadline
because the lower-criticality task τ2 misses its deadline. Furthermore, J2,3 also misses

4The algorithm from [39] is listed in Appendix A

42



its deadline. In other words, J1,2 and J1,3 break the scheduling guarantee even though
no higher-criticality task is present.

3.2.2 Design Challenges

In theory, this problem can be solved by terminating a job when it misses its deadline.
In practice, this may be problematic because the target job could be holding resources
such as mutexes, which could lead to deadlocks and other problems. Except in special
cases where jobs of the same task cannot share resources or where tasks can be made
aware of their deadlines’ expirations and can cooperatively release resources and halt
execution, that approach is thus impractical on standard platforms.

Tindell [94] offers a way to deal with a similar issue when a job arrives before the
previous job of that task has completed in a hard real-time fixed-priority system:
the new arrival is deemed to have a lower priority, and is therefore prevented from
executing until after the previous invocation terminates.

In a mixed-criticality system, the issue is more complicated because a deadline miss
may not only affect the previous invocation, but also lower-priority higher-criticality
tasks. One possible way to address this issue is to allow tasks to miss their deadlines
and incorporate the deadline miss scenarios into the ZSI calculation. To analyze the
impact of a lower-criticality task τl on a higher-criticality task τh, it is necessary to
bound how late τl can execute beyond its deadline which in turn requires analysis
of the interference from all higher priority and/or higher criticality tasks on τl when
they are overloaded. Consequently, the analysis would be a response time analysis
when every task is overloaded, which may be very pessimistic and leave no slack for
τl in normal mode.

3.2.3 Solution Approach

A better approach is for the scheduler to demote task τi to the lowest priority when it
misses its deadline; at the same time, all lower-criticality tasks have to be suspended
and can be restored to their original priorities only if the job that missed its deadline
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Figure 3.3: Illustration of zero-slack scheduling with demotion-on-deadline rule for
the task set in Table 3.2

terminates. τi can miss its deadline only if one or more higher-criticality tasks is
overloaded, and thus neither τi nor its lower-criticality tasks are required to remain
schedulable. In the scenario where more than one task misses its deadline, only the
ones at the highest criticality level among them will be in the runnable state with the
lowest priority level; the others will be suspended. We refer to this new scheduling
rule as the demotion-on-deadline rule. Figure 3.3 shows the schedule for the task set
in Table 3.2 using the demotion-on-deadline rule.

3.2.4 Unaccounted Interference

Let πi be the priority of task τi, with a larger value representing higher priority. Let
Hi = {τj|πj ≥ πi} and Li = {τj|πj < πi}. We also use the superscript of Hi and Li
to constraint the criticality levels within the task set. For example, Hζ>ζi

i = {τj|πj ≥
πi and ζj > ζi}. The original analysis of ZSI calculation [39] is based on a particular
worst case phasing assumption: given a job Ji,1 of task τi which is released at time 0,
Ji,1 suffers the maximum interference while in normal mode from τj when the jobs of
higher-or-same-priority tasks are released at time 0. In addition, the instant is also
aligned to the ZSIs of the jobs from Lζ>ζii . However, that formulation considers only
tasks that can interfere directly with τi, although some tasks which cannot preempt
τi directly may also interfere with τi through tasks from the set Hζ<ζi

i .

For example, consider the task set in Table 3.3 scheduled with ZSS. Figure 3.4 shows
a schedule where the second and third jobs of τ3 are overloaded and run for 3 and
5 time units respectively; in addition, the first job of τ2 runs only for 1 time unit

44



Table 3.3: Example task set for worst case phasing condition

Cn Co Period Criticality Priority ZSI
τ1 2 5 10 3 Med 8
τ2 4 5 15 2 Low 9
τ3 2 4 7 1 High 0

⌧1

⌧2

⌧3

5 15100

J1,1 J1,2

J3,1 J3,2 J3,3

Z1

Z2

Z1

Criticality

20

High

Low

Not Enough Slack Available

Figure 3.4: Zero-slack scheduling of the task set in Table 3.3

(which is valid because the specification does not require τ2 to run for at least Cn
2

time units). By the original analysis, the normal mode slack vector of τ1 is {(4, 3)},
i.e., τ1 can run for at least three time unit starting from time 4. However, as is shown
in Figure 3.4, J1,2 has only one unit of slack before its ZSI (at time 18). If J1,2 is also
overloaded and runs for more than 3 time units, τ1 would miss its deadline because
of the interference from lower-criticality task τ3, and thus the scheduling guarantee
would be violated.

We therefore introduce a revised ZSI calculation algorithm which addresses the pre-
viously unaccounted interference. We define θi(ζm) to be the minimum slack that can
be used by τi before Zi at criticality level ζm. This value is initialized to 0 for all
tasks and can be increased during the ZSI calculation.

Let Cj(ζm) be the maximum execution time of τj at criticality level ζm, as described
in Equation 1.1. In addition, let I ij be the effective execution interval of τj that
can interfere with τi at criticality level ζm, which can be expressed by the following
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equation if the priority assignment is rate-monotonic or deadline-monotonic:

I ij(ζm) =

{
max(Cj(ζm)− θj(ζm), 0) if τj ∈ Lζ>ζii ,
Cj(ζm) otherwise.

(3.3)

The rationale for this equation is based on the observation that when τj ∈ Lζ>ζii , the
minimum amount of time τj spends in its normal mode is θj and τj only interferes
with τi when τj is in critical mode; therefore, I ij is Cj(ζm)− θj(ζm) (bounded by 0 if
Cj(ζm) < θj(ζm)).

3.2.5 Worst Case Alignment

To obtain θi, we need to know the maximum possible amount of interference τi can
suffer from other tasks. Let Γni = Lζ>ζii ∪Hi be the set of interfering tasks for task τi
in normal mode. The ZSI calculation in [39] assumed that all release times of tasks
from Γni − Lζ>ζii are aligned to the release time of τi, as are the ZSIs of tasks from
Lζ>ζii . However, as we show in Figure 3.4, this may not be the worst case phasing
condition.

The key to the worst case phasing condition for zero-slack scheduling is the alignment
between τi and the other tasks in Γni . Let tri,1 be the time at which job Ji,1 is released;
let Jj,0 be the last job of τj ∈ Γni which is released no later than tri,1. To maximize
the interference with τi from τj, the time when Jj,0 is able to interfere with τi should
be no earlier than tri,1 and as close to tri,1 as possible. For the example in Figure 3.4,
τ1 suffers the maximum interference from τ3 when the instant tb3,2 at which J3,2 starts
execution aligns with the release time of J1,2, and then J3,3 releases immediately
after J3,2 terminates. Based on this observation, in Theorem 1 we formally state the
conditions for the worst case phasing that maximizes the interference that must be
considered for the ZSI calculation.

Theorem 1. Given two jobs Ji,1 and Jj,0 of tasks τi and τj respectively, let trj,0 and
tfj,0 be the times when Jj,0 is released and when it finishes its execution, respectively.
Let tbj,0 be an instant between trj,0 and tfj,0 before Jj,0 starts to execute, and let t be
a time interval starting from tbj,0. Further, given that no task τk that satisfies the
following two conditions is executed within the interval [tbj,0 , t

f
j,0]: (1) τk ∈ Lζ≤ζii and
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ζk ≥ ζj, and (2) τk ∈ Lζ>ζii and τk is in normal mode, then Ji,1 suffers the maximum
interference from τj in the interval t if its release time tri,1 is aligned with the time
tbj,0.

Proof. Illustrated in Figure 3.5, Jj,0 cannot be executed before tbj,0; therefore, Ji,1 will
always suffer less interference from the subsequent jobs of Jj,0 within the interval t
if tri,1 ∈ [trj,0 , t

b
j,0). By definition, any task τk that satisfies the above two conditions

cannot be executed within the interval [tri , t
f
i ]. If τk is executed before tfj , Ji,1 must

have been finished; i.e., tfi < tfj . In this case, Jj,0 could not produce maximum
interference with Ji,1. Therefore, the worst case occurs when task execution within
[tbj,0 , t

f
j,0] can interfere with Ji,1, and Ji,1 will suffer less interference if tri,1 ∈ (tbj,0 , t

f
j,0].

As a consequence, Ji,1 suffers the maximum interference from τj when tbj,0 = tri,1.

tri,1

tbj,0

⌧i

⌧` 2 Lhc
i

t

⌧j

Ji,1

Jk,0⌧k 2 Llc
i [ Lsc

i

J`,1

Jj,0

tfj,0

tfi,1

trj,0

Figure 3.5: Illustration of Theorem 1

Lemma 1. Given two jobs Ji,1 and Jj,0 of tasks τi and τj respectively where Jj,0 is
released no later than Ji,1 and finishes after the release of Ji,1. In addition, τj ∈
Hζ>ζi
i ∪ Hsc

i . Ji,1 suffers the maximum interference from τj in interval t after the
release of Ji,1 when the release time of Jj,0 is aligned to that of Ji,1.

Proof. Since τj ∈ Hζ≥ζi
i , it is impossible for any task τk ∈ Lζ≤ζii or τk ∈ Lζ>ζi to be

executed before tbj,0 while it is in normal mode; therefore tbj,0 = trj,0. From Theorem 1,
Ji,1 suffers the maximum interference from τj when tbj,0 = tri,1. As a result, the worst
case phasing is when trj,0 = tri,1.
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3.2.6 Refining the ZSI Calculation

Since rate-monotonic scheduling is a special case of deadline monotonic scheduling
where deadlines of tasks are equal to their periods, we analyze the worst case phas-
ing of zero-slack deadline monotonic scheduling instead of zero-slack rate-monotonic
scheduling (while in [39] the shift from ZSRM to ZSDM involves only a single variable,
the shift here is more involved, but allows a more general domain to be addressed).
For simplicity of discussion, we assume that a task τi does not miss its deadline be-
cause even if it does the demotion-on-deadline rule discussed in Section 3.2.1 would
prevent τi from interfering with higher-criticality tasks.

To explore the interference relationships among tasks, we bound the total time de-
mand that can be generated by a task set as a whole. For this purpose we introduce
δni (ζm, τj, t), the total amount of time demand generated by jobs of τj after a job Ji
of τi is released and before Ji enters critical mode at criticality level ζm. Similarly, let
δci (ζm, τj, t) be the total amount of time demand generated by jobs of τj after a job Ji
of τi enters the critical mode and before Ji finishes execution at criticality level ζm.

We then define the interference function ∆n
i (ζm,Γ, t) (∆c

i(ζm,Γ, t)), which represents
the maximum amount of time demand generated by a task set Γ ⊂ Γni (Γ ⊂ Γci =

Lζ>ζii ∪Hζ≥ζi
i ) at criticality level ζm during an interval of t time units after the release

of a job from τi when the job is in the normal (critical) mode. More formally,

∆n
i (ζm,Γ, t) ≡

∑
τj∈Γ

δni (ζm, τj, t),

∆c
i(ζm,Γ, t) ≡

∑
τj∈Γ

δci (ζm, τj, t).

For brevity of presentation, we will omit the parameter ζm in the time demand and
interference functions if the parameter does not change value within an equation.

With such an interference function, we use the time completion function K to describe
the minimum time duration for a job of τi to execute for t time units. Within that
duration, only tasks in Γ can interfere with τi; in addition, the amount of interference
from tasks in Γ is governed by ∆i. The time completion function can be expressed

48



tri,1 ri,n
j

⌧i

⌧` 2 Hhc
j

t

�dm
i (⌧j , ✓, t)

⌧j 2 H lc
i

Jj,0

Ji,1

Jk,0

ri
k

⌧k 2 H lc
i

Jk,1

Jj,1

Figure 3.6: Illustration of ri,nj and δni (ζm, τj, t) where both τj and τk are in Hζ<ζi
i

and πk > πj

by
K(t, u,Γ,∆i) ≡ min {{u} ∪ {t′ ≥ t | t′ = t+ ∆i(Γ, t)}} ,

where u is an upper bound for the returned result.

3.2.7 Normal Mode Time Demand Function

Given a task τi in normal mode and another task τj ∈ Hζ≥ζi
i , τj can always preempt

τi. The normal mode time demand function is dt/TjeCj(ζm), which is the same as
that of fixed-priority scheduling. On the other hand, if τj ∈ Lζ>ζii , τj can interfere
with τi only once because t ≤ Di ≤ Dj. We then can consolidate the time demand
function for both cases as

δni (ζm, τj, t) =

⌈
t

Tj

⌉
I ij(ζm), if τj ∈ Γni −Hζ<ζi

i . (3.4)

.

To compute the normal mode time demand function when τj ∈ Hζ<ζi
i , if we know the

minimum time rnj for Jj,0 to complete executing Cj(ζm) time units after time 0, we
can then use rij to derive the relative phase of Jj,1 with respect to Ji,1.
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To estimate ri,nj , we need to consider the ordering among the tasks in Hζ<ζi
i . Let us

suppose Hζ<ζi
i ∩ (Lζ>ζij ∪Hζ<ζi

j ) = ∅; that is, for any other task τk ∈ Hζ<ζi
i − {τj} ,

πj ≤ πk if and only if ζj ≤ ζk. Under this assumption, only the tasks from Hζ≥ζi
j can

preempt τj after time 0 and before τi starts execution; moreover, the preemptions can
occur whether or not τj is in critical mode. Therefore ri,nj can be expressed as

ri,nj (ζm) = K(Cj(ζm), Di, H
ζ≥ζi
j ,∆n

i (ζm)). (3.5)

If Tj is not equal to Dj, the completion instant of Jj,0 must be its deadline. Conse-
quently, the release instant φi,nj of Jj,1 can be expressed as

φi,nj (ζm) = rnj (ζm) + Tj −Dj. (3.6)

With φi,nj , the time demand δni (ζm, τj, t) for all τj ∈ Hζ<ζi
i can then be expressed as

δni (ζm, τj, t) =

(
1 + max

(⌈
t− φi,nj (ζm)

Tj

⌉
, 0

))
I ij(ζm). (3.7)

3.2.8 A Four-Task Example

Cn Co T D criticality
τ1 1 2 5 5 5
τ2 2 2 12 10 1
τ3 3 4 19 19 2
τ4 4 7 28 28 4

Table 3.4: Example 4-task set for ZSI calculation

However, if Hζ<ζi
i ∩ (Hζ<ζi

j ∪Lζ>ζij ) 6= ∅, the scenario can be complicated. To see how,
let us illustrate it from the perspective of task τ4 from the four-task example shown
in Table 3.4.

Since τ1 ∈ Hζ>ζi
4 can preempt τ4 at any time, the demand function is then δdm4 (τ1, θ, t) =

dt/T1eC1. For τ3 and τ2, which are both in Hζ<ζi
4 , we need to find the worst case
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phasing for those two tasks. Because π2 > π3 and ζ2 < ζ3, there is no total or-
dering among the two, and it is difficult to determine which job will finish first. If
we assume J3,0 won’t switch mode before J2,0 completes, we can get r4

2 = 3 and
φ4

2 = T2 − D2 − r4
2 = 5. In addition, if J3,0 switches mode immediately after J2,0

finishes, we can get r4
3 = φ4

3 = 8. Figure 3.7a shows the schedule with the above
assumptions. On the other hand, Figure 3.7b and 3.7c shows two different scenarios
when J3,0 starts before J2,0.

From Figure 3.7a, 3.7b and 3.7c, we can see that the available slack for τ4 is different
in those scenarios. There is no guarantee in which scenario τi can suffer more from
the combined interference of τ2 and τ3 at a given time. For example, at time 19, the
scenario in Figure 3.7a has a smaller amount of empty slack than in Figure 3.7a while
the situation reverses at time 25.

During the calculation of Z4, the value of Z3 can’t be fixed because Z3 is also depen-
dent on Z4. In this case, we can only choose the most conservative approach. Let
∆n,1

4 (ζ4) be the interference function when φ4,n
2 = 5 and φ4,n

3 = 8, ∆n,2
4 (ζ4) be the

interference function when φ4,n
2 = 10 and φ4,n

3 = 5. The final interference function for
τ4 would be ∆n

4 (ζ4) = max{∆n,1
4 ,∆n,2

4 }.

In general, the interference function of a task τi is a maximum of the functions from all
possible orderings of its interference tasks. If the priority/criticality levels for the task
set in Hζ<ζi

i are completely reversed, the computation time would grow exponentially
as the set in Hζ<ζi

i grows.

Even though (especially for complex task sets) the exact bound may be intractable
to compute, a conservative looser bond is possible. Based on Equation 3.9, the
interference grows as the phasing decreases; therefore, we can use the smallest possible
phasing interval for all tasks in Hζ<ζi

i to bound the worst case interference. Looking
back to the previous example, φ4,n

2 = φ4,n
3 = 5 is used for ∆θ

4. If the interference from
Hζ<ζi
j and Hζ>ζi

j is not considered, only tasks from Hζ≥ζi
j are left in the interference

set. Thus we can bound ri,nj as ri,nj = K(Cj, Di, H
ζ≥ζi
j ,∆θ

i ), which is exactly the same
as Equation 3.5.
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Figure 3.7: Illustration of worst phasing schedule for the tasks set in Table 3.4
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With the availability of ∆n
i , we can now compute the available slack in normal mode

as follows:
θi(ζm) = max(Zi −∆i(ζm,Γ

n
i , Zi), 0).

3.2.9 Critical Mode Time Demand Function

When a task τi is in critical mode, only the tasks Γci ≡ Hζ≥ζi
i ∪ Lζ>ζii can interfere

with τi. Since the tasks from Hζ<ζi
i cannot interfere with τi, the critical mode time

demand function is then

δci (ζm, τj, t) =

⌈
t

Tj

⌉
I ij(ζm), (3.8)

which was also assumed by de Niz et al. Unfortunately, this is correct only when
τj /∈ {τk ∈ Hζ>ζi

i | Hζ<ζi
k ∩Hζ<ζi

i 6= ∅}. To see why, let us consider τ2 from the task
set in Table 3.5.

Table 3.5: An example task set where the calculation of Z2 is based on Equation 3.8

Cn Co T ζ Z
τ1 2 4 10 3 6
τ2 3 4 12 2 6
τ3 2 5 8 1 0

If we use Equation 3.8 to calculate the interference of τ1 with τ2 in critical mode,
there would be a slack of 8 time units available for τ2 for every interval of 10 time
units.

As shown in Figure 3.8, if we assume that the jobs J1,1, J2,1 and J3,1 are all released at
time 0 and both J2,1 and J3,1 run for their respective overload budget, then the jobs
of τ1 run for only 2 time units. Based on zero-slack scheduling, J1,1 and J1,2 would be
scheduled in the time slots (5, 7) and (10, 12). When J2,1 enters critical mode at time
6, only 3 time units are left for τ2 between the time interval (6,12), which is less than
what is given by Equation 3.8 (i.e., 8 time units are available within an interval of
10 time units). The reason for the above phenomenon is that τ2 suspends the lower
criticality task τ3 in critical mode and thus shortens the inter-job arrival times of τ1.
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Figure 3.8: A schedule for the task set in Table 3.5 which shows ZSI calculation
based on Equation 3.8 can cause τ2 to miss deadline

Let Hhc−
i ≡ {τj ∈ Hζ>ζi

i | Hζ<ζi
j ∩Hζ<ζi

i 6= ∅} be the task set in Hζ>ζi
i whose inter-job

arrival time could be shortened by suspending the tasks in Hζ<ζi
i . Similar to the

calculation of φj,ni , to estimate the maximum interference from a task τj ∈ Hhc−
i with

τi in critical mode, we have to minimize the worst case phasing φcj in critical mode.
Therefore, we assume τj starts execution at the zero slack instant of τi. Assuming Zj
is known, we can obtain the maximum response time rcj(ζm) of τj at criticality level
ζm based on whether θj(ζm) ≥ Cj(ζm). If θj(ζm) ≥ Cj(ζm), we need only to count the
time for τj to run for Cj(ζm) time units in normal mode; i.e.,

rcj(ζm) = K(Cj(ζm), Zj,Γ
n
j ,∆

n
j (ζm))

if θj(ζm) ≥ Cj(ζm). Otherwise, the response time is Zj plus the time for τj to run for
Cj(ζm)− θj(ζi) time units in critical mode; i.e.,

rcj(ζm) = Zj +K(Cj(ζm)− θj(ζi), Dj − Zj,Γcj,∆c
j(ζm))

if θj(ζm) < Cj(ζm).

Because we assume τj starts execution at its zero slack instant, we can then obtain
the phasing of τj by

φcj(ζm) = Cj(ζm) + Tj − rcj(ζm).

Figure 3.9 illustrates the calculation of φc1(2) for the example in Table 3.5. Since
τ2 does not interfere with τ1, we can easily see the worst case response time rc1 of
τ1 is 7. Because Z2 is not known at the time, we can only assume Z2 aligns to the
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Figure 3.9: The illustration of φcj using the example task set in Table 3.5

time when J1,1 starts execution so that we can minimize φc1. Consequently, φc1 =

C1(2) + T1 − rc1(2) = 5. With the phasing estimation, we can obtain the maximum
critical mode time demand function for τi when τj ∈ Hhc−

i as f ollows:

δci (ζm, τj, t) =

(
1 + max

(⌈
t− φcj(ζm)

Tj

⌉
, 0

))
I ij(ζm). (3.9)

3.2.10 Available Slack Function

Given that the interference function returns the maximum amount of interference a
task τi can suffer, we can use it to compute the minimum amount of slack available
for a job Ji,1 of τi in a time interval. Intuitively, t−∆n

i (ζi,Γ
n
i , t) should be the time

available for τi in interval t. However, a job released at time t′ cannot reclaim the
empty slack available before t′. Thus, the amount of empty slack before t should be
expressed as

max{t′ −∆n
i (ζi,Γ

n
i , t
′) | ∀t′ ≤ t}.

Furthermore, we are interested in the empty slack which starts no later than t; there-
fore, we define the available slack function with respect to τi as

Sni (t) = max {t′ −∆n
i (ζi,Γ

n
i , t
′) | (∀t′ < t)∪

(∀t′ ≥ t where ∆n
i (ζi,Γ

n
i , t
′) = ∆n

i (ζi,Γ
n
i , t))} . (3.10)

55



Figure 3.10 illustrates the relationship between t − ∆n
4 (ζ4,Γ

n
4 , t) and Sn4 (t), using τ4

from the task set in Table 3.4.
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Figure 3.10: The relationship between the slack function Sn4 (t) and t−∆n
4 (ζ4,Γ

n
4 , t)

for τ4 in Table 3.4

In [39], de Niz et al. used a slack vector and a procedure SlackUpToInstant to
calculate the amount of slack available. The slack vector is a sequence of slack regions
ordered by time, where each slack region contains a starting instant and duration.
Conceptually, the slack vector used by de Niz et al. is an alternative way to express the
interference function where δni (ζm, τj, t) = dt/Tje I ij(ζm) for all τj ∈ Γni . In contrast,
our approach requires different time demand functions for the case of τj ∈ Γni −Hζ<ζi

i

andτj ∈ Hζ<ζi
i , as shown in Equations 3.7 and 3.9 respectively. In other words,

the original algorithm for slack vector calculation does not correctly deal with the
interference from tasks in Hζ<ζi

i .

In addition, SlackUpToInstant returns the amount of slack available up to the spec-
ified instant, whereas Sθi returns the amount of empty slack which starts no later
than the instant. That tweak allows us to discover more units of slack, as we will
demonstrate after we present the improved ZSI calculation algorithm.
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3.2.11 Improved ZSI Calculation Algorithm

With the interference and available slack functions, it is straightforward to compute
the ZSI of a task as shown in Algorithm 1.

Algorithm 1 GetSlackZeroInstant(τi) : Calculate Zero-Slack Instant of τi
1: x← 0
2: repeat
3: x′ ← x
4: Cc

i ← max(Co
i − x , 0)

5: k ← K(Cc
i , Di,Γ

c
i ,∆

c
i(ζi))

6: Zi ← max(Di − k , 0)
7: x← Sni (Γni , Zi)
8: until x = x′ or Zi = Di

9: return Zi

Once again, we use τ4 from Table 3.4 to illustrate the algorithm and demonstrate how
Sni improves on SlackUpToInstant in [39]. After x is initialized to 0, the algorithm
finds k = 9 time units is needed for τ4 to run Co

4 = 7 time units in critical mode
(Step 5). Then it sets Zi as D4− k = 19 which represents the instant when τ4 should
switch mode so that 9 time units is available in its critical mode before deadline.
Next, Sni (19) = 2 in step 7 gives the amount of empty slack available to τ4. Then τ4

only needs to reserve Co
4 − x = 5 time units in its critical mode (step 4). Following

the same process, we can obtain k = 7 and Zi = 21 from steps 5 and 6. The next
step, x = Sni (21) = 5. Had SlackUpToInstant() been used, θi would be 2 and the
algorithm would stop at Zi = 21. With x = 5, we can push Z4 further toward its
deadline, and then Z4 becomes 25 when the algorithm stops.

Theorem 2. Given a task τi, The calculation of Zi using Algorithm 1 is dependent
on Zj of another task τj only when ζj > ζi.

Proof. From Algorithm 1, it is clear that the ZSI computation for a task would depend
on the result of ZSI computation for other tasks because of the interference functions
∆n
i and ∆c

i which in turn depend on the time demand functions δni and δci . From
Equations 3.3 and 3.4, δni is dependent on θj only if τj ∈ Lζ>ζii . Similarly, δci is
dependent on θj only if τj ∈ Lζ>ζii ∪Hhc−

i . Because the calculation of θj requires Zj,
we can conclude Zi is dependent on Zj only when ζj > ζi.
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Based on Theorem 2, we can safely calculate the ZSIs of a task set in decreasing
criticality order. In [39], ZSIs are computed in an unspecified order and then the
algorithm keeps looping until all ZSIs of a task set are stabilized. Our algorithm
improves on [39] by computing ZSIs in a deterministic order to avoid unnecessary
computation and is unconditionally guaranteed to terminate on any finite task set.

3.3 Fixed Task Priority AMC Scheduling (FTP-AMC)

In zero slack scheduling, the priority assignment is based on task rate and the time
a task switches mode (i.e., the zero slack instant) is relative to the release time of
a job. In adaptive mixed criticality (AMC), on the other hand, priority assignment
is based on Audsley’s algorithm and the mode change is triggered by the execution
progress of tasks. Baruah et al. [19] discussed two versions of response time analysis
of FTP-AMC with only two criticality levels. In this section, we further extend those
analyses to systems with more than two criticality levels.

3.3.1 Basic Analysis

Given a task τi in a task set Γ,

Hζ=m
i ≡ {τj ∈ Γ | πj ≥ πi and ζj = m}

Hζ≥m
i ≡ {τj ∈ Γ | πj ≥ πi and ζj ≥ m}

Assume the deadline of a task does not exceed its period and each task τi only executes
for Ci(0). The response time of τi would be the fixed point of

Ri(0) = Ci(0) +
∑
τj∈Hi

⌈
Ri(0)

Tj

⌉
Cj(0).

Given a task τj ∈ Hζ=0
i , the maximum number of job releases in a busy period would

be bounded by
⌈
Ri(0)
Tj

⌉
. Therefore, we can bound the response time of Ri(1) for which
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the system wide criticality level indicator never exceeds 1 by the equation

Ri(1) = Ci(1) +
∑

τj∈Hζ=0
i

⌈
Ri(0)

Tj

⌉
Cj(0) +

∑
τj∈Hζ=1

i

⌈
Ri(1)

Tj

⌉
Cj(1).

By induction, we can easily bound the response time Ri(m) of τi when the criticality
level indicator never exceeds m by

Ri(m) = Ci(m) +
m∑
`=0

 ∑
τj∈Hζ=`

i

⌈
Ri(`)

Tj

⌉
Cj(`)

 .

Thus the response time R∗i of τi can be expressed by

R∗i = Ri(ζi).

However, this bound is pretty loose because it assumes every job τi,j executes for
Ci(ζi) which is different from the scheduling algorithm we described.

3.3.2 Improved Analysis

To overcome the overestimation described in basic analysis, Baruah et al. [19] devel-
oped another analysis which they described as AMC-max. However, that approach
is hard to extend for more than 2 criticality levels. Therefore, we develop another
analysis which is based on AMC-max with certain modification.

To simply our discussion, we begin with a system with only two criticality levels (0
and 1). Let s to be the last job deadline before criticality change5; i.e., all jobs Ji,j
whose deadlines are before s can only executes Ci(0). The number of job releases for

5In [19], s is initially defined as the time point when the system criticality level indicator changes
from 0 to 1. However, in the latter part of the paper, it assumes all jobs released before and at s
only execute in low criticality mode.
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a low criticality task τj is thus bound by

nj(s) =

⌈
s

Tj

⌉
.

Since any job of a higher criticality task τk whose deadline is before s can executed
only for Ck(0), we can bounded the number nk(s) of job releases for τk that executes
in low criticality mode by

nk(s) = max

(⌊
s−Dk

Tk

⌋
+ 1, 0

)
.

We use floor + 1 instead of ceiling because the job of τk which releases at exactly
s−Dk can only be executed for Ck(0) based on our assumption of s, and thus it should
be counted in nk(s). Given a task τk ∈ Hζ≥ζi

i , the maximum number of job releases in
high criticality mode within a busy period of R is thus bounded by

(⌈
Rsi
Tk

⌉
− nk(s)

)
.

Therefore, the response time Rs
i of τi is the fixed point of

Rs
i = Ci(0) +

∑
τj∈Hi

nj(s)Cj(0) +
∑

τk∈H
ζ≥ζi
i

(⌈
Rs
i

Tk

⌉
− nk(s)

)
Ck(1).

Since s represents the deadline of a job; the release time of the job is bounded by
Ri(0), we can then enumerate all possible values of s to obtain the maximum response
time of τi by

R∗i = max{Rs
i | ∀τj, s ∈ [Dj, . . . ,

⌈
Ri(0)

Tj

⌉
Tj +Dj]}.

Consider an example task set comprised of 3 tasks as follows

ζi Ci(0) Ci(1) Di Ti

τ1 0 1 1 2 2
τ2 1 1 5 10 10
τ3 1 20 20 100 100
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Suppose there is no criticality change: the response time of τ3 could be computed by

R3(0) = 20 +

⌈
R3(0)

2

⌉
+

⌈
R3(0)

10

⌉
,

which has solution 50. The deadlines of jobs between (0, 50] are the even numbers
between 2 and 50. Each of these values for s needs to be checked. The worst case
occurs when s = 48.

R48
3 (1) = 20 +

⌈
48

2

⌉
+

(⌊
48− 10

10

⌋
+ 1

)
+

(⌈
R48

3 (1)

10

⌉
−
(⌊

48− 10

10

⌋
+ 1

))
5,

which has solution 58.

Now, consider the case where the number of criticality levels of the system is greater
than 2. Let s`, referred as the criticality changing point, be the last job deadline
before the system criticality level indicator changes from `−1 to ` where s0 is defined
as 0. Let S = {s0, s1, . . . } be a sequence of criticality changing points for a busy
period of a mixed-criticality task schedule. Let n`j(S) be the number of τj job releases
which the jobs execute at criticality level no larger than `. The number of job releases
within the criticality level ` is thus

n`j(S) =



0 if ` < 0,

n`−1
j else if ζj < `,⌈
S`
Tj

⌉
else if ζj = `,

max
(⌊

s`−Dj
Tj

⌋
+ 1, 0

)
otherwise.

Let IS(t,m,Γ) be the time demand from a task set Γ within a busy interval of t, given
that the system criticality change is governed by S and the system criticality level
indicator does not exceedm in (or before) that interval. IS(t,m,Γ) can be represented
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by

IS(t,m,Γ) =
m−1∑
`=0

∑
τj∈Γ

(n`j(S)− n`−1
j (S))Cj(`)


+

∑
τk∈Γζ≥m

(⌈
RS
i (m)

Tk

⌉
− nm−1

k (S)

)
Ck(m), (3.11)

where Γζ≥m = {τj ∈ Γ | ζj ≥ m}.

Assume that Di ≤ Ti, the response time RS
i (m) of τi if the system criticality level

indicator is no larger than m is thus

RS
i (m) = Ci(m) + IS(RS

i (m),m,Hi).

The relationships of the elements in S can be represented by

s` ∈ (s`−1, R
S
i (`− 1) +Dmax),

where Dmax represents the maximum relative deadline for the tasks in Hi. Then the
maximum response time of τi is

R∗i = max{RS
i (ζi) | ∀ S}.

3.4 Fixed Job Priority AMC Scheduling (FJP-AMC)

In [20], Baruah et al. developed an algorithm, called own criticality based priority
(OCBP), for mixed-criticality systems comprised of a finite number of (non-recurring)
jobs with an AMC scheduling policy. The job priority assignment algorithm is also
based on Audsley’s approach. To be more precise, within each step, the algorithm
selects a job Ji whose deadline is longer than the total time demand for the remaining
jobs J and assigns Ji the lowest priority among J. Next, Ji is removed from J and
the process continues until no job is available for priority assignment.
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Li [66] further developed an on-line job priority assignment algorithm for scheduling
sporadic tasks based on OCBP. The algorithm starts by assuming all tasks are released
at the same time and assigns job priorities according to OCBP. Whenever a new job
Ji,j arrives, the on-line scheduler compares the previously assigned priority ζi,j of Ji,j
and the priority ζk,` of the current running job τk,`. If ζi,j > ζk,`, the priorities of all
jobs in {Ji,j | ζi,j > ζk,`} are re-computed using OCBP based on the worst possible
job arrival pattern starting from the τk,` arrival time. Li also proved that no priority
re-computation is needed if the newly arrived job τk,` has lower priority than the
current running job. However, the complexity of the on-line priority re-computation
is pseudo-polynomial in the worst case. This makes the algorithm less acceptable for
systems which require stringent worst-case bounds.

To reduce the run-time complexity of Li’s algorithm, Guan [50] presented an algorithm
called PLRS (Priority List Reuse Scheduling). Instead of solely relying on the high
complexity on-line priority re-computation for job scheduling, PLRS separates the
algorithm into two stages: an off-line priority computation and an on-line priority
assignment stage. The PLRS off-line priority computation is essentially the same as
the on-line priority re-computation of Li’s method, but PLRS only computes jobs of
the worst case busy period when all tasks are released at the same time. The resulting
information is then used by a lighter weight on-line algorithm for priority assignment.
The complexity of the off-line stage is still pseudo-polynomial but that of the on-line
stage is reduced to be quadratic in the number of tasks.

However, both Li’s and Guan’s algorithm require a worst case job arrival pattern
for job priority calculation; i.e., how many jobs (along with execution criticalities)
of each task can be executed in a busy period. To obtain the job arrival pattern,
the longest busy period and the distribution with each criticality level needs to be
bounded. Li [66] offered a busy period bound based on the load6 of each criticality
level. However, in our experiments, we found the bound is too loose to be useful, and
so it is essential to have a tighter busy period bound for FJP-AMC based algorithms.

We therefore develop a new analysis to find a job arrival pattern for FJP-AMC job
priority calculation. Like the FTP-AMC analysis, given a task set Γ, the longest busy

6The load of a collection of jobs denotes the maximum execution requirements over all time
intervals, normalized by the interval length.
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period without any criticality change would be the fixed point of

B(0) =
∑
τi∈Γ

⌈
B(0)

Ti

⌉
Ci(0).

We can also express it in terms of IS from Equation 3.11 by

B(0) = I{0} (B(0), 0,Γ) ,

where n−1
k = 0 for all k.

For a task τi of criticality 0, the number of jobs n0
i is bounded by dB(0)/Tie. To extend

the busy period, the system criticality level indicator cannot be changed before the
last job Jζ=0

i,j of criticality 0 finishes. The earliest time for Jζ=0
i,j to finish is

s1 = max
τi∈Γζ=0

{⌊
B(0)

Ti

⌋
Ti + Ci(0)

}
.

Assuming any job Ji,j released before s1 can only execute for Ci(0), then the maximum
number n0

i of jobs for τi to be executed for Ci(0) in a busy period is

n0
i =

⌈
s1

Ti

⌉
.

To generalize to a task set with m criticality levels, we get

B(m) = IS (B(m), sm,Γ) ,

sm = max
τi∈Γζ=m−1

{⌊
B(m− 1)

Ti

⌋
Ti + Ci(m− 1)

}
,

nmi =


0 if m < 0,

nm−1
i if ζi < m,⌈
sm

Ti

⌉
if ζi ≥ m.

Consider an example comprised of 4 tasks,
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ζi Ci(0) Ci(1) Di Ti

τ1 1 4 6 10 10
τ2 1 3 5 20 20
τ3 0 6 6 30 30
τ4 0 2 2 15 15

Assuming that there is no criticality change, the criticality 0 busy period would be

B(0) =

⌈
B(0)

10

⌉
4 +

⌈
B(0)

20

⌉
3 +

⌈
B(0)

30

⌉
6 +

⌈
B(0)

15

⌉
2,

which has solution 28. That is, for any busy period of the task set, τ3 and τ4 can
release at most 1 and 2 jobs, respectively; i.e., n0

3 = 1 and n0
4=2. For a busy period

in which τ3 and τ4 release exactly 1 and 2 jobs, the system criticality level indicator
cannot change from 0 to 1 before 17 time units after the beginning of the busy period
because 17 is the earliest possible time for the second job of τ4 to finish.

For the high criticality task τ1, its first job J1,1 should execute only for C1(0) in
order to maximize the busy period because its deadline is before 17. The question is
whether J1,2 and J2,1 should execute for their worst case execution times C1(1) and
C2(1).

Assume those two jobs run only for C1(0) and C2(0). Then, the number of jobs for τ1

and τ2 to run in confidence level 0 are 2 and 1, respectively; i.e., n0
1 = 2 and n0

2 = 1.
Thus we can calculate the busy period when τ1 and τ2 execute for their worst case
execution time after their second and first job, respectively.

B(1) = 2× 4 + 3 + 6 + 2× 2 +

(⌈
B(1)

10

⌉
− 2

)
6 +

(⌈
B(1)

20

⌉
− 1

)
5,

where the solution of B(1) is 38. Consequently, n1
1 = d38/10e = 4 and n1

2 = d38/20e =

2.

With the job arrival pattern, we use OCBP to assign job priorities as follows,
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τ1 7,5,2,0
τ2 6,1
τ3 3
τ4 8,4

Now let us consider the case where J1,2 and/or J2,1 execute for their worst case
execution time under the above job priority assignment. Since both J1,2 and J2,1 have
higher priority (5 and 6) than J3,1 and J4,2 (3 and 4), both J3,1 and J4,2 would be
aborted or suspended at the moment J1,2 and J2,1 executes up to their low criticality
execution time and the system is still considered schedulable.

On the other hand, if we assume J1,2 and/or J2,1 can execute for their worst case
execution time; i.e., n1

1 = bs1/T1c = 1 and n1
2 = bs1/T2c = 0, B(1) would become

59. Even though this busy period is longer, the job arrival pattern obtained from it
is not FJP-AMC schedulable.

In general, using floor instead of ceiling for nmi when ζi ≥ m is not necessary to
produce an FJP-AMC un-schedulable job arrival pattern. However, if a job arrival
pattern derived from nmi = bsm/Tic is FJP-AMC schedulable, the job arrival pattern
derived from nmi = dsm/Tie for the same task set is always schedulable because of
the lesser time demand of the latter. Therefore, using nmi = dsm/Tie when ζi ≥ m

is sufficient for schedulability test. However, using floor may allow more jobs to
be admitted at run-time. For PLRS, where job priorities are computed off-line, it
is better to use the floor version unless it produces an un-schedulable job arrival
pattern.

3.5 Mixed-Criticality End-to-End Task Sets

In the previous sections, we discussed the mixed criticality models and the various
techniques to schedule mixed-criticality real-time task sets for uniprocessor systems.
In this section, we focus on scheduling mixed-criticality task sets in distributed real-
time systems and investigate whether those approaches can perform similarly effi-
ciently when applied to a distributed system where a task may span several processors
or hosts with precedence constraints, or whether there are other better alternatives.
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Before considering end-to-end scheduling of mixed-criticality systems, we first discuss
background on end-to-end scheduling of traditional single-criticality end-to-end tasks.
For real-time distributed applications with multiple periodic tasks, it is necessary to
map each application to the end-to-end system model. There are four major prob-
lems involved in this mapping: task assignment, priority assignment, synchronization
protocol and scheduling analysis. In this section, we introduce these problems and
briefly describe the strategies to deal with them.

Task Assignment: When the system is static, the application is partitioned into
modules which are bound to particular processors [69]. This step is called task as-
signment. For traditional fixed priority systems, task assignment can be based on one
or more (of three) factors: execution time requirements, cost of communication, and
placement of resources. Finding a optimal solution is NP hard [69] even when only
the execution time requirement is considered. Liu [69] describes several heuristic al-
gorithms for task assignment based on those three factors without considering mixed
criticality issues. Lakshmanan [63] provides a heuristic for task allocation of indepen-
dent mixed criticality task sets that considers only the execution time requirement.
In this dissertation, we will assume the task assignment has been fixed (e.g., based
on certain heuristic algorithms).

Priority Assignment: When subtasks are to be scheduled on a fixed priority basis,
the first issue is assigning priorities to the subtasks. In general, assigning priorities to
subtasks so that the system is schedulable is called the priority assignment problem.
Like the task assignment problem, it is often intractable to find an optimal solution
to priority assignment in a large system. Sun [91] describes several heuristic methods
for traditional fixed priority end-to-end systems. In Section 3.5.1, we discuss methods
that are specifically tailored to mixed-criticality systems.

Synchronization Protocol: The third problem in end-to-end scheduling is con-
cerned with the timing of releases of non-root subtasks of an end-to-end task. This
problem arises from the fact that a non-root subtask can only start after the comple-
tion of its immediately previous subtask and the completion times of a subtask may
not be periodic. Existing fixed priority schedulability analysis is based on the periodic
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assumption; however, this assumption is no longer true for the non-root subtasks if a
non-root subtask is released immediately after the completion of its previous subtask.

Several synchronization protocols [91, 69] have been developed to deal with this issue.
Most of them are based on the idea that a non-root subtask τi,j should not be released
immediately after its previous subtasks complete; instead, the release time of τi,j
should be deliberately delayed for some time so that all instances of τi,j can be released
periodically.

Among those synchronization protocols, the Release Guard Protocol [91] is considered
most suitable for real-time systems because of its low complexity and low overhead.
With the release guard protocol, every non-root subtask has to keep a periodic release
timer. A subtask sends a synchronization signal immediately after its completion to
its downstream subtasks and a task can only be released when both the upstream
synchronization signal is released and its periodic release timer has expired. Due to
the suitability of the release guard protocol in real-time systems, we will adopt it as
the basis of our mixed-criticality end-to-end tasks models.

Scheduling Analysis: Once the task/priority assignments have been determined
and the synchronization protocol is chosen, the next question is whether all tasks in
the system can meet their deadlines. For fixed priority systems, the response time of
each subtask can be computed using the Lehoczky approach [64] and the worst case
response time of an end-to-end task can be obtained by the summation of response
times of the longest path along the task graph. The schedulability of an end-to-end
task can then be determined by whether the response time of the task is less than its
deadline.

3.5.1 Priority Assignment for Mixed-Criticality End-to-End

Tasks

In this subsection, we focus on the problem on how to assign priorities to subtasks so
that all end-to-end tasks in a mixed-criticality multiprocessor system can be feasibly
scheduled. In general, this is an NP-hard problem since priority assignment for even
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a single criticality system is NP-hard [69]. Like single criticality systems, one could
use computationally intensive techniques such as simulated annealing [93] for assign-
ing priorities off-line, or we can use heuristic methods [91, 69] for subtask priority
assignment on-line, which is our focus here.

Similar to the uniprocessor mixed-criticality systems, we can assign subtask priorities
based on the rate or criticality of a task. However, these approaches are generally
inefficient as we have shown in the uniprocessor systems. The other approach for
the priority assignment problem is to solve it in two steps: deadline-assignment and
then priority-assignment. In the deadline-assignment step, a local relative deadline is
assigned to each subtask in accordance to the end-to-end deadline. There are many
deadline-assignment algorithms [60, 61, 91]. Let di,j be the local relative deadline of
subtask τi,j. We now characterize four deadline-assignment algorithms with mixed-
criticality extensions.

• Ultimate Deadline Algorithm (UD)

di,j = Di;

• Effective Deadline Algorithm (ED)

di,j = Di −
Ni∑

k=j+i

Ci,k(ζi);

• Proportional Deadline Algorithm (PD)

di,j = DiCi,j(ζi)/
∑
∀k

Ci,k(ζi);

• Normalized Proportional Deadline Algorithm (NPD)

di,j = Di
Ci,j(ζi)U(τi,j)∑
∀k Ci,k(ζi)U(τi,k)

;

where Ni is the number of subtasks in task τi and U(τi,j) is the total CPU utilization
of all subtasks in the same processor to which subtask τi,j is assigned.
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Once each subtask has a local relative deadline, the scheduler can then use this
intermediate relative deadline as the virtual deadline of the subtask and assign subtask
priority in the basis of this virtual deadline. Thus the problem of assigning priorities
of end-to-end tasks is reduced to that of assigning priorities to subtasks on each
processor. In other words, we can use the uniprocessor schedulability analysis to
calculate the response time of each subtask on each processor and the end-to-end
response time can be obtained by the summing up the response times of subtasks in
each end-to-end task.

Schedulability Analysis for Fixed Task Priority: For traditional (single criti-
cality) end-to-end systems, Deadline Monotonic (DM) scheduling, where higher prior-
ities are assigned to subtasks with shorter deadlines, has been extensively studied[91,
69] in conjunction with the mentioned deadline-assignment algorithms. The major
complication about applying the previously mentioned uniprocessor schedulability
analysis is that simple fixed task priority response time analysis such as Equation 3.1
is based on the assumption that the deadline is smaller than the period of the task.
However, the deadline assignment algorithms we discussed cannot guarantee to main-
tain this constraint for all subtasks. To overcome this limitation of the response time
analysis, a technique called busy period analysis [64, 91] is required.

Given a task τi in a fixed task priority periodic or sporadic task set, let Hi be the set
of tasks with equal or higher priorities than τi. The busy period of τi refers to the time
interval (tb, te) in which the processor is idle or none of the tasks in Hi is executing
immediately before tb and after te; in addition, only the tasks in Hi can be executed
between tb and te and the processor is never idle within the interval. For fixed task
priority scheduling of sporadic tasks, it is proved that the longest busy period of a
task Hi occurs when the tasks in Hi ∪ {τi} are released at the same time. Thus the
response time of a task τi with unconstrained deadline can be obtained by analyzing
the finish times of all jobs of τi in the longest busy period and then subtract the
release times of their respective jobs.

For the analysis of fixed task priority mixed-criticality tasks (i.e., FTP-SMC and FTP-
AMC schemes) with unconstrained deadlines, busy period analysis is still applicable
because no assumption is violated. In the following, we use the FTP-AMC scheme
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to illustrate how busy period analysis works. Consider the case where Di > Ti, the
longest busy period W s

i (m) for τi in a given criticality level m is the fixed point of

W S
i (m) = IS

(
W S
i (m),m,Hi ∪ {τi}

)
.

Let ZS
i (k) be the criticality level of the k-th job release in the busy period governed

by S; i.e., ZS
i (k) ≡ ` if n`−1

i (S) ≤ k < n`i(S). Let LS
i (k) be the maximum workload

generated by τi in a busy period governed by S,

LS
i (k) =

ζi∑
`=0

(
min(n`i(S), k)−min(n`−1

i (S), k)
)
Ci(`).

The k-th response time of τi is then the fixed point of

ρSi (k) = LS
i (k) + IS(ρSi (k), ZS

i (k), Hi).

The response time of τi is thus

max

{
ρSi (k)− kTi | ∀S,∀k, where 1 ≤ k ≤

⌈
W S
i (ζi)

Ti

⌉}
. (3.12)

Schedulability Analysis for Period Transformation: For mixed-criticality end-
to-end tasks, we can still apply the period transformation technique by assigning local
relative deadlines using PD or NPD, and then transforming the period Ti of a sub-
task τi,j to T ′i,j = Ti/ni,j such that T ′i,j < T ′m,n for all τm,n where τm,n is allocated
to the same processor as τi,j and ζi > ζm. In the case of end-to-end tasks, the local
relative deadline di,j of a subtask τi,j may be far smaller than its period Ti and thus
Equation 3.2 cannot be directly used because it assumes period equals to deadline for
every task. To overcome this limitation, the execution time of a subtask cannot be
equally partitioned into each transformed period; i.e., let ζmax be the maximum criti-
cality level in the system, the transformation should guarantee Ci,j(ζmax)/ ddi,jni,j/Tie
units of execution time within each transformed period T ′i,j = Ti/ni,j so that τi,j can
finishes execution before its local relative deadline. The transformed deadline d′i,j
thus becomes (di,j mod T ′i,j) + T ′i,j.

71



Schedulability Analysis for Fixed Job Priority: The analysis presented in
Section 3.3 does not make any assumption about the deadlines of tasks; therefore, it
can be directly applied to end-to-end tasks on a processor without any modification.

Schedulability Analysis for Zero-Slack Scheduling: Although zero-slack schedul-
ing is introduced as a viable solution for mixed-criticality scheduling in uniprocessor
system, our schedulability evaluation (discussed in Chapter 4) shows it offers little
improvement over rate monotonic and performs much worse than other approaches
specific to mixed-criticality systems. Therefore, we don’t think it worthwhile to ex-
tend zero-slack scheduling to end-to-end systems.
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Chapter 4

Mixed Criticality Evaluations

In Chapter 3, we have discussed various mixed-criticality scheduling approaches and
their schedulability analysis. In this chapter, we start with presenting an evaluation
of different approaches to mixed-criticality scheduling in terms of task schedulability
on uniprocessor systems. Next, we evaluate those approaches with the modifications
tailed for distributed end-to-end tasks. Last, we describe mixed criticality support
in MCFlow and an evaluation of enforcement mechanisms for the various mixed-
criticality scheduling approaches.

4.1 Schedulability Evaluation for Mixed-Criticality

Tasks on Uniprocessor Systems

In this section, we present our investigation of the schedulability of different mixed-
criticality scheduling approaches and demonstrate the effectiveness of our improved
analyses over their original counterparts.

4.1.1 Task set generation parameters

We studied the schedulability of randomly generated task sets, where each task set
Γk was generated based on the following parameters:
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• The CPU utilization Uk of Γk is a number between 0.05 and 0.95. Given a Uk,
the utilization ui of a task τi in Γk was generated by the UUnifast algorithm [25].

• The period Ti of a task τi was 100x where x was randomly sampled from a
uniform distribution between 1 to 100, and the deadline Di was the same as the
period Ti.

• The criticality levels of tasks were assigned sequentially as tasks were gener-
ated; i.e., if the total number of criticality levels in a task set was N , then the
criticality level ζi of the i-th generated task τi was i mod N .

• The execution time Ci(0) of τi was obtained from the equation Ci(0) = max(bTiuic, 1).

• The default ratio (CF) between the worst case execution time Ci(ζi) and Ci(0)

was 1.5. Given a CF, the execution time specification of τi was

Ci(ζ) =

Ci(0) if ζ < ζi,

CF × Ci(0) otherwise.

• For each set of parameters, 1000 tasks were generated.

4.1.2 Scheduling approaches and analysis investigated

The scheduling approaches and analysis we used are as follows:

• Rate monotonic scheduling (RMS) with response time analysis based on For-
mula 3.1.

• Criticality monotonic scheduling (CMS) with response time analysis based on
Formula 3.1.

• Period transformation (PT) with response time analysis based on Formula 3.2.

• Zero slack scheduling (ZSS) with our improved analysis described in Section 3.2.

• Static Mixed Criticality (FTP-SMC), priority assigned with Audsley’s approach
with response time analysis based on Formula 3.1.
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• FTP-AMC with the first analysis (AMC-RT) developed by Baruah et al. [19]
which was also described in Section 3.3.1.

• FTP-AMC with the second analysis (AMC-MAX) developed by Baruah et
al. [19].

• FTP-AMC with our improved analysis (AMC-HGL) as described in Section 3.3.2.

• FJP-AMC with job arrival pattern developed by Li [67] (FJP-LB).

• FJP-AMC with our improved job arrival pattern as described in Section 3.4
(FJP-HGL).

4.1.3 Simulation

For convenience of presentation, we will separate our evaluation into three different
parts. The first part compares the effectiveness of different FTP-AMC analyses as
well as FTP-SMC. The second part evaluates FJP-AMC with two different methods of
job arrival pattern calculation. Last, we compare how different scheduling approaches
affect the schedulability of mixed-criticality tasks.

FTP-SMC/FTP-AMC Comparison Figure 4.1 plots the result with 20 tasks
in each task set (NT=20), 2 levels of criticality (NC=2) and the ratio between Ci(ζi)
and Ci(0) is 1.5 (i.e., CF = Ci(ζi)/Ci(0) = 1.5). The conducted our experiment with
the total utilization of a task set varying from 0.05 to 0.95. However, we only show
the utilization ranges from 0.55 to 0.88 because the percentage of schedulable tasks
are either 1 or 0 outside of the range, and thus the distinction between these analyses
can be more clear.

As shown in Figure 4.1, AMC based analyses performed better in schedulability tests
because of the mechanism that lower criticality tasks have to be suspended/aborted
when the execution of a higher criticality task exceeds certain execution thresholds.
The differences between all 3 AMC analyses are very small; however, AMC-HGL
consistently performs better than AMC-MAX and AMC-RT. Beside the marginal
schedulability improvement of AMC-HGL over AMC-MAX, AMC-HGL analysis can
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be easily extended beyond two levels of criticalities while it is not the case the AMC-
MAX.
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Figure 4.1: Schedulability evaluation for fixed task priority SMC/AMC analyses
with 20 tasks (NT=20, CF=1.5, NC=2)

Figures 4.2 and 4.3 further demonstrate the slightly better performance for AMC-
HGL over AMC-MAX and AMC-RT in schedulability tests. In both Figures 4.2
and 4.3, we show the weighted schedulability measure [22, 19] over varying number
of tasks (NC) and CF ratio, respectively. For each parameter p (NC or CF), the
weighted schedulability measure combines results for all the task sets Γ generated for
all of a set of equally spaced utilization levels (0.05 to 0.95 in steps of 0.05).

Given a total CPU utilization ui, let πi(p) be the percentage of schedulable cases (out
of 1000) with parameter p. The weighted schedulability measure W (p) is defined as

W (p) = (
∑
∀i

uiπi(p))/
∑
∀i

ui.

The weighted schedulability measure reduces what would otherwise be a 3-dimensional
representation to 2 dimensions. Weighting the individual schedulability results by
task set utilization reflects the higher value placed on being able to schedule higher
utilization task sets [22, 19].
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Besides the slight performance gain in AMC-HGL, Figure 4.2 also shows all the
weighted schedulability curves over the number of tasks are relatively flat which indi-
cates neither the schedulability of AMC nor that of SMC is sensitive to the number
of tasks in the system. On the other hand, because the CPU utilization of a gen-
erated task τi is based on the execution time at the lowest confidence level Ci(0), it
is expected that the schedulability decreases as the CF ratio increases as shown in
Figure 4.3.
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Figure 4.2: Schedulability evaluation for fixed task priority SMC/AMC analyses
with varying numbers of tasks (CF=1.5, NC=2)

Comparison of FJP Analyses: As we have described in Section 3.4, assigning job
priorities to mixed-criticality sporadic tasks was proposed by Li et al [66, 67]. Before
priorities can be assigned to jobs, it is necessary to estimate job arrival patterns (i.e.,
the number of jobs for each task that can be executed in each criticality level) in a
worst case busy period. Li provided an approach for job arrival pattern estimation
based on the load of sporadic tasks. However, that approach is virtually useless in
practice because of two reasons. First, the load calculation is computationally expen-
sive [44]. In our preliminary test, we were unable to finish testing schedulability of
even 10 randomly generated task sets (with the parameters NT=8, U=0.05, CF=1.5)
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Figure 4.3: Schedulability evaluation for fixed task priority SMC/AMC analyses
with varying CF (NT=20, NC=2)

in a day. Second, the successful rate (if any) that can pass the schedulability test
based on this approach is often very poor. In fact, none of the generated task sets
passed the schedulability test with the following parameters: NT=4, NC=4, CF=1.5.
Figure 4.4 shows the result for our revised job arrival pattern (FJP-HGL) calculation
described in Section 3.4 and Li’s method[67].

Comparison of Different MC Scheduling Approaches: Because AMC-HGL
and FJP-HGL perform best for their respective scheduling approaches, we will use
them for the comparison of their representative analyses against other approaches.
Figure 4.5 shows the percentage of schedulable task sets where each task set consists 20
tasks, 4 criticality levels and a CF ratio of 1.5 under different scheduling approaches.
Figure 4.6 compares the approaches by varying the number of tasks in each task
set. Figure 4.7 compares the approaches by varying CF. Figure 4.8 compares the
approaches by varying the number of criticalities in a task set.

The following observations are illustrated by these figures:
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Figure 4.4: Schedulability evaluation for fixed job priority analyses (NT=4, NC=4,
CF=1.5)
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Figure 4.5: Schedulability evaluation for MC scheduling approaches with 20 tasks
(NT=20, CF=1.5, NC=4)
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Figure 4.6: Schedulability evaluation for MC scheduling approaches with varying
number of tasks (CF=1.5, NC=4)
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Figure 4.7: Schedulability evaluation for MC scheduling approaches with varying
CF (NT=20, NC=4)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

number of criticalities

w
ig
ht
ed

sc
he
du

la
bi
lit
y

FJP-HGL
AMC-HGL
FTP-SMC

PT
ZSS
RMS
CMS

Figure 4.8: Schedulability evaluation for MC scheduling approaches with varying
number of criticalities (NT=20, CF=1.5)
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• CM performs very badly in terms of schedulability.

• AMC performs better than ZS because the time to suspend/abort lower critical-
ity tasks is determined at run-time rather being statically pre-computed. This
allows ACM to be more adaptive than ZS based on the workload.

• For the approaches based on Audsley’s priority assignment algorithm (AMC or
SMC), the rate of successful schedulable tasks increases as the number of tasks
increases. This is largely due to the finer granularity for schedulable job/task
selection given a fixed CPU utilization. This factor is more prominent when the
number of tasks is small.

• Except for CM and PT, the number of successfully schedulable tasks increases
as the number of criticality levels increases. This is because the finer the granu-
larity of the criticality levels, the more tasks a high criticality task can suspend
or abort, which thus increases its schedulability. However, we also observed an
increase in the number of criticality levels also significantly increases the compu-
tation time for the schedulability tests, especially for FTP-AMC and FJP-AMC.
This is because the computational complexity of the FTP-AMC and FJP-AMC
schedulability tests depend on the length of longest busy period, and the busy
period increases as the the number of criticality level increases.

Overall the key observation is that FJP-AMC performs best in all scenarios. Given the
fact that FJP-AMC selects schedulable jobs instead of tasks in each step of Audsley’s
priority assignment algorithm, it is not surprising that FJP-AMC would outperform
FTP-ACM because of the finer granularity. In theory, FJP dominates FTP because
any FTP priority assignment is also a valid FJP assignment [21]. However, this does
not translate to the necessity that FJP-HGL dominates FTP-HGL. This discrepancy
comes from the fact that the job arrival patterns used by FJP-HGL are different
from those of FTP-HGL. If an FJP algorithm chooses to test all possible job arrival
patterns, it would dominate all possible FTP algorithms; however, the complexity of
doing that would be too high in practice.
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4.2 Schedulability Evaluation for Mixed-Criticality

End-to-End Tasks

From Section 3.5, we see that mixed-criticality end-to-end scheduling involves deadline
assignment algorithms and different mixed-criticality scheduling approaches. In order
to understand the strength and weakness of these approaches, we now present a an
quantitative comparison of these algorithms that we have conducted to evaluate those
issues.

4.2.1 Workload generation

We studied the schedulability of randomly generated end-to-end task sets, each gen-
erated based on the following parameters:

• Each generated task set consisted of 8 independent tasks, where the number of
subtasks was an integer randomly sampled from a uniform distribution between
2 to 8.

• The period of each task was an integer randomly sampled from a distribution
between 100 to 10000.

• The total CPU utilization U(PRk) of a processor PRk was a floating point value
randomly sampled from a uniform distribution between 0.5 and 0.8.

• The criticality levels of tasks were assigned sequentially modulo N as tasks were
generated; i.e., if the total number of criticality levels in a task set was N , then
the criticality level ζi of the i-th generated task τi was i mod N .

• The execution time at the lowest confidence level Ci,j(0) for each subtask τi,j
was determined by a uniformly distributed random number ui,j (called the uti-
lization factor) that was randomly sampled from a uniform distribution between
0.1 and 1. With the availability of the task period Ti and the CPU utilization,
Ci,j(0) is derived from the following equation

Ci,j(0) = max{1, Ti ×
ui,j∑

∀τm,n∈Pr(τi,j) um,n
U(Pr(τi,j))}.
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• The ratio (CF) between the worst case execution time Ci(ζi) and Ci(0) was 1.2.
Given a CF, the execution time specification of τi,j was

Ci,j(ζ) =

Ci,j(0) if ζ < ζi,

CF × Ci,j(0) otherwise.

4.2.2 Scheduling approaches investigated

The following list summarizes the priority assignment approaches we investigated for
end-to-end schedulability.

• Deadline monotonic scheduling (DMS).

• Period transformation (PT) with response time analysis.

• Static mixed criticality (FTP-SMC), priority assigned with Audsley’s approach
with response time analysis.

• Fixed task priority assigned with Audsley’s approach coupled with adaptive
mixed criticality run-time mechanisms using our improved analysis (AMC-
HGL).

• FJP-AMC with our improved job arrival pattern as described in Section 3.4
(FJP-HGL).

4.2.3 Simulation

We randomly generated 1000 end-to-end task sets. For each task set Γ, we began by
setting the end-to-end deadlines of each task τi in Γ the same as the period of τi (i.e.,
Di/Pi = 1 or DP=1), assigning local deadline of each subtask in τi using proportional
deadline assignment. Then we tested the schedulability of each end-to-end task in
the task set Γ. Next, we increased the end-to-end deadline of all tasks in Γ to be
1.1 times of their respective periods (DP=1.1) and repeated the schedulability test
process until the DP ratio of each task reached 1.8.
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Figure 4.9 plots the number of schedulable end-to-end tasks under different scheduling
approaches. Not surprisingly, FJP-HGL performs best among the approaches inves-
tigated, as it does in the uniprocessor environment. Although period transformation
(PT) is generally better than rate monotonic (RM) scheduling in the uniprocessor
environment, that is not the case for end-to-end task sets. In fact, PT is consis-
tently worse than deadline-monotonic (DM) priority assignment. Compared to DM,
PT would make the response times of all subtasks closer to their artificial relative
deadlines, and thus increase the end-to-end response time in general.
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Figure 4.9: Comparison between different priority assignments using proportional
deadline

Let Si,j be the difference between the relative deadline and response time of a subtask
τi,j. If all subtasks in a processor Pk meet their respective relative deadlines, i.e.,
Si,j > 0 for each subtask τi,j in Pk, we call the subtasks on Pk frozen. If there exists
any frozen subtask τi,j, the slack Si,j can be redistributed to other unfrozen subtasks
of task τi which thus can increase the assigned deadlines of unfrozen subtasks. Next,
we can re-assign the priorities of unfrozen subtasks with the newly assigned deadlines,
and calculate the end-to-end response times of all tasks. The process continues until
all tasks are schedulable or no more frozen subtasks are available. We will call this
technique slack reallocation.

Figure 4.10 shows the number of task sets (out of 1000) which are made schedulable
because of slack reallocation. Figure 4.11 shows the number of schedulable task sets
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with different priority assignment approaches with and without slack reallocation.
We can see that slack reallocation is most helpful to FJP-HGL because of its finer
granularity priority assignment approach. On the other hand, it does not help PT
much.
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Figure 4.10: The improvement of slack reallocation

In order to understand effect of different deadline assignments, we also use normalized
deadlines to evaluate end-to-end schedulability. Figure 4.12 compares the schedulable
end-to-end tasks of FJP-HGL (with and without slack reallocation) using proportional
deadline (PD) and normalized proportional deadline (NPD) approaches. It shows
these two deadline assignment approaches are very close and neither approach is a
clear winner.

Table 4.1 shows the Number of task sets that are schedulable only under each schedul-
ing approach with or without slack reallocation when proportional deadline assign-
ment is used. Although a task set is mostly likely to be schedulable using FJP-HGL,
the table shows that FJP-HGL does not dominate other scheduling approaches.
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Figure 4.11: Comparison between different priority assignments with and without
slack reallocation using proportional deadline
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Figure 4.12: Comparison between PD and NPD for FJP-HGL

Table 4.1: Number of task sets that are uniquely schedulable by each scheduling
approach with proportional deadline assignment (DP=1.6)

FJP-HGL FTP-HGL FTP-SMC PT DMS
without slack
reallocation 72 4 1 9 1
with slack
reallocation 128 9 1 9 1
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4.3 Mixed-Criticality Runtime Enforcement Mecha-

nism Implementation and Evaluation

Among the scheduling approaches we have considered for mixed-criticality real-time
systems, FTP-SMC, rate monotonic and criticality monotonic scheduling can be easily
implemented atop thread priority mechanisms commonly provided by modern oper-
ating systems. To support period transformation, additional bandwidth-preserving
server mechanisms[69] are needed to ensure a task will not execute beyond its budget
within a transformed period. Enforcement of zero-slack and AMC scheduling requires
the use of additional timers to trigger mode changes and deadline miss handling. The
additional overheads of period transformation and zero-slack scheduling mechanisms,
compared to the FTP-SMC approaches are thus of practical interest. In this section,
we present a user space implementation of deferrable server, zero-slack scheduling and
AMC mechanisms atop Linux, and evaluate the run-time overhead of the different
scheduling policies for mixed-criticality systems.

4.3.1 Zero-Slack Scheduling Implementation

A task is implemented as a thread with a priority assigned in accordance with the
application and platform. For Linux, valid priority levels range from 0 to 99, where 99
is the highest priority. Our zero-slack scheduling mechanisms reserve priority levels 1
and 99 for criticality enforcement purposes. Task suspension is emulated by lowering
the priority of a task to 0. As a result, application tasks can use only priority levels
2 through 98. To simplify discussion, we assume that the criticality levels assigned
to a task set are contiguous positive integers.

Each task is associated with three periodic timers, for the job release, ZSI, and dead-
line. Expiration of the job release timer is received and handled in the task’s associ-
ated thread. An additional enforcement thread with priority 99 is created to wait for
all other timer expiration events as well as for job termination events, and to make
scheduling decisions based on the events it receives. To handle task suspension and
resumption correctly, the enforcement thread maintains a binary heap of criticality
levels. The top element of the heap has the highest criticality among the tasks that
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have been suspended. For convenience, we use ζs0 and ζs1 to denote the criticality of
the top two elements in the binary heap.

A suspension event with a criticality level is used to trigger the enforcement thread to
suspend a subset of tasks. When the enforcement thread receives a suspension event
with criticality x, it suspends the tasks whose criticality is less than or equal to x and
higher than ζs0. In addition, criticality x is inserted into the binary heap. Notice that
x could be smaller than ζs0 and hence no tasks would be suspended. However, the
new value of x should still be inserted into the binary heap so that the enforcement
thread can keep track of which tasks are in critical mode.

When the ZSI timer of a job Ji,k expires and the job has not finished its execution,
a suspension event with criticality ζi − 1 is sent to the enforcement thread. Deadline
timer expiration of a task τi is handled in the same way as ZSI timer expiration,
except that if Ji,k misses its deadline, a suspension event with criticality ζi is sent
instead. When a job Ji,k finishes while in critical mode or after missing its deadline,
an event is sent to the enforcement thread to wake up the tasks that were suspended.
When the event is received, the enforcement thread restores the priority of each task
τj where ζs1 < ζj ≤ ζs0, and then the top element of the binary heap is removed.
Priority restoration is done in non-increasing criticality order. When an awakened
job Ji,k has already missed its deadline, the priority of τj is changed to 1 instead of
πj. In addition, ζj is inserted into the binary heap so that tasks with criticality levels
less than or equal to ζj will remain suspended.

4.3.2 Period Transformation Implementation

To support period transformation, we also implemented a deferrable server enforce-
ment mechanism in MCFlow. In the deferrable server approach, a task with a trans-
formed period is executed within a server thread. Each server has a period, a budget,
and a priority, all of which are assigned according to the transformation mechanism
described in Section 4.1. The server budget is replenished at the beginning of each
period. The budget decreases while the server is executing a task and is preserved
(until the end of the current period) while the server is idle. A server can execute its
respective task as long as its budget has not been exhausted.
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Similar to our zero-slack scheduling implementation, a manager thread at highest
priority is allocated to manipulate the consumption and replenishment of servers’
budgets. This thread sits in an epoll_wait system call and waits for the budget re-
plenishment and exhaustion events which are generated by the POSIX real-time timer
APIs. For the budget replenishment events, we use timers with the CLOCK_MONOTONIC
clock id (wall clock timer) to generate asynchronous timeout signals. To monitor the
budget consumption of a server, timers with the CLOCK_THREAD_CPUTIME_ID clock id
(thread CPU timer) are used. However, in the implementation of our test platforms,
relying on the thread CPU timer to trigger budget exhaustion events is imprecise
because the timer expiration can be triggered only right after scheduling quantum
expiration. In our platform, the quantum duration is 1 ms. That is, if a thread
CPU timer expires 100 µs after the quantum expiration time, the expiration event
of the thread CPU timer timer would have to to wait another 900 µs to be triggered
by the kernel. On the other hand, wall clock timers can always be triggered with
microsecond level precision, regardless of the quantum expiration period.

For a system with only a few servers, imprecise triggering might not be a significant
problem. However, such jitter can aggregate as the number of servers grows. To
overcome this limitation, we utilize both thread CPU timers and wall clock timers to
generate budget exhaustion events of a server. Whenever a budget replenish event
arrives, we set the priority of the server thread to its respective real-time priority and
reset the corresponding thread CPU timer. At the same time, a wall clock timer is
set to generate asynchronous signals based on the remaining time on the thread CPU
timer. Upon expiration of the wall clock timer, the corresponding thread CPU timer
is checked to see if the budget has been exhausted. If the budget is not exhausted,
the wall clock timer is armed again with the remaining time read from the thread
CPU timer. If the budget is exhausted, the priority of the server thread is set to the
lowest priority, 0.

4.3.3 AMC Implementation

Our implementation of AMC is basically a mixture of zero-slack scheduling and period
transformation. Common to the implementation of all these scheduling approaches,
they all need a manager thread of highest priority for certain scheduling control
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actions. Like period transformation, AMC requires both wall clock and thread CPU
timers to monitor the progress of a task. Similar to the expiration of a ZSI timer,
the AMC implementation must suspend lower criticality tasks once the execution of
a task exceeds the execution specification for a particular certain confidence level.

However, the availability of only 99 priority levels in Linux limits the usefulness of
this implementation for use use with FJP-AMC scheduling without any modification.
FJP-AMC assigns a unique priority level to every single job in the job arrival pattern.
The highest priority is reserved for manager thread and the lowest priority is reserved
for suspended task, only 97 priority levels are left for job assignments. In the 1000
task sets we generated based on the method in Section 4.1 (with parameters CF=1.5,
NC=4, NT=20, U=0.8), on average FJP-HGL required 115.408 distinct jobs in their
job arrival patterns. Therefore, the 97 levels of priorities may be inadequate.

To overcome this limitation, we implemented an alternate way to enforce job prior-
ities when the priority levels provided by the operating systems are not sufficient.
Instead of mapping job priorities to native OS priorities, our alternative implemen-
tation only uses 3 levels of native OS priorities (namely, MGR_PRIO, RUN_PRIO and
SUSPENDED_PRIO in the decreasing priority order). The manager thread (running
in MGR_PRIO priority) works as a job dispatcher to control when jobs are released,
preempted and suspended. Only the thread of the current running job with high-
est FJP priority is assigned with RUN_PRIO priority; other threads are set to the
SUSPENDED_PRIO priority.

Besides job priority enforcement, FJP-AMC also requires a run-time mechanism to
compute the priorities of jobs. To avoid run-time job priority computation of pseudo-
polynomial complexity described in [66], we implemented PLRS [50] which off-loads
the pseudo-polynomial complexity to an off-line stage and employs an on-line algo-
rithm of quadratic complexity.

4.3.4 Empirical Evaluation

To measure the overhead imposed by these scheduling mechanisms, we conducted
experiments on a testbed consisting of a 6-core Intel core7 980 3.3GHZ CPU with

91



hyper-threading enabled, running Ubuntu Linux 10.04 with the 2.6.33-29-realtime
kernel which incorporates the Linux RT-Preempt patch [82]. To avoid task migration
among cores, CPU affinity was assigned so that our test program was executed in one
particular core. All hardware IRQs except those associated with timers were assigned
to cores other than the one for application execution. Each task was implemented
with a for loop with a fixed number of iterations, where every 31 iterations yielded
a 1 µs workload. In each iteration, the CPU timestamp counter was read and then
compared with the counter read from the previous iteration. If the difference was
greater than a specified number of ticks (700), we considered the thread to have been
preempted and the new timestamp counter was stored. After a specified amount of
time, all stored timestamp counters were written to a file, and then the test program
terminated.

ZSRM Measurements: Our first experiment used the task set in Table 1.1, where
τh and τ` ran workloads of 4 and 2 ms within their periods, respectively. Table 4.2
shows the time stamp log for the experiment in microseconds and Figure 4.13 is
a graphical illustration of the log. To enhance readability, all the time stamps in
Table 4.2 have been normalized so that the first time stamp of the table is 0. Each
cell in the table represents a starting and end time of a task running continuously.
The number in parenthesis is the time difference between the end of the current entry
to the start of next entry. For instance, the first job J1,1 of τ1 starts at 1938 µs and
runs until 2840 µs before it is preempted. After another 3 µs, J1,1 continues to run
from 2843 µs to 3840 µs. The time stamps in the same shaded box belong to the
same job. For example, J2,1 runs from 0 to 1936 µs; similarly, J1,1 runs from 1938 µs
to 6816 µs.

We found that approximately every 1000 µs, there was a 3 µs interval that was
not used by the task set or by the enforcement thread, which we attribute to the
invocation of the Linux scheduler scheduling every quantum, which was set to 1 ms
on our test machine.

As was mentioned earlier, the enforcement thread can be invoked by job termination
as well as by ZSI timers and deadline timers. In this experiment, τh did not have
a deadline timer because there was no higher-criticality task with which it could
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Table 4.2: Time stamp log (in µs) for the example in Table 1.1 where only the first
jobs of the tasks are overloaded

Enforcement τh τl
0-840 +(4)

844-1840 +(3)
1843-1936 +(3)

1938-2840 +(3)
2843-3840 +(3)
3843-4840 +(3)
4843-4990 +(6)

4996-4996 +(2)
4998-5840 +(3)
5843-5992 +(2)

5994-6000 +(1)
6001-6816 +(9)

6824-6828 +(1)
6829-6840 +(3)

6843-7769 +(2226)

2 6 7 851 3

Enforcement

Linux 
Scheduler

⌧h

⌧l

ms4

Figure 4.13: Illustration of the time stamp log in Table 4.2
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interfere if it missed its deadline. Similarly, τl did not have a ZSI timer because there
was no lower-criticality task that it needed to suspend when it entered critical mode.

When a timer expires or a job terminates, there is an overhead to switch from the
current task thread to the enforcement thread. Depending on the scheduling context,
the enforcement thread may demote or promote the priorities of some tasks and then
return to the task with the highest priority. Thus the overhead of every enforcement
thread invocation is the sum of the overheads for preemption invocation, thread
priority adjustment, and preemption return.

Comparison between Scheduling Policies: To evaluate the cost of criticality
enforcement in the implementations of different scheduling policy enforcement mech-
anisms, we benchmarked the task set in Table 4.3, and compared the response times
seen for FTP-SMC, ZSRM, PT, FTP-AMC and FJP-AMC with PLRS according to
the busy intervals from each job release of τ4 until the CPU again became idle. Each
AMC based approach has two versions, one that directly maps the task or job pri-
ority to the OS thread priority (dubbed AMC-OS and PLRS-OS), and another that
uses middleware mapped priority, i.e., the manager thread enforces correct task/job
priorities (dubbed AMC-MW and PLRS-MW). For ZSRM, the priority of each task
was assigned by increasing rate (i.e., π1 > π3 > π2 > π4). For FTP-SMC, PT and
FTP-AMC, the priorities of the tasks are assigned in the order π1 > π2 > π3 > pi4.

In this benchmark, each task τi executed for Ci(0) time units and each experiment ran
for 3 seconds for each scheduling approach, so that 100 busy periods were observed.
We chose the execution time Ci(0) for every task so that the busy intervals would not
vary for different scheduling approaches. If longer execution times were allowed, the
overheads couldn’t be directly compared.

Table 4.3: A 4 tasks example (in ms)

Task Ci(0) Ci(ζi) Ti ζi Zi
τ1 4 6 10 1 10
τ2 3 5 20 1 3
τ3 6 6 15 0 0
τ4 2 2 30 0 0
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Figure 4.14 shows the average, maximum and standard deviation of the busy periods
measured. Since SMC does not require any other run-time mechanism other than
the priority based thread dispatching provided by the operating system, it serves as
a baseline in our comparison. The average busy interval for FTP-SMC was 27.092
ms while the average busy interval for ZSRM was 27.098 ms. The reason for such
low overhead in ZSRM was because no ZSI timer will be expired in our benchmark
case and thus no extra preemption will occur in the ZSS task schedule. On the other
hand, PT and AMC incur more overhead because of their schedule involves more
preemption. In the AMC based approaches, the run-time priority computation of
PLRS and middleware-mapped priority mechanisms did incur some extra overhead.
However, those overheads are very small. Even comparing PLRS-MW (which has the
highest run-time cost) to SMC, there was only a 0.3% increase in the time of busy
interval.

FTP-SMC ZSRM PT AMC-OS AMC-MW PLRS-OSPLRS-MW
27

27.1

27.2

27.3

ms

Average Maximum

Figure 4.14: Busy period time comparison between different scheduling mechanisms
for the task set in Table 4.3

Preemption Overhead Micro Benchmarks: To better understand the overheads
of each individual segment of enforcement thread invocation and execution, we de-
veloped another test case to measure the preemption overhead in the system. In this
test case, we use the ZSS implementation but the ZSIs of tasks were assigned arti-
ficially so that overheads could be easily identified and measured rather than using
Algorithm 1. The rationale for this artificial assignment is that those overheads are
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Figure 4.15: Preemption overhead for Linux RT kernel

related to the number of threads and the operation performed during mode switching,
rather than to the exact instants when they take place. All tasks were set to have 2
ms execution time and had the same period, 50 ms. The lowest priority task τ0 was
assigned to the highest criticality level with Z0 = 1 ms. The rest of the tasks were
assigned in such a way that the priority of a task was equal to its criticality level. By
varying the number of tasks in the system, we obtained the overhead of preemption,
preemption return, and priority adjustment, as shown in Figures 4.15 and 4.16.

As is shown in Figure 4.15, the overheads of preemption and preemption return are not
linked to the number of tasks in the system and are about 4 µs and 1 µs respectively.

From Figure 4.16, we can clearly see that the cost of priority adjustment is linear with
regard to the number of threads to be promoted/demoted. However, in our experi-
ment, the overheads for the first invocations of each such adjustment were always far
higher than the rest. As a result, we present the cost of first invocations separately
from the others, in the curve labeled “First”. The curve labeled “2nd Largest” and
the curve labeled “Average” show the maximum and mean (respectively) of the rest
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Figure 4.16: The cost of priority adjustment

of the invocations. We observe that the second largest overhead is consistently 2 to
3 µs longer than the average, which occurs when the periodic invocation of Linux
scheduling occurs during the priority adjustment.

Based on these results, we can easily estimate the overhead of timer expiration or job
termination. For example, the cost of a ZSI timer expiration with 8 tasks to suspend
is about 4 + 5 + 1 = 10 µs.

Similar to our zero-slack implementation, the overhead incurred by our deferrable
server and AMC implementation can also be divided into three parts: thread pre-
emption, preemption return, and manager thread handling. In our experiments, the
preemption overhead and preemption return overhead for the deferrable server and
AMC implementations were very close to what is shown in Figure 4.15; therefore, we
omit those details for brevity.

Table 4.4 shows the average and maximum cost of manager thread invocations for
our implementations of period transformation and various adaptive mixed-criticality
scheduling enforcing mechanisms. As was mentioned previously, the PT manager
thread is responsible for budget replenishment and exhaustion and for adjusting server
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Table 4.4: The average and maximum cost in cycles of manager thread invocation

PT AMC-OS AMC-MW PLRS-OS PLRS-MW
Average 3587 7111 11656 8306 11592

(1 µs) (2.1 µs) (3.45 µs) (2.46 µs) (3.43 µs)
Maximum 22448 26412 34188 34968 41484

(7.8 µs) (7.8 µs) (10.12 µs) (10.35 µs) (12.28 µs)

thread priorities, as as well as for canceling the budget exhaustion timer when a
job finishes. Regardless of the different functionalities involved, the average and
maximum response times of each manager thread invocation were about 3587 and
22448 cycles, respectively, or about 1 and 6.6 µs, respectively.

Compared to our PT implementation, where job release and job termination are han-
dled in their respective task thread, the manager thread of our AMC implementation
is also involved whenever a job is released or terminated because the AMC man-
ager thread needs to identify the current running job and sets the wall clock timer
to trigger the event for the system criticality level indicator change. As a result,
AMC approaches incurs more overhead than PT as shown in Table 4.4. For the
middleware-mapped priority implementations, the manager thread also needs to ad-
just thread priorities to maintain the correct job execution ordering, which increases
the cost the manager thread processing. PLRS, on the other hand, requires additional
job priority computations on some of the manager thread invocations.

In general, Table 4.4 demonstrates the manager thread overhead of PLRS-MW is
the highest among the scheduling approaches we have implemented because it in-
volves more operations than others. On the other hand, the run-time overhead of a
scheduling approach is strongly influenced by the number of preemption and task sus-
pension/resumption in a schedule. Because different scheduling approaches likely will
produce different run-time schedules, there is no absolute guarantee which scheduling
approach could result to the fewest number of manager thread invocations. There-
fore, it is hard to say which scheduling approach will impose the highest run-time
overhead even though the average overhead of PLRS-MW is the highest per manager
thread invocation.
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Nevertheless, FTP-SMC relies only on priority, and no extra run-time mechanism for
task suspension/resumption is required; thus it is expected to have the lightest over-
head in general. Therefore we recommend that system developer consider adopting
FTP-SMC if the target task set can be schedulable with the approach. For the cases
where more stringent CPU utilization bounds are required, PLRS with our new worst
case arrival pattern calculation could be a good solution.
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Chapter 5

Related Work

5.1 Related Work on Middleware

The specialized system described in [92] focuses on cyber and physical component in-
tegration without middleware support. The middleware described in [54] is based on
the work from [92] to target real-time hybrid testing of civil structures. Like MCFlow,
it is also based on dependent task graphs; however, it was designed for uniproces-
sor systems, and lacks the optimizations for multi-core platforms or the ability to
reconfigure graphs of dependent subtasks flexibly and transparently. Achieving those
capabilities across multi-core platforms is an important motivation for developing
MCFlow and is one of the key contributions of this work.

The OMG Real-Time CORBA specification [76] supports network transparency for
software component development and provides real-time policies and mechanisms in-
cluding standard interfaces to specify resource requirements and configure object re-
quest broker (ORB) end-system resources such as thread priorities, message buffers,
connections, and network signaling, to control ORB behavior. TAO [57] is a full-
featured Real-Time CORBA [76] ORB. However, TAO was originally developed for
single processor systems, and does not provide mechanisms for fine-grain paralleliza-
tion of subtasks or for inter-core communication optimizations on multi-core plat-
forms. The CORBA programming paradigm is based on a remote method invocation
model, so that implementing end-to-end tasks using CORBA requires far stronger
coupling among subtasks than MCFlow. In addition, CPU affinity and release guard
mechanisms can only be implemented ad-hoc without direct support from middleware
itself.
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TAO’s Real-Time Event Service [51] provides support for decoupled communication
between objects, which makes it more convenient to implement end-to-end tasks.
However, the event service requires a centralized event dispatcher which may lead
to high synchronization overhead and thus may become a bottleneck on multi-core
platforms. CPU affinity mechanisms also must be implemented ad-hoc; nevertheless,
release guards can be supported through careful use of event correlation mechanisms
provided by the event service.

The MC-ORB [98] middleware was specifically developed for multi-core platforms.
However, it is also based on the remote method invocation paradigm used by CORBA
and is designed for task sets where little or no dependency exists among tasks. Which
core is used to execute a job is determined at run-time based on the current system
load. It does not optimize task communication between cores, nor does it provide
direct support for release guards.

Parallel programming languages, extensions, and libraries, such as Cilk [27], OpenMP [34]
and Intel Thread Building Blocks [81] assume that the programmer should be respon-
sible for exposing parallelism in source code but may defer decisions about how to
divide the work between processors to a run-time scheduler. That is, locally and
network triggered subtasks must be programmed differently, making it more diffi-
cult to reconfigure the allocation of tasks based on the results of scheduling analysis.
Furthermore, those technologies use a central work stealing queue [29, 12] for task
dispatching, which is not suitable for real-time systems because a subtask in a queue
can only be dispatched whenever a thread/core is idle. Even if a priority queue is
used, if all threads are running lower priority subtasks, the higher priority subtasks
in the queue won’t be dispatched which results in a priority inversion.

Dataflow programming languages and frameworks such as SystemC [47], StreamIt [15],
and FastFlow [14] also have been developed, but none of them is specifically designed
to support real-time distributed applications where (1) computations can be flexibly
configured for execution on a single core, between cores of a common host or be-
tween multiple hosts, while ensuring that (2) timing constraints such as end-to-end
deadlines are strictly enforced.
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Table 5.1: The DO-178B standard

Level Failure Condition Interpretation
A Catastrophic Failure may cause a crash
B Hazardous Failure has a largest negative impact on safety or per-

formance, or reduces the ability of crew to operate the
plan due to physical distress or a higher workload, or
causes serious or fatal injuries among the passengers

C Major Failure is significant, but has a lesser impact than a
Hazardous failure.

D Minor Failure is noticeable, but has a lesser impact than a Ma-
jor failure.

E No Effect Failure has no impact on safety, aircraft operation, or
crew workload.

5.2 Related Work on Mixed-Criticality Scheduling

In recent years, multiple papers have been published related to mixed-criticality
scheduling. Vestal [95] first proposed a formal model for representing real-time mixed-
criticality tasks to support analysis of the safety of software systems based on the
RTCA DO-178B software standard. DO-178B is a software development process
standard, which assigns criticality levels to tasks categorized by effects on commer-
cial aircraft as shown in Table 5.1, as a means of certifying software in avionics
applications. Vestal [95] used fixed-priority scheduling and provided a preliminary
evaluation using three real world mixed-criticality workloads which showed that pri-
ority assignment [17] and period transformation [85] improved the utilization of the
system, in comparison to deadline monotonic analysis.

Baruah and Vestal [21] then studied fundamental scheduling-theoretic issues with
fixed task-priority, fixed job-priority and earliest deadline first (EDF) scheduling
policies, under Vestal’s mix-criticality model. In contrast to the traditional single-
criticality task set where EDF is known to be optimal for uniprocessor scheduling
in the sense that EDF always meets all deadlines for all feasible traditional systems,
they showed that EDF was not optimal for mixed-criticality tasks in the uniprocessor
environment. They also showed that a mixed-criticality task set is schedulable under
an EDF scheduling policy if and only if it is feasible under traditional EDF scheduling
analysis where the multiple specifications of worst case execution times are ignored
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and treat each mixed-criticality task as a traditional task with the worst execution
time of the highest criticality. In fact, fixed task-priority and EDF scheduling are in-
comparable because neither dominates the other; in other words, a mixed-criticality
task set that is schedulable under fixed task-priority scheduling may not be schedula-
ble under EDF scheduling, and vice versa. To achieve better task schedulability, they
proposed a hybrid-priority scheduling algorithm which dominated both fixed task-
priority scheduling and EDF scheduling. This algorithm generalizes both EDF and
Audsley’s method such that each task is assigned a priority that is not necessarily
unique. Tasks of different priorities are scheduled according their priority settings;
tasks of the same priority are scheduled in EDF. The priority assignment algorithm
extends Audsley’s algorithm to select tasks in increasing priority order. Instead of
using the modified Joseph-Pandya worst case response time analysis [59] in each task
selection step, Baruah et al. adopted a simulation based approach to test whether a
task would fail to be schedulable at a given priority level.

In [20], Baruah et al. investigated the schedulability of mixed-criticality systems
consisting of a finite number of (non-recurring) jobs. Their analysis demonstrates
that complexity of mixed-criticality schedulability testing is NP-hard even when all
jobs are released at the same time and the total number of criticality levels in the
system is 2. It also proves that priority-based scheduling offers a processor speedup
factor between 1.236 and 2 compared to EDF when the number of criticality levels is
2 or approaches infinity, respectively.

Li [66] further developed an on-line algorithm for scheduling sporadic tasks on a per-
job basis. The algorithm is also based on Audsley’s approach but with a different
function to test the feasibility of a job running at a particular priority. The new
function allows Li’s algorithm to be more adaptive on the arrival pattern of jobs
rather than relying on the static periodic model. However, this algorithm needs an
on-line priority assignment recomputation with psudo-polynomial complexity in the
worst case. This may make the algorithm unacceptable for systems that require
stringent worst-case bounds on timing behavior.

To overcome the limitations of Li’s algorithm, Guan [50] presented an algorithm
called PLRS to address this issue. Like Li’s algorithm, PLRS is also a fixed-job
priority scheduling algorithm. However, instead of solely relying on high-complexity
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on-line priority recomputation for job scheduling, PLRS separates the algorithm into
two stages: an off-line priority computation and an on-line priority assignment stage.
The PLRS off-line priority computation is essentially the same as the on-line priority
recomputation of Li’s method, but PLRS only computes jobs of the worst case busy
period when all tasks are released at the same time. The resulting information is then
used by a lighter weight on-line algorithm for priority assignment. The complexity of
the off-line stage is still psudo-polynomial but that of the on-line stage is reduced to
being quadratic in the number of tasks.

In [19, 31], Baruah et al. developed an adaptive approach for scheduling mixed-
criticality sporadic task sets on uniprocessors systems. Unlike Li’s algorithm and
PLRS where released jobs won’t change priorities, this algorithm requires the sched-
uler to demote the priorities of lower criticality jobs once it detects that the execution
time of the current running job Ji has exceeded its respective WCET Ci(ζi) for the
given criticality level. Notice that this scheduler is similar to the zero-slack scheduler
in that they both involve mode change behavior. However this scheduler requires
monitoring the run-time progress of jobs in order to determining the exact time in-
stant to change mode whereas the zero-slack instant used by a zero-slack scheduler
is a fixed time duration relative to the release time of a job. Therefore, this ap-
proach requires a higher degree of run-time support than zero-slack scheduling. The
priority assignment algorithm in this approach is based on Audsley’s approach with
an alternative task feasibility testing function which is tailored to the mode change
behavior.

Anderson et al. [16] developed an extension of Linux to support mixed criticality
scheduling on multi-core platforms, using a bandwidth reservation server to ensure
temporal isolation among tasks with different criticalities. Tasks of the same crit-
icality are executed in one container with a predefined period and budget. Intra-
container task scheduling for high criticality tasks uses a cyclic executive approach
where scheduling decisions are statically pre-determined offline and specified in a
dispatching table, whereas EDF can be used for low criticality containers.

Pellizzoni et al. [78] also used a reservation-based approach to ensure strong iso-
lation guarantees for applications with different criticalities. This work focused on
a methodology and tool for generating software wrappers for hardware components
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that enforce (at run-time) the required behavior rather than focusing on the CPU
scheduling policies.
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Chapter 6

Conclusions

In this dissertation, we have presented what is to our knowledge the first practical
side-by-side implementation and evaluation of mixed-criticality real-time task schedul-
ing. Our evaluation considers for periodic and sporadic mixed-criticality tasks on
uniprocessor or distributed systems, under a mixed-criticality scheduling model that
is common to all if the evaluated approaches. To make a fair evaluation of mixed-
criticality scheduling, we also addressed some previously open issues and proposed
modifications to improve correctness and schedulability of the approaches, including
zero slack scheduling, fixed task priority adaptive mixed criticality (FTP-AMC) and
fixed job priority adaptive mixed criticality (FJP-AMC) approaches.

For zero-slack scheduling, we have offered refinements to the scheduling algorithm and
the calculation of zero-slack instants. In particular, we have characterized a scenario
in which a deadline miss of a lower-criticality task could affect scheduling guarantees
for a higher criticality task, and provide a simple priority demotion rule to address
that problem. We also propose a new worst case phasing condition for zero-slack
scheduling and show its correctness, provide an analysis of how much interference a
task can suffer from other tasks, and develop a new algorithm for calculating zero-
slack instants based on that analysis.

For the fixed task priority adaptive mixed criticality approach, we have improved
the original analysis from Baruah et al. [19] and extended the existing analysis to
more than 2 criticality levels. Our simulation results demonstrated our new analysis
provided tighter response time bounds and thus increased task schedulability.
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We also developed a new method to calculate the worst case job arrival pattern to be
used in conjunction with the fixed job priority adaptive mixed criticality scheduling
approaches such as Li’s algorithm [67] or PLRS [50]. The original worst case job
arrival pattern calculation method published by Li et al. [67] was based on the load
of a task set. However, as we have shown in our experiments, that method may
perform very poorly in terms of schedulability.

We conducted simulations to examine how the different mixed-criticality scheduling
methods may impact task schedulability on uniprocessor systems and distributed
systems with end-to-end tasks. Our results showed that the FJP-AMC approach
together with our worst case job arrival pattern calculation performs best in schedu-
lability among all the mixed-criticality scheduling approaches we have evaluated both
on uniprocessor and distributed systems. However, especially in the distributed end-
to-end cases, FJP-AMC did not dominate in terms of schedulability; in other words,
there were some task sets that were schedulable under other approaches but not under
FJP-AMC.

In addition, we have described the design and implementation of MCFlow, a novel
middleware designed specifically to support subtask parallelization for distributed
mixed-criticality real-time applications on multi-core platforms. MCFlow provides
a simple but flexible component-based development model in which an application
developer does not need to program networking or data synchronization semantics
directly, but rather uses a deployment tool to specify how components are connected
and to specify their criticality and other real-time constraints. MCFlow can optimize
communication between components based on their location and connection topology
and whether each connection is intra-core, inter-core, or across a network.

Results of the experiments presented in Section 2.3 show that MCFlow performs
comparably to TAO when only one core is used, and outperforms the widely used
TAO real-time object request broker when multiple cores are involved for traditional
real-time applications. MCFlow also implemented mechanisms to support various
mixed-criticality scheduling approaches including zero-slack scheduling, period trans-
formation, FTP-AMC and PRLS. Our empirical evaluation showed that PLRS im-
posed the heaviest overhead among those mechanisms we implemented. Nevertheless,
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compared to traditional fixed-priority scheduling, PLRS only imposed 0.3% additional
overhead, which demonstrates its viability.

Our micro-benchmarks also showed that the run-time overhead of those mixed-criticality
scheduling approaches was strongly influenced by the number of preemptions and the
number tasks to suspend/resume in a schedule. Because different scheduling ap-
proaches likely likely will produce different run-time schedules, there is no absolute
guarantee which scheduling approach could result to the fewest number of preemp-
tions, task suspensions or resumptions. However, FTP-SMC relies only on priority,
and no extra mechanism for task suspension/resumption is required; thus, it is ex-
pected to have the lightest overhead in general. Therefore, we recommend that system
developers consider adopting FTP-SMC if the target task set can be schedulable with
the approach. For cases where more stringent CPU utilization bounds are required,
PLRS with our new worst case arrival pattern calculation could be a good solution.

As future work, we plan to extend MCFlow’s support for additional communica-
tion protocols and configuration parameters. Adding admission control for teams of
dependent subtasks, and the ability to remap the subtask topology dynamically at
run-time without performing thread migrations, are also useful potential extensions
to MCFlow as future work. On the mixed-criticality scheduling side, the current
PLRS scheduling approach does not offer a means to deal with dependent tasks with
mutually exclusive synchronization constraints. We are considering how to extend
the worst case arrival pattern calculation as well as the PLRS run-time scheduling
algorithm to accommodate this sort of constraint.
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Appendix A

Original Zero Slack Instant
Calculation Algorithms

Algorithm A.1 Compute Final Zero-Slack Instants (t = Di)

∀i Z1
i ← 0

repeat
∀i Z0

i ← Z1
i

for all i in taskset do
V n
i ← GetSlackV ector(i,Γni )
V c
i ← GetSlackV ector(i,Γci)
Z1
i ← GetSlackZeroInstant(i, V c

i , V
n
i , t)

end for
until ∀i Z0

i = Z1
i

return Z1
i
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Algorithm A.2 GetSlackZeroInstant(i, V c, V n, t) : Calculate Instant of Slack = 0
before time t
Cc
i ← C0

i ; Cn
i ← 0

repeat
t1 ← StartOfTrailingSlack(i, Cc

i , V
c)

if t1 ≥ 0 and t1 ≤ t then
ku ← SlackUpToInstant(V n, t1)− Cn

i

ku ← max(min(ku, C
c
i ), 0)

Cc
i ← Cc

i − ku
Cn
i ← Cn

i + ku
else
ku ← 0

end if
until ku = 0
return t1
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Algorithm A.3 GetSlackVector(i,Γ, t = Ti) : Slack Vector Calculation
index← 0 ; Cv

i ← 0
repeat
Rcurrent ← Cv

i ; b← 0
repeat
Rprevious ← Rcurrent

Rcurrent ← Cv
i +

∑
j∈Γd

Rprevious
Tj
eCe

j

b← t ; Im ← i
for (j ∈ Γ) do
A← dRprevious

Tj
eTj

if A < b then
b← A ; Im ← j

end if
end for
if Rprevious = Rcurrent and Rcurrent = b then
Rcurrent ← Rcurrent + Ce

Im

end if
until Rprevious = Rcurrent or Rcurrent ≤ tRcurrent ≥ t
if Rcurrent < t
Vi[index].slack ← min(b, t)−Rcurrent

Vi[index].time← Rcurrent

Cv
i ← Cv

i + min(b, t)−Rcurrent

index+ +
end if

until Rcurrent ≥ t
return V1
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