Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2005-40

2005-08-08

Efficient and Effective Schemes for Streaming Media Delivery

Cheng Huang

The rapid expansion of the Internet and the increasingly wide deployment of wireless networks
provide opportunities to deliver streaming media content to users at anywhere, anytime. To
ensure good user experience, it is important to battle adversary effects, such as delay, loss and
jitter. In this thesis, we first study efficient loss recovery schemes, which require pure XOR
operations. In particular, we propose a novel scheme capable of recovering up to 3 packet
losses, and it has the lowest complexity among all known schemes. We also propose an
efficient algorithm for array codes decoding, which achieves significant throughput gain... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Huang, Cheng, "Efficient and Effective Schemes for Streaming Media Delivery" Report Number:
WUCSE-2005-40 (2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/957

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/957?utm_source=openscholarship.wustl.edu%2Fcse_research%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/957

Efficient and Effective Schemes for Streaming Media Delivery

Cheng Huang

Complete Abstract:

The rapid expansion of the Internet and the increasingly wide deployment of wireless networks provide
opportunities to deliver streaming media content to users at anywhere, anytime. To ensure good user
experience, it is important to battle adversary effects, such as delay, loss and jitter. In this thesis, we first
study efficient loss recovery schemes, which require pure XOR operations. In particular, we propose a
novel scheme capable of recovering up to 3 packet losses, and it has the lowest complexity among all
known schemes. We also propose an efficient algorithm for array codes decoding, which achieves
significant throughput gain and energy savings over conventional codes. We believe these schemes are
applicable to streaming applications, especially in wireless environments. We then study quality
adaptation schemes for client buffer management. Our control-theoretic approach results in an efficient
online rate control algorithm with analytically tractable performance. Extensive experimental results show
that three goals are achieved: fast startup, continuous playback in the face of severe congestion, and
maximal quality and smoothness over the entire streaming session. The scheme is later extended to
streaming with limited quality levels, which is then directly applicable to existing systems.

https://openscholarship.wustl.edu/cse_research/957?utm_source=openscholarship.wustl.edu%2Fcse_research%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/957?utm_source=openscholarship.wustl.edu%2Fcse_research%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2005-40

Efficient and Effective Schemes for Streaming Media Delivery, Doctoral
Dissertation, August 2005

Authors: Huang, Cheng

August 8, 2005

Abstract: The rapid expansion of the Internet and the increasingly wide deployment of wireless networks provide
opportunities to deliver streaming media content to users at anywhere, anytime. To ensure good user
experience, it is important to battle adversary effects, such as delay, loss and jitter.

In this thesis, we first study efficient loss recovery schemes, which require pure XOR operations. In particular, we
propose a novel scheme capable of recovering up to 3 packet losses, and

it has the lowest complexity among all known schemes. We also propose an efficient algorithm for array codes
decoding, which achieves significant throughput gain and energy savings over conventional codes. We believe
these schemes are applicable to streaming applications, especially in wireless environments.

We then study quality adaptation schemes for client buffer management. Our control-theoretic approach results
in an efficient online rate control algorithm with analytically tractable performance. Extensive experimental results
show that three goals are achieved: fast startup, continuous playback in the face of severe congestion, and
maximal quality and smoothness over the entire streaming session. The scheme is later extended to streaming
with limited quality levels, which is then directly applicable to existing systems.

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

SEVER INSTITUTE OF TECHNOLOGY

DOCTOR OF SCIENCE DEGREE

DISSERTATION ACCEPTANCE

(To be the first page of each copy of the dissertation)

DATE: May 10, 2005

STUDENT’'S NAME: Cheng Huang

This student’s dissertation, entitlégfficient and Effective Schemedor StreamingMedia
Delivery has been examined by the undersigned committee of five faculty membe has re-
ceived full approval for acceptance in partial fulfillment of the requieats for the degree Doctor
of Science.

APPROVAL: Chairman

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

EFFICIENT AND EFFECTIVE SCHEMES FOR STREAMING MEDIA DELIVRY
by
Cheng Huang, M.Sc.

Prepared under the direction of Professor Lihao Xu

A dissertation presented to the Sever Institute of
Washington University in partial fulfillment
of the requirements for the degree of

Doctor of Science
August, 2005

Saint Louis, Missouri

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

ABSTRACT

EFFICIENT AND EFFECTIVE SCHEMES FOR STREAMING MEDIA DELIVEY

by Cheng Huang

ADVISOR: Professor Lihao Xu

August, 2005

Saint Louis, Missouri

The rapid expansion of the Internet and the increasingly wide deployofisviteless net-
works provide opportunities to deliver streaming media content to useryahare, anytime. To
ensure good user experience, it is important to battle adversary effactsas delay, loss and jitter.

In this thesis, we first study efficient loss recovery schemes, whialireegure XOR oper-
ations. In particular, we propose a novel scheme capable of recguguito 3 packet losses, and
it has the lowest complexity among all known schemes. We also proposdicdantfalgorithm
for array codes decoding, which achieves significant throughpuotageal energy savings over con-
ventional codes. We believe these schemes are applicable to streamingtappicespecially in
wireless environments.

We then study quality adaptation schemes for client buffer management. odtrole
theoretic approach results in an efficient online rate control algorithm waidiyically tractable
performance. Extensive experimental results show that three goaslaeved: fast startup, con-

tinuous playback in the face of severe congestion, and maximal qualitynaoctisness over the

entire streaming session. The scheme is later extended to streaming with limited tpvalisy

which is then directly applicable to existing systems.

Dedication: To my family

Contents

Listof Tables e Vi
Listof Figures e viii
Acknowledgments X
1 Introduction 1
1.1 Challenges. e 1
1.2 Contributions 3
1.3 Organizations e e e e e e 4
2 STAR: An Efficient Scheme for Triple Erasure Recovery. 5
2.1 EVENODD Code: Double Erasure Recovery 7
2.1.1 EVENODD CodeandEncoding 7
2.1.2 EVENODDErasureDecodingo 8
2.2 STAR Code Encoding: Geometric Description. 9
2.3 STARCode Erasure Decoding i 9
2.3.1 Decoding without Parity Erasures: AsymmetricCase 0 1
2.3.2 Decoding without Parity Erasures: SymmetricCase 5 1
2.3.3 Decoding with Parity Erasures 15
2.4 Algebraic Representation ofthe STARCode 17
2.5 Single Error Correction 18
2.6 Complexity Analysis 20
2.6.1 FErasure Decoding Complexity 20
2.6.2 ADecoding Optimization 21
2.7 Comparison with Existing Schemes 24
2.8 Implementation and Performance 5 2
3 Practical FEC Codes for Wireless Streaming 28
3.1 EXtended EvenOdd Decoding (XEOD) Algorithm 29
3.1.1 EXtended EVENODD Decoding (XEOD) Scheme 29

v

3.1.2 Correctness of XEOD 31

3.1.3 Complexity of XEOD 31
3.2 Energy Consumption and Throughput 33
3.2.1 Energy Consumption 33
3.2.2 Decoding Throughput 35
3.3 Data Recovery (I): Random SymbolLoss 35
3.3.1 Performance Analysis 35
3.3.2 PerformanceResults L 37
3.4 Data Recovery (II): Bursty SymbolLoss 38
3.4.1 A Realistic Data Loss Model: BurstyLoss 38
3.4.2 Loss Recovery Performance ofthe FECs 38
3.5 Effects of Parametersonthe XEOD 40
ORC: Optimal Coding Rate Control for Scalable Streaming. 41
4.1 Problem Formulation 44
4.1.1 Temporal Coordinate Systems 44
4.1.2 LeakyBucketModel 44
4.1.3 RateControlModel 48
4.1.4 Control Objective 49
4.2 Optimal Control Solution 50
4.2.1 TargetSchedule Design 50
4.2.2 Optimal ControllerDesign 52
423 FrameRate 55
4.2.4 Stabilityand Robustness L 56
4.3 Practical Issueswith Streaming 57
4.3.1 FastStartup e e 57
4.3.2 Controller Initialization 58
4.3.3 Exponential Averaging of the ArrivalRate 59
4.3.4 Choosing a Stream GivenaCodingRate 61
4.3.5 Control Target Adjustment, 62
4.4 ImplementationDetails 63
4.4.1 Generation of Virtual Streams o oL 63
4.4.2 Leaky Bucket ComputationsattheSender. 4 6
4.4.3 Initial Coding Rate Selection 64
4.4.4 Coding Rate Switching, 64
4.45 Optimal Rate ControlattheClient 64
45 Performance Evaluation. 65
451 StartupDelay 65
45.2 Constantvs. Variable Bandwidth 66

\Y

4.5.3 Two-piece linear vs. logarithmic target schedule. | 67
4.5.4 Controller Performance Tuning 68
455 Comparison with Benchmark Algorithm 70
4.5.6 Comparison with Constant Bit Rate Algorithm 71
4.5.7 Rate-Distortion Comparison e 72
5 Optimal Coding Rate Control for Multi Bit Rate Streaming 74
5.1 Conservative Up-Switching 75
5.2 Buffer Tube Upper Bound Estimation 76
5.3 Virtual Stream 78
5.4 PerformanceResults 8 7
5.4.1 Performance Impactof DatalLoss 79
5.4.2 Performance Impactof RTT 80
5,5 RelatedWork e 81
6 Conclusions. 83
6.1 Summary 83
6.2 Future Directions 83
References e 85
Vita . . 91

Vi

List of Tables

2.1

3.1
3.2

4.1

51

Complexity of the RS Code (per32bits) 5 2
BEOD computation analysis 32
XEOD computationanalysis 32
Bandwidth Available to the Streaming Session 6 6
Bandwidth conditions with and without initial transmission rate burst79

Vii

List of Figures

2.1 EVENODD CodeEncoding
2.2 EVENODD CodeDecoding
23 STARCodeEncoding i
24 STARCodeDecoding e
2.5 Single Error and Single Erasure Decoding 19

2.6 Optimizationof STARDecoding
2.7 The Complexity CompariSONS o v v i it
2.8 Throughput Performance 26
3.1 Computation Advantage ofthe XEOD
3.2 Energy Consumption
3.3 Decoding Throughput Comparison 35
3.4 Random Loss Analysisofthe XEOD 37
3.5 RandomLoss Analysis e 7
3.6 BurstLossAnalysis 39
3.7 Effectof Shortening 40

4.1 (a) Traditional streaming media architecture. (b) Proposed streamirig areti-

tecture with congestion control factoredout. 43
4.2 Communication pipeline.
4.3 Schedules at which bits in the coded bit stream pass the points A, B, O,iarilde

communication pipeline.

4.4 Buffer tube containing a coding schedule. 46
4.5 Arrival schedule and its upper bound in clienttime. 48
4.6 Targetscheduledesign. e, 51
4.7 Targetschedules. 52
4.8 Rootlocusand Bodediagram. e 56
4.9 Timeresponse simulation.

4.10 Leaky buckets (buffer tubes) for various transmissionrates. 58
4.11 Exponential averaging. 60

45

45

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

4.21
4.22
4.23

5.1
5.2
5.3
5.4
5.5

Buffer tube change and control target adjustment. 61
ns-2 Simulation network setup. 65
Startup delay vs. transmissionrate. o0 66
Constant bandwidthover TCP. 67
Variable bandwidth over TCP. 67
Constant bandwidth over TCP with the two-piece linear target schedule . . . 68
Variable bandwidth over TCP with the two-piece linear target schedule. . . . 68
Constant bandwidth over TGP=500. 69
Coding schedule of a mixed video sequence (Akiyo, Stefan andgnBajeat an
average coding rate of 500 Kbps. o 71
PSNR with constant bandwidth (400 Kbps) over TCP. 71
PSNR with constant bandwidth (400 Kbps) over TCP. 72
Rate-Distortion comparison. 72
Conservative rate up-switching. 76
TCP variable bandwidth experiment (without initial transmission rate burst) . 79
TCP variable bandwidth experiment (with initial transmission rate burst). . . . 80
Performance Impact of Data Loss (over TFRC protocol) 80
Performance Impact of RTT (over TFRC protocol) 81

Acknowledgments

| gratefully acknowledge the guidance of my advisor, Dr. Lihao Xu, andwmentors at Microsoft,
Dr. Philip A. Chou and Mr. Anders E. Klemets. Most of this work is the restithy collaboration
with them. | wish to thank Dr. Ramaprabhu Janakiraman for being a greaboddi@r and lab-
mate. Parts of this work are the result of joint work with Dr. Janakiraman.

| am indebted to Dr. Jason E. Fritts, Dr. Chenyang Lu, and Dr. Jose@i3ullivan for
serving on my dissertation committee, and for insightful discussions andihatpfice. | also take
this chance to thank Ms. Fuller, Ms. Grothe, Ms. Harbison, Ms. MatlooH, dMs. Sung — the
administrative assistants in the department of Computer Science at Washihgt@nsity — for
making my (and countless others’) graduate student life so much easier.

Cheng Huang

Washington University in Saint Louis
August 2005

Chapter 1

Introduction

1.1 Challenges

The rapid expansion of the Internet and the increasingly wide deployaiesireless networks
provide opportunities to serve multimedia content to users anywhere, any@iorapression and
delivery are the two major components of streaming media applications. In tisis,thes will
focus on delivery techniques for streaming media over today’s best-e#tworks, with the goal
of providing a better overall user experience for clients.

The fundamental difficulties that distinguish streaming media delivery froditimaal bulk
data downloading (e.g., file transfer), stem from the real-time constraintslirded by the former.
It is now well-understood that the performance of media streaming is greathciegh by end-to-
end transmission delays, packet loss, and congestion [1]. Thessad¥ects may happen due to
one or more of the following reasons:

1. Packets may get corrupted in transit, especially in wireless networks.

2. Current networks operate under best-effort policies and seldowde guarantee@uality-
of-Service(QoS). Competing traffic can contribute to queuing delays and packps dino
routers, severely impacting streaming media flows.

3. Signal interference and user mobility can cause fluctuations in receptaity on wireless
networks.

Although error concealment techniques [2] can be used to mitigate theiyeetamnse-
guences of these pathologies, these techniques have limited impact, antheftest effect is a
degradation of the user experience. Therefore we must look beyoreemer concealment to-
wards more effective strategies.

Streaming media delivery systems are usually modeled using a client-serviecture. A
server sends out media data packets, which traverse intermediate imtected machines to arrive
at a client. The client stores received packets in a buffer beforeunting them, and optionally

2
may also use packet arrival patterns to infer the state of the networkerBigf by the client is a
very useful technique to overcome transient delay and jitter. It can alsgdxd to buy more time in
which to request retransmission of lost packets.

Since client buffering introduces extra delay before playback, it mighbe suitable for
some applications with very strong delay constraints (or strict low latenayireggents), like
streaming of live events, conferencing, surveillance, etc. In thedicatpns, the lack of client
buffering means that often retransmissions of lost packets will arrivéateato be useful. Simi-
larly, in multicast or broadcast applications, different clients may expegidifferent loss patterns,
increasing the overhead of retransmission-based loss recovery.

For all these applications, one techniqué&asward Error Correction(FEC), in which the
server sends redundgparity information along with the original information. Note that in packet
networks like the Internet, data integrity is verified through separate mischsutike checksums,
so that corrupted packets are silently discarded upon detection. Hemeich networks FEC
techniques are mainly used to recover from packet lossesagures not arbitrary corruptions or
errors. FEC permits recovery from limited packet loss without the additional latertoydaced
by negative acknowledgments and retransmission of lost packets, butheiddditional cost in
network bandwidth incurred by transmitting parity information.

The efficacy of an FEC scheme depends on the extent of loss requsiple for a given
amount of redundant parity information, which in turn dependsxactly how the parity informa-
tion is constructedOne technique is to construct parity packets as carefully chosen linedyirca-
tions of the original data packets, where the arithmetic operations on piatikedre done overfa
nite field A popular example is to construct the parity packets uBiegd-Solomon cod{s]. Reed-
Solomon codes belong to a class of codes called Maximum Distance Sepdase codes [4],
which provide optimal erasure recovery capability — loosely speakinggchi sodes are used, each
additional parity packet permits the recovery of one additional lost pacKee disadvantage of
Reed-Solomon codes, and in general, codes defined over finite fieldst isnttyeneral-purpose
hardware like PCs, arithmetic operations on finite fields tend to be slower ttegeimarithmetic
or boolean logic. Thus FEC techniques based on these codes mightsatdide for applications
involving constrained clients- clients with low-end processors or limited battery life, like small
portable devices.

More computationally efficient schemes are desirable for these applicavasious re-
search has suggested the use of exclusiveX3 based codes instead of finite field-based codes
to implement computationally efficient FEC schemes. The primary disadvantageng such
codes is that XOR-based codes with the above MDS property are knulyiioo limited values of
the code parameters (like one or two parity packets.) Conversely, XG&dlmades for generating
more parity packets do not possess the MDS property. This motivatesatidorenew XOR-based
MDS codes capable of efficient encoding/decoding, and also tolerating packet erasures.

3

For applications with more relaxed delay constraints, such as streaming nmedissnand,
client buffering can obviate the need for FEC techniques for loss eggpsimpler retransmission-
based techniques may suffice. However, to ensure continuous pkayhder varying network
conditions, it is important to maintain a large enough client buffer, theretiycieg the risk of
buffer underflow.

The buffer size is regulated by the rate of dafow from the network, and the rate of data
outflowto the client’s media decoder. The inflow rate is determined by external $ditetransport
protocols, flow and congestion control mechanisms, competing trafficonesignal strength, etc.
The outflow rate is determined by the quality (or bit rate) of the content. Vamiatithe inflow rate
impacts the ability of the client to maintain a desired buffer size at any given times, To achieve
the latter goal, it is necessary to vary the outflow rate and consequently#tieyepf content in
accordance with the inflow rate.

Indeed, various schemes [5—13] have been proposed to take agvahthe ability to adapt
the coding rate of media data. Qualities are adjusted on the fly during a stresessign to man-
age the client buffer. However, these approaches either asaymieri knowledge of network
variations, making them impractical, or deal with only a few choices of qualiliil@gting their
applicability to media content with finer adaptive capability. Therefore, tivagyy challenge is
to develop quality adaptation schemes with arbitrary granularity, which mairteiri buffer level
and also achieve better quality, under severe network variations thatlemewna priori.

1.2 Contributions

Our contributions towards improving the delivery of streaming media are dhab-f

First, we study efficient FEC schemes for streaming media delivery usipgaas class
of error correcting codes, callatray codeg14]. Array codes in general arrange data in a two
dimensional array and use only XOR operations for encoding and thecddur starting point is a
well-known MDS array code, the EVENODD code [15], which is capalbleeocovering up to two
packet losses in a single coded block.

Extending from the EVENODD code, we have designed a new MDS awdg called
STAR. The STAR code is an MDS array code capable of tolerating three pladsets in a single
coded block. By exploiting the geometric property of the code, we havedalsloped an efficient
decoding algorithm. Our analysis shows that the STAR decoding is much rapreutationally
efficient than comparable codes [16—19], especially when the blocklengmall. This makes the
STAR code especially attractive for streaming applications with strong delsstraints.

MDS array codes can achieve optimal loss recovery performance @damncolumn in an
array is treated as a packet of streaming media data. However, this limits tadloott length to
small values and is thus most applicable to strictly low latency streaming applicatidgimsn the
delay constraint is relatively weak, schemes with larger block lengths teral/tolietter recovery

4
performance for a fixed coding rate. Our second contribution in the medigrfEC schemes is
to proposeXEOD, an efficient scheme for bit level decoding of array codes. Both ¢hieat
analysis and simulation measurements show that the XEOD scheme has sigthifimaghput gain
(and energy savings for portable devices) compared to the Reed-Sotmdenwhile achieving
comparable loss recovery — especially under bursty packet loss gattenralent in the Internet.

In addition to packet loss, congestion and jitter are also major issues in mesimsig.
Our primary contribution to overcome these issues is through new qualityadidapschemes. We
have designed a client buffer management scheme called Optimal Rate GOMRI®), in which
the problem of quality adaptation is formulated as a standard problem in linedragic optimal
control with the objective of maintaining a target buffer size profile. Thigmd-theoretic approach
results in an efficient online rate control algorithm with analytically tractabléopmance. To our
knowledge this is the first use of optimal control theory for client buffenaggement. Also, we
explicitly take into consideration, using a leaky bucket model, the naturaitiaar in content bit
rate to achieve smooth variation in user-perceived quality. To our kngeldds is also the first use
of a leaky bucket to model source coding rate constraints during clidier bnanagement beyond
the initial startup delay. Extensive experimental results show that thrde gaaachieved: fast
startup, continuous playback under severe congestion, and satigfqusdity and smoothness over
the entire streaming session. Also, our algorithm complements any transpiortqd, and we show
that it works effectively with both TCP and TFRC transport protocols.

We have also extended the ORC schem/tdti Bit Rate (MBR) streaming, where the
server is forced to choose from a limited set of rates. Compared to existieg®s in commercial
systems, our scheme demonstrates more stability and effectiveness iaroveysevere network
congestion.

1.3 Organizations

This thesis is organized as follows: in Chapter 2, we describe STAR, a8 8Eay code for triple
erasure recovery, and illustrate our decoding algorithm based on dineegyéc construction of the
STAR code. We describe the XEOD scheme in Chapter 3 and present iifscaiginthroughput
benefit and energy savings for wireless streaming applications.

We describe ORC, an optimal coding rate control scheme, in Chapter 4 axteitsion for
MBR streaming in Chapter 5. We conclude in Chapter 6 with a summary of otnitmations and
an outline of future research directions.

Chapter 2

STAR: An Efficient Scheme for Triple
Erasure Recovery

As a technique to battle data loss in streaming media delivery, FEC sendslaatiparity packets
along with the original information packets. When losses occur in the nepwor&covery pro-
cedure is invoked to obtain the original media data. FEC permits recovary linaited packet
losses without the additional latency introduced by negative acknowladgraad retransmission
of lost packets, but with the additional cost in network bandwidth incuryetdansmitting the parity
packets.

The efficacy of an FEC scheme depends on the extent of loss requvesiple for a given
amount of redundant parity packets, which in turn depends on exacthth@parity packets are
constructed. One technique is to construct parity packets as carefobgrchinear combinations
of the original data packets, where the arithmetic operations on packeamatitbne over &nite
field. A popular example is to construct the parity packets uitegd-Solomon cod¢3]. Reed-
Solomon codes belong to a class of codes, which provide optimal eraaoeery capability —
loosely speaking, if such codes are used, each additional paritytpzerkeits the recovery of one
additional lost packet. The disadvantage of the Reed-Solomon cod& gaderal, codes defined
over finite fields, is that on general-purpose hardware like PCs, arithopiations on finite fields
tend to be slower than integer arithmetic or boolean logic. Thus FEC techriiaqises on these
codes might not be suitable for applications involving constrained clients risheith low-end
processors or limited battery life, like small portable devices.

More computationally efficient schemes are desirable for these applicattvasious re-
search has suggested the use of XOR-based codes instead of finiteaBelil codes to implement
computationally efficient FEC schemes. And in this work, we study using aodes as compu-
tationally efficient erasure recovery schemes. Array codes aresafliéinear codes, where infor-
mation and parity bits are placed in a two-dimensional array rather than dilmessional vector.
An array code denoted by. x n corresponds to an array @i rows andn columns ofsymbols

6
Symbols are defined over an Abelian gradfy®) with an addition operatior. In particular, we
are interested in the case @f 2, e.g., each symbol hasinary bits ands is just simple bitwise
exclusive-OR XOR).

On the other hand, the array code can also be regarded as a oneiditabosde defined
over the Abelian groug/((¢*)™), by regarding each column as a single element. Then, the min-
imum distanced of the code can also be defined ov&((¢")™). Let N be the number of its
codewords, then the dimensiérof the array code can be definedfas- log,+)= N, as for usual
one-dimensional codes. The array code can now be viewed @s @n d) code overG((q")™).

In this chapter, we consider streaming media data packets ofigitéts each. Then, each packet
maps to one column of the array code and a packet loss is correspondipgdgented as a column
erasure. Ifit satisfies the property thiat n — k+ 1, then the code achieves the Singleton bound [4]
and is called an MDS array code. When the MDS array code is used &&asdheme, the original
media data can always be recovered with up te k packet losses. For simplicity, we will assume
symbol sizet = 1 in this thesis. However, all results hold for arbitrary

There exist MDS array codes. For instance, the simplest PARITY cadd®e regarded as
a(k+1, k, 2) MDS array code ovef:(¢™), if each column contains: symbols. The only parity
column is generated as the XOR sum of all oth@énformation (data) columns. It is clear that this
scheme can recover from arbitrasingle erasure. MDS array codes fdoubleerasure recovery
have been proposed, such as the EVENODD [15], the B-Code [20KiB0de [21], the DH1 and
DH2 [22], etc. All these schemes satisty= k + 2, d = 3 and can thus recover from arbitrary
double erasures.

Fortriple erasures, MDS array codes have also been studied. In particulamd@aNang [16]
propose the HDD1 and HDD2 schemes. ([17] is an unsuccessful atterhphdle multiple era-
sures, which we do not discuss in details here.) Both schemes claim satisfyin & + 3 and
d = 4. Their encodings are efficient, by requiring exactly or slightly more th&X®©ORs per sym-
bol (the total number of XORs normalized by the total number of information syghbNote that
3 is the minimum number of XORs needed for triple parities, thus these schemes/algbod
encoding performance. However, the decodings of these schenoesteetechniques essentially
similar to Gaussian eliminations to solve unknown elements in a set of linear equatidriend to
require more thaf XORs per symbol (on average). The gap between the encoding aadidgc
complexity is fairly significant for these schemes. Blaetal.[18, 19] generalize the EVENODD
and propose an MDS code for multiple erasures. The construction ofl¢henBcode conforms
to a special structure, which is then exploited for an efficient decodirayitiign. As a result, the
decoding complexity is reduced and asymptotically approag&Rs per symbol now. However,
whenk is limited, the decoding complexity of the Blaum code deviates from its asymptotizdbou
fairly significantly. For example, the complexity is abduKORs per symbol whek = 11. The
number is even bigger with a smallkerOn the other hand, streaming applications with strong delay

parity | parity Il

\

&0
o 0>
0>
&0
o0 >
0>~

8% 0>
O30

o010
O|¢ % 0>

T AN N
S/ LA LT el
(Ladjuster]
(@) horizontal redundancy (b) diagonal redundancy

Figure 2.1: EVENODD Code Encoding

constraints tend to use small coding block lengths. Thus, the decoding caiyfde small ks is
critical to these applications, and it is desirable to seek schemes thatpevédrin this region.

In this chapter, we describe STAR, an efficient scheme for triple ezamaovery. The
STAR code is an alternative extension of the EVENODD code and has e sacoding com-
plexity as the Blaum code. Our key contribution is to exploit the geometric pyopéthe code
construction, which then leads to an efficient decoding algorithm. Our sisaiiows that the de-
coding complexity remains at slightly more thaXORs per symbol, even for smals. This makes
the STAR code especially attractive for streaming applications with strong detestraints.

2.1 EVENODD Code: Double Erasure Recovery

2.1.1 EVENODD Code and Encoding

We first briefly describe the EVENODD code [15], which was initially pre@d to address disk
failures in disk array systems. Data from multiple disks form a two dimensionay,avith one
disk corresponding to one column of the array. A disk failure is equitébesm column erasure. The
EVENODD code uses two parity columns together witihformation columns (whergis a prime
number). The code ensures that all information columns are fully regblewheranytwo disks
fail. In this sense, it is an optimal 2-erasure correcting code, i.e., itip an, p, 3) MDS code.
Besides this MDS property, the EVENODD code is computationally efficienbth bncoding and
decoding, since only XOR operations are involved.

The encoding process considerépa— 1) x (p + 2) array, where the firgt columns are
information columns and the last two parity columns. Symhgl(0 <i <p—-2,0<j<p+1)
represents symbalin columnj. A parity symbol in columrp is computed as the XOR sum of all
information symbols in the same row. And the computation of colgpur 1) takes the following
steps. First, the array is augmented with an imaginarygrevi, where all symbols are assigneero
values (recall that symbols are defined o&&R)). The XOR sum of all information symbols along

3 4 5 6
110|111
0|0]|1]1
00 1]1
1/1]0]|1

Figure 2.2: EVENODD Code Decoding

the same diagonal (indeed a diagonal with slopis computed and assigned to their corresponding
parity symbol, as marked by different shapes in Figure 2.1. Sym)al,,,; now becomes non-zero
and is called the EVENODIRdjuster To remove this symbol from the arradjuster complement

is performed, which adds (XOR addition) the adjuster to all symbols in copsmh. The encoding
can be algebraically described as follows{ i < p — 2):

p—1
Aip = @ Qij
Jj=0

p—1 p—1
aipt1 = 51 @ (@ a<z’j>p,j>v where S1 = P ag1-j), 5
j=0 j=0

Here,S, is the EVENODD adjuster angt),, denotes: mod p. For more details, please refer to [15].

2.1.2 EVENODD Erasure Decoding

The EVENODD code is an optimal double erasure correcting code ansvargplumn erasures in a
coded block can be fully recovered. Regarding to the locations of tseres, [15] divides decoding
into four cases. Here, we only summarize the most common one, where ridithererasures is
a parity column. Note that the other three cases are special ones and daalbwith easily. A
decoder first computes horizontal and diag@yaldromess the XOR sum of all available symbols
along those directions. Therstartingpoint of decoding can be found, which is guaranteed to be the
only erasure symbol in its diagonal. The decoder recovers this symbdthananoves horizontally
to recover the symbol in the other erasure column. It then moves diagondhg toext erasure
symbol and horizontally again. Upon completing tBig-Zagprocess, all erasure symbols are fully
recovered. In the example shown in Figure 202 5), the starting point is symbal, » and the
decoder moves from » t0 as o, g2, ago - - - and finally completes at .

parity I

*[op>|0f

O[] D>~

Figure 2.3: STAR Code Encoding

2.2 STAR Code Encoding: Geometric Description

As an extension of the EVENODD code, the STAR code consiststo$ total columns, where the
first p columns contain information data and the lasblumns contain parity data. It is a systematic
code, similarly as the EVENODD code.

The STAR code encoding is also similar to the EVENODD code, where the palitynns
p andp + 1 are computed from the horizontal and diagonal redundancy. And flity palumn
p + 2 is computed from another diagonal redundancy. This diagonal folltage s-1, as opposed
to slopel when computing the parity columr+ 1. For simplicity, we denote this amnti-diagonal
redundancy. The procedure is depicted by Figure 2.3, where syabol,.» in parity column
p + 2 is also anadjuster similar to the EVENODD code. And the adjuster is removed from the
final code block by adjuster complement. Algebraically, the encoding dfypaolumnp + 2 can
be represented a8 € i < p — 2):

[y

p—

p—1
Qi p+2 = Sy P <@ a<i+j>p7j>, Where Sy = @ -1y, .5
) =0

<

2.3 STAR Code Erasure Decoding

The essential part of the STAR code is the erasure decoding algorithpresesnted in this section,
the decoding algorithm involves pure XOR operations, which allows efficieplementation and
thus is suitable for computation/energy constrained applications. The My of the STAR
code, which guarantees the recovery from arbitrary triple erasigeplained along with the
description of the decoding algorithm. And a mathematical proof of this ptyp&l be given in a
later section.

10

The STAR code decoding can be divided into two cases based onepsterns: 1) de-
coding without parity erasures, where all erasures are informatiomesiuand 2) decoding with
parity erasures, where at least one erasure is a parity column. Therfoase is the most common
one and presents the essence of the decoding algorithm, thus it is the maionftius section. Fur-
ther, it can be divided into two subcases: symmetric and asymmetric, basduetmer the erasure
columns are evenly spaced. The latter case, on the other hand, haavélied special situations and
is consequently simpler.

2.3.1 Decoding without Parity Erasures: Asymmetric Case

We consider the recovery of triple information column erasures at positioandt (0 < r, s, ¢t <
p—1), among the totgh+ 3 columns. Assume < s < t without loss of generality and let= s—r
andv =t — s. Thus, the asymmetric case deals with erasure patterns satisfying

The decoding algorithm can be visualized with a concrete example, wher®, s = 1,
t = 3 andp = 5, as shown in Figure 2.4(a). Empty columns denote erasures. And thdinigco
procedure consists of the following four steps:

Recover Adjusters and Calculate Syndromes

Given the definitions of the adjustess and S, it is easy to see that they can be computed as the
XOR sums of all symbols in parity columias6 and5, 7, respectively.

Then the adjusters are assigned to symbgls a4 7 and also applied through XOR addi-
tions to all of the rest parity symbols in columés7, which is to reverse the adjuster complement.
The redundancy property of the coded block states that the XOR sulirsgfréols along any par-
ity direction (horizontal, diagonal and anti-diagonal) should equakta Due to erasure columns,
however, the XOR sum of rest symbols is non-zero and we denote it agnldeomefor this par-
ity direction. To be specific, syndrong ; denotes the XOR sum of parity symbe};,, and
its corresponding non-erasure information symbols. For example~= aos ® ap,2 © ap4 and
50,1 = ap,6 D asz2 a4, €tc. To satisfy the parity property, the XOR sum of all erasure information
symbols along any redundancy direction needs to match the correspopddigme. For example,
50,0 = a0,0 ® ap,1 D ap,z andsg 1 = ago D as,1 O az 3, etc.

In general, this step can be summarized as: 1) adjusters recgverg,(1, 2),

p—2
Sj =P aipti;
=0
S1 =50 @ S1 andS, = Sy @ Ss; 2) reversion of adjuster complement{ i < p — 2),

i pt1 = Aipr1 D S1,

i ptr2 = Qjpr2 D S2;

o 1 2 3 4 5 6 7 O 1 2 3 4 5
0 V A
. Vi
2 A
3 A v
4

(a) erasure pattern (b) one cross

o XX XX AV
! V V
2 VA A V O
3 ANV IV A O

(c) multiple crosses

and 3) syndrome calculation,

where) <i<p-—1andj #r,

Find a Starting Point

(d) starting point

Figure 2.4: STAR Code Decoding

p—1

510 = a0 D < ai,j)a
r
1

3

=0
p—1

Sio = a2 ® < a(i+j)p7j>7
j=0

s ort.

11

Recall that finding a starting point is the key step of the EVENODD decodifigh seeks one
particular diagonal with only onanknownsymbol. This symbol can then be recovered from its
corresponding syndrome, and it triggers the Zig-Zag decoding aggs all unknown symbols
are recovered. In the STAR decoding, however, itripossibleto find any parity direction (hori-
zontal, diagonal or anti-diagonal) with only one unknown symbol. Theeethe approach adopted

in the EVENODD decoding doesot directly apply here, and additional steps are needed to find a

starting point.

12

For illustration purpose, we now assume all syndromes are represgntad bhadowed
symbols in the three parity columns, as shown in Figure 2.4(b). Based onapendl parity
property, it is clear thafs ; equals to the XOR sum of three unknown symhgjg, a2 1 andag 3,
as marked by A” signs in Figure 2.4(b). SimilarlySo2 = aoo ® a1,1 & as3, which are all
marked by %" signs along an anti-diagonal. Imagine that all these marked symbols in therera
information columns altogether formaosspattern, whose XOR sum is computablg { © 502
in this case). And thé&ey of this step is to choose multiple crosses, such that the following two
conditions are satisfied: 1) each cross isymbols offset from a previous one; and 2) the bottom
row (after wrapping around) of the last cragsps ovethe top row of the first cross. In our particular
example, two crosses are chosen. The second cress:i8 symbols offset from the first one and
consists of erasure symbalg, a4,1, az 3 (marked by A”) and as 9, a3 1, ag 3 (marked by %),
as shown in Figure 2.4(c). It is straightforward that the XOR sum of th@secrosses equals to
83,1 @ So0,2 D 80,1 D S2,2.

Notice, on the other hand, the calculation (XOR sum) of these two crossedeascsymbols
ap,p andap 3 twice. Their values are thus canceled out anshdtaffect the result. Also notice that
the parities of unknown symbol sets; (), a2 1 andas 3) and @3 o, az,1 andas 3) can be determined
by horizontal syndromes; , andss o, respectively. Thus, we can get

a1,1 D as1 = 531 D Sg2 D Sp,1 D S22 @ 520D 530,

as all marked in Figure 2.4(d).

Repeating this process and starting the first cross at different rowgsclgar that we can
obtain the XOR sum of any unknown symbol pair with a fixed distarnioecolumni, i.e. ag 1 B as 1,
as,1 @ aop,1, €tc.

From this example, we can see that the first condition of choosing cressaees the align-
ment of unknown symbols in the middle erasure column with those in the sidee@dumns.
Essentially, it groups unknown symbols together and replaces them wittnksyndromes. This
is one way to cancel unknown symbols and results in a chain of croskesotfier way to cancel
unknown symbols comes from the second condition, where unknown $yinikibe header row of
the cross chain are canceled with those in the tail row. This is indeed “glthedieader of the first
cross with the tail of the last one and turns the chain intm@. It is conceivable that the number
of crosses in the ring is completely determined by the erasure pattesra(dt) and the STAR
code parametes. And the following Lemma 1 shows the existence of such chain given anpitrar
u=s—r,v=t—sandp.

Lemma 1 A ring satisfying both above conditions always exists and consigts(6f< I; < p)
crosses, and; is determined by the following equation:

(u+ lgv), = 0, (2.1)

13
where0 < u, v < p.

Proof. Sincep is a prime number, integers modylcdefine a finite fieldZ F(p). Letv~! be the
unique inverse of in this field. Then/; = (p — u)v~! exits and is uniquem

Given a ring, rows with3 unknown symbols are substituted with horizontal syndromes
(substitution, and symbols being included even times are simply remosexdp{e cancellatiohn
For simplicity, we refer both cases eancellations Eventually, there are exactly two rows left with
unknown symbols, which is confirmed by the following Lemma 2.

Lemma 2 After cancellations, there are exactly two rows with unknown symbols in aAingd the
row numbers are: andp — u, as offsets from the top row of the first cross.

Proof. To simplify the proof, we only examine the ring, whose first cross startsvadr Now the
first cross contains two unknown symbols in columand they are in row8 andu + v. We can
represent them with a polynomiél + z“*"), where the power values (moduyh of = correspond
to row indices. Similarly, the unknown symbols in columrcan be represented &8 + z").
Therefore, the first cross can be completely representédl by:“ " + z* + zv) and thel; " cross
by

(14 2% 2% + %)z,

where0 < [; < Iz and the coefficients of are binary. Note that we don't explicitly consider
unknown symbols in column which are reflected by polynomials representing columiJsing
this representation, the cancellation of a polynomial term includes both oasebstitution and
simple cancellation. And computing the XOR sum of all crosses can be ézptiyarepresented by
adding all corresponding polynomials together, as

ly—1
Z(l _'_xu-i-v +wu _i_xv)xllv
11=0

lg—1

=(142")) (L+a")z""

11=0
=(1+2)(1+aP™)
=x" + 2P (2.2)

wherel, is substituted using the result from Lemma 1. Thus, only two rows with unkrsgwribols
are left after cancellations and the distance between thémigp — 2u),. =

It is important to point out that unknown symbols in the remaining two rowsiateeces-
sarily in columns. For example, if- = 0, s = 2 andt = 3, the remaining unknown symbols would
beas, az 3, aso andas 3, which are indeed columnsandt. However, it is conceivable that we
can easily get the XOR sum of corresponding unknown symbol pair immool) since horizontal
syndromes are available.

14
To summarize this step, we dendteo be the number of rows in a ring, which are canceled
through substitution and define the set of corresponding row indicés as{h;, | 0 < lo < I},}.
The setF}, is simply obtained by enumerating all crosses of the ring and then countirgwiity
3 unknown symbols. Lei, denote the XOR sum of the unknown symbol pajr; anda,_s,)
then thei” pair has

psS?

lg—1 I—1 ly—1

Quti = @ S(—rti)p,2 @ 8 (huy+i)p,07 @ S(t+i)p.1 (2.3)

11=0 l2=0 11=0

where) <i<p-—1.

Recover Middle Erasure Column

In the previous step, we have computed the XOR sum of arbitrary unkegmbol pair in column

s with the fixed distanc8. Since symbot ; is an imaginary symbol with zero value, it is straight-

forward to recover symbal; ;. Next, symboks ; can be recovered since the XOR sum of the pair
a1,1 andas ; is available. Consequently, symbaig; andas ; are recovered. This process is shown
to succeed with arbitrary parameters by the following Lemma 3.

Lemma 3 Given the XOR sum of arbitrary symbol pair with a fixed distasicall symbols in the
column are recoverable if there is at least one symbol available.

Proof. Sincep is prime, F' = {(di),| 0 < i < p — 1} covers all integers if0, p). Therefore, a
“tour” starting from rowp — 1 with the stride sizel will visit all other rows exactly once before
returning to it. As the symbolin row — 1 is always available (zero indeed) and the XOR sum of
any pair with distancé is also known, all symbols can then be recovered along the mur.

To summarize, this step computes

A (p—1)—di)p = Q{(p—1)—di)p D A(p—1)—d(i—1))p" (2.4)

where0 < i < p — 1. Then,a; s = a; (where there ar@ unknown symbols left in the ring after
cancellations) ot; ; = a; ® 5;,0 (Where4 unknown symbols are left) for adls. Thus far, columry
is completely recovered.

Recover Side Erasure Columns

Now that columns is known, the firsp + 2 columns compose an EVENODD coded block with
erasures. It is conceivable that direct application of the EVENODDdiag can easily recover all
remaining unknown symbols. Details are skipped in here.

15
2.3.2 Decoding without Parity Erasures: Symmetric Case

When the erasure pattern is symmettic v), the decoding becomes much easier, where &tep
greatly simplified while all other steps remain the same.

To illustrate the step of finding a starting point, we still resort to the previoasnele,
although the erasure pattern is different now. Let’s assume0, s = 1 andt = 2. Itis easy to
see that only one cross is needed to construct a “ring” (still denotediag,although not closed
anymore). As in this example, a cross consists of unknown synaelsao 2, a2 andas 2, and
ap 1 is canceled because it is included twice. The XOR sum of the cross thatseqs, 1 & 350 2.
This is very similar to the situation in the previous case, where theré ar&known symbols in
a ring after cancellations. Therefore, the rest of the decoding carwidiahe already described
procedure and we don't repeat in here.

In summary the symmetric case can be decoded using the procedure f@ythmetric
case, by simply settiny = 1,1, =0,u=0andd =t — r.

2.3.3 Decoding with Parity Erasures

In this part, we consider the situation when there are erasures in paritpeglurhe decoding is
divided into the following3 subcases.

Column p + 2 is an erasure.

In this subcase, parity columi+- 2 is an erasure. Then, the rest- 2 columns can be regarded as
an EVENODD coded block witB or less erasures. Direct application of the EVENODD decoding
can recover all unknown information symbols. Note that this case also takef all situations
when erasures are less than

Column p + 1 is an erasure, whilep + 2 is not.

This subcase is almost the same as the previous case, except that nBWEHNODD” coded block
consists of the firgt + 1 columns and colump + 2. In fact, this coded block is no longer a normal
EVENODD code, but rather a mirror reflection of one over the horizosteéd. Nevertheless, it
can be decoded with slightly modification of the EVENODD decoding, which imwgly leave to
interested readers.

Column p is an erasure, whilep + 1 and p + 2 are not.

Besides the above two, the only remaining subcase yet with parity erastisfg) < r < s < p—1
andt = p, whose decoding is slightly different.

First, it is not possible to recover adjustéfsandSs, as symbols in colump are unknown.
However,S; @ S5 is still computable, which simply equals to the XOR sum of all symbols in column

16
p-+1andp + 2. This is easy to see by substituting the definition$-p&ndS;,, whereS, are added
twice and canceled out. Then, it is not possible to reverse the adjustetesnerd. And the results
from syndrome calculation are XOR sums of syndromes and their corrdsgpadjusters, rather
than syndromes themselves. We @sgto denote the results, which thus satisfy

8ij=258,;08; (2.5)

wherej = 1 or2and0 <i < p — 1. Note thats; o = 5; ¢ for all 7’s.

The next step is similar to the decoding of the symmetric case without parityresass it
is also true that only one cross is needed to construct a ring. Takingabe stiarting with rove as
an example, it consists of unknown symbals.. ag s, a,, anda, s. Since the XOR sum of this
cross equals té 1 & s, 2, We can easily get the following equation by substituting Eq. 2.5:

a0,r D ao,s B Auyr D Au,s = 85,1 B S(_py, 2D 51D 2.

Therefore, the XOR sum of the cross is computable. Following the agprascsed to recover
middle erasure column in an early section, the XOR sum of two unknown syrabasy row can
be recovered, which is still denoted@ag0 < i < p — 1). Then, parity columm can be recovered,
as
a;p = a; D 5;0 = a; D 5,

where) <i<p-—1.

After columnp is recovered, the firgt+ 2 columns can again be regarded as an EVENODD
coded block with2 erasures at column ands. Therefore, the application of the EVENODD

decoding can complete the recovery of all the remaining unknown symbols.
To summarize the procedure in this subcase, we have

p—2 p—2
S1 @S2 = <@ ai,p+l> @ (@ ai,p+2)a
i=0 i=0
and

—1

bS]

ai7j>7

a<p+z‘—j>p,j> ’

510 = a;0 D (

<.
=

hS]

8i1 = a;1 D (

D

<
Il
- o

bS]

Si2 = a;2® < a(i+j)p,j>7

<.
o

17
where0 <i < p— 1andj # r ors. Then,

a; = §<s+i>p71 ® 3(_7“+i>p72 S 51 @ S,

where) <i<p-—1,and

A ((p—1)—uiy = W(p—1)—ui)p D C((p—1)—u(i—1))p>

wherel < i < p — 1. Finally, columnp can be recovered as
a;p = a; ® 50,

for all i’s. The restis to use the EVENODD decoding to recover the remaihaggumns, which is
skipped in here.
Putting all the above cases together, we conclude this section with the folltvdogem:

Theorem 1 The STAR code is completely recoverable from any triple column erasures

2.4 Algebraic Representation of the STAR Code

As described in [15], each column of an EVENODD coded block can barded algebraically

as an element of a polynomial ring, which is defined with multiplication taken matiljlar) =

(P —1)/(x — 1) = 2P~ +2P=2 + ... + 2 + 1. For the ring element, it is shown that its
multiplicative ordem. Using 5 to denote this element, then columif0 < j < p+ 1) in the coded
block can be represented using the notatiof3) = a,_2 ;32 + - -+ + a1,;8 + ao j, Wherea; ;

(0 < i < p—2)is thei* symbol in the column. Note that the multiplicative inversefoéxists

and can be denoted @s'. Applying same notations to the STAR code, we can then get its parity
check matrix as:

1 1 - 1 1 00
H=|1 g - p~t 010 (2.6)
1 gt ... g o 0 1

It is straightforward to verify that ang columns in the check matrix are linearly independent.
Therefore, the minimum distance of the STAR codg&(sach column is regarded as a single element
in the ring) and thus arbitrary triple (column) erasures are recoverabigis an alternative way to
show its MDS property.

18
2.5 Single Error Correction

The minimum distancd also implies that the STAR code can corréatolumn error and recover
1 column erasure simultaneously. Here, we again consider the most geasealwhere both the
erasure and the error are information columns, denoteg byndj., respectively. Other patterns of
erasure and error can be handled similarly and we leave them to interestkas.

Given a STAR coded block with erasure and error columns, we firstileadcsyndromes, as
in the previous section.

p—1
8i,0 = a;0 D < ai,j)
=0
p—1
i1 = a1 ® <@ a<p+i_j>p,j>
=0
p—1
Si2 = Gi2 @ (a<i+j>p,j>v

[e=]

.

where0 < i < p—1andj # j4. Note thatj, is unknown before decoding and thus colugan
is included in the above calculations implicitly. Using algebraic notations, symek@long same
parity directions can be represented using a ponnoS’}i@(B) = Zf:‘ol 5,8, wherej =0, 1 or 2.
Leta;,(B) ande;, (3) denote polynomials corresponding to the original data of colyyrand the
error data of columrj,, respectively. From the property of the check matrix, we have

So(B) + aj,(8) + €. ()
S1(B) + Ba;,(B) + Bee;, (B)
Sa(B) + B 7a;,(B) + B ¢e;.(B)

0
0
0

After simple cancellations, the above equations become

(6% + 37)e;, (B) = B745,(B) + S1(B)
(8794 + B7I%)e;, (B) = B945p(B) + S2(B)

which can be further deduced to get

F150(8) + S1(B) = BYIH) (B77450(8) + Sa(B)) (2.7)

19

ojojof1|0O0|1|1]|0 0 o|j1|jo0j1|1]0
1]1(1|j]0(0|1 (1|0 1 1{1]0(1|1]|0
oj1|{0|0|0O0|1|1]|0 0 ojo0|jo0|1|1]0
111(0|1(1|0]|1]1 1 oj1|1j]0|1]|1

(a) original codeword block (b) corrupted codeword block (f=1, f,=3)

Figure 2.5: Single Error and Single Erasure Decoding

Note that the multiplication operation in the polynomial ring can be implemented efficien
using only shift and XOR operations, as presented in [23]. Here, eagprbriefly with a simple
example. Assumg = 5 and a column is. = [0 1 1 1]7 with each entry representing a symbol. It
is clear that this column can be represented algebraicaty@s= 3 + 32 + 2. Straightforward
calculation showg?a(3) = 3 + B4 + 8° = B+ 3%, sincef* = 1+ 3+ B2 + g andp® = 1. Or
we can use the alternative approach as described in [23], which is fifioierd when each symbol
contains more than just one bit information. It first shifts all symbols in thenaplby the power of
3, which is2 in this example, and we now hawe= [100 1 1]7. Note that symbop — 1 is not part
of the original column and has an imaginary value of zero. But it participaté® shift operation,
so the column hag entries now. The next step is to remove sympel 1 by binary complement
(add symbolp — 1 to all other symbols). Then, we get= [0 1 1 0], which corresponds to the
polynomial 3 + 32 and matches the result from regular polynomial calculations.

With this technique, it is simple to compute terpis Sy (5)+ 51 (3) and374Sy(3) +S5(5)
in Eq. (2.7). Then the error correction of the STAR code boils down tarfag. such that Eq. (2.7)
is satisfied. Oncg, is known, the error column can be treated as another erasure and tbatioxo
of the erasure decoding procedure can recover both cojyrand;..

This process is illustrated by an example. A corrupted STAR codeword ilBahown in
Figure 2.5(b), where there are single erasure (colgma 1) and single error (the shadowed symbol
in columnj, = 3). We calculate syndromes and get the column representatiofig 6§, S (/3)
andSy(3) as[00110)7,[11001]7 and[1 111 0], respectively. Then3Sy(3) + Si(5) and
5~1S50(8)+ S2(3) can be calculated using aforementioned approa¢hi8 1 0" and[1 001 0]

By trial and error method, it is easy to see that the first term becoffids1 0 1]7 after shifting
down one symbol and théh 0 0 1 0] after the binary complement, which now equals to the second
term. Therefore,

B(BSo(B) + 51(8)) = B~ So(B) + S2(B)

20
Based on Eq. (2.7), we then hayg+ j. = 4 and in turnj. = 3. The next step is to treat both
column1 and3 as erasures and invoke the erasure decoding to recover all symboésattto
columns.

2.6 Complexity Analysis

In this section, we analyze the complexity of the STAR code erasure decoditme complexity

is dominated by XOR operations, thus we can count the total number of X@dRese that as an
indication of the complexity. Since decoding without parity erasures is the coogplicated case,
including both asymmetric and symmetric erasure patterns, we confine ousiaralthis case.

2.6.1 Erasure Decoding Complexity

It is not difficult to see that the complexity can be analyzed individually &mheof the4 decoding
steps. Note that a complete STAR code consists information columns an@ parity columns.
When there are onli (k < p) information columns, we can still use the same code by resorting to
theshorteningechnique, which simply assigns zero value to all symbols in thefaktinformation
columns. Therefore, in the analysis here, we assume the code blogkis B) x (k + 3) array.

In step1, the calculation ofS, takes(p — 2) XOR operations and those ¢f; and S,
take (p — 1) XORs each. The reversion of adjuster complement t@&kgs- 1) XORs in total.
Directly counting XORs of the syndrome calculations is fairly complicated andameesort to the
following alternative approach. First, it is easy to see that the syndrologlat@ons of any parity
direction for a code block without erasures(fa— 1) x (p + 3) array) takeg(p — 1)p XORs. Then,
notice that any information column contributgs— 1) XORs to the calculations. Therefore, for a
code block with(k — 3) information columns (with triple erasures), the number of XORs becomes
(p—1)p—(p—k+3)(p—1) = (k—3)(p—1). Intotal, the XORs in this step is:

(-2 +20-1)+2p-D)+3k-3)(p—1) =Bk —Hp-1) -1 (28

In step2, the computation of each ring také€f,; + ;, — 1) XORs and there ar@ — 1) rings
to compute. Thus, the number of XORs is

(204 + 1, — 1)(p — 1). (2.9)
In step3, it is easy to see that the number of XORs is

(p—1)—-1l=p-2. (2.10)

21
In step4, the horizontal and the diagonal syndromes need to be updated with tvered
symbols of columrs, which take2(p — 1) XORs. Note that there is no need to update the anti-
diagonal syndromes, because the decoding hereafter deals with ailledwasures. The Zig-Zag
decoding then takeXp — 1) — 1 XORs. So the number of XORs in this step is

2p—1)+2(p—1)—1=4(p—1)—1. (2.11)

Note that in ste®, the number of XORs is computed assuming the case where2amhknown
symbols are left in a ring after cancellations. If the other case happé&esedvunknown symbols
are left, additionalp — 1) XOR operations are needed to recover colusnrHowever, this case
doesnot need to update the horizontal syndromes in dtepd thus save§® — 1) XORs in there.
Therefore, it is just a matter of moving XOR operations from £€ép step4 and the total number
remains the same for both cases.

In summary, the total number of XORs required to decode triple informationrookra-
sures can be obtained by putting Eq. (2.8), (2.9), (2.10) and (2.1lh&ges:

Bk—4)p—-1) -1+ Qla+lh—-1)(p-1)
+(p—-2)+4(p—-1)—1

(3k + 2y + 1)(p—1) — 3 (2.12)
(3% + 2y + 1) (p — 1). (2.13)

&Q

2.6.2 A Decoding Optimization

From Eq. (2.13), we can see that for fixed code paramétersdp, the decoding complexity de-
pends onl; andl,, which are completely determined by actual erasure pattetnsgndt). In
Sec. 2.3, we present an algorithm to construct a ring of crosses, wiligheld a starting point for
successful decoding. Within the ring, all crossesware t — s symbols offset from previous ones.
And from Eq. (2.2), there are exactly two rows with unknown symbols fet @ancellations. From
the symmetric property of the ring construction, it is not difficult to show tlsatgioffsetu = s —r
will also achieve the same purpose. And if usings offset results in smallég and/;, values (to
be specific, smalle2l,; + [3,), then there is advantage to do so.

Moreover, we make the assumptior< s < ¢ during the description of the decoding algo-
rithm. Although it helps to visualize the key procedure of finding a startingtpihiis assumption is
unnecessary. Indeed, it is easy to verify that all proofs in Sec. 2.8alillwithout this assumption.
And by swapping values among s andt, it might be possible to reduce the decoding complexity.
For instance, in the previous examplte= 0, s = 1 andt = 3 results inl; = 2 andl;, = 2. If
lettingr = 1, s = 0 andt = 3, thenu = —1 andv = 3. The pattern of single cross is shown
in Figure 2.6(a). And from Figure 2.6(b), it is clear that two crossesecéoang, which contains
exactly two rows (rowl and4) with unknown symbols after cancellations. Thus, this choice also

22

>
> <>
<>] -
> |-
<

VY Vi
WV A\

(a) one cross (b) multiple crosses

Figure 2.6: Optimization of STAR Decoding

yieldsl; = 2 andi;, = 2. However, if lettingr = 0, s = 3andt = 1,wecangett = s —r = 3
andv =t — s = —2. Itis easy to find out that unknown symbols in columare canceled in every
single cross. In fact, this is an equivalence of the symmetric case and ifyteyrl andl;, = 0.
Thus, the complexity is reduced by this choice. Note that for geneeaid v, the condition of
symmetric now becomes: — v), = 0, instead of simply, = v.

Now let us revisit the ring construction algorithm described in Sec. 2.3k&h@oint there
is to select multiple crosses such that the bottom row of the last cross “stegisiwe top row of
the first one, and there are exact two rows left with unknown symbols edtesellations. Further
examination, however, reveals that it is possible to construct rings uisangative approaches. For
instance, the crosses can be selected in such a wajntttee middle columithe bottom symbol
of the last cross “steps over” the top symbol of the first one. Or perttagre is even no need to
construct closed rings and crosses might not have to be a fixed foffseprevious ones. Indeed, if
crosses can be selected arbitrarily while still ensures exact two rowgtleiitnknown symbols after
cancellations, the successful decoding can be guaranteed. Retaihtila cross is represented by
C(z) = 1+ 2% + 2 + 2%+ and a cross with an offset gf symbols byC(x)z/. Therefore, the
construction of a ring is to determine a polynomial teRfx), such thatC'(z) R(x) results in exact
two entries. For instance, the example in Sec. 2.3®@s = 1 + 2% andC(z)R(x) = = + z*.
Moreover, the following Theorem 2 shows that the decoding complexity is mieihiza R(z)
with minimum entries is adopted.

Theorem 2 The decoding complexity is nondecreasing in terms of the number cesrgg in a
ring.

Proof. Whenever a new cross is included into the ring, two new non-horizontalreynes (one
diagonal and one anti-diagonal) need to be added to the XOR sum. With thisrassy at most
four rows can be canceled (simple cancellation due to even times additiomgamich two can
be mapped with this cross and the other two with an earlier cross. Thusceesshbrings in two

23
non-horizontal syndromes and takes away at most two horizontal@yedr The complexity is
nondecreasing in terms of the number of crosaes.

Note thatl, is in fact the number of entries iR(z). Now optimized ring constructions
desire to find aR(x) with minimum entries, which ensures th@{(z)R(x) has only two terms.
An efficient approach to achieve this is to test all polynomials with two terms. piblgnomial
is divisible by C'(z), then the quotient yields a vali(x). A R(z) with minimum entries is then
chosen to construct the ring. Itis important to point out that there is nibteagorry about common
factors (always powers af) between two terms in the polynomial, as it is not divisible®f).
Thus, the first entry of all polynomials can be fixedlasvhich means that only — 1 polynomials
(1+2% 0 < i < p— 1) need to be examined. As stated in an earlier section, polynomials are
essentially elements in the ring constructed with(z) = 1+ + - - - + 2P~ 2+ zP~1. Based on the
argument in [23](1 + 2*) and(1 + z") are invertible in the ring. Thug)(z) = (1 + z*)(1 + ")
is also invertible, and it is straightforward to compute the inverse using Esi@idorithm. For
instanceC(z) = 1+ + 22 + 23, asu = 1 andv = 2 in the previous example. The generator
polynomial M, (z) = 1+ z + 22 + 2 + 2* asp = 5. Applying Euclid’s algorithm, it is clear that

IA4+x+x2+x3+x) +21+x+x2+x3) =1 (2.14)

Thus, the inverse of(x) is inv(C(z)) = x. When examining the polynomidl + z?, we get
R(z) = inv(C(z))(1 + 2®) = x + 2% or equivalently,

(1+ 2+ 2%+ 23 (x +2b) =1+ 2% mod M, (z). (2.15)

It is desirable that?(x) carries the entry of powd, since the ring always contains the original
cross. So we multiply: to both sides of Eq. (2.15), which now becomes

(142 + 22+ 23 (1 +2%) = o + 2* mod My(z).

Thus, we haveR(z) = 1 + 22 and the ring can be constructed using two croskes-(2) with an
offset of two symbols. Once the ring is constructed, it is straightforwagitg, .

It might seem contradictory to introduce ring operations to find the opti;maealue and
ring construction, as the whole purpose of the STAR code is to avoid cotignally complex
operations. However, it is important to point out that these operatiorth @sl inversion using
Euclid’s algorithm) can be performed easily and mimt require the construction of the complete
ring. Furthermore, the optimization can be performed in advance (offlntedpaly XOR operations
are required during (online) decoding procedures. This is elaboratelater section.

24

10 — : :
Blaum code (r=3) —=—
~ 9r STAR code (r=3) —— |4
S syndrome (r=3) ——
S 8 r EVENODD (r=2) —— |1
@ 71 syndrome (r=2) —— | |
g
e 6t
2
S 5
T
o 4
5
x 3
(o]
X 2 “’/A/Hrf:#*
1 -

3 5 7 11 13 17 19 23 29 31
information column k

Figure 2.7: The Complexity Comparisons

2.7 Comparison with Existing Schemes

In this section, we compare the erasure decoding complexity of the STARtoddo other XOR-
based codes, one proposed by Blagimal. [18] (Blaum code hereafter) and the other by Blorater
al. [24].

The Blaum code is a generalization of the EVENODD code, whose horizomdadiagonal
parities are now regarded as redundancies of dap®l 1, respectively. And the!" parity column
is generated using a redundancy of slepe 1. This construction is shown to maintain the MDS
property for triple parity columns, given the code parametes a prime number. And the MDS
property continues to hold for selectgdralues when the number of parities excedddo make
the comparison meaningful, we focus on the triple parity case of the Blaum ¥del compare the
complexity of triple erasure decoding in terms of XOR operations betweenl#uerBcode and the
STAR code. Similar to all previous sections, we confine all three erasumefrmation columns.

The erasure decoding of the Blaum code adopts an algorithm descrif#3],imhich pro-
vides a general technique to solve a set of linear equations in a polynongalDue to special
properties of the code, however, ring operationsraserequired during the decoding procedure,
which can be performed with pure XOR and shift operations. The algonithmsists of4 steps,
whose complexities are summarized as follows: 1) syndrome calcul&tién= 3)(p — 1) — 1; 2)
computation of)(z; z): $r(3r—3)p; 3) computation of the right-hand valuet(r —1)p+ (p—1));
and 4) extracting the erasure value$r — 1)(2(p — 1)). Here,r = 3 is the number of erasures.
Therefore, the total number of XORSs is

3k=3)(p—1)—14+9p+9p—3)+12(p—1)
= (Bk+21)(p—1)+14 (2.16)
~ (3k+21)(p—1). (2.17)

Comparison results with the STAR code are shown in Figure 2.7, where weemthat the

25

Table 2.1: Complexity of the RS Code (per 32 bits)
| # of parities| finite field based impl] XOR based impl|

r=2 8 XORs + 8 muls 16 XORs
r=3 12 XORs + 12 muls 24 XORs

complexity of the STAR decoding remains fairly constant and is just slightly@®oNote that this
complexity depends on actual erasure locations, thus the results repertedre average values
over all possible erasure patterns. The complexity of the Blaum codesveows rather high for
small k£ values, although itloesapproacts asymptotically. As these recovery schemes are most
likely to be applied with limitedk values in streaming media applications, it is critical to achieve
efficiency in this region and the STAR code is thus probably more favothbalethe Blaum code.
Figure 2.7 also includes the complexity of the EVENODD decoding as a referevhich is roughly
constant and slightly abo=XORs per symbol, Moreover, the complexity of syndrome calculations
is depicted seperately for both the double and the triple erasure rewvielieclear that this part
dominates the decoding complexity asymptotically.

The XOR-based code proposed in [24] uses Cauchy matrices to adresfReed-Solomon
(RS) code. It replaces generator matrix entries, information and partpalg with binary repre-
sentations. Then, the encoding and decoding can be performed with ibriK@R operations. To
achieve maximum efficiency, it requires message length to be multiples of 3tiitat way, basic
XOR unitis 32 bits, or single word, and can be performed by single oparalmcompare with this
scheme fairly, we require the symbol size of the STAR code to be multipleshufstbo. Then, the
XOR-based decoding algorithm in [24] involvesL? XOR operations and® operations in a finite
field GF(2%), wherek andr are the numbers of information symbols and erasures, respectively.
Assume the code is constructed in tAé'(2%) (L = 8) and there are triple erasures= 3. Also,
ignore those? finite field operations (due to the inversion of a decoding coefficients mathigh
tend to be small as the number of erasures is limited. Then, the normalizedrdgcothplexity
(by the total information length oL words) is summarized in Table 2.1. Compared to Figure 2.7,
where the STAR code decoding complexity is slightly more thafORs per symbol (multiples of
32 bits now), it is clear that the STAR code is more efficient than the XORebBS code. The
complexity of normal RS code implementation [25] is also listed in Table 2.1, whiehfuste field
operations intensively. Itis clear that this implementation has even highedexitggthan the XOR
based scheme.

2.8 Implementation and Performance

The implementation of the STAR code encoding is straightforward, which sirfitynfs the pro-
cedure described in Sec. 2.2. Thus, in this part, our main focus is orethiererdecoding procedure.
As stated in Sec. 2.6, the decoding complexity is solely determinég &yd/;,, given the number

26

EVENODD (r=2)
2 N N\ TR]

RS code (r=2)

throughput (Gbps)

1.7

RS code (r=3)
12f . o e —————— —

.
6 8 10 12 14 16 18 20
data packet (per coding block)

Figure 2.8: Throughput Performance

of information columnsk and the code parameter As [; andl; vary according to actual era-
sure patterns, so does the decoding complexity. To achieve the maximuieneifiove apply the
optimization technique as described in the earlier section.

An erasure pattern is completely determined by the erasure colymasdt (again assume
r < s < t), or further by the distances andv between these columns, as the actual position of
r doesnot affectl; or l;,. Therefore, it is possible to setup a mapping frenand v to /; and
l,. To be specific, givem, andwv, the mapping returns the positions of horizontal, diagonal and
anti-diagonal syndromes, which would otherwise be obtained via ringremtisns. The mapping
can be implemented as a lookup table and the syndrome positions using bisveSioce the
lookup table can be built in advance of actual decoding proceduresangally shifts complexity
from online decoding to offline preprocess. Note that the table lookupabperis only needed
once for every erasure pattern, thus there is no need to keep the tablmaoryrer cache). This is
different from finite field based coding procedures, where interialie lookups are used to replace
complicated finite field operations. For example, RS code implementation might espanential
and a logarithm table to perform multiplications and divisions. Furthermore uimber of entries
in the lookup table is not large at all. For example, for code pararpeteB1, . andv are at most
30, which requires a table of at ma3 x 30 = 900 entries. The cost of keeping tables of this size
is really negligible.

During the decoding procedureandv are calculated from the actual erasure pattern. Based
on these values, the lookup table returns all syndrome positions, whightiedly indicates the ring
construction. The calculation of the ring is thus performed as the XOR surlé thie indicated
syndromes. Then, the next ring is calculated by offsetting all syndrontbsowe symbol and the
procedure continues until all rings are computed. And steps afterveoed® recover the middle
column and then the sides columns, which are detailed in Sec. 2.3.

We implement the STAR code erasure decoding procedure and applyamstgemedia
applications. The throughput performance is measured and compareuutiiey available RS
code implementation [26]. The results are shown in Figure 2.8, where thetgze is528 bytes

27
and the number of information packets in a code block varies frao20. These packet numbers
are reasonable due to the delay constraints of the media data. And it is eetretSTAR code
achieves about twice faster throughput than the RS code. Note thattlesjigsaw effects in the
throughputs of both the EVENODD and the STAR code. This happens maigltodhe shortening
technique. When the number of data packets is not prime, the codes ateicted using the closest
larger prime number. A larger prime number means each column (packgihéngded into more
pieces, which in turn incurs additional control overhead. As the numbefamation packets
increases, the overhead is then amortized, reflected by the perforraamgi@g up after each dip.

28

Chapter 3

Practical FEC Codes for Wireless
Streaming

FEC techniques, based on error correcting codes, are widely usedaméng media applications
to battle data loss and in turn to reduce or eliminate retransmission delays [278n Wéed in
multicast environments, it also helps to prevent negative feedbacksdvemvhelming senders
(feedback implosiof28]). In Chapter 2, we describe STAR, an efficient recovery sehtor triple
erasures. It is shown that the STAR code requires pure XOR opegaiiuth also has the MDS
property. With a recovery of up to triple packet losses, it is conceiviidethe STAR code is
ideal for streaming media applications with very strong delay constraintsevive number of data
packets (in turn parity packets) is limited. In another word, this scheme is dppiih limited
coded block lengths.

In some streaming applications, however, the delay constraints are rglateak, for in-
stance, streaming of stored content can usually tolerate delay of seeemids. Larger delay
implies that it might be possible to use larger coded block lengths to achieve leeteery per-
formance. With a fixed coding rate (or redundancy), this would also meaaagsed number of
parity packets in a single coded block. It is clear that the STAR code becrsefficient, when
the number of parity packets exceelds

In this situation, it is certainly possible to resort to Reed-Solomon (RS) ®&Jdd he RS
code can generate total data packets frorh information packets and tolerate upito= n — k
arbitrary packet losses. It is clear that the RS code is a MDS code. Anpattametera and k
of the code can be chosen very flexibly, which makes it applicable to thés dasleed, the RS
code is widely adopted in streaming media applications [28—35]. Moreavéhege applications
increasingly include wireless links into the last mile of delivery, the RS codac#steven more
attention due to high data loss characteristics of wireless networks [36A8%8lle most attentions
are focused on the optimal recovery performance of the RS code,ishene crucial aspect often
neglected. The RS coding requires finite field operations, which are datignally complex. This

29
could impose difficulties to constrained receivers, such as portablesgdawvith limited computation
capacity and power supply. In fact, our study in this chapter shows d&3$code can significantly
increase the energy consumption of hand-held devices. In this semsghitnot always be a good
choice as a FEC scheme.

On the other hand, there is a very efficient scheme relying on pure X@Ruapns: single
parity code withinterleaving(or simply, PARITY code The PARITY code of lengthh andinter-
leaving degreen can be described as an x n array (with the last column dedicated to parity
data). It is computationally efficient and energy saving, since all engatid decoding operations
are pure XORs. However, it does not in general have as good losgay performance as the RS
code.

In this chapter, we seek to address the trade-off between loss reqoedormance and
computational cost for wireless data streaming. We study a practical Fiethsausing MDS array
codes. Different from Chapter 2, we no longer map entire columns ofray & data packets,
instead, each entry of the array is mapped to a single packet now. At thévdlit losses are not
confined to limited columns and these array codes are no longer MDS. IndhHiswe focus on the
suitability of the EVENODD code [15] for both random and bursty data lessvery. An efficient
and versatile decoding algorithm is proposed to enhance the EVENOD& ¢ooimpared to the
PARITY code and the RS code, our analytical and simulation results shawhin&VENODD
code achieves good balance between loss recovery performansavamgks in energy/computation.
Our study suggests that the EVENODD code is suitable as a practical Fie@sdor wireless data
streaming.

Note that there exist other XOR-based error correcting codes, wigohhave close to
optimal data loss recovery capability, such as regular LDPC codesddfidin codes [41-43] (as
used in the popular digital fountain approach [44]). But these codedlysequire very large block
lengths, which will violate delay constraints of streaming data applicationsrefdre, it is not
proper to consider them here.

3.1 EXtended EvenOdd Decoding (XEOD) Algorithm

3.1.1 EXtended EVENODD Decoding (XEOD) Scheme

The EVENODD code, its encoding and decoding are briefly describedapt€r 2. We denote the
decoding algorithm there as tiBasic EVENODD Decodin@BEOD). The BEOD is designed for

an error (loss) model which is suitable for data storage devices, sudislkasor tapes, where an
entire column is considered to be an error or erasure as long as atrieadstits symbols is an error

or erasure. Thidurstyloss model is sensible for data storage applications. When the EVENODD
code is used for a disk array, the BEOD can fully recover all the origlatd symbols when up to
two disks fail. When the EVENODD code is applied to data streaming, howieiegnlikely that

loss is constrained only in two columns, i.e., symbol loss carabdomin addition to bursty. The

30
BEOD scheme doesn’t provide a mechanism to deal with this situation. Mereetien symbol
loss occurs in one column, it doesn’t imply that all symbols in the same columosirdt is thus
not computationally efficient to compute all the horizontal and diagonalrsymels if some of them
arenot actually used in decoding. However, there is no simple way to decide whiclr@ye is
needed in the BEOD scheme.

To address all these issues, we propose an eXtended EVENODD ibgd¥&OD) algo-
rithm for both random and bursty symbol losses. The EVENODD has $ieann to be an LDPC
(Low Density Parity Chegkcode and its probabilistic error correction performance based on its
parity check matrix has been studied [40]. While taking advantage of theCLi¥Bperty of the
EVENODD code as well, the XEOD algorithm isdaterministicone that corrects erasures (symbol
losses) instead of errors (symbol corruptions) and thus is much moreutatiopally efficient than
other probabilistic decoding algorithms based on parity check matrix.

Now we described the XEOD: each codeword block is represented lyyasite graph,
with left nodes corresponding to the message symbols (in thepficelumns) and right nodes
corresponding to the check symbols (in #i& and(p + 1) columns). A left node exists in the
bipartite graph only if the corresponding message symbol is lost and anagdletexists only if the
check symbol ishot lost. For simplicity, message nodandcheck nodere used to represent left
node and right node throughout rest of this chapter. A link (edge)updeetween a message node
and all its check nodes. Thiegreeof a node represents the number of links connected to it. Itis
easy to see that the degree of a message node is no larger than 2 whilgréeeafea check node is
less than or equal tgp — 1).

The XEOD starts decoding from a check node with degraed moves to its only connected
message node. Since this message node is the only missing one corregpotigéncheck node, it
can be easily recovered and the link connected back to the check neaeasad. If the message
node has a second link, then the XEOD follows it to a new check and thervesniwe link. The
same decoding cycle continues until reaching a message node with degraecBeck node with
degree no equal to 1. Then the XEOD jumps to the next check node witbalegnd repeats the
entire procedure until no more such node exists.

Besides the above core loop procedure, the XEOD needs to compute EGEND ad-
juster, which is used to recover message symbols from the second ablachncsymbols. The
adjuster can be computed from all main diagonal message symbols, allsyrmabkls or any sec-
ond check column symbol with all its corresponding message symbols, &.iT[is can be easily
incorporated by augmenting the bipartite graph with an imaginary adjustey wbis connects to
missing main diagonal message nodes. Experiments show that the adjudtercoulated with
very high probability when the symbol loss rate is relatively low. Thus, itéasoaable to assume
the adjuster node always exists.

31

Algorithm 1 eXtendedEVENODD Dencoding (XEOD)
procedure XEOD:
adjuster:
if adjuster node degree = 0 then
calculate adjuster; goto decode
if any check node degree = 0 || all check nodes exist then
calculate adjuster; goto decode
decode:
for all check nodes do
while check node degree = 1 do
if adjuster node needed but not exist then
break;
recover connected message node M,
remove the link between M and the check node;
if degree of M = 0then
break;
check node < the other check node connected to M

return decoding complete;

3.1.2 Correctness of XEOD

The complete decoding procedure is in Algorithm 1 and its correctness id atattee following
theorem:

Theorem 3 There is no more message node recoverable when Algorithm 1 terminates

Proof. First, we prove that Algorithm 1 will terminate after finite number of iterationsisTé
because in each iteration, the decoder moves to a new check node amiémes one link after
recovering a message node. Since both check nodes and links in theagednite, the algorithm
will terminate after finite iterations.

We then prove the theorem by contradiction. Suppose there exists arable/message
nodeM when Algorithm 1 terminates. Then at least one check node (denot€jldcynnected with
M has degree 1. From thwehile loop in Algorithm 1, the only possible reason that the XEOD does
notfollow C’s link to recoverM is the adjuster node is needed but dnesexist. This contradicts
with the assumption thal/ is recoverablem

3.1.3 Complexity of XEOD

The complexity of the XEOD includes three parts: 1) constructing the bipartfghg2) computing

the adjuster and 3) decoding itself. The bipartite graph construction €aKkesoperation for each
message node art@(p?) in total in the worst case when all message symbols are lost. Computing
the adjuster has the worse case complexit9)¢p) when all check nodes are visited until the last

Table 3.1: BEOD computation analysis

32

of XORs CASE | CASE Il CASE Il CASE IV
0<i<p-1, | 0<i<p—-1 | 1<4j<p-1 i=p,
J=p j=p+1 j=p+1
calculate adjuster p 0 2p 0
recover message ap? qp? 2p” + p + 4pq 0
of occurrences D D ® 1
Table 3.2: XEOD computation analysis
of XORs CASE | CASE Il CASE Il CASE IV
0<i<p-—1, 0<i<p-—1, 1<i,j<p-1 i=p,
j=p j=p+1 j=p+1
i=0 i Z0 i=0 i Z0 i=0 i Z0 i=p
calculate adjuster| p 2q(1 —)P~ T+ p 2q(1 — q)P~ T+ (1—q)p+29p (1—q)%p+ P
[1—gq(1—q)* 'p [1—gq(1—q)P 'p 21 - (1-9)°p
recover message qp> qp? 2qp? 0
of occurrences 1] p—1 1] p—1 p—1 [30 1

one can be used for calculation. In the decoding procedure, eack rtbée can at most be visited
p times and involve XOR of symbols, which yield€)(p?) total complexity. Hence, the XEOD

has the worst complexit® (p?), which is linear in terms of message symbol number. Note that it is

easy to verify this complexity is reachable when all symbols in any two messgairs are lost.
It is not difficult to see that the BEOD has complexidyp?), which recovers al2(p — 1)

symbols in any two columns with XOR operations for each symbol. Thus, the BEOD has the same

complexity as the worst case XEOD. However, if all symbols are not losbsethwo columns (quite
common in data streaming), the BEOD wastes computation by calculating unremdexhtal and
diagonal syndromes, as we mentioned earlier. In this part, we quantitativellyze the computation
advantage of the XEOD in avoiding these unneeded operations.
For comparison purpose, we confine symbol losses in two columns([0, p + 1]), such
that both the BEOD and the XEOD can fully recover all losses. Assumedanafoss rate. Note
that, for the XOR-based decoding schemes, computation analysis can fiéesiny counting the
number of XOR operations, which is the only dominating factor in the decodiaeps. To further
simplify analysis, we don't distinguisfp — 1) andp, asp is large enough.

For the BEOD, we can categorize the analysis into four cases and thtdgesunmarized in
Table 3.1, where row 2 shows the number of XOR operations needed inatalg the EVENODD
adjuster, row 3 the number of XOR operations in recovering message &yamubrow 4 the number

of occurrences in totaqpf) cases. The expect value of the number of XOR operations can be

calculated as:

EBEOD(# Of XORS) =

P+ (dg + 3)p° — (20 + 3)p°

(’3)

33

4500 T T * 4500 T T 180
simulation BEOD —— simulation BEOD ——

4000 analysis BEOD —— 4000 analysis BEOD ——

simulation XEOD —— 3500 simulation XEOD ——
3500 analysis XEOD —=— analysis XEOD —=—
3000 3000

2500
2500

2000
2000 1500
1000

500 _

1500
1000
500 0

15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50
code parity p code parity p code parity p

(a) # of XORs (q=1.0) (b) # of XORs (q =0.5) (c) decoding time

BEOD(q=1.0) ——
160 [XEOD(q=1.0) —=—
10 SEORN0Y
120

100
80
60
40
20

XOR operation number
XOR operation number
block decoding time (ms)

Figure 3.1: Computation Advantage of the XEOD

For the XEOD, the analysis is similar and summarized in Table 3.2, using the sémtiemo
as in Table 3.1. The expect value of the number of XOR operations caalddated as:

(5 Lo2)p3 4 (3 3.2y,2
qap* + (5 +2¢—5¢°)p° + (5 — 2¢+ 5¢°)p
Expop(#of XORs) = (3 2 (2+2) (5 50°)
2

L(-a- 7*)p + 2qp(1 — q)P(p — 1)
(*3%)

The analysis results are also verified by simulation, where the number ofof@Rtions
are counted in a real decoding implementation. In the simulation, each symbobdeaord block
corresponds to a data packet of 500 bytes, which is a proper choicerfmal data streaming appli-
cations. The analysis and simulation results conform well with each othgrpag in Figure 3.1(a)
and 3.1(b).

Figure 3.1(a) shows a special case where all the symbols in the cokamalj are lost, which
is the original case BEOD designed to deal with. The XEOD performs ahewtame number of
XOR operations as the BEOD in this case. When only half of the symbols ard-Igare 3.1(b)
shows the saving of the XEOD in terms of XOR operations. This is underbéadince the XEOD
doesnotcalculate unneeded horizontal and diagonal syndromes as the BE@RdvVantage of the
XEOD is further verified by actual time measured in decoding simulation, agsind-igure 3.1(c).

In summary, the XEOD is no worse than the BEOD in computation load under anyneir
stance and outperforms the BEOD in most cases. And the computation apvahtdne XEOD
becomes more prominent, as the symbol loss rate decreases. MoreeydQD can handle more
general loss scenarios and thus achieves higher loss recovebjlitgizan the BEOD.

3.2 Energy Consumption and Throughput

3.2.1 Energy Consumption

Energy consumption is a big concern for wireless terminals. In this sectmsafudy the feasibility
of using various FEC schemes in wireless data streaming from this pevepdntparticularly, we

34
compare the decoding energy consumption of the proposed XEOD with tRETFAcode and the
RS code.

We choose a 30-sec MP3 file as experiment data and use the energyngoios of its de-
coding as a baseline. Both the MP3 filarge.mp3 and the MP3 decodemadplay are from a
representative embedded benchmark suite (MiBench [45]). Since iffisuttifto measure energy
consumption directly, we resorts to Sim-Panalyzer [46] for simulation. Wesghmtel StrongARM
SA1100 (200 MHz) as a target microprocessor, which is used in many &piPAQ Pocket PCs.
Various decoder implementations are then compiled to generate StrongARM bixecutables.
The Sim-Panalyzer simulates the execution of them and collects instructiorpt®vet consump-
tion data. Finally, the energy consumption is computed from total power pgotgan, micropro-
cessor frequency and total clock cycles. For the RS code, we use'Riggplementation [26].

7000 4 6791 code I (254, 228) redundancy 10%
code Ii: (254, 240) redundancy 5.5%

2.287

1.485

1.000 +
0.179 0.097 0.095 0.047
0.000 T T — =1 T T

madplay sl sl xeod | xeod Il parity | parity Il

Figure 3.2: Energy Consumption

Figure 3.2 compares the energy consumption of the MP3 decoder ands/BB€ decoders.
For each FEC scheme, two sets of code paraméte{ﬁk&, 228) and Il (254, 24())are examined
as representatives. Data loss is always set equal to redundan@ldoeexaximum recovery capa-
bility. (Shorten technique is also used to achieve proper parameter folB®Xnd the PARITY
code, as in a later section.) We can see that if the RS code is used in stredmiitigsignifi-
cantly increase total energy consumption (abbtt over pure MP3 decoding). On the contrary,
the additional energy consumed using the PARITY code or the XEOD waubdrhost negligible.
Therefore, from energy perspective, the cost of using the RSinadecless data streaming is high.
Note that for the same decoder, code | consumes roughly twice as mutly eisecode 11, which
is reasonable because it needs to recover about twice as much dataofdgbat it is not easy to
directly measure the energy consumed only by FEC decoders in the simulastead, we obtain
the results by subtracting two measurements: 1) the energy consumptiaa o¢tleval plus FEC
decoding and 2) the energy consumption of data retrieval only.

35
3.2.2 Decoding Throughput

Besides data loss recovery, a complete wireless data streaming applicaizdly usludes many
other functionalities, such as video/audio decoding, digital rights managesten To identify
the performance bottleneck, it is desirable to compare the throughput BEfieschemes to other
possible components.

Here, we consider the following components: 1) media codec, choositgem source
MPEG-I decoder originated from UC Berkeley (SMPEG [47]) and 2usity component, choos-
ing AES-128 and RC4 decoders (the fastest block cipher and stre&ersi8]) from Wei Dai’s
Crypto++5.1 [49]. We use a 12-minute MPEG-I clip of fherminator2at rate 1.5 Mbps as experi-
ment data and perform throughput measurements on a P3 733 MHZ maahitieg Linux Redhat
7.3. Figure 3.3 shows that all FEC schemes have higher decoding tipjtsghan the MPEG-I
decoder and thus wilot be a bottleneck in a typical streaming application. Note that in this ex-
periment, we use code parameters (360, 324) for all FEC schemes. (eohtpgarameters (254,
240) or (254, 228) as in the previous subsection, this configuratisesanore difficulty for the RS
code. The RS code now has to operate in a much larger finite figl2'%), as opposed ta'F'(28).
This certainly contributes to significant throughput difference betweerRB code and the other
two codes. It is desirable to repeat the same experiments on a real lthddhiee to verify our
conclusion. We defer this to future work, though.

2500 4235544
2000 A

1500 —
1132.75

1000 +
500 - 379.44
127.34
o 75 el : 15.29 : :

MPEG-I AES RC4 RS XEOD PARITY

throughput (Mbps)

Figure 3.3: Decoding Throughput Comparison

3.3 Data Recovery (1): Random Symbol Loss

To study the loss recovery capability of the XEOD, this section compares itRétRARITY code
and the RS code. Here, the random loss model is that each symbol hasamed independent
loss probabilityg.

3.3.1 Performance Analysis

For the PARITY code and the XEOD, we can analyze the decoding pnoedxy viewing it as a
discrete random process and apply the approach discussed in [dh, wie summarize as follows:

36
A codeword block is represented as a bipartite graph, with each link conge message
node on one half plane to its check node on the other half. Links adjacenhtale of degree
1 are denoted abnks of degreei. Let \; be the fraction of links of degregcorresponding to
message nodes ang the fraction corresponding to check nodes. Then define two polynomials
Az) =, Mzt~ tandp(z) = >, pia’~ L. The fraction of unrecoverable message nodes is:

r(@) =q(1 - q@Ag+ (1 —q)z) x[x =14 p(1 —gA(g+ (1 — q)z))]
wherez is the smallest value satisfies:
p(1—=gAg+ (1 —qx)) >1—z, z€(0,1]

For a PARITY code withp message symbols, il§z) andp(z) can be calculated as follows:
each message node participates parity calculation just once)thasl and\; = 0 for all i £ 1.
Sincep is the width of message block {1 is the width of codeword block), and every check node
hasp links, p, = 1 andp; = 0 for all i # p. Therefore \(z) = 1 andp(z) = zP~1.

For the XEOD, itis a little bit more complex to compute the polynomials. First, the EVEN-
ODD adjuster is assumed to be always available, as in early sections.chieelk,nodes are catego-
rized into three types based on their degrees and check equationswassirigure 3.4. Therefore,
we get the following polynomials:

AMNz) ==z
I 2 xp—S p wp—?
plz) = 20— T 2p-1)

Note that the EVENODD code ghortenedy not using the'” column to achieve the same coding
rate as the PARITY code. Code shortening will be discussed with more detailatier section.

With these two polynomials defined for the PARITY code and the XEQD, it isgsttir-
ward to calculate the largest feasible valuexofind then compute the fraction of unrecoverable
message nodes.

An (n, k) RS code camot decode at all if less thakh symbols are received. Thus, a
systematicode is always desirable so that at least received message symixii aseful even if
decoding fails. We use systematic RS codes in our analysisniéte the number of lost message
symbols andny the number of lost check symbols, then the joint loss probabftity.;, m2) in
this case is:

Plma,my) = <n§1>qm1(1 —qtm <n N k> q" (1 — gk

m2

Also definenormalized unrecoverable rati@enoted by-) as the performance metric, which repre-
sents the ratio between the number of unrecoverable message symbols totdlthumber of loss

37

unused column
check columns
ﬂ type IlI

e &~ check node
O

i

O ®

O

type Il
* check node
e A

type | check node j

Figure 3.4: Random Loss Analysis of the XEOD

0.6 T T T 0.6 T T T
analysis PARITY —=— analysis PARITY —=—
simulation PARITY —— simulation PARITY ——
o 0.5 analysis EVENODD —=— o 05 analysis EVENODD —=— //
® simulation EVENODD —— ® simulation EVENODD —— /
2 o4t analysis RS —e— f 2 o4t analysis RS —e— /
E // E /
E / E /
3 03r / 3 03r y 3
o / s} / /
o / <4 J /
5 o2} ¥ S 02}
2 P = / /
9} S/ @ /
N) N /
= 01f T 01r ¥
= ~ -
2 0F s—s—3F— = oo 2 or ——t——%— 5 "
0.1 ‘ s ‘ ‘ 0.1 ‘ s ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1 0 0.01 0.02 0.03 0.04 0.05
random loss probability random loss probability
(@ p=19 (b) p=37

Figure 3.5: Random Loss Analysis

symbols in a codeword block. We can then compufier the RS codes:

my
r= E ———— X P(mi,m2), mi+mg>n—k
mi + me
mi,m2

3.3.2 Performance Results

To compare the performance fairly, same block length and coding rate@sercfor all three codes.
The PARITY code has heighR{p — 1) and Width@. The shortened EVENODD code has height
(p — 1) and width(p + 1). For the RS code, only the block length matters, whicfpis 1)(p + 1)
here. Therefore, the coding rateg}l, the same for all the three codes.

Figure 3.5 shows both analysis and simulation results of the normalized varabte ratio
for all three codes with respective to various random loss probabilitg XEBEOD always outper-
forms the PARITY code. This is because each node in the EVENODD cadiipates in the
calculation of two check nodes, which results in higher recovery chafils® notice that the RS
code has better performance than the XEOD, which is expected becal®s ttode is a MDS code
at the symbol level, while the EVENODD code is MDS only at the column level.

38
Note that there is a small gap between the analysis and simulation results for @ie. XE
This is due to the assumption that the EVENODD adjuster is always available tbfgiamalysis.
This assumption makes the EVENODD code a little bit stronger and thus resulstigty lower
unrecoverable ratio in the analysis.

3.4 Data Recovery (I1): Bursty Symbol Loss

3.4.1 A Realistic Data Loss Model: Bursty Loss

In the previous section, we use random data loss as a transmission modBlsiniptifies analysis.
In wireless networks, however, data losses often occur in bursty maHeace, a more realistic
loss model needs to take into account the dependency between paskst I8stwo state Gilbert
model [50] can represent the burstiness reasonably well. With this modeigetivork is either in
a GOOD (5) state representing a packet reaches destination, or in a BABtte representing a
packet loss. Network state changes from sfate G with probability 5 and remains in stat®
with probably(1 —). Similarly, state remains in staée with probability (1 — «) and changes to
B with probability ov. It is easy to verify that thetationary loss ratés 7z = ;5 and the average
length of consecutive BAD states, i.e., #neerage burst lengthis up = %. The value ofo and
can be derived by measuring; andy in a real network environment.

3.4.2 Loss Recovery Performance of the FECs

It is not difficult to analyze the unrecoverable ratio of the RS code farratp loss model. We use
a recursive approach here.

Let Py, s, (k,n) be the probability ofc symbol losses out of total symbols, beginning
from statesy and ending at state,. Therefore, we can get following recursive equations when the
initial state isG:

PS():G,Sn:G(ka n) :P80=G7Sn71=G’(k’ n— 1) X (1 - O‘) + P80=G,Sn71=3(kv n— 1) X ﬁ
P80=G,Sn=B(ka n) :P80=G7Sn71=G(k - 1n- 1) X o+ P80=G,Sn71=3(k - 1n— 1) X (1 - ﬂ)

with Py,—q s,=c(k, k) = 0and Py —¢ s,=p(k, k) = o x (1 — ﬁ)k_l.
And also when the initial state iB:

Py —Bs,—a(k,n) =Psy=B.s,_1—a(k,n — 1) x (1 —a) + Py—Bs,_,—B(k,n — 1) x 8
PSO:B,sn:B(kan) :PSO:B,sn,lzG(k’ —1,n— 1) X o+ PSOZB,SnflzB(k: —1,n— 1) X (1 — ﬁ)

with PS():B,SkZG(ka k‘) =0 andPsO:B,Sk:B(k, k‘) = (1 — ﬁ)k

39

o 045 ‘ o 045 ——
B=] PARITY —— E=] PARITY ——
[04+ XEOD — o 04+ XEoD —
2 035)i 2 035
< <
5} 0.3 r 4 5 03 |
> >
S o025t 3 025+
L o
c 0.2 r c 0.2
=} =}
§ 0.15 § 0.15
5 01¢ 5 01
E o005 E 005
o 1]
< 0 — L L < 0 L™ L L L L L

0 5 10 15 20 0 5 10 15 20 25 30 35 40

average burst length average burst length
(@) p=19, lossrate =1% (b) p =37, loss rate = 0.526%

Figure 3.6: Burst Loss Analysis

Thus, the probability”(k, n) of k symbol losses out of total symbols is:

P(k>n) = (1 - 7TB) X (PS():G,SnZG(hn) + PSOZG,SnZB(kvn))
+ TR X (PS():B,sn:G(k7 TL) + PsozB,sn:B(ka n))

It is, however, much more difficult to get closed-form representatioth@funrecoverable
ratio of the PARITY code or the XEOD for a bursty loss model, if possibldlaThis is mainly be-
cause the recovery capability depends heavily on actual loss patterchic@deword block, which
is extremely difficult to count. Therefore, we use simulation to measure tret logs recovery
capability of the PARITY code and the XEOD. For each simulation, we let thelfi¥,000 states of
the Gilbert model pass to ensure our experiments always start fromdy sted¢e. Then, 1,000,000
codeword blocks are generated and decoded. The unrecoveatiblesrcalculated as the average
over all codeword blocks. Figure 3.6 shows the simulation results of thdTPARode and the
XEOD, which are also compared with the analysis results of the RS cods ratesfor each case is
simulated to be% of the redundancy.

It is worth pointing out that the performance of the RS code is worse thakEQdD under
various burst patterns when loss rate is relatively low. The explanationtigithebursty network,
symbol losses tend to group closer together with longer gaps betwegosgimn in random loss
situation. Whenever there are more than- k) symbol losses in a codeword block ofra) RS
code, the decoder fails to solve necessary linear equations due to toantarowns. Thus none of
these lost packets can be recovered. In contrast, each subsetlmflsycan do their own decoding
in the PARITY code and the XEOD. This provides higher chance to regymbol losses in some
circumstances. Hence, the RS code, although optimal for random dat#slass necessarily the
best choice even not considering energy consumption and decodaugthout.

Also, the performance of the PARITY code is not always poor in burggds. When the
average burst length goes beyondrass pointwith the XEOD, the PARITY code actually yields

40

0.45

0.6 : ‘ : : ‘
PARITY p=19 —— PARITY p=19 ——
S os // . 04 XEODp=19
g 957 Xxeopp=19 —— /— 2 S
° XEOD S =31 . 8 o0a35| PARITYp=31
S 04 RSp=19 —— g 2 XEggp=gi
] : _ : / L p=
g RSp=31 - / g o3
g 03¢ e / g o025)
g e
S o2¢ A 5 02r
o P 8
8 o1l 7 8 0.15 f
£) = ¥ E 01r
IS of — 2
2 0.05 -
-0.1 : : : L 0
0 0.02 0.04 0.06 0.08 0.1 0 5 10 15 20 25 30
random loss probability average burst length
(a) random loss (b) burst loss

Figure 3.7: Effect of Shortening

better loss recovery performance. This justifies that the PARITY coddl iarseffective approach
for loss recovery.

3.5 Effects of Parameters on the XEOD

This section discusses the effects of paramgten the XEOD. Fair comparisons among codes
constructed with differenp values are achieved tshorteningcodes with largeps such that all

the codes have the same coding rate. Shortening is a common practice tdlaljase of a code
without changing its loss recovery capability, by setting certain informatiombsys to zero [4].

For a code withk information andn total columns, a simple shortening example is to set the entire
last column to zero, and the coding rate decreases ﬁ;ctm%. Shortened codes can have the
same coding rate but different block length.

Figure 3.7(a) shows the random loss recovery results of the PARIT¥,¢be XEOD and
the RS code. It is clear that shortening has only marginal effect onstoglgovery capability if
data happens randomly. Figure 3.7(b) compares the burst loss ngobtiee three codes. For each
type of code, its loss recovery capability increases m&reases (block length also increases). For
the samep, the relative loss recovery capability remains the same among the PARITeY, tiol
XEOD and the RS code, i.e., the XEOD outperforms the RS code and is bettethth®ARITY
code for short bursts. Notice that largeyields better loss recovery performance, but at the cost
of larger codeword block length, which in general demands more bsfface usage and longer
decoding delay. Hence, a general rule to degidalue is to pushy to the maximum value limited
by recovery buffer and delay constraints.

41

Chapter 4

ORC: Optimal Coding Rate Control for
Scalable Streaming

Perhaps the major technical problem in streaming media on demand over timetiigethe need
to adapt to changing network conditions. As competing communication pexbsgin and end,
the available bandwidth, packet loss and packet delay all fluctuate. Nebtwtages lasting many
seconds can and do occur. Resource reservation and quality afessmpport can help, but even
they cannot guarantee that network resources will be stable. If th@repath contains a wireless
link, for example, its capacity may be occasionally reduced by interfer@imes it is necessary for
commercial-grade streaming media systems to be robust to hostile network aundiloreover,
such robustness cannot be achieved solely by aggressive (otwveg&ransmission. Even constant
bit rate transmission with retransmissions for every packet loss canmetia@ throughput higher
than the channel capacity. Some degree of adaptivity to the network isdreerequired.

End users expect that a good streaming media system will exhibit the folldweihgvior:
content played back on demand will start with low delay; once started, it kaillfpack continuously
(without stalling) unless interrupted by the user; and it will play back with tigiadst possible
quality given the average communication bandwidth available. To meet thpsetations in the
face of changing network conditions, buffering of the content at thentchefore decoding and
playback is required.

Buffering at the client serves several distinct but simultaneous pespdsrst, it allows the
client to compensate for short-term variations in packet transmission dedgy'j{tter”). Second,
it gives the client time to perform packet loss recovery if needed. Tihti@)ows the client to
continue playing back the content during lapses in network bandwidth. Aathfiit allows the
content to be coded with variable bit rate, which can dramatically improveaibharality! By
controlling the size of the client buffer over time it is possible for the client totrtiee above

!Note that even so-called constant bit rate (CBR) coded content is acteald with variable bit rate within the
constraints of a decoding buffer of a given size. The larger the degddffer size, the better the quality. The required
decoding buffering is part of the larger client buffer.

42
mentioned user expectations. If the buffer is initially small, it allows a low starglayd If the
buffer never underflows, it allows continuous playback. If the buffeeventually large, it allows
eventual robustness as well as high, nearly constant quality. Thust lifer management is a
key element affecting the performance of streaming media systems.

The size of the client buffer can be expressed as the number of seocbodntent in the
buffer, called the buffeduration The buffer duration tends to increase as content enters the buffer
and tends to decrease as content leaves the buffer. Content leabedfénevhen it is played out,
at a rate ofr seconds of content per second of real time, wheietheplayback speeftypically 1
for normal playback, but possibly more than 1 for high speed playbalgse than 1 for low speed
playback). Content enters the buffer when it arrives at the clienttbeenetwork, at a rate of, /7.
seconds of content per second of real time, whegris thearrival rate, or average number of bits
that arrive at the client per second of real time, and thecoding rate or average number of bits
needed to encode one second of content. Thus the buffer duratitve @acreased by increasimg,
decreasing., and/or decreasing (and vice versa for decreasing the buffer duration). Although the
buffer duration can be momentarily controlled by changipgcf. “Fast Start” in Windows Media
9 [51]) or changing (cf. "“Adaptive Media Playout (AMP)” in [52]), these quantities are geaily
not possible to control freely for long periods of time. The arrival rgten average is determined
by the network capacity, while the playback speeoin average is determined by user preference.
Thus if the network capacity drops dramatically for a sustained periodciegithe coding rate,
is the only appropriate way to preventabuffering evenin which playback stopsA(= 0) while the
buffer refills.

Thus, adaptivity to changing network conditions requires not only aehufiut also some
means to adjust the coding rateof the content. This can be done by stream switching in combi-
nation with multi bit rate (MBR) coding or coarse grained or fine grainethbtacoding. Today’s
commercial streaming media systems [51, 53] rely on MBR coding as wiiimsing, which is a
form of coarse grained scalabilityFuture commercial systems may support fine grained scalability
(FGS) as welP FGS coding offers great flexibility in adapting to variable network conditiansl
can demonstrably improve quality under such conditions.

In this chapter we focus on the problemoofding rate contrglthat is, dynamically adjusting
the coding rate of the content to control the buffer duration. Outside thmesaf this chapter is the
problem of transmission rate control. Thmnsmission rate, is the rate at which the sender
application injects bits into the transport layer and is equal to the arrivatrgade average if the

2In MBR coding, semantically identical content is encoded into alternativsttiams at different coding rates and
stored in the same media file at the server, allowing the content to be stteatierent levels of quality corresponding
to the coding rates., possibly using bit stream switching [54]. In coarse grained scalaldimgdsuch as MPEG-2/4
temporal or SNR scalability [55]) the content is encoded into severatimems otayers so that the coding rate. can
be changed in large deltas by adding or dropping (at possibly restricted)tiome layer of content at a time. Thinning
is a special case of coarse grained scalability in which dependent vigeed (P and B frames) are dropped before
independent video frames (I frames), which are in turn are droppfate audio frames.

3Fine grained scalable coding (such as 3D SPIHT [56], MPEG-4 FGISGEEAC [58]) allows the coding rate. to
change at any time in deltas sometimes as small as one byte per presentation

43

server app @ client app
UDP UDP
network
server app client app
r, ctrl (b) r, ctrl
TCP [TFRC| ... TCP [TFRC]| ...
UDP UDP
network

Figure 4.1: (a) Traditional streaming media architecture. (b) Proposshsimg media architecture
with congestion control factored out.

transport is lossless. Byansmission rate contrave mean congestion control as well as any other
mechanisms affecting the transmission rate such as bursting, tracking thmigsion rate to the
available bandwidth, and so on. Thus we control the buffer duratiordjugting the coding rate.

at which bits leave the buffer, while letting the the arrival rateat which bits enter the buffer be
determined by other means.

In the streaming media literature, with few exceptions (e.g., [59, 60] and thiesvbased
thereon; also [11]), there has been little attention paid to the the distinctiondretive coding rate
r. and the arrival rate, or the transmission rate,. Indeed, in typical streaming media systems
(e.g., [51]), after an initial buffering period (in which = 0 and possiblyr, /r. > 1), r./r. is
locked tov. A difficulty with locking the transmission rate to the coding rate via the playoe¢gp
is that it essentially removes any means of controlling the client buffer dorafier the initial
buffering period* A further difficulty is that the transmission rate, if it is locked to the coding rate,
will typically be incompatible with transports that use standard congestionatpsiich as TCP and
TFRC [61].

By decoupling the coding and transmission rates, it is possible to continualtyotothe
client buffer duration. This allows the buffer to grow over time, for exampl®viding a low
startup delay, asymptotically high robustness, and eventual constdity.qiarthermore, decou-
pling the coding and transmission rates makes possible an architecture intivhichnsport and
congestion control protocol may be factored out of the streaming prolfidesired. Figure 4.1(a)
illustrates the traditional architecture in which congestion control is integiatedhe streaming
media application running on top of UDP. Figure 4.1(b) illustrates the prapasghitecture in
which congestion control is factored out of the streaming media applicatilonyirg standard
transport mechanisms (such as TCP and TFRC) to be used, as welt@® ¢tensport solutions
using custom transmission rate control over UDP [62—65].

“However, congestion, as evidenced by a drop.iand hence a drop in the buffer duration, can still be alleviated by
reducingr,, andr. by the same factor.

44

In addition to factoring the problem of network adaptation into transmissioncatgol
and coding rate control, the novelty of our approach lies in the following tspeets. First, we
formulate the problem of coding rate control as a standard problem in loesdratic optimal
control, in which the client buffer duration is controlled as closely as ptestita target level while
keeping the coding rate (and hence the quality) as constant as possilder Kioowledge this is
the first use of optimal control theory for client buffer management. Bome explicitly take into
consideration, using a leaky bucket model, the natural variation in the ias&gus coding rate
that occurs for a given average coding rate. We incorporate the beadket model into the control
loop so that the changes in buffer duration due to natural variation in ttentasieous coding rate
are not mistaken for changes in buffer duration due to network congesimour knowledge this
is also the first use of a leaky bucket to model source coding rate ciotstdarring client buffer
management beyond the initial startup déelay.

4.1 Problem Formulation

4.1.1 Temporal Coordinate Systems

It will pay to distinguish between the temporal coordinate systems, or clasksl, to express time.

In this chaptermedia timerefers to the clock running on the device used to capture and timestamp
the original content, whilelient timerefers to the clock running on the client used to play back
the content. We assume that media time is real time (i.e., one second of media tims &apse
one second of real time) at the time of media capture, while client time is real time afrté of
media playback. We use the symhboto express media time and the symldb express client
time, with subscripts and other arguments to indicate corresponding evemtexdmple, we use
74(0),74(1),74(2), . . . to express the playback deadlines of frarbek 2, . . . in media time, while

we usety(0),t4(1),t4(2), ... to express the playback deadlines of fraffiek 2, ... at the client.
Content may be played back at a ratéimes real time. Thus the conversion from media time to
client time can be expressed

t—tg4 — 10 (4.1)
14

wherety andr represent the time of a common initial event, such as the playback of framé¢h@ (o
playback of the first frame after a seek or rebuffering event) in mediakent coordinate systems,
respectively.

4.1.2 Leaky Bucket Model

For the moment we revert to a scenario in which both the encoder and théedean in real time
over an isochronous communication channel. In this case, to match the instandacoding rate to

®Ribas, Chou, and Regunathan use a leaky bucket to model souriog caté constraints to reduce initial startup
delay [66], while Hsu, Ortega and Reibman use a leaky bucket to maahsintiission rate contraints [5].

45

® >
w
(@]

encoder decoder
network —e—

buffer buffer decoder

encoder

Figure 4.2: Communication pipeline.

bits

.

media time

Figure 4.3: Schedules at which bits in the coded bit stream pass the poiBtsCA,and D in the
communication pipeline.

the instantaneous channel rate,emtoder buffers required between the encoder and the channel
and adecoder buffeis required between the channel and the decoder, as illustrated in Figure 4
schedulds the sequence of times at which successive bits in the coded bit streaia gigsn point
in the communication pipeline. Figure 4.3 illustrates the schedules of bits passipgitiis A, B,
C, and D in Figure 4.2. Schedule A is the schedule at which captured fraraesstantaneously
encoded and put into the encoder buffer. This schedule is a staircasdécimthenth step rises by
b(n) bits at timer(n), wherer(n) is the time at which frame is encoded, anél(n) is the number
of bits in the resulting encoding. Schedules B and C are the schedulescht its respectively
enter and leave the communication channel. The slope of these schedhldstssper second,
whereR is the communication rate of the channel. Schedule D is the schedule at wdniobsfiare
removed from the decoder buffer and instantaneously decodedesemation. Note that Schedule
D is simply a shift of Schedule A. Note also that Schedule B is a lower boundhedsile A,
while Schedule C is an upper bound to Schedule D. Indeed, the gap be8ebedules A and
B represents, at any point in time, the size in bits of the encoder bufféle die gap between
Schedules C and D likewise represents the size of the decoder bufferenicoder and decoder
buffer sizes are complementary. Thus the coding schedule (either Acarl)e contained within a
buffer tube as illustrated in Figure 4.4, having slope heightB, and initial offsetF"¢ from the top
of the tube (or equivalently initial offsgt® = B — ¢ from the bottom of the tube). It can be seen
thatD = [/ R is thestartup delaybetween the time that the first bit arrives at the receiver and the
first frame is decoded. Thus it is of interest to minimiZéfor a givenR.

A leaky buckets a metaphor for the encoder buffer. The encoder dultypgbits into the
leaky bucket at timer(n), and the bits leak out at rate. In general it is possible for the leak

46

R{t(n)-t(n-1)]
(n 1)% Ig(n) Fimn)
" _
2 9 Q)
e
Bl FeI ~“p” (n=1) 1(n) mediatimeV

Figure 4.4: Buffer tube containing a coding schedule.

rate R to be high enough so that the bucket occasionally empties. Thus the ehodi@e fullness
F¢(n) immediately before frame is added to the bucket and the encoder buffer fulln@$g:)
immediately after frame: is added to the bucket evolve from an initial encoder buffer fullness
F¢(0) = F* according to the dynamical system

BS(n) = F*(n)+b(n), 4.2)
F¢(n+1) = max{0,B%n)— R/f(n)}, (4.3)
where)
- 4.4
1) =) =) “4)
is the instantaneous frame rate, for= 0,1,2,.... If R is sufficiently low, then the bucket will

never run dry (underflow), but i? is too low the bucket will eventually overflow. We take the
largestR such that the buffer will never run dry to be the average codingriaté the bit stream.
This is made more precise in the following two paragraphs.

A leaky bucket with size3, rateR, and initial fullness+'¢ is said tocontaina stream having a
schedule characterized by the st¢pgn), 7(n))} if B¢(n) < B for all n. We define the minimum
bucket size needed to contain the stream given leakiiaed initial fullnessF© as
Cin(R,F€) = mnin B¢(n), (4.5)

min
while we define the corresponding initial decoder buffer fullness as

Fd. (R, F°) = B%, (R, F°) — F°. (4.6)

min min

47
We denote the minimum of each of these of&ras

fnin(R) = H;‘lﬁn Bsnin(Rv Fe)? (47)
FI?IID(R) = HFl‘lclfl Frillin(R7 Fe)' (48)

It is shown in [66, Proposition 2] that remarkably, these are each minimizeldebyame value of
F¢, which is hence equal to

rin(R) = Baim(R) — Fi(R). (4.9)

Thus given a bit stream with schedulé(n), 7(n))}, for each bit rateR there is a unique leaky
bucket that contains the stream and that has the minimum buffe3see well as the minimum
startup delayD = F?/R. These parameters can be computed with the above equations.

For sufficiently low leak rate®, the leaky bucket does not underflow, when beginning with
initial fullness F* = F¢, (R). We may use the maximum such rdteas the average coding rate
of a bit stream with coding scheduéb(n), 7(n))}.

Leak ratesRk greater tham. will also be used in this chapter. It is shown in [66] that both
B¢,.(R)andF4, (R) are decreasing, piecewise linear, and conveR.itlence if the transmission
rate R is greater than the average coding ratethe startup delay) = F¢. (R)/R can be reduced
compared tdD = F¢, (r.)/R. This fact will be used in Section 4.3.1.

A leaky bucket with leak rat& = r., size B = B¢, (r.) and initial decoder buffer full-
nessF? = F;flin(rc) thus corresponds to a straight buffer tube bounding the coding scheslirie
Figure 4.4. Each stream in the media file has a coding schedule; thus esah stirresponds to
a straight buffer tube with slope equal to the average codingrrabté the stream. The siz8 of
the buffer tube and its offsgt® (or F'%) relative to the coding schedule can be either computed by
the above formula for a variable bit rate (VBR) stream (such as a cdrgtality substream of a
scalable stream), or obtained from the sand initial stateF' of the actual encoder buffer used
to encode the stream if it is a constant bit rate (CBR) stream.

In the sequel we will need to consider the gép) at framen between the buffer tubgpper
boundand the coding schedule, as depicted in Figure 4.4. Note that the deadfigrfbliness
Fi(n) = B — F*°(n) can also be expressed

re(n)

f(n)’

wherer.(n) is the coding rate of the buffer tube, now taking into account that diffdrames may
lie in different buffer tubes with different coding rates as coding ratdrobis applied and streams
are switched.

Fin)=bn)+gn)=gn—1)+ (4.10)

48

() playback deadline
d / target schedule
tx(n) upper bound

arrival schedule

lower bound

client time

(S
2

[y
|

Ta(n) media time

Figure 4.5: Arrival schedule and its upper bound in client time.
The upper bound is controlled to the target schedule, which is increasinativance of the
playback deadline to provide greater robustness over time.

4.1.3 Rate Control Model

Assume for the moment that bits arrive at the client at a constantgat&hen framen (having
sizeb(n)) arrives at the clienb(n)/r, seconds after frame — 1. Indeed, the index of a bit is
proportional to its arrival time. Dividing the vertical scale of the schedulésgure 4.4 byr,, we
obtain the schedules in terms of client time, rather than bits, as shown in Figur@He coding
schedule divided by, becomes tharrival schedule which provides for each the timet, (n) of
arrival of framen at the client. The buffer tube upper bound (in bits) dividedrpyecomes the
buffer tube upper bound (in time), which provides for eacthe timet,(n) by which framen is
guaranteed to arrive. In the same plot we showplagback deadlinewhich is the timet;(n) at
which framen is scheduled to be played (after instantaneous decoding). Thus thetyegeh a
frame’s arrival time and its playback deadline is the client buffer duratidgheatime of the frame
arrival. This must be non-negative to allow continuous playback.

In reality the arrival rate is not constant. #f(n — 1) andt,(n) are the arrival times of
framesn andn — 1 respectively, then we may define

b(n)

ra(n) =) —ta(n = 1) (4.11)

to be theinstantaneous arrival ratat framen. In practice we estimate the average arrival rate at
framen by a moving averagg, (n) of previous values of,(n), as detailed in Section 4.3.3. Hence
using (4.11) we may express the arrival time of framia terms of the arrival time of frame — 1

as

ta(n) = to(n—1)+ % (4.12)
= =1+ 2 4w, (4.13)

49
where thev(n) term is an error term that captures the effect of using the slowly movinggee
To(n) instead of the instantaneous arrival ratén). From (4.10), however, we have

-

whence (substituting (4.14) into (4.13)) we have

+g(n—1)—g(n), (4.14)

re(n) N gln—1) g(n) +o(n). (4.15)

ta(n) =ta(n—1) + F(n)ia(n) | Fa(n) Fa(n)

Now defining the buffer tube upper bound (in time) of framas

ty(n) = to(n) + 2 (n) : (4.16)

so that
t3(n) — tyn — 1) = ta(n) — ta(n — 1) + I 90171 (4.17)

Ta(n) To(n—1)

we obtain the following update equation:

ty(n) =tp(n — 1) + m +w(n—1), (4.18)
where (D (D
—1) = g\n = _gn- v(n .
w(n —1)) Fan—1) +v(n) (4.19)

is again an error term that captures variations around a locally constizat eate.

Using (4.16), the client can compuign — 1) from the measured arrival timg(n — 1), the
estimated arrival rate,(n — 1), andg(n — 1) (which can be transmitted to the client along with the
data in frame: — 1 or computed at the client as described in Section 4.4.5). Then using (thé8),
client can control the coding rate(n) so thatt,(n) reaches a desired value, assuming the frame
rate and arrival rate remain roughly constant. From this perspeddivg)(can be regarded as the
state transition equation of a feedback control system and it is thus pdssilsie a control-theoretic
approach to regulate the coding rate.

4.1.4 Control Objective

With the state transition equation defined in (4.18), uninterrupted playbatlkeachieved by
regulating the coding rate so that the client buffer does not underflonintfoduce a margin of
safety that increases over time, we introducemet schedulgeillustrated in Figure 4.5, whose
distance from the playback deadline grows slowly over time. By regulatingdbang rate, we
attempt to control the buffer tube upper bound so that it tracks the tacgetsle. If the buffer
tube upper bound is close to the target schedule, then the arrival timégrafrees will certainly

50
be earlier than their playback deadlines and thus uninterrupted playhihble wnsured. Note that
controlling the actual arrival times (rather than their upper bounds) to thettevould result in an
approximately constant number of bits per frame, which would in turn resuwiiiy poor quality
overall. By taking the leaky bucket model into account, we are able to estableontrol that
allows the instantaneous coding rate to fluctuate naturally according to tbdiegcomplexity of
the content, within previously established bounds for a given averatiegcate.

Although controlling the upper bound to the target schedule is our primaal ge also
wish to minimize quality variations due to large or frequent changes to the cratimgThis can be
achieved by introducing into the cost function a penalty for relative coditeydifferences.

Letting t7(n) denote the target for frame, we use the following cost function to reflect
both of our concerns:

N

1= (0t —)+ (D ”(”))2), (4.20)

n=0 fa (TL)

where the first term penalizes the deviation of the buffer tube upperddoom the target schedule
and the second term penalizes the relative coding rate difference Inetweeessive framesy is

the control window size anel is a Lagrange multiplier or weighting parameter to balance the two
terms.

4.2 Optimal Control Solution

Before presenting the optimal control solution, we first describe the meatgpnal of the target
schedule.

4.2.1 Target Schedule Design

Figure 4.6 shows an illustrative target schedule. The gap between thHmplkagleadline and the
target schedule is the desired client buffer duration (in client time). If #peig small at the begin-
ning of streaming, then it allows a small startup delay, while if the gap growdystower time, it
gradually increases the receiver’s ability to counter jitter, delays, andghput changes.

The slope of the target schedule relates the average coding rate to thgeaaerival rate.
Let¢7(n) be the target for frame. As illustrated in Figure 4.6, the slope of the target schedule at

framen is
S(TL) _ tT(n + 1) — tT(n)
T(n+1)—7(n)

If the upper bound;(n) aligns perfectly with the target schedule (i.8,(n) = tr(n)) and the
arrival rater, is constant (i.e., the(n — 1) term vanishes), we get from (4.18)

(4.21)

tp(n+1) —tp(n) re(n)
s(n) = t(n+1)—71(n) rq (4.22)

51

playback
deadline

>
>

target
schedule
X

client time

target
buffer
duration

t(6) |-
t(5) - X“S(5): slope

at frame 5

| | >

5 10 frame

Figure 4.6: Target schedule design.

Thus initially, when the slope is low, i.e., less thafv, r,/r. is greater thans and more than

v seconds of content are received per second of client time, causirgig¢hée buffer (which is
playing out onlyr seconds of content per second of client time) to grow. Over time, as the slop
approaches /v, r,/r. approaches and the buffer remains relatively constant (except for changes
due to variations in the instantaneous coding rate), since content isee@eid played back at the
same speed. We next present two target schedule functions that illustrate the dgeiesign idea.

Logarithmic Target Schedule

One way to choose the target schedyles to have the client buffer duration grow logarithmically
over time. Specifically, it; is the playback deadline, then for eaghgreater than some start time
Ldos

tr =tg — gln(a(td —tqo) + 1). (4.23)

Since by (4.1){q = tao + (74 — Ta0) /v, We have

dtp dtpdty 1 b
8 drg dtgdrg v a(rg—Tq) +v’ ()
and hence the initial slope at frame 0 (whgn= t4) is s(0) = (1 — b) /v. Settingb = 0.5 implies
that initially r./r, = 0.5/v, causing the client buffer to grow initially at two times real time. Further
settinga = 0.15 implies that the client buffer duration will be 7.68 seconds after 1 minute, 15.04

seconds after 10 minutes, and 22.68 seconds after 100 minutes, regarftie

Two-piece Linear Target Schedule

Another way to choose the target schedylas to have the client buffer duration grow linearly at
rateb seconds of media time per second of client time until the buffer duration esacteconds
of media time, after which it remains constant. Specifically, for éagreater than some start time

52

60

T T 60 T T
playback deadline playback deadline
target schedule target schedule
50 4 50
. 40 — — 40
<) L
(] i
£ 30t £ a0t
€ €
s s
° 20+t © 20t
10 1 10 -
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
. ‘media time (s) . media time (s)
(a) logarithmic ¢ = 0.15, b = 0.5) (b) two-piece lineard = 10, b = 0.5)

Figure 4.7: Target schedules.

tao,

tg — bty —t i<t b
tT:{ d—b(tg —ta) ta<tqp+a/ (4.25)

tqg—a tg > tgo+a/b

The initial slope is agair(0) = (1 — b)/v. Settingb = 0.5 implies that initiallyr./r, = 0.5/v,
causing the client buffer to grow initially at two times real time. Further setting 10 implies
that the client buffer duration will reach 10 seconds of media time after @insls of client time,
regardless ob.

Figure 4.7 shows the above two target schedules. As one can see, iitdaffer duration of
10 seconds is considered to be a safe level against jitter, delay andkétwtuations, then the two-
piece linear target schedule reaches the safe level in 20 seconds, asterttfian the logarithmic
target schedule. On the other hand, the slope of the two-piece linearsahgelule remains lower
for longer (hence the coding rate and quality are lower for longer) artddrmore experiences an
abrupt change at 20 seconds when its slope changesOffom to 1 /v. Consequently, the coding
rate will not change as smoothly as with the logarithmic target schedule, althiowdl not be as
abrupt as the schedule itself because of the smoothness objective imttalepdesign. Hence,
we investigate the effect of both target schedules.

4.2.2 Optimal Controller Design

Recall from (4.18) the fundamental state transition equation, which desdtile evolution of the
buffer tube upper bount}(n) in terms of the coding rate.(n):

re(n+1)

[Ta
Here we now assume that the frame ritand the average arrival rafg are relatively constant.
Deviations from this assumption are capturedddy:).

ty(n+1) =tp(n) + + w(n). (4.26)

53

We wish to control the upper bound by adjusting the coding rate. As eaotefarrives at
the client, a feedback loop can send a message to the server to adjustititerate. Note, however,
that by the time frame arrives completely at the client, framet+ 1 has already started streaming
from the server. Thus the coding ratén + 1) for framen + 1 must already be determined by time
ta(n). Indeed, attime, (n), framen +2 is the earliest frame for which the controller can determine
the coding rate. Hence at tintg(n), the controller’s job must be to choosgn + 2). We must
explicitly account for this one-frame delay in our feedback loop.

For simplicity, we linearize the target schedule around the time that fraameives. The
linearization is equivalent to using a line tangent to the original target sédatla particular point
as an approximate target schedule. Thus we have

tT(n + 1) — 2tT(n) + tT(n - 1) =0. (4.27)

Rather than directly control the evolution of the upper bound, which grayeut bound,
for the purposes of stability we use an error space formulation. By dgfihaerror

e(n) = ty(n) — tr(n), (4.28)
we obtain

e(n+1)—e(n)

= (ty(n +1) —=tr(n+1)) — (ty(n) — tr(n)) (4.29)
= (ty(n +1) —tp(n)) — (tr(n +1) —tr(n)) (4.30)
- T(;f:l) — (tr(n+ 1) — tr(n)) + w(n), (4.31)

from which we obtain in turn

(e(n+1) —e(n)) = (e(n) —e(n—1))
= [re(n+1) —re(n)]/fTa
—(tr(n+1) = 2tp(n) + tp(n —1))
+(w(n) —w(n —1)) (4.32)
re(n+1) —re(n)

— 0 + (w(n) —w(n —1)). (4.33)

We next define the control input

, (4.34)

54
wherer.(n + 1) is a possibly quantized version af(n + 1) (as defined in Section 4.3.4) and we
define the disturbance

A

Fe(n) —re(n)

d(n) = 77 +w(n) —w(n —1). (4.35)
Then (4.33) can be rewritten
u(n —1)
e(n+1)=2e(n)—e(n—1)+ 7 +d(n). (4.36)
Therefore, defining the error vector
e(n) ty(n) tr(n)
e(n)=le(n—1)| = [tp(n—1)| = [tr(n—1)|, (4.37)
u(n _ 1) Tc(il-i-l) 7Ac~(7n)

the error space representation of the system can be expressed

-1
0
0

e(n+1)= e(n)+ 0| u(n)+ [0 d(n), (4.38)

S =N
S O ==

ore(n+1) = ®e(n) + I'u(n) + I'yd(n) for appropriate matrice®, I" andI’,.

Assuming the disturbaneg&n) is a pure white noise, and assumipeyfect state measure-
ment(i.e., we can measure all components ©f) without using an estimator), the disturbarie)
doesnotaffect the controller design. Thus we can use a linear controller rexqess by

u(n) = —Ge(n), (4.39)

where(is afeedback gainBy the time frame: is completely received, all elementse&(fn) are
available at the client and(n) can thus be computed. The ideal coding rate for framie2 can
then be computed as

re(n+2) =7.(n+1) — Ge(n)r,. (4.40)

Finding the optimal linear controller amounts to finding the feedback@aitmat minimizes
the quadratic cost function defined in Section 4.1.4. Before continuing witkddkign, we first
check the systeroontrollability matrixC,

0y
cz[r or 22T = [0 0 1|, (4.41)
100

which has full rank for any frame ratg. Thus, the system isompletely controllableand the
statee(n) can be regulated to any desirable value. Now recall that the cost furdeiomed in

55
Section 4.1.4 is

B N B 2 . re(n+1) —re(n)\2

£ (o) o g
N

= Z{ (n)TQe(n) + u(n — 1)T Ru(n — 1)}, (4.43)

=0

3

where@Q = CTC (with C = [1 0 0]) andR = o. Then, the original control problem of tracking
the target schedule while smoothing the coding rate fluctuations (i.e., minimizingsh&iaction
I) is converted to a standard regulator problem in the error space. Leéfting oo, the infinite
horizon optimal control problem can be solved by applying the results in§éction 3.3] to obtain
an optimal regulator in two steps: 1) solving, to gethediscrete algebraic Riccati equation

S =aT{S - ST[ITST + R|7'T'S}® + Q, (4.44)
and 2) computing the optimal feedback gain
G* = [ITST + R|7'TT59. (4.45)

The existence and uniquenesssofand in turn ofG*) is guaranteed whef is nonnegative definite
and R is positive definite, which is straightforward to verify in our case.

4.2.3 Frame Rate

In the previous section, we assumed that the frame rate is constant. Tumspdiss is reasonable
when streaming a single medium, such as video without dutiowever, usually video and audio
are streamed together, and their merged coding schedule may have rfcefiredate. Even if there
is a fixed frame ratg’, we may wish to operate the controller at a rate lower tfiato reduce the
feedback rate, for example.

To address these issues, in practice we use the notiorviofual frame rate We choose
a virtual frame ratef, for examplef = 1 frame per second (fps); we partition media time into
intervals of sizel / f; and we model all of the (audio and video) frames arriving within eachvater
as avirtual framewhose decoding and playback deadline is the end of the interval.

This approach has several advantages. First, it allows us to desige affliniversal feed-
back gain, which is independent of the actual frame rate of the streatmeans. Second, it allows
us to reduce the rate of feedback from the client to the server. And fisatiye the interval be-
tween virtual frames is typically safely larger than a round trip time (RTT),eafoamme delay in the
error space model (as described in the previous section) is sufficiembdel the feedback delay.

®Variable frame rate video is usually achieved by skipping frames, whicbam accommodate by settibi@g:) = 0.

56

Root Locus Bode Diagram

5T

Tes |]
b2 7 A
SRS EN RN
/X <

i
111246 dB
-10 | Freq: 3.14 radiset
Stable loop; | | |1}
R

Imag Axis

Figure 4.8: Root locus and Bode diagram.

Otherwise we would have to model the feedback delay with approxim&tElfj/ f additional state
variables to represent the network delay using a shift register of IRt/ f.

In the sequel we therefore use a virtual frame rate 1 fps, and we refer to this simply as
the frame rate.

4.2.4 Stability and Robustness

To compute the optimal regulator, it is necessary to choose a valueifiofd.20) or (4.42)-(4.43).
This can be done by following the following four steps: 1) pick @alue to balance(n) andu(n);
2) compute the optimal feedback gain; 3) plot the closed-loop root locush@ok stability) and
bode diagram (to check robustness); and 4) perform time domain simul&diesify transient
response. Several iterations may be needed to determine a suitedilee.

Following the above steps in this chapter we setect 50. The corresponding optimal
feedback control gain is the@* = [0.6307 — 0.5225 0.5225], for which the closed-loop system
has poles a1.7387+0.1999¢, 0.7387—0.1999: and0, which are all inside the unit circle. Therefore,
the closed-loop system is asymptotically stable. Figure 4.8 shows the clagedsiat locus and
the bode diagram with the optimal feedback. We can again verify the stabilittyeaflosed-loop
system since all poles are inside the unit circle. Also, the system fais anargin(GM) of 12.60
dB and aphase marginPM) of 51.59 degrees. The GM and PM are usually good indicators of
system robustness. In our case, the PM is much larger than 30 deghéssjs often judged as the
lowest adequate value [68, Section 6.4]. And this PM is close to 60 deginedsest PM an optimal
controller could achieve if continuous time feedback control was allowdtrefore, the system
achieves good robustness. Finally, Figure 4.9 provides the time resgiomgdation results, which

57

‘ ‘ ‘ ‘ 160 : ; : ;
1r coding rate 7 140 - target schedule
arrival schedule

L] 120
o 0.8 My _
5] £ 100 +
° [}
0.6 - 1
2 m £ gt
= b
h =
E o4l H‘ N 1 £ e60r
=
40
0.2 1
| 20 ¢
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0O 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
media time (s) media time (s) .
(a) rate vs. time (b) schedule vs. time

Figure 4.9: Time response simulation.

show good tracking properties with a fairly stable coding rate (more simula#uits are available
in [69]).

4.3 Practical Issues with Streaming

4.3.1 Fast Startup

As discussed in previous sections, the startup delay is the length of the [remo the time that
content first begins to arrive at the client to the time that playback beginsindthis period,
content accumulates in the receiver buffer to counter packet jitternssitiasion delay, variations
in network bandwidth, and variations in instantaneous coding rate. It ised@ble that a longer
startup delay would increase the chances of being able to maintain contiplagbsck in a dy-
namic network environment. On the other hand, users expect the statayptolde as small as
possible. Thus, it is desirable to investigate techniques that can redus&ittg delay while re-
taining robustness. One possible approach is to transmit the contentstératifean normal rate at
the beginning of streaming. Thimurstingtechnique will certainly build up the buffer duration in a
small amount of time. It, however, puts extra pressure on the networkrbgru#ing a higher than
normal initial bandwidth, which may not even be available.

In this chapter, we use an alternatifast startuptechnique, which takes advantage of the
properties of adaptive media. As discussed in previous sections, lmgiolgoan initial coding
rater. equal to half the arrival rate, (divided if necessary by the playback spegdthe client
buffer duration can grow at two times real time during playback. Growinglieat buffer during
playback enables the startup delay to be low, because playback camidgithe buffer duration is
still low. Beginning playback while the buffer duration is low is not particulaidky over the short
term, because the probability of deep congestion occuring in any shasahig low. However,
the probability of deep congestion occuring in a long interval is high, so it ioitapt for the

58

client time

B: start controller
frame schedule

frame

Figure 4.10: Leaky buckets (buffer tubes) for various transmissi@s.ra

buffer duration to be high over the long term. Without the ability to grow thedouffuration
during playback, startup would have to be delayed until the buffer duratas sufficiently high
to guarantee continuous playback over the long term.

Moreover, if the transmission rate is twice the coding rate, the startup defapecéur-
ther reduced by taking advantage of properties of the leaky bucketlif@gle As detailed in
Section 4.1.2, the startup delay for a given bit streai is F%. (R)/R when the stream is trans-
mitted at rateR?. This is ordinarily equal td¢, (r.)/r. when transmitting the stream at its coding
rate. However, when transmitting the stream at arate r. (r. = 0.5r,/v), then the startup delay
drops toF?. (r,)/re. Thus the startup delap decreases both because the numerator decreases
and because the denominator increases.

Figure 4.10 illustrates the decrease in the initial decoder buffer fullfss(R) as R
changes fromr. to r,. In particular, it depicts the coding schedule for a given bit stream, ds we
as upper and lower bounds, denoted Tube | and Tube II, corrdsppto two leaky buckets with
leak rates-. andr, respectively, both containing the coding schedule. Tube Il is smaller thae T
I, since the minimum sizé3,,,;,(R) of a leaky bucket containing a given stream is decreasing in
the leak rateR [66]. Likewise, the initial decoder buffer fullneds,;,(R) is decreasing iR [66].
Hence the playback deadline for frame 0 can begin as early as clientdime= F. (r4)/7a,
instead ofty_; = F¢, (r.)/r,. From there, the playback deadline advances'atseconds of client
time per second of media time.

4.3.2 Controller Initialization

As illustrated in Figure 4.10, the target schedule starts at the same time as thacglagadline
and grows according to a predefined function. The controller attemptsitmtthe upper bound of
Tube | to the target schedule. Initially the upper bound of Tube | is ab@v/&athet schedule (and is
indeed above the playback deadline, though we know that this is safafeH&hen the playback
starts, the controller would try to close the gap by decreasing the coding tase however, would

59
not be desirable because the current coding rate is already lower tharritral rate to allow the
client buffer to grow. Further reduction of the coding rate would notiop@r. To avoid this effect,
we initialize the controller when the upper bound of Tube | exceeds thet srhiedule i.e., at point
B in Figure 4.10. Point B can be found analytically, but in practice there isesal to explicitly
solve for it. The controller can be initialized as soon as the upper bounabef Texceeds the target.

4.3.3 Exponential Averaging of the Arrival Rate

From the performance studies of the controller, using the averagelaate from a low pass filter
(instead of the instantaneous arrival rate) helps to reduce coding seitlations. This section
details our exponential averaging algorithm for the arrival rate.

Let7,(k) andr(k) be the average arrival rate and the instantaneous arrival rategtiesfye
when packek is received. Note that unlike the controlling operation, the rate averagiegton
may be performed after the arrival of evapgacket rather than after the arrival of evefiame
Hence we use the discrete packet indeather than the frame index Instead of using the widely
adopted exponentially weighted moving average (EWMA)

Ta(k) = B(k)7a(k — 1) + (1 = B(k))ra(k) (4.46)

with constanti(k) = 3, we perform the exponential averaging more carefully. In our algorithen,
factor3(k) is not constant, but varies according to the packets’ interarrival gapsalgorithm has
several advantages over the EWMA algorithm with constdh). First, the estimate of the average
arrival rater, (k) goes to zero naturally as the gap since the last packet goes to infinity, tfeihe
being bounded below byr,(k — 1). Second, the estimate of the average arrival¥atk) does not
go to infinity as the gap since the last packet goes to zero. This is especiatistémiy since packets
often arrive in bursts, causing extremely high instantanous arriva.r#ed finally, the estimate
of the average arrival ratg, (k) does not over-weight the initial condition, as if it represented the
infinite past. This is especially important in the early stages of estimation.

As in (4.11), we define the instantaneous arrival rate after pacést

b(k)

Ta(k) = ta(k) — ta(]{ — 1)7 (447)

where hereh(k) denotes the size of packktandt, (k) denotes the arrival time of packet We
extend the discrete time functiog(k) to the piecewise constant continuous time functigft) by

ro(t) = ro(k) forallt € (to(k —1),t.(E)], (4.48)

as illustrated in Figure 4.11. Then we filter the functigiit) by the exponential impulse response

60

© aerat

[

S

£] (_\\(\g

a’;’\g
@\é\&\\
b(k) | b(k-1) b(k)
t(K) - t(k-1) b t(K) - t(k-1)
1(0) t(1) t(k2) t(k-1) t(k) >

packet arrival time

Figure 4.11: Exponential averaging.

ae~, t > 0, for some time constanit/«:

ftt((ok)) Ta<t/)ae—a(t(k)—t’)dt/

To(k) = (4.49)
J;t((ok)) ae—alt(k)—t") g/

(Here and in the remainder of this subsection we suppress the subsamighie arrival time, (k).)
Noting that [ae=*"dt’ = e, the denominator integral can be expressed e~ (*(*)=40),
Now, we split the range of the numerator integral into ran@éy), ¢(k — 1)] and(t(k — 1), ¢(k)] to
obtain a recursive expression (k) in terms ofr, (k — 1) andr,(k),

7a(k)
—aft(k—1)—t(0
N 11_ e 7[Et(k))t(O()]H e =z, (k — 1)
—e « —
1 — e—olt(k)—t(k-1)]
A0 (4.50)

= BR)7a(k —1) + (1= B(k))ra(k), (4.51)

where
e—alt(k)—t(k=1)] _ o—alt(k)—t(0)]

Bk) = . (4.52)

1 — e—alt(k)—t(0)]

Note that3(k) is numerically stable ak goes to infinity. However, as the gép= t(k) — t(k — 1)
goes to zerol — (k) goes to zero while, (k) goes to infinity. Their product, however, is well

61

>
>

ty(n-1)

client time

tr(n-1) —

e YA}n-l) (1)
g (*n-l)

<«

se/ switch
feed ck\ / rate
n-2

n-1 n frame

£
>

=
T

ta(n-1) -
ta(n-2) -

>

Figure 4.12: Buffer tube change and control target adjustment.

behaved. Indeed,

1 _ e—alt(k—1)-t(0)]

- B —ab~
ra(k) = 1 — e—alo+t(k—1)—£(0)] © Ta(k —1)
1—e 0 bk)
T I k-] 5 (4.53)
L (b —1) 4 —) (4.54)

1 — e—alt(k)—t(0)]

aso — 0, using I'Hopital’s rule. Thus (4.54) is the update rule in the case wiieh= t(k — 1).

4.3.4 Choosing a Stream Given a Coding Rate

When the client requests a coding rate:), the server complies by choosing a stream (or substream
of a scalable stream) having coding ratén) approximately equal to.(n). There are several rea-
sons that'.(n) may differ fromr.(n). The first reason is that there are only a finite number of
streams (or substreams) in the media file, even if fine grain scalable codisedsThus there may
be no stream in the media file with average coding rate exactly equaktp. The second reason is
that, even if there is a stream in the media file with average coding rate exagtiteq.(n), the
buffer tube for the stream may be too large to allow switching to the stream witis&wof client
buffer underflow. In fact, whenever the stream switches, there isrghy a discontinuity in the
upper bound, which may be either positive or negative. A positive shifterupper bound is illus-
trated in Figure 4.12, which, if large, could cause the client buffer to rilodeeither immediately
or eventually.

Thus the server must choose a stream that causes the upper bouifidup sb more than
some amounf\™**¢(n — 1) supplied to it by the client. The client suppligs"**g(n — 1) to the
server in its feedback along with(n), shortly after client time,(n — 2) (after framen — 1 has

62
already begun streaming). Upon receiving the feedback, the sefeetsa stream with coding rate
7e(n) as high as possible such thatn) < r.(n) and, if#.(n) > 7.(n — 1) (i.e., if it is a switch
up in rate), the*” (n — 1) — g°%4(n — 1) < A™**g(n — 1), whereg"*®(n — 1) andg®?(n — 1)
are illustrated in Figure 4.12. The constraint given¥**g(n — 1) is not applied if it is a switch
down in rate.

The client chooseA™?*g(n — 1) to limit (its prediction of) what the upper bound would be
attimet,(n — 1) if the new coding rate were in effect, namely,

e (n — 1)
~ ty(n—2)+ 726(?’:_ D) + Ag(?; —1) (4.55)
< tr(n—1) +pta(n — 1) — tr(n —1)]. (4.56)

Thatis, the client chooses™**g(n—1) to limit ¢;*’(n—1) so that it would be no more than fraction
p of the way from the target;(n — 1) to the playback deadling(n — 1). In our experiments, we
choosep = 1/3.

4.3.5 Control Target Adjustment

When a frame with a new average coding rate:) arrives at the client at timg,(n), there is a shift
in the upper bound. Real scalable stream data (cf. Figure 4.14) shatthigishift can be on the
order of seconds and hence, rather than being negligible, can besaupto the controller. If the
shift is upward, for example, the controller will immediately try to reduce thénzpaater.(n + 2).

If the shift is downward, on the other hand, the controller will immediately try toaase the coding
rater.(n+2). Either way is probably not good; the intention is thgtn) will be maintained unless
there is a disturbance in the arrival rate. Our solution is to introduce a sirealtarshift in the
control target schedule equal &y (n — 1)/7,, whereAg(n — 1) = g"%(n — 1) — g°(n — 1) is
the actual shift in the upper bound (in bits) at frame- 1 computed at the server, as illustrated in
Figure 4.12. The server can send this value to the client along with franffehere is no stream
change, this value is simply zero.

If the control target schedule is adjusted whenever the coding ratgedgahwill no longer
follow the designed target schedule. We refer to the adjusted targetdelas thecontrol target
schedule to distinguish it from thaesigned targeschedule (or simply th&rget schedule

The control target schedule, of course, must have a tendency teappthe designed target
schedule. The basic idea is to decrease the slope of the control tdrgdtisewhen it is above the
designed target schedule and to increase the slope when it is below.

63
For the logarithmic target schedulge = ¢, — 2 In(aty+1) (Wherety = tao+ (74— 740)/ V),
according to (4.24) the slope at media timds
dtr 1 b

L S 457
y drg v a(tq—Tao) +V ()

If we defined as the distance between the playback deadline and the target scherhdl, na

i=tm <a <T‘1_Td°> + 1) : (4.58)
a 1%

then the slope may be expressed as a functiaf) of

b

— - (4.59)

Hence whenevet is the distance between the playback deadline and the control target, the set
slope of the control target toin (4.59). Specifically, ift.;(n) is the control target at frame after
the shift, then we reset.(n — 1) to beT’z(n) — s/ f. We then use.(n) andt;(n — 1) in place of
tr(n) andty(n — 1) to compute the error vecteq(n) in (4.37). The resulting error vector is then
used to compute the ideal coding rate in (4.40).

For the two-piece linear target schedule, the slope is easy to compute byauysiadefined
time period over which the control target schedule is expected to return taret schedule. The
slope of the control target schedule can then be computed from the distamcl the period. We
set the period to 50 seconds in our experiments.

4.4 Implementation Details

This section highlights implementation details on both the sender and the residiver

4.4.1 Generation of Virtual Streams

In our implementation, a fine grained scalable (FGS) stream comprises adahaunits, each
tagged by a Lagrange multiplierrepresenting the per-bit decrease in distortion if the data unit is
received by the client. If tha for the data unit is above a threshold, then the data unit is included in
a virtual stream corresponding to that threshold. Each thresholdspomds to an overall number
of bits and hence an average coding rate for the virtual stream. In periments, we generate
N = 50 virtual streams. A threshold is chosen for each stream such that théngstreams have
coding rates that are uniformly spaced in the log domain between lower ged bipunds.

During streaming, when the server reads a data unit from the media file utexthe
data unit in the virtual stream currently being transmitted if its Lagrange multiplisrabove the
threshold for the stream.

64
4.4.2 Leaky Bucket Computations at the Sender

For each virtual stream, leaky bucket paramet@sB.i, (R), 4. (R)) are precomputed off line
for R = Rqug andR = Rpax, WhereR,,, = r. is the average coding rate of the stream, and
R = 2r.. These leaky bucket parameters are sent to the client in a preamble.

In addition, during streaming the server performs on-line leaky bucketaiimns for each
stream. Specifically, whenever the server reads a data unit from the filediadetermines the
virtual streams to which the data unit belongs, using the Lagrange multipliee afata unit and
the list of thresholds for each stream. The sender then updates, foetérenihed streams, the
states of those leaky buckets having leak rates equal to an averagg cai@i®,,,, using (4.2)
and (4.3). Once all the data units in a frame are read from the media file, ntderseomputes
g(n) = Bmin(Ravg) — B¢(n) for each of the virtual streams. On a stream switch (&) #
7(n — 1)), the gapy™* (n) for the new stream is transmitted to the client along Witin — 1) =
g (n — 1) — g°(n — 1) as described below. It is easy to see that the cost of updating the leaky
bucket states is quite low. However, it is also possible to precompute thiess @and store them
with each data unit in the media file.

4.4.3 Initial Coding Rate Selection

At the beginning of a streaming session, the sender needs to have soriedg®of the available
network bandwidth so that it can choose an initial coding rate (usually hetedandwidth). The
bandwidth estimate can be drawn from proactive measurements, usir@gaelpes such as packet
pair [70], path chirp [71], etc., or reactive approximations based dorjisalues. The exact form
of the initial bandwidth estimation is beyond the scope of this work.

4.4.4 Coding Rate Switching

The rate control feedback from the client contains the frame numberielf@dedback is generated
(e.g.,n — 2 in the previous section) and the maximum allowable shift of the upper bounigsin b
(e.g.,A™*g(n — 1) in the previous section). If the sender finds a suitable coding rate andsmake
a switch at framen, it will transmit three values to the client along with the frame: the new coding
rate7“"(n), the current gap to the upper bougtf* (n), and the shiftAg(n — 1) = ¢"*“(n —

1) — g°(n — 1). With this information, the client can properly adjust its control target scleegis

well as its upper bound. Note that coding rate switching always happéins beginning of a new
frame, never inside a frame.

4.4.5 Optimal Rate Control at the Client

Whenever a new coding rate starts, the client receives the yalyealong with the new frame. The
values ofg(n) for successive frames can be then inferred by the client itself bas#dteaoding

65

5 Mbps
5ms

FTP; s 5 Mbps L 2.4 Mbps 50 ms
source !/ 5ms

5 Mbps
5ms

Figure 4.13: ns-2 Simulation network setup.

rater.(n) and the frame sizé(n). The client records the arrival frame timg(n), calculates the
buffer tube upper boung(n) and then computes the deviatiefn). If there is a coding rate switch,
it will also compute the buffer tube shift and adjust the control targetdideeaccordingly. Then
e(n) is feed to the optimal rate controller, which then outputs a desired new catimgThe latest
new coding rate is fed back to the sender whenever there is a feediyaaitumity, which could be
generated at regular intervals or on-demand.

45 Performance Evaluation

In this section, we evaluate the performance of the optimal rate controhsygen streaming a
fine grained scalable (FGS) video stream.

The test video is a 3-minute clip, which we obtain by six repetitions of the comaizd® of
the three MPEG standard test sequerfdago, Stefan andForemanin that order. The test video is
downsampled to QCIF, 10 fps, for a total of 1800 underlying QCIF frafrilise test video is coded
using a variant of MPEG-4 FGS [57], with a 10-second I-frame distamceno B frames. Using
rate-distortion optimization, from the FGS stream we extract 50 substreansevalrerage coding
rates are uniformly spaced in the log domain between log 50 kbps and logkbp@0

Using the popular network simulator ns-2 [72], we set up a simple netweikosiment as
shown in Figure 4.13. Video traffic is streamed from nedé noder; while competing FTP cross
traffic (FTPR)) is transmitted node; to noder; (2 < i < n). By adjusting the number of FTP flows
and their beginning/ending times, we can create both constant and vanalibbke bandwidth
scenarios for the streaming session, as specified in Table 4.1. Experanerdarried out using
both TCP and TFRC [61] as alternative transport layer protocols. Net@’RC protocol yields
similar results as the TCP protocol, which are thus not reported here (@d&9] for more details).

45.1 Startup Delay

Figure 4.14 shows the startup delay as a function of the transmission/eatesa,, for two streams,

"The original Akiyo and Stefan test sequences are 300 frames, wkidownsample to 100 frames each. The original
Stefan test sequence is 400 frames, from which we extract the fdst&@®es before downsampling to 100 frames.

66

Table 4.1: Bandwidth Available to the Streaming Session
] | clienttime| # of FTPs| fair share BW|

| Constant Bandwidt) 0-180's | 5 | 400 Kbps |
0-30s 2 800 Kbps
30-60s 5 400 Kbps
Variable Bandwidth| 60-90s 11 200 Kbps
90-130s 5 400 Kbps
130-180s 2 800 Kbps
. F d<§§}‘“j&%!£:§ﬁ: —

mij 4
) ST T T p—
ns-2 measurements ¢

startup delay (s)
w

(\
/

0f ———————* -

0 100 200 300 400 500 600 700 800 900 1000
transmission rate r, (Kbps)

Figure 4.14: Startup delay vs. transmission rate.

one at average coding ratg = r,, and another at. = 0.5r,. Specifically, for the virtual stream
with average coding rate., let %, (R|r.) denote the minimum initial decoder buffer size com-
puted for a leaky bucket with leak raie (We know that for a fixeda,, this function decreases).
The top curve in the figure shows the startup defdy. (r.|7.)/74, when the coding rate is chosen
to match the transmission rate. The middle curve shows the startup Bg|ag0.57,|0.574) /74,
when the coding rate is chosen to be half of the transmission rate, but thedeit@der buffer full-
ness is based on the coding rate. And the bottom curve shows the stdaygde (7,|0.574) /74,
when the coding rate is chosen to be half of the transmission rate, and thedsitizder buffer
fullness is based on the transmission rate, thus further reducing the statayp The three curves
in the figure are calculated using leaky bucket simulations with the virtualns’ezoding sched-
ules, but we notice that the bottom curve matches nicely with experimentétisr&sum our ns-2
simulations at rates at 150 Kbps, 300 Kbps, 450 Kbps, 600 Kbps, 796 Kid 900 Kbps, all of
which have delay much lower than 1 second.

45.2 Constant vs. Variable Bandwidth

Figures 4.15 and 4.16 show results using TCP as the transport protodet,constant and variable
bandwidth conditions, respectively. In either case, in the startup ptieseoding rate is about
half of the arrival rate, which allows fast startup and helps to build thetdtiafier quickly. The

67

180 30
600 fair share bw —— playback deadline buffer duration
arrival rate 160 arrival schedule target from deadline
500 coding rate target schedule . 25 ctrl target from deadline
140 ctrl target schedule o) upper bound from deadline
upper bound schedule ——— <
[P & 120 S 20
& 400 T w‘ a d e 5
g 2 100 3
< 300 £ T 15
I £ 80 2
i] H (\1
200 S 60 z 10
— 40 5
100 5
20
0 0 0
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
media time (s). media time (s)) media time (s) .
(a) rate vs. time (b) schedule vs. time (c) buffer vs. time

Figure 4.15: Constant bandwidth over TCP.

fair share bw —— 0 buffer duration
1000 arrival rate target from deadline
coding rate 25 ctrl target from deadline
upper bound from deadline
800 /
20
iy

15 +

rate (Kbps)

600 | Ffrﬁ —
400 £/ W 4 10+
200 - % 1 5t ¢

client buffer duration (s)

0 0

0O 20 40 60 80 100 120 140 160 180 0O 20 40 60 80 100 120 140 160 180

media time (s) media time (s)
(a) rate vs. time (b) buffer vs. time

Figure 4.16: Variable bandwidth over TCP.

coding rate catches up smoothly with the arrival rate and tracks it smootspjtedluctuations in
the available bandwith. As the result of coding rate adjustments, the clidat mrvell maintained
around the logarithmic target schedule, ensuring that no frame misses agkageadline.

Figure 4.15(c) presents essentially the same information as Figure 4.b&{lHlots the
differencebetween the playback deadline and 1) the arrival schedule, 2) ther butfie upper bound
schedule, 3) the control target schedule, and 4) the logarithmic tatyedwsle, respectively. Note
that the gap between the playback deadline and the arrival scheduleclgtitdouffer duration. In
the remainder of this chapter, we present all schedules using this format.

4.5.3 Two-piece linear vs. logarithmic target schedule.

Figures 4.17 and 4.18 show results using TCP as the transport protitleahes two-piece linear
target schedule. Compared to the logarithmic target schedule, the twolipemetarget schedule
holds the initial lower coding rate for a longer period (thus sacrificing magdity) in the startup
phase, so that the client buffer can build up more quickly. After the statiape, there is no further
need to sacrifice quality to maintain the client buffer level. In contrast, with tharidhmic target

68

30

600 - ‘ ‘ ‘ ‘ Tair share bw —— |1 ‘ ‘ ‘ ‘ buffer duration ——
arrival rate target from deadline ——
500 | coding rate . 25 ¢ ctrl target from deadline ——
w upper bound from deadline ——
c
—~ 400 ﬂ i yh A i S 20+t
(%) ©
2 A
4 ’_‘ L © L i
< 1 -~ 15
: : A
2 £ i
© > \
200 | | g 10 b - M /\\]
Q
S
100 t | 51
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
media time (s) media time (s)
(a) rate vs. time (b) buffer vs. time

Figure 4.17: Constant bandwidth over TCP with the two-piece linear tachetsile.

30

fair share bw —— ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ buffer duration ——
1000 r arrival rate 1 target from deadline ——
coding rate __ 25¢ ctrl target from deadline ——
O upper bound from deadline ———
800) S o0t 1
n F k
) 600 1 3
3 D 15t 1
c
KL 5 W W
o
200 | 5| \N\/ /v |
L L L L L L L L O L
0 20 40 60 80 100 120 140 160 180 0 20 40 80 100 120 140 160 180
media time (s) med|a time (s)
(a) rate vs. time (b) buffer vs. time

Figure 4.18: Variable bandwidth over TCP with the two-piece linear tardetdide.

schedule, there is some sacrifice in quality over the entire streaming sed#iongh the sacrifice
diminishes gradually as the slope of the schedule approaches a constant.

It is clear that both target schedules work well under either constawivieth or variable
bandwidth situations. The choice, which reflects a balance between qualityudfer level in the
startup phase as well as asymptotically, can be deferred to particularsdjgplsc

4.5.4 Controller Performance Tuning
Tuning o

The performance figures show significant deviation of the buffer tppemubound from the control
target, which is especially obvious in the variable bandwidth case. It is tl@arour controller
design rationale that we can reduce this deviation by decreasing\vhkie. A smaller value of
value implies a relative larger penalty on the deviation term in the cost funatibthas forces the
upper bound to track the target more closely. This, however, happ#mes@ost of sacrificing coding

69

30

600 ‘ ‘ ‘ ‘ Tair share bw —— | buffer duration
arrival rate target from deadline
500 - coding rate _. 25 ¢ ctrl target from deadline
w upper bound from deadline
c
1 S 20
—~ 400 A JDM Al s o — g =
0 I <
LSS
< 300 U 5 15T
& =
© >
200 | = 10
- 3
S
100 - i 5 L
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
media time (s) media time (s)
(a) rate vs. time (b) buffer vs. time

Figure 4.19: Constant bandwidth over TGP= 500.
The upper bound tracks the control target more closely, while the codiadgsless smooth,
compared to Figure 4.15.

rate smoothness, since the corresponding term in the cost function widigbted less. Figure 4.19
shows simulation results with = 500 under the same network conditions as in Figure 4.15. Itis
clear that while the buffer tube upper bound deviates only slightly fromdh&al target, the coding
rate has undesirable oscillations.

On the other hand, a largevalue will certainly yield smoother coding rates, but might also
incur client buffer underflow since the buffer tube upper bound is @tbto deviate significantly
away from the control target. Therefore, a good choice should take into account this trade-off.
In our implementation, we choose= 4000 when the coding rate switches up ané= 2000 when
it switches down. Note that we allow a slightly more aggressive strategy intteed¢ase to further
reduce the chance of client buffer underflow. It is straightforwardeidfy that this choice ob
maintains a stable closed-loop and good gain/phase margins; this is ndecepeee.

Smoothinge(k)

The frame arrival time,, which is used to compute the controller input, is the client time at which
a frame is completely received. This time could increase significantly if painiedframe arrives in
retransmitted packets. When the controller is fed with), which is a deviation computed from the
arrival time, the controller may misinterpret the increase and may geneliatosy output over
time. Note that this variation in arrival time is different from the variation in traission rate and
is not specifically addressed in our mathematical model. Thus, we needitior@al mechanism to
deal with it.

A straightforward approach is to apply our exponential averaging meathaedk), which
will certainly smooth out spiky values of the deviation and let the controllectrepon the long

70
time trend. Le€(n) be a smoothed sequence input to the controller insteathgf specifically

—« an 1—e ¢«

ie_ _
6(n—1)+m

é(n) = T e(n). (4.60)

We chooser = 1/f (the frame rate) to focus on history values in the last second, which will also
allow é(n) to follow the trend promptly when a significant change in bandwidth occutsesults
reported in this section use this mechanism.

4.5.5 Comparison with Benchmark Algorithm

As a benchmark, we compare our buffer management algorithm to the wimglalgorithm in [60]
(which is part of the rate-distortion optimized sender-driven streamingitiigotherein). In the
benchmark algorithm, the server maintains a sending window, which contaimartge of frames
that are potentially in the client buffer. The sending window slides forw@dimic the playback
(consumption) of frames at the client. At each transmission opportunityetites selects from the
window a data unit that most decreases the distortion at the client (pemitetsbit). The sliding
window looks ahead based on a logarithmic function (similar to the logarithmicttachpedule
herein), which starts small and grows slowly over time. Hence, the clieriiaanlow startup delay
and can gradually increase its buffer over time.

Although conceptually simple and sound, the benchmark algorithm has twavdigages.
First, it does not send out data units in the order in which they appear in ttia file (i.e., decoding
order). This demands resources (e.g., caching large segments dhdatany be incompatible with
high performance streaming. Second and more importantly, until the windowies large enough
to accommodate constant quality streaming (about 25 seconds for typicedshdiie benchmark
algorithm demands, essentially, constant bit rate streaming. This is betbeudaration of the
client buffer is determined by the logarithmic function. In contrast, in ourrétlym, only a portion
of the client buffer duration (namely the safety zone between the tardg¢harplayback deadline)
is determined by the logarithmic function. The remainder of the client buffextidun is determined
by the leaky bucket state when processing the video content.

Figure 4.20 shows the buffer tube containing the coding schedule forem \&dquence
consisting ofAkiyo, StefanandForeman(10 s each) at an average coding rate of 500 Kbps. Note
thatAkiyorequires relatively few bits per second of media time, Stefarrequires relatively more
bits per second of media time, to achieve quality simildfdeeman Thus if the three subsequences
are all coded with roughly the same number of bits per second of media&kiy@will have higher
quality, andStefarwill have lower quality, relative té-oreman

Figures 4.21 shows the PSNR results after streaming with a constant b&amdii@0 Kbps
over TCP. Our optimal control algorithm with either target schedule is muclorapin terms of
PSNR compared to the benchmark algorithm. Note that even with optimal cone&®@INR value
shows a repetitive pattern over the entire session, instead of a coredtamt Vhis happens because

71

2000

buf tube upper bound
1750 frame schedule
buf tube lower bound

1500
1250
1000

750

schedule (KByte)

500
250

0 5 10 15 20 25 30 35
media time (s)

Figure 4.20: Coding schedule of a mixed video sequence (Akiyo, StathR@eman) at an average
coding rate of 500 Kbps.

55 PSNR —— 55 PSNR —— 55 PSNR ——

50 50 50

45 45 45
40 40 40
35 35 35

30 30 30

PSNR
PSNR
PSNR

25 25 25

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
media time media time (s) media time (s)

(s)
(a) benchmark algorithm (b) optimal control algorithm with lode) optimal control algorithm with lin-
arithmic target ear target

Figure 4.21: PSNR with constant bandwidth (400 Kbps) over TCP.

the scalable codec we use in the experiments is a bit plane codec. Thé&tédemne bit plane
difference (about 6 dB in PSNR) between frames of the same coding rate.

4.5.6 Comparison with Constant Bit Rate Algorithm

The CBR algorithm is a simple rate control mechanism that takes advantage abittty of to
truncate an FGS encoded frame at any point. Thus it is possible to corgrotén by sending
the media data in real time, but truncating each frame to match to available transmésio If
the transmission rate is constant, this yields a constant number of bits per fildmaealgorithm
is simple and effective in the sense that it successfully avoids any riskoaffering by matching
the instantaneous coding rate to the transmission rate. However, withowg tatdnaccount the
variable bit rate nature of constant quality coding, this algorithm results mdpiglity for smooth
content (which is easy to encode), and low quality for high-action cofdrith is hard to encode).
The quality oscillation is significant over constant bandwidth channelsoaasim Figure 4.22. The
experimental settings for these figures are the same as for Figures 4.21.

72

55 PSNR —— 55 PSNR ——— 55 PSNR ———
50 50 50
45 45 45
o o o
5 40 & 40 & 40
o o o
30 30 30
25 25 25
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
media time (s) .) media time (s) .)) media time (s) .)
(a) CBR algorithm (b) optimal control algorithm with (o§j- optimal control algorithm with
arithmic target straight target

Figure 4.22: PSNR with constant bandwidth (400 Kbps) over TCP.

55

ORC (linear tgt) ——
ORC (log tgt) ——
benchmark ——
CBR —=—

50

45 |

PSNR (dB)

40

35

30

150 300 450 600 750 900
bandwidth (Kbps)

Figure 4.23: Rate-Distortion comparison.

4.5.7 Rate-Distortion Comparison

To compare the rate-distortion performance of all aforementioned algorigxpsriments over a
wide range of available bandwidth (150-900 Kbps) are carried out Eggeriment sets a constant
available bandwidth for the streaming session and TCP protocol is usedl &periments. The
average distortion in terms of PSNR over each session is computed on theicleeand plotted in
Figure 4.23. Note that frames over the first 40 s (media time) are excluoadliie average distor-
tion computation. These frames correspond roughly to the time period (8Bauin client time)
when the client buffer is built up by streaming at lower coding rates thanvdiable bandwidth.
The quality sacrifice during the initial period will be easily amortized over siieg sessions of rea-
sonable length and it is appropriate not to be considered in this rate-distoaimoparison (where
each session is just 3 minutes long).

From the reported results, we can see that the optimal coding rate cogidttan has
better rate-distortion performance than the benchmark and the CBR algoritires the wide
range of bandwidth, the optimal coding rate control algorithm yields ab@udR PSNR gain over
the benchmark algorithm. We can also see that, in general, the linear tangdtbx has slightly

73
better performance than the logarithmic target schedule. This is undeabtargince the quality
sacrifice happens only during the initial period for the linear target sdbednhile it spreads over
the entire streaming session for the logarithmic target schedule. The itbastime CBR algorithm
has worse performance than the benchmark algorithm is also clear. TRealgBrithm can be
regarded as an extreme case of the benchmark algorithm, where thegseimtiow maintained on
the server side contains only one frame data at any time. Hence, the limited atitiggaenchmark
algorithm to smooth quality is further reduced in this case.

74

Chapter 5

Optimal Coding Rate Control for Multi
Bit Rate Streaming

Multiple bit rate (MBR) streaming is a network adaptive technique that is widsdg in commercial
streaming media systems (e.g. Windows Media 9 Series [51]). In MBR streamingntrast to
scalable streaming, the content is encoded into several (at most 5{F@immt streams at different
coding rates. Often, each stream is optimized for a common type of netwanlection (e.g., dial-
up, DSL, cable). During an MBR streaming session, the proper codiagsrdynamically selected
based on the available network bandwidth, with the goal of achieving the maxpussible quality
under the condition of uninterrupted playback. It is easy to see that MiBRmsing is analogous to
scalable streaming. Indeed MBR streaming can be viewed as a specialf casdable streaming
with a limited number of coding rates available. Hence, our optimal controloagprshould be
applicable to this case.

There are, however, several differences that complicate MBR strgamirich need to be
carefully addressed. First, as just mentioned, in MBR streaming theralgra tmited number of
coding rates available. This coarse quantization of the desired codingtra@uces a significant
nonlinearity into the closed loop system. In fact, the large gaps betweendhatde coding rates
introduce oscillations. For example, if two neighboring coding rates stradciastant arrival rate,
the controller will oscillate between the two coding rates in an attempt to keep theluliéer at a
target level.

Second, in MBR streaming the coding rate cannot be switched at an aylingr. In fact,
before the server can switch to a new stream, it must wait for the next p@an(e.g.,| frame) in
the new stream, which could be five or ten seconds away. Thus, the althaate may continue
for quite a while before it changes to the new coding rate. From the comsgderspective, this
long random extra delay tends to destabilize the closed-loop system.

75
Third and finally, in MBR streaming, server performance issues are ¢rifiba commercial-
grade streaming media systems that use MBR streaming do so because of thel conimata-
tional load that it imposes on the server compared to scalable streaming.fahM8R streaming
it is important to keep almost all computation and state maintenance on the clienlnsjeticu-
lar, the server will not be able to update the leaky bucket information fcin seam, as we have
proposed in the previous chapter. Instead, the client must use somenisethar estimating and
maintaining this information.

5.1 Conservative Up-Switching

In this section we discuss a technique to help stabilize the control systene@dunckersteady state
oscillations to a period of at least a minute. With this technique, rapid downfsnggcs permitted.
In fact, we reduce the value effrom 4000(2000) to 1000(500), changing the balance between re-
sponsiveness and smoothness of the coding rate in favor of rapid s\gitelsponse. However, only
conservative up-switching is permitted. Conservative up-switchingressiat spurious changes in
coding rate do not occur, and that oscillations in the coding rate have adgwency. In particular,
conservative up-switching reduces the oscillations between two adjagentdely spaced MBR
coding rates, one above the arrival rate and one below the arrieal ra

The method behind conservative up-switching is to establish a consenliativ on how
high the coding rate can be raised above the arrival rate. If the ¢aodimg rate is below the arrival
rate, and the client buffer duration begins to increase above its targéttleen the coding rate can
be switched up to a new coding rate above the arrival rate only if the ndingoate is below the
conservative limit. When the client buffer duration begins at the target, ldkneconservative limit
is equal to the arrival rate. However, as the client buffer duratioreas®s, the conservative limit
increases as well. Thus, if the current coding rate is below the araw@) and the next higher
coding rate is above the arrival rate, then it will be possible to switch up toekehigher coding
rate only after the client buffer duration has increased sufficiently $atteaonservative limit rises
above the higher coding rate. Once the coding rate is switched up to the bimliag rate, the
client buffer begins to drain since the coding rate is then above the laiaitea Eventually, when
the buffer drains back below its target level, the controller will rapidly switehcoding rate back
down to the coding rate below the arrival rate.

Given the current client buffer duration, the conservative limit is setwalae such that if
the coding rate is switched up to a new coding rate at this value, the clieet ludtild take at least
At seconds of client time to drain back to the target level. Thus, the mechangmesrihat the
period of oscillation will be at leaght seconds. In our experiments, we a¢tto be 60 seconds.

Figure 5.1 shows how we compute the conservative limit. Aef be the client buffer
duration (in media time) at the moment that the coding rate is switched upifférto »7°*. Thus
At is the number of seconds of content that will be consumed at the old caatieft’ before

76

buffer duration buffer duration
ATl AT3 > ATT

consume data consume data

of rate r.>° of rate r."®"
-
time

T, - AT, -

switch from finish data of buffer drops back

ro to r."e" rate r.o° to level AT,

Figure 5.1: Conservative rate up-switching.

content at the new coding rate begins to be consumed. (For simplicity wenaghkat all of the
content in the client buffer at the time of the switch is coded atgfe) Let Ar, be the number
of seconds of content that is consumed at the new coding té&tebefore the client buffer duration
drops to some levehrs seconds (in media time), greater than the target l&wel. The duration of
this phase is determined such that the total time since the switch is exXectly (A + Am) /v
seconds (in client time). Now, the number of bits that arrive in this time st = r““(Am, +
ATg) > (At + Arp) = 2 (vAt — AT + ATr), Of

new ro At

¢ T UAt— AT + ALy’ (5.1)

whereAtr is the target buffer duration in client time. The parame¥eércan be tuned to yield the
desired behavior. A largat means that up-switching will be more conservative, while a smaller
At means that up-switching will be more prompt. In our implementatidhis set to 60 seconds
while the targetAtr is typically about 10 seconds.

5.2 Buffer Tube Upper Bound Estimation

In Section 4.4.4 we specified that the server sends three values to thattiembeginning of each
change in coding rate: the new coding raté”, the current gap to the upper bougf (n), and
the control target shif\g(n — 1) = ¢g"*%(n — 1) — g°"*(n — 1). The server computes the latter two
values by running a leaky bucket simulator for each coding rate. The catinues to updatg(n)

for the new coding rate by running its own leaky bucket simulator for theculing rate. That is,
beginning with the initial conditiorF¢(n) = B — b(n) — g"*(n), for each successive frame the
client computes

B¢(n) = F°n)+bn) (5.2)
F¢(n+1) = max{0,B(n)—7./f(n)}, (5.3)

77

where
1

fn) = T(n+1) —7(n)

is the instantaneous frame rate, as in (4.2), (4.3), and (4.4). From thidightcan compute

(5.4)

g(n) = B — B*(n) (55)

for each frame.

However, if the server is unable to simulate the leaky buckets and cammby'se’(n) to
the client, then the client must estimate this information for itself. In this case wewraend that
the client estimateg”"<*(n) as an upper bound such &&*(n) = B — b(n) > ¢"*(n). Then,
beginning with initial conditionf¢(n) = B — b(n) — §"¢*(n) (which equals 0 in this case), for
each successive frame the client computes

B¢(n) = F°(n)+b(n) (5.6)
Fe(n+1) = max{0,B%(n) —7./f(n)}, (5.7)

as well as
g(n) = B— B%(n). (5.8)

It is easy to see by induction that(n) < F¢(n), B¢(n) < B%(n), andj(n) > g(n). Moreover,
these bounds each become tighteoby) = 7./ f(n) — B¢(n) whenevew(n) > 0, i.e., whenever
F¢(n+1)isclippedto 0in (5.7). In fact, given enough time they may eventually becomte tigh

Note that whenever the bounds tightendiy,) > 0, the control target must be shifted by
Ag(n)/Tq, whereAg(n) = —d(n). Furthermore, whenever is the first frame of a new coding
rate, the control target must be shifted Ay (n) /7., whereAg(n) = §™%(n) — §°'¢(n). Here,
§°4(n) can be determined by running (5.6), (5.7), and (5.8) for one extra stepely ifn is the
first frame of the new coding rate,

Fe(n) = max{0,B%(n—1)—7%/f(n—1)} (5.9)
Bé(n) = F°(n)+b(n) (5.10)
°%(n) = B-— B%n). (5.11)

Itis easy to see that if*“(n) = B — b(n), thenAg(n) = F*(n) as computed in (5.9).
We may also use fo§"“*(n) any better bound op™*(n). Better bounds are the subject
of future study.

78
5.3 Virtual Stream

In MBR streaming, video and audio data are usually encoded separatklgemerate multiple
streams gubstreamghereafter), respectively. Various combinations of video and audistiseams
lead to more choices of aggregate bit rates (thus, quality levels). On thehathé, this freedom
of choice provides a mechanism to balance the preference between #wearid audio quality.
For example, if video quality is more important, then the control mechanism would &djust
audio substreams before video substreams in the change of availablgidthndVice versa, if
audio quality is more preferable, then it is possible to keep a high bit rate aulgtream and only
change video substreams to adapt to network dynamics.

Although our optimal coding rate control method is derived based on a sitrgkem model,
it can be easily extended to accommodate this video and audio substream awonbiy intro-
ducing the concept ofirtual stream A virtual stream is a combination of a video and an audio
substream (possibly only single video/audio substream). And the ratetorgthod updates the
status of a virtual stream and makes switching decisions among virtual streams

Next, we show that the leaky buckdB(F¢, R) of a virtual stream can be easily derived
from the composing video substrears,(F;;, R,) and audio substreanB(, F¢, R,). We know
that the average coding rate is the largest bit rate such that the enedtigrviall not run dry,
therefore,B¢(n) — 7./ f(n) in (5.2) is always non-negative féy = R, andr. = R,. Thus,

FE(n+1) = BS(n) — Ro/ fuln) > 0 (5.12)
Fi(n+1) = Bg(n) — Ra/fa(n) > 0, (5.13)

Set the virtual stream leaky bucketBs= B, + B,, F* = F + F¢ andR = R, + R,. Itis easy

to show the following by induction (even when the video and audio substneamdifferent frame
rates):

F¢(n+1)=B°n)—R/f(n) > 0. (5.14)
Therefore, B, F¢, R) is a valid leaky bucket for the virtual stream, although it is not necessarily
the tightest one corresponding to the coding rfate
5.4 Performance Results

In this section, we present experimental results of our rate control wiiBR stream set under
two sets of bandwidth conditions, both of which cause the client buffer teiflow in the the

Windows Media 9 system. The bandwidth conditions are summarized in Tablansl the results
are shown in Figures 5.2 and 5.3.

79

Table 5.1: Bandwidth conditions with and without initial transmission rate burst
without initial T
with initial burst
burst
0-5s 500 Kbps 2 Mbps
5-25s 500 Kbps 1 Mbps

25-70s 400 Kbps 400 Kbps

70-130s 286 Kbps 286 Kbps

130-190 s 200 Kbps 200 Kbps

190-220's 286 Kbps 286 Kbps

220-550s 400 Kbps 400 Kbps
n ‘ ‘ ‘ | 35 |
\] [l o 30
A .
g % 15t
E 10 t

‘ ‘ ‘ coding‘rate : ‘ ‘ ‘ pufferdurgtion
0 0 100 200 300 400 500 0 0 100 200 300 400 500
media time (s) media time (s)
(a) rate vs. time (b) buffer vs. time

Figure 5.2: TCP variable bandwidth experiment (without initial transmissitnarst).

We then study the performance of our rate control under adversamprieenvironments.
In particular, we are interested in networks with severe data loss and Tohg R

5.4.1 Performance Impact of Data Loss

Data loss is recovered by retransmission in all our experiments. When fia@étel is used, re-
transmission is automatically taken care of by the transport protocol itselen\WRRC protocol
is used, a NAK-based retransmission module is added to recover dat®los$o retransmission,
complete reception of frames might no longer in order although the serligerdethem in se-
guence. Out-of-order frames would confuse the controller and trusimply ignored by the rate
control algorithm. It is, however, important to investigate the impact of omidséones on the rate
control performance. On the other hand, data loss also has direct impacinsport protocols,
which usually include a mechanism to adapt to packet loss. The changesparalayer (in turn
transmission rate) will again affect the rate control performance.

Therefore, it is beneficial to design experiments such that the aboveattar$ could be
isolated. Indeed, we first simulate data loss at the client side after packetscaived from the
transport layer. Thigpplication data losss transparent to transport layer and will hardly affect the

80

2000 351
@ ~ 301
S 1000 | L
1% c
o S 25+
2 g
S 400 | 3 20}
[%2) —
& £
< 200 3 B
Q -
s 3 10}
100 fair share bw —— | ©
arrival rate
coding rate Sr
- - . . . ‘ buffer duration
0 100 200 300 400 500 0 - - T : :
media time (s) 0 100 200 300 . 400 500
(a) rate vs. time (b) buffer vs. time

Figure 5.3: TCP variable bandwidth experiment (with initial transmission rat&)bu

500 — | A 500
400 /\V 400
7 7 Ml VY 7
g g v v s
X 4 300 X 300
2 2 2
o © — ©
S € L0 = 200
100 fair share bw —— 100 fair share bw —— 100 fair share bw ——
arrival rate arrival rate arrival rate
coding rate coding rate coding rate
0 [¢] [
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
media time (s) . . media time (s) media time (s)
(a) no data loss (b) application data los${ loss rate) (c) network data loss5(s loss rate)

Figure 5.4: Performance Impact of Data Loss (over TFRC protocol)

transmission rate. Next, we simulate data loss inside the network lag®vdrk data loss which

will affect the transmission rate. The performance impact of data lossiescolear when the loss
rate is increased t8%, as in Figure 5.4. By comparing Figure 5.4(b) to 5.4(a), we can see ttat da
loss doeshot affect the rate controller a lot even at high data loss. However, thalbuapact of
data loss is still significant as in Figure 5.4(c), where the fluctuation of tdengaate occurs as
the transmission rate oscillates severely. Hence, the rate control algohthuid e applicable in
network environments with severe data loss (e.g. wireless network), ifaheport protocol could
achieve stable transmission rate.

5.4.2 Performance Impact of RTT

The control interval is chosen to le (virtual frame ratef = 1) and sufficient larger than RTTs
in normal streaming sessions. Hence, our rate control modelrdudsgmve to explicitly consider
network delay, as explained in details in the previous chapter. It is alstablesto investigate
experimentally the performance impact of various RTT values. From tlitses Figure 5.5, we
can see that doubling RTT fro&9ms to 160ms and ever320ms doesnothave much impact on the
coding rate control. And the coding rate differences over various REWarks happen mainly due

81

500

500 W m ’, 500
400 £ 400

Y ~ i
IRERSTAT

200 200

400

300

rate (Kbps)
rate (Kbps)
rate (Kbps)

200 |

100 fair share bw —— 100 fair share bw —— 100 fair share bw ——
arrival rate arrival rate arrival rate
coding rate coding rate coding rate
0 0 0

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

media time (s) media time (s) media time (s)

(@) RTT =80ms (b) RTT = 160ms (c) RTT =320ms

Figure 5.5: Performance Impact of RTT (over TFRC protocol)

to the change of transmission rate pattern. Note that buffer status figuoeshals no underflow
and are not duplicated here.

5.5 Related Work

Hsu, Ortega and Reibman [5] address the problem of joint selection ofesamd channel rates
(which are notions analogous to coding and transmission rates in this gHap¥BR video. They
propose a rate-distortion optimization solution that maximizes receiving quabjgauto end-to-
end delay guarantees. Luna, Kondi and Katsaggelos [6] pursudrisiah further by introducing
network cost as an optimization objective and balancing the trade-off betwser satisfaction
and network cost. Both approaches assume networks that offer @pSrswhile using various
policing mechanisms (such as a leaky bucket model) to constrain netwdit tfdfe algorithms in
these papers can be modified to address the problem, which we deal withchdbigr, where the
channel rate is completely determined by network conditions and not stibjelsbice. However,
a drawback of these algorithms compared to our optimal control mechanisrat ihéy require
complete knowledge of channel ratepriori, which makes them less practical for streaming media
applications, where dynamic rate adjustment is required on the fly. Matgbese algorithms have
higher complexity, even with fast approximation variations [7]. The algoritareggood, however,
for determining performance bounds in offline analysis.

With a prior knowledge of the network bandwidth, Nelakuditi, Harinath, Kusmierek and
Zhang [8] design a bidirectional scan algorithm to optimize the perceivezb\gdality, measured
by a set of smoothness metrics. Their work uses layered video and simatifigsis by assuming
that each layer is of CBR. The recent work of Kim and Ammar [9] develdpag this direction
and proposes a more sophisticated algorithm targeting optimal quality adatatddREG-4 FGS
VBR video. Both work also provide online heuristics, when the availableWwatth is not known in
advance. These online heuristics appeal to have reasonable gémdaerce for limited scalability
(one base layer and two enhancement layers in both work), althoughat @ear how well they
will work with a rich set of available bit rates (e.g. 50 streams in our casa)ileé8ly, it might be

82
difficult as well to extend the dynamic bandwidth allocation algorithm propbse8aparilla and
Ross [10] beyond a few but yet limited bit rates.

To our knowledge, the most closely related contemporaneous work isythlatGuetos and
Ross [11], which also decouples the transmission rate and the codingltag.assume that the
transmission rate is determined by the network transport protocol (TCPRCY, which is the same
assumption that we make in this chapter. They develop a heuristic real timétatgéor adaptive
coding rate control and compare its performance to an optimal offline codiagontrol policy if
the transmission rate is given prior to streaming. Our work differs fromgheitwo ways. One
is that our rate control algorithm is optimal in a control theoretic sense, iiti@ddo being a low
complexity real time algorithm. The other is that we take into account the variatianeous bit
rate of the media coding and thereby further improve and stabilize the iregevality.

The work of Rejaie, Handley and Estrin [12] proposes a scheme fosrtrigimg layered
video in the context of unicast congestion control, which basically incltdlesnechanisms. One
mechanism is a coarse-grained mechanism for adding and dropping (@panging the overall
coding rate and quality). The other is a fine-grained interlayer bandwiidttetion mechanism to
manage the receiver buffer (not changing the overall coding rateality). A potential issue with
this approach is that it changes the coding rate by adding or droppingsimably coarse) layer
at a time. If the layers are fine-grained, as in the case of FGS coded ttinextiaadding or dropping
one (fine-grained) layer at a time typically cannot provide a prompt dnobignge in coding rate.
Moreover, since the adding and dropping mechanism is rather empiricalgittganism may simply
not be suitable for FGS media.

The work of Q. Zhang, Zhu and Y-Q. Zhang [13] proposes a resoallocation scheme to
adapt the coding rate to estimated network bandwidth. The novelty of theioagpis that they
consider minimizing the distortion (or equivalently maximizing the quality) of all apgibnis, such
as file-transfers and web browsing in addition to audio/video streamingettwtheir optimization
process does not include the smoothness of individual streams and naighiblpotential quality
fluctuations. In our work, we explicitly take into account the smoothnessddthrage coding rate
over consecutive frames in our optimal controller, which yields a highenzore stable quality as
network conditions change.

83

Chapter 6

Conclusions

We conclude the thesis work with a summary of our contributions and an outliniice directions.

6.1 Summary

This thesis discusses several schemes for efficient and effectdarsitrg media delivery, by iden-
tifying and addressing some key problems in various types of streaming npgdieadions.

We study using MDS array codes as efficient FEC schemes for streamifig oedivery
with strong delay constraints. In particular, we propose the STAR codeasel scheme for triple
erasure recovery. The geometric property of the code constructida teaan efficient decoding
algorithm. And the lower complexity of this scheme makes it attractive for manycagipns, such
as streaming of live media, surveillance content, etc.

We also study using MDS array codes as practical FEC schemes at abititeparticular,
we propose the XEOD as an efficient algorithm for bit level decodinge@BWENODD code. Our
analysis shows significant throughput benefits and energy savinbsaictheme, compared to the
widely adopted RS code. The XEOD also achieves comparable loss regmréormance to the
RS code, especially when data loss patterns are bursty.

For streaming media on demand, we describe the ORC scheme for client rbaffiege-
ment. Our approach is the first application of optimal control theory in thiblpro. We also
explicitly incorporate the leaky bucket concept to maintain smooth usergieneuality. Further,
the ORC scheme is extended to MBR streaming, which is directly applicable to g»sgstems.

6.2 Future Directions

Throughout the thesis work, we have extensively studied using My aodes as FEC schemes
for streaming media delivery, treating either columns or symbols inside colusndata packets.
We have shown that both schemes can be applicable to certain types ofisgesgpplications.

84

Compared to codes based on finite field operations, the benefit of thesaes mainly attributes to
the efficiency of the basic operation — XOR sum. However, it also becoleastbat both schemes
have their own limitations. Array codes tend to have limited block length whenaisedumn level.
To make array codes more flexible and applicable, we would like to continueetoasray codes
with larger block length while maintaining the MDS property. On the other hahenwit is used at
a symbol level, the decoding performance of array codes deviatestiasa of MDS codes. Along
this direction, the class of fountain codes performs fairly well in terms obdieg performance.
Fountain codes are also XOR-based and have efficient decodingtatgarHowever, they usually
require very large block lengths and are thus not directly applicable tansing applications. To
close the gap, we would like to continue investigating XOR-based schemé&s wduld provide
flexible choices of coding parameters while achieving close to optimal codirigrmance.

The advancement of peer-to-peer technologies and the expansi@p afewvorks provide
huge platforms to store and disseminate streaming media content. These sedvendften self-
organized and have rather good adaptivity, although their scales aemanay much smaller than
the Internet. Recent research has suggested revisiting Interneefiovations as distributed control
problems and new findings along that direction are quite encouragingindotnis thesis work,
we also realized the effectiveness of control theory knowledge awdthwelps us to understand
and solve problems from that perspective. We would like to exploit the simikitween the
streaming media delivery in P2P networks and the flow regulations in the éhteklso, we would
like to investigate the possibilities of addressing the P2P streaming problem bingtdistributed
control approaches. Along this direction, some well developed knowl°n other disciplines
might also be worth exploiting, such as game theoretic approach.

As a double-edged sword, the overwhelmingly popularity of P2P netwaighkt, on the
other hand, jeopardize the accessibility of streaming media content, whitthbmsimply cut back
by content providers due to the lack of copyright protection. We belieathar very important
direction of streaming media researciDigital Rights ManagemernDRM) related technologies,
which ensure media content protection through the entire session of stgeseniice.

85

References

[1] M. Claypool and J. Riedl, “End-to-end quality in multimedia applications,Hendbook on
Multimedia Computingchapter 40. CRC Press, Boca Raton, Florida, 1999.

[2] Y. Wang and Q. Zhu, “Error control and concealment for videmomunication: A review,” in
Proceedings of the IEEBViay 1998, vol. 86, pp. 974-997.

[3] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fleldsurnal of SIAM
vol. 8, no. 10, pp. 300-304, 1960.

[4] F. J. MacWilliams and N. J. A. Sloan&he Theory of Error Correcting Codeblorth-Holland,
Amsterdam, 1977.

[5] C.-Y. Hsu, A. Ortega, and A. Reibman, “Joint selection of sourat @rannel rate for VBR
video transmission under ATM policing constraints|EEE Journal on Selected Areas in
Communicationsvol. 15, no. 5, pp. 1016-1028, Aug. 1997.

[6] C. E. Luna, L. P. Kondi, and A. K. Katsaggelos, “Maximizing user utilityvideo streaming
applications,” IEEE Trans. Circuits and Systems for Video Technalagy. 13, no. 2, pp.
141-148, Feb. 2003.

[7] A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal trellis-baseddyeti compression and
fast approximation,1IEEE Trans. Image Processingol. 3, pp. 26—40, Jan. 1994,

[8] Srihari Nelakuditi, Raja R. Harinath, Ewa Kusmierek, and Zhi-Li ZgpatProviding smoother

quality layered video stream,” iRroc. Int'l Workshop on Network and Operating Systems

Support for Digital Audio and Video (NOSSDA®@hapel Hill, NC, June 2000.

[9] Taehyun Kim and Mostafa H. Ammar, “Optimal quality adaptation for MPEne-grained
scalable video,” ifProc. Conf. Computer Communications (INFOCQI8an Francisco, CA,
Apr. 2003.

[10] Despina Saparilla and Keith W. Ross, “Optimal streaming of layeredyida Proc. Conf.
Computer Communications (INFOCOMl-Aviv, Israel, Mar. 2000.

86
[11] P. de Cuetos and K. W. Ross, “Adaptive rate control for streamstioged fine-grained scalable
video,” in Proc. Int'l Workshop on Network and Operating Systems Supportifgitdd Audio
and Video (NOSSDAVMiami Beach, FL, May 2002.

[12] R. Rejaie, M. Handley, and D. Estrin, “Layered quality adaptatianifieernet streaming
video,” IEEE J. Selected Areas in Communicatiousl. 18, no. 12, pp. 2530-2543, Dec.
2000.

[13] Q. Zhang, Y.-Q. Zhang, and W. Zhu, “Resource allocation for multiimstreaming over the
Internet,” IEEE Trans. Multimediavol. 3, no. 3, pp. 339-355, Sept. 2001.

[14] M. Blaum, P.G. Farrell, and H.C.A. van Tilborgdrray Codes Chapter 22 in Handbook of
Coding Theory. Elsevier Science B.V., 1998.

[15] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efint scheme for tolerating
double disk failures in RAID architectureslEEE Trans. Information Theoryol. 44, no. 2,
pp. 192-202, Feb. 1995.

[16] Chih-Shing Tau and Tzone-1 Wang, “Efficient parity placemeihiesges for tolerating triple
disk failures in RAID architectures,” iRroceedings of thel7 th International Conference on
Advanced Information Networking and Applications (AINA,08)an, China, mar 2003.

[17] Chong-Won Park and Jin-Won Park, “A multiple disk failure recgv&heme in RAID sys-
tems,” Journal of Systems Architectyml. 50, pp. 169-175, 2004.

[18] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with indegent parity symbols,”
IEEE Trans. Information Theoryol. 42, no. 2, pp. 529-542, Mar. 1996.

[19] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy, “TheE ENODD code and its gener-
alization,” inHigh Performance Mass Storage and Parallel J/jap. 187-208. John Wiley &
Sons, INC., 2002.

[20] L. Xu, J. Bruck, and D. Wagner, “Low density MDS codes anctdas of complete graphs,”
IEEE Trans. Information Theoryol. 45, no. 6, pp. 1817-1826, Sept. 1999.

[21] L. Xu and J. Bruck, “X-code: Mds array codes with optimal eringd IEEE Trans. Infor-
mation Theoryvol. 45, no. 1, pp. 272-276, Jan. 1999.

[22] Nam-Kyu Lee, Sung-Bong Yang, and Kyoung-Woo Lee, “Effitiparity placement schemes
for tolerating up to two disk failures in disk arraysjburnal of Systems Architectyreol. 46,
pp. 1383-1402, 2000.

[23] M. Blaum and R. M. Roth, “New array codes for multiple phased tcosrection,” IEEE
Trans. Information Theoryol. 39, no. 1, pp. 6677, Jan. 1993.

87
[24] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. &erman, “An XOR-
based erasure-resilient coding scheme,” Technical Report N®5FB48, ICSI, Berkeley,
California, Aug. 1995.

[25] J. S. Plank, “A tutorial on Reed-Solomon coding for fault-toleraimcRAID-like systems,”
Software: Practice and Experienceol. 27, no. 9, pp. 995-1012, Jan. 1999.

[26] L. Rizzo, “Sources for an erasure code based on Reed-Salawding with vandermonde
matrices,” http://info.iet.unipi.ittluigi/vdm98/vdm980702.tgz.

[27] L. Rizzo, “Effective erasure codes for reliable computer commatiga protocols,” ACM
Computer Communication Revigpr. 1997.

[28] L. Rizzo and L. Vicisano, “A reliable multicast data distribution protocaséd on software
fec techniques (rmdp),” iRroc. of the Fourth IEEE HPCS’97 Workshdphalkidiki, Greece,
June 1997, IEEE.

[29] U. Horn and B. Girod, “Scalable video transmission for the Intetn€@omputer Networks
and ISDN Systemsol. 29, no. 15, pp. 1833-1842, Nov. 1997.

[30] B. Girod, K. Stuhlmuller, M. Link, and U. Horn, “Packet loss resiliémernet video stream-
ing,” in Proc. Visual Communications and Image Process®an Jose, CA, Jan. 1999, SPIE.

[31] R. Puri and K. Ramchandran, “Multiple description source codimguph forward error
correction codes,” ifProc. Asilomar Conf. Signals, Systems, and Compufesomar, CA,
Oct. 1999, IEEE, vol. 1, pp. 342-346.

[32] P. A.Chou, A. E. Mohr, A. Wang, and S. Mehrotra, “FEC andy$0-ARQ for receiver-driven
layered multicast of audio and video,” Rroc. Data Compression Conferen@nowbird, UT,
Mar. 2000, IEEE Computer Society, pp. 440-449.

[33] P. A. Chou, A. E. Mohr, A. Wang, and S. Mehrotra, “Error t@hfor receiver-driven layered
multicast of audio and videoJEEE Trans. Multimediavol. 3, no. 1, pp. 108-122, Mar. 2001.

[34] T. Nguyen and A. Zakhor, “Distributed video streaming with forwardor correction,” in
Proc. Int'l Packet Video Workshgpittsburg, PA, Apr. 2002.

[35] P. A. Chou, H. J. Wang, and V. N. Padmanabhan, “Layered multggdgeription coding,” in
Proc. Int’'l Packet Video Workshoplantes, France, Apr. 2003.

[36] Q. Zhang, W. Zhu, Z. Ji, and Y. Q. Zhang, “A power-optimized j@ource channel coding
for scalable video streaming over wireless channel 1S@AS-Pro¢ Sydney, Australia, may
2001.

88
[37] A. Majumdar, D. G. Sachs, I. V. Kozintsev, K. Ramchandran, l&hd/. Yeung, “Multicast
and unicast real-time video streaming over wireless LANSEE-Trans-CSV;Ivol. 12, no. 6,

pp. 524-534, jun 2002.

[38] W. Kumwilasisak, J. Kim, and C.-C. J. Kuo, “Reliable wireless videodraission via fading
channel estimation and adaptation,"WICNG Chicago, IL, Sept. 2000, IEEE.

[39] Q. Zhang, G. Wang, Z. Xiong, J. Zhou, and W. Zhu, “Errorusbscalable audio streaming
over wireless IP networksJEEE Trans. Multimediavol. 6, no. 6, pp. 897-907, Dec. 2004.

[40] M. Blaum, J. Fan, and L. Xu, “Soft decoding of several clasdesmray codes,” inSIT-Prog
Lausanne, Switzerland, June 2002.

[41] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, ffiEient erasure cor-
recting codes,1IEEE-Trans-IT vol. 47, no. 2, pp. 569-584, Feb. 2001.

[42] M. A. Shokrollahi, “Raptor codes,” iRroceedings of ISI;TJuly 2004.
[43] M. Luby, “LT codes,” inFOCS 2002Nov. 2002.

[44] John W. Byers, Michael Luby, Michael Mitzenmacher, and AsktRege, “A digital fountain
approach to reliable distribution of bulk data,” Fmoceedings of ACM SIGCOMM998, pp.
56-67.

[45] M. Guthaus, J Ringenberg, and et al. Dan Ernst, “Mibench: A,fcemmercially representa-
tive embedded benchmark suite,” IBEE 4th Annual Workshop on Workload Characteriza-
tion, Dec. 2001.

[46] “Sim-panalyzer,” http://www.eecs.umich.edylanalyzer.
[47] “Smpeg library,” http://www.lokigames.com/development/smpeg.php3.

[48] W. Stallings, Cryptography and Network Security, Principles and Practidesentice Hall, 3
edition, 2003.

[49] “Crypto++ library 5.1," http://www.eskimo.com/weidai/cryptlib.html.

[50] J. Bolot, S. Fosse-Parisis, and D. Towsley, “Adaptive FEG8asror control for interactive
audio on the Internet,” iProc. Infocom New York, NY, Mar. 1999, IEEE.

[51] W. Birney, “Intelligent streaming,” http://www.microsoft.com/windows/winekmedia/-
howto/articles/intstreaming.aspx, May 2003.

[52] M. Kalman, E. Steinbach, and B. Girod, “Adaptive media playoutdar delay video stream-
ing over error-prone channelslEEE Trans. Circuits and Systems for Video Technglofy
appear.

89
[53] G.J.Conklin, G.S. Greenbaum, K.O. Lillevold, A.F. Lippman, and Y.Aziik, “Video coding
for streaming media delivery on the InternetEEE Trans. Circuits and Systems for Video
Technologyvoal. 11, no. 3, pp. 269-281, Mar. 2001, special issue on StreanidepV

[54] T. Wiegand and G. Sullivan, “Joint video specification rec. h.264&96-10 avc,” Non-Final
Draft of Final Draft International Standard (FDIS) JVT-G050, FIU& ISO/IEC, Pattaya,
Thailand, Mar. 2003.

[55] B. G. Haskell and A. Puri andigital Video: An Introduction to MPEG-2Chapman & Hall,
New York, 1997.

[56] B.-J. Kim, Z. Xiong, , and W. A. Pearlman, “Low bit-rate scalable videaing with 3D set
partitioning in hierarchical trees (3-D SPIHT)IEEE Trans. Circuits and Systems for Video
Technologyval. 10, no. 8, pp. 1374-1387, Dec. 2000.

[57] F.Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient pr@gsive fine granularity scalable
video coding,” IEEE Trans. Circuits and Systems for Video Technglagy. 11, no. 3, pp.
301-317, Mar. 2001.

[58] J. Li, “Embedded audio coding (eac) with implicit psychoacoustic magkim Proc. Int’l
Conf. MultimediaNice, France, Dec. 2002, ACM, pp. 592—-601.

[59] P. A. Chou and Z. Miao, “Rate-distortion optimized streaming of pac&dtinedia,” Tech.
Rep. MSR-TR-2001-35, Microsoft Research, Redmond, WA, Fe®l12

[60] P. A. Chou and Z. Miao, “Rate-distortion optimized streaming of packdtinedia,” IEEE
Trans. Multimedia2001, submitted.

[61] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equationdbasagestion control for uni-
cast applications,” ifProc. Data Communication, Ann. Conf. Series (SIGCOIVB#ypckholm,
Sweden, Aug. 2000, ACM.

[62] R. Rejaie, M. Handley, and D. Estrin, “RAP: an end-to-end basedjestion control mecha-
nism for realtime streams in the Internet,” Bmoc. Conf. Computer Communications (INFO-
COM), New York, NY, Mar. 1999, IEEE, vol. 3, pp. 1337-1345.

[63] D. Bansal and H. Balakrishnan, “Binomial congestion control @lgms,” in Proc. Infocom
|IEEE, Apr. 2001.

[64] I. Rhee, V. Ozdemir, and Y. Yi, “TEAR: TCP emulation at receivetew control for mul-
timedia streaming,” Tech. Rep., Dept. of Computer Science, North Carolite \Stdversity
(NCSU), Apr. 2000.

90
[65] D. Sisalm and A. Wolisz, “LDA+ TCP-friendly adaptation: a measursthad comparison
study,” inProc. Int'l Workshop on Network and Operating Systems Support iigitd) Audio
and Video (NOSSDAVMiami Beach, FL, May 2002.

[66] J. Ribas-Corbera, P. A. Chou, and S. Regunathan, “A gknedahypothetical reference de-
coder for H.264/AVC,” IEEE Trans. Circuits and Systems for Video Technglegy 13, no.
7, July 2003.

[67] B. D. O. Anderson and J. B. Mooré&)ptimal Control: Linear Quadratic MethogsPrentice
Hall, 1990.

[68] G. Franklin, J. Powell, and M. WorkmanDigital Control of Dynamic SystemsAddison-
Wesley Longman, Inc., 3rd ed. edition, 1997.

[69] C. Huang, P. A. Chou, and A. Klemets, “Optimal coding rate conwolstalable and multi
bit rate streaming media,” Tech. Rep. MSR-TR-2005-47, MicrosofeRieh, Redmond, WA,
Apr. 2005.

[70] S. Keshav, “Packet-pair flow control,” http://www.cs.cornell.edusslear/papers.html.

[71] V. J. Ribeiro, R. H. Riedi, J. Navratil, L. Cottrell, and R. G. BaranidkathChirp: efficient
available bandwidth estimation for network paths,Piroc. Passive and Active Measurement
Workshop (PAM)La Jolla, CA, Apr. 2003.

[72] K. Fall and eds. K. Varadhan, “Thesmanual,” Tech. Rep., The VINT Project, Dec. 2003,
http://www.isi.edu/nsnam/ns/.

Degrees

Publications

91

Vita

Cheng Huang

B.Sc., Electrical Engineering, Shanghai Jiao Tong University, Jul7.199
M.Sc., Electrical Engineering, Shanghai Jiao Tong University, Jab0.20
M.Sc., Computer Science, Washington University, May 2002.

Cheng Huang and Lihao Xuptimal Broadcast Scheduling for
Random-Loss Channel$o appear) Proc. IEEE International Sym-
posium on Information Theory (ISIT 2005), Adelaide, Australia,
Sep. 2005.

Cheng Huang and Lihao Xtudy of A Practical FEC Scheme
for Wireless Data StreamindProc. IASTED Internet and Multi-
media Systems and Applications (EuroIMSA 2005), Grindelwald,
Switzerland, Feb. 2005.

Cheng Huang, Philip A. Chou and Anders Klemé>imal Cod-
ing Rate Control for Scalable Streaming MedRroc. Interna-
tional Packet Video Workshop (PV 2004), Irvine, CA, Dec. 2004.

Cheng Huang, Philip A. Chou and Anders Klemé>imal Con-
trol of Multiple Bit Rates for Streaming Medi&roc. Picture Cod-
ing Symposium (PCS 2004), San Francisco, CA, Dec. 2004.

Cheng Huang, Ramaprabhu Janakiraman and LihadOfdimal
Loss-Resilient Media Streaming using Priority Encodifgoc.
ACM International Conference on Multimedia (MM 2004), New
York, NY, Oct. 2004.

Cheng Huang and Lihao X§RC: Stable Rate Control for Stream-
ing Media Proc. IEEE Global Telecommunications Conference
(GLOBECOM 2003), San Francisco, CA, Dec. 2003.

August 2005

Short Title: Streaming Media Delivery Huang, D.Sc. 2005

	Efficient and Effective Schemes for Streaming Media Delivery
	Recommended Citation
	Efficient and Effective Schemes for Streaming Media Delivery

	tmp.1469562486.pdf.0X6Ba

	Abstract: Abstract: The rapid expansion of the Internet and the increasingly wide deployment of wireless networks provide opportunities to deliver streaming media content to users at anywhere, anytime. To ensure good user experience, it is important to battle adversary effects, such as delay, loss and jitter.

In this thesis, we first study efficient loss recovery schemes, which require pure XOR operations. In particular, we propose a novel scheme capable of recovering up to 3 packet losses, and

it has the lowest complexity among all known schemes. We also propose an efficient algorithm for array codes decoding, which achieves significant throughput gain and energy savings over conventional codes. We believe these schemes are applicable to streaming applications, especially in wireless environments.

We then study quality adaptation schemes for client buffer management. Our control-theoretic approach results in an efficient online rate control algorithm with analytically tractable performance. Extensive experimental results show that three goals are achieved: fast startup, continuous playback in the face of severe congestion, and maximal quality and smoothness over the entire streaming session. The scheme is later extended to streaming with limited quality levels, which is then directly applicable to existing systems.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: August 8, 2005
	Author: Authors: Huang, Cheng
	Title: Efficient and Effective Schemes for Streaming Media Delivery, Doctoral Dissertation, August 2005
	ReportNumber: 2005-40
	DepartmentName: Department of Computer Science & Engineering

