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The rapid expansion of the Internet and the increasingly wide deploymentof wireless net-

works provide opportunities to deliver streaming media content to users at anywhere, anytime. To

ensure good user experience, it is important to battle adversary effects, such as delay, loss and jitter.

In this thesis, we first study efficient loss recovery schemes, which require pure XOR oper-

ations. In particular, we propose a novel scheme capable of recovering up to 3 packet losses, and

it has the lowest complexity among all known schemes. We also propose an efficient algorithm

for array codes decoding, which achieves significant throughput gain and energy savings over con-

ventional codes. We believe these schemes are applicable to streaming applications, especially in

wireless environments.

We then study quality adaptation schemes for client buffer management. Our control-

theoretic approach results in an efficient online rate control algorithm with analytically tractable

performance. Extensive experimental results show that three goals areachieved: fast startup, con-

tinuous playback in the face of severe congestion, and maximal quality and smoothness over the



entire streaming session. The scheme is later extended to streaming with limited qualitylevels,

which is then directly applicable to existing systems.
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Chapter 1

Introduction

1.1 Challenges

The rapid expansion of the Internet and the increasingly wide deploymentof wireless networks

provide opportunities to serve multimedia content to users anywhere, anytime.Compression and

delivery are the two major components of streaming media applications. In this thesis, we will

focus on delivery techniques for streaming media over today’s best-effort networks, with the goal

of providing a better overall user experience for clients.

The fundamental difficulties that distinguish streaming media delivery from traditional bulk

data downloading (e.g., file transfer), stem from the real-time constraints introduced by the former.

It is now well-understood that the performance of media streaming is greatly impacted by end-to-

end transmission delays, packet loss, and congestion [1]. These adverse effects may happen due to

one or more of the following reasons:

1. Packets may get corrupted in transit, especially in wireless networks.

2. Current networks operate under best-effort policies and seldom provide guaranteedQuality-

of-Service(QoS). Competing traffic can contribute to queuing delays and packet drops in

routers, severely impacting streaming media flows.

3. Signal interference and user mobility can cause fluctuations in receptionquality on wireless

networks.

Although error concealment techniques [2] can be used to mitigate the perceived conse-

quences of these pathologies, these techniques have limited impact, and oftenthe net effect is a

degradation of the user experience. Therefore we must look beyond mere error concealment to-

wards more effective strategies.

Streaming media delivery systems are usually modeled using a client-server architecture. A

server sends out media data packets, which traverse intermediate inter-connected machines to arrive

at a client. The client stores received packets in a buffer before consuming them, and optionally
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may also use packet arrival patterns to infer the state of the network. Buffering by the client is a

very useful technique to overcome transient delay and jitter. It can also be used to buy more time in

which to request retransmission of lost packets.

Since client buffering introduces extra delay before playback, it might not be suitable for

some applications with very strong delay constraints (or strict low latency requirements), like

streaming of live events, conferencing, surveillance, etc. In these applications, the lack of client

buffering means that often retransmissions of lost packets will arrive toolate to be useful. Simi-

larly, in multicast or broadcast applications, different clients may experience different loss patterns,

increasing the overhead of retransmission-based loss recovery.

For all these applications, one technique isForward Error Correction(FEC), in which the

server sends redundantparity information along with the original information. Note that in packet

networks like the Internet, data integrity is verified through separate mechanisms like checksums,

so that corrupted packets are silently discarded upon detection. Hence,on such networks FEC

techniques are mainly used to recover from packet losses orerasures, not arbitrary corruptions or

errors. FEC permits recovery from limited packet loss without the additional latency introduced

by negative acknowledgments and retransmission of lost packets, but withthe additional cost in

network bandwidth incurred by transmitting parity information.

The efficacy of an FEC scheme depends on the extent of loss recoverypossible for a given

amount of redundant parity information, which in turn depends onexactly how the parity informa-

tion is constructed.One technique is to construct parity packets as carefully chosen linear combina-

tions of the original data packets, where the arithmetic operations on packetdata are done over afi-

nite field. A popular example is to construct the parity packets usingReed-Solomon codes[3]. Reed-

Solomon codes belong to a class of codes called Maximum Distance Separable(MDS) codes [4],

which provide optimal erasure recovery capability – loosely speaking, if such codes are used, each

additional parity packet permits the recovery of one additional lost packet. The disadvantage of

Reed-Solomon codes, and in general, codes defined over finite fields, is that on general-purpose

hardware like PCs, arithmetic operations on finite fields tend to be slower than integer arithmetic

or boolean logic. Thus FEC techniques based on these codes might not besuitable for applications

involving constrained clients– clients with low-end processors or limited battery life, like small

portable devices.

More computationally efficient schemes are desirable for these applications. Previous re-

search has suggested the use of exclusive-OR (XOR) based codes instead of finite field-based codes

to implement computationally efficient FEC schemes. The primary disadvantage of using such

codes is that XOR-based codes with the above MDS property are known only for limited values of

the code parameters (like one or two parity packets.) Conversely, XOR-based codes for generating

more parity packets do not possess the MDS property. This motivates the need for new XOR-based

MDS codes capable of efficient encoding/decoding, and also tolerating more packet erasures.
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For applications with more relaxed delay constraints, such as streaming media on demand,

client buffering can obviate the need for FEC techniques for loss recovery; simpler retransmission-

based techniques may suffice. However, to ensure continuous playback under varying network

conditions, it is important to maintain a large enough client buffer, thereby reducing the risk of

buffer underflow.

The buffer size is regulated by the rate of datainflow from the network, and the rate of data

outflowto the client’s media decoder. The inflow rate is determined by external factors like transport

protocols, flow and congestion control mechanisms, competing traffic, network signal strength, etc.

The outflow rate is determined by the quality (or bit rate) of the content. Variation in the inflow rate

impacts the ability of the client to maintain a desired buffer size at any given time. Thus, to achieve

the latter goal, it is necessary to vary the outflow rate and consequently the quality of content in

accordance with the inflow rate.

Indeed, various schemes [5–13] have been proposed to take advantage of the ability to adapt

the coding rate of media data. Qualities are adjusted on the fly during a streamingsession to man-

age the client buffer. However, these approaches either assumea priori knowledge of network

variations, making them impractical, or deal with only a few choices of qualities,limiting their

applicability to media content with finer adaptive capability. Therefore, the primary challenge is

to develop quality adaptation schemes with arbitrary granularity, which maintain client buffer level

and also achieve better quality, under severe network variations that areunknowna priori.

1.2 Contributions

Our contributions towards improving the delivery of streaming media are two-fold.

First, we study efficient FEC schemes for streaming media delivery using a special class

of error correcting codes, calledarray codes[14]. Array codes in general arrange data in a two

dimensional array and use only XOR operations for encoding and decoding. Our starting point is a

well-known MDS array code, the EVENODD code [15], which is capable of recovering up to two

packet losses in a single coded block.

Extending from the EVENODD code, we have designed a new MDS array code called

STAR. The STAR code is an MDS array code capable of tolerating three packetlosses in a single

coded block. By exploiting the geometric property of the code, we have alsodeveloped an efficient

decoding algorithm. Our analysis shows that the STAR decoding is much more computationally

efficient than comparable codes [16–19], especially when the block length is small. This makes the

STAR code especially attractive for streaming applications with strong delay constraints.

MDS array codes can achieve optimal loss recovery performance wheneach column in an

array is treated as a packet of streaming media data. However, this limits the code block length to

small values and is thus most applicable to strictly low latency streaming applications. When the

delay constraint is relatively weak, schemes with larger block lengths tend to have better recovery
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performance for a fixed coding rate. Our second contribution in the design of FEC schemes is

to proposeXEOD, an efficient scheme for bit level decoding of array codes. Both theoretical

analysis and simulation measurements show that the XEOD scheme has significant throughput gain

(and energy savings for portable devices) compared to the Reed-Solomoncode, while achieving

comparable loss recovery – especially under bursty packet loss patterns prevalent in the Internet.

In addition to packet loss, congestion and jitter are also major issues in media streaming.

Our primary contribution to overcome these issues is through new quality adaptation schemes. We

have designed a client buffer management scheme called Optimal Rate Control (ORC), in which

the problem of quality adaptation is formulated as a standard problem in linear quadratic optimal

control with the objective of maintaining a target buffer size profile. This control-theoretic approach

results in an efficient online rate control algorithm with analytically tractable performance. To our

knowledge this is the first use of optimal control theory for client buffer management. Also, we

explicitly take into consideration, using a leaky bucket model, the natural variation in content bit

rate to achieve smooth variation in user-perceived quality. To our knowledge this is also the first use

of a leaky bucket to model source coding rate constraints during client buffer management beyond

the initial startup delay. Extensive experimental results show that three goals are achieved: fast

startup, continuous playback under severe congestion, and satisfactory quality and smoothness over

the entire streaming session. Also, our algorithm complements any transport protocol, and we show

that it works effectively with both TCP and TFRC transport protocols.

We have also extended the ORC scheme toMulti Bit Rate (MBR ) streaming, where the

server is forced to choose from a limited set of rates. Compared to existing schemes in commercial

systems, our scheme demonstrates more stability and effectiveness in overcoming severe network

congestion.

1.3 Organizations

This thesis is organized as follows: in Chapter 2, we describe STAR, an MDS array code for triple

erasure recovery, and illustrate our decoding algorithm based on the geometric construction of the

STAR code. We describe the XEOD scheme in Chapter 3 and present its significant throughput

benefit and energy savings for wireless streaming applications.

We describe ORC, an optimal coding rate control scheme, in Chapter 4 and itsextension for

MBR streaming in Chapter 5. We conclude in Chapter 6 with a summary of our contributions and

an outline of future research directions.
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Chapter 2

STAR: An Efficient Scheme for Triple

Erasure Recovery

As a technique to battle data loss in streaming media delivery, FEC sends redundantparity packets

along with the original information packets. When losses occur in the network, a recovery pro-

cedure is invoked to obtain the original media data. FEC permits recovery from limited packet

losses without the additional latency introduced by negative acknowledgments and retransmission

of lost packets, but with the additional cost in network bandwidth incurredby transmitting the parity

packets.

The efficacy of an FEC scheme depends on the extent of loss recoverypossible for a given

amount of redundant parity packets, which in turn depends on exactly how the parity packets are

constructed. One technique is to construct parity packets as carefully chosen linear combinations

of the original data packets, where the arithmetic operations on packet dataare done over afinite

field. A popular example is to construct the parity packets usingReed-Solomon codes[3]. Reed-

Solomon codes belong to a class of codes, which provide optimal erasure recovery capability –

loosely speaking, if such codes are used, each additional parity packet permits the recovery of one

additional lost packet. The disadvantage of the Reed-Solomon code, andin general, codes defined

over finite fields, is that on general-purpose hardware like PCs, arithmeticoperations on finite fields

tend to be slower than integer arithmetic or boolean logic. Thus FEC techniquesbased on these

codes might not be suitable for applications involving constrained clients – clients with low-end

processors or limited battery life, like small portable devices.

More computationally efficient schemes are desirable for these applications. Previous re-

search has suggested the use of XOR-based codes instead of finite field-based codes to implement

computationally efficient FEC schemes. And in this work, we study using array codes as compu-

tationally efficient erasure recovery schemes. Array codes are a class of linear codes, where infor-

mation and parity bits are placed in a two-dimensional array rather than a one-dimensional vector.

An array code denoted bym × n corresponds to an array ofm rows andn columns ofsymbols.
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Symbols are defined over an Abelian groupG(qt) with an addition operation⊕. In particular, we

are interested in the case ofq = 2, e.g., each symbol hast binary bits and⊕ is just simple bitwise

exclusive-OR (XOR).

On the other hand, the array code can also be regarded as a one-dimensional code defined

over the Abelian groupG((qt)m), by regarding each column as a single element. Then, the min-

imum distanced of the code can also be defined overG((qt)m). Let N be the number of its

codewords, then the dimensionk of the array code can be defined ask = log(qt)mN , as for usual

one-dimensional codes. The array code can now be viewed as an(n, k, d) code overG((qt)m).

In this chapter, we consider streaming media data packets of sizemt bits each. Then, each packet

maps to one column of the array code and a packet loss is correspondingly represented as a column

erasure. If it satisfies the property thatd = n−k+1, then the code achieves the Singleton bound [4]

and is called an MDS array code. When the MDS array code is used as an FEC scheme, the original

media data can always be recovered with up ton− k packet losses. For simplicity, we will assume

symbol sizet = 1 in this thesis. However, all results hold for arbitraryt.

There exist MDS array codes. For instance, the simplest PARITY code can be regarded as

a (k + 1, k, 2) MDS array code overG(qm), if each column containsm symbols. The only parity

column is generated as the XOR sum of all otherk information (data) columns. It is clear that this

scheme can recover from arbitrarysingleerasure. MDS array codes fordoubleerasure recovery

have been proposed, such as the EVENODD [15], the B-Code [20], the X-Code [21], the DH1 and

DH2 [22], etc. All these schemes satisfyn = k + 2, d = 3 and can thus recover from arbitrary

double erasures.

Fortriple erasures, MDS array codes have also been studied. In particular, Tau and Wang [16]

propose the HDD1 and HDD2 schemes. ( [17] is an unsuccessful attemptto handle multiple era-

sures, which we do not discuss in details here.) Both schemes claim satisfying n = k + 3 and

d = 4. Their encodings are efficient, by requiring exactly or slightly more than3 XORs per sym-

bol (the total number of XORs normalized by the total number of information symbols). Note that

3 is the minimum number of XORs needed for triple parities, thus these schemes all have good

encoding performance. However, the decodings of these schemes resort to techniques essentially

similar to Gaussian eliminations to solve unknown elements in a set of linear equations and tend to

require more than9 XORs per symbol (on average). The gap between the encoding and decoding

complexity is fairly significant for these schemes. Blaumet al. [18, 19] generalize the EVENODD

and propose an MDS code for multiple erasures. The construction of the Blaum code conforms

to a special structure, which is then exploited for an efficient decoding algorithm. As a result, the

decoding complexity is reduced and asymptotically approaches3 XORs per symbol now. However,

whenk is limited, the decoding complexity of the Blaum code deviates from its asymptotic bound

fairly significantly. For example, the complexity is about5 XORs per symbol whenk = 11. The

number is even bigger with a smallerk. On the other hand, streaming applications with strong delay
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Figure 2.1: EVENODD Code Encoding

constraints tend to use small coding block lengths. Thus, the decoding complexity for small ks is

critical to these applications, and it is desirable to seek schemes that perform well in this region.

In this chapter, we describe STAR, an efficient scheme for triple erasure recovery. The

STAR code is an alternative extension of the EVENODD code and has the same encoding com-

plexity as the Blaum code. Our key contribution is to exploit the geometric property of the code

construction, which then leads to an efficient decoding algorithm. Our analysis shows that the de-

coding complexity remains at slightly more than3 XORs per symbol, even for smallks. This makes

the STAR code especially attractive for streaming applications with strong delay constraints.

2.1 EVENODD Code: Double Erasure Recovery

2.1.1 EVENODD Code and Encoding

We first briefly describe the EVENODD code [15], which was initially proposed to address disk

failures in disk array systems. Data from multiple disks form a two dimensional array, with one

disk corresponding to one column of the array. A disk failure is equivalent to a column erasure. The

EVENODD code uses two parity columns together withp information columns (wherep is a prime

number). The code ensures that all information columns are fully recoverable whenany two disks

fail. In this sense, it is an optimal 2-erasure correcting code, i.e., it is an (p + 2, p, 3) MDS code.

Besides this MDS property, the EVENODD code is computationally efficient in both encoding and

decoding, since only XOR operations are involved.

The encoding process considers a(p − 1) × (p + 2) array, where the firstp columns are

information columns and the last two parity columns. Symbolai,j (0 ≤ i ≤ p− 2, 0 ≤ j ≤ p + 1)

represents symboli in columnj. A parity symbol in columnp is computed as the XOR sum of all

information symbols in the same row. And the computation of column(p + 1) takes the following

steps. First, the array is augmented with an imaginary rowp−1, where all symbols are assignedzero

values (recall that symbols are defined overG(2)). The XOR sum of all information symbols along
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Figure 2.2: EVENODD Code Decoding

the same diagonal (indeed a diagonal with slope1) is computed and assigned to their corresponding

parity symbol, as marked by different shapes in Figure 2.1. Symbolap−1,p+1 now becomes non-zero

and is called the EVENODDadjuster. To remove this symbol from the array,adjuster complement

is performed, which adds (XOR addition) the adjuster to all symbols in columnp+1. The encoding

can be algebraically described as follows (0 ≤ i ≤ p− 2):

ai,p =

p−1
⊕

j=0

ai,j

ai,p+1 = S1 ⊕

(p−1
⊕

j=0

a〈i−j〉p,j

)

, where S1 =

p−1
⊕

j=0

a〈p−1−j〉p,j .

Here,S1 is the EVENODD adjuster and〈x〉p denotesx mod p. For more details, please refer to [15].

2.1.2 EVENODD Erasure Decoding

The EVENODD code is an optimal double erasure correcting code and anytwo column erasures in a

coded block can be fully recovered. Regarding to the locations of the erasures, [15] divides decoding

into four cases. Here, we only summarize the most common one, where neitherof the erasures is

a parity column. Note that the other three cases are special ones and can be dealt with easily. A

decoder first computes horizontal and diagonalsyndromesas the XOR sum of all available symbols

along those directions. Then astartingpoint of decoding can be found, which is guaranteed to be the

only erasure symbol in its diagonal. The decoder recovers this symbol andthen moves horizontally

to recover the symbol in the other erasure column. It then moves diagonally tothe next erasure

symbol and horizontally again. Upon completing thisZig-Zagprocess, all erasure symbols are fully

recovered. In the example shown in Figure 2.2 (p = 5), the starting point is symbola2,2 and the

decoder moves froma2,2 to a2,0, a0,2, a0,0 · · · and finally completes ata1,0.
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Figure 2.3: STAR Code Encoding

2.2 STAR Code Encoding: Geometric Description

As an extension of the EVENODD code, the STAR code consists ofp + 3 total columns, where the

first p columns contain information data and the last3 columns contain parity data. It is a systematic

code, similarly as the EVENODD code.

The STAR code encoding is also similar to the EVENODD code, where the paritycolumns

p andp + 1 are computed from the horizontal and diagonal redundancy. And the parity column

p + 2 is computed from another diagonal redundancy. This diagonal follows slope−1, as opposed

to slope1 when computing the parity columnp + 1. For simplicity, we denote this asanti-diagonal

redundancy. The procedure is depicted by Figure 2.3, where symbolap−1,p+2 in parity column

p + 2 is also anadjuster, similar to the EVENODD code. And the adjuster is removed from the

final code block by adjuster complement. Algebraically, the encoding of parity columnp + 2 can

be represented as (0 ≤ i ≤ p− 2):

ai,p+2 = S2 ⊕

(p−1
⊕

j=0

a〈i+j〉p,j

)

, where S2 =

p−1
⊕

j=0

a〈j−1〉p,j .

2.3 STAR Code Erasure Decoding

The essential part of the STAR code is the erasure decoding algorithm. Aspresented in this section,

the decoding algorithm involves pure XOR operations, which allows efficient implementation and

thus is suitable for computation/energy constrained applications. The MDS property of the STAR

code, which guarantees the recovery from arbitrary triple erasures,is explained along with the

description of the decoding algorithm. And a mathematical proof of this property will be given in a

later section.
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The STAR code decoding can be divided into two cases based on erasure patterns: 1) de-

coding without parity erasures, where all erasures are information columns; and 2) decoding with

parity erasures, where at least one erasure is a parity column. The former case is the most common

one and presents the essence of the decoding algorithm, thus it is the main focus of this section. Fur-

ther, it can be divided into two subcases: symmetric and asymmetric, based onwhether the erasure

columns are evenly spaced. The latter case, on the other hand, handles several special situations and

is consequently simpler.

2.3.1 Decoding without Parity Erasures: Asymmetric Case

We consider the recovery of triple information column erasures at positionr, s andt (0 ≤ r, s, t ≤

p−1), among the totalp+3 columns. Assumer < s < t without loss of generality and letu = s−r

andv = t− s. Thus, the asymmetric case deals with erasure patterns satisfyingu 6= v.

The decoding algorithm can be visualized with a concrete example, wherer = 0, s = 1,

t = 3 andp = 5, as shown in Figure 2.4(a). Empty columns denote erasures. And the decoding

procedure consists of the following four steps:

Recover Adjusters and Calculate Syndromes

Given the definitions of the adjustersS1 andS2, it is easy to see that they can be computed as the

XOR sums of all symbols in parity columns5, 6 and5, 7, respectively.

Then the adjusters are assigned to symbolsa4,6, a4,7 and also applied through XOR addi-

tions to all of the rest parity symbols in columns6, 7, which is to reverse the adjuster complement.

The redundancy property of the coded block states that the XOR sum of all symbols along any par-

ity direction (horizontal, diagonal and anti-diagonal) should equal tozero. Due to erasure columns,

however, the XOR sum of rest symbols is non-zero and we denote it as thesyndromefor this par-

ity direction. To be specific, syndromẽsi,j denotes the XOR sum of parity symbolai,j+p and

its corresponding non-erasure information symbols. For example,s̃0,0 = a0,5 ⊕ a0,2 ⊕ a0,4 and

s̃0,1 = a0,6⊕a3,2⊕a1,4, etc. To satisfy the parity property, the XOR sum of all erasure information

symbols along any redundancy direction needs to match the corresponding syndrome. For example,

s̃0,0 = a0,0 ⊕ a0,1 ⊕ a0,3 ands̃0,1 = a0,0 ⊕ a4,1 ⊕ a2,3, etc.

In general, this step can be summarized as: 1) adjusters recovery (j = 0, 1, 2),

Sj =

p−2
⊕

i=0

ai,p+j ,

S1 = S0 ⊕ S1 andS2 = S0 ⊕ S2; 2) reversion of adjuster complement (0 ≤ i ≤ p− 2),

ai,p+1 = ai,p+1 ⊕ S1,

ai,p+2 = ai,p+2 ⊕ S2;
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Figure 2.4: STAR Code Decoding

and 3) syndrome calculation,

s̃i,0 = ai,0 ⊕

(p−1
⊕

j=0

ai,j

)

,

s̃i,1 = ai,1 ⊕

(p−1
⊕

j=0

a〈p+i−j〉p,j

)

,

s̃i,2 = ai,2 ⊕

(p−1
⊕

j=0

a〈i+j〉p,j

)

,

where0 ≤ i ≤ p− 1 andj 6= r, s or t.

Find a Starting Point

Recall that finding a starting point is the key step of the EVENODD decoding,which seeks one

particular diagonal with only oneunknownsymbol. This symbol can then be recovered from its

corresponding syndrome, and it triggers the Zig-Zag decoding process until all unknown symbols

are recovered. In the STAR decoding, however, it isimpossibleto find any parity direction (hori-

zontal, diagonal or anti-diagonal) with only one unknown symbol. Therefore, the approach adopted

in the EVENODD decoding doesnot directly apply here, and additional steps are needed to find a

starting point.
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For illustration purpose, we now assume all syndromes are represented by the shadowed

symbols in the three parity columns, as shown in Figure 2.4(b). Based on the diagonal parity

property, it is clear that̃s3,1 equals to the XOR sum of three unknown symbolsa3,0, a2,1 anda0,3,

as marked by “△” signs in Figure 2.4(b). Similarly,̃s0,2 = a0,0 ⊕ a1,1 ⊕ a3,3, which are all

marked by “▽” signs along an anti-diagonal. Imagine that all these marked symbols in the erasure

information columns altogether form acrosspattern, whose XOR sum is computable (s̃3,1 ⊕ s̃0,2

in this case). And thekeyof this step is to choose multiple crosses, such that the following two

conditions are satisfied: 1) each cross isv symbols offset from a previous one; and 2) the bottom

row (after wrapping around) of the last crosssteps overthe top row of the first cross. In our particular

example, two crosses are chosen. The second cross isv = 2 symbols offset from the first one and

consists of erasure symbolsa0,0, a4,1, a2,3 (marked by “△”) and a2,0, a3,1, a0,3 (marked by “▽”),

as shown in Figure 2.4(c). It is straightforward that the XOR sum of thesetwo crosses equals to

s̃3,1 ⊕ s̃0,2 ⊕ s̃0,1 ⊕ s̃2,2.

Notice, on the other hand, the calculation (XOR sum) of these two crosses includes symbols

a0,0 anda0,3 twice. Their values are thus canceled out and donot affect the result. Also notice that

the parities of unknown symbol sets (a2,0, a2,1 anda2,3) and (a3,0, a3,1 anda3,3) can be determined

by horizontal syndromes̃s2,0 ands̃3,0, respectively. Thus, we can get

a1,1 ⊕ a4,1 = s̃3,1 ⊕ s̃0,2 ⊕ s̃0,1 ⊕ s̃2,2 ⊕ s̃2,0 ⊕ s̃3,0,

as all marked in Figure 2.4(d).

Repeating this process and starting the first cross at different rows, itis clear that we can

obtain the XOR sum of any unknown symbol pair with a fixed distance3 in column1, i.e. a0,1⊕a3,1,

a2,1 ⊕ a0,1, etc.

From this example, we can see that the first condition of choosing crossesensures the align-

ment of unknown symbols in the middle erasure column with those in the side erasure columns.

Essentially, it groups unknown symbols together and replaces them with known syndromes. This

is one way to cancel unknown symbols and results in a chain of crosses. The other way to cancel

unknown symbols comes from the second condition, where unknown symbols in the header row of

the cross chain are canceled with those in the tail row. This is indeed “gluing”the header of the first

cross with the tail of the last one and turns the chain into aring. It is conceivable that the number

of crosses in the ring is completely determined by the erasure pattern (r, s andt) and the STAR

code parameterp. And the following Lemma 1 shows the existence of such chain given arbitrary

u = s− r, v = t− s andp.

Lemma 1 A ring satisfying both above conditions always exists and consists ofld (0 ≤ ld < p)

crosses, andld is determined by the following equation:

〈u + ldv〉p = 0, (2.1)
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where0 ≤ u, v < p.

Proof. Sincep is a prime number, integers modulop define a finite fieldGF (p). Let v−1 be the

unique inverse ofv in this field. Then,ld = (p− u)v−1 exits and is unique.

Given a ring, rows with3 unknown symbols are substituted with horizontal syndromes

(substitution), and symbols being included even times are simply removed (simple cancellation).

For simplicity, we refer both cases ascancellations. Eventually, there are exactly two rows left with

unknown symbols, which is confirmed by the following Lemma 2.

Lemma 2 After cancellations, there are exactly two rows with unknown symbols in a ring. And the

row numbers areu andp− u, as offsets from the top row of the first cross.

Proof. To simplify the proof, we only examine the ring, whose first cross starts at row 0. Now the

first cross contains two unknown symbols in columnr and they are in rows0 andu + v. We can

represent them with a polynomial(1 + xu+v), where the power values (modulop) of x correspond

to row indices. Similarly, the unknown symbols in columns can be represented as(xu + xv).

Therefore, the first cross can be completely represented by(1 + xu+v + xu + xv) and thel1th cross

by

(1 + xu+v + xu + xv)xl1v,

where0 ≤ l1 < ld and the coefficients ofx are binary. Note that we don’t explicitly consider

unknown symbols in columnt, which are reflected by polynomials representing columnr. Using

this representation, the cancellation of a polynomial term includes both casesof substitution and

simple cancellation. And computing the XOR sum of all crosses can be equivalently represented by

adding all corresponding polynomials together, as

ld−1
∑

l1=0

(1 + xu+v + xu + xv)xl1v

=(1 + xu)

ld−1
∑

l1=0

(1 + xv)xl1v

=(1 + xu)(1 + xp−u)

=xu + xp−u, (2.2)

whereld is substituted using the result from Lemma 1. Thus, only two rows with unknownsymbols

are left after cancellations and the distance between them isd = 〈p− 2u〉p.

It is important to point out that unknown symbols in the remaining two rows arenot neces-

sarily in columns. For example, ifr = 0, s = 2 andt = 3, the remaining unknown symbols would

bea2,0, a2,3, a3,0 anda3,3, which are indeed columnsr andt. However, it is conceivable that we

can easily get the XOR sum of corresponding unknown symbol pair in column s, since horizontal

syndromes are available.
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To summarize this step, we denotelh to be the number of rows in a ring, which are canceled

through substitution and define the set of corresponding row indices asFh = {hl2 | 0 ≤ l2 < lh}.

The setFh is simply obtained by enumerating all crosses of the ring and then counting rows with

3 unknown symbols. Let̃au denote the XOR sum of the unknown symbol paira0,s anda〈p−2u〉p,s,

then theith pair has

ãu+i =

ld−1
⊕

l1=0

s̃〈−r+i〉p,2

lh−1
⊕

l2=0

s̃〈hl2
+i〉p,0,

ld−1
⊕

l1=0

s̃〈t+i〉p,1 (2.3)

where0 ≤ i ≤ p− 1.

Recover Middle Erasure Column

In the previous step, we have computed the XOR sum of arbitrary unknownsymbol pair in column

s with the fixed distance3. Since symbola4,1 is an imaginary symbol with zero value, it is straight-

forward to recover symbola1,1. Next, symbola3,1 can be recovered since the XOR sum of the pair

a1,1 anda3,1 is available. Consequently, symbolsa0,1 anda2,1 are recovered. This process is shown

to succeed with arbitrary parameters by the following Lemma 3.

Lemma 3 Given the XOR sum of arbitrary symbol pair with a fixed distanced, all symbols in the

column are recoverable if there is at least one symbol available.

Proof. Sincep is prime,F = {〈di〉p| 0 ≤ i ≤ p − 1} covers all integers in[0, p). Therefore, a

“tour” starting from rowp − 1 with the stride sized will visit all other rows exactly once before

returning to it. As the symbol in rowp − 1 is always available (zero indeed) and the XOR sum of

any pair with distanced is also known, all symbols can then be recovered along the tour.

To summarize, this step computes

ã〈(p−1)−di〉p = ã〈(p−1)−di〉p ⊕ a〈(p−1)−d(i−1)〉p , (2.4)

where0 ≤ i ≤ p − 1. Then,ai,s = ãi (where there are2 unknown symbols left in the ring after

cancellations) orai,s = ãi ⊕ s̃i,0 (where4 unknown symbols are left) for alli’s. Thus far, columns

is completely recovered.

Recover Side Erasure Columns

Now that columns is known, the firstp + 2 columns compose an EVENODD coded block with2

erasures. It is conceivable that direct application of the EVENODD decoding can easily recover all

remaining unknown symbols. Details are skipped in here.
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2.3.2 Decoding without Parity Erasures: Symmetric Case

When the erasure pattern is symmetric (u = v), the decoding becomes much easier, where step2 is

greatly simplified while all other steps remain the same.

To illustrate the step of finding a starting point, we still resort to the previous example,

although the erasure pattern is different now. Let’s assumer = 0, s = 1 andt = 2. It is easy to

see that only one cross is needed to construct a “ring” (still denoted as aring, although not closed

anymore). As in this example, a cross consists of unknown symbolsa0,0, a0,2, a2,0 anda2,2, and

a1,1 is canceled because it is included twice. The XOR sum of the cross thus equals tos̃2,1 ⊕ s̃0,2.

This is very similar to the situation in the previous case, where there are4 unknown symbols in

a ring after cancellations. Therefore, the rest of the decoding can followed the already described

procedure and we don’t repeat in here.

In summary the symmetric case can be decoded using the procedure for the asymmetric

case, by simply settingld = 1, lh = 0, u = 0 andd = t− r.

2.3.3 Decoding with Parity Erasures

In this part, we consider the situation when there are erasures in parity columns. The decoding is

divided into the following3 subcases.

Column p + 2 is an erasure.

In this subcase, parity columnp + 2 is an erasure. Then, the restp + 2 columns can be regarded as

an EVENODD coded block with2 or less erasures. Direct application of the EVENODD decoding

can recover all unknown information symbols. Note that this case also takescare of all situations

when erasures are less than3.

Column p + 1 is an erasure, whilep + 2 is not.

This subcase is almost the same as the previous case, except that now the “EVENODD” coded block

consists of the firstp + 1 columns and columnp + 2. In fact, this coded block is no longer a normal

EVENODD code, but rather a mirror reflection of one over the horizontalaxis. Nevertheless, it

can be decoded with slightly modification of the EVENODD decoding, which we simply leave to

interested readers.

Column p is an erasure, whilep + 1 and p + 2 are not.

Besides the above two, the only remaining subcase yet with parity erasuressatisfy0 ≤ r < s ≤ p−1

andt = p, whose decoding is slightly different.

First, it is not possible to recover adjustersS1 andS2, as symbols in columnp are unknown.

However,S1⊕S2 is still computable, which simply equals to the XOR sum of all symbols in column
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p + 1 andp + 2. This is easy to see by substituting the definitions ofS1 andS2, whereS0 are added

twice and canceled out. Then, it is not possible to reverse the adjuster complement. And the results

from syndrome calculation are XOR sums of syndromes and their corresponding adjusters, rather

than syndromes themselves. We useŝi,j to denote the results, which thus satisfy

ŝi,j = s̃i,j ⊕ Sj , (2.5)

wherej = 1 or 2 and0 ≤ i ≤ p− 1. Note that̂si,0 = s̃i,0 for all i’s.

The next step is similar to the decoding of the symmetric case without parity erasures, as it

is also true that only one cross is needed to construct a ring. Taking the cross starting with row0 as

an example, it consists of unknown symbolsa0,r. a0,s, au,r andau,s. Since the XOR sum of this

cross equals tõss,1 ⊕ s̃〈−r〉p,2, we can easily get the following equation by substituting Eq. 2.5:

a0,r ⊕ a0,s ⊕ au,r ⊕ au,s = ŝs,1 ⊕ ŝ〈−r〉p,2 ⊕ S1 ⊕ S2.

Therefore, the XOR sum of the cross is computable. Following the approach as used to recover

middle erasure column in an early section, the XOR sum of two unknown symbolson any row can

be recovered, which is still denoted asãi (0 ≤ i ≤ p− 1). Then, parity columnp can be recovered,

as

ai,p = ãi ⊕ s̃i,0 = ãi ⊕ ŝi,0,

where0 ≤ i ≤ p− 1.

After columnp is recovered, the firstp+2 columns can again be regarded as an EVENODD

coded block with2 erasures at columnr and s. Therefore, the application of the EVENODD

decoding can complete the recovery of all the remaining unknown symbols.

To summarize the procedure in this subcase, we have

S1 ⊕ S2 =

(p−2
⊕

i=0

ai,p+1

)

⊕

(p−2
⊕

i=0

ai,p+2

)

,

and

ŝi,0 = ai,0 ⊕

(p−1
⊕

j=0

ai,j

)

,

ŝi,1 = ai,1 ⊕

(p−1
⊕

j=0

a〈p+i−j〉p,j

)

,

ŝi,2 = ai,2 ⊕

(p−1
⊕

j=0

a〈i+j〉p,j

)

,
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where0 ≤ i ≤ p− 1 andj 6= r or s. Then,

ãi = ŝ〈s+i〉p,1 ⊕ ŝ〈−r+i〉p,2 ⊕ S1 ⊕ S2,

where0 ≤ i ≤ p− 1, and

ã〈(p−1)−ui〉p = ã〈(p−1)−ui〉p ⊕ a〈(p−1)−u(i−1)〉p ,

where1 ≤ i ≤ p− 1. Finally, columnp can be recovered as

ai,p = ãi ⊕ ŝi,0,

for all i’s. The rest is to use the EVENODD decoding to recover the remaining2 columns, which is

skipped in here.

Putting all the above cases together, we conclude this section with the followingtheorem:

Theorem 1 The STAR code is completely recoverable from any triple column erasures.

2.4 Algebraic Representation of the STAR Code

As described in [15], each column of an EVENODD coded block can be regarded algebraically

as an element of a polynomial ring, which is defined with multiplication taken moduloMp(x) =

(xp − 1)/(x − 1) = xp−1 + xp−2 + · · · + x + 1. For the ring elementx, it is shown that its

multiplicative orderp. Usingβ to denote this element, then columnj (0 ≤ j ≤ p + 1) in the coded

block can be represented using the notationaj(β) = ap−2,jβ
p−2 + · · · + a1,jβ + a0,j , whereai,j

(0 ≤ i ≤ p − 2) is theith symbol in the column. Note that the multiplicative inverse ofβ exists

and can be denoted asβ−1. Applying same notations to the STAR code, we can then get its parity

check matrix as:

H =







1 1 · · · 1 1 0 0

1 β · · · βp−1 0 1 0

1 β−1 · · · β−(p−1) 0 0 1






(2.6)

It is straightforward to verify that any3 columns in the check matrix are linearly independent.

Therefore, the minimum distance of the STAR code is4 (each column is regarded as a single element

in the ring) and thus arbitrary triple (column) erasures are recoverable.This is an alternative way to

show its MDS property.
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2.5 Single Error Correction

The minimum distance4 also implies that the STAR code can correct1 column error and recover

1 column erasure simultaneously. Here, we again consider the most generalcase, where both the

erasure and the error are information columns, denoted byjd andje, respectively. Other patterns of

erasure and error can be handled similarly and we leave them to interested readers.

Given a STAR coded block with erasure and error columns, we first calculate syndromes, as

in the previous section.

s̃i,0 = ai,0 ⊕

(p−1
⊕

j=0

ai,j

)

s̃i,1 = ai,1 ⊕

(p−1
⊕

j=0

a〈p+i−j〉p,j

)

s̃i,2 = ai,2 ⊕

(p−1
⊕

j=0

a〈i+j〉p,j

)

,

where0 ≤ i ≤ p − 1 andj 6= jd. Note thatje is unknown before decoding and thus columnje

is included in the above calculations implicitly. Using algebraic notations, syndromes along same

parity directions can be represented using a polynomialS̃j(β) =
∑p−1

i=0 s̃i,jβ
i, wherej = 0, 1 or 2.

Let ajd
(β) andeje(β) denote polynomials corresponding to the original data of columnjd and the

error data of columnje, respectively. From the property of the check matrix, we have

S̃0(β) + ajd
(β) + eje(β) = 0

S̃1(β) + βjdajd
(β) + βjeeje(β) = 0

S̃2(β) + β−jdajd
(β) + β−jeeje(β) = 0.

After simple cancellations, the above equations become

(βjd + βje)eje(β) = βjdS̃0(β) + S̃1(β)

(β−jd + β−je)eje(β) = β−jdS̃0(β) + S̃2(β)

which can be further deduced to get

βjdS̃0(β) + S̃1(β) = β(jd+je)
(

β−jdS̃0(β) + S̃2(β)
)

(2.7)
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(b) corrupted codeword block (fd=1, fe=3)

Figure 2.5: Single Error and Single Erasure Decoding

Note that the multiplication operation in the polynomial ring can be implemented efficiently

using only shift and XOR operations, as presented in [23]. Here, we recap briefly with a simple

example. Assumep = 5 and a column isa = [0 1 1 1]T with each entry representing a symbol. It

is clear that this column can be represented algebraically asa(β) = β + β2 + β3. Straightforward

calculation showsβ2a(β) = β3 + β4 + β5 = β + β2, sinceβ4 = 1 + β + β2 + β3 andβ5 = 1. Or

we can use the alternative approach as described in [23], which is more efficient when each symbol

contains more than just one bit information. It first shifts all symbols in the column by the power of

β, which is2 in this example, and we now havea = [1 0 0 1 1]T . Note that symbolp− 1 is not part

of the original column and has an imaginary value of zero. But it participatesin the shift operation,

so the column hasp entries now. The next step is to remove symbolp − 1 by binary complement

(add symbolp − 1 to all other symbols). Then, we geta = [0 1 1 0]T , which corresponds to the

polynomialβ + β2 and matches the result from regular polynomial calculations.

With this technique, it is simple to compute termsβjdS̃0(β)+S̃1(β) andβ−jdS̃0(β)+S̃2(β)

in Eq. (2.7). Then the error correction of the STAR code boils down to finding je such that Eq. (2.7)

is satisfied. Onceje is known, the error column can be treated as another erasure and the invocation

of the erasure decoding procedure can recover both columnjd andje.

This process is illustrated by an example. A corrupted STAR codeword block is shown in

Figure 2.5(b), where there are single erasure (columnjd = 1) and single error (the shadowed symbol

in columnje = 3). We calculate syndromes and get the column representations ofS̃0(β), S̃1(β)

andS̃2(β) as[0 0 1 1 0]T , [1 1 0 0 1]T and[1 1 1 1 0]T , respectively. Then,βS̃0(β) + S̃1(β) and

β−1S̃0(β)+S̃2(β) can be calculated using aforementioned approach as[1 1 0 1 0]T and[1 0 0 1 0]T .

By trial and error method, it is easy to see that the first term becomes[0 1 1 0 1]T after shifting

down one symbol and then[1 0 0 1 0]T after the binary complement, which now equals to the second

term. Therefore,

β
(

βS̃0(β) + S̃1(β)
)

= β−1S̃0(β) + S̃2(β)
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Based on Eq. (2.7), we then havejd + je = 4 and in turnje = 3. The next step is to treat both

column1 and3 as erasures and invoke the erasure decoding to recover all symbols in these two

columns.

2.6 Complexity Analysis

In this section, we analyze the complexity of the STAR code erasure decoding. The complexity

is dominated by XOR operations, thus we can count the total number of XORs and use that as an

indication of the complexity. Since decoding without parity erasures is the mostcomplicated case,

including both asymmetric and symmetric erasure patterns, we confine our analysis to this case.

2.6.1 Erasure Decoding Complexity

It is not difficult to see that the complexity can be analyzed individually for each of the4 decoding

steps. Note that a complete STAR code consists ofp information columns and3 parity columns.

When there are onlyk (k ≤ p) information columns, we can still use the same code by resorting to

theshorteningtechnique, which simply assigns zero value to all symbols in the lastp−k information

columns. Therefore, in the analysis here, we assume the code block is a(p− 1)× (k + 3) array.

In step1, the calculation ofS0 takes(p − 2) XOR operations and those ofS1 and S2

take (p − 1) XORs each. The reversion of adjuster complement takes2(p − 1) XORs in total.

Directly counting XORs of the syndrome calculations is fairly complicated and wecan resort to the

following alternative approach. First, it is easy to see that the syndrome calculations of any parity

direction for a code block without erasures (a(p− 1)× (p + 3) array) take(p− 1)p XORs. Then,

notice that any information column contributes(p − 1) XORs to the calculations. Therefore, for a

code block with(k − 3) information columns (with triple erasures), the number of XORs becomes

(p− 1)p− (p− k + 3)(p− 1) = (k − 3)(p− 1). In total, the XORs in this step is:

(p− 2) + 2(p− 1) + 2(p− 1) + 3(k − 3)(p− 1) = (3k − 4)(p− 1)− 1. (2.8)

In step2, the computation of each ring takes(2ld + lh−1) XORs and there are(p−1) rings

to compute. Thus, the number of XORs is

(2ld + lh − 1)(p− 1). (2.9)

In step3, it is easy to see that the number of XORs is

(p− 1)− 1 = p− 2. (2.10)
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In step4, the horizontal and the diagonal syndromes need to be updated with the recovered

symbols of columns, which takes2(p − 1) XORs. Note that there is no need to update the anti-

diagonal syndromes, because the decoding hereafter deals with only double erasures. The Zig-Zag

decoding then takes2(p− 1)− 1 XORs. So the number of XORs in this step is

2(p− 1) + 2(p− 1)− 1 = 4(p− 1)− 1. (2.11)

Note that in step2, the number of XORs is computed assuming the case where only2 unknown

symbols are left in a ring after cancellations. If the other case happens, where4 unknown symbols

are left, additional(p − 1) XOR operations are needed to recover columns. However, this case

doesnot need to update the horizontal syndromes in step4 and thus saves(p − 1) XORs in there.

Therefore, it is just a matter of moving XOR operations from step2 to step4 and the total number

remains the same for both cases.

In summary, the total number of XORs required to decode triple information column era-

sures can be obtained by putting Eq. (2.8), (2.9), (2.10) and (2.11) together, as:

(3k − 4)(p− 1)− 1 + (2ld + lh − 1)(p− 1)

+ (p− 2) + 4(p− 1)− 1

= (3k + 2ld + lh)(p− 1)− 3 (2.12)

≈ (3k + 2ld + lh)(p− 1). (2.13)

2.6.2 A Decoding Optimization

From Eq. (2.13), we can see that for fixed code parametersk andp, the decoding complexity de-

pends onld and lh, which are completely determined by actual erasure patterns (r, s and t). In

Sec. 2.3, we present an algorithm to construct a ring of crosses, whichwill yield a starting point for

successful decoding. Within the ring, all crosses arev = t − s symbols offset from previous ones.

And from Eq. (2.2), there are exactly two rows with unknown symbols left after cancellations. From

the symmetric property of the ring construction, it is not difficult to show that using offsetu = s−r

will also achieve the same purpose. And if usingu as offset results in smallerld andlh values (to

be specific, smaller2ld + lh), then there is advantage to do so.

Moreover, we make the assumptionr < s < t during the description of the decoding algo-

rithm. Although it helps to visualize the key procedure of finding a starting point, this assumption is

unnecessary. Indeed, it is easy to verify that all proofs in Sec. 2.3 stillhold without this assumption.

And by swapping values amongr, s andt, it might be possible to reduce the decoding complexity.

For instance, in the previous example,r = 0, s = 1 andt = 3 results inld = 2 and lh = 2. If

letting r = 1, s = 0 andt = 3, thenu = −1 andv = 3. The pattern of single cross is shown

in Figure 2.6(a). And from Figure 2.6(b), it is clear that two crosses close a ring, which contains

exactly two rows (row1 and4) with unknown symbols after cancellations. Thus, this choice also
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Figure 2.6: Optimization of STAR Decoding

yields ld = 2 andlh = 2. However, if lettingr = 0, s = 3 andt = 1, we can getu = s − r = 3

andv = t− s = −2. It is easy to find out that unknown symbols in columns are canceled in every

single cross. In fact, this is an equivalence of the symmetric case and in turnld = 1 andlh = 0.

Thus, the complexity is reduced by this choice. Note that for generalu andv, the condition of

symmetric now becomes〈u− v〉p = 0, instead of simplyu = v.

Now let us revisit the ring construction algorithm described in Sec. 2.3. Thekey point there

is to select multiple crosses such that the bottom row of the last cross “steps over” the top row of

the first one, and there are exact two rows left with unknown symbols aftercancellations. Further

examination, however, reveals that it is possible to construct rings using alternative approaches. For

instance, the crosses can be selected in such a way thatin the middle columnthe bottom symbol

of the last cross “steps over” the top symbol of the first one. Or perhaps there is even no need to

construct closed rings and crosses might not have to be a fixed offsetfrom previous ones. Indeed, if

crosses can be selected arbitrarily while still ensures exact two rows leftwith unknown symbols after

cancellations, the successful decoding can be guaranteed. Recall that single cross is represented by

C(x) = 1 + xu + xv + xu+v and a cross with an offset off symbols byC(x)xf . Therefore, the

construction of a ring is to determine a polynomial termR(x), such thatC(x)R(x) results in exact

two entries. For instance, the example in Sec. 2.3 hasR(x) = 1 + x2 andC(x)R(x) = x + x4.

Moreover, the following Theorem 2 shows that the decoding complexity is minimized if a R(x)

with minimum entries is adopted.

Theorem 2 The decoding complexity is nondecreasing in terms of the number of crosses (ld) in a

ring.

Proof. Whenever a new cross is included into the ring, two new non-horizontal syndromes (one

diagonal and one anti-diagonal) need to be added to the XOR sum. With this newcross, at most

four rows can be canceled (simple cancellation due to even times addition), among which two can

be mapped with this cross and the other two with an earlier cross. Thus, eachcross brings in two



23

non-horizontal syndromes and takes away at most two horizontal syndromes. The complexity is

nondecreasing in terms of the number of crosses.

Note thatld is in fact the number of entries inR(x). Now optimized ring constructions

desire to find aR(x) with minimum entries, which ensures thatC(x)R(x) has only two terms.

An efficient approach to achieve this is to test all polynomials with two terms. If apolynomial

is divisible byC(x), then the quotient yields a validR(x). A R(x) with minimum entries is then

chosen to construct the ring. It is important to point out that there is no need to worry about common

factors (always powers ofx) between two terms in the polynomial, as it is not divisible byC(x).

Thus, the first entry of all polynomials can be fixed as1, which means that onlyp− 1 polynomials

(1 + xi, 0 < i ≤ p − 1) need to be examined. As stated in an earlier section, polynomials are

essentially elements in the ring constructed withMp(x) = 1+x+ · · ·+xp−2 +xp−1. Based on the

argument in [23],(1 + xu) and(1 + xv) are invertible in the ring. Thus,C(x) = (1 + xu)(1 + xv)

is also invertible, and it is straightforward to compute the inverse using Euclid’s algorithm. For

instance,C(x) = 1 + x + x2 + x3, asu = 1 andv = 2 in the previous example. The generator

polynomialMp(x) = 1 + x + x2 + x3 + x4 asp = 5. Applying Euclid’s algorithm, it is clear that

1(1 + x + x
2 + x

3 + x
4) + x(1 + x + x

2 + x
3) = 1. (2.14)

Thus, the inverse ofC(x) is inv(C(x)) = x. When examining the polynomial1 + x3, we get

R(x) = inv(C(x))(1 + x3) = x + x4 or equivalently,

(1 + x + x2 + x3)(x + x4) = 1 + x3 mod Mp(x). (2.15)

It is desirable thatR(x) carries the entry of power0, since the ring always contains the original

cross. So we multiplyx to both sides of Eq. (2.15), which now becomes

(1 + x + x2 + x3)(1 + x2) = x + x4 mod Mp(x).

Thus, we haveR(x) = 1 + x2 and the ring can be constructed using two crosses (ld = 2) with an

offset of two symbols. Once the ring is constructed, it is straightforward togetlh.

It might seem contradictory to introduce ring operations to find the optimalld value and

ring construction, as the whole purpose of the STAR code is to avoid computationally complex

operations. However, it is important to point out that these operations (such as inversion using

Euclid’s algorithm) can be performed easily and donot require the construction of the complete

ring. Furthermore, the optimization can be performed in advance (offline) and only XOR operations

are required during (online) decoding procedures. This is elaboratedin a later section.
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Figure 2.7: The Complexity Comparisons

2.7 Comparison with Existing Schemes

In this section, we compare the erasure decoding complexity of the STAR code to two other XOR-

based codes, one proposed by Blaumet al. [18] (Blaum code hereafter) and the other by Blomeret

al. [24].

The Blaum code is a generalization of the EVENODD code, whose horizontal and diagonal

parities are now regarded as redundancies of slope0 and1, respectively. And therth parity column

is generated using a redundancy of sloper − 1. This construction is shown to maintain the MDS

property for triple parity columns, given the code parameterp is a prime number. And the MDS

property continues to hold for selectedp values when the number of parities exceeds3. To make

the comparison meaningful, we focus on the triple parity case of the Blaum code. We compare the

complexity of triple erasure decoding in terms of XOR operations between the Blaum code and the

STAR code. Similar to all previous sections, we confine all three erasuresto information columns.

The erasure decoding of the Blaum code adopts an algorithm described in[23], which pro-

vides a general technique to solve a set of linear equations in a polynomial ring. Due to special

properties of the code, however, ring operations arenot required during the decoding procedure,

which can be performed with pure XOR and shift operations. The algorithmconsists of4 steps,

whose complexities are summarized as follows: 1) syndrome calculation:3(k − 3)(p − 1) − 1; 2)

computation ofQ̂(x; z): 1
2r(3r−3)p; 3) computation of the right-hand value:r((r−1)p+(p−1));

and 4) extracting the erasure values:r(r − 1)(2(p − 1)). Here,r = 3 is the number of erasures.

Therefore, the total number of XORs is

3(k − 3)(p− 1)− 1 + 9p + (9p− 3) + 12(p− 1)

= (3k + 21)(p− 1) + 14 (2.16)

≈ (3k + 21)(p− 1). (2.17)

Comparison results with the STAR code are shown in Figure 2.7, where we can see that the
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Table 2.1: Complexity of the RS Code (per 32 bits)

# of parities finite field based impl. XOR based impl.

r = 2 8 XORs + 8 muls 16 XORs
r = 3 12 XORs + 12 muls 24 XORs

complexity of the STAR decoding remains fairly constant and is just slightly above3. Note that this

complexity depends on actual erasure locations, thus the results reportedhere are average values

over all possible erasure patterns. The complexity of the Blaum code, however, is rather high for

smallk values, although itdoesapproach3 asymptotically. As these recovery schemes are most

likely to be applied with limitedk values in streaming media applications, it is critical to achieve

efficiency in this region and the STAR code is thus probably more favorablethan the Blaum code.

Figure 2.7 also includes the complexity of the EVENODD decoding as a reference, which is roughly

constant and slightly above2 XORs per symbol, Moreover, the complexity of syndrome calculations

is depicted seperately for both the double and the triple erasure recoveries. It is clear that this part

dominates the decoding complexity asymptotically.

The XOR-based code proposed in [24] uses Cauchy matrices to construct a Reed-Solomon

(RS) code. It replaces generator matrix entries, information and parity symbols with binary repre-

sentations. Then, the encoding and decoding can be performed with primarily XOR operations. To

achieve maximum efficiency, it requires message length to be multiples of 32 bits.In that way, basic

XOR unit is 32 bits, or single word, and can be performed by single operation. To compare with this

scheme fairly, we require the symbol size of the STAR code to be multiples of 32bits too. Then, the

XOR-based decoding algorithm in [24] involveskrL2 XOR operations andr2 operations in a finite

field GF (2L), wherek andr are the numbers of information symbols and erasures, respectively.

Assume the code is constructed in theGF (28) (L = 8) and there are triple erasuresr = 3. Also,

ignore thoser2 finite field operations (due to the inversion of a decoding coefficients matrix), which

tend to be small as the number of erasures is limited. Then, the normalized decoding complexity

(by the total information length ofkL words) is summarized in Table 2.1. Compared to Figure 2.7,

where the STAR code decoding complexity is slightly more than3 XORs per symbol (multiples of

32 bits now), it is clear that the STAR code is more efficient than the XOR-based RS code. The

complexity of normal RS code implementation [25] is also listed in Table 2.1, which uses finite field

operations intensively. It is clear that this implementation has even higher complexity than the XOR

based scheme.

2.8 Implementation and Performance

The implementation of the STAR code encoding is straightforward, which simply follows the pro-

cedure described in Sec. 2.2. Thus, in this part, our main focus is on the erasure decoding procedure.

As stated in Sec. 2.6, the decoding complexity is solely determined byld andlh, given the number
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of information columnsk and the code parameterp. As ld and lh vary according to actual era-

sure patterns, so does the decoding complexity. To achieve the maximum efficiency, we apply the

optimization technique as described in the earlier section.

An erasure pattern is completely determined by the erasure columnsr, s andt (again assume

r < s < t), or further by the distancesu andv between these columns, as the actual position of

r doesnot affect ld or lh. Therefore, it is possible to setup a mapping fromu and v to ld and

lh. To be specific, givenu andv, the mapping returns the positions of horizontal, diagonal and

anti-diagonal syndromes, which would otherwise be obtained via ring constructions. The mapping

can be implemented as a lookup table and the syndrome positions using bit vectors. Since the

lookup table can be built in advance of actual decoding procedure, it essentially shifts complexity

from online decoding to offline preprocess. Note that the table lookup operation is only needed

once for every erasure pattern, thus there is no need to keep the table in memory (or cache). This is

different from finite field based coding procedures, where intensivetable lookups are used to replace

complicated finite field operations. For example, RS code implementation might use an exponential

and a logarithm table to perform multiplications and divisions. Furthermore, the number of entries

in the lookup table is not large at all. For example, for code parameterp = 31, u andv are at most

30, which requires a table of at most30× 30 = 900 entries. The cost of keeping tables of this size

is really negligible.

During the decoding procedure,u andv are calculated from the actual erasure pattern. Based

on these values, the lookup table returns all syndrome positions, which essentially indicates the ring

construction. The calculation of the ring is thus performed as the XOR sums ofall the indicated

syndromes. Then, the next ring is calculated by offsetting all syndromes with one symbol and the

procedure continues until all rings are computed. And steps afterwordsare to recover the middle

column and then the sides columns, which are detailed in Sec. 2.3.

We implement the STAR code erasure decoding procedure and apply to streaming media

applications. The throughput performance is measured and compared to apublicly available RS

code implementation [26]. The results are shown in Figure 2.8, where the packet size is528 bytes
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and the number of information packets in a code block varies from6 to 20. These packet numbers

are reasonable due to the delay constraints of the media data. And it is clear that the STAR code

achieves about twice faster throughput than the RS code. Note that thereare jigsaw effects in the

throughputs of both the EVENODD and the STAR code. This happens mainly due to the shortening

technique. When the number of data packets is not prime, the codes are constructed using the closest

larger prime number. A larger prime number means each column (packet here) is divided into more

pieces, which in turn incurs additional control overhead. As the number of information packets

increases, the overhead is then amortized, reflected by the performanceramping up after each dip.
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Chapter 3

Practical FEC Codes for Wireless

Streaming

FEC techniques, based on error correcting codes, are widely used in streaming media applications

to battle data loss and in turn to reduce or eliminate retransmission delays [27]. When used in

multicast environments, it also helps to prevent negative feedbacks fromoverwhelming senders

(feedback implosion[28]). In Chapter 2, we describe STAR, an efficient recovery scheme for triple

erasures. It is shown that the STAR code requires pure XOR operations and also has the MDS

property. With a recovery of up to triple packet losses, it is conceivablethat the STAR code is

ideal for streaming media applications with very strong delay constraints, where the number of data

packets (in turn parity packets) is limited. In another word, this scheme is applied with limited

coded block lengths.

In some streaming applications, however, the delay constraints are relatively weak, for in-

stance, streaming of stored content can usually tolerate delay of severalseconds. Larger delay

implies that it might be possible to use larger coded block lengths to achieve better recovery per-

formance. With a fixed coding rate (or redundancy), this would also mean increased number of

parity packets in a single coded block. It is clear that the STAR code becomes insufficient, when

the number of parity packets exceeds3.

In this situation, it is certainly possible to resort to Reed-Solomon (RS) code [3]. The RS

code can generaten total data packets fromk information packets and tolerate up tor = n − k

arbitrary packet losses. It is clear that the RS code is a MDS code. And the parametersn andk

of the code can be chosen very flexibly, which makes it applicable to this case. Indeed, the RS

code is widely adopted in streaming media applications [28–35]. Moreover, as these applications

increasingly include wireless links into the last mile of delivery, the RS code attracts even more

attention due to high data loss characteristics of wireless networks [36–39]. While most attentions

are focused on the optimal recovery performance of the RS code, thereis one crucial aspect often

neglected. The RS coding requires finite field operations, which are computationally complex. This



29

could impose difficulties to constrained receivers, such as portable devices with limited computation

capacity and power supply. In fact, our study in this chapter shows that the RS code can significantly

increase the energy consumption of hand-held devices. In this sense, itmight not always be a good

choice as a FEC scheme.

On the other hand, there is a very efficient scheme relying on pure XOR operations: single

parity code withinterleaving(or simply,PARITY code). The PARITY code of lengthn andinter-

leaving degreem can be described as anm × n array (with the last column dedicated to parity

data). It is computationally efficient and energy saving, since all encoding and decoding operations

are pure XORs. However, it does not in general have as good loss recovery performance as the RS

code.

In this chapter, we seek to address the trade-off between loss recovery performance and

computational cost for wireless data streaming. We study a practical FEC scheme using MDS array

codes. Different from Chapter 2, we no longer map entire columns of an array to data packets,

instead, each entry of the array is mapped to a single packet now. At this bitlevel, losses are not

confined to limited columns and these array codes are no longer MDS. In this work, we focus on the

suitability of the EVENODD code [15] for both random and bursty data loss recovery. An efficient

and versatile decoding algorithm is proposed to enhance the EVENODD code. Compared to the

PARITY code and the RS code, our analytical and simulation results show that the EVENODD

code achieves good balance between loss recovery performance andsavings in energy/computation.

Our study suggests that the EVENODD code is suitable as a practical FEC scheme for wireless data

streaming.

Note that there exist other XOR-based error correcting codes, which also have close to

optimal data loss recovery capability, such as regular LDPC codes [40] fountain codes [41–43] (as

used in the popular digital fountain approach [44]). But these codes usually require very large block

lengths, which will violate delay constraints of streaming data applications. Therefore, it is not

proper to consider them here.

3.1 EXtended EvenOdd Decoding (XEOD) Algorithm

3.1.1 EXtended EVENODD Decoding (XEOD) Scheme

The EVENODD code, its encoding and decoding are briefly described in Chapter 2. We denote the

decoding algorithm there as theBasic EVENODD Decoding(BEOD). The BEOD is designed for

an error (loss) model which is suitable for data storage devices, such asdisks or tapes, where an

entire column is considered to be an error or erasure as long as at least one of its symbols is an error

or erasure. Thisburstyloss model is sensible for data storage applications. When the EVENODD

code is used for a disk array, the BEOD can fully recover all the originaldata symbols when up to

two disks fail. When the EVENODD code is applied to data streaming, however,it is unlikely that

loss is constrained only in two columns, i.e., symbol loss can berandomin addition to bursty. The
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BEOD scheme doesn’t provide a mechanism to deal with this situation. Moreover, when symbol

loss occurs in one column, it doesn’t imply that all symbols in the same column arelost. It is thus

not computationally efficient to compute all the horizontal and diagonal syndromes if some of them

arenot actually used in decoding. However, there is no simple way to decide which syndrome is

needed in the BEOD scheme.

To address all these issues, we propose an eXtended EVENODD Decoding (XEOD) algo-

rithm for both random and bursty symbol losses. The EVENODD has beenshown to be an LDPC

(Low Density Parity Check) code and its probabilistic error correction performance based on its

parity check matrix has been studied [40]. While taking advantage of the LDPC property of the

EVENODD code as well, the XEOD algorithm is adeterministicone that corrects erasures (symbol

losses) instead of errors (symbol corruptions) and thus is much more computationally efficient than

other probabilistic decoding algorithms based on parity check matrix.

Now we described the XEOD: each codeword block is represented by a bipartite graph,

with left nodes corresponding to the message symbols (in the firstp columns) and right nodes

corresponding to the check symbols (in thepth and(p + 1)th columns). A left node exists in the

bipartite graph only if the corresponding message symbol is lost and a rightnode exists only if the

check symbol isnot lost. For simplicity,message nodeandcheck nodeare used to represent left

node and right node throughout rest of this chapter. A link (edge) is setup between a message node

and all its check nodes. Thedegreeof a node represents the number of links connected to it. It is

easy to see that the degree of a message node is no larger than 2 while the degree of a check node is

less than or equal to(p− 1).

The XEOD starts decoding from a check node with degree1 and moves to its only connected

message node. Since this message node is the only missing one corresponding to the check node, it

can be easily recovered and the link connected back to the check node is removed. If the message

node has a second link, then the XEOD follows it to a new check and then removes the link. The

same decoding cycle continues until reaching a message node with degree 0or a check node with

degree no equal to 1. Then the XEOD jumps to the next check node with degree1 and repeats the

entire procedure until no more such node exists.

Besides the above core loop procedure, the XEOD needs to compute the EVENODD ad-

juster, which is used to recover message symbols from the second check column symbols. The

adjuster can be computed from all main diagonal message symbols, all checksymbols or any sec-

ond check column symbol with all its corresponding message symbols, as in [15]. This can be easily

incorporated by augmenting the bipartite graph with an imaginary adjuster node, which connects to

missing main diagonal message nodes. Experiments show that the adjuster canbe calculated with

very high probability when the symbol loss rate is relatively low. Thus, it is reasonable to assume

the adjuster node always exists.
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Algorithm 1 eXtendedEVENODD Dencoding (XEOD)
procedureXEOD:

adjuster:
if adjuster node degree = 0 then

calculate adjuster; goto decode;
if any check node degree = 0 ‖ all check nodes exist then

calculate adjuster; goto decode;
decode:

for all check nodes do
while check node degree = 1 do

if adjuster node needed but not exist then
break;

recover connected message node M ;
remove the link between M and the check node;
if degree of M = 0 then

break;
check node← the other check node connected to M

return decoding complete;

3.1.2 Correctness of XEOD

The complete decoding procedure is in Algorithm 1 and its correctness is stated in the following

theorem:

Theorem 3 There is no more message node recoverable when Algorithm 1 terminates.

Proof. First, we prove that Algorithm 1 will terminate after finite number of iterations. This is

because in each iteration, the decoder moves to a new check node and/or removes one link after

recovering a message node. Since both check nodes and links in the graph are finite, the algorithm

will terminate after finite iterations.

We then prove the theorem by contradiction. Suppose there exists a recoverable message

nodeM when Algorithm 1 terminates. Then at least one check node (denoted byC) connected with

M has degree 1. From thewhile loop in Algorithm 1, the only possible reason that the XEOD does

not follow C ’s link to recoverM is the adjuster node is needed but doesnot exist. This contradicts

with the assumption thatM is recoverable.

3.1.3 Complexity of XEOD

The complexity of the XEOD includes three parts: 1) constructing the bipartite graph; 2) computing

the adjuster and 3) decoding itself. The bipartite graph construction takesO(1) operation for each

message node andO(p2) in total in the worst case when all message symbols are lost. Computing

the adjuster has the worse case complexity ofO(p) when all check nodes are visited until the last
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Table 3.1: BEOD computation analysis

# of XORs CASE I CASE II CASE III CASE IV
0 ≤ i ≤ p − 1, 0 ≤ i ≤ p − 1, 1 ≤ i, j ≤ p − 1 i = p,

j = p j = p + 1 j = p + 1
calculate adjuster p 0 2p 0
recover message qp2 qp2 2p2 + p + 4pq 0

# of occurrences p p
`

p

2

´

1

Table 3.2: XEOD computation analysis

# of XORs CASE I CASE II CASE III CASE IV
0 ≤ i ≤ p − 1, 0 ≤ i ≤ p − 1, 1 ≤ i, j ≤ p − 1 i = p,

j = p j = p + 1 j = p + 1
i = 0 i 6= 0 i = 0 i 6= 0 i = 0 i 6= 0 i = p

calculate adjuster p 2q(1 − q)p−1+ p 2q(1 − q)p−1+ (1 − q)p + 2qp (1 − q)2p+ p
[1 − q(1 − q)p−1]p [1 − q(1 − q)p−1]p 2[1 − (1 − q)2]p

recover message qp2 qp2 2qp2 0
# of occurrences 1 p − 1 1 p − 1 p − 1

`

p−1

2

´

1

one can be used for calculation. In the decoding procedure, each check node can at most be visited

p times and involve XOR ofp symbols, which yieldsO(p2) total complexity. Hence, the XEOD

has the worst complexityO(p2), which is linear in terms of message symbol number. Note that it is

easy to verify this complexity is reachable when all symbols in any two message columns are lost.

It is not difficult to see that the BEOD has complexityO(p2), which recovers all2(p − 1)

symbols in any two columns withp XOR operations for each symbol. Thus, the BEOD has the same

complexity as the worst case XEOD. However, if all symbols are not lost in those two columns (quite

common in data streaming), the BEOD wastes computation by calculating unneededhorizontal and

diagonal syndromes, as we mentioned earlier. In this part, we quantitativelyanalyze the computation

advantage of the XEOD in avoiding these unneeded operations.

For comparison purpose, we confine symbol losses in two columns (i, j ∈ [0, p + 1]), such

that both the BEOD and the XEOD can fully recover all losses. Assume a random loss rateq. Note

that, for the XOR-based decoding schemes, computation analysis can be simplified by counting the

number of XOR operations, which is the only dominating factor in the decoding process. To further

simplify analysis, we don’t distinguish(p− 1) andp, asp is large enough.

For the BEOD, we can categorize the analysis into four cases and the result is summarized in

Table 3.1, where row 2 shows the number of XOR operations needed in calculating the EVENODD

adjuster, row 3 the number of XOR operations in recovering message symbols and row 4 the number

of occurrences in total
(

p+2
2

)

cases. The expect value of the number of XOR operations can be

calculated as:

EBEOD(# of XORs) =
p4 + (4q + 1

2)p3 − (2q + 1
2)p2

(

p+2
2

)
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Figure 3.1: Computation Advantage of the XEOD

For the XEOD, the analysis is similar and summarized in Table 3.2, using the same notation

as in Table 3.1. The expect value of the number of XOR operations can be calculated as:

EXEOD(# of XORs) =
qp4 + (1

2 + 2q − 1
2q2)p3 + (3

2 − 2q + 3
2q2)p2

(

p+2
2

)

+
(1− q − q2)p + 2qp(1− q)p−1(p− 1)

(

p+2
2

)

The analysis results are also verified by simulation, where the number of XORoperations

are counted in a real decoding implementation. In the simulation, each symbol in acodeword block

corresponds to a data packet of 500 bytes, which is a proper choice for normal data streaming appli-

cations. The analysis and simulation results conform well with each other, asshown in Figure 3.1(a)

and 3.1(b).

Figure 3.1(a) shows a special case where all the symbols in the columni andj are lost, which

is the original case BEOD designed to deal with. The XEOD performs aboutthe same number of

XOR operations as the BEOD in this case. When only half of the symbols are lost, Figure 3.1(b)

shows the saving of the XEOD in terms of XOR operations. This is understandable since the XEOD

doesnotcalculate unneeded horizontal and diagonal syndromes as the BEOD. The advantage of the

XEOD is further verified by actual time measured in decoding simulation, as shown in Figure 3.1(c).

In summary, the XEOD is no worse than the BEOD in computation load under any circum-

stance and outperforms the BEOD in most cases. And the computation advantage of the XEOD

becomes more prominent, as the symbol loss rate decreases. Moreover, the XEOD can handle more

general loss scenarios and thus achieves higher loss recovery capability than the BEOD.

3.2 Energy Consumption and Throughput

3.2.1 Energy Consumption

Energy consumption is a big concern for wireless terminals. In this section, we study the feasibility

of using various FEC schemes in wireless data streaming from this perspective. In particularly, we
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compare the decoding energy consumption of the proposed XEOD with the PARITY code and the

RS code.

We choose a 30-sec MP3 file as experiment data and use the energy consumption of its de-

coding as a baseline. Both the MP3 file (large.mp3) and the MP3 decoder (madplay) are from a

representative embedded benchmark suite (MiBench [45]). Since it is difficult to measure energy

consumption directly, we resorts to Sim-Panalyzer [46] for simulation. We choose Intel StrongARM

SA1100 (200 MHz) as a target microprocessor, which is used in many Compaq iPAQ Pocket PCs.

Various decoder implementations are then compiled to generate StrongARM binary executables.

The Sim-Panalyzer simulates the execution of them and collects instruction levelpower consump-

tion data. Finally, the energy consumption is computed from total power consumption, micropro-

cessor frequency and total clock cycles. For the RS code, we use Rizzo’s implementation [26].
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Figure 3.2: Energy Consumption

Figure 3.2 compares the energy consumption of the MP3 decoder and various FEC decoders.

For each FEC scheme, two sets of code parameters
(

I (254, 228) and II (254, 240)
)

are examined

as representatives. Data loss is always set equal to redundancy to explore maximum recovery capa-

bility. (Shorten technique is also used to achieve proper parameter for the XEOD and the PARITY

code, as in a later section.) We can see that if the RS code is used in streaming,it will signifi-

cantly increase total energy consumption (about1/3 over pure MP3 decoding). On the contrary,

the additional energy consumed using the PARITY code or the XEOD would be almost negligible.

Therefore, from energy perspective, the cost of using the RS codein wireless data streaming is high.

Note that for the same decoder, code I consumes roughly twice as much energy as code II, which

is reasonable because it needs to recover about twice as much data. Alsonote that it is not easy to

directly measure the energy consumed only by FEC decoders in the simulation.Instead, we obtain

the results by subtracting two measurements: 1) the energy consumption of data retrieval plus FEC

decoding and 2) the energy consumption of data retrieval only.
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3.2.2 Decoding Throughput

Besides data loss recovery, a complete wireless data streaming application usually includes many

other functionalities, such as video/audio decoding, digital rights management, etc. To identify

the performance bottleneck, it is desirable to compare the throughput of theFEC schemes to other

possible components.

Here, we consider the following components: 1) media codec, choosing anopen source

MPEG-I decoder originated from UC Berkeley (SMPEG [47]) and 2) security component, choos-

ing AES-128 and RC4 decoders (the fastest block cipher and stream ciphers [48]) from Wei Dai’s

Crypto++5.1 [49]. We use a 12-minute MPEG-I clip of theTerminator2at rate 1.5 Mbps as experi-

ment data and perform throughput measurements on a P3 733 MHZ machine running Linux Redhat

7.3. Figure 3.3 shows that all FEC schemes have higher decoding throughputs than the MPEG-I

decoder and thus willnot be a bottleneck in a typical streaming application. Note that in this ex-

periment, we use code parameters (360, 324) for all FEC schemes. Compared to parameters (254,

240) or (254, 228) as in the previous subsection, this configuration causes more difficulty for the RS

code. The RS code now has to operate in a much larger finite fieldGF (216), as opposed toGF (28).

This certainly contributes to significant throughput difference between the RS code and the other

two codes. It is desirable to repeat the same experiments on a real handheld device to verify our

conclusion. We defer this to future work, though.
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Figure 3.3: Decoding Throughput Comparison

3.3 Data Recovery (I): Random Symbol Loss

To study the loss recovery capability of the XEOD, this section compares it withthe PARITY code

and the RS code. Here, the random loss model is that each symbol has an equal and independent

loss probabilityq.

3.3.1 Performance Analysis

For the PARITY code and the XEOD, we can analyze the decoding procedure by viewing it as a

discrete random process and apply the approach discussed in [41], which we summarize as follows:
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A codeword block is represented as a bipartite graph, with each link connecting a message

node on one half plane to its check node on the other half. Links adjacent toa node of degree

i are denoted aslinks of degreei. Let λi be the fraction of links of degreei corresponding to

message nodes andρi the fraction corresponding to check nodes. Then define two polynomials

λ(x) =
∑

i λix
i−1 andρ(x) =

∑

i ρix
i−1. The fraction of unrecoverable message nodes is:

r(x) = q(1− q)λ(q + (1− q)x)× [x− 1 + ρ(1− qλ(q + (1− q)x))]

wherex is the smallest value satisfies:

ρ(1− qλ(q + (1− q)x)) > 1− x, x ∈ (0, 1]

For a PARITY code withp message symbols, itsλ(x) andρ(x) can be calculated as follows:

each message node participates parity calculation just once, thusλ1 = 1 andλi = 0 for all i 6= 1.

Sincep is the width of message block (p+1 is the width of codeword block), and every check node

hasp links, ρp = 1 andρi = 0 for all i 6= p. Therefore,λ(x) = 1 andρ(x) = xp−1.

For the XEOD, it is a little bit more complex to compute the polynomials. First, the EVEN-

ODD adjuster is assumed to be always available, as in early sections. Then,check nodes are catego-

rized into three types based on their degrees and check equations, as shown in Figure 3.4. Therefore,

we get the following polynomials:

λ(x) = x

ρ(x) =
p− 2

2(p− 1)
xp−3 +

p

2(p− 1)
xp−2

Note that the EVENODD code isshortenedby not using thepth column to achieve the same coding

rate as the PARITY code. Code shortening will be discussed with more details ina later section.

With these two polynomials defined for the PARITY code and the XEOD, it is straightfor-

ward to calculate the largest feasible value ofx and then compute the fraction of unrecoverable

message nodes.

An (n, k) RS code cannot decode at all if less thank symbols are received. Thus, a

systematiccode is always desirable so that at least received message symbols arestill useful even if

decoding fails. We use systematic RS codes in our analysis. Letm1 be the number of lost message

symbols andm2 the number of lost check symbols, then the joint loss probabilityP (m1, m2) in

this case is:

P (m1, m2) =

(

k

m1

)

qm1(1− q)k−m1

(

n− k

m2

)

qm2(1− q)n−k−m2

Also definenormalized unrecoverable ratio(denoted byr) as the performance metric, which repre-

sents the ratio between the number of unrecoverable message symbols and the total number of loss
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Figure 3.4: Random Loss Analysis of the XEOD
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Figure 3.5: Random Loss Analysis

symbols in a codeword block. We can then computer for the RS codes:

r =
∑

m1,m2

m1

m1 + m2
× P (m1, m2), m1 + m2 > n− k

3.3.2 Performance Results

To compare the performance fairly, same block length and coding rate are chosen for all three codes.

The PARITY code has height2(p−1) and width(p+1)
2 . The shortened EVENODD code has height

(p− 1) and width(p + 1). For the RS code, only the block length matters, which is(p− 1)(p + 1)

here. Therefore, the coding rate isp−1
p+1 , the same for all the three codes.

Figure 3.5 shows both analysis and simulation results of the normalized unrecoverable ratio

for all three codes with respective to various random loss probability. The XEOD always outper-

forms the PARITY code. This is because each node in the EVENODD code participates in the

calculation of two check nodes, which results in higher recovery chance. Also notice that the RS

code has better performance than the XEOD, which is expected because the RS code is a MDS code

at the symbol level, while the EVENODD code is MDS only at the column level.
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Note that there is a small gap between the analysis and simulation results for the XEOD.

This is due to the assumption that the EVENODD adjuster is always available to simplify analysis.

This assumption makes the EVENODD code a little bit stronger and thus results in aslightly lower

unrecoverable ratio in the analysis.

3.4 Data Recovery (II): Bursty Symbol Loss

3.4.1 A Realistic Data Loss Model: Bursty Loss

In the previous section, we use random data loss as a transmission model, which simplifies analysis.

In wireless networks, however, data losses often occur in bursty manner. Hence, a more realistic

loss model needs to take into account the dependency between packet losses. A two state Gilbert

model [50] can represent the burstiness reasonably well. With this model, the network is either in

a GOOD (G) state representing a packet reaches destination, or in a BAD (B) state representing a

packet loss. Network state changes from stateB to G with probabilityβ and remains in stateB

with probably(1− β). Similarly, state remains in stateG with probability(1− α) and changes to

B with probabilityα. It is easy to verify that thestationary loss rateis πB = α
α+β and the average

length of consecutive BAD states, i.e., theaverage burst length, is µB = 1
β . The value ofα andβ

can be derived by measuringπB andµB in a real network environment.

3.4.2 Loss Recovery Performance of the FECs

It is not difficult to analyze the unrecoverable ratio of the RS code for a bursty loss model. We use

a recursive approach here.

Let Ps0,sn(k, n) be the probability ofk symbol losses out ofn total symbols, beginning

from states0 and ending at statesn. Therefore, we can get following recursive equations when the

initial state isG:

Ps0=G,sn=G(k, n) =Ps0=G,sn−1=G(k, n− 1)× (1− α) + Ps0=G,sn−1=B(k, n− 1)× β

Ps0=G,sn=B(k, n) =Ps0=G,sn−1=G(k − 1, n− 1)× α + Ps0=G,sn−1=B(k − 1, n− 1)× (1− β)

with Ps0=G,sk=G(k, k) = 0 andPs0=G,sk=B(k, k) = α× (1− β)k−1.

And also when the initial state isB:

Ps0=B,sn=G(k, n) =Ps0=B,sn−1=G(k, n− 1)× (1− α) + Ps0=B,sn−1=B(k, n− 1)× β

Ps0=B,sn=B(k, n) =Ps0=B,sn−1=G(k − 1, n− 1)× α + Ps0=B,sn−1=B(k − 1, n− 1)× (1− β)

with Ps0=B,sk=G(k, k) = 0 andPs0=B,sk=B(k, k) = (1− β)k.
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Figure 3.6: Burst Loss Analysis

Thus, the probabilityP (k, n) of k symbol losses out of totaln symbols is:

P (k, n) = (1− πB)× (Ps0=G,sn=G(k, n) + Ps0=G,sn=B(k, n))

+ πB × (Ps0=B,sn=G(k, n) + Ps0=B,sn=B(k, n))

It is, however, much more difficult to get closed-form representation ofthe unrecoverable

ratio of the PARITY code or the XEOD for a bursty loss model, if possible at all. This is mainly be-

cause the recovery capability depends heavily on actual loss pattern in each codeword block, which

is extremely difficult to count. Therefore, we use simulation to measure the burst loss recovery

capability of the PARITY code and the XEOD. For each simulation, we let the first 10,000 states of

the Gilbert model pass to ensure our experiments always start from a steady state. Then, 1,000,000

codeword blocks are generated and decoded. The unrecoverable ratio is calculated as the average

over all codeword blocks. Figure 3.6 shows the simulation results of the PARITY code and the

XEOD, which are also compared with the analysis results of the RS code. Loss rate for each case is

simulated to be1
10 of the redundancy.

It is worth pointing out that the performance of the RS code is worse than theXEOD under

various burst patterns when loss rate is relatively low. The explanation is that in a bursty network,

symbol losses tend to group closer together with longer gaps between groups than in random loss

situation. Whenever there are more than(n− k) symbol losses in a codeword block of a (n, k) RS

code, the decoder fails to solve necessary linear equations due to too manyunknowns. Thus none of

these lost packets can be recovered. In contrast, each subset of symbols can do their own decoding

in the PARITY code and the XEOD. This provides higher chance to recover symbol losses in some

circumstances. Hence, the RS code, although optimal for random data loss, is not necessarily the

best choice even not considering energy consumption and decoding throughput.

Also, the performance of the PARITY code is not always poor in bursty losses. When the

average burst length goes beyond across pointwith the XEOD, the PARITY code actually yields
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Figure 3.7: Effect of Shortening

better loss recovery performance. This justifies that the PARITY code is still an effective approach

for loss recovery.

3.5 Effects of Parameters on the XEOD

This section discusses the effects of parameterp on the XEOD. Fair comparisons among codes

constructed with differentp values are achieved byshorteningcodes with largerps such that all

the codes have the same coding rate. Shortening is a common practice to adjustthe rate of a code

without changing its loss recovery capability, by setting certain information symbols to zero [4].

For a code withk information andn total columns, a simple shortening example is to set the entire

last column to zero, and the coding rate decreases fromk
n to k−1

n−1 . Shortened codes can have the

same coding rate but different block length.

Figure 3.7(a) shows the random loss recovery results of the PARITY code, the XEOD and

the RS code. It is clear that shortening has only marginal effect on codes’ recovery capability if

data happens randomly. Figure 3.7(b) compares the burst loss recovery of the three codes. For each

type of code, its loss recovery capability increases asp increases (block length also increases). For

the samep, the relative loss recovery capability remains the same among the PARITY code, the

XEOD and the RS code, i.e., the XEOD outperforms the RS code and is better than the PARITY

code for short bursts. Notice that largerp yields better loss recovery performance, but at the cost

of larger codeword block length, which in general demands more bufferspace usage and longer

decoding delay. Hence, a general rule to decidep value is to pushp to the maximum value limited

by recovery buffer and delay constraints.
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Chapter 4

ORC: Optimal Coding Rate Control for

Scalable Streaming

Perhaps the major technical problem in streaming media on demand over the Internet is the need

to adapt to changing network conditions. As competing communication processes begin and end,

the available bandwidth, packet loss and packet delay all fluctuate. Network outages lasting many

seconds can and do occur. Resource reservation and quality of service support can help, but even

they cannot guarantee that network resources will be stable. If the network path contains a wireless

link, for example, its capacity may be occasionally reduced by interference. Thus it is necessary for

commercial-grade streaming media systems to be robust to hostile network conditions. Moreover,

such robustness cannot be achieved solely by aggressive (nonreactive) transmission. Even constant

bit rate transmission with retransmissions for every packet loss cannot achieve a throughput higher

than the channel capacity. Some degree of adaptivity to the network is therefore required.

End users expect that a good streaming media system will exhibit the followingbehavior:

content played back on demand will start with low delay; once started, it will play back continuously

(without stalling) unless interrupted by the user; and it will play back with the highest possible

quality given the average communication bandwidth available. To meet these expectations in the

face of changing network conditions, buffering of the content at the client before decoding and

playback is required.

Buffering at the client serves several distinct but simultaneous purposes. First, it allows the

client to compensate for short-term variations in packet transmission delay (i.e., “jitter”). Second,

it gives the client time to perform packet loss recovery if needed. Third,it allows the client to

continue playing back the content during lapses in network bandwidth. And finally, it allows the

content to be coded with variable bit rate, which can dramatically improve overall quality.1 By

controlling the size of the client buffer over time it is possible for the client to meet the above

1Note that even so-called constant bit rate (CBR) coded content is actuallycoded with variable bit rate within the
constraints of a decoding buffer of a given size. The larger the decoding buffer size, the better the quality. The required
decoding buffering is part of the larger client buffer.
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mentioned user expectations. If the buffer is initially small, it allows a low startup delay. If the

buffer never underflows, it allows continuous playback. If the buffer is eventually large, it allows

eventual robustness as well as high, nearly constant quality. Thus, client buffer management is a

key element affecting the performance of streaming media systems.

The size of the client buffer can be expressed as the number of seconds of content in the

buffer, called the bufferduration. The buffer duration tends to increase as content enters the buffer

and tends to decrease as content leaves the buffer. Content leaves thebuffer when it is played out,

at a rate ofν seconds of content per second of real time, whereν is theplayback speed(typically 1

for normal playback, but possibly more than 1 for high speed playback or less than 1 for low speed

playback). Content enters the buffer when it arrives at the client over the network, at a rate ofra/rc

seconds of content per second of real time, wherera is thearrival rate, or average number of bits

that arrive at the client per second of real time, andrc is thecoding rate, or average number of bits

needed to encode one second of content. Thus the buffer duration canbe increased by increasingra,

decreasingrc, and/or decreasingν (and vice versa for decreasing the buffer duration). Although the

buffer duration can be momentarily controlled by changingra (cf. “Fast Start” in Windows Media

9 [51]) or changingν (cf. “Adaptive Media Playout (AMP)” in [52]), these quantities are generally

not possible to control freely for long periods of time. The arrival ratera on average is determined

by the network capacity, while the playback speedν on average is determined by user preference.

Thus if the network capacity drops dramatically for a sustained period, reducing the coding raterc

is the only appropriate way to prevent arebuffering eventin which playback stops (ν = 0) while the

buffer refills.

Thus, adaptivity to changing network conditions requires not only a buffer, but also some

means to adjust the coding raterc of the content. This can be done by stream switching in combi-

nation with multi bit rate (MBR) coding or coarse grained or fine grained scalable coding. Today’s

commercial streaming media systems [51, 53] rely on MBR coding as well asthinning, which is a

form of coarse grained scalability.2 Future commercial systems may support fine grained scalability

(FGS) as well.3 FGS coding offers great flexibility in adapting to variable network conditions, and

can demonstrably improve quality under such conditions.

In this chapter we focus on the problem ofcoding rate control, that is, dynamically adjusting

the coding rate of the content to control the buffer duration. Outside the scope of this chapter is the

problem of transmission rate control. Thetransmission raterx is the rate at which the sender

application injects bits into the transport layer and is equal to the arrival ratera on average if the

2In MBR coding, semantically identical content is encoded into alternative bitstreams at different coding rates and
stored in the same media file at the server, allowing the content to be streamed at different levels of quality corresponding
to the coding ratesrc, possibly using bit stream switching [54]. In coarse grained scalable coding (such as MPEG-2/4
temporal or SNR scalability [55]) the content is encoded into several substreams orlayers, so that the coding raterc can
be changed in large deltas by adding or dropping (at possibly restricted times) one layer of content at a time. Thinning
is a special case of coarse grained scalability in which dependent video frames (P and B frames) are dropped before
independent video frames (I frames), which are in turn are droppedbefore audio frames.

3Fine grained scalable coding (such as 3D SPIHT [56], MPEG-4 FGS [57], or EAC [58]) allows the coding raterc to
change at any time in deltas sometimes as small as one byte per presentation.
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Figure 4.1: (a) Traditional streaming media architecture. (b) Proposed streaming media architecture
with congestion control factored out.

transport is lossless. Bytransmission rate controlwe mean congestion control as well as any other

mechanisms affecting the transmission rate such as bursting, tracking the transmission rate to the

available bandwidth, and so on. Thus we control the buffer duration by adjusting the coding raterc

at which bits leave the buffer, while letting the the arrival ratera at which bits enter the buffer be

determined by other means.

In the streaming media literature, with few exceptions (e.g., [59, 60] and the works based

thereon; also [11]), there has been little attention paid to the the distinction between the coding rate

rc and the arrival ratera or the transmission raterx. Indeed, in typical streaming media systems

(e.g., [51]), after an initial buffering period (in whichν = 0 and possiblyrx/rc > 1), rx/rc is

locked toν. A difficulty with locking the transmission rate to the coding rate via the playout speed

is that it essentially removes any means of controlling the client buffer duration after the initial

buffering period.4 A further difficulty is that the transmission rate, if it is locked to the coding rate,

will typically be incompatible with transports that use standard congestion control, such as TCP and

TFRC [61].

By decoupling the coding and transmission rates, it is possible to continually control the

client buffer duration. This allows the buffer to grow over time, for example, providing a low

startup delay, asymptotically high robustness, and eventual constant quality. Furthermore, decou-

pling the coding and transmission rates makes possible an architecture in whichthe transport and

congestion control protocol may be factored out of the streaming problem,if desired. Figure 4.1(a)

illustrates the traditional architecture in which congestion control is integratedinto the streaming

media application running on top of UDP. Figure 4.1(b) illustrates the proposed architecture in

which congestion control is factored out of the streaming media application, allowing standard

transport mechanisms (such as TCP and TFRC) to be used, as well as custom transport solutions

using custom transmission rate control over UDP [62–65].

4However, congestion, as evidenced by a drop inra and hence a drop in the buffer duration, can still be alleviated by
reducingrx andrc by the same factor.
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In addition to factoring the problem of network adaptation into transmission ratecontrol

and coding rate control, the novelty of our approach lies in the following two aspects. First, we

formulate the problem of coding rate control as a standard problem in linearquadratic optimal

control, in which the client buffer duration is controlled as closely as possible to a target level while

keeping the coding rate (and hence the quality) as constant as possible. Toour knowledge this is

the first use of optimal control theory for client buffer management. Second, we explicitly take into

consideration, using a leaky bucket model, the natural variation in the instantaneous coding rate

that occurs for a given average coding rate. We incorporate the leakybucket model into the control

loop so that the changes in buffer duration due to natural variation in the instantaneous coding rate

are not mistaken for changes in buffer duration due to network congestion. To our knowledge this

is also the first use of a leaky bucket to model source coding rate constraints during client buffer

management beyond the initial startup delay.5

4.1 Problem Formulation

4.1.1 Temporal Coordinate Systems

It will pay to distinguish between the temporal coordinate systems, or clocks,used to express time.

In this chapter,media timerefers to the clock running on the device used to capture and timestamp

the original content, whileclient timerefers to the clock running on the client used to play back

the content. We assume that media time is real time (i.e., one second of media time elapses in

one second of real time) at the time of media capture, while client time is real time at the time of

media playback. We use the symbolτ to express media time and the symbolt to express client

time, with subscripts and other arguments to indicate corresponding events. For example, we use

τd(0), τd(1), τd(2), . . . to express the playback deadlines of frames0, 1, 2, . . . in media time, while

we usetd(0), td(1), td(2), . . . to express the playback deadlines of frames0, 1, 2, . . . at the client.

Content may be played back at a rateν times real time. Thus the conversion from media time to

client time can be expressed

t = t0 +
τ − τ0

ν
, (4.1)

wheret0 andτ0 represent the time of a common initial event, such as the playback of frame 0 (or the

playback of the first frame after a seek or rebuffering event) in media and client coordinate systems,

respectively.

4.1.2 Leaky Bucket Model

For the moment we revert to a scenario in which both the encoder and the decoder run in real time

over an isochronous communication channel. In this case, to match the instantaneous coding rate to

5Ribas, Chou, and Regunathan use a leaky bucket to model source coding rate constraints to reduce initial startup
delay [66], while Hsu, Ortega and Reibman use a leaky bucket to model transmission rate contraints [5].
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the instantaneous channel rate, anencoder bufferis required between the encoder and the channel

and adecoder bufferis required between the channel and the decoder, as illustrated in Figure 4.2. A

scheduleis the sequence of times at which successive bits in the coded bit stream pass a given point

in the communication pipeline. Figure 4.3 illustrates the schedules of bits passing the points A, B,

C, and D in Figure 4.2. Schedule A is the schedule at which captured framesare instantaneously

encoded and put into the encoder buffer. This schedule is a staircase inwhich thenth step rises by

b(n) bits at timeτ(n), whereτ(n) is the time at which framen is encoded, andb(n) is the number

of bits in the resulting encoding. Schedules B and C are the schedules at which bits respectively

enter and leave the communication channel. The slope of these schedules isR bits per second,

whereR is the communication rate of the channel. Schedule D is the schedule at which frames are

removed from the decoder buffer and instantaneously decoded for presentation. Note that Schedule

D is simply a shift of Schedule A. Note also that Schedule B is a lower bound to Schedule A,

while Schedule C is an upper bound to Schedule D. Indeed, the gap between Schedules A and

B represents, at any point in time, the size in bits of the encoder buffer, while the gap between

Schedules C and D likewise represents the size of the decoder buffer. The encoder and decoder

buffer sizes are complementary. Thus the coding schedule (either A or D)can be contained within a

buffer tube, as illustrated in Figure 4.4, having slopeR, heightB, and initial offsetF d from the top

of the tube (or equivalently initial offsetF e = B − F d from the bottom of the tube). It can be seen

thatD = F d/R is thestartup delaybetween the time that the first bit arrives at the receiver and the

first frame is decoded. Thus it is of interest to minimizeF d for a givenR.

A leaky bucketis a metaphor for the encoder buffer. The encoder dumpsb(n) bits into the

leaky bucket at timeτ(n), and the bits leak out at rateR. In general it is possible for the leak
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rateR to be high enough so that the bucket occasionally empties. Thus the encoder buffer fullness

F e(n) immediately before framen is added to the bucket and the encoder buffer fullnessBe(n)

immediately after framen is added to the bucket evolve from an initial encoder buffer fullness

F e(0) = F e according to the dynamical system

Be(n) = F e(n) + b(n), (4.2)

F e(n + 1) = max{0, Be(n)−R/f(n)}, (4.3)

where

f(n) =
1

τ(n + 1)− τ(n)
(4.4)

is the instantaneous frame rate, forn = 0, 1, 2, . . .. If R is sufficiently low, then the bucket will

never run dry (underflow), but ifR is too low the bucket will eventually overflow. We take the

largestR such that the buffer will never run dry to be the average coding raterc of the bit stream.

This is made more precise in the following two paragraphs.

A leaky bucket with sizeB, rateR, and initial fullnessF e is said tocontaina stream having a

schedule characterized by the steps{(b(n), τ(n))} if Be(n) ≤ B for all n. We define the minimum

bucket size needed to contain the stream given leak rateR and initial fullnessF e as

Be
min(R, F e) = min

n
Be(n), (4.5)

while we define the corresponding initial decoder buffer fullness as

F d
min(R, F e) = Be

min(R, F e)− F e. (4.6)
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We denote the minimum of each of these overF e as

Be
min(R) = min

F e
Be

min(R, F e), (4.7)

F d
min(R) = min

F e
F d

min(R, F e). (4.8)

It is shown in [66, Proposition 2] that remarkably, these are each minimized bythe same value of

F e, which is hence equal to

F e
min(R) = Be

min(R)− F d
min(R). (4.9)

Thus given a bit stream with schedule{(b(n), τ(n))}, for each bit rateR there is a unique leaky

bucket that contains the stream and that has the minimum buffer sizeB as well as the minimum

startup delayD = F d/R. These parameters can be computed with the above equations.

For sufficiently low leak ratesR, the leaky bucket does not underflow, when beginning with

initial fullnessF e = F e
min(R). We may use the maximum such rateR as the average coding raterc

of a bit stream with coding schedule{(b(n), τ(n))}.

Leak ratesR greater thanrc will also be used in this chapter. It is shown in [66] that both

Be
min(R) andF d

min(R) are decreasing, piecewise linear, and convex inR. Hence if the transmission

rateR is greater than the average coding raterc, the startup delayD = F d
min(R)/R can be reduced

compared toD = F d
min(rc)/R. This fact will be used in Section 4.3.1.

A leaky bucket with leak rateR = rc, sizeB = Be
min(rc) and initial decoder buffer full-

nessF d = F d
min(rc) thus corresponds to a straight buffer tube bounding the coding scheduleas in

Figure 4.4. Each stream in the media file has a coding schedule; thus each stream corresponds to

a straight buffer tube with slope equal to the average coding raterc of the stream. The sizeB of

the buffer tube and its offsetF e (or F d) relative to the coding schedule can be either computed by

the above formula for a variable bit rate (VBR) stream (such as a constant-quality substream of a

scalable stream), or obtained from the sizeB and initial stateF e of the actual encoder buffer used

to encode the stream if it is a constant bit rate (CBR) stream.

In the sequel we will need to consider the gapg(n) at framen between the buffer tubeupper

boundand the coding schedule, as depicted in Figure 4.4. Note that the decoder buffer fullness

F d(n) = B − F e(n) can also be expressed

F d(n) = b(n) + g(n) = g(n− 1) +
rc(n)

f(n)
, (4.10)

whererc(n) is the coding rate of the buffer tube, now taking into account that different frames may

lie in different buffer tubes with different coding rates as coding rate control is applied and streams

are switched.
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The upper bound is controlled to the target schedule, which is increasinglyin advance of the

playback deadline to provide greater robustness over time.

4.1.3 Rate Control Model

Assume for the moment that bits arrive at the client at a constant ratera. Then framen (having

size b(n)) arrives at the clientb(n)/ra seconds after framen − 1. Indeed, the index of a bit is

proportional to its arrival time. Dividing the vertical scale of the schedulesin Figure 4.4 byra, we

obtain the schedules in terms of client time, rather than bits, as shown in Figure 4.5. The coding

schedule divided byra becomes thearrival schedule, which provides for eachn the timeta(n) of

arrival of framen at the client. The buffer tube upper bound (in bits) divided byra becomes the

buffer tube upper bound (in time), which provides for eachn the timetb(n) by which framen is

guaranteed to arrive. In the same plot we show theplayback deadline, which is the timetd(n) at

which framen is scheduled to be played (after instantaneous decoding). Thus the gap between a

frame’s arrival time and its playback deadline is the client buffer duration at the time of the frame

arrival. This must be non-negative to allow continuous playback.

In reality the arrival rate is not constant. Ifta(n − 1) and ta(n) are the arrival times of

framesn andn− 1 respectively, then we may define

ra(n) =
b(n)

ta(n)− ta(n− 1)
(4.11)

to be theinstantaneous arrival rateat framen. In practice we estimate the average arrival rate at

framen by a moving averagẽra(n) of previous values ofra(n), as detailed in Section 4.3.3. Hence

using (4.11) we may express the arrival time of framen in terms of the arrival time of framen− 1

as

ta(n) = ta(n− 1) +
b(n)

ra(n)
(4.12)

= ta(n− 1) +
b(n)

r̃a(n)
+ v(n), (4.13)
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where thev(n) term is an error term that captures the effect of using the slowly moving average

r̃a(n) instead of the instantaneous arrival ratera(n). From (4.10), however, we have

b(n) =
rc(n)

f(n)
+ g(n− 1)− g(n), (4.14)

whence (substituting (4.14) into (4.13)) we have

ta(n) = ta(n− 1) +
rc(n)

f(n)r̃a(n)
+

g(n− 1)

r̃a(n)
−

g(n)

r̃a(n)
+ v(n). (4.15)

Now defining the buffer tube upper bound (in time) of framen as

tb(n) = ta(n) +
g(n)

r̃a(n)
, (4.16)

so that

tb(n)− tb(n− 1) = ta(n)− ta(n− 1) +
g(n)

r̃a(n)
−

g(n− 1)

r̃a(n− 1)
, (4.17)

we obtain the following update equation:

tb(n) = tb(n− 1) +
rc(n)

f(n)r̃a(n)
+ w(n− 1), (4.18)

where

w(n− 1) =
g(n− 1)

r̃a(n)
−

g(n− 1)

r̃a(n− 1)
+ v(n) (4.19)

is again an error term that captures variations around a locally constant arrival rate.

Using (4.16), the client can computetb(n−1) from the measured arrival timeta(n−1), the

estimated arrival ratẽra(n− 1), andg(n− 1) (which can be transmitted to the client along with the

data in framen− 1 or computed at the client as described in Section 4.4.5). Then using (4.18),the

client can control the coding raterc(n) so thattb(n) reaches a desired value, assuming the frame

rate and arrival rate remain roughly constant. From this perspective, (4.18) can be regarded as the

state transition equation of a feedback control system and it is thus possibleto use a control-theoretic

approach to regulate the coding rate.

4.1.4 Control Objective

With the state transition equation defined in (4.18), uninterrupted playback can be achieved by

regulating the coding rate so that the client buffer does not underflow. To introduce a margin of

safety that increases over time, we introduce atarget schedule, illustrated in Figure 4.5, whose

distance from the playback deadline grows slowly over time. By regulating thecoding rate, we

attempt to control the buffer tube upper bound so that it tracks the target schedule. If the buffer

tube upper bound is close to the target schedule, then the arrival times of all frames will certainly
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be earlier than their playback deadlines and thus uninterrupted playback will be ensured. Note that

controlling the actual arrival times (rather than their upper bounds) to the target would result in an

approximately constant number of bits per frame, which would in turn result invery poor quality

overall. By taking the leaky bucket model into account, we are able to establish a control that

allows the instantaneous coding rate to fluctuate naturally according to the encoding complexity of

the content, within previously established bounds for a given average coding rate.

Although controlling the upper bound to the target schedule is our primary goal, we also

wish to minimize quality variations due to large or frequent changes to the codingrate. This can be

achieved by introducing into the cost function a penalty for relative codingrate differences.

Letting tT (n) denote the target for framen, we use the following cost function to reflect

both of our concerns:

I =

N
∑

n=0

(

(

tb(n)− tT (n)
)2

+ σ

(

rc(n + 1)− rc(n)

r̃a(n)

)2)

, (4.20)

where the first term penalizes the deviation of the buffer tube upper bound from the target schedule

and the second term penalizes the relative coding rate difference between successive frames.N is

the control window size andσ is a Lagrange multiplier or weighting parameter to balance the two

terms.

4.2 Optimal Control Solution

Before presenting the optimal control solution, we first describe the design rational of the target

schedule.

4.2.1 Target Schedule Design

Figure 4.6 shows an illustrative target schedule. The gap between the playback deadline and the

target schedule is the desired client buffer duration (in client time). If the gap is small at the begin-

ning of streaming, then it allows a small startup delay, while if the gap grows slowly over time, it

gradually increases the receiver’s ability to counter jitter, delays, and throughput changes.

The slope of the target schedule relates the average coding rate to the average arrival rate.

Let tT (n) be the target for framen. As illustrated in Figure 4.6, the slope of the target schedule at

framen is

s(n) =
tT (n + 1)− tT (n)

τ(n + 1)− τ(n)
. (4.21)

If the upper boundtb(n) aligns perfectly with the target schedule (i.e.,tb(n) = tT (n)) and the

arrival ratera is constant (i.e., thew(n− 1) term vanishes), we get from (4.18)

s(n) =
tb(n + 1)− tb(n)

τ(n + 1)− τ(n)
=

rc(n)

ra
. (4.22)
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Figure 4.6: Target schedule design.

Thus initially, when the slope is low, i.e., less than1/ν, ra/rc is greater thanν and more than

ν seconds of content are received per second of client time, causing theclient buffer (which is

playing out onlyν seconds of content per second of client time) to grow. Over time, as the slope

approaches1/ν, ra/rc approachesν and the buffer remains relatively constant (except for changes

due to variations in the instantaneous coding rate), since content is received and played back at the

same speedν. We next present two target schedule functions that illustrate the general design idea.

Logarithmic Target Schedule

One way to choose the target scheduletT is to have the client buffer duration grow logarithmically

over time. Specifically, iftd is the playback deadline, then for eachtd greater than some start time

td0,

tT = td −
b

a
ln(a(td − td0) + 1). (4.23)

Since by (4.1),td = td0 + (τd − τd0)/ν, we have

s =
dtT
dτd

=
dtT
dtd

dtd
dτd

=
1

ν
−

b

a(τd − τd0) + ν
, (4.24)

and hence the initial slope at frame 0 (whentd = td0) is s(0) = (1− b)/ν. Settingb = 0.5 implies

that initially rc/ra = 0.5/ν, causing the client buffer to grow initially at two times real time. Further

settinga = 0.15 implies that the client buffer duration will be 7.68 seconds after 1 minute, 15.04

seconds after 10 minutes, and 22.68 seconds after 100 minutes, regardless ofν.

Two-piece Linear Target Schedule

Another way to choose the target scheduletT is to have the client buffer duration grow linearly at

rateb seconds of media time per second of client time until the buffer duration reachesa seconds

of media time, after which it remains constant. Specifically, for eachtd greater than some start time
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Figure 4.7: Target schedules.

td0,

tT =

{

td − b(td − td0) td ≤ td0 + a/b

td − a td ≥ td0 + a/b
. (4.25)

The initial slope is agains(0) = (1 − b)/ν. Settingb = 0.5 implies that initiallyrc/ra = 0.5/ν,

causing the client buffer to grow initially at two times real time. Further settinga = 10 implies

that the client buffer duration will reach 10 seconds of media time after 20 seconds of client time,

regardless ofν.

Figure 4.7 shows the above two target schedules. As one can see, if a client buffer duration of

10 seconds is considered to be a safe level against jitter, delay and network fluctuations, then the two-

piece linear target schedule reaches the safe level in 20 seconds, much faster than the logarithmic

target schedule. On the other hand, the slope of the two-piece linear target schedule remains lower

for longer (hence the coding rate and quality are lower for longer) and furthermore experiences an

abrupt change at 20 seconds when its slope changes from0.5/ν to 1/ν. Consequently, the coding

rate will not change as smoothly as with the logarithmic target schedule, although it will not be as

abrupt as the schedule itself because of the smoothness objective in the controller design. Hence,

we investigate the effect of both target schedules.

4.2.2 Optimal Controller Design

Recall from (4.18) the fundamental state transition equation, which describes the evolution of the

buffer tube upper boundtb(n) in terms of the coding raterc(n):

tb(n + 1) = tb(n) +
rc(n + 1)

fr̃a
+ w(n). (4.26)

Here we now assume that the frame ratef and the average arrival ratẽra are relatively constant.

Deviations from this assumption are captured byw(n).
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We wish to control the upper bound by adjusting the coding rate. As each frame arrives at

the client, a feedback loop can send a message to the server to adjust the coding rate. Note, however,

that by the time framen arrives completely at the client, framen + 1 has already started streaming

from the server. Thus the coding raterc(n+1) for framen+1 must already be determined by time

ta(n). Indeed, at timeta(n), framen+2 is the earliest frame for which the controller can determine

the coding rate. Hence at timeta(n), the controller’s job must be to chooserc(n + 2). We must

explicitly account for this one-frame delay in our feedback loop.

For simplicity, we linearize the target schedule around the time that framen arrives. The

linearization is equivalent to using a line tangent to the original target schedule at a particular point

as an approximate target schedule. Thus we have

tT (n + 1)− 2tT (n) + tT (n− 1) = 0. (4.27)

Rather than directly control the evolution of the upper bound, which growswithout bound,

for the purposes of stability we use an error space formulation. By defining the error

e(n) = tb(n)− tT (n), (4.28)

we obtain

e(n + 1)− e(n)

= (tb(n + 1)− tT (n + 1))− (tb(n)− tT (n)) (4.29)

= (tb(n + 1)− tb(n))− (tT (n + 1)− tT (n)) (4.30)

=
rc(n + 1)

fr̃a
− (tT (n + 1)− tT (n)) + w(n), (4.31)

from which we obtain in turn

(e(n + 1)− e(n))− (e(n)− e(n− 1))

= [rc(n + 1)− rc(n)]/fr̃a

−(tT (n + 1)− 2tT (n) + tT (n− 1))

+(w(n)− w(n− 1)) (4.32)

=
rc(n + 1)− rc(n)

fr̃a
+ (w(n)− w(n− 1)). (4.33)

We next define the control input

u(n) =
rc(n + 2)− r̂c(n + 1)

r̃a
, (4.34)
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wherer̂c(n + 1) is a possibly quantized version ofrc(n + 1) (as defined in Section 4.3.4) and we

define the disturbance

d(n) =
r̂c(n)− rc(n)

fr̃a
+ w(n)− w(n− 1). (4.35)

Then (4.33) can be rewritten

e(n + 1) = 2e(n)− e(n− 1) +
u(n− 1)

f
+ d(n). (4.36)

Therefore, defining the error vector

e(n) =







e(n)

e(n− 1)

u(n− 1)






=







tb(n)

tb(n− 1)
rc(n+1)

r̃a






−







tT (n)

tT (n− 1)
r̂c(n)

r̃a






, (4.37)

the error space representation of the system can be expressed

e(n + 1) =







2 −1 1
f

1 0 0

0 0 0






e(n) +







0

0

1






u(n) +







1

0

0






d(n), (4.38)

or e(n + 1) = Φe(n) + Γu(n) + Γdd(n) for appropriate matricesΦ, Γ andΓd.

Assuming the disturbanced(n) is a pure white noise, and assumingperfect state measure-

ment(i.e., we can measure all components ofe(n) without using an estimator), the disturbanced(n)

doesnotaffect the controller design. Thus we can use a linear controller represented by

u(n) = −Ge(n), (4.39)

whereG is a feedback gain. By the time framen is completely received, all elements ofe(n) are

available at the client andu(n) can thus be computed. The ideal coding rate for framen + 2 can

then be computed as

rc(n + 2) = r̂c(n + 1)−Ge(n)r̃a. (4.40)

Finding the optimal linear controller amounts to finding the feedback gainG∗ that minimizes

the quadratic cost function defined in Section 4.1.4. Before continuing with thedesign, we first

check the systemcontrollability matrixC,

C =
[

Γ ΦΓ Φ2Γ
]

=







0 1
f

2
f

0 0 1
f

1 0 0






, (4.41)

which has full rank for any frame ratef . Thus, the system iscompletely controllableand the

statee(n) can be regulated to any desirable value. Now recall that the cost functiondefined in
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Section 4.1.4 is

I =
N

∑

n=0

{(

tb(n)− tT (n)
)2

+ σ
(rc(n + 1)− rc(n)

r̃a

)2}

(4.42)

=
N

∑

n=0

{

e(n)T Qe(n) + u(n− 1)T Ru(n− 1)
}

, (4.43)

whereQ = CT C (with C = [1 0 0]) andR = σ. Then, the original control problem of tracking

the target schedule while smoothing the coding rate fluctuations (i.e., minimizing the cost function

I) is converted to a standard regulator problem in the error space. LettingN → ∞, the infinite

horizon optimal control problem can be solved by applying the results in [67, Section 3.3] to obtain

an optimal regulator in two steps: 1) solving, to getS, thediscrete algebraic Riccati equation

S = ΦT {S − SΓ[ΓT SΓ + R]−1ΓS}Φ + Q, (4.44)

and 2) computing the optimal feedback gain

G∗ = [ΓT SΓ + R]−1ΓT SΦ. (4.45)

The existence and uniqueness ofS (and in turn ofG∗) is guaranteed whenQ is nonnegative definite

andR is positive definite, which is straightforward to verify in our case.

4.2.3 Frame Rate

In the previous section, we assumed that the frame rate is constant. This assumption is reasonable

when streaming a single medium, such as video without audio.6 However, usually video and audio

are streamed together, and their merged coding schedule may have no fixedframe rate. Even if there

is a fixed frame ratef , we may wish to operate the controller at a rate lower thanf , to reduce the

feedback rate, for example.

To address these issues, in practice we use the notion of avirtual frame rate. We choose

a virtual frame ratef , for examplef = 1 frame per second (fps); we partition media time into

intervals of size1/f ; and we model all of the (audio and video) frames arriving within each interval

as avirtual framewhose decoding and playback deadline is the end of the interval.

This approach has several advantages. First, it allows us to design offline a universal feed-

back gain, which is independent of the actual frame rate of the stream or streams. Second, it allows

us to reduce the rate of feedback from the client to the server. And finally, since the interval be-

tween virtual frames is typically safely larger than a round trip time (RTT), a one-frame delay in the

error space model (as described in the previous section) is sufficient tomodel the feedback delay.

6Variable frame rate video is usually achieved by skipping frames, which we can accommodate by settingb(n) = 0.



56

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

3.14

2.83

2.51

2.2

1.88
1.57

1.26

0.942

0.628

0.314

3.14

2.83

2.51

2.2

1.88
1.57

1.26

0.942

0.628

0.314

Root Locus

Real Axis

Im
a

g
 A

xi
s

-20

-10

0

10

20

30

40

50

60

70

G.M.: 12.6 dB
Freq: 3.14 rad/sec
Stable loop

Bode Diagram

M
a

g
n

itu
d

e
 (

d
B

)

10
-2

10
-1

10
0

10
1

-180

-150

-120
P.M.: 51.6 deg
Freq: 0.517 rad/sec

Frequency (rad/sec)

P
h

a
se

 (
d

e
g

)

closed-loop poles

Figure 4.8: Root locus and Bode diagram.

Otherwise we would have to model the feedback delay with approximatelyRTT/f additional state

variables to represent the network delay using a shift register of lengthRTT/f .

In the sequel we therefore use a virtual frame ratef = 1 fps, and we refer to this simply as

the frame rate.

4.2.4 Stability and Robustness

To compute the optimal regulator, it is necessary to choose a value forσ in (4.20) or (4.42)-(4.43).

This can be done by following the following four steps: 1) pick aσ value to balancee(n) andu(n);

2) compute the optimal feedback gain; 3) plot the closed-loop root locus (tocheck stability) and

bode diagram (to check robustness); and 4) perform time domain simulationsto verify transient

response. Several iterations may be needed to determine a suitableσ value.

Following the above steps in this chapter we selectσ = 50. The corresponding optimal

feedback control gain is thenG∗ = [0.6307 − 0.5225 0.5225], for which the closed-loop system

has poles at0.7387+0.1999i, 0.7387−0.1999i and0, which are all inside the unit circle. Therefore,

the closed-loop system is asymptotically stable. Figure 4.8 shows the closed-loop root locus and

the bode diagram with the optimal feedback. We can again verify the stability ofthe closed-loop

system since all poles are inside the unit circle. Also, the system has again margin(GM) of 12.60

dB and aphase margin(PM) of 51.59 degrees. The GM and PM are usually good indicators of

system robustness. In our case, the PM is much larger than 30 degrees,which is often judged as the

lowest adequate value [68, Section 6.4]. And this PM is close to 60 degrees, the best PM an optimal

controller could achieve if continuous time feedback control was allowed. Therefore, the system

achieves good robustness. Finally, Figure 4.9 provides the time responsesimulation results, which
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Figure 4.9: Time response simulation.

show good tracking properties with a fairly stable coding rate (more simulation results are available

in [69]).

4.3 Practical Issues with Streaming

4.3.1 Fast Startup

As discussed in previous sections, the startup delay is the length of the period from the time that

content first begins to arrive at the client to the time that playback begins. During this period,

content accumulates in the receiver buffer to counter packet jitter, retransmission delay, variations

in network bandwidth, and variations in instantaneous coding rate. It is conceivable that a longer

startup delay would increase the chances of being able to maintain continuousplayback in a dy-

namic network environment. On the other hand, users expect the startup delay to be as small as

possible. Thus, it is desirable to investigate techniques that can reduce thestartup delay while re-

taining robustness. One possible approach is to transmit the content at a faster than normal rate at

the beginning of streaming. Thisburstingtechnique will certainly build up the buffer duration in a

small amount of time. It, however, puts extra pressure on the network by demanding a higher than

normal initial bandwidth, which may not even be available.

In this chapter, we use an alternativefast startuptechnique, which takes advantage of the

properties of adaptive media. As discussed in previous sections, by choosing an initial coding

raterc equal to half the arrival ratera (divided if necessary by the playback speedν), the client

buffer duration can grow at two times real time during playback. Growing theclient buffer during

playback enables the startup delay to be low, because playback can beginwhile the buffer duration is

still low. Beginning playback while the buffer duration is low is not particularlyrisky over the short

term, because the probability of deep congestion occuring in any short interval is low. However,

the probability of deep congestion occuring in a long interval is high, so it is important for the
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Figure 4.10: Leaky buckets (buffer tubes) for various transmission rates.

buffer duration to be high over the long term. Without the ability to grow the buffer duration

during playback, startup would have to be delayed until the buffer duration was sufficiently high

to guarantee continuous playback over the long term.

Moreover, if the transmission rate is twice the coding rate, the startup delay can be fur-

ther reduced by taking advantage of properties of the leaky bucket model [66]. As detailed in

Section 4.1.2, the startup delay for a given bit stream isD = F d
min(R)/R when the stream is trans-

mitted at rateR. This is ordinarily equal toF d
min(rc)/rc when transmitting the stream at its coding

rate. However, when transmitting the stream at a ratera > rc (rc = 0.5ra/ν), then the startup delay

drops toF d
min(ra)/ra. Thus the startup delayD decreases both because the numerator decreases

and because the denominator increases.

Figure 4.10 illustrates the decrease in the initial decoder buffer fullnessF d
min(R) as R

changes fromrc to ra. In particular, it depicts the coding schedule for a given bit stream, as well

as upper and lower bounds, denoted Tube I and Tube II, corresponding to two leaky buckets with

leak ratesrc andra respectively, both containing the coding schedule. Tube II is smaller than Tube

I, since the minimum sizeBmin(R) of a leaky bucket containing a given stream is decreasing in

the leak rateR [66]. Likewise, the initial decoder buffer fullnessFmin(R) is decreasing inR [66].

Hence the playback deadline for frame 0 can begin as early as client timet0 II = F d
min(ra)/ra,

instead oft0 I = F d
min(rc)/ra. From there, the playback deadline advances at1/ν seconds of client

time per second of media time.

4.3.2 Controller Initialization

As illustrated in Figure 4.10, the target schedule starts at the same time as the playback deadline

and grows according to a predefined function. The controller attempts to control the upper bound of

Tube I to the target schedule. Initially the upper bound of Tube I is above the target schedule (and is

indeed above the playback deadline, though we know that this is safe). Hence, when the playback

starts, the controller would try to close the gap by decreasing the coding rate. This, however, would
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not be desirable because the current coding rate is already lower than the arrival rate to allow the

client buffer to grow. Further reduction of the coding rate would not be proper. To avoid this effect,

we initialize the controller when the upper bound of Tube I exceeds the target schedule i.e., at point

B in Figure 4.10. Point B can be found analytically, but in practice there is noneed to explicitly

solve for it. The controller can be initialized as soon as the upper bound of Tube I exceeds the target.

4.3.3 Exponential Averaging of the Arrival Rate

From the performance studies of the controller, using the average arrival rate from a low pass filter

(instead of the instantaneous arrival rate) helps to reduce coding rate oscillations. This section

details our exponential averaging algorithm for the arrival rate.

Let r̃a(k) andr(k) be the average arrival rate and the instantaneous arrival rate, respectively,

when packetk is received. Note that unlike the controlling operation, the rate averaging operation

may be performed after the arrival of everypacket, rather than after the arrival of everyframe.

Hence we use the discrete packet indexk rather than the frame indexn. Instead of using the widely

adopted exponentially weighted moving average (EWMA)

r̃a(k) = β(k)r̃a(k − 1) + (1− β(k))ra(k) (4.46)

with constantβ(k) = β, we perform the exponential averaging more carefully. In our algorithm,the

factorβ(k) is not constant, but varies according to the packets’ interarrival gaps. Our algorithm has

several advantages over the EWMA algorithm with constantβ(k). First, the estimate of the average

arrival rater̃a(k) goes to zero naturally as the gap since the last packet goes to infinity, rather than

being bounded below byβr̃a(k− 1). Second, the estimate of the average arrival rater̃a(k) does not

go to infinity as the gap since the last packet goes to zero. This is especially important, since packets

often arrive in bursts, causing extremely high instantanous arrival rates. And finally, the estimate

of the average arrival ratẽra(k) does not over-weight the initial condition, as if it represented the

infinite past. This is especially important in the early stages of estimation.

As in (4.11), we define the instantaneous arrival rate after packetk as

ra(k) =
b(k)

ta(k)− ta(k − 1)
, (4.47)

where hereb(k) denotes the size of packetk andta(k) denotes the arrival time of packetk. We

extend the discrete time functionra(k) to the piecewise constant continuous time functionra(t) by

ra(t) = ra(k) for all t ∈ (ta(k − 1), ta(k)], (4.48)

as illustrated in Figure 4.11. Then we filter the functionra(t) by the exponential impulse response
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αe−αt, t ≥ 0, for some time constant1/α:

r̃a(k) =

∫ t(k)
t(0) ra(t

′)αe−α(t(k)−t′)dt′

∫ t(k)
t(0) αe−α(t(k)−t′)dt′

. (4.49)

(Here and in the remainder of this subsection we suppress the subscript from the arrival timeta(k).)

Noting that
∫ ∞
t αe−αt′dt′ = e−αt, the denominator integral can be expressed1 − e−α(t(k)−t(0)).

Now, we split the range of the numerator integral into ranges(t(0), t(k− 1)] and(t(k− 1), t(k)] to

obtain a recursive expression forr̃a(k) in terms ofr̃a(k − 1) andra(k),

r̃a(k)

=
1− e−α[t(k−1)−t(0)]

1− e−α[t(k)−t(0)]
e−α[t(k)−t(k−1)]r̃a(k − 1)

+
1− e−α[t(k)−t(k−1)]

1− e−α[t(k)−t(0)]
ra(k) (4.50)

= β(k)r̃a(k − 1) + (1− β(k))ra(k), (4.51)

where

β(k) =
e−α[t(k)−t(k−1)] − e−α[t(k)−t(0)]

1− e−α[t(k)−t(0)]
. (4.52)

Note thatβ(k) is numerically stable ask goes to infinity. However, as the gapδ = t(k)− t(k − 1)

goes to zero,1 − β(k) goes to zero whilera(k) goes to infinity. Their product, however, is well
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behaved. Indeed,

r̃a(k) =
1− e−α[t(k−1)−t(0)]

1− e−α[δ+t(k−1)−t(0)]
e−αδ r̃a(k − 1)

+
1− e−αδ

1− e−α[t(k)−t(0)]

b(k)

δ
(4.53)

→ r̃a(k − 1) +
αb(k)

1− e−α[t(k)−t(0)]
(4.54)

asδ → 0, using l’Hôpital’s rule. Thus (4.54) is the update rule in the case whent(k) = t(k − 1).

4.3.4 Choosing a Stream Given a Coding Rate

When the client requests a coding raterc(n), the server complies by choosing a stream (or substream

of a scalable stream) having coding rater̂c(n) approximately equal torc(n). There are several rea-

sons that̂rc(n) may differ fromrc(n). The first reason is that there are only a finite number of

streams (or substreams) in the media file, even if fine grain scalable coding is used. Thus there may

be no stream in the media file with average coding rate exactly equal torc(n). The second reason is

that, even if there is a stream in the media file with average coding rate exactly equal torc(n), the

buffer tube for the stream may be too large to allow switching to the stream without risk of client

buffer underflow. In fact, whenever the stream switches, there is generally a discontinuity in the

upper bound, which may be either positive or negative. A positive shift inthe upper bound is illus-

trated in Figure 4.12, which, if large, could cause the client buffer to underflow either immediately

or eventually.

Thus the server must choose a stream that causes the upper bound to shift up no more than

some amount∆maxg(n − 1) supplied to it by the client. The client supplies∆maxg(n − 1) to the

server in its feedback along withrc(n), shortly after client timeta(n − 2) (after framen − 1 has
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already begun streaming). Upon receiving the feedback, the server selects a stream with coding rate

r̂c(n) as high as possible such thatr̂c(n) ≤ rc(n) and, if r̂c(n) > r̂c(n − 1) (i.e., if it is a switch

up in rate), thengnew(n− 1)− gold(n− 1) ≤ ∆maxg(n− 1), wheregnew(n− 1) andgold(n− 1)

are illustrated in Figure 4.12. The constraint given by∆maxg(n− 1) is not applied if it is a switch

down in rate.

The client chooses∆maxg(n−1) to limit (its prediction of) what the upper bound would be

at timeta(n− 1) if the new coding rate were in effect, namely,

tnew
b (n− 1)

≈ tb(n− 2) +
r̂c(n− 1)

fr̃a
+

∆g(n− 1)

r̃a
(4.55)

≤ tT (n− 1) + p[td(n− 1)− tT (n− 1)]. (4.56)

That is, the client chooses∆maxg(n−1) to limit tnew
b (n−1) so that it would be no more than fraction

p of the way from the targettT (n− 1) to the playback deadlinetd(n− 1). In our experiments, we

choosep = 1/3.

4.3.5 Control Target Adjustment

When a frame with a new average coding rater̂c(n) arrives at the client at timeta(n), there is a shift

in the upper bound. Real scalable stream data (cf. Figure 4.14) shows that this shift can be on the

order of seconds and hence, rather than being negligible, can be confusing to the controller. If the

shift is upward, for example, the controller will immediately try to reduce the coding raterc(n+2).

If the shift is downward, on the other hand, the controller will immediately try to increase the coding

raterc(n+2). Either way is probably not good; the intention is thatr̂c(n) will be maintained unless

there is a disturbance in the arrival rate. Our solution is to introduce a simultaneous shift in the

control target schedule equal to∆g(n− 1)/r̃a, where∆g(n− 1) = gnew(n− 1)− gold(n− 1) is

the actual shift in the upper bound (in bits) at framen − 1 computed at the server, as illustrated in

Figure 4.12. The server can send this value to the client along with framen. If there is no stream

change, this value is simply zero.

If the control target schedule is adjusted whenever the coding rate changes, it will no longer

follow the designed target schedule. We refer to the adjusted target schedule as thecontrol target

schedule to distinguish it from thedesigned targetschedule (or simply thetarget schedule).

The control target schedule, of course, must have a tendency to approach the designed target

schedule. The basic idea is to decrease the slope of the control target schedule when it is above the

designed target schedule and to increase the slope when it is below.
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For the logarithmic target scheduletT = td−
b
a ln(atd +1) (wheretd = td0 +(τd−τd0)/ν),

according to (4.24) the slope at media timeτd is

s =
dtT
dτd

=
1

ν
−

b

a(τd − τd0) + ν
. (4.57)

If we defined as the distance between the playback deadline and the target schedule, namely

d =
b

a
ln

(

a

(

τd − τd0

ν

)

+ 1

)

, (4.58)

then the slope may be expressed as a function ofd,

s =
1

ν
−

b

νe(a/b)d
. (4.59)

Hence wheneverd is the distance between the playback deadline and the control target, we setthe

slope of the control target tos in (4.59). Specifically, iftT̂ (n) is the control target at framen after

the shift, then we resettT̂ (n− 1) to beTT̂ (n)− s/f . We then usetT̂ (n) andtT̂ (n− 1) in place of

tT (n) andtT (n − 1) to compute the error vectore(n) in (4.37). The resulting error vector is then

used to compute the ideal coding rate in (4.40).

For the two-piece linear target schedule, the slope is easy to compute by using a predefined

time period over which the control target schedule is expected to return to thetarget schedule. The

slope of the control target schedule can then be computed from the distance d and the period. We

set the period to 50 seconds in our experiments.

4.4 Implementation Details

This section highlights implementation details on both the sender and the receiverside.

4.4.1 Generation of Virtual Streams

In our implementation, a fine grained scalable (FGS) stream comprises a set of data units, each

tagged by a Lagrange multiplierλ representing the per-bit decrease in distortion if the data unit is

received by the client. If theλ for the data unit is above a threshold, then the data unit is included in

a virtual stream corresponding to that threshold. Each threshold corresponds to an overall number

of bits and hence an average coding rate for the virtual stream. In our experiments, we generate

N = 50 virtual streams. A threshold is chosen for each stream such that the resulting streams have

coding rates that are uniformly spaced in the log domain between lower and upper bounds.

During streaming, when the server reads a data unit from the media file, it includes the

data unit in the virtual stream currently being transmitted if its Lagrange multiplierλ is above the

threshold for the stream.
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4.4.2 Leaky Bucket Computations at the Sender

For each virtual stream, leaky bucket parameters(R, Bmin(R), F d
min(R)) are precomputed off line

for R = Ravg andR = Rmax, whereRavg = rc is the average coding rate of the stream, and

Rmax = 2rc. These leaky bucket parameters are sent to the client in a preamble.

In addition, during streaming the server performs on-line leaky bucket simulations for each

stream. Specifically, whenever the server reads a data unit from the mediafile, it determines the

virtual streams to which the data unit belongs, using the Lagrange multiplier of the data unit and

the list of thresholds for each stream. The sender then updates, for the determined streams, the

states of those leaky buckets having leak rates equal to an average coding rateRavg, using (4.2)

and (4.3). Once all the data units in a frame are read from the media file, the sender computes

g(n) = Bmin(Ravg) − Be(n) for each of the virtual streams. On a stream switch (i.e.,r̂c(n) 6=

r̂c(n− 1)), the gapgnew(n) for the new stream is transmitted to the client along with∆g(n− 1) =

gnew(n − 1) − gold(n − 1) as described below. It is easy to see that the cost of updating the leaky

bucket states is quite low. However, it is also possible to precompute these values and store them

with each data unit in the media file.

4.4.3 Initial Coding Rate Selection

At the beginning of a streaming session, the sender needs to have some knowledge of the available

network bandwidth so that it can choose an initial coding rate (usually half of the bandwidth). The

bandwidth estimate can be drawn from proactive measurements, using approaches such as packet

pair [70], path chirp [71], etc., or reactive approximations based on history values. The exact form

of the initial bandwidth estimation is beyond the scope of this work.

4.4.4 Coding Rate Switching

The rate control feedback from the client contains the frame number at which feedback is generated

(e.g.,n − 2 in the previous section) and the maximum allowable shift of the upper bound in bits

(e.g.,∆maxg(n − 1) in the previous section). If the sender finds a suitable coding rate and makes

a switch at framen, it will transmit three values to the client along with the frame: the new coding

rate r̂new
c (n), the current gap to the upper boundgnew(n), and the shift∆g(n − 1) = gnew(n −

1)− gold(n− 1). With this information, the client can properly adjust its control target schedule as

well as its upper bound. Note that coding rate switching always happens at the beginning of a new

frame, never inside a frame.

4.4.5 Optimal Rate Control at the Client

Whenever a new coding rate starts, the client receives the valueg(n) along with the new frame. The

values ofg(n) for successive frames can be then inferred by the client itself based onthe coding
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Figure 4.13: ns-2 Simulation network setup.

rate r̂c(n) and the frame sizeb(n). The client records the arrival frame timeta(n), calculates the

buffer tube upper boundtb(n) and then computes the deviatione(n). If there is a coding rate switch,

it will also compute the buffer tube shift and adjust the control target schedule accordingly. Then

e(n) is feed to the optimal rate controller, which then outputs a desired new coding rate. The latest

new coding rate is fed back to the sender whenever there is a feedback opportunity, which could be

generated at regular intervals or on-demand.

4.5 Performance Evaluation

In this section, we evaluate the performance of the optimal rate control system when streaming a

fine grained scalable (FGS) video stream.

The test video is a 3-minute clip, which we obtain by six repetitions of the concatenation of

the three MPEG standard test sequencesAkiyo, Stefan, andForemanin that order. The test video is

downsampled to QCIF, 10 fps, for a total of 1800 underlying QCIF frames.7 The test video is coded

using a variant of MPEG-4 FGS [57], with a 10-second I-frame distanceand no B frames. Using

rate-distortion optimization, from the FGS stream we extract 50 substreams whose average coding

rates are uniformly spaced in the log domain between log 50 kbps and log 1000Kbps.

Using the popular network simulator ns-2 [72], we set up a simple network environment as

shown in Figure 4.13. Video traffic is streamed from nodes1 to noder1 while competing FTP cross

traffic (FTPi) is transmitted nodesi to noderi (2 ≤ i ≤ n). By adjusting the number of FTP flows

and their beginning/ending times, we can create both constant and variable available bandwidth

scenarios for the streaming session, as specified in Table 4.1. Experimentsare carried out using

both TCP and TFRC [61] as alternative transport layer protocols. Note the TFRC protocol yields

similar results as the TCP protocol, which are thus not reported here (refer to [69] for more details).

4.5.1 Startup Delay

Figure 4.14 shows the startup delay as a function of the transmission/arrival ratera, for two streams,

7The original Akiyo and Stefan test sequences are 300 frames, which we downsample to 100 frames each. The original
Stefan test sequence is 400 frames, from which we extract the first 300 frames before downsampling to 100 frames.
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Table 4.1: Bandwidth Available to the Streaming Session

client time # of FTPs fair share BW

Constant Bandwidth 0–180 s 5 400 Kbps

0–30 s 2 800 Kbps
30–60 s 5 400 Kbps

Variable Bandwidth 60–90 s 11 200 Kbps
90–130 s 5 400 Kbps
130–180 s 2 800 Kbps

 0

 1

 2

 3

 4

 0  100  200  300  400  500  600  700  800  900  1000

st
ar

tu
p 

de
la

y 
(s

)

transmission rate ra (Kbps)

Fmin
d(ra|ra)/ra

Fmin
d(0.5ra|0.5ra)/ra

Fmin
d(ra|0.5ra)/ra

ns-2 measurements

Figure 4.14: Startup delay vs. transmission rate.

one at average coding raterc = ra, and another atrc = 0.5ra. Specifically, for the virtual stream

with average coding raterc, let F d
min(R|rc) denote the minimum initial decoder buffer size com-

puted for a leaky bucket with leak rateR. (We know that for a fixedrc, this function decreases inR).

The top curve in the figure shows the startup delayF d
min(ra|ra)/ra, when the coding rate is chosen

to match the transmission rate. The middle curve shows the startup delayF d
min(0.5ra|0.5ra)/ra,

when the coding rate is chosen to be half of the transmission rate, but the initialdecoder buffer full-

ness is based on the coding rate. And the bottom curve shows the startup delay F d
min(ra|0.5ra)/ra,

when the coding rate is chosen to be half of the transmission rate, and the initialdecoder buffer

fullness is based on the transmission rate, thus further reducing the startupdelay. The three curves

in the figure are calculated using leaky bucket simulations with the virtual streams’ coding sched-

ules, but we notice that the bottom curve matches nicely with experimental results from our ns-2

simulations at rates at 150 Kbps, 300 Kbps, 450 Kbps, 600 Kbps, 750 Kbps and 900 Kbps, all of

which have delay much lower than 1 second.

4.5.2 Constant vs. Variable Bandwidth

Figures 4.15 and 4.16 show results using TCP as the transport protocol, under constant and variable

bandwidth conditions, respectively. In either case, in the startup phase,the coding rate is about

half of the arrival rate, which allows fast startup and helps to build the client buffer quickly. The
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Figure 4.15: Constant bandwidth over TCP.
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Figure 4.16: Variable bandwidth over TCP.

coding rate catches up smoothly with the arrival rate and tracks it smoothly despite fluctuations in

the available bandwith. As the result of coding rate adjustments, the client buffer is well maintained

around the logarithmic target schedule, ensuring that no frame misses its playback deadline.

Figure 4.15(c) presents essentially the same information as Figure 4.15(b),but plots the

differencebetween the playback deadline and 1) the arrival schedule, 2) the buffer tube upper bound

schedule, 3) the control target schedule, and 4) the logarithmic target schedule, respectively. Note

that the gap between the playback deadline and the arrival schedule is theclient buffer duration. In

the remainder of this chapter, we present all schedules using this format.

4.5.3 Two-piece linear vs. logarithmic target schedule.

Figures 4.17 and 4.18 show results using TCP as the transport protocol with the two-piece linear

target schedule. Compared to the logarithmic target schedule, the two-piecelinear target schedule

holds the initial lower coding rate for a longer period (thus sacrificing more quality) in the startup

phase, so that the client buffer can build up more quickly. After the startupphase, there is no further

need to sacrifice quality to maintain the client buffer level. In contrast, with the logarithmic target
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Figure 4.17: Constant bandwidth over TCP with the two-piece linear target schedule.
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Figure 4.18: Variable bandwidth over TCP with the two-piece linear target schedule.

schedule, there is some sacrifice in quality over the entire streaming session,although the sacrifice

diminishes gradually as the slope of the schedule approaches a constant.

It is clear that both target schedules work well under either constant bandwidth or variable

bandwidth situations. The choice, which reflects a balance between quality and buffer level in the

startup phase as well as asymptotically, can be deferred to particular applications.

4.5.4 Controller Performance Tuning

Tuning σ

The performance figures show significant deviation of the buffer tube upper bound from the control

target, which is especially obvious in the variable bandwidth case. It is clearfrom our controller

design rationale that we can reduce this deviation by decreasing theσ value. A smaller value ofσ

value implies a relative larger penalty on the deviation term in the cost function and thus forces the

upper bound to track the target more closely. This, however, happens at the cost of sacrificing coding
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Figure 4.19: Constant bandwidth over TCP,σ = 500.
The upper bound tracks the control target more closely, while the coding rate is less smooth,

compared to Figure 4.15.

rate smoothness, since the corresponding term in the cost function will be weighted less. Figure 4.19

shows simulation results withσ = 500 under the same network conditions as in Figure 4.15. It is

clear that while the buffer tube upper bound deviates only slightly from the control target, the coding

rate has undesirable oscillations.

On the other hand, a largeσ value will certainly yield smoother coding rates, but might also

incur client buffer underflow since the buffer tube upper bound is allowed to deviate significantly

away from the control target. Therefore, a good choice ofσ should take into account this trade-off.

In our implementation, we chooseσ = 4000 when the coding rate switches up andσ = 2000 when

it switches down. Note that we allow a slightly more aggressive strategy in the latter case to further

reduce the chance of client buffer underflow. It is straightforward toverify that this choice ofσ

maintains a stable closed-loop and good gain/phase margins; this is not repeated here.

Smoothinge(k)

The frame arrival timeta, which is used to compute the controller input, is the client time at which

a frame is completely received. This time could increase significantly if part ofthe frame arrives in

retransmitted packets. When the controller is fed withe(n), which is a deviation computed from the

arrival time, the controller may misinterpret the increase and may generate oscillatory output over

time. Note that this variation in arrival time is different from the variation in transmission rate and

is not specifically addressed in our mathematical model. Thus, we need an additional mechanism to

deal with it.

A straightforward approach is to apply our exponential averaging methodon e(k), which

will certainly smooth out spiky values of the deviation and let the controller react upon the long
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time trend. Let̃e(n) be a smoothed sequence input to the controller instead ofe(n), specifically

ẽ(n) =
e−α − e−αn

1− e−αn
ẽ(n− 1) +

1− e−α

1− e−αn
e(n). (4.60)

We chooseα = 1/f (the frame rate) to focus on history values in the last second, which will also

allow ẽ(n) to follow the trend promptly when a significant change in bandwidth occurs. All results

reported in this section use this mechanism.

4.5.5 Comparison with Benchmark Algorithm

As a benchmark, we compare our buffer management algorithm to the windowing algorithm in [60]

(which is part of the rate-distortion optimized sender-driven streaming algorithm therein). In the

benchmark algorithm, the server maintains a sending window, which contains the range of frames

that are potentially in the client buffer. The sending window slides forwardto mimic the playback

(consumption) of frames at the client. At each transmission opportunity, the sender selects from the

window a data unit that most decreases the distortion at the client (per transmitted bit). The sliding

window looks ahead based on a logarithmic function (similar to the logarithmic target schedule

herein), which starts small and grows slowly over time. Hence, the client canhave low startup delay

and can gradually increase its buffer over time.

Although conceptually simple and sound, the benchmark algorithm has two disadvantages.

First, it does not send out data units in the order in which they appear in the media file (i.e., decoding

order). This demands resources (e.g., caching large segments of data)that may be incompatible with

high performance streaming. Second and more importantly, until the window becomes large enough

to accommodate constant quality streaming (about 25 seconds for typical movies), the benchmark

algorithm demands, essentially, constant bit rate streaming. This is becausethe duration of the

client buffer is determined by the logarithmic function. In contrast, in our algorithm, only a portion

of the client buffer duration (namely the safety zone between the target and the playback deadline)

is determined by the logarithmic function. The remainder of the client buffer duration is determined

by the leaky bucket state when processing the video content.

Figure 4.20 shows the buffer tube containing the coding schedule for a video sequence

consisting ofAkiyo, StefanandForeman(10 s each) at an average coding rate of 500 Kbps. Note

thatAkiyorequires relatively few bits per second of media time, andStefanrequires relatively more

bits per second of media time, to achieve quality similar toForeman. Thus if the three subsequences

are all coded with roughly the same number of bits per second of media time,Akiyowill have higher

quality, andStefanwill have lower quality, relative toForeman.

Figures 4.21 shows the PSNR results after streaming with a constant bandwidth of 400 Kbps

over TCP. Our optimal control algorithm with either target schedule is much smoother in terms of

PSNR compared to the benchmark algorithm. Note that even with optimal control, the PSNR value

shows a repetitive pattern over the entire session, instead of a constant value. This happens because
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Figure 4.21: PSNR with constant bandwidth (400 Kbps) over TCP.

the scalable codec we use in the experiments is a bit plane codec. There could be one bit plane

difference (about 6 dB in PSNR) between frames of the same coding rate.

4.5.6 Comparison with Constant Bit Rate Algorithm

The CBR algorithm is a simple rate control mechanism that takes advantage of the ability of to

truncate an FGS encoded frame at any point. Thus it is possible to control the rate by sending

the media data in real time, but truncating each frame to match to available transmission rate. If

the transmission rate is constant, this yields a constant number of bits per frame. The algorithm

is simple and effective in the sense that it successfully avoids any risk of rebuffering by matching

the instantaneous coding rate to the transmission rate. However, without taking into account the

variable bit rate nature of constant quality coding, this algorithm results in high quality for smooth

content (which is easy to encode), and low quality for high-action content(which is hard to encode).

The quality oscillation is significant over constant bandwidth channels as shown in Figure 4.22. The

experimental settings for these figures are the same as for Figures 4.21.
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Figure 4.22: PSNR with constant bandwidth (400 Kbps) over TCP.
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Figure 4.23: Rate-Distortion comparison.

4.5.7 Rate-Distortion Comparison

To compare the rate-distortion performance of all aforementioned algorithms, experiments over a

wide range of available bandwidth (150-900 Kbps) are carried out. Each experiment sets a constant

available bandwidth for the streaming session and TCP protocol is used forall experiments. The

average distortion in terms of PSNR over each session is computed on the client side and plotted in

Figure 4.23. Note that frames over the first 40 s (media time) are excluded from the average distor-

tion computation. These frames correspond roughly to the time period (about30 s in client time)

when the client buffer is built up by streaming at lower coding rates than the available bandwidth.

The quality sacrifice during the initial period will be easily amortized over streaming sessions of rea-

sonable length and it is appropriate not to be considered in this rate-distortion comparison (where

each session is just 3 minutes long).

From the reported results, we can see that the optimal coding rate control algorithm has

better rate-distortion performance than the benchmark and the CBR algorithms. Over the wide

range of bandwidth, the optimal coding rate control algorithm yields about 2-3 dB PSNR gain over

the benchmark algorithm. We can also see that, in general, the linear target schedule has slightly



73

better performance than the logarithmic target schedule. This is understandable since the quality

sacrifice happens only during the initial period for the linear target schedule, while it spreads over

the entire streaming session for the logarithmic target schedule. The reasonthat the CBR algorithm

has worse performance than the benchmark algorithm is also clear. The CBR algorithm can be

regarded as an extreme case of the benchmark algorithm, where the sending window maintained on

the server side contains only one frame data at any time. Hence, the limited ability of the benchmark

algorithm to smooth quality is further reduced in this case.
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Chapter 5

Optimal Coding Rate Control for Multi

Bit Rate Streaming

Multiple bit rate (MBR) streaming is a network adaptive technique that is widely used in commercial

streaming media systems (e.g. Windows Media 9 Series [51]). In MBR streaming, in contrast to

scalable streaming, the content is encoded into several (at most 5–7) independent streams at different

coding rates. Often, each stream is optimized for a common type of network connection (e.g., dial-

up, DSL, cable). During an MBR streaming session, the proper coding rate is dynamically selected

based on the available network bandwidth, with the goal of achieving the maximum possible quality

under the condition of uninterrupted playback. It is easy to see that MBR streaming is analogous to

scalable streaming. Indeed MBR streaming can be viewed as a special caseof scalable streaming

with a limited number of coding rates available. Hence, our optimal control approach should be

applicable to this case.

There are, however, several differences that complicate MBR streaming, which need to be

carefully addressed. First, as just mentioned, in MBR streaming there are only a limited number of

coding rates available. This coarse quantization of the desired coding rateintroduces a significant

nonlinearity into the closed loop system. In fact, the large gaps between the available coding rates

introduce oscillations. For example, if two neighboring coding rates straddlea constant arrival rate,

the controller will oscillate between the two coding rates in an attempt to keep the client buffer at a

target level.

Second, in MBR streaming the coding rate cannot be switched at an arbitrary time. In fact,

before the server can switch to a new stream, it must wait for the next cleanpoint (e.g.,I frame) in

the new stream, which could be five or ten seconds away. Thus, the old coding rate may continue

for quite a while before it changes to the new coding rate. From the controller’s perspective, this

long random extra delay tends to destabilize the closed-loop system.
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Third and finally, in MBR streaming, server performance issues are critical. The commercial-

grade streaming media systems that use MBR streaming do so because of the minimal computa-

tional load that it imposes on the server compared to scalable streaming. Thus, for MBR streaming

it is important to keep almost all computation and state maintenance on the client side. In particu-

lar, the server will not be able to update the leaky bucket information for each stream, as we have

proposed in the previous chapter. Instead, the client must use some mechanism for estimating and

maintaining this information.

5.1 Conservative Up-Switching

In this section we discuss a technique to help stabilize the control system and reduce steady state

oscillations to a period of at least a minute. With this technique, rapid down-switching is permitted.

In fact, we reduce the value ofσ from 4000(2000) to 1000(500), changing the balance between re-

sponsiveness and smoothness of the coding rate in favor of rapid switching response. However, only

conservative up-switching is permitted. Conservative up-switching ensures that spurious changes in

coding rate do not occur, and that oscillations in the coding rate have a low frequency. In particular,

conservative up-switching reduces the oscillations between two adjacentbut widely spaced MBR

coding rates, one above the arrival rate and one below the arrival rate.

The method behind conservative up-switching is to establish a conservative limit on how

high the coding rate can be raised above the arrival rate. If the current coding rate is below the arrival

rate, and the client buffer duration begins to increase above its target level, then the coding rate can

be switched up to a new coding rate above the arrival rate only if the new coding rate is below the

conservative limit. When the client buffer duration begins at the target level, the conservative limit

is equal to the arrival rate. However, as the client buffer duration increases, the conservative limit

increases as well. Thus, if the current coding rate is below the arrival rate, and the next higher

coding rate is above the arrival rate, then it will be possible to switch up to thenext higher coding

rate only after the client buffer duration has increased sufficiently so that the conservative limit rises

above the higher coding rate. Once the coding rate is switched up to the higher coding rate, the

client buffer begins to drain since the coding rate is then above the arrival rate. Eventually, when

the buffer drains back below its target level, the controller will rapidly switchthe coding rate back

down to the coding rate below the arrival rate.

Given the current client buffer duration, the conservative limit is set to avalue such that if

the coding rate is switched up to a new coding rate at this value, the client buffer would take at least

∆t seconds of client time to drain back to the target level. Thus, the mechanism ensures that the

period of oscillation will be at least∆t seconds. In our experiments, we set∆t to be 60 seconds.

Figure 5.1 shows how we compute the conservative limit. Let∆τ1 be the client buffer

duration (in media time) at the moment that the coding rate is switched up fromrold
c to rnew

c . Thus

∆τ1 is the number of seconds of content that will be consumed at the old coding raterold
c before
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Figure 5.1: Conservative rate up-switching.

content at the new coding rate begins to be consumed. (For simplicity we assume that all of the

content in the client buffer at the time of the switch is coded at raterold
c .) Let ∆τ2 be the number

of seconds of content that is consumed at the new coding raternew
c before the client buffer duration

drops to some level∆τ3 seconds (in media time), greater than the target level∆τT . The duration of

this phase is determined such that the total time since the switch is exactly∆t = (∆τ1 + ∆τ2)/ν

seconds (in client time). Now, the number of bits that arrive in this time isra∆t = rnew
c (∆τ2 +

∆τ3) ≥ rnew
c (∆τ2 + ∆τT ) = rnew

c (ν∆t−∆τ1 + ∆τT ), or

rnew
c ≤

ra∆t

ν∆t−∆τ1 + ν∆tT
, (5.1)

where∆tT is the target buffer duration in client time. The parameter∆t can be tuned to yield the

desired behavior. A large∆t means that up-switching will be more conservative, while a smaller

∆t means that up-switching will be more prompt. In our implementation,∆t is set to 60 seconds

while the target∆tT is typically about 10 seconds.

5.2 Buffer Tube Upper Bound Estimation

In Section 4.4.4 we specified that the server sends three values to the clientat the beginning of each

change in coding rate: the new coding rater̂new
c , the current gap to the upper boundgnew(n), and

the control target shift∆g(n− 1) = gnew(n− 1)− gold(n− 1). The server computes the latter two

values by running a leaky bucket simulator for each coding rate. The client continues to updateg(n)

for the new coding rate by running its own leaky bucket simulator for the newcoding rate. That is,

beginning with the initial conditionF e(n) = B − b(n) − gnew(n), for each successive frame the

client computes

Be(n) = F e(n) + b(n) (5.2)

F e(n + 1) = max{0, Be(n)− r̂c/f(n)}, (5.3)



77

where

f(n) =
1

τ(n + 1)− τ(n)
(5.4)

is the instantaneous frame rate, as in (4.2), (4.3), and (4.4). From this, theclient can compute

g(n) = B −Be(n) (5.5)

for each frame.

However, if the server is unable to simulate the leaky buckets and cannot send gnew(n) to

the client, then the client must estimate this information for itself. In this case we recommend that

the client estimatesgnew(n) as an upper bound such asĝnew(n) = B − b(n) ≥ gnew(n). Then,

beginning with initial conditionF̂ e(n) = B − b(n) − ĝnew(n) (which equals 0 in this case), for

each successive frame the client computes

B̂e(n) = F̂ e(n) + b(n) (5.6)

F̂ e(n + 1) = max{0, B̂e(n)− r̂c/f(n)}, (5.7)

as well as

ĝ(n) = B − B̂e(n). (5.8)

It is easy to see by induction that̂F e(n) ≤ F e(n), B̂e(n) ≤ Be(n), andĝ(n) ≥ g(n). Moreover,

these bounds each become tighter byδ(n) = r̂c/f(n)− Be(n) wheneverδ(n) > 0, i.e., whenever

F e(n + 1) is clipped to 0 in (5.7). In fact, given enough time they may eventually become tight.

Note that whenever the bounds tighten byδ(n) > 0, the control target must be shifted by

∆g(n)/r̃a, where∆g(n) = −δ(n). Furthermore, whenevern is the first frame of a new coding

rate, the control target must be shifted by∆g(n)/r̃a, where∆g(n) = ĝnew(n) − ĝold(n). Here,

ĝold(n) can be determined by running (5.6), (5.7), and (5.8) for one extra step,namely ifn is the

first frame of the new coding rate,

F̂ e(n) = max{0, B̂e(n− 1)− r̂old
c /f(n− 1)} (5.9)

B̂e(n) = F̂ e(n) + b(n) (5.10)

ĝold(n) = B −Be(n). (5.11)

It is easy to see that if̂gnew(n) = B − b(n), then∆g(n) = F̂ e(n) as computed in (5.9).

We may also use for̂gnew(n) any better bound ongnew(n). Better bounds are the subject

of future study.
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5.3 Virtual Stream

In MBR streaming, video and audio data are usually encoded separately and generate multiple

streams (substreams, hereafter), respectively. Various combinations of video and audio substreams

lead to more choices of aggregate bit rates (thus, quality levels). On the other hand, this freedom

of choice provides a mechanism to balance the preference between the video and audio quality.

For example, if video quality is more important, then the control mechanism would try to adjust

audio substreams before video substreams in the change of available bandwidth. Vice versa, if

audio quality is more preferable, then it is possible to keep a high bit rate audiosubstream and only

change video substreams to adapt to network dynamics.

Although our optimal coding rate control method is derived based on a singlestream model,

it can be easily extended to accommodate this video and audio substream combination by intro-

ducing the concept ofvirtual stream. A virtual stream is a combination of a video and an audio

substream (possibly only single video/audio substream). And the rate control method updates the

status of a virtual stream and makes switching decisions among virtual streams.

Next, we show that the leaky bucket (B, F e, R) of a virtual stream can be easily derived

from the composing video substream (Bv, F e
v , Rv) and audio substream (Ba, F e

a , Ra). We know

that the average coding rate is the largest bit rate such that the encoder buffer will not run dry,

therefore,Be(n)− r̂c/f(n) in (5.2) is always non-negative for̂rc = Rv andr̂c = Ra. Thus,

F e
v (n + 1) = Be

v(n)−Rv/fv(n) ≥ 0 (5.12)

F e
a (n + 1) = Be

a(n)−Ra/fa(n) ≥ 0, (5.13)

Set the virtual stream leaky bucket asB = Bv + Ba, F e = F e
v + F e

a andR = Rv + Ra. It is easy

to show the following by induction (even when the video and audio substreamhave different frame

rates):

F e(n + 1) = Be(n)−R/f(n) ≥ 0. (5.14)

Therefore, (B, F e, R) is a valid leaky bucket for the virtual stream, although it is not necessarily

the tightest one corresponding to the coding rateR.

5.4 Performance Results

In this section, we present experimental results of our rate control with anMBR stream set under

two sets of bandwidth conditions, both of which cause the client buffer to underflow in the the

Windows Media 9 system. The bandwidth conditions are summarized in Table 5.1,and the results

are shown in Figures 5.2 and 5.3.
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Table 5.1: Bandwidth conditions with and without initial transmission rate burst
without initial
burst

with initial burst

0–5 s 500 Kbps 2 Mbps
5–25 s 500 Kbps 1 Mbps
25–70 s 400 Kbps 400 Kbps
70–130 s 286 Kbps 286 Kbps
130–190 s 200 Kbps 200 Kbps
190–220 s 286 Kbps 286 Kbps
220–550 s 400 Kbps 400 Kbps
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Figure 5.2: TCP variable bandwidth experiment (without initial transmission rate burst).

We then study the performance of our rate control under adversary network environments.

In particular, we are interested in networks with severe data loss and long RTT.

5.4.1 Performance Impact of Data Loss

Data loss is recovered by retransmission in all our experiments. When TCP protocol is used, re-

transmission is automatically taken care of by the transport protocol itself. When TFRC protocol

is used, a NAK-based retransmission module is added to recover data loss.Due to retransmission,

complete reception of frames might no longer in order although the server delivers them in se-

quence. Out-of-order frames would confuse the controller and thus are simply ignored by the rate

control algorithm. It is, however, important to investigate the impact of omissionframes on the rate

control performance. On the other hand, data loss also has direct impacton transport protocols,

which usually include a mechanism to adapt to packet loss. The change in transport layer (in turn

transmission rate) will again affect the rate control performance.

Therefore, it is beneficial to design experiments such that the above two factors could be

isolated. Indeed, we first simulate data loss at the client side after packets are received from the

transport layer. Thisapplication data lossis transparent to transport layer and will hardly affect the
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Figure 5.3: TCP variable bandwidth experiment (with initial transmission rate burst).
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Figure 5.4: Performance Impact of Data Loss (over TFRC protocol)

transmission rate. Next, we simulate data loss inside the network layer (network data loss), which

will affect the transmission rate. The performance impact of data loss becomes clear when the loss

rate is increased to5%, as in Figure 5.4. By comparing Figure 5.4(b) to 5.4(a), we can see that data

loss doesnot affect the rate controller a lot even at high data loss. However, the overall impact of

data loss is still significant as in Figure 5.4(c), where the fluctuation of the coding rate occurs as

the transmission rate oscillates severely. Hence, the rate control algorithm should be applicable in

network environments with severe data loss (e.g. wireless network), if the transport protocol could

achieve stable transmission rate.

5.4.2 Performance Impact of RTT

The control interval is chosen to be1s (virtual frame ratef = 1) and sufficient larger than RTTs

in normal streaming sessions. Hence, our rate control model doesnot have to explicitly consider

network delay, as explained in details in the previous chapter. It is also desirable to investigate

experimentally the performance impact of various RTT values. From the results in Figure 5.5, we

can see that doubling RTT from80ms to 160ms and even320ms doesnothave much impact on the

coding rate control. And the coding rate differences over various RTT networks happen mainly due
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Figure 5.5: Performance Impact of RTT (over TFRC protocol)

to the change of transmission rate pattern. Note that buffer status figures also show no underflow

and are not duplicated here.

5.5 Related Work

Hsu, Ortega and Reibman [5] address the problem of joint selection of source and channel rates

(which are notions analogous to coding and transmission rates in this chapter) for VBR video. They

propose a rate-distortion optimization solution that maximizes receiving quality subject to end-to-

end delay guarantees. Luna, Kondi and Katsaggelos [6] pursue this direction further by introducing

network cost as an optimization objective and balancing the trade-off between user satisfaction

and network cost. Both approaches assume networks that offer QoS support while using various

policing mechanisms (such as a leaky bucket model) to constrain network traffic. The algorithms in

these papers can be modified to address the problem, which we deal with in thischapter, where the

channel rate is completely determined by network conditions and not subjectto choice. However,

a drawback of these algorithms compared to our optimal control mechanism is that they require

complete knowledge of channel ratesa priori, which makes them less practical for streaming media

applications, where dynamic rate adjustment is required on the fly. Moreover, these algorithms have

higher complexity, even with fast approximation variations [7]. The algorithmsare good, however,

for determining performance bounds in offline analysis.

With a prior knowledge of the network bandwidth, Nelakuditi, Harinath, Kusmierek and

Zhang [8] design a bidirectional scan algorithm to optimize the perceived video quality, measured

by a set of smoothness metrics. Their work uses layered video and simplifiesanalysis by assuming

that each layer is of CBR. The recent work of Kim and Ammar [9] developsalong this direction

and proposes a more sophisticated algorithm targeting optimal quality adaptationfor MPEG-4 FGS

VBR video. Both work also provide online heuristics, when the available bandwidth is not known in

advance. These online heuristics appeal to have reasonable good performance for limited scalability

(one base layer and two enhancement layers in both work), although it is not clear how well they

will work with a rich set of available bit rates (e.g. 50 streams in our case). Similarly, it might be
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difficult as well to extend the dynamic bandwidth allocation algorithm proposedby Saparilla and

Ross [10] beyond a few but yet limited bit rates.

To our knowledge, the most closely related contemporaneous work is that by de Cuetos and

Ross [11], which also decouples the transmission rate and the coding rate.They assume that the

transmission rate is determined by the network transport protocol (TCP or TFRC), which is the same

assumption that we make in this chapter. They develop a heuristic real time algorithm for adaptive

coding rate control and compare its performance to an optimal offline codingrate control policy if

the transmission rate is given prior to streaming. Our work differs from theirs in two ways. One

is that our rate control algorithm is optimal in a control theoretic sense, in addition to being a low

complexity real time algorithm. The other is that we take into account the variable instantaneous bit

rate of the media coding and thereby further improve and stabilize the receiving quality.

The work of Rejaie, Handley and Estrin [12] proposes a scheme for transmitting layered

video in the context of unicast congestion control, which basically includestwo mechanisms. One

mechanism is a coarse-grained mechanism for adding and dropping layers (changing the overall

coding rate and quality). The other is a fine-grained interlayer bandwidth allocation mechanism to

manage the receiver buffer (not changing the overall coding rate or quality). A potential issue with

this approach is that it changes the coding rate by adding or dropping one(presumably coarse) layer

at a time. If the layers are fine-grained, as in the case of FGS coded media,then adding or dropping

one (fine-grained) layer at a time typically cannot provide a prompt enough change in coding rate.

Moreover, since the adding and dropping mechanism is rather empirical, themechanism may simply

not be suitable for FGS media.

The work of Q. Zhang, Zhu and Y-Q. Zhang [13] proposes a resource allocation scheme to

adapt the coding rate to estimated network bandwidth. The novelty of their approach is that they

consider minimizing the distortion (or equivalently maximizing the quality) of all applications, such

as file-transfers and web browsing in addition to audio/video streaming. However, their optimization

process does not include the smoothness of individual streams and might lead to potential quality

fluctuations. In our work, we explicitly take into account the smoothness of the average coding rate

over consecutive frames in our optimal controller, which yields a higher andmore stable quality as

network conditions change.
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Chapter 6

Conclusions

We conclude the thesis work with a summary of our contributions and an outline of future directions.

6.1 Summary

This thesis discusses several schemes for efficient and effective streaming media delivery, by iden-

tifying and addressing some key problems in various types of streaming media applications.

We study using MDS array codes as efficient FEC schemes for streaming media delivery

with strong delay constraints. In particular, we propose the STAR code asa novel scheme for triple

erasure recovery. The geometric property of the code construction leads to an efficient decoding

algorithm. And the lower complexity of this scheme makes it attractive for many applications, such

as streaming of live media, surveillance content, etc.

We also study using MDS array codes as practical FEC schemes at a bit level. In particular,

we propose the XEOD as an efficient algorithm for bit level decoding of the EVENODD code. Our

analysis shows significant throughput benefits and energy savings ofthis scheme, compared to the

widely adopted RS code. The XEOD also achieves comparable loss recovery performance to the

RS code, especially when data loss patterns are bursty.

For streaming media on demand, we describe the ORC scheme for client buffer manage-

ment. Our approach is the first application of optimal control theory in this problem. We also

explicitly incorporate the leaky bucket concept to maintain smooth user perception quality. Further,

the ORC scheme is extended to MBR streaming, which is directly applicable to existing systems.

6.2 Future Directions

Throughout the thesis work, we have extensively studied using MDS array codes as FEC schemes

for streaming media delivery, treating either columns or symbols inside columns as data packets.

We have shown that both schemes can be applicable to certain types of streaming applications.
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Compared to codes based on finite field operations, the benefit of these schemes mainly attributes to

the efficiency of the basic operation – XOR sum. However, it also becomes clear that both schemes

have their own limitations. Array codes tend to have limited block length when usedat column level.

To make array codes more flexible and applicable, we would like to continue to seek array codes

with larger block length while maintaining the MDS property. On the other hand, when it is used at

a symbol level, the decoding performance of array codes deviates fromthose of MDS codes. Along

this direction, the class of fountain codes performs fairly well in terms of decoding performance.

Fountain codes are also XOR-based and have efficient decoding algorithms. However, they usually

require very large block lengths and are thus not directly applicable to streaming applications. To

close the gap, we would like to continue investigating XOR-based schemes, which could provide

flexible choices of coding parameters while achieving close to optimal coding performance.

The advancement of peer-to-peer technologies and the expansion of P2P networks provide

huge platforms to store and disseminate streaming media content. These networks are often self-

organized and have rather good adaptivity, although their scales are in general much smaller than

the Internet. Recent research has suggested revisiting Internet flow regulations as distributed control

problems and new findings along that direction are quite encouraging. During this thesis work,

we also realized the effectiveness of control theory knowledge and how it helps us to understand

and solve problems from that perspective. We would like to exploit the similarities between the

streaming media delivery in P2P networks and the flow regulations in the Internet. Also, we would

like to investigate the possibilities of addressing the P2P streaming problem by utilizing distributed

control approaches. Along this direction, some well developed knowledge from other disciplines

might also be worth exploiting, such as game theoretic approach.

As a double-edged sword, the overwhelmingly popularity of P2P networksmight, on the

other hand, jeopardize the accessibility of streaming media content, which could be simply cut back

by content providers due to the lack of copyright protection. We believe another very important

direction of streaming media research isDigital Rights Management(DRM) related technologies,

which ensure media content protection through the entire session of streaming service.
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