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SPAWN: Service Provision in Ad-hoc Wireless

Networks
Radu Handorean, Gruia-Catalin Roman, Rohan Sen, Gregory Hackmann, and Christopher Gill

Abstract

The increasing ubiquity of wireless mobile computing platforms has opened up the potential for unprecedented

levels of communication, coordination and collaboration among mobile computing devices, most of which will occur

in an ad hoc, on-demand manner. This paper describes SPAWN, a middleware supporting service provision in ad-hoc

wireless networks. The aim of SPAWN is to provide the software resources on mobile devices that facilitate electronic

collaboration. This is achieved by applying the principles of service oriented computing (SOC), an emerging paradigm

that has seen success in wired settings. SPAWN is an adaptation and extension of the Jini model of SOC to ad-hoc

networks. The key contributions of SPAWN are (1) a completely decentralized service advertisement and request system

that is geared towards handling the unpredictability and dynamism of mobile ad-hoc networks, (2) an automated code

management system that can fetch, use and dispose of binaries on an on-demand basis, (3) a mechanism supporting

the logical mobility of services, (4) an upgrade mechanism to extend the life cycle of services, and (5) a lightweight

security model that secures all interactions, which is essential in an open environment. We discuss the software

architecture, a Java implementation, sample applications and an empirical evaluation of the system.

Index Terms

system integration and implementation, composite structures, storage/repositories, distributed systems, pervasive

computing, middleware, network repositories.

I. I NTRODUCTION

Rapid advances in technology have resulted in portable computing devices such as PDAs and cellular phones

becoming increasingly more powerful, making them viable mobile computing platforms. In parallel, societal ac-

ceptance of mobile computing has resulted in more and more people owning such devices, thereby making them

ubiquitous. Given this fact, the potential exists for unprecedented levels of electronic collaboration among mobile

devices. However, this potential has thus far been realized only to a limited extent.

One of the key reasons why electronic collaboration among mobile devices has not become commonplace is

because software available for portable devices is very limited in its scope. Currently, most portable devices function

This research was supported in part by the National Science Foundation under Grant No. CCR-9970939 and the Office of Naval Research

under MURI research contract N00014-02-1-0715. Any opinions, findings, and conclusions or recommendations expressed in this paper are

those of the authors and do not necessarily reflect the views of the research sponsors.
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like small stand-alone personal computers. Typical applications are address books, calendars, email, and simple word

processors. Most of these applications usually synchronize themselves with a desktop PC or a server via a wireless

network. Their usage of their networking capabilities as a mobile device is minimal. This occurs in part because the

software resources for such collaboration are currently at a very rudimentary state. For example, PalmOS [1] relies

on data transfer between two devices in a peer-to-peer fashion using the beam feature. Packaged applications must

also be transferred in a similar manner–on being received by a host, these packages can be unpacked manually and

the application installed locally. The shortcoming of this approach is that it is restricted to simple data transfers

between two devices and there is no scope for running a collaborative distributed application with many-to-many

interactions. The advantages of unimpeded collaboration among mobile devices are clear. If successful, it would add

a completely new dimension to the exchange of information and capabilities, where collaboration will be possible

with any other device with minimal effort. This is the grand challenge.

Service-oriented Computing (SOC) is a new computing paradigm that seeks to promote unhindered interaction

among applications by wrapping each application with an interface which can be described and interacted with

via the use of a standardized high level specification language. The application and the wrapping interface are

collectively known as aservice. The principles of SOC have been applied successfully in wired networks, e.g., in

the form of Web Services [2] which among others, facilitates Business-to-business (B2B) type interactions between

heterogeneous software packages used by various companies. Web services have been targeted towards powerful

server units with wired Internet connections.

However, the design of the Web Services architecture is not targeted toward wireless ad-hoc networks such

as those formed opportunistically between mobile devices. In this paper, we present SPAWN, a middleware for

Service Provision in Ad-hoc Wireless Networks. SPAWN is designed to promote unhindered collaboration among

heterogenous software and hardware available formobile devicesby applying the SOC paradigm to software

engineered for mobile ad-hoc wireless networks. The aim is to allow an egocentric application running on a mobile

device to expand its capabilities by exploiting services offered by other devices. Our focus is onpersonalized

services, i.e., services that help a specific user complete his or her task.

SPAWN is based on Jini [3], a proxy-based model of SOC, which differs from the Web Services model. Like

other SOC models, in Jini there is aservice providerthat offers a service and aservice recipientor client that

uses the service. What differs is the manner in which services are advertised and used. Unlike Web Services where

services are described using an XML description and accessed by a Uniform Resource Identifier (URI) specified

in the description, in Jini a service is advertised as aproxy object, which is at minimum a piece of code that offers

an interface to the service provider but can also be a fully functional object delivering part or all of the offered

service’s functionality. Depending on the complexity of the proxy, the client uses the proxy as a local handle to a

service residing on a remote service provider or as a local copy of the offered service. The advantage of the proxy-

based approach is that the use of the proxy eliminates any need for the client to have knowledge of the application

level communication protocol to interact with a given service. This in turn allows interaction with a large set of

heterogenous services by simply making local method calls to their respective proxies (we assume that the client
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knows the interface of the service it needs a priori). A useful side effect of this is that clients can be relatively

lightweight since all the communication logic is embedded in the proxy. However, Jini employs a centralized service

directory where service providers offer services, which is not suitable for ad-hoc wireless networks because the

loss of the host with the service directory (due to it not being in communication range or due to shutdown) can

render the entire system non-functional. In addition, the dynamic nature of ad-hoc wireless networks creates further

problems for middleware design which had to be addressed during the development of SPAWN.

The SPAWN system is an adaptation of the Jini model for ad-hoc wireless networks. Instead of a centralized

service directory, SPAWN uses a transiently shared federated service directory. Hosts within communication range

can contribute to and use services in the federated directory. Additionally, instead of using RMI for communication

between the proxy and its parent services, the SPAWN system uses a tuple-space-based communication mechanism

(described in Section II). The SPAWN system also implements some additional features. If the client requests a

service that requires a source file that is not locally available, an automated code management system fetches the

required file from the provider and installs it on the client in a transparent manner. If the file has other files as

dependencies, those are also fetched as required. To accommodate the various constraints found on devices in

an ad-hoc network, such as storage, battery power, and mobility. SPAWN provides a mechanism for services to be

migrated from one host to another using a pause-transfer-resume mechanism. This is useful if for example, a service

has to move to another host to stay in range of a client while it finishes execution, or if the battery on a device is

low prompting a move to a device with more power. Another feature is the ability to upgrade services at runtime.

SPAWN allows the service provider to upgrade the service software with minimal interruption to the client. Finally,

a lightweight security mechanism secures all interactions between the client and the service provider.

The remainder of the paper is organized as follows. Section II describes the communication model for ad hoc

networks upon which SPAWN is built. The basic mechanisms of service advertisement and discovery are covered

in Section III, followed by a description of the automated code management feature in Section IV. Section V

describes the strong migration capabilities of SPAWN. The facilities to upgrade services are discussed in Section

VI and Section VII describes the lightweight security model. Section VIII describes the implementation details of

the SPAWN system, followed by evaluations in Section IX. Related work is covered in Section X. Section XI gives

further discussion of the paper before we conclude in Section XII.

II. COMMUNICATION & COORDINATION IN AD-HOC NETWORKS

SPAWN has been designed to work effectively in ad-hoc wireless networks. Before we begin a detailed description

of SPAWN, we provide a brief summary of the characteristics of ad-hoc networks. We also describe Limone [4],

a lightweight coordination middleware for ad-hoc networks, which provides basic communication primitives upon

which the SPAWN system is built.

An ad-hoc network is a dynamic network where the network infrastructure is collectively supported by the

devices that comprise the network. In mobile ad-hoc wireless networks, which are the focus of our work, devices

are physically mobile. The physical mobility of devices results in transient connectivity leading to a decoupled
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style of computing. In general, devices in an ad-hoc network are resource poor in terms of battery power, processor

speed, and possibly storage. Ad hoc networks can also be highly heterogenous, with devices from cellular phones to

laptops participating in a given network. The inherent dynamism of the network results in frequent and unpredictable

disconnections. Communication in such an environment cannot be conducted using traditional methods such as

sockets and streams as they are not geared towards dynamic environments . Hence, we use Limone, a coordination

model designed specifically for ad-hoc networks.

Limone abstracts the low level details of communicating with other hosts in an ad hoc network. By providing

primitives that offer a higher level of abstraction, Limone simplifies application development for dynamic settings.

Thus, events such as disconnections, network reconfiguration, etc. are all handled by Limone and the application

is shielded from their effects. In Limone, each mobile device is referred to as ahost. Each host may have one or

more units of execution calledagentsrunning on them. Hosts are typically physically mobile, meaning that they

move in space, while agents may be logically mobile, i.e., they can move from one host to another. When two

hosts (and thus the agents running on them) are within communication range, they are said to beengaged. When

they move out of communication range, the hosts are said to havedisengaged. Communication can occur between

two agents whose hosts are engaged. The following subsections describe how the Limone model works and how it

can be used to communicate in ad-hoc networks.

A. Establishing Contact with Neighboring Hosts

The physical mobility of devices in an ad-hoc network coupled with the limited range of current 802.11b wireless

LAN cards results in the set of neighbors of a given reference device changing rapidly over time. Hence, the first

step towards effective communication is to track the devices that are within communication range. Each mobile

device orhost runs a singleLimoneServer. A LimoneServer may have multiple LimoneAgents running on it, each

analogous to an application. The LimoneServer periodically broadcasts beacons. Beacons contain profile information

for each LimoneAgent running on the LimoneServer that broadcasted it. When a host receives a beacon from the

reference host, it forwards the profile information contained in the beacon to each LimoneAgent running locally.

Every LimoneAgent has anengagement policyand anacquaintance list. The engagement policy dictates which

agents can be added to the acquaintance list. By default, all agents are allowed to be added to the acquaintance

list. The acquaintance list tracks the agents (and thus the hosts) that are in communication range and meet the

requirements of the engagement policy. When the LimoneServer forwards a beacon to a LimoneAgent, it checks

the policy information contained in the beacon to see which agents have policies consistent with its engagement

policy. Those agents are added to the acquaintance list. The acquaintance list constantly monitors for beacons from

all agents in the list (recall that the beacons are sent periodically by each host). If a beacon has not been received

for a customizable period of time, the agent is removed from the acquaintance list and is considered not to be in

communication range until another beacon is received from it. In this manner, LimoneAgents always have accurate

snapshots of the hosts and agents within communication range.
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<Destination: String("Europe"), Size:Integer.class>

<Name:String("Boat"), Size:Integer(25), Destination: String("Europe")>

Fig. 1. The first string in the figure represents a tuple. The second string represents a template which can be used as a parameter to thein

and rd operations.

B. Communication Using Tuple Spaces

Once a host establishes who its neighbors are, the next concern is to actually have them communicate. In Limone,

this occurs via a transiently shared data space called atuple space, originally proposed in Linda [5], and adapted to

ad-hoc networks for the first time in LIME [6]. Each agent owns a single physicallocal tuple space. Multiple logical

tuple spaces can be created using a mechanism described later in this section. A tuple space can be conceptualized

as a bag into which data can be placed. An agent can always access the data that is placed into its local tuple space.

When two hosts are within communication range, the tuple spaces of its agents can be logically merged to form a

federatedtuple space. When the tuple spaces are merged, any agent can access data from any other agent whose

tuple space is part of the logically federated tuple space. The merging (and demerging) of tuple spaces occurs in a

single atomic step to ensure consistency.

Communication among agents occurs via the use oftuples. A tuple is an set of data fields. An example of a tuple

can be seen in Figure 1. An agent can place a tuple containing some data in its local tuple space. Another agent

can retrieve the tuple from the tuple space, resulting in communication between the agents. Three basic operations

are provided for tuple space based communication. Theout operation places a tuple in the local tuple space. The

in operation removes a tuple from the local tuple space, while therd operation performs a non-destructive read of

the local tuple space. Theout , in , and rd operations block until they are completed, meaning that further tuple

space operations cannot occur while they are executing.

The in andrd take atemplateas their parameter. A template is a collection of named constraints, each defining

a name and a predicate over the field type and value that is called the constraint function. A template matches a

tuple if each constraint within the template has a matching field in the tuple. A constraint matches a field if the

field’s name, type, and value satisfies the constraint function. Multiple logical tuple spaces may be simulated by

adding a field with the name of the tuple space, and then having the same name in a template to restrict the search

to that particular logical tuple space. For convenience, Limone allows an agent to create a logical tuple space class

which acts as a wrapper around the agent’s local tuple space. When a tuple-space operation is performed on this

class, it automatically adds the name of the logical tuple space to the tuple or template as the case may be.

In addition to the three basic tuple operations, Limone also provides advanced tuple space operations. Theinp

operation is similar to thein operation except for the fact that it is non-blocking. A null value is returned if no

matching tuple exists in the tuple space. Therdgp operation is similar to therd operation except for the fact that

while the rd operation can only return a single tuple, therdgp operation can return a vector of tuples if more

than one matches the specified template.
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C. Remote Operations & Reactions

For security reasons, an agent may not perform any of the three tuple space operations on another agent’s tuple

space. Instead, they must send a remote operation request. For example,Agent A may send a request for anin

operation withtemplate t on Agent B. Each agent has aremote operation manager. The remote operation manager

handles all remote requests. When a request comes in, it executes the operation locally and sends the result back to

the initiating agent. Optionally, the remote operation manager can be configured to reject certain requests to enforce

access control or security policies. Note that to the application programmer, remote operations appear to be simple

operations that span the federated tuple space. The sending of requests and receiving of results is handled entirely

by the Limone middleware in a manner transparent to the application programmer.

The final feature of Limone we present is the reaction mechanism, initially proposed in [6]. Reactive programming

constructs enable an agent to respond automatically to the existence of particular tuples in the tuple spaces of agents

in its acquaintance list. Two state variables within each agent, the reaction registry and reaction list, support this

behavior. An agent registers a reaction by placing it in its reaction registry. Once a reaction is registered, Limone

automatically propagates the reaction to all agents in the acquaintance list that satisfy certain properties specified by

the reaction (e.g., the agent’s name or location). At the receiving end, the operation manager determines whether to

accept the reaction. If accepted, the reaction is placed into the reaction list, which holds the reactions that apply to

the local tuple space. When the tuple space contains a tuple satisfying the trigger for a reaction in the reaction list,

the agent that registered the reaction is sent a notification consisting of a copy of the tuple and a value identifying

which reaction was fired. If this agent receives this notification, it executes the code associated with the reaction

atomically.

The use of Limone allowed us to design SPAWN without having to consider the complications of communication

in an ad-hoc network. This greatly simplified the development of SPAWN. In the next few sections, we describe the

various features of SPAWN and their role in the overall system.

III. SERVICE DEPLOYMENT & D ISCOVERY IN THE AD-HOC ENVIRONMENT

We begin our description of the SPAWN system by describing the resources that support basic sharing of services.

For services to be shared, a service provider must be able to advertise the service. A client or service recipient must

be able to view advertisements from one or more service providers and select a service that most closely meets its

needs. This interaction is facilitated by theservice directory. Traditionally, the service directory is placed on a well

known host which can be accessed by all other hosts in the network. An analogous example is the DNS system used

on the Internet. While this centralized approach works well in reliable wired networks, it fails in ad-hoc wireless

networks because hosts constantly move in and out of communication range and the directory moving out of range

can compromise the entire system. This can also be seen pictorially in Figures 2 and 3. Figure 2 shows a scenario

where orphan advertisements are present in the service directory while Figure 3 shows a scenario where lack of

access to the service directory prevents use of services. To address these problems, SPAWN uses a distributed service

directory, where each host is responsible for the portion of the directory that contains its own advertisements. The



7

service directory is modeled as a Limone tuple space. Recall that the tuple space is a transiently shared federated

data structure. Hence, if a host should get disconnected, only the portion of the federated service directory that was

the responsibility of that host would be lost. Further, the loss of that portion of the directory does not affect the

system as a whole since it only contains the advertisements of the host that just disconnected. Not having those

advertisements accessible any more is actually desirable since the host is not within communication range to offer

those services anyway. Thus, using the tuple space to model the service directory not only solves the problem of

creating a decentralized directory, it also solves the crucial problem of consistency of the service directory (i.e.,

there are no orphan advertisements in the directory).

Having described the service directory, we now move on to

service

range
communication

server

service
cannot use

client

lookup

Fig. 2. The client accesses the service directory and discovers

an orphan advertisement (an advertisement for a service that

is not reachable by the client

the advertisement itself. In SPAWN, an advertisement has three

parts: the proxy object, the descriptive profile of the service

being offered, and the binary for the proxy object (including the

class closure). The proxy is the serialized form of the object that

becomes the local handle to the service on the client host. The

descriptive profile is a set of attribute-value pairs that describe

how well a service can perform a task. For example, for a ser-

vice that offers access to a printer, a possible attribute-value pair

could beresolution:300dpi . The binary is the machine

code required to execute the proxy class. To advertise a service,

the service provider passes the proxy object and attributes to

SPAWN. The system automatically scans the proxy object and

assembles a list of all the classes that are in the closure of the

proxy’s class. It then packages the serialized form of the proxy

and the descriptive profile in a service advertisement tuple and places it in the local service directory using Limone’s

out operation. Additionally, for the proxy class and all its dependent classes, it generates a tuple with the binary

for the class and a string representation of the name of the class. These tuples are placed in a separate directory

called thecode repository, which is also modeled as a Limone tuple space. The role and behavior of the code

repository is described in greater detail in Section IV.

When hosts are connected, the service directory is federated across all connected hosts. Hence, any other agent

resident on a host that is connected can view the service advertisement. However, simply viewing the advertisement

is not enough. A client must be able to request services that match its criteria. In SPAWN, a client requests a

service by first formulating a template that describes the kind of service desired. A service request template has two

fields– The interface of the service desired, and a set of minimum attributes that the service is required to meet.

This template is passed to SPAWN which uses it as a parameter to Limone’srd operation which operates on the

federated service directory. Limone’s matching mechanism (described in Section II) compares service advertisement

tuples in the service directory with the provided service request template. If a match is found, a copy of the service
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advertisement tuple that generated the match is sent back to the requesting client. It should be noted that if more than

one match is generated, then the system non-deterministically selects one and returns it to the client. Optionally, the

client can request to have all the matches returned and do the filtering itself (in this case, Limone’srdgp operation

is used).

Once the service advertisement tuple containing the proxy and the

service ad

service

could use

clientserver

communication
range

register

cannot

lookup

cannot

Fig. 3. While the client is within communication

range of the service, it is not aware of this since the

service directory, which facilitates the interaction is

unreachable.

descriptive profile is returned to the client, the proxy is extracted from

the tuple, deserialized and installed on the client. The installation is

light-weight, i.e., the proxy is not written to permanent storage but

is simply kept in memory. The reason we made the decision to not

write the object to persistent storage is because we regard services

as software resources that are used when and where needed and then

discarded once their usefulness is at an end. Hence, saving them on a

hard disk or flash memory is not necessary, i.e., it would be the same

as always carrying all the needed applications on the portable device.

We rely on the operating system to page out the binaries if available

memory is low. Once the installation has been completed, the client

can interact with the proxy as if it were a local object (recall that we

assume that the client knows the interface of the proxy). The proxy

accepts calls from the client and services them locally or delegates

them to its parent service on a remote host.

Though fully encapsulated, the proxy-service protocol needs to be resilient against temporary disconnections

which can be caused by the two hosts moving beyond communication range or by having the proxy reconnect to a

different server. This is addressed by the fact that we use tuple spaces for communication between the proxy and the

server. A proxy on the client places a tuple in the client’s local tuple space. The service provider typically registers

a reaction or performs a remotein on the client’s tuple space to retrieve the tuple. If the client moves out of range

of the service provider or vice versa, the tuple will remain in the local tuple space. When the service provider

reconnects, it will execute the remote operation or reaction and retrieve the tuple. Hence, no communication is lost

due to disconnection. The behavior is identical for communication originating at the service provider. SPAWN also

uses a timer to avoid infinite blocking during a method call made on a proxy that results in some communication

with its parent service provider. When the timer expires, the system raises an exception which is caught by the

proxy and propagated to the calling application.

The entire process of discovering and using proxies relies on a key assumption–that the binary of the proxy is

already available on the client host. Without this binary, the proxy would not be recognized as a valid class on

the client. This assumption is not reasonable since the entire purpose of SOC is to exploit services on other hosts,

most of which are likely to have not been encountered before. Thus, to remove this constraint, we developed an

automated code management system for SPAWN that ensures that the required binaries are fetched from the service
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provider and made available on the client when needed. This is described in the next section.

IV. T RANSPARENTEXPLOITATION OF SERVICESUSING AUTOMATED CODE MANAGEMENT

SPAWN’s automated code management system is responsible for ensuring that the bytecode for proxy classes is

available on the client when required. It may be argued that such a system is not necessary if alternate models for

downloading code or a completely different SOC architecture is used. However, we claim that those approaches

are not as suited for ad-hoc wireless networks as the proxy-based approach. For example, Jini uses a centralized

server to distribute code using HTTP, and RMI [7] to handle calls between the proxy and the client. Having a

centralized code repository is not suitable for ad-hoc networks for the same reason that it is not suitable to have

a centralized service directory. The use of RMI requires both the service provider and the client to run resource

intensive RMI servers, which is not practical on resource constrained mobile devices. Other SOC models such as

Web Services that operate without transferring any code are also not suitable as they rely on every resource being

in a fixed location described by a static URI, which is not possible in a dynamic mobile setting as it can limit the

potential for interaction between the client and the service provider.

While we could have left it to the client application developer to ensure that any required bytecode was prefetched,

such a requirement makes the client application much more complex. Thus, we opted for a fully automated code

management system that is completely transparent to the application developer and to the application on the client

host, and which therefore significantly simplifies application development. The code management system is split

into a provider side and a client side infrastructure.

A. Provider Side Infrastructure

The infrastructure on the service provider is responsible for facilitating the process by which the required code

is made available to potential clients. The service provider is responsible for providing the classes for all its service

proxies to SPAWN. When a proxy class is passed to SPAWN, it is put in a tuple and placed in the code repository.

Additionally, reflection is used to determine the class closure of the primary proxy class. For each non-standard

class in the closure (where non-standard is defined as a class that is not available in the basic libraries of the

programming language being used), the local host is checked for the binary for that class. If found, the binary is

placed in a tuple and placed in the code repository in a manner similar to the primary proxy class. If the binary is

not found, it is skipped under the assumption that the dependency will be available from another service provider

on another host. An argument can be made for packaging the proxy code as well as its dependencies in a single

executable archive, e.g., JAR files. However, in the interest of flexibility, we did not want to restrict a client to

obtaining the dependencies of a proxy solely from the advertiser of the proxy. Thus by default, archives are not

used, but a service application programmer can force the use of archives if required.

B. Client Side Infrastructure

Upon receipt of the service advertisement after a successful lookup (see Section III), the client extracts the name

of the service proxy class from the advertisement and tries to instantiate the proxy locally. If the binary code for
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the proxy is not present on the client, the instantiation step raises an exception. The system catches the exception

and launches a discovery protocol to find the required binary code. This process is identical to the process used to

discover service advertisement except that the search is automatic and performed on the code repository in a manner

entirely transparent to the client application developer. Once the binary code has been discovered and retrieved by

the client, it is parsed to determine if any additional code (dependencies) is required. If any code is required, the

system launches the discovery protocol in the code repository to discover the binary code for each dependence.

This process is identical to the one used for discovering the binary code for the proxy itself. Once all dependencies

have been fetched, the proxy and the additional code are installed on the client. Once the proxy has been installed

on the client, it is loaded into the runtime environment. Figure 4 illustrates the entire process starting from the time

a service is advertised to the time when it is installed and ready to use on the client.

By design, our architecture for discovering de-
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Fig. 4. Proxy advertisement, discovery, installation and utilization.

pendencies also supports service composition, since

one proxy can have among its dependencies another

proxy, representing another self sufficient service.

Figure 5 illustrates this feature. Each slice in the

pie chart represents the code repository local to each

host, and the entire pie represents the federated code

repository.P 1
A is the proxy of a service advertised by

a service provider on hostA depending onD1
A and

P 2
B . D1

A is a dependency that theP 1
A proxy needs

and is advertised by the service provider on hostA.

P 2
B is a stand-alone service which can be discovered

and used independently by a client but, fromP 1
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perspective, it is just another dependency which is

treated in a similar manner toD1
A.
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form of code migration. The dynamism of ad-hoc wireless

networks often requires stronger forms of migration, i.e.,

migration in which an executing process is paused, trans-

ferred to a new host and resumed from the point where

it was paused. Strong migration helps processes achieve

true logical mobility, which increases their flexibility. The

advantages of this increased flexibility are described in the

following section along with the description of the support

SPAWN provides for strong process migration.
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V. M ITIGATING THE EFFECTS OFMOBILITY ON SERVICE PROVISION

Thus far, we have described how services are discovered and used in ad-hoc wireless networks. We have

also shown how the effects of short periods of disconnection can be mitigated by the use of tuple-space-based

communication. However, this is not sufficient for ad-hoc wireless networks since disconnections can be long-lived

or even permanent. While we cannot control when disconnections occur, we can take steps to mitigate the effects

of the disconnection. The solution we adopted in SPAWN was to enable services to belogically mobile. Logical

mobility is when a program moves from one host to another. In addition to supporting logical mobility, we support

pause-transfer-resumecomputing where an executing process is paused, its data and execution state transferred to

another host and execution resumed at the point that it was stopped. To support such functionality, we developed

follow-me sessions. A follow-me session refers to the interactions that occur during the time interval from when

a client starts using a service until the time when the client is finished using the service. The interactions in a

follow me session may span beyond a single interval of connectivity or a single host. During a follow-me session,

the service can be logically moved to alternate hosts to help ensure that the client-service interaction can run to

completion. At this point, we reiterate that the term “service” refers to a software process that runs on a host on

which the corresponding service provider resides. A crucial observation is that a service process can reside on one

or more service provider hosts orserversover a period of time. Hence, in this section, when we refer to a service,

we refer only to the process, and not to the host on which it is resident.

Process migration is central to delivering follow-me sessions. To help maintain connectivity, a copy of the service

can be migrated so that it remains within communication range of the client for as long as is required. It should be

noted, however, that in some cases, the service cannot be migrated, possibly because it relies on some hardware,

e.g., a GPS receiver, that is only connected to its primary host. To ensure connectivity, migration of processes is

essential. The rest of this section describes how a process can be migrated from one host to another in SPAWN.

A. Checkpointing & State Saving

To support process migration, we have to place checkpoints in the software. Checkpoints are specific points

in the code where the current state of a program and its data, including intermediate results, are saved to non-

volatile storage so that if interrupted the program can be restarted at the last checkpoint. If a program’s run fails

because of some event beyond the program’s control (e.g., hardware or operating system failure) then the processor

time invested before the checkpoint will not have been wasted. In SPAWN, most of the failures will occur due to

disconnection. If a client-service interaction does not run to completion during a window of connectivity between

the client and the service provider’s host, the task has to be completed during a subsequent window of connectivity,

or the service has to be moved to a host within communication range. Using checkpoints, the interaction can resume

from an intermediary point (i.e., from the last checkpoint the execution flow went through before the disconnection),

and does not have to be restarted from the beginning.

SPAWN relies on the application developer to place checkpoints at points in the code where it can be paused

safely, e.g., at points where it does not hold locks on shared resources. When the code is provided to SPAWN, the
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checkpoints placed by the application developer are replaced with subroutines in which the state of the thread is

recorded, including its program counter and call stack, which consitute the execution state. We maintain an artificial

program counter, which is updated at each checkpoint. The value of this artificial program counter is transferred

to the destination host and is used to resume the execution of the service process. The data state is composed

of the values of instance variables (live objects) which are transferred as serializable objects (we assume that all

instance variables are serializable). When the service migrates from one host to another, the state recorded at the

last checkpoint visited is transferred. Any further computing is lost as the session and state information resumes

from that last checkpoint, e.g., if the checkpoint is placed just before a for loop, the loop will be started from the

beginning when the execution is resumed at the destination host. If the checkpoint is added immediately inside the

loop, the execution resumes with the last iteration of the loop executed on the initial host.

B. Process Migration

Process migration has traditionally been separated into weak and strong migration. Weak code migration requires

that the process can move and restart, but not resume, on the destination host. This involves making the code

available on the destination machine, loading it and restarting the process from the beginning, losing any progress

the process may have made before migration. In some cases, some initialization data can be transferred along with

the process but that does not account for execution state transfer. The process is still started from the very beginning,

except that the memory is initialized to contain potential partial results.

Weak code migration is not sufficient to support follow-me sessions as it is loses any progress made (i.e., processes

have to start executing from the beginning when transferred and any messages received during execution would be

lost, thereby potentially violating some safety properties). Thus, we use strong code migration which entails the

migration of the execution state as well. Obviously, strong mobility is more powerful but it is also more expensive

to deliver. Migration might be made completely transparent to the process being transferred. However, this can

be extremely dangerous. For example, such a process could be transferred at a moment when it holds locks on

resources. Without support from the operating system, these locks may never be released, since the owner process

does not operate under the supervision of the operating system on the current host. Hence, we cannot safely migrate

a service in a manner that is completely transparent to the process itself, or to the programmer who writes the

service. We instead give the programmer control over the places where the process is paused and transferred by

marking such locations with checkpoints. This does notguaranteethat the developer does not use the checkpoints

in wrong places, e.g., while having a resource locked for exclusive access, but supports correct use.

During migration, the serialization process wraps only the content of an object (values of member variables),

packages them in a tuple, and moves them to the destination host using Limone’s standard tuple-space-based

communication that was described in Section II. However, the bytecode from which the object (as well as all

objects inside the initial object) were created is not transferred. Therefore, a separate mechanism is required to

transfer the bytecode for each object (including its dependencies) to the destination host. This is handled by the

automated code management system described in Section IV. Regardless of whether the migration is lightweight or
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heavyweight, the server continues to execute on the source host. When a service migrates, a copy of the service is

created and the copy is migrated to the new host. The original copy of the service continues to run on the original

host until it reaches the next checkpoint, where it checks a flag, which if set, triggers termination of the service

process. This is done because stopping the service between checkpoints can result in undesirable behavior within

the system, which is explained in greater detail in the Implementation section. Note that if a service has multiple

clients, the original copy of the service can continue to run on the original host for as long as it is required to by

all its other clients.

At a high level, process migration is fairly simple. Most of the complexity of strong process migration is

in the actual implementation of the mechanism. Hence, we postpone further discussion of mechanism until the

implementation section of this paper.

VI. EXTENDING SERVICE L IFE: SERVICE UPGRADEAT RUN TIME

Software upgrades due to bug fixes or to provide enhanced functionality are commonplace. Since a service is

at its core a piece of software, it is possible that upgrades may be required. The problem with an upgrade of the

service software is that it could make the proxy incompatible. Hence, the proxies need to be upgraded at the same

time as the service itself. Performing such upgrades introduces several technical challenges, including (1) ensuring

that the upgrade takes place in a manner transparent to the client while minimizing the downtime of the proxy and

(2) ensuring that when the server side software is upgraded, in-progress requests from proxies that have yet to be

upgraded can still be handled (since it is unreasonable to expect that the server and all its proxies can be upgraded

in a single atomic step).

SPAWN provides a lightweight service update mechanism that can dynamically upgrade the server as well as its

proxies on client hosts. Transparency is achieved by employing a dynamically generated facade to hold calls from

the client application temporarily while the old version of the proxy object is swapped for the new one. Orphan

calls are avoided due to tuple-space-based communication which can hold communications for short periods of time

without losing them (similar to when there is a temporary disconnection between client and service provider hosts).

These calls are picked up by the new version of the server and, since we require newer versions of the server to

be backwards compatible, it can service the calls and return the result to the client. Our approach can be divided

into two distinctive parts: updating the proxy used by a client and updating the server that the proxy interacts with.

When updating the proxy object, problems arise due to the fact that the client is actively using it when the server

decides the proxy needs to be upgraded. We aim to swap the proxies in a manner transparent to the client. On the

server side, the upgrade may also trigger the upgrade of the proxies or may not affect the proxies currently in use.

In the second case, the infrastructure aims to replace the server with its newer version transparently even to its own

proxies.



14

A. Updating the Proxy Object

Also in the interest of transparency, we impose the constraint that the external API advertised by the proxy

cannot change from one version to the next unless the new interface extends the old one and hence is backward

compatible. Recall that the interface is specified by the client during the lookup process; since we upgrade the

proxy without notifying the client, the new proxy is required to provide the same interface (or a subclass) to ensure

that the client remains oblivious to the change. Also, if the client is using the proxy directly, the upgrade cannot be

transparent since during the swap the reference to the proxy will not be valid. We solved the problem by adding

a layer of indirection between the client and the proxy. Using a combination of the facade [8] and interceptor [9]

design patterns, we developed an intermediary wrapper layer that isolates the client from the proxy and handles

the proxy upgrade in a manner that is transparent to the client. This layer is generated automatically when the

service publishes its proxy object. When the client searches for the proxy object, it receives and installs the proxy

as well as the wrapper. The functionality this wrapper provides is essentially to decouple the client from the proxy,

to forward the clients calls to the proxy, to monitor the servers decision to upgrade the proxy, and to manage the

proxy upgrade process. An overview of the architecture is shown in Figure 6.

During the normal mode of operation, the wrapper is a simple
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Fig. 6. Architecture supporting run-time service upgrades.

pass through for calls from client to proxy and results from

proxy to client. In parallel, the wrapper monitors the service

advertisement in the directory service. If an upgrade is initiated

on the server side, the old advertisement is removed and re-

placed with one containing the new version of the proxy. The

wrapper reacts to the replacement of the advertisements and

retrieves the new proxy. During the retrieval of the new proxy

the wrapper continues to function as a pass through. Once the

wrapper has retrieved the new proxy, it requests the synchronization logic module (which ensures consistency during

the updating process) for a lock on the proxy. The synchronization logic ensures that the proxies are swapped when

there is no activity from the client and no remote execution of some method in progress. A method call acquires

a lock which guards the exclusive access to the proxy and will not release it until the result is returned from the

proxy. During this time, even if the proxy has already been retrieved and is available on the client host, the swap

cannot proceed. Note that there can be at most one call on hold. This is because there is only one client trying to

access any given instance of the proxy. A client cannot initiate a second call before the previous one returns. We

ensure that the wrapper does not return the flow of control back to the client, and keeps the client blocked until

the call returns by forcing a synchronous behavior on the client side, even though the wrapper forwards the clients

call to the proxy. This synchronization mechanism also ensures that it is not possible for a client to send out a call

using the old proxy and receive the answer from the new proxy. Symmetrically, if a proxy upgrade is in progress, a

method call cannot complete and will be blocked by the same lock before it reaches the proxy. Once the swapping
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is finished, the lock is released and the method call is forwarded to the newly installed proxy.

B. Updating the Server

Upgrades on the server side assume that the server needs to go off line temporarily and be restarted. Before the

server goes off line, it removes the service advertisement it registered from the service directory. Clients interested

in the functionality offered will not be able to discover the service during this stage, even though the server may

be running. At this stage of the process, the server ignores all incoming calls from clients. At the same time, it

continues to process the calls in progress, which were generated by the old version of the proxy. Not performing

this step can delay the completion of the in-progress calls indefinitely(as the set of in-progress calls can evolve

over time, e.g., new calls come in from clients before the server finishes the calls it is currently working on) and

thus defer the upgrade indefinitely. Once the response to the last in-progress call from the old version of the proxy

is serviced, the server can go off line.

When the new server starts up, it advertises itself in the service directory and it makes itself available to clients.

The advertisement publishes the new proxy (if needed). The proxy wrappers on clients which have the old version

of the proxy react to the new advertisement available in the service repository and upgrade the proxy if necessary. It

is important to note that the server is required to preserve backward compatibility with previous versions of proxies.

The reason for this is twofold. In the first case, the old server may have ignored some calls from clients during its

shutdown process. The new server, when it comes up, finds these calls waiting to be addressed. Until these calls

are addressed, the wrapper on the client side keeps the client application blocked, waiting for the method to return.

While the wrapper may react to the presence of a new proxy in the new servers ad in the service directory, the

most the wrapper can do is fetch the new proxy on the client host and then block again, waiting for the call to

return. The server therefore has to be able to execute this call, which necessitates that the server be able to read

and understand the request, even if it was formulated by an older version of the proxy.

Figure?? shows the sequence of interactions between different parts of the system. In the initial state, the client

has already discovered the service and installed its proxy. The first round trip of calls shows a complete path of

interactions starting with the client issuing a call, intercepted by the wrapper which obtains the lock from the

synchronization logic and then forwards the call to the proxy which sends it to its server. The call return follows

the same way back and releases the lock as it goes through the wrapper to the client.

The second call (shown in Figure?? below the dashed line) occurs at the same time that the server is upgraded. In

the scenario depicted, the proxy update request arrives at the wrapper after the method call from the client already

went through, towards the server. The wrapper therefore can only discover the new proxy and fetch it locally, but

has to wait for the method to return before it can proceed with the proxy replacement process. Once the result of

the call is returned and the lock is released, the wrapper obtains the lock and swaps in the new proxy. Once the

new proxy is in place, the wrapper releases the lock which guarded the proxy replacement and once again returns

to the default operating mode of simply forwarding client calls and results.
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VII. SECURE INTERACTIONS IN AN OPEN ENVIRONMENT

The final component of SPAWN we present is its lightweight security mechanism. In a stationary setting, where

all hosts access a wired (and therefore much more reliable) network, security issues are easier to deal with since

the applications can rely on central databases containing information about users, passwords, credentials, and

capabilities. Trust management in a distributed system operating in a stationary setting is easier when applications

can always rely on the presence of a server-based service ready to authenticate requests and offers.

In ad-hoc wireless networks, security considerations face new challenges. When two devices come in contact,

identifying the other party is not as easy as asking a trusted third party to verify the other’s identity. While an

authentication server may be available from time to time, the design of the applications cannot rely on this for their

proper functioning. There is no guarantee that an authentication service is available at a given point in time or that

it will become available any time soon. Thus, the two nodes need to take special safety measures to ensure secure

interactions.

The challenge is to devise a system that does not depend on the behavior of a single node for secure interactions

as well as to permit users and programs to be as effective as possible in this environment of uncertain connectivity,

without changing their manner of operation (i.e., by preserving the semantics of interaction) while still offering

security guarantees. Security enforcement is needed to protect the easily accessible service registries from tampering

or unauthorized usage and the new model is required to address this issue to the maximum extent possible under

the additional constraints imposed by ad hoc networking.

Addition of security to SPAWN required the addition of two components: a securityveneerbetween SPAWN and

Limone, and a security manager which maintains the access control rights, security keys, etc. Security is provided

at two levels of granularity: by tuple-space and by tuple. Figure 8 shows the architecture of the system with its

security veneer. The upper layer shows SPAWN, which handles all the service provision details. The security veneer

is at the interface of SPAWN and Limone, where it acts as an interceptor and filters all incoming and outgoing traffic,

and enforces security and access control policies. Finally, the bottom layer (Limone) handles all the communication

between hosts and agents.

Recall that in Limone, each agent owns a local tuple space. This tuple

The SPAWN System

   Security Veneer

Limone

Security
Manager

Fig. 8. Securing interactions in SPAWN.

space is always left unsecured, meaning that any entity can access its

contents. This tuple space is used for general service advertisements

and communication. In addition, the security veneer allows an agent

to create a secure logical tuple space (see Section II for details on

logical tuple spaces). A secure logical tuple space has a name and a

password associated with it. To access the secure logical tuple space,

an agent must possess a handle to the logical tuple-space (obtained

when the logical tuple space is created or by providing the name to

the Limone system) and in addition must specify the password when performing any tuple space operations (e.g.,
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out , in , rd ) to ensure execution of the operation. This ensures that only those entities that possess the password

can access the secure logical tuple space (we assume that the distribution of passwords is done by a third party key

distribution software that is handled at the application level). The use of different names and passwords for logical

tuple spaces enables creation of multiple (protected and/or unprotected) administrative domains where servers can

publish services and clients can look them up, grouped by common interests or access rights. If a secure logical

tuple space is created without a password, it functions the same way non-secure logical tuple spaces do, where

only the handle (or the name to obtain the handle) is required to retrieve data.

Given the variety of data present in a repository and the multitude of users accessing it at any moment, often,

the protection has to be extended to a finer grained level than the entire tuple space of service registry. The security

veneer also provides secure tuples. A secure tuple is similar to standard Limone tuples but add two fields: aread-

passwordwhich is required to read or copy the contents of the tuple, and aremove-passwordthat is required to

remove the tuple from the tuple space. The passwords are added when the tuple is placed in the tuple space. The

read-passwordcontrols access to the content of the tuple, while theremove-passwordmakes a tuple read-only

to those entities that do not possess the password. Thus a service advertisement, which is essentially a Limone

tuple, can be secured by using a secure tuple, which can be marked read-only by its provider protecting it with a

remove-passwordthat is not made public. This will prevent unauthorized (accidental or fraudulent) removal of the

service advertisement or the replacement of the advertisement with a fake one. Additionally, each advertisement can

be protected by aread-password, which enables a service provider to protect its services in a highly individualized

manner. As with the passwords for the tuple space, if a password is not provided for a tuple, it behaves like an

insecure tuple, e.g., if aremove-passwordis not provided, any entity can remove the tuple. Similarly, if aread

passwordis not provided, any entity can read the contents. Note that in the case of both tuple-space-level and

tuple-level security, the security manager is responsible for checking and verifying password protected access.

The secure logical tuple spaces and secure tuples can be used for more than just securing access to advertisements.

They can be used for secure communication between the proxy on the client host and the service on the service

provider’s host. Further details are provided in the next section. A last observation is that the transient sharing

of tuple spaces supported by Limone eliminates single points of failure scenarios. By simply disconnecting, the

stability of a system as a whole is not affected and interactions with other devices continue to function normally.

VIII. I MPLEMENTATION

In this section, we will present the implementation details of SPAWN and discuss the decisions made during

the development process. We have chosen to implement SPAWN in the Java language, due to its use of platform-

independent bytecode. We use a subset of the Java API that is supported by Java 2 Standard Edition, as well as the

Foundation and Personal profiles of Java 2 Micro Edition. This allows SPAWN to operate on many different classes

of mobile devices, ranging from PDAs to full-fledged notebook computers.
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A. Tuple Space Communication

We chose to implement SPAWN on top of the federated tuple-space primitives provided by Limone. Tuples are

implemented in Limone by mapping field names stored as Java Strings to Java objects; the object type of each field

is inferred using reflection. Tuple spaces are likewise implemented as sets of tuples.

Templates are implemented as a set of constraints. Each constraint contains a name specified as a Java String,

the Java class describing the kind of object to match, and a constraint function. A field is said to match a

constraint if the field and the constraint have the same name; the field’s type polymorphically matches the class

in the template; and the field’s value satisfies the constraint function. The two constraint functions typically used

are DefaultConstraintFunction (any value is acceptable, provided the field name and type match the

template) andEquivalencyConstraintFunction (in addition to the name and type matching, the value

must be exactly equal to some other value). For the sake of brevity, in the remainder of this paper we will use

(A:B.class ) to specify constraints in the form(A:B.class, DefaultConstraintFunction) andA:B

to specify constraints in the form (A:B.class, EquivalencyConstraintFunction(B)).

A template is said to match a tuple if all the corresponding fields (i.e., all pairs of fields bearing the same

name) match pairwise with its constraints. Note that templates can under-specify the tuple by describing only some

fields in the tuples to be matched: matched tuples may contain additional fields not described by the template.

If the application developer does not want to allow under-specification for some tuples, then the application can

incorporate“required fields” into the tuple by using the specialaddRequiredField(...) method. All of

these required fields must be described and matched exactly by name, type, and value in the template; if not,

the tuple/template comparison immediately fails. For example, in Figure 1, the “Destination” field of the template

requires an exact match with a String of value “Europe”, whereas the “Size” field specifies an Integer whose value

is not important. The “Name” field is unspecified, indicating that the type and value are not important.

As discussed in Section II, Limone agents must use a remote operation manager to perform operations on other

agents’ tuple spaces. A Limone agent can query itsAcquaintanceList to find the AgentID of any other

agents it has discovered, whether they reside on the same host or on another host across the network. It can then

use this ID to obtain anAgentProxy from the AcquaintanceList that refers to the remote agent in which

it is interested. ThisAgentProxy contains methods for performing the basic tuple space operations described in

Section II:in , out , etc.

When invoked, these methods use theRemoteOpManager to forward the request as a message to the appropriate

agent. Each agent has an operations queue for processing incoming requests. If the receiving agent resides on the

same host, then theRemoteOpManager places the message directly on the corresponding queue. Otherwise, the

RemoteOpManager stamps the message with a unique ID, serializes it, and forwards it to the recipient as a TCP

or UDP packet; there it is deserialized and placed on the remote queue. The agent that created the request then

blocks waiting for a response.

Each agent has a thread that repeatedly removes a request from the head of the queue and services it. Once a re-
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quest has been serviced, the result is placed into a message along with the original request’s unique ID. If the request

is non-blocking, likerdgp , then the “result” is an acknowledgment that the request was received. The response

is then serialized and sent back to the original agent in a packet. Once the original agent’sRemoteOpManager

receives the response, it cross-references its ID (to ensure that the correct request was serviced) and unblocks,

returning the result of the transaction to the agent. In order to prevent infinite blocking due to lost messages, the

RemoteOpManager will time out and throw an exception if no response is received within some configurable

period of time.

Each proxy can only refer to a single agent. Therefore, reading from tuple spaces shared across multiple remote

agents must be done one-at-a-time by sequentially performing the operation on each agent. The results of these

sequential operations must then be aggregated manually. Since this task is unwieldy for application developers,

SPAWN includes aNamedTupleSpace veneer which automatically performs these operations on all agents in the

acquaintance list and aggregates the results.

ServerServiceDirectory()

— creates a server service directory with the default tuple space name

ServerServiceDirectory(String name)

— creates a server service directory with the specified tuple space name

AgentTask advertise(String serviceName, Class proxyType, ServiceProxy proxy, boolean wrap)

— advertises a service of typeproxyType with nameserviceName and proxyproxy ;

the proxy is wrapped before deployment ifwrap is true .

AgentTask upgrade(String serviceName, ServiceProxy oldProxy, ServiceProxy newProxy)

— transparently upgrades the wrapped service namedserviceName from the old proxyoldProxy

to the new proxynewProxy .

void strongMigrate(AgentTask service, HostID host)

— migrates a serviceservice to a new hosthost with strong migration

void weakMigrate(AgentTask service, HostID host)

— migrates a serviceservice to a new hosthost with weak migration

Fig. 9. ServerServiceDirectory’s public interface.

B. Service Advertisement and Discovery

As discussed in Section I, SPAWN uses a proxy-based approach to service interaction. Each advertised service must

have exactly one associated proxy; therefore service advertisement and discovery can be achieved by performing

advertisement and discovery on the proxies the services use.

We have chosen to implement proxy advertisement and discovery using the existing tuple space semantics

provided by Limone. Proxies are placed in a shared tuple space (namedProxies by default) in the form

<Proxy:ServiceProxy, Attribute1:Value1, ..., AttributeN:ValueN> . Interested clients can
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ClientServiceDirectory()

— creates a client service directory with the default tuple space name

ClientServiceDirectory(String name)

— creates a client service directory with the specified tuple space name

ServiceProxy request(Class template)

— locates a service that implements the interfacetemplate .

Fig. 10. ClientServiceDirectory’s public interface.

discover services by performing queries or registering reactions using a template that describes the kind of service

requested.

In order to enable this service discovery, we assume that proxies implement well-known interfaces

that correspond to the service they provide. For example, assume printing services implement the

well-known PrinterInterface class. A host providing a printer service advertises a proxy

PrinterProxy that implements PrinterInterface ; this advertisement is placed in the tuple

space in the form <Proxy:PrinterProxy> . Clients can discover this printer service using the

template <Proxy:PrinterInterface.class> , which will polymorphically match all proxies that

implement PrinterInterface . Clients can further filter the services discovered by incorporating desired

attributes into the service request. For example, the template<Proxy:PrinterInterface.class,

DPI:GreaterThanOrEqualConstraint(300)> will match all services that implement

PrinterInterface and have aDPI attribute of at least 300.

C. Code Deployment

In order to allow clients to dynamically fetch proxy bytecode at runtime, services place all required proxy

bytecode in a shared code repository. Like the service registry, the code repository is implemented using a shared

tuple space. Unlike the service registry, which contains a set of proxy objects, the code repository contains the

binary code for the classes that compose these objects.

When the service provider calls theadvertise(...) method to publish a service, the SPAWN middleware

analyzes the bytecode of the proxy object. We cannot use reflection for this task, since Java’s reflection API

does not provide a list of temporary or local objects used within a method; so we perform this analysis by

parsing the bytecode and looking for all object references. While parsing the bytecode, SPAWN recursively extracts

every data type instantiated or referred to inside the proxy object in order to obtain a class closure, and then

automatically generates tuples that are placed in theBytecode tuple space in the form<Names:class names,

BinaryCodeFile:bytecode, isJar:boolean> . The first field of this tuple contains a list of all the classes

it contains. The second field either contains a single Java class file (if the tuple contains only a single class) or a

JAR file (if the tuple contains multiple classes) in the form of a byte array. The final field indicates whether the



21

BinaryCodeFile field contains a single class or a JAR file. Note that such tuples are not generated for classes

that are part of the standard Java runtime or the SPAWN distribution, since we assume these classes are available

on every host.

When the client obtains a service proxy by calling therequest(...) method, the deserialization mechanism

will throw a ClassNotFoundException if the proxy requires bytecode that is not available locally. SPAWN uses

the customLWObjectInputStream deserializer that intercepts any failed attempts to resolve classes locally. If

a class is missing, then the deserializer catches the exception raised. It uses this exception to determine the name of

the missing class and in turn invokes our customLWClassLoader , which attempts ardp operation on the code

repository using the pattern<Names:class name, BinaryCodeFile:byte[].class> with the purpose

of retrieving the bytecode for the required class from the code repository. If thisrdp operation succeeds, the class

loader extracts the bytecode from the tuple and presents it to the Java system class loader as a standard Java class.

We use a non-blocking read when searching for the bytecode to prevent the class loader on the client machine

from blocking indefinitely; otherwise this would result in all agents on the host being blocked, not just the one that

initiated the call. An exception is thrown only if this non-blocking read fails, i.e., the bytecode cannot be found in

the code repository.

Currently, the class loader stores any retrieved class bytecode in memory, which it consults before attempting a

rdp operation on the binary code repository. Though this helps minimize the number of repeated operations within

a given client session, it cannot store retrieved bytecode across multiple sessions. In future versions of our class

loader, we plan to include support for a customizable persistent cache which, much like a web browser cache, is

designed to save frequently-used bytecode across multiple sessions.

D. Transparent Service Upgrades

If the clients automatically retrieve proxy bytecode at runtime, it follows that they should also automatically

upgrade the proxies at runtime. As described in Subsection VI-A, this can be accomplished by “wrapping” the

proxy in a wrapper class that maintains the wrapped proxy’s API. SPAWN can optionally generate these wrappers

at runtime upon service deployment.

Our middleware uses Java’s reflection features to dynamically determine a proxy’s API. This API is used to

combine several pieces of template code into a JavaString object. ThisString contains the Java source code

for the proxy upgrade mechanism and for the synchronization mechanism, which is common to all services, as

well as call-forwarding code custom-generated for each individual proxy using reflection. Once the generic reaction

code and the call-forwarding code have been combined into a single Java String, a compiler extracted from the

Eclipse JDT Core project [10] is used to convert this String into Java bytecode on-the-fly. The server then converts

this bytecode into a Java class and instantiates it, giving the original proxy object to its constructor. The server

places the wrapper in the service advertisement tuple space. Clients can then use these wrapper proxies as ordinary

proxies, unaware of the fact that the underlying implementation of the proxy can be swapped out on demand.

The wrapper contains code that places a reaction in the form<OldProxy:this.class,
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NewProxy:underlying interface.class> onto the service advertisement tuple space in order to

look for newer versions of the proxy. When the service is upgraded, the server automatically places a tuple in the

form <OldProxy:old proxy, NewProxy:new proxy> into that tuple space, causing the reaction to fire.

When the reaction is fired, indicating that the proxy has been upgraded, the wrapper performs ard on this tuple

to get the new proxy, and then replaces it on the client as soon as the existing wrapped proxy is unlocked.

This wrapping procedure saves considerable effort for proxy developers, since they need not specifically

design the proxy with swapping in mind. Proxies are automatically wrapped ifwrap is true when the

ServerServiceDirectory ’s advertise(...) method is called to deploy the service. The proxy can later

be upgraded with a single call to theServerServiceDirectory ’s upgrade(...) method.

The code generated by wrapping services is inherently specific to the kind of user interface toolkit used by

the proxy. SPAWN’s current implementation includes support for proxies written using the Swing toolkit and the

Standard Widget Toolkit [11]. The service wrapper is designed in a modular way, so support for proxies written

in other UI toolkits can be added as required by proxy developers, or for proxies that do not have a graphical

interface.

E. Service Migration

Service migration in SPAWN is equivalent to thread migration, since theadvertise(...) method in

ServerServiceDirectory returns anAgentTask object, which extends Java’sThread object. Once a

service thread is encapsulated as described below, it can be placed in the sharedTasks tuple space. Willing

recipients install reactions of the form<Task:AgentTask.class, HostID:local ID> onto this tuple

space; once the reaction fires, they remove the tuple from the tuple space and continue the service’s execution.

As discussed in Section V-B, there are two forms of thread migration:strong migration andweak migration.

The latter form is simple to implement in SPAWN, since it only requires serializing theAgentTask object (which

can be done using Java’s built-in serialization routines) and placing it in a tuple of the form<Task:thread,

HostID:recipient ID> . This tuple is placed in the sharedTasks tuple space. Willing recipients install

reactions in the form<Task:AgentTask.class, HostID:local ID> on this tuple space. Once the reaction

fires, they remove the tuple from the tuple space and continue its execution by invoking itsstart(...) method.

However, weak migration imposes serious performance penalties on the service. Restarting the service on

the recipient host effectively destroys the service’s state. If the service is not entirely stateless, then whatever

computations were performed on the originating host are lost. Further, there is no safe way to stop a thread: stopping

threads is unsupported or deprecated in many threading libraries, because it can stop the thread’s execution at any

arbitrary point, including points where the thread may have an exclusive lock on system resources. Therefore the

thread must continue execution on the original host until it runs to completion, even after it has been migrated. If

the service is no longer needed on the original host, then this is wasteful of resources, especially if the migrated

service performs expensive calculations.

Strong migration migrates the thread’s execution state along with the thread itself, which allows it to be resumed
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on the recipient host with little or no loss in computational progress. However, it is impractical to save and restore a

thread’s state directly in a platform-independent fashion for several reasons. First, there is no platform-independent

way to save or restore the program counter, and many languages (including Java) prohibit access to it altogether

for security reasons. Second, as discussed above, once an application has been migrated, it should stop running on

the original host; but arbitrarily stopping threads in the middle of execution is inherently unsafe. Finally, saving

the complete state of an application involves saving its local variables, which cannot be accessed at runtime by an

external library.

We approached these problems by choosing to rewrite the bytecode of applications rather than trying to manipulate

them at runtime. This rewriting process adds bytecode to applications to add support for strong code migration,

including code to work around these technical limitations.

As noted in Subsection V-A, the state of the server application is saved at specific checkpoints. The application

programmer creates mobile applications by extending theMobileThread class, which adds several methods

and fields to Java’s standard Thread class as described below. The programmer defines checkpoints by calling the

addCheckpoint() method. Though this appears to the programmer to be an ordinary method call, it simply

serves as a placeholder in the bytecode to indicate when the partial progress and state information are recorded.

After compiling the Java source code, the resulting bytecode is passed to the bytecode rewriter. The rewriter loops

through all the methods in the class and modifies them to allow strong code migration.

To do this, the rewriter first collects a list of all the local variables in the current method. It then adds a field for

each of these local variables; these fields will be used later to store the state of the local variables. The rewriter also

inserts a field to store an artificial program counter. The rewriter then searches for all calls toaddCheckpoint() .

At each checkpoint, the rewriter inserts code to check thedo pause field, which indicates whether or not the

application thread is being paused so it can be migrated. If this field is set, then the method immediately returns.

If it is not, then the method copies all of the in-scope local variables to the fields described above and then sets

the artificial program counter to some unique value. Finally, the rewriter removes the call toaddCheckpoint() ,

since it only serves to mark the bytecode. The rewriter also appends code at the end of the method to copy these

fields back into the corresponding local variables and jump to the checkpoint; these “restoration points” provide

a place for the thread to restore its state and return to the last checkpoint it passed before being migrated. The

bytecode rewriter then adds code to the beginning of the method to see if thepaused field is set. If it is, then the

application jumps to the appropriate restoration point based on the contents of the artificial program counter field.

This has the indirect effect of restoring the thread’s local variables and the JVM program counter.

The MobileThread class adds two important methods to the standardThread class:pause(...) and

unpause(...) . The pause(...) method sets thedo pause and paused fields to true ; the former tells

the thread that it should stop execution as soon as it reaches the next checkpoint, and the latter tells the thread that it

should restore its state when it is restarted. Theunpause(...) method simply resets thedo pause field to false

and restarts the thread; since thepause(...) call set thepaused flag, the thread will jump to the appropriate

restoration point and return to the last checkpoint passed before pausing. This way, rewritten applications can be
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migrated across hosts by pausing the application thread, serializing it on the original host, deserializing it on the

new host, and unpausing it. Thus, strong migration is performed in much the same way as weak migration. The

difference is that sender invokes the thread’spause(...) method before placing it in the tuple, and the recipient

invokes itsunpause(...) method rather thanstart(...) after extracting it from the tuple.

F. Limone Security Concerns

For the sake of this discussion, we assume that Java’s built-in security policies completely protect against improper

field access (e.g., an object cannot use a security flaw in the Java VM to access another object’s private fields).

Though we assume that the network medium is insecure and prone to sniffing, we do not consider physical-level

attacks like wireless signal jamming.

Our first security concern is tuple space-level security: i.e., specific agents should be able to communicate privately

using a shared tuple space without other agents being able to access the tuple space. This protection is implicit

in Limone’s named tuple space system, since agents must know a tuple space’s name to perform operations on

it. Limone does not expose the names of the available tuple spaces to applications; therefore agents may privately

negotiate a secret tuple space name which other agents cannot determine. This negotiation may be done ahead-of-

time or by using the tuple-level security measures described below.

Our second security concern is tuple-level security: i.e., agents should be able to restrict access to specific

tuples, even those contained in unsecured tuple spaces. To implement this security policy, theSecureTuple class

contains two optional passwords accessible only by the tuple itself. These passwords, known as theread-password

andremove-password, respectively restrictrd and in operations to templates that contain the respective passwords.

The password-checking is performed in theSecureTuple class as a part of the template-matching mechanism,

ensuring that the passwords cannot be exposed outside of the middleware to malicious agents. These passwords are

not interchangeable: the read-password cannot be used to perform anin operation, and vice-versa.

While tuple space-level and tuple-level security protect tuple access on a single host, they do not provide adequate

protection for inter-host transactions. Limone’s shared tuple spaces are implemented using a message-passing

mechanism, which leaves tuples and templates being shipped across the network vulnerable to eavesdropping. In

order to alleviate this problem, we incorporated message-level encryption using the interceptor design pattern. The

encryption interceptor contains aSecurityTable structure that allows agents to assign passwords to individual

tuple spaces. As with the tuple space names and tuple passwords, access to these passwords is constrained to

the EncryptionInterceptor class, ensuring that they are not exposed to agents. When messages referring

to a protected tuple space leave or enter a host, the interceptor encrypts or decrypts the message with the AES

encryption algorithm, using a key generated from the password. If a host receives a message for which it does not

have a password, then it immediately rejects the message. Thus, when tuples are placed in password-protected tuple

spaces, their contents are protected against link-level eavesdropping attacks.
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Performance of Wrapping Services
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Fig. 11. An evaluation of the time required to wrap proxies.
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Fig. 12. An evaluation of the size of the resulting wrappers.

IX. EVALUATION

In this section, we discuss the performance of SPAWN. We performed these evaluations on two testbed computers.

The first, a 744 MHz Pentium III-based laptop running Linux 2.4.20, represents a typical device that might consume

or provide services in an ad hoc network, such as an ultraportable laptop. The second, a 624 MHz PXA270-based

PDA running Windows Mobile 2003, represents the kind of device we expect to consume (but, due to resource

constraints, not to provide) services. These devices were equipped with SPAWN running on the Sun JRE 1.4.2 and

IBM WebSphere Everyplace Micro Environment 5.7.1 Java runtimes, respectively. Communication between the two

computers occurred over an ad-hoc Wi-Fi network, with the PDA using an integrated Wi-Fi chipset and the laptop

using an Orinoco Gold PC Card adapter.

A. Service Wrapper

As was discussed in Subsection VIII-D, the wrapping portion of SPAWN is specific to the user interface toolkit

library used for implementing the proxy. For the sake of these tests, we wrote proxies using the SWT toolkit, since

the Swing library is not present on our PDAs.

In order to measure the performance of wrapping services on-the-fly, we generated five “dummy” proxies designed

for the clients using SWT toolkit. Each of these proxies contains from one to five methods, along with a stub

constructor and stubs for the four standard methods required for proxies written with SWT. These proxies were

each wrapped five times, with the average time needed to wrap each proxy shown in Figure 11. The size of the

generated proxies is shown in Figure 12.

It is worth noting that there is no apparent correlation between the number of methods in the proxy and the time

required to wrap it. This indicates that the majority of the time required to wrap a proxy is spent on overhead (e.g.,

initializing the compiler) independent of the proxy itself. The time required to wrap a proxy before deployment

ranges from 123.8 ms to 152.8 ms on the laptop computer, and from 519.6 ms to 548.4 ms on the PDA. It

is unrealistic to deploy useful services on devices with as limited computational resources as our PDA, so we

consider 500 - 600 ms to be a conservative upper bound on the time required to wrap a service.
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Performance of Instrumenting Services
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Fig. 13. An evaluation of the time required to instrument services.

Effect of Instrumentation on Bytecode Size
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Fig. 14. An evaluation of the size of the services, pre- and post-

instrumentation.

Unsurprisingly, the size of the generated proxies is linear with respect to the number of methods wrapped. The

wrappers are on the order of 4 to 5 kilobytes, with a cost of approximately 100 bytes per each additional method.

We feel that this is entirely acceptable, since the size of the wrapper will be dwarfed by the size of any non-trivial

proxy.

Note that the methods we wrapped have no return values or parameters. Adding return values or parameters

would increase the size of each method in the wrapper, since these values would have to be pushed or popped off

the stack. However, we consider this insignificant, since these instructions would only add a few bytes to methods

with reasonable numbers of parameters.

B. Thread Rewriter

To study the performance effects of instrumenting service bytecode, we implemented three simple services. The

first, Mandelbrot , generates a bitmap image of a Mandelbrot fractal. The second,StreamRipper , connects to

an Internet radio station and saves the sound to a buffer for later listening. The final,MP3Encoder , encodes an

MP3 file from an input waveform. These three tasks were chosen because they contain loops with many iterations,

which reflects the kinds of tasks that are most likely to be instrumented to support migration. Checkpoints were

inserted in each task where appropriate; the three tasks respectively contained two, three, and four checkpoints.

To evaluate the time required to instrument a service’s bytecode, we instrumented each of the services five times.

The averages of these five runs are shown in Figure 13. Even on our PDA, the rewriter took less than 200 ms

to instrument each task; this was further reduced to under 60 ms on the laptop. Interestingly, instrumenting the

StreamRipper task was slower than theMP3Encoder task, even though the latter had more checkpoints. This

occurred because the rewriter must perform some analysis on all local and temporary variables, and the former task

had many more local variables than the latter.

Since the instrumentation process must necessarily increase the size of the bytecode, we also examined the size

of the resulting bytecode. This data is shown in Figure 14. The services increased by approximately 6% to 16%
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due to code and fields added during instrumentation. We do not consider this to be a significant increase, especially

since these tasks would presumably be executed on hosts where storage is not a major constraint.

Finally, we must consider the runtime performance of the instrumented bytecode versus the original bytecode.

To evaluate this potential overhead, we ran the uninstrumentedMandelbrot task five times each on the PDA

and the laptop. We repeated this test using an instrumented version of the task to see if the instrumented code

carried any significant overhead. We did not evaluate theMP3Encoder in this fashion since its performance can

vary significantly based on the data being encoded. Likewise, we did not evaluate theStreamRipper ’s runtime

performance since it is not CPU-bound.

On average, the uninstrumented task completed in 3424.4 ms on the PDA and 85.0 ms on the laptop. In

comparison, the instrumented version completed in 3421.2 ms on the PDA and 84.8 ms on the laptop on average.

This difference is statistically insignificant, which suggests that instrumentation has little impact on the task’s

performance.

C. Tuple Space Performance

To test the performance of tuple-space operations, we wrote a service that creates a shared tuple space and installs

a reaction onto this tuple space. When this reaction fires, the service places a second tuple in the tuple space that

echoes the first tuple. On the client, the proxy places a tuple in this tuple space and installs a reaction that fires

when the server echoes back the original tuple; it repeats this process when the reaction fires. By measuring the

time between the arriving tuples, the service provider can estimate the “round-trip time” on typical tuple-space

operations.

We deployed the service on the laptop and let the proxy run on the PDA for 40 iterations. The RTT for these

tuple-space operations ranged from 259 ms to 525 ms, with an average of 339.6 ms. Thus, the service user can

expect a latency on the order of 300 - 500 ms from the time he issues a command to the time he receives a

response from the server, plus any time the server needs to perform computations. This latency should be more

than acceptable for most services, though it may be more noticeable in interactive applications where the proxy

must frequently communicate with the client.

D. Service Discovery and Upgrades

Like the previous service, in this evaluation the service creates a shared tuple space and installs a reaction onto

it. When the proxy starts on the client, it places a tuple into the tuple space. When the service’s reaction fires from

this new tuple, it shuts down and upgrades itself to a second service, along with an associated new proxy. This

new proxy places a second tuple into the tuple space, which the new service echoes.

As with the last service, the service was deployed on the laptop and the proxy was deployed on the PDA. We

ran the proxy five times with the proxy and wrapper code downloaded on-the-fly from the service provider, and

five times with the bytecode predeployed on the client. We started the service each time the proxy was restarted.
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When the bytecode was predeployed on the client, it took an average of 934.8 ms from the time the service

was started to the time the first service’s reaction fired. This increased to an average of 3239.4 ms when the proxy

was dynamically deployed at runtime. Since tuple space operations have a RTT of 340 ms, we can assume that

the reaction fired about 170 ms after the client discovered the service. So, the discovery process required about

800 ms, with another 2000 ms to dynamically deploy the proxy code. We chose to deploy the proxy, the wrapper,

and the wrapper’s two inner classes in four separate tuples. Had we packed them together in a single .JAR file,

the deployment would have taken roughly a second less, since three fewer round-trip tuple space operations would

have been needed.

When the proxy was pre-deployed on the client, the service provider then spent an average of 150.4 ms from the

time the reaction fired to the time the service was fully upgraded. This process instead took an average of 162.8

ms if the proxy was not pre-deployed. The difference in these averages is not statistically significant, which is to

be expected, since the service provider’s operation is not affected by availability of bytecode on the client.

After the service upgrade completed on the service provider, it took an average of 1706.0 ms for the new proxy to

place the second tuple in the shared tuple space when the new proxy was predeployed on the client. This increased

to an average of 2491.6 ms when the proxy bytecode was downloaded on-the-fly.

X. RELATED WORK

A. Service Oriented Computing

Universal Description, Discovery and Integration [12] was formulated jointly by IBM Corp., Ariba Inc., and

Microsoft Corp. UDDI technology is aimed at promoting interoperability among Web Services [2]. It specifies two

frameworks, one to describe services and another to discover them. UDDI uses existing standards such as Extensible

Markup Language (XML), Hypertext Transfer Protocol (HTTP) and Simple Object Access Protocol (SOAP). The

UDDI model employs a central repository which is called the UDDI Business Registry (UBR). A simple XML

document is used to specify the properties and capabilities of a service. The UBR acts as a mediator and assigns a

unique identifier to each business and each service. Marketplaces, search engines and enterprise level applications

query the UBR for services, which they use to integrate their software with other business entities.

Jini [3] is a Java-based service oriented architecture developed by Sun Microsystems. The platform independence

of Java enables code mobility to support service distribution. Jini clients search for services in directories managed

by lookup services, where providers register proxy objects (at least one such service must exist in a Jini community).

The use of proxy objects allows for the separation of the service implementation from its interface. The user of

a proxy only needs to understand the interface the proxy exposes and nothing about the how the proxy delivers

the functionality (e.g., whether the proxy does the entire computation or connects to a server, what communication

protocol proxy uses with such a server, etc.) The preferred communication protocol is Java RMI, but is not enforced

as the only acceptable protocol. The code of the proxy object is transferred using a web server and HTTP.

Service Location Protocol [13] is a language neutral protocol for IP networks, with interfaces available for C

and Java. User Agents search for services on behalf of the clients. Service Agents advertise services on behalf
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of service providers. User Agents and Service Agents interact directly or with the help of Directory Agents (if

at least one Directory Agent is available this is the preferred mode of operation). Directory Agents are similar to

lookup services in Jini. They only contain service contact information, but no code. The interaction between the

two (e.g., communication protocol) is not a concern. SLP employs a standard set of service types and a standard

set of descriptive attributes. User Agents search for services by type and then narrow the result set using the values

of descriptive attributes.

Universal Plug and Play[14] is a set of protocols developed by an industry consortium led by Microsoft. UPnP

does not entail any mobile code. It instead standardizes the protocols the clients and servers use to interact. Service

descriptions are expressed in XML. The advertisement and discovery are handled in SSDP [15] style. Clients and

servers advertise their needs and/or presence directly using unicast (when the location of the party is known),

or multicast. The announcements happen when the process starts up and periodically thereafter. For invocation,

the clients and the servers use SOAP [16]. The GENA [17] event mechanism is also part of the UPnP group of

protocols.

Salutation [18] is an open standard service discovery and utilization model formulated by the Salutation

Consortium. Salutation aims to promote interoperability among heterogeneous devices in settings such as corporate

LANs where there is permanent connectivity from either wired networks or wireless gateways and disconnection is

not an issue. In addition, Salutation strives to be platform, processor, and protocol agnostic. Salutation has two major

components: (1) the Salutation Manager (SLM) which presents a transport independent API (SLM-API) and (2)

The Transport Manager (TM) which is dependent on network transport and presents an interface (SLM-TI) between

the Salutation Manager and the Transport Manager. Service discovery occurs when SLMs find other SLMs and the

services registered with them. Capability exchange is done by type and attribute matching. The SLM protocol uses

Sun’s ONC RPC [19].

B. Code Management

Binary code deployment and reuse has been around for a long time and gave birth to the component-oriented

computing research. While a migration towards the component-oriented software seems inevitable [20], the

complexity of the technology remains a significant challenge [21].

Enterprise JavaBeans (EJB) [22] is one of the widely accepted architectures for the deployment of component-

based applications. EJB addresses the entire software life cycle, including application assembly and deployment.

EJB components (beans) are assumed to run in virtual environments, exclusively on the server side (different from

the proxy object approach where processing on the client’s host is possible). The model of interaction is synchronous

where all client’s calls are tunneled to the server where they are addressed while the client application remains

blocked.

Binary Component Adaptation [23] modifies the binary code of a component in an effort to increase component

integration and support interface evolution in situations where the interface offered by the component does not

match the interface expected by the application using the component.
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C. Process Migration

Most of the related work in this area comes from the mobile agents research community. Some of the platforms

that support weak migration are [24] and [25]. Strong mobility is more powerful but it is also more expensive

to deliver. Strong migration is supported by [26] and [27]. Ideally, the migration occurs in a manner completely

transparent to the subject process. A system that achieves transparent process migration, in cooperation with the

operating system is [28]. For an excellent presentation of related work in code mobility we point the reader to the

survey paper by Fuggetta et al [29].

More recent work isµCode [30], a Java implementation of a code migration mechanism.µCode resembles

TACOMA [24], Sumatra [31], and Mole [25] [32], as it figures the transitive closure of the classes needed during

migration but, unlike our implementation, does not handle the transfer of binaries, and does not deliver strong

process migration. It transfers some state information in the form of some data used to initialize the newly migrated

thread, which is started from scratch and does not resume execution from the point where it was before migration.

D. Runtime Software Upgrade

The proxy object that is installed on and used by the client application as a handle to the service is analogous

to a stand-alone component that fits modularly into a larger application while it is running. Hence, the technical

problems associated with upgrading a proxy are similar to those encountered with upgrading components within an

application. In [33], the authors posit that it is a challenge to achieve a balance between flexibility, correctness, ease

of use, and low overhead. In large scale enterprise systems, where there are reliable, high bandwidth connections

and large-scale servers, low overhead becomes less of a concern. Thus, approaches to component upgrade in wired

networks have a distinctive heavyweight flavor.

The approach described in [34] proposes an upgrade server that holds all upgrades. When an upgrade is added

to the upgrade server, it notifies an upgrade layer which in turn notifies an upgrade manager which downloads

upgrades and installs them as necessary. This approach works in wired networks where a centralized upgrade server

can be easily accessed but falls apart in the ad hoc setting where no such centralized entity exists. In [35], the

authors suggest maintaining both the old and new versions of the component concurrently and sending each call to

the version to which it applies. The older version is destroyed only when it is verified that the new version correctly

replaces the old version for all required functionality. Flexible software connectors, as proposed in [36] do not use

multiple servers. Instead, the connectors (called multi-versioning connectors) themselves determine correct points

during execution when components may be swapped.

There also exists a fair amount of infrastructure supporting component upgrade. [37] suggests a mechanism for

consistency checks to ensure that the new component works with all the other old components. [38] proposes

an upgrade definition language to identify and keep track of updates. All such mechanisms, while useful, can

significantly detract from the ability to provide a lightweight framework, which is essential if working on constrained

devices in ad hoc networks.
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E. Security

Security issues in distributed systems are addressed in [39], along with discussions about threats and protection

mechanisms. A capability-based security system is presented in [40]. The authentication mechanism is similar to

ours, in that the capabilities can be verified locally, as opposed to an access control list approach where a central

server is needed (e.g., Lampson’s access matrix [41]). In [42] the authors describe an infrastructure for secure

service discovery which offers privacy and authentication at the expense of a loaded infrastructure and centralized

architecture allowing single points of failure. Proxy-based security protocols for mobile devices are presented in

[43], but these also rely on a relatively centralized architecture for accomplishing some key tasks. Security is

accomplished by adapting SPKI/SDSI for proxy-server and/or proxy-proxy interactions. In [44] the authors use

public keys as authentication certificates for Jini services, manually managed in local databases as initial trust

relationships. In the Service Location Protocol, authentication is done using public key encryption and having trust

relationships between directory agents and service agents defined by the network administrator [45].

XI. D ISCUSSION

In designing our model, we chose a tuple space-based coordination model for several reasons. First, the tuple

space based model allows the decoupling of interacting entities (in our case, the server from client (or proxy)

during service utilization, or the client and server from the service registry during advertisement/lookup, etc.) The

second reason for choosing tuple space-based communication is that the federated tuple space is a transiently shared

global directory which contains only tuples from hosts which are reachable. This eliminates the need for having

garbage cleaning mechanisms, which supports the lightweight nature of our architecture. Finally, tuple space-based

communication has been shown to be suitable for use in ad hoc networks in Limone, which we use as a basis for

the implementation of our model.

Limone offers support for implementing the service model in the mobile ad hoc networking environment. The

transient sharing of tuple spaces used in Limone enables the atomic update of the service registry, maintaining its

consistency across connected hosts. A single interface allows access to the entire federated tuple space as if it were

local. However, some changes in the functionality of Limone were required. The initial public release of Limone

has typical Linda-style pattern-matching capabilities. The actuals in the template fields had to match exactly the

type of the corresponding fields in the tuple being examined. It turns out that we needed additional flexibility in

our implementation. We changed the matching algorithm to allow polymorphism in pattern matching, i.e., a field

containing a formal in a template will match the corresponding field in a tuple if the latter implements the interface,

or subclasses the pattern type. This is necessary in order to enable clients to use services they discover for the first

time and for which they know only an interface that the service implements. The stricter pattern matching would

have required the client to already have the class file of the proxy it receives, thus reducing the usability of the

services.

The semantics of the lookup operation can vary from implementation to implementation. One could choose to

block the client until the lookup operation returns successfully. Another implementation may allow the client to
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continue execution if an attempt to use a service fails. A third case may allow the client to announce its interest in

a service and its desire to be notified when the service becomes available. In some cases, the client may need more

than one service of a given type, an implementation of the lookup primitive that handles groups of tuples. Other

situations may permit a client to use a service whenever the latter becomes available. All these implementations of

the lookup primitive are easily constructed on top of Limone.

In comparison to Jini, our middleware can be thought of as a richer implementation of Jini for ad hoc networks.

While never explicitly stated, Jini assumes a certain degree of network stability. The centralized design Jini employs

is inappropriate for ad hoc networks. As described, a client and a server can interact only if they are “introduced”

to each other by the lookup server which usually runs on a different host, acting as a bottleneck and single point of

failure. A client may also discover orphan advertisements in lookup repositories after the host offering the service

has left the community. Jini employs a leasing mechanism that collects such advertisements but there is no relation

between the lease expiration time and the moment the server that advertised a service in a certain lookup service

disconnects. Our transiently shared tuple spaces and the service advertisement repositories developed on top of such

tuple spaces eliminate both problems.

Jini uses the Java RMI mechanism for remote proxy-server interactions, although this protocol is not mandatory.

In RMI all processing is done on the server side. This may be too expensive in a dynamic environment where

connections may break down easily and any processing done by the proxy on the client machine can save important

communication overhead. The proxy model used both by Jini and our model can help deliver part of the functionality

locally. If a connection breaks, our tuple space-based implementation does not jeopardize the applications since

it does not raise exceptions or lose messages. Messages sent while the two ends of a communication session are

disconnected are stored and delivered when they reconnect. However, messages sent over RMI while the recipient is

disconnected are lost without the senders notification, leading to inconsistencies in applications behavior. Eventually,

an I/O exception is raised, but it is possible to send messages over RMI (initiate methods calls) between the

disconnection and the moment the exception signals the communication problem to the client. Applications have

no means to determine when the disconnection occurred and which messages have been lost.

Another major RMI drawback is the need to knowa priori the URL of every single object that is used remotely.

This URL has the form [IPaddress:port/ObjectName], where IPaddress:portidentifies the location where an RMI

server runs andObjectNameidentifies an object registered with that RMI server. There is no discovery process

that allows a client to learn about such objects on the fly. A DHCP-based network will create problems for

applications as they need to be reconfigured (manually) every time a server obtains a new address. First-time

encounters are completely out of reach for this protocol (since it does not entail a discovery phase, the parts must

have a priori knowledge of each other). Both our approach and Jini solve this problem via discovery. In addition,

our communication protocols are tuple space-based, which makes them independent of the networking protocol.

The communication is content-based (a template is matched against the tuples content) and the location of the

two is irrelevant. This allows collaboration with services that change their IP addresses over time (e.g., software

migration).
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One final drawback is the way RMI (and Jini) handles the byte code of the object(s). The byte code that needs

to be transferred between hosts has to be added manually to a repository. For the transfer itself RMI (and Jini) uses

an HTTP server, with which the byte code repository has to be registered at startup. Since the process of adding

class files to this repository is manual, forgetting one class file can crash an application at runtime (a costly error,

undecidable at compile time). In addition to this manual configuration, all classes can only come from one single

host. In contrast, our approach handles all byte code deployment automatically, by code inspection. We also support

gathering code from multiple sources if available, supporting service composition, and partial code upgrade.

We now turn our attention to general issues associated with service upgrade and how we handle them in our

architecture. Recall that in Section VI, we made the assumption that the server is backwards compatible. At the

model level, this assumption is unnecessary, since some mechanism could be designed to service all the old calls

and queue the new calls until the server is upgraded. However, at the implementation level, the challenge is greater.

This is in part due to the fact that the proxy needs simulates synchronous and atomic calls between itself and the

server, while it actually uses Limone, which entails asynchronous communication. Hence, the code for simulating

the required behavior becomes very extensive. The problem can be solved by imposing certain design constraints

on the server. However, that falls outside the scope of this paper.

Another pertinent issue is that of ownership of the service and the right to upgrade a service. In our opinion, any

upgrades for a service should come from its original owner. Even if the service is replicated on multiple hosts of

an ad hoc network, the upgrades for the service should come from a single host. The reason for this is consistency.

By having the upgrades come from a single source, it can be ensured that there are no conflicts due to different

hosts issuing simultaneous upgrades that may cause version conflicts (akin to those seen when using a versioning

control system - such as CVS - to merge different versions of the same file.)

For future work, we aim to develop an architecture that decomposes the proxy such that it is no longer a monolithic

piece of code, but is modular so that only parts of it need to be swapped rather than the entire object. Another

feature that we wish to support is a versioning system that is responsible for managing the different versions of a

service and ensuring compatibility. Finally, we wish to provide a matching mechanism that supports searching at

finer granularity (e.g., at the method level rather than the interface level). The results of this work will help provide

even lighter wrappers and also provide support for service composition.

Service mobility is a completely new feature we introduced with SPAWN. The tuple space coordination we

used and the automatic code management mechanism we developed support service mobility effectively. There are,

however, certain limitations to our mobile services. There are situations, for example, when the service needs specific

hardware that is attached to a host and is not available on any of the other nearby hosts. In this case, a service can

still migrate to follow the client host (maybe even carried by the client host), looking out for the opportunity to jump

on a host that has the needed hardware, and resume execution. For example, imagine a printing service that sends

documents to printers ahead of the user on his way through a department. While not all computers are attached

to printers, the print manager service can follow the PDA running the user’s client application and do work only

when in proximity to a printer or a computer with a printer. Dynamic binding, also supported by tuple space-based
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interactions, holds much potential for future development. For now, the only thing that triggers dynamic rebinding

(assuming an alternative is available) is the imminent disconnection from the current host. The rebinding policy

currently used is geared towards choosing the host that offers the longest estimated period of connectivity among

all hosts that offer that service. This policy can be improved in the future by taking into account the computational

power of hosts, security concerns, etc.

The security extensions we provided for Limone are targeted towards the safety of remote interactions. There

still are concerns related to the safety of downloading and running code from some other party. The can be tackled

form two directions: how to protect the downloaded code from being inspected or modified by a malicious host,

and how to protect a host from malicious code. Efforts toward solving the first problem include computing with

encrypted functions [46]. The solution to the second problem relies on the authentication of the party from which

the code is being downloaded and used and on restricting the types of operations the code can perform (run the code

in a sandbox with access control) on the new host [47]. Our security extensions provide a foundation for secure

public key advertisement. Once this mechanism is available, a multitude of protocols can be run to establish secure

interaction channels among remote parts of an application. We provide the basic mechanisms for such protocols in

case the application wants to develop its own protocol, as well as a support infrastructure for secure interactions

that are ready and available for use.

XII. C ONCLUSIONS

In this paper we presented a technique that supports consistent service advertisement and discovery in ad hoc

networks. A key feature of our approach is that service registry updates are atomic with respect to changes in service

availability due to mobility and disconnections. We also introduced security features that can provide for safe service

advertisement and utilization in ad hoc networks. The model presented provides the necessary support for safe

distribution of public keys in ad hoc networks. Once this mechanism is in place, it enables either the development

of algorithms for establishing session keys or simply the distribution of secret keys. The entire architecture has been

geared to deal with the dynamism of ad hoc networks and the resultant opportunistic interactions between hosts.

The outcome is a system that significantly simplifies the task of a mobile application programmer by abstracting

all details of code management. This allows for programming at higher levels of abstraction, leveraging the power

of the code management system to handle the low level mechanics of remote service usage in ad hoc wireless

environments. We also presented a lightweight mechanism to upgrade services without completely shutting them

down. For swapping the proxy, we proposed the use of a wrapper interceptor that temporarily holds calls while the

proxy and/or the server are swapped. We showed how the tuple space based communication protocol can allow for

a server to shut down and restart without any perceived interruption in service. We described the implementation

of our architecture built on top of the Limone coordination model, justified our design decisions, and presented

future work plans.
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