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Localized and Configurable Topology Control

In Lossy Wireless Sensor Networks

Guoliang Xing; Chenyang Lu; Robert Pless

Abstract

Wireless sensor networks (WSNs) introduce new challengdspology control due to the prevalence of lossy
links. We propose a new topology control formulation forsip8VSNs. In contrast to previous deterministic models,
our formulation captures the stochastic nature of lossysliand quantifies the worst-case path quality in a network.
We develop a novel localized scheme called Configurable [ggoControl (CTC). The key feature of CTC is
its capability of flexibly configuring the topology of a los8SN to achieve desired path quality bounds in a
localized fashion. Furthermore, CTC can incorporate ciffié control strategies (per-node/per-link) and optirtiara
criteria. Simulations using a realistic radio model of Micenotes show that CTC significantly outperforms an
representative traditional topology control algorithnled LMST in terms of both communication performance and
energy efficiency. Our results demonstrate the importarfic@oorporating lossy links of WSNs in the design of
topology control algorithms.

keywords: Lossy Sensor Networks, Topology Control, Link Quality;lddion of Transmission Count; Localized

Algorithms

Technical area: Sensor Networks

I. INTRODUCTION

Recent years have seen the deployment of wireless sensaorket(\WSNSs) for a variety of applications such as
environmental monitoring, precision agriculture, andipeter security. The key to the success of these application
lies in the ability of the WSNs to support reliable commutima over long periods of time without wired power
supplies. Recent empirical studies [1], [2], [3] revealbdttthe quality of wireless links in WSNs suffer from
significant variations with time and environments, whicls hiatroduced a major challenge to achieving reliable
and power-efficient multi-hop communication. Lossy linkancresult in severe degradation in communication
performance and excessive energy wastage. Zhao et al.ddjtegl that a third of the links in a test-bed composed
of 60 Mica motes experienced more thadf% packet loss even under light workloads. Consequently, ugDt6

of the total energy consumption of the radio was attributegdcket loss [1].
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Computer Communications and Networks (ICCCN 2007).



Topology control is a key technique to reducing network $raission power while maintaining desired network
properties. A multitude of topology control algorithms [Wave been proposed for wireless ad hoc networks.
However, WSNs introduce important new challenges that matdeen adequately addressed by existing solutions.

Firstly, recent empirical studies [1], [5] revealed theyalence of lossy and asymmetric links in WSNs. Moreover,
receivers with a same distance to a sender experience higtilgble reception performance. These findings
contradict the widely adopted deterministic link modelsnide, topology control needs to adopt more realistic
network models that capture the lossy nature of WSNs.

Secondly, most topology control schemes aim at maintaiomgnectivity based network properties. However,
connectivity alone doesot suffice to provide satisfactory communication performawben the network is lossy.
Communication along a lossy network path may result in estcepacket loss and energy waste. To address the
issue of link unreliability, new topology control metriceed to be devised.

Thirdly, different WSN applications require different kg of topology quality in a network. For example, code
dissemination requires highly reliable packet deliveryoider to ensure consistency among all nodes [6], while
sporadic data loss is tolerable for data collection in den&Ns since sensor data usually has high redundancy
[7]. Therefore, topology control must minimize the powensomption of the network while achieving the desired
path quality required by the application.

This paper makes the following main contributions. (1) Wepase a new formulation of topology control
problem for lossy WSNs based on a new metric catlddtion of transmission count (DTC)n sharp contrast to
earlier metrics based on deterministic link models, DTCteags the stochastic nature of lossy links and quantifies
the worst-case path quality of a network topology. (2) Wepps®e a set of novel, localizezbnfigurable topology
control (CTC) algorithms that can achieve different DTC bounds. CTC hasetlsalient features. First, it can
provide path quality assurance over lossy and asymmetrics lin WSNs. Furthermore, it enables applications
to achieve desired tradeoff between transmission powerpatld quality based on their specific requirements.
Finally, it can handle network dynamics efficiently. (3) Wenducted extensive simulations based on a realistic
link model [8] that captures lossy link characteristics ofc&2 motes. Our results show that CTC significantly
outperforms a representative topology control schemeadlMST [9] in terms of delivery rate, data latency and
energy consumption.

The rest of the paper is organized as follows. Section |lewgsirelated work. Section Ill provides a new
formulation for the topology control problem in lossy netk® Section IV presents the design and theoretical
analysis of the CTC algorithms. Section V discusses how ppraach can be extended when the assumption on

the monotone link property is relaxed. Section VI preseméssimulation results. Section VII concludes the paper.

Il. RELATED WORK

Topology control aims at maintaining desirable propertésvireless ad hoc networks (e.g., connectivity and
power efficiency). We refer to [4] for a comprehensive surgaythe existing topology control algorithms. They fall
into two basic classes: per-link control [10], [11], [12},3], [14] and per-node control [15], [9], [16], [17], [18],



[19]. In per-link control, a node can use different transitia power for different receivers. In contrast, a node in
per-node control uses the same transmission power foreiifteeceivers. Per-node control simplifies the design of
neighbor management and the underlying MAC protocol whédelmk control may result in more energy saving.

Compared to earlier algorithms, localized and fault-ttetopology control schemes are more suitable for lossy
WSNs because they are more robust against network dyna8gesral algorithms [20], [21], [22] can mitigate
the impact of lossy links by maintaining K-connectivity dfet network. While K-connectivity may improve the
reliability of a network topology to some extent, it does pobdvide assurance of path quality because lossy links
may exist on multiple paths.

XTC [23] preserves links based on certain ordering of thgmaors. Link quality is one of the ordering metrics.
Although XTC assumes a general graph model and constrymfotgies with good average spanner property, it does
not provide path quality assurance. Moreover, XTC cannafigare a topology to different quality levels required
by applications. Recently, a lightweight algorithm call&8PC [24] is proposed to achieve reliable topologies in
lossy WSNs. ATPC is designed to maintain per-hop link qualitly. It cannot achieve desired path quality over
multiple hops, nor can it flexibly configure a network to di#fat quality levels.

Moscibroda et al. [25] studied the limitations of tradittdmetwork models and analyzed the impact of topology
control on link scheduling based on a physical Signal-tetfierence-plus-Noise-Ratio (SINR) model. In contrast to
the previous deterministic graph models, we adopt a netwar#el suitable for lossy WSNs, and propose solutions
to handle the impact of network dynamics on topology control

The metric of dilation of transmission count in this papeeigted to thestretch factoiin graph spanner problems.
We refer to [26] for a review of the existing centralized altfums for constructing graph spanners. Recently,
localized algorithms have also been proposed [27], [28)].[However, they are only applicable to geometric
network models based on circular radio ranges. In contoastalgorithms are based on a general network model

that accounts for lossy and asymmetric links.

IIl. PROBLEM FORMULATION

In this section, we first introduce a network model that ceggtithe lossy nature of WSNs. We then provide new

formulation of the topology control problem for lossy WSNs.

A. Network Model

Each node can transmit at any power from a discretésset{F;|1 < i <n}. P, > P; < i > j. For example,
the CC1000 radio on Mica2 motes [30] can transmit at 32 difiepower levels. We note that our algorithms in
Section IV do not require that all nodes have the same setrafble power. Theéransmission countR,, , ;, IS
defined as the expected number of transmissions neededderno successfully send a packetdat powerP;.
Note thatR, ,; may not equalR, . ; due to link asymmetry. The transmission count of a link caresgmated

based on the physical or empirical model of the radio [8], [3], or using a link estimator [5], [31] that collects



the transmission statistics online. We assume the use ahplesiautomatic repeat request (ARQ) mechanism at
the MAC layer as follows. A sender drops a data packet dftéransmissions if no acknowledgement is received.

A power assignmerft = {P;|P; € S} assigns a transmission power for every node in the netwdheiper-node
topology control is used, or for every link if the per-linkpmlogy control is used. The network induced Qyis
denoted by a directed graghn(V, E). V includes all nodes in the networle = {(u,v,7) | Ryvi <T; u,v €
V; P; € Q}. Note that there exist multiple links froma to v at different power levels. We ignore the links with a
transmission count greater thdh The transmission count of a patis the sum of the transmission counts of all
the links on the path.

We note that the above network model is very general. Firdpés not assume deterministic transmission ranges
or homogeneous radios. Second, it can capture realistigonletproperties such as lossy and asymmetric links.
Third, it can incorporate empirical measurements (e.@. ttinsmission count of a link) that reflect dynamic nature
of wireless links.

In this paper, we mainly focus on the WSNs that experientle litterference or contention caused by concurrent
transmissions. Accordingly, we assume that higher tragsion power leads to better link quality (and hence a lower
transmission countj,e., P; > P; = Ry.,i < Ry.v,;. This assumption is referred to emonotone link qualityThis
assumption is justified by the fact that higher transmispiomer alleviates the impact of path fading and noise, which
always results in better link quality when the interfererctow. This property has been observed in several recent
empirical studies on WSNs [32], [31]. Many sensor networkgiiactice only impose light workload and hence the
interference among neighboring nodes is low. For instaimcthe WSN deployed at Great Duck Island for habitat
monitoring [7], each of the 98 motes wakes up every 20 mintdesend its data to the base station. Many other
representative applicationg.{, precision agriculture and cargo tracking) also have lota dates. Furthermore,
interference can be eliminated or significantly reduceddheduling interfering nodes to communicate at different
times. For example, TDMA MAC protocols [33], [34], [35] cantedule the channel access of neighboring nodes
to avoid contention. Recent interference-aware scheglwdigorithms such as [36] and DCQS [37] can schedule
transmissions while avoiding both contention and interfiee in WSNs. Our topology control algorithms will work
particularly well for WSNs which has light load and/or usegeiference-aware scheduling to minimize network
contention and interference. Nevertheless, the monoiokeploperty may not hold temporarily due to dynamics
in such networks (e.g., occasional contention and intenfieg may occur when a TDMA scheduling algorithm is in
transient sate caused by node failures). We discuss indBe¢thow to extend our approach when the assumption
of monotone link property is relaxed.

Finally, we assume nodes are stationary. Note that mostirexig/SNs are composed of stationary nodes. We

note that the quality of a link may still fluctuate even wherl@® are not mobile due to the environmental noise.

B. Topology Control Problems

The problem of topology control has different formulatioosrresponding to different control strategies and

optimization metrics. In this paper, we consider bpt#r-nodeand per-link power control strategies. While per-
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node control assigns each node a single power, per-linkr@omiay assign a node different power for different
links originating from it. We consider two optimization mies: min_sum that minimizes the total power of all
nodes or links in the network, andin_max that minimizes the maximum power among all nodes or linkse Th
min_max metric may lead to a longer network lifetime by balandimg power consumption of different nodes. We
first formulate the problem with per-node control and the 1suim metric, and then extend the formulations to the
other cases.

G s denotes the topology where each node is assigned the maxpower. G, achieves the best path quality
among all topologies under any possible power assignmeanwe network workload is light7, represents the
topology induced by the power assignménhtWe define thedilation of transmission count (DTQ)f G, as the
maximumratio of the minimum transmission count between any two sadé&7, to that between the same nodes
in Gas. DTC quantifies the worst-case degradation in network’s paiality under a power assignment relative to
the maximum-power case. This metric closely relates to comeoation performance like reliability, throughput,
and delay. Recent empirical studies [38], [5] showed tratdmission count significantly outperforms the hop count
in multi-hop routing in lossy wireless networks.

The problem can be formulated as follows when tie_summetric is used. Given a DTC bournd> 1 specified
by the application, the objective is to choose a power assigmns2 with the minimum sum while the DTC bound

of the induced topology undé® is no greater tham:

Q = argmin Z P;, subject to
P,eQ

T
max Laq(u,v) <t 1)
uweV La,, (u,v)

Note that(2 may include a transmission power for each node or link dejpgnahether the the per-node control or
per-link control strategy is use.;, (u,v) denotes the minimum transmission count franto v in the network
under power assignmefi. When the metric isnin_max the minimization objective in the above formulation needs
to be replaced bynaxp,cq P;.

As discussed in Section Il, per-node control simplifies tlesigh of neighbor management and the underlying
MAC protocol while per-link control may result in more engrgaving. Theminmax metric can minimize the
total network power consumption while tmin_max balance the power consumption of different nodes and may
lead to better network lifetime. Our algorithm can be easiyfigured to perform different control strategies and
minimization metrics. This feature allows the applicatibexibly configure the behavior of topology control to
meet its needs.

The network topologies under the above formulations canrdng the performance of several representative
routing approaches. It has been shown in [5], [38], [39] #rgiected transmission count outperforms hop-count-
based routing metrics in terms of reliability, delay andotighput when links are lossy. Therefore, the network

topology with bounded DTC allows the transmission-couadal routing protocols [5], [38], [39] to achieve desired



performance in lossy WSNSs. In addition, our formulationesarve the power-efficient routes in a lossy network,
which allows power-aware routing protocols to minimize #rergy wasted by packet retransmissions. Finally, the
network topologies under thmin.max formulations can enhance the capability of power-awargimguprotocols

to extend network lifetime via load balancing.

C. Centralized Solutions

We now discuss possible centralized solutions for our mmisl and their hardness.

a) Solutions for the min_max Formulations.: When the metric isninmax both the per-link and per-node
topology control can be solved optimally in polynomial timEccording to the monotone link property, power
increase of a link or a node does not result in the increaskeohétwork DTC, which implies that there must exist
an optimal solution in which all nodes or links are assigreslgame power when the maximum power among all
nodes (per-node control) or links (per-link control) is imiized. Hence an optimal power assignment can be found
through a binary search on all possible power levels, whath lee done irO(log|S|) time. For each power level,
the DTC of the network can be computed®|V'|-|E|-log|V'|) time using the Dijkstra’s algorithm [40]. Hence the
minimum power level that yields the required DTC bound carfduad in O(|V| - |E| - log|V| - log|S|). However,
the resultant topology may unnecessarily waste energyl as@és are forced to have the same transmission power.
Minimizing the number of the maximum-power nodes in the mjali power assignment is NP-hard [19]. Moreover,
such a strategy can not be implemented in a localized fadtwoause excessive synchronization and information
exchange would be needed among nodes in order to find a ungowsr for all nodes under the DTC constraint.

b) Hardness of the min_sum Formulations: When the metric ianin.sum both the per-node and per-link
topology control problems are NP-hard. Specifically, thecd case of thenin.sum per-node control problem
where the transmission count of all links is one and the reguDTC bound is large is equivalent to minimizing
the total node power while achieving strong network conmigt This problem has been shown to be NP-hard
[41].

An NP-hard special case of tein_sumper-link control problem can be constructed as follows. &agry two
nodesu andv in the network, add an edge fromto v (with transmission count one) if there exists a power level
P, , at whichu can reach. Let P, , be the weight of the edge. Then our problem becomes, for a gjveph and
a constant > 1, find the subgraph with the minimum total edge weights unldat ¢onstraint that the shortest path
between any two nodes is no longer thaimes of that in the original graph. This problem has beedistlias the
minimum weight t-spanner and been proven to be NP-hard. $tst@wn in [42] that it is hard to fin@(log|V|)
approximations for this problem.

In this paper, we propose a set of localized solutions whialy cequire the information of each node’s local
neighborhood. Localized algorithms are highly desirahl®MSNs whose topologies may change dynamically due
to node/link failures and fluctuations of link quality [2].e6tralized solutions can be prohibitively expensive in

such WSNs due to the need for gathering the topology and liratity information of the whole network.



IV. THELOCALIZED CTC ALGORITHMS

In this section, we present a set of localized Configurabfeolgy Control (CTC) algorithms. The key challenge
for the design of CTC is to achieve the required DTC bound emgtbbal network topology quality in a localized
fashion. We first introduce the following theorem.

Theorem 1:The network topologyGy, induced by power assignmefX has a DTC bound if for each link
(z,y,1) in topologyG s where each node is assigned the maximum po@ercontains a path from to y whose
total transmission counts is no higher thiatimes of the transmission count of the link. That is:

Laq(u,v)

) E , I <t -Rypyi — = <t 2
\V/(Iayvl) € (Gl\f)a Go (xvy) = R Y, — uniéé)‘(/ 1—\0M (U,’U) ( )

wherel'¢, (u,v) denotes the minimum total transmission counts frero v in the network topology induced by
power assignmenk.
Proof: SupposeY represents the shortest path (in term of transmission rdromh nodew to v in Gy

U = Ug, U1, U2, ,Un—1,Uy, = v. FOr each link(u;, u;, k) (wherek is the transmission power level af)) on
T, the total transmission counts of the shortest path fignto «; in Go must be lower thart - R, , ;. Hence,
concatenating such path @, for each link onY results in a path no longer thartimes of the total transmission
counts of Y. Since this holds for every pair of two nodes in the netwohle, DPTC bound ofG, is no more than
t. |

According to Theorem 1, CTC achieves the DTC bound by reptaelach max-power link with a low-power
path that has a bounded transmission count relative to fhlaced link. This strategy can be implemented in a
localized fashion since a replacement path is likely logtatéehin the neighborhood of the replaced link in a dense
network. However, the challenge is to ensure the replacepeths found by different nodes are consistent. The
key featureof CTC is that it ensures this consistency in a localizeditaskvithout any decision exchange among
neighboring nodes.

We first describe the concept of neighborhood used by CTC. hW&a tllustrate the basic idea of CTC using
an example, followed by the detailed description of CTC.aljnwe present the theoretical analysis of CTC and

describe extensions to CTC for handling several pract&sales in WSNs.

A. Neighborhood

CTC uses a two-hop neighborhood graph that is constructed fink quality information. Nodey is nodeu’s
one-hop neighbor if there exists at least one lifik,v,i) where P, € S, R, ,; < T, from u to v. The one-hop
neighborhood graph af includesu and all the one-hop neighbors of and all the links fromu to its neighbors.
The two-hop neighborhood graph of nodés the union of the one-hop neighborhood graphs ahdu’s neighbors.
We useN;(u) = (Vi(u), E;(u)) (i = 1,2) to denote the one-hop and two-hop neighborhood graphs at

Although links may be asymmetric, we require the neighbochoelation to be symmetrid,e., (u,v,i) €
Ei(u) & (v,u,j) € E1(v). Each node: can enforce this requirement by pruning the links to the metgs who

do not includeu within their one-hop neighborhood.



In order to constructVs(u), nodew needs to collect the transmission counts of the links wiitsntwo-hop
neighborhood at different power levels. Each node can mmeasansmission counts of its one-hop links based
on data or hello messages, and exchange them with its onedighbors. Efficient algorithms for neighborhood

discovery and link quality estimation have been proposeshitier work [5], [31] and is not the focus of this paper.

(b) b

Fig. 1. The execution of two algorithms with a required DTQib0 of 3. (a) illustrates a naive algorithm in which each node onplaees
its own max-power links. (b) illustrates the CTC algorithnthwthe minsum metric. Each link is labeled kgower / transmission countnax
represents the maximum transmission power. Solid linksesgmt the actual links after the execution of the algoritfiime max-power links
and their corresponding replacement paths are labeledegaime symbols.

B. An lllustrative Example

We now illustrate the basic idea of CTC using a example degiad Fig. 1. We will describe how CTC is
executed at three nodesb, andc when per-node control and the ménm metric are used. For clarity, Fig. 1 only
shows a subset of the links that exist between nadese. The DTC bound required by the application3is

We first describe a naive localized algorithm that may resuitonflicting power assignments. Each node in
this algorithm independently replaces each of the max-pdinks that originate from it with a low-power path
whose transmission count satisfies the DTC bound. Fig. lpjcts a possible output after the executions,at
b, andc. Nodeb replaces the max-power linfd, e, max) with path (b,a,4) — (a,e,1). The transmission count
of the new path isl.1 4+ 2.4 = 3.5, which is lower than triple of that ofb, ¢, max). Similarly, nodesa and ¢
replace(a, e, maz) with (a,e, 1), and(c, d, max) with (¢,a,2) — (a,d, 3), respectively. Notice that is assigned
two different power3 and 1, on the three replacement paths. If each node sets its padepéndently according
to the replacement paths it findg, will choose a power ofl as it is not aware of the existence of the other
replacement paths. As a result, the actual quality of thefliom « to e is lower than required by the path found by
c. Consequently, the path fromto d has a dilation of2.1 +1.9)/1.2 = 3.3 that violates the required DTC bound
of 3. This problem is caused by the inconsistency of the locaipédund by different nodes. An simple solution
is to have nodes exchange their local solutions with theighi®rs. However, such solution is not desirable due
to the communication overhead and convergence latency.

We now discuss how CTC solves this problem. The basic iddaais in addition to replacing its own max-power
links, each node also computes its power assigned by itshbeig on their local paths. As a result, it always
chooses a power no lower than any power assigned by itselitametighbors, which preserves the dilation of all

replacement paths.



Specifically, a node finds a replacement path for each maxepbmk in its two-hop neighborhood. The replace-
ment path must yield the minimum total power among all pdesgaths that satisfy the dilation constraint. For
instance, the replacement path (6f e, max) is (b,a,4) — (a,e,1), which has the minimum total power among
all paths fromb to e with a dilation no greater than 3. Nodestarts with the lowest power, and once finds a new
replacement path that includes itself, it increases itsggaw match its power assigned on the path if necessary.
As shown in Fig. 1(b), node first assigns itself a power df after replacinga, e, max) and (b, e, maz), and then
increases its power t® after finding the replacement path fat, d, max). As a result, all replacement paths are
preserved aftet executes the algorithm.

We can see from Fig. 1(b) that all the nodes on a replaceméhtfipal the same path when they replace the
same max-power link. For example, the p&tha, 2) — (a, d, 3) is found by bothc anda to replace(c, d, maz) in
their local executions. As a result, the dilation of the patpreserved as andc will assign their power no lower

than the values on the path. We offer a rigorous proof of theectness of a generalized algorithm in Section IV-E.

C. Per-node Power Control

We now present CTC with per-node control. We first descriteealgyorithm with the mirsum metric, and then
discuss how it can be modified to adopt the miax metric. For each max-power link, CTC finds a replacement
path composed of up td low power links in the node’s two-hop neighborhoaedis referred to asearch depth
hereafter. A larger search depth increases the opporttonitg TC to find lower power assignments at the cost of
higher computation complexity.

CTC executed at node with the min.sum metric is depicted in Fig. 2. To enforce consistent pagsignments
on the replacement paths found by different nodesvokes the functiorLabelSet(v)or each nodes € Vi (u)
including itself. In doing soy essentially “simulates” the execution of the algorithmlahades within its one-hop
neighborhood. FunctiohabelSet(vfinds the replacement paths with DTC bounidr all the max-power links that
originate fromv. Special care needs to be taken at this step since a nodeffeaerdineighborhood view from its
neighbors. The key is that if a node lies on a replacementfpaitid by its neighbors, it should also find the same
path in its own execution of CTC. Oneefinds a replacement path that includes itself, it increatepawer to
match its power assigned on the path if necessary.

The functionLabelSeextends the Generalized Permanent Labeling Algorithm (®R43] for the shortest path
problem with time window (SPPTW). A special case of SPPTVE weight-constrained shortest path (WCSP)
problem, resembles our problem. Each link in a WCSP problasitiwvo weights in different metrics. The goal is to
find the shortest path between two nodes in terms of one weighitic under the constraint that the total weights
of the other metric is bounded. The power and transmissiamtcof a local path correspond to the two different
weight metrics in a WCSP problem.

LabelSet(viextends GPLA in several important aspects. First, while &Rhds a single best path between two
nodeslabelSet(vfinds the best replacement paths frorto all its neighbors. Second, a set of constraints are added

in the search process to ensure that different nodes willdorsistent replacement paths for the same max-power



link. As shown in Section IV-E, this property is important fensuring the correctness of CTC. Finally, in addition
to minimizing the total power of a replacement path, we alderad GPLA to incorporate other optimization metrics

like min_max.

Input ¢, d, N1(u), Na(u)
Output power(u)

power(u) = min;

for v € Vi(u) call LabelSet(v); end

function LabelSet(v)
1) W =t max{Rv,w,maz|(v,w, maz) € E1(v)}. SetL, = {(0,0)} andL; = 0 for all i € V;(v) — {v}.
2) If all labels have been marked, go to 5); else choosel/; (v) that has an unmarked labeR?, P) with minimal RY.
3) For each link(, j, k) € E2(u) do
Lj =L U{(R! + R j i, P!+ Pg)}, if the following conditions are met:

RI4+ R < W 3)
lal < d 4
i€ (] Wk ®)

kevy(v)

q q .
AR}, P)) € Ly,
(RY < R} + Ry j ) A (P! < P!+ Py) (6)
4) Mark label (R?, P{). Go to step 2.
5) For each link(v, w, maz) in E1(v), do:

a) Find the labelR%,, P%) in L, such thatRy, <t- Ry w,maz and has the minimaPy.
b) If there exists au’s link (u, z, k) € ¢ and power(u) < Py, power(u) = Py.

Fig. 2. The per-node CTC executedwatvith the min_sum metric.

LabelSet(v)s a dynamic programming procedure in which the partial pédlund are stored biabelson nodes.
Specifically, a label on nodeis a tuple(R{, P!) whereq corresponds to a path fromto i, and R} and P! are
the transmission count and total power of the path respdygti8uch a path is a candidate replacement path for the
max-power link fromw to ¢, and can also be a partial path on the replacement pathsddimtts fromwv to other
neighbors.; represents the set of labels éthat corresponds to all such partial paths.

The procedure starts by initializings label set to{(0,0)} and all the label sets on other nodes to be empty.
Then the algorithm executes in iterations. In each itenaf@mposed of step 2 to 4), an existing lab&f’, P?)
with minimum transmission count is extended along all oirtgdinks of node:, which corresponds to extending
the partial pathy to all possible next-hop nodes (step 3). The labeh&kedafter all next-hop nodes are examined
(step 4). The search process initiated frorterminates if all labels on the nodes withifi(v) have been marked.
Step 3 extends labélR!, P{) along a link(, 7, k) by adding the transmission count and power(ofj, k) to R

and P/ respectively. The link will be added to the label setjofif the constraints (3)-(6) are met.
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Constraint (3) requires that the total transmission cotirihe expanded path must be smaller tH&nwhich is
t times the maximum transmission count of all the max-powgdlioriginated fromv. This constraint reduces the
search space by eliminating the paths that would have dafil&igher thart. Constraint (4) limits the maximum
hop count of a path td. Constraint (5) enforces that all nodes on a path must beaddoaithin one hop of each
other. As shown in Section IV-E, this constraint is critiéat ensuring the consistency in the power assignments
computed by different nodes.

Constraint (6) ensures that there does not exist a labeleneékt-hop node that represents a better path than the
extended path. A patlX is better than path” if and only if X has a lower transmission couanhd lower power
thanY'. If (6) does not hold, we keep the paths with higher power buwiel transmission count, or the paths with
higher transmission count but lower power, since both typfepaths may satisfy constraint (3) and evolve into
valid replacement paths in following iterations. It can leers that this property allowlsabelSeto find theoptimal
replacement path (e.g., with the minimum total power) urasrstraints (3)-(5).

At the end of the procedure, for each max-power ljnkw, maz), the replacement path is the path that has the
minimum total power among all paths that satisfy the dilationstraint (see step 5.a). Note that such a path must
exist since in the worst case the max-power ligkw, max) will be found. Finally, if nodeu (that executes the
algorithm) lies on the replacement path, it sets the powahéomax of its current power and the power on the
path.

Minimizing the maximum power on a replacement path may leachore balanced power on different nodes.
We modify CTC depicted in Fig. 2 as follows to adopt the miax metric. In a labe{R, P{), instead of storing
the total power of patly in P?, we redefineP/ as the maximum power of the links @n Accordingly, constraint

(6) needs to be changed #§R?, P/) € L;, (R] < R} 4+ R; jx) A (P} < max(P}, Py)).

D. Per-link Power Control

Different from per-node control that restricts a node to adipower, per-link control allows a node to use different
power to transmit to different neighbors. As a result, pek-tontrol may lead to more energy saving. An advantage
of the algorithm depicted in Fig. 2 is that it can be easily ified to use per-link control. Specifically, node
stores a power valupower(u,v) with an initial value of minimum power for each of its one-hapighbors,

v € Vi(u). In addition, step 5.b needs to be modified as follows: If ehekistsu’s link (u,z,k) € ¢ and
power(u, z) < Py, power(u, z) = Py. Notice that both per-node and per-link control share ttmesprocedure for
searching replacement paths (step 1 to 4 of fundtiaipelSein Fig. 2). Hence, the same modification introduced in
Section IV-C can also be used to adopt different optimizatietrics, including mirsum and miomax, in per-link

control.

E. Correctness of CTC

We now prove the correctness of CTC. We first show that CTC wéhnode control and the msum metric

achieves the required dilation bound. We then extend ttsisltréo per-link control and the mimax metric.
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Theorem 2:SupposeM is the power assignment where each link is assigned the niaxipower, {2 is the

power assignment produced by the CTC algorithm with a DTCnldau> 1. Then the networlG(, satisfies the

Tgq (u,v) "
Tay (uv) =7

DTC boundt: max,, ,ev
Proof: To prove the theorem, it suffices to show that any linlGR;, say (v, w, max), is replaced by a path
in G with a dilation no greater thah We prove that this holds after the execution of CTC at eaateno
Supposev finds a replacement pathy,, for (v, w,maz). Note thatF,’, corresponds to the labgRy,, )
found by v at step 5.a. According to step 5.8, ,, must have a dilation no greater thanHence, it remains to
be shown that this path is preserved by the power choices mmadé¢her nodes on the path in their executions of
CTC. Supposéz, y, i) is an arbitrary link on patl;’ . That is,v assigns powep; to z. In the following we will

show that the replacement path far, w, maz) found in nodex’s execution of CTC,F*

)w,

is exactly Fy’,,, and
hence the power aof is no lower than the power assigned 8fi,,.

We define graplG® (v, w) = (V*(v,w), E*(v,w)) as follows.

V& (v, w)

ﬂ Vi(k)

kEFY

E””(v,w) == U (avbvi)

(ab €V (v,w))A((a,b,i)EE1(a))

G*(v,w) includes all the nodes shared by the one-hop neighborhddide aodes on path’y,,. HenceG” (v, w) C
Ns(v). In other words, all the replacement paths foundabfor (v, w, maz) are included in the two-hop neigh-
borhood ofv. On the other hand, according to step 5.a of CTC in Figt;2,, is theoptimal replacement path (in
terms of total power) among all possible paths within(v) that satisfy the dilation bound and constraints (3) and
(4). As a result, node choosesty),, as the replacement path fos, w, max) within its execution of CTC. That
is, Fyy,, = F,,, and hence the power of decided byz itself is the same as assigned byn path 77 ,.

We have shown that each replacement path found lbyr (v, w, max) is preserved after all the nodes on the
path compute their power assignments in their local exenstdof CTC. That is, each max-power link is replaced
by a path with a dilation no greater thamfter the execution of CTC at each node. Therefore, theteagutetwork
has a DTC no greater than [ |

We note that similar arguments can prove the correctnessr@f @ith per-link control or the miormax metric.
This is because, the nodes on a replacement path will findahe gath as long as the the path is optimal (in

terms of the minsum or minmax metric) within the two-hop neighborhood of the origovadf the link.

F. Time Complexity of CTC

We now analyze the time complexity of CTC. Suppose the nurablenks in each node’s two-hop neighborhood
is bounded by FEs|. Procedurd.abel Set(v) without constraints (4) and (5) is similar to the originallGPalgorithm
that has a complexity o®(|E2|W) whereT is ¢t times the maximum transmission count franto its one-hop

neighbors. Since we only keep the labels that satisfy caimst{6), there is at most one label kept for each value of

12



transmission counts. That is, a node has at miBdiabels. Hence, in step 2, a link is processed at nigstimes.
Summing the number of times an link is processed over alkligikes a time complexity of (| E>|1W). We note
that this complexity is pseudo-polynomial as it dependdion

On the other hand, the actual time complexity InfbelSet(v) is lower due to the constraints (4) and (5) in
Fig. 2. Specifically, (4) requires the number of hops of a pattbe smaller thani. Suppose the number of
nodes within a one-hop neighborhood is bounded|y, the total number of link processing ihabelSet is
bounded byO(|V1]¢71). Hence the time complexity dfabelSetis bounded byO (min(|V;1|¢~1, |E2|W)). Since
LabelSetis invoked for each one-hop neighbor, the overall time caxip} of the generalized CTC algorithm is
O(IVi| - man(|V1 |41, |E2|W)). We note that this complexity result is an upper bound, witoBs not consider
constraint (5). Although this bound is exponentialdnwe show experimentally that small search depghg(

choosingd = 2 or 3) gives a very good performance in Section VI.

G. Extensions

We now discuss extensions to CTC that can deal with seveaatipal issues in WSNs.

1) Handling node and link dynamicdn a real-world WSN, nodes and links often exhibit variousamyics
that may cause the network topology to violate the dilationrid. We now discuss how CTC can handle three
important types of dynamics: node failure, link failureddimk quality variation. Thanks to its localized nature, a
key advantage of CTC is that it can maintain required DTC louia local repair in face of network dynamics.

CTC can detect node failure and link changes based on heldsages used for neighborhood maintenance and
link quality estimation. Alternatively, CTC may be notifiesh demand by the feedback from the MAC layer (e.qg.,
successive transmission failures on a link). In order teg@nee the DTC bound for the network when a node fails,
only the nodes within one hop from the failed node need to wee€TC again with the updated neighborhood
information. This is because, as discussed in Section I&Ehe nodes on a replacement path are one hop from
each other. Therefore, only one-hop neighbors of the failede need to recompute their replacement paths. That
is, a node failure only requires local repair to the netwapaiogy. This feature allows CTC to scale effectively for
large-scale WSNs. Similarly, when the link fromto v fails or experiences quality degradation, only the one-hop
neighbors ofu need to rerun CTC to maintain the DTC bound.

The link from« to v may also experience quality increase due to reduced emagntal interference, or a higher
power assignment af after rerunning CTC for a local repair. In such a case, thghimrs ofu rerun CTC to lower
their power assignments only if the link quality increaseeads a threshold. The threshold reduces the propagation
of power reassignments and should be determined based atesirable trade-off between topology stability and
power saving. We note that such propagation of power reassgts is needed only for power optimizations. It is
not needed for preserving the DTC bound, which can be acthielelocal repair.

A more efficient mechanism to handle node and link dynamigossible at higher storage cost. Each node can

store the replacement paths for each max-power link in itshap neighborhood, and only update the affected
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replacement paths in presence of link or node failures. Torage cost i$)(| F1| - d) where E; ared are one-hop
neighborhood and the search depth of CTC, respectively.

2) Integration with sleep managemer®TC aims at reducing transmission power consumption of aorkt
Another significant source of power consumption is idleeslighg. CTC can be combined with a sleep management
protocol to minimize the energy consumed by both transmissind idle listening. Existing sleep management
schemes fall into two basic classes: backbone maintenamtsleep scheduling. A backbone maintenance protocol
constructs a backbone composed of a small number of actidesnand schedules the other nodes to sleep. The
active nodes on the backbone can run CTC to reduce the trssismipower consumption and achieve bounded
dilation on the backbone topology while other nodes can ecedte idle listening power consumption through
sleeping. In a sleep scheduling protocol, each node opeirate schedule composed of active and asleep intervals.
In such a case, each node can run CTC to reduce the power cedgompacket transmissions during the active

intervals.

Input ¢, d, N1(u), Na(u)
Output power(u,v) (v € Eq(u))

power(u,v) = min;

for v € Vi(u)
T(’U) = {(vavi)li = MaX(y,x,5)€F1(v) ]}
call LabelSet(v)

end

function LabelSet(v)
1) W =t max{Ry,w,i|(v,w,i) € T(v)}. SetL, = {(0,0)} andL; = 0 for all i € V;(v) — {v}.
2) If all labels have been marked, go to 5); else chaoseVi (v) that has an unmarked labek?, P) with minimal R.
3) For each link(i, j, k) € E2(u) do
L; = Ly U{(R! 4+ R; i, P! + Py)}, if the following conditions are met:
RI'+Ri ;i < W
lgf < d
i€ (] ik
keVi(v)
q q .
AR}, Pl e Ly,
(R} < RY + Ry jx) A (P} < P!+ Py)
4) Mark label (R}, P?). Go to step 2.
5) For each link(v, w, ) in T'(v), do:

a) Find the label R, PJ) in L., such thatR{, <t- R, ., ; and has the minimaP.
b) If there exists avs link (u,z,k) € g and Ry 2 s > Ry . &, power(u,z) = Pj,.

Fig. 3. The extended per-link CTC (with thein_sum metric) for non-monotone link property.
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V. RELAXING THE ASSUMPTION OFMONOTONELINK PROPERTY

In this work we mainly focus on WSNs that do not experiencaiicant interference as a result of light workload
and/or TDMA scheduling techniques. Accordingly, we assuhee monotone link property, i.e., the transmission
count of a link decreases with the transmission power. Hewesuch a property may not hold due to network
dynamics such as the occasional network contention in #esient state of a TDMA scheduling algorithm. We
now discuss how per-link CTC can be extended when the assumptt monotone link property is relaxed.

When the monotone link property does not hold, the definiagbidTC bound relative to the maximum power
topology needs to modified. Suppo&erepresents the network graph in which there exist multiplks! between
two nodes corresponding to the communication links usiffigrint transmission power. The weight of each link
from nodeu to nodev at transmission poweP; is the transmission court,, ,, ;. Suppos&~,,: C G represents the
shortest-path spanning tree @f ObviouslyG,,. is the optimal network topology in term of transmission counts.
G, represents the network graph under power assignfemhbere each link is assigned a power. We redefine the
DTC of G as themaximunratio of the minimum total transmission counts between ay odes inGg, to that

between the same nodesdah,,;. Then the per-link topology control problem can be formedaas follows:

Q = argmin Z P;, subject to
PeQ

Ta, (u,v)
— <t 7
eV Iag,, (u,v) ~ 0

The above formulation assumes per-link topology contra eannot be easily extended to the case of per-node
control. This is because, all the links originated from aeade assigned the same power under per-node control,
hence the change of a node’s power may increase the tramsméssint of one network path and decrease another
at the same time. In other words, when the monotone link ptp@es not hold, the optimal topology that contains
the shortest paths among all nodes in the network may nat &Segking appropriate formulation for the per-node
control in such a case is left for future work.

Per-link CTC can be extended as follows to accommodate thepneblem formulation. Node: creates a set
T'(v) for each of its one-hop neighborsincluding itself.7'(v) includes a link fromv to each one-hop neighbar
that has the minimum transmission count among all links froto w. Then node: invokes functionLabel Set(v)
to find a low-power replacement path for each linKZifw). The modified CTC algorithm is shown in Fig. 3. The
function LabelSet(v) is similar to the one shown in Fig. 2 because the dynamic jaragring procedure used to
find the replacement paths does not assume any relationstvigén the transmission power and the corresponding
transmission count of a link. The major difference is in skewhere the transmission power of a link is changed
to the one used on the replacement path if the new transmissiont is lower.

The correctness of the extended CTC can be shown as followspdSeG, = (V,U, . T(v)). Apparently,

veV
G, C G. According to the definition of'(v), each edgéu,v,4) in G, has the lowest transmission count among

all edges fromu to v in G. Therefore, the shortest-path spanning tre€>0fG,,:, is a subgraph ofs, because
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any edge(u, v, j) of G,,, must also be an edge 6f,. Otherwise, the edge from to v in G, represents a better
edge, which contradicts the definition of shortest-patmspay tree. The rest of the proof requires to show that
each edge irG,. has a replacement path with a dilation bound of at ntasfter the execution of CTC. This can
be shown by the same argument in the proof of Theorem 2 in @et¥-E, because the dynamic programming

procedure (steps 2-4) in CTC used to find replacement pathaineunchanged.

VI. EVALUATION

We have evaluated CTC through two sets of simulations. Wedfiusly the network topology produced by CTC
using a simple simulator, and then evaluate CTC throughst&apacket-level simulations using an open-source
WSN simulator called Prowler [44]. To create a realisticgi@mion environment, we implemented the probabilistic
link model from USC [8] in both simulators. The USC model dwerizes the transitional region in the reception
performance of low-power radios on Mica2 motes based on -adtwgal propagation model. Previous experiments
showed that the USC model produces lossy and asymmetri fivédk approximate those in the networks of Mica2

motes [8].

A. Quality of Network Topology

In this section, we evaluate the topologies produced by C3i@gua simple simulator. The transmission count
of each link is computed according to the link model from USCT [

In each simulation, nodes are uniformly deployed ib5a x 150 m? region. The number of nodes is 100 unless
indicated otherwise. Each data point presented is the geavfive different networks. 1t80% confidence interval
is also shown. Each node can transmit at 11 different powetddrom -20 dbm to 10 dbm, at an increment of 2
dbmt.

We compare CTC against an existing topology control algoricalled LMST [9]. Each node running LMST
builds a minimum spanning tree (in term of Euclidean distanathin its neighborhood and reduces its transmission
power to reach only the neighbors on the tree. LMST is a reptesive localized topology control algorithm that
is shown in [9] to outperform several earlier algorithmsisas CBTC [15] and RM [10].

The original design of LMST relies on a common maximum comivation range of nodes and does not
consider link quality. The notion of communication rangena applicable to lossy WSNs. We extend LMST to
handle lossy networks as follows. A node includes anothderno its one-hop neighborhood only when there exists
a transmission power level at which the link yields a trarssioin count lower than the preset threshold. In other
words, all links with a transmission count higher than the threshold are blacklisted. Then each node builds a
MST based on the transmission power of links within its ong-heighborhood. Although a low threshold allows

a node to find more neighbors and construct a MST with lowergupthe resulting DTC can be very high due to

1The Chipcon CC1000 radio on Mica2 motes supports 32 powetseWhile we only use 11 power levels in our simulationspgsinore

power levels may further improve the performance and cordlglity of the network at the cost of higher overhead.
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the low quality links on the MST. On the other hand, althougtigher threshold achieves a lower dilation bound
by only including good links on the MST, it can potentiallyneinate too many links and cause network partitions.
Our extensive simulations showed that a threshold.67 in LMST yields the best communication performance
without causing network partitions in our settings.

We first vary the search depth of CTC frointo 5 to evaluate its impact on the topology quality. For each
combination of optimization metric and search depth, wesusathe DTC of the network topology configured by
each algorithm. Each setting is denotedCasC-control-metric-depthFor example CTC-node-mm-3hogepresents
the per-node control algorithm with the mmax metric with a search depth of 3 hops.

Fig. 4 shows the measured DTC under CTC-node with differeatch depths when the required dilation ranges
from 1.5 to 5.5. CTC-node-ms yields the same DI.€irrespective the search depth. This is because thesomim
metric can lead to unbalanced node power on replacemerd.patha result, a node is often assigned high power,
because it lies on many replacement paths. When the seapth ohereases, CTC-node-mm achieves a better
configurability as it can find replacement paths with lowewpn Fig. 4 shows that CTC-node can produce highly
configurable network topologies with the mimax metric even when the search depth is as low as 3. Note that a

small search depth is desirable as the time complexity of @it&ases with the search depth.
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Fig. 4. Measured DTC of per-node CT@ig. 5. Measured DTC of per-link CTC Fig. 6. Measured DTC of CTC and LMST
algorithms algorithms

Fig. 5 shows the measured DTC under the CTC-link algoritt8mailar to CTC-node-ms, CTC-link-ms yields the
same DTC irrespective of the search depth. We can see thali@ @emonstrates a higher degree of configurability
than CTC-node. This is because per-link control allows aentoduse different transmission power when it lies on
multiple replacement paths. Furthermore, a search deptinlgf2 enables CTC-link to achieve a high degree of
configurability at low computation cost. Overall our resuhow that the CTC-link algorithms can provide more
efficient and flexible topology control than the CTC-nodeoaiinms.

Fig. 6 compares the DTC of CTC and LMST algorithms under diffé node densities. LMST-2.5 and LMST-
1.67 represent the LMST algorithm with a transmission celurgshold of 2.5 and 1.67, respectively. Under all node
densities, CTC consistently produces topologies thasfgathe required quality bounds. In contrast, the DTC of
LMST has a high variation for different networks with the sadensity, and is heavily affected by node densities.
This is because LMST tends to connect nodes with short aneptomer links that are more likely to be lossy.

This result shows that connectivity-based topology cdratgorithms cannot provide guaranteed path quality in
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lossy WSNs as they do not account for link quality. The DTC MIT decreases with a lower transmission count
threshold, because the links retained by each node become meliable. However, a lower transmission count
threshold may cause a node to blacklist too many links rieguttetwork partition. It is therefore difficult to choose
a transmission count threshold for LMST that achieves both DTC and network connectivity under different
network settings. We set the minimum transmission coussthold to 1.67 in the following simulations as it results

in the lowest DTC without partitioning the network under @ettings.
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Fig. 7. Packet delivery ratio Fig. 8. Average delay of the received packets=ig. 9. Transmission energy consumption
at the sink

B. Simulation Settings on Prowler

Prowler [44] is an open-source WSN simulator that has a &yevent-driven structure similar to TinyOS. The
MAC layer employs a CSMA/CA scheme similar to B-MAC [45]. Theximum number of retransmissions before
dropping a packet is 3. DSDV [46] is used as the routing |ayer.modified DSDV [46] to use transmission count
as the routing metric, which is more suitable than hop comrib$sy wireless networks [5], [39], [38].

The node distributions are the same as in the first set of atiouk. The node bandwidth i) Kbps. The data
packet size is 120 bytes. Each node runs an online link estimsémilar to the one described in [5] to estimate
the link quality in its two-hop neighborhood. The networlldavs a traffic pattern common in data collection
applications [7]. Every source sends a packet to a baserstatiery5 minutes. The base station is located in the
right border of the region. Sources are randomly chosen fr@eft 60% of the region to increase the distance to
the base station. We vary the number of sources from 5 to 5th Essult is the average of 10 different network

topologies with @90% confidence interval. Each run lasts 80 minutes of simulated.t

C. Performance Results

We evaluate both communication performance and energyagption of different algorithms. We evaluate two
CTC algorithms: ctc-node-mm with a required DTC bound of 2d atc-link-ms with a required DTC bound of
3. The search depth is set to 3. Besides LMST, we also use tiweometopology where each node transmits
at the maximum power as a baseline, which is den®@X-POWER As light load is used in our simulations,

MAX-POWER vyields the best performance in terms of delay aelivdry ratio.
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Fig. 7 shows the data delivery ratio under each algorithmil&f to MAX-POWER, all CTC algorithms delivered
over 95% of the total packets to the base station. LMST yields the &wvdelivery ratio due to the lossy links on
its topology.

Fig. 8 shows the average delay of the packets received by dbe btation. LMST yields the highest delay
because a packet often experiences retransmissions @ggrlioks. Both CTC algorithms achieve lower delay than
LMST. Furthermore, the delay under CTC increases with adni@TC bound. This result shows that CTC enables
applications to effectively control the network performarby adjusting the DTC bound.

Fig. 9 shows the transmission energy consumed by diffedgotithms. CTC-link performs slightly better than
CTC-node. Interestingly, although LMST assidosver power than the other algorithms, the network consumes
almost the same amount ehergyunder LMST as under MAX-POWER. This is because, the links M5IL’s
topology are less reliable resulting in more energy waste@aécket retransmissions. Therefore, the benefit of lower
power is offset by the increase in the number of transmissioossy networks. In contrast, CTC-link-ms reduces
the energy consumption B7% ~ 36% compared with MAX-POWER. This result demonstrates the ingnece

of considering lossy link models in both the design and eat@dm of topology control algorithms.
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Fig. 10. The standard deviation of transmission energy lofiades.

Fig. 10 shows the standard deviation of nodes’ transmissi@ngy consumption in a typical run. The variation of
the energy consumption affects the lifetime of the netwafobe partition. Both CTC-node and CTC-link achieve
significantly lower variation in nodes’ energy consumptitbian LMST when source density is high. They also
achieve much more balanced energy consumption in the nletihan MAX-POWER under all source densities.

This result indicates that CTC can effectively prolong tifetime of the network.

VII. CONCLUSION

In this paper, we first provide a new formulation of the togglaontrol problem that captures the stochastic
nature of WSNs. We then propose the Configurable TopologyrGloCTC) approach for lossy WSNs. The key
novelty of CTC lies in its capability of configuring a netwatdpology to achieve desired path quality bounds in a
lossy network through localized algorithms. We present fotTiC algorithms that combine per-node/per-link power

control with two metrics for power assignment. Realisticgiations based on the characteristics of Mica2 motes
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show that CTC can provide desired tradeoff between poweswoption and network performance according to

application requirements. Furthermore, CTC outperforiSI in terms of both communication performance and

energy consumption. Our results demonstrate the impatahincorporating lossy link models in the design of

topology control algorithms for WSNs.
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