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Abstract 

 

          Individual differences have not often been considered within the problem-

solving or concept-learning literatures despite the indication that some individuals 

are better able to transfer to novel problems and that manipulations in strategy 

can effectively increase the ability to transfer (Gick & Holyoak, 1983).  Research 

in the function-learning domain indicates that there may be two qualitatively 

different types of learners: those who remember distinct example associations 

(exemplar learners) and others who abstract rules that govern each association 

(rule learners; DeLosh, Busemeyer, & McDaniel, 1997).  Data from two 

unpublished studies (McDaniel, Cahill, Robbins, & Trumpower, 2012; Fadler, 

Lee, Scullin, Shelton, & McDaniel, 2012) have demonstrated the stability of these 

two types of learning across a variety of different higher order problem-solving, 

concept-learning, and cognitive tasks.  However, it remains to be seen whether 

these differences between learners have implications for the type of conceptual 

material often used in classrooms. 

            In the current project, this issue was addressed through two 

experiments.  During Experiment 1, participants were first identified as exemplar 

or rule-based learners on the basis of function learning transfer performance.  

Each group then read several passages and answered questions about the 

passages that ranged in their degree of transfer.  Rule learners performed better 

than exemplar learners on each question type and the two types of learners also 

demonstrated qualitatively different processing during function learning training 
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and on a test of analogical transfer.  The data from Experiment 2 showed that 

rule learners behaved qualitatively differently from exemplar learners during 

function learning training but failed to replicate the passage data from Experiment 

1.  However, a benefit was found on recognition memory for exemplar learners 

on a concept-learning task. 

            The current study is the first to show differential benefits for exemplar and 

rule-based processing.  It also provides evidence that function-learning tendency 

can be used to predict differences on concept-learning tasks and that only rule 

learning is associated with abstraction ability.  The findings suggest that 

individual differences should be considered both in current hybrid models of 

categorization, but also potentially in classrooms that might rely heavily on 

problem solving, where the differences in types of learners may have an impact 

on student performance and understanding. 
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Individual Differences in Function Learning as They Relate to the

Learning of Conceptual Information 

 Within the problem-solving domain, research on individual differences is 

relatively rare.  A few studies have shown that some individuals are able to 

transfer solutions to novel problems, while others do not transfer (Gick & 

Holyoak, 1983; Novick, 1988).  These findings suggest that the tendency to 

transfer may vary across individuals, but these potential differences are rarely 

discussed in the literature.  Instead of investigating potential qualitative 

differences in learners, researchers generally attempt to explain variations in 

transfer ability through a continuous dimension of intelligence (see Wenke, 

Frensch, & Funke, 2005, for review).  Although it is possible that intelligence 

might account for these differences, empirical work has not been conducted to 

demonstrate that intelligence is a reliable predictor of transfer ability.  McDaniel, 

Cahill, Robbins, and Trumpower (2012) instead argued that there are two 

qualitatively different types of learners: those that retain specific example-

response associations (exemplar learners) and those that abstract an underlying 

rule that governs each association (rule learners). 

 The goal of the present research was to demonstrate that these qualitative 

differences in learning tendency extend to other domains.  Specifically, learners 

who remember example-response associations and those who abstract rules 

may perform differently in a classroom setting with educational materials.  

Experiment 1 was designed to examine a potential interaction in conceptual 

material such that exemplar learners perform better on tests of retention, while 
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rule learners are better able to transfer to novel situations.  Experiment 2 was 

designed to replicate and extend the findings of Experiment 1 as well as to 

explore the effects of function learning tendency in other concept-learning tasks.   

In order to provide a foundation for the project, I will first briefly describe 

models of rule and exemplar processing and then outline the research 

demonstrating individual differences in problem solving and specifically in 

function learning.  I will then describe several unpublished studies that examine 

the stability of individual differences in function-learning tendency and how these 

might have educational implications. 

 

Rule and Exemplar Processing 

Historically, there has been a debate in the categorization literature 

between those who argued that categorization was supported fully by either rule-

based processing (Reed, 1972; Einhorn, Kleinmuntz, & Kleinmuntz, 1979; 

Nosofsky, Palmeri, & McKinley, 1994) or exemplar-based processing (Estes, 

1994; Kruschke, 1992; Medin & Shaffer, 1978; Nosofsky, 1984; Nosofsky & 

Palmeri, 1997; Nosofsky & Johansen, 2000; DeLosh et al., 1997).  Generally, 

proponents of rule-based models explained that individuals use a controlled 

cognitive process in order to abstract underlying information that governs 

classification of all (or most, see Nosofsky et al., 1994) items.  When 

encountering a novel item, it could then be compared to the abstraction to 

determine its category membership.  This theory is contrasted with exemplar 

models, which described learning as occurring through a memorization process 
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such that each exemplar is represented in memory.  Upon encountering a novel 

item, the item is compared with the stored representations of exemplars and the 

novel item would be categorized according to the most similar memorized 

exemplar (or an accumulation of information from weighted averages; see Juslin 

et al., 2003, for more details). 

 More recently, several hybrid models have been proposed to account for 

the discrepancies between rule and exemplar models (Ashby, Alfonso-Reese, 

Turken, & Waldron, 1998; Erickson & Kruschke, 1998; Anderson & Betz, 2001; 

Bott & Heit, 2004).  These hybrid models describe rule and exemplar processing 

as two qualitatively different types of cognitive processing, and these models 

draw support from data showing that rule and exemplar processing rely on 

different neural substrates (Smith, Patalano, & Jonides, 1998).  Within hybrid 

models such as the ACT-R model (Anderson & Betz, 2001), the particular type of 

processing is chosen based on which is most appropriate in the given situation.  

Anderson and Betz explained, “participants track how well each basis is working 

on the stimulus set and select each method in rough proportion to its past history 

of success” (p. 630). Specifically, materials that contain few exemplars, pictorial 

stimuli, and nominal feedback are more likely to encourage exemplar processing 

(Juslin, Olssen, & Olssen, 2003).  Thus, for hybrid models, the type of processing 

used depends on the task and materials, but these models do not account for 

individual differences in the type of processing that might be chosen, particularly 

in the absence of strong task-based determinants of processing. 
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Individual Differences in Concept Learning and Problem Solving 

As described above, there is little empirical work examining potential 

qualitative differences between individuals who are able to transfer problem 

solutions and those who are not.  In a study of analogical transfer, Gick and 

Holyoak (1983) gave half of their subjects two problems with different cover 

stories, but that required the same solution, while the other half of subjects 

received only one of these problems.  Later, subjects were given a transfer 

problem that required the same solution.  If subjects had previously been given 

two problems, they were significantly more likely to recognize the utility of the 

previous solution and therefore answer the transfer problem.  Giving subjects the 

additional problem led learners to recognize that a single schema could govern 

multiple problems with different surface features and therefore changed the way 

they approached the novel criterial problem.  However, only 52% of subjects 

were able to transfer even given the two problems with differing surface 

structure.  These data may indicate that learners who were able to transfer may 

be naturally adopting a different strategy than those who were unable to transfer. 

Gick and Holyoak explained that the potential mechanism by which individuals 

were able to transfer was their ability to develop a schema associated with 

training examples.  That is, subjects needed to be aware of the underlying 

structure of a problem in order to transfer to a new problem with a similar 

structure.  It is possible that those subjects who were able to complete the task 

did so by using this more successful strategy, while others may have been using 

a strategy that was qualitatively different.  
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 While few researchers have considered these differences in transfer 

ability, one early study did examine qualitative differences in learning.  Medin, 

Altom, and Murphy (1984) trained subjects to learn various examples from a 

category, such that the rule for category membership was not very clear.  Medin 

et al. asked learners to specifically describe the strategies that they used to 

accomplish the task.  While there was not complete data for all subjects, the 

responses indicated that some learners were categorizing based on an 

abstracted prototype, while others had memorized the exemplar-category pairs to 

determine which items were part of the category.  Thus it appears that within the 

problem-solving and concept-learning domains, there exist qualitatively different 

strategies for learning and transfer. 

   

Individual Differences in Function Learning 

In line with Medin et al. (1984), evidence for qualitative differences in 

transfer also has been found in the function-learning domain.  DeLosh, 

Busemeyer, and McDaniel (1997) trained participants on a set of input-output 

values that followed a function that was unknown to the participants.  After 

training, subjects were tested on items that were similar to training values, but 

also on items that fell outside the training range (extrapolation).  When using a 

quadratic function, a single hybrid model (which incorporated both rule-based 

and exemplar-based strategies) predicted the performance of most learners.  

However, there were some individuals who showed noticeably different 

extrapolation patterns.  Some learners appeared to continue the function and 
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closely followed the correct quadratic curve, indicating that these individuals had 

abstracted the underlying function rule and were applying it to the novel input 

values.  Other subjects instead used output values that were very similar to those 

at the extreme ends of the training range, indicating that these individuals had 

retained specific input-output associations and were using the closest retained 

example to produce their responses, thus relying on memorized points instead of 

a general rule (see Figure 1). 

 Following the results of DeLosh et al. (1997), McDaniel et al. (2012) 

examined individual differences in function learning more closely.  In Experiment 

1a, subjects were given input-output pairs that followed a V-shaped function 

(described in detail in Experiment 1 below).  Participants were then classified as 

either rule or exemplar learners based on their extrapolation errors.  Individuals 

showing extrapolation that was close to the function (as opposed to flat 

extrapolation) were classified as rule learners for having abstracted the 

underlying function.  Individuals who did not show this functional understanding 

were classified as exemplar learners.  These classifications correlated with 

working memory capacity such that individuals with high working memory were 

more likely to abstract the underlying function.  Within the rule learners, Ravens 

Advanced Progressive Matrices (RAPM, a non-verbal measure of fluid 

intelligence or the ability to abstract relations between items; Raven, Raven, & 

Court, 1998) correlated negatively with the rate at which subjects learned during 

training. That is, the higher a rule-learner’s ability to abstract the less time that it 

took them to abstract the rule.  However, the correlation between RAPM and rate 
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of learning did not extend to the exemplar learners, indicating that their strategy 

was qualitatively different from rule learners and not based on abstraction ability. 

In addition, overall RAPM scores did not differ between the two types of learners.  

As described above, most researchers explain individual differences in transfer 

ability through differences in intelligence (see Wenke, Frensch, & Funke, 2005 

for review).  These data collectively indicate that any differences found between 

learners could not be accounted for by intelligence alone.   

In Experiment 1b of McDaniel et al., subjects categorized novel animals 

into two distinct categories. This method was based on a study by Regehr and 

Brooks (1993) who initially used the animals to show that natural stimuli can both 

have underlying rules for categorization, and can also be classified with the use 

of memory for idiosyncratic features.  After training, individuals were given a test 

in which they categorized repeated training items, as well as a lure that was the 

“twin” of each training item.  That is, for each lure, the idiosyncratic features were 

almost identical with the training “twin”, with only one changed feature.  For half 

of the lures, the changed feature caused the lure to be placed in a different 

category than its training “twin”.  For the other half, the changed feature did not 

change the category membership. McDaniel et al. identified individuals who were 

classified as exemplar learners (on the function-learning task) who also learned 

well during training. For these exemplar learners, it appeared that they based 

their novel categorization on their nearest training example, which caused them 

to place half of the lures into the wrong category.  Rule learners, on the other 

hand, performed similarly on the two types of lures, indicating that their 
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categorization was based on a qualitatively different strategy.  McDaniel et al. 

again showed the stability of function learning tendencies across materials in 

Experiment 2, in which subjects were trained to place exemplars into an 

appropriate abstract coherent category.  Subjects were shown four features of a 

fictitious machine and were asked to classify the machine as a “morkel” or 

“krenshaw”.  While never made explicit to the subject, “morkels” were made up of 

features which were coherent (made sense together) and “krenshaws” were 

made up of features that were incoherent (did not make sense; e.g. rolled on 

wheels in water; see Table 2). Again, subjects who abstracted a rule during the 

function-learning task were significantly more likely to classify novel exemplars 

into the appropriate category during the transfer portion of the study.   

These data led McDaniel et al. to propose that there are two qualitatively 

different approaches to concept learning displayed by learners.  This theory 

contradicts models that have argued that concept learning is supported singularly 

either by exemplar retention (e.g. Kruschke, 1992) or through rule abstraction 

(e.g. Koh & Meyer, 1991).  Instead, McDaniel et al. argued that concept learning 

might actually be governed by both processes and that differences may exist 

among individuals in the extent to which they rely on each process.  While some 

learners appear to learn by memorizing specific exemplars associated with a 

category or response, others tend to abstract an underlying rule that governs the 

exemplar associations. Importantly, the differences in function-learning tendency 

were used to predict performance on other higher-order cognitive tasks, 

indicating that these learning strategies are relatively stable. 
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 While the data supporting individual differences contradict solely rule or 

exemplar models of concept learning, it is not entirely inconsistent with hybrid 

models, which incorporate both types of processing.  McDaniel et al. 

demonstrated that individual differences on a task that is most likely to 

encourage rule-based processing (i.e. function-learning task, because it has a 

large number of exemplars and uses continuous as opposed to binary feedback; 

see Juslin et al. for discussion) could be used to predict performance on a task 

most likely to encourage exemplar-based processing (i.e. from Experiment 1b 

and 2; again see Juslin et al., 2003).  McDaniel et al. explained that, while it is 

true that certain materials might lend themselves to a particular strategy, within a 

given set of materials, individuals differ in the way they approach the task, with 

some relying more on exemplar-based learning and others on abstraction.  

Indeed, even proponents of hybrid models have described that individual 

differences in the use of rule versus exemplar strategies have hindered their 

ability to find task-specific effects (Juslin et al., 2003), yet these individual 

differences have remained unaccounted for in the literature. 

 

Applying Function Learning Tendency To Education 

 Individual differences in function-learning tendency appear to be stable 

across different concept-learning and problem-solving tasks.  However, it is 

unclear whether or not these differences in learning will have implications for 

other materials.  Specifically, the skills that are required in a problem-solving task 

may differ considerably from the skills needed for learning conceptual material 
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within the classroom.  In the function-learning tasks used by DeLosh et al. (1997) 

and McDaniel et al. (2012), subjects were required to learn input-output pairs 

along a continuous mathematical function.  It is possible that a particular skill 

underlying this type of learning may be general mathematic ability. That is, rule 

learners might be those individuals who are better able to abstract a particular 

mathematical function and exemplar learners, lacking the same ability, must rely 

on the memorization of input-output pairs to succeed in the task.  On the 

concept-learning tasks used by McDaniel et al., there was no mathematical 

function required. However, some amount of problem-solving ability might 

explain the differences between rule and exemplar learners on these tasks as 

well as the function-learning task.  It is possible that the type of skills needed in a 

mathematical or problem-solving task might not readily map onto the discourse 

and text processing that is necessary for learning from lectures and textbooks in 

a typical classroom environment.  

However, other tasks have shown differences in learners that may be 

more comparable to the type of reasoning required in the classroom.  In the 

analogical reasoning studies discussed above (e.g. Gick & Holyoak, 1983), 

learners must develop a schema for the problem in order to map on the 

underlying structure to other analogous problems. In order to understand prose 

material, students may need to develop a schema for the information in order to 

gain a coherent understanding of the material and to map the information learned 

onto other novel materials.  It is possible that rule learners abstract a schema 

associated with material presented in the classroom, which allows them to make 
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connections between various materials and gain a better understanding of 

concepts within the classroom.  Exemplar learners, on the other hand, may focus 

on the surface details of the given information (as in an analogical reasoning 

task) and therefore be able to retain information presented, but lack a more 

conceptual understanding of that information, leaving them less able to transfer 

to novel stimuli.  Interestingly, both types of learners might be successful within 

the classroom.  Rule learners may be able to draw upon information learned 

throughout their school careers to understand the current material, while 

exemplar learners may have excellent retention of information conveyed, often 

producing excellent test scores. 

While exemplar learners may be successful in achieving high marks on 

tests, a common goal of education is transfer of knowledge and not solely 

memorization of facts.  Because rule learning produces better extrapolation, it 

may also produce better transfer of concepts for prose materials.  Therefore if the 

differences in learning tendency were associated with performance on the 

classroom materials, there would be strong implications for educators who may 

want to encourage rule-based processing in order to promote better transfer to 

novel situations. 

 Following these theoretical ideas, my colleagues and I recently conducted 

a study in which subjects were given a function-learning task and then were 

trained on supply and demand economics problems (Fadler, Lee, Scullin, 

Shelton, & McDaniel, 2012).  In this way we attempted to determine whether 

function learning tendencies would predict differences on similar, but ecologically 
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valid materials.  Individuals were told to learn information about the supply and 

demand of a company in order to give advice to the company following training.  

After being trained on problems that follow four supply and four demand rules 

(never made explicit), subjects were given a test in which they answered similar 

supply and demand problems as well as problems that required them to combine 

supply and demand information (equilibrium problems).  In order to answer these 

equilibrium problems, subjects had to have a clear conceptual understanding of 

how and why supply and demand curves shift.  Preliminary results indicate that 

there is an interaction between function learning tendency and scores on 

different types of problems.  Specifically, exemplar learners perform better on 

items that are very similar to training problems, but rule learners are superior on 

the novel equilibrium problems.  While these data indicate that function learning 

may have implications for other domains and specifically classrooms which rely 

heavily on problem solving, the materials are composed of problems and may 

therefore use skills that are closer to the function-learning task (e.g. 

mathematical ability) than skills that are needed for learning of conceptual 

material.  It therefore remains to be seen whether differences in function learning 

can be used to predict differences in more conceptual information. 

 

The Present Research 

 While there are many potential avenues for examining differences in 

function learners, the current research focused on retention and transfer of 

conceptual material (prose passages) similar to what might be learned within a 
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classroom.  In addition to narrowing the materials in the current study, it is 

important to define the constraints of transfer that were used.  Barnett and Ceci 

(2002) explained that there are many dimensions of transfer that make it difficult 

to classify and test (see Figure 2).  Transfer can vary across different levels of 

learned skills, memory demands, and distance of transfer.  In the current study, 

the materials required different levels of learned skills, such that some items 

were designed to require a representation of information while others required an 

underlying principle.  The memory demands of the questions differed as well.  

Some questions required subjects to remember the information that was explicitly 

requested while other questions required subjects to additionally determine which 

information they needed to retrieve and to apply it appropriately.  Finally, the 

materials varied from very near transfer to far transfer (to a different knowledge 

domain; see Appendixes B and C for full materials).  An example of a factual 

question (explicitly stated in the passage) was, “What happens to bats 

physiologically when in a torpor state?”  (Answer:  When in a torpor state, a bat’s 

metabolism slows down, reducing biological activity and conserving energy.)  An 

example of an inferential question (required transfer) was, “The U.S. Military is 

looking for inspiration in developing a new type of aircraft that promotes 

increased maneuverability. How would this new type of aircraft differ from 

traditional aircrafts like fighter jets?”  (Answer: Traditional aircrafts are modeled 

after bird wings, which are rigid and good for providing lift. Bat wings are more 

flexible, and thus an aircraft modeled on bat wings would have greater 

maneuverability.)  The materials were specifically designed such that the lowest 
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level of question was most likely to address the type of processing engaged by 

exemplar learners.  That is, if exemplar learners tend to use a learning strategy 

that involves simply committing information to memory, they are likely to perform 

better on questions that require surface-level information (Van Dijk & Kintsch, 

1983). Rule learners, on the other hand, may abstract schemas for the text that 

can enhance their understanding of the material, leading to better performance 

on items that require understanding or application to novel domains.  

 

Overview of Experiments 

There were three primary purposes of the current study. The unpublished 

studies described above (McDaniel et al., 2012; Fadler et al., 2012) provide 

evidence that there are indeed two qualitatively different and identifiable learning 

tendencies.  However, identification of these distinct differences requires 

replication to demonstrate the strength of the effect.  Therefore, the current study 

was designed to identify rule and exemplar learners using the classification 

methodology developed by McDaniel et al. and to determine the extent to which 

these differences have implications on tasks that are unrelated to the problem-

solving or concept-learning domains, specifically to analogical reasoning and 

learning of conceptual material.  In addition, the study was designed to determine 

whether a benefit could be found for exemplar-based processing on recognition 

memory in a concept-learning task where only a rule-based advantage for 

categorization had been previously observed.  A final exploratory purpose was to 

determine whether function-learning tendency might be associated with other 
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demographic characteristics of individuals. For example, learners could choose 

different courses depending on the way in which they approach problems and so 

we could find that rule and exemplar learners differ in academic major. 

 

Experiment 1 

The first goal of Experiment 1 was to identify two qualitatively different 

strategies for learning through the use of a function-learning paradigm developed 

by DeLosh et al. (1997) and to replicate the differences in extrapolation profiles 

reported by McDaniel et al. (2012).  Rule learners were expected to abstract the 

underlying V-shaped function and continue the function in extrapolation, while 

exemplar learners were expected to base their extrapolation on the most similar 

exemplar and display fairly flat extrapolation. 

The second goal of Experiment 1 was to determine whether these learning 

strategies could be used to predict differences in performance on other materials; 

specifically on a test of analogical reasoning and on an assessment of 

conceptual learning.  Differences in analogical transfer might be governed by the 

ability to abstract an underlying schema across items (Gick & Holyoak, 1983).  

On the function-learning task, rule-based learners are characterized specifically 

by abstracting the underlying function when given multiple examples.  Therefore, 

they might also be better able to abstract underlying similarities between 

analogical transfer items, leading to better performance on novel problems 

requiring the same solution.  Exemplar learners, conversely, may focus on the 

surface features of each problem, committing it to memory.  Therefore, on the 
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novel problem, they may not recognize the shared underlying schema and fail to 

transfer.   

Similarly, we might also see differences in learners on an assessment of 

conceptual learning. When subjects are asked to read multiple passages, rule 

learners might make connections among the passages (or abstract underlying 

schemas) while exemplar learners work to memorize each passage as a 

separate exemplar.  Therefore, when answering questions that are factual in 

nature, exemplar learners may outperform rule learners, but when answering 

questions that require subjects to make connections between the passages, rule 

learners may outperform exemplar learners.  In addition to these types of 

questions, subjects were also asked inferential questions, which required them to 

apply their knowledge of passage material to a new domain.  If rule-learning 

tendency represents a general tendency to make connections between material, 

rule learners may outperform exemplar learners on these items, as they are more 

aware of the need to connect what they learned from the passages to novel 

information.  Exemplar learners may also perform well on these items because 

they are aware that this is a transfer context and are able to recall the critical 

information needed to transfer. 

 The third and final goal of Experiment 1 was to explore any potential 

demographic differences between the two types of learners.  While no 

differences were expected on race or sex, other differences were possible.  

Because the current sample was drawn from a population of college students, it 

is possible that age could differ between learning types.  Specifically, early in 
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their college careers, students might find that an exemplar strategy is sufficient 

for classroom achievement, as most introductory classes require rote 

memorization of material.  However, more advanced courses might require 

abstraction of underlying concepts.  It is therefore possible that general learning 

strategy could shift over time.  In addition to age, college major might differ 

between learning tendencies.  If rule-based learning is associated with 

mathematical ability, rule learners might perform better in natural science 

courses and therefore choose majors in those disciplines.  Alternatively, 

individuals in natural science courses may learn that rule-based learning is 

beneficial and adopt this strategy more generally. 

 There were other measures used in Experiment 1 to assess whether they 

might be related to the tendency to rely on exemplars versus abstract underlying 

rules.  The Kolb Learning Styles Inventory (Kolb LSI; Kolb, 1993) was used to 

classify learners along two dimensions: taking in experience and dealing with 

experience.  Taking in experience is described by the extent to which someone 

relies on concrete experience or abstract conceptualization, which could be 

related to the rule-learning tendency.  That is, if rule learners are those 

individuals who tend to abstract underlying information, they may score high on 

abstract conceptualization. Exemplar learners may shy away from abstraction 

and therefore rate high on concrete experience and low on abstract 

conceptualization. In addition to the Kolb LSI, fluid intelligence was measured 

using Raven’s Advanced Progressive Matrices (RAPM: Raven, Raven, & Court, 

1998).  This task requires subjects to view a visual display and determine the rule 
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that governs the relationship between items in order to select a stimulus that 

correctly completes the display.  Therefore, RAPM might predict those individuals 

who are able to abstract a rule and those that are not.  However, the difference 

between rule and exemplar learners is not necessarily described by the ability to 

abstract a rule, but rather the tendency to rely on exemplar or rule-based 

processing in a learning situation that allows for either type of processing to be 

successful.  That is, even if one is able to abstract a rule, they may instead 

choose to adopt an exemplar strategy.  It is therefore more likely that rule and 

exemplar learners will not show differences in RAPM, but that, within the rule 

learners, RAPM will be correlated with their ability to learn the rule as assessed 

by their rate of learning.  Indeed, this pattern was found by McDaniel et al. (2012) 

and would represent a replication of those data. 

Experiment 1 consisted of two sessions to accommodate all of the 

materials. During session 1, participants completed a demographics 

questionnaire, the function-learning task, the analogical reasoning convergence 

problems, and an abbreviated version of RAPM.  During session 2, participants 

read twelve passages, completed the Kolb LSI, and took a 30-item quiz over the 

passages. Rule learners were expected to perform better than exemplar learners 

on the analogical reasoning problems and on the inferential and connecting 

questions on the quiz and to show a relationship with RAPM.  Exemplar learners 

were expected to perform better on the factual questions on the quiz and show 

no relationship with RAPM. 
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Method 

Participants.  Eighty-six participants were recruited from the Department 

of Psychology human subject pool and received either credit towards completion 

of a research participation requirement or cash payment ($5 for each half hour of 

participation).  Four participants did not return for the second session of the 

experiment or did not complete participation due to time constraints.  Three 

participants failed to comply with instructions during the function-learning task 

and were therefore excluded from analyses.  In addition, seven participants did 

not demonstrate adequate learning of the input-output pairs during training 

(mean absolute error on the final training block >10) and were excluded from 

further analysis in accordance with the methods used by McDaniel et al. (2012).  

Therefore, the final sample consisted of 72 participants. 

Procedure. Participants were tested in small groups in two sessions, two 

days apart.  The procedures for the two sessions are depicted in Figure 3. 

Session 1. Participants first completed a demographics questionnaire that 

assessed age, sex, race, grade point average, SAT/ACT scores, and college 

major.  Participants then completed the function-learning task used by McDaniel 

et al. (2012). During this task, subjects were trained on a set of input-output pairs 

that made up a continuous function.  The function was V-shaped with the vertex 

at 100, but this function was never made explicit to the subjects.  For input values 

less than 100, the function followed the equation f(x) = 230 – 2.2x; for input 

values greater than 100 the function followed the equation f(x) = 2.2x – 210.  

Subjects were given a total of 200 training trials composed of 10 blocks of 20 
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randomly ordered numbers.  Within each block, the input values were all odd 

numbered integers between 80 and 120.  

Participants were told that they would be working for NASA examining 

data printouts about a newly discovered organism on Mars.  They were given the 

task of determining how much of a particular element (“Beros”) the organism 

released based on the amount of another element (“Zebon”) that was absorbed.  

On each trial, participants were shown three bars (see Figure 4): a bar that 

displayed the input value (“Zebon Absorbed”), a bar that displayed each 

participant’s predicted value (“Your Prediction”), and a bar that displayed the 

correct answer (“Beros Released”), which served as feedback for the 

participants. Subjects were given unlimited time to respond by using the arrow 

keys and were given immediate feedback.  Feedback consisted of the output 

value displayed on the “Beros Released” bar and a sentence stating, “Your 

prediction was __ units off.”  Feedback appeared on the screen for 4 seconds 

before the computer automatically moved on to the next trial.  In addition, 

subjects received feedback at the end of each block giving their mean accuracy 

for the given block. 

At the end of training, subjects immediately began the test. The test was 

composed of 60 trials: 20 repeated training trials, 20 trials that were within the 

range of training trials but were not previously seen (even integers, termed 

interpolation trials), and 20 trials that extend beyond the range of the training 

trials (10 odd integers above and 10 below the training range, termed 

extrapolation trials), presented in a single random order to all subjects.  The 
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visual display was identical to that presented during training (see Figure 4), but 

no feedback was provided. 

After the function-learning test, participants read the first two convergence 

problems (taken from Gick & Holyoak, 1983).  Subjects were told that they were 

being tested on their reading comprehension and to simply read each story 

carefully because they would be asked questions about it later.  The order of the 

two stories was randomly assigned across participants.  Participants were given 

three minutes to study each story (see Appendix A) and were then asked to 

summarize the story.  The second story was presented immediately after the 

first.  Each story was removed during summarization and participants were not 

told that there was any connection between the two stories. 

After reading the two stories, participants completed an abbreviated 

version of RAPM.  On each trial, participants were shown eight boxes arranged 

into a 3 x 3 grid with the bottom right block missing.  Subjects were instructed 

that they were to choose, from eight different options, the block that would 

complete the pattern both vertically and horizontally.  Subjects were given a total 

of 12 trials, consistent with the short form version of the RAPM (Bors & Stokes, 

1998; Set II), and were given unlimited time to complete each item. 

After completing RAPM, participants were given the criterial convergence 

problem (see Appendix A) and told that there were many possible correct 

answers, so they should write down as many answers as possible in the allotted 

time.  Participants were then given three minutes to solve the problem, consistent 

with the methods used by Gick and Holyoak (1983).  However, participants were 
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not given any hints to use the previous stories to help solve the current problem.  

After the three minutes, participants were dismissed and reminded to return for 

session 2 two days later. 

Session 2.  During session 2, participants first read 12 passages on a 

variety of topics.  Six of the passages were taken directly from Butler (2010), 

while the other six were created to be similar in content and length.  The six new 

passages were each paired with one of the passages from Butler (2010), such 

that there was an overlapping piece of information that connected the two 

passages.  For example, the “bread” passage stated, “Whereas yeast takes two 

to three hours to produce its leavening action, a dry chemical leavening agent 

like baking powder is instantaneous.”  The connected “volcanoes” passage 

stated, “A common mistake in making a model volcano is using baking powder 

instead of baking soda.  Baking powder does not react with vinegar as quickly as 

pure baking soda, and baking powder can also start reacting on its own because 

it contains the acid and base needed for the production of the carbon dioxide.” All 

passages were developed from three online sources (www.en.wikipedia.org, 

www.encyclopedia.com, and www.howstuffworks.com).  Each passage was 

approximately 500 words in length, separated into four paragraphs (see 

Appendix B). 

Before each passage, participants were presented with the title of the 

passage and asked to press the space bar when they were ready to begin.  The 

passages were each displayed on the screen for three minutes and were 

presented in a single random order to all participants.  After each passage 
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participants were presented with the title of the next passage, allowing them time 

for a short break if it was needed.  After the final passage, subjects were asked 

how many of the passages they finished in the allotted time on a scale from 1 (all 

of the passages) to 4 (only a few of the passages). 

After reading all the passages, subjects completed the Kolb LSI, which 

has been shown to have moderate to high test-retest reliability (r = .90, Veres, 

Sims, & Locklear, 1991; r = .54, Ruble & Stout, 1991).  The inventory consists of 

12 sentence stems (e.g. “I learn best when:”) followed by four response options 

which participants are told to rank from 1 (least like you) to 4 (most like you).  

Each response option is associated with one of four “learning modes” (concrete 

experience, reflective observation, abstract conceptualization, and active 

experimentation).  The rankings associated with each learning mode are 

summed and the scores are used to compute two dimensions of learning.  The 

dimension of taking in experience is calculated by subtracting the concrete 

experience score from the abstract conceptualization score and the dimension of 

dealing with experience is calculated by subtracting the reflective observation 

score from the active experimentation score. 

            The final task was to complete the test over the passages.  For the six 

passages used by Butler (2010), two fact questions per passage were taken 

directly from the Butler (2010) materials (called “conceptual” questions by Butler). 

The answers to the fact questions could be answered with information that was 

explicitly stated in the passage and were therefore assumed to rely on surface 

details only (see Appendix C).  Two inferential questions per passage were 
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adapted from the “inferential conceptual (different domain)” questions developed 

by Butler (2010).  These questions were altered such that no hint was given as to 

which passage should be used to answer the question.  For example, a question 

from Butler read, “The U.S. Military is looking at bat wings for inspiration in 

developing a new type of aircraft.  How would this new type of aircraft differ from 

traditional aircrafts like fighter jets?”  The question was revised to say, “The U.S. 

Military is looking for inspiration in developing a new type of aircraft that 

promotes increased maneuverability. How would this new type of aircraft differ 

from traditional aircrafts like fighter jets?”  Finally, for the six remaining passages, 

one question was created per passage that required information from one of the 

six original passages created by Butler (2010), but also information from one of 

the newly created passages in order to correctly answer (connecting questions; 

see example about “baking soda” provided above).  The final test therefore 

consisted of 12 fact items, 12 inferential items, and 6 connecting items, for a total 

of 30 items, which were randomly ordered.  The test was cued recall and 

participants were asked to answer every question even if they had to guess in 

order to maintain a constant response criterion across participants and avoid any 

floor effects.  No feedback was provided.  After completing the test, participants 

were debriefed about both sessions and dismissed. 

 

Results 

 Function learning classifications.  Mean absolute errors (MAE) were 

calculated for each participant for first and last training blocks, interpolation trials, 



 

25 

and extrapolation trials.  As indicated above, participants whose MAE > 10 on the 

last training block (N = 7) were considered non-learners and were excluded from 

further analyses.  Extrapolation MAE was then used to classify the remaining 

participants as either rule learners or exemplar learners. In this particular task, 

flat extrapolation would produce an MAE of 34.72 (indicative of an exemplar 

model; see DeLosh et al., 1997).  If participants are using rule-based information, 

their MAE should be significantly less than 34.72 because they should deviate 

from flat extrapolation in favor of the function.  Therefore, 95% confidence 

intervals were computed for each participant’s extrapolation MAE and those 

participants with confidence intervals that fell entirely below 34.72 were classified 

as rule learners with the remainder of individuals classified as exemplar learners 

(with five exceptions, described below).  As seen in Figure 5a, rule learners 

showed extrapolation patterns that closely follow the underlying function, while 

exemplar learners did not appear to extrapolate their learning with any clear 

pattern that would be predicted given the training values.  These patterns are 

consistent with models that incorporate exemplar and rule learning as separate 

mechanisms, (e.g. DeLosh et al., 1997), such that exemplar learners performed 

in a manner consistent with exemplar (associative learning) models and rule 

learners performed in a manner consistent with rule-based models. 

 Five individuals demonstrated extrapolation patterns that followed an 

oscillating pattern instead of the V-shaped function (see Figure 5a).  The MAE for 

these individuals was above the 34.72 criterion, which would classify them as 

exemplar learners, but because an oscillating (sine-like) function is a reasonable 
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abstraction from the training points (i.e. a possible abstracted function), these 

individuals were considered rule learners (see Bott & Heit, 2004). Each of their 

MAEs was calculated for a sine function and their 95% confidence intervals were 

compared to a criterion MAE of 24.09 (flat extrapolation with respect to the sine-

like function).  The confidence intervals for all five subjects fell entirely below 

24.09 and all five were therefore classified as rule learners.  After classifying all 

learners, the final sample included 34 exemplar learners and 37 rule learners. 

 Mean absolute errors for each training block are displayed in Figure 6.  By 

block 3, rule learners on average had reached criterion and then steeply dropped 

off, maintaining very low error.  Exemplar learners, instead, did not reach 

criterion until block 5 and then gradually reduced error through block 10, F (9, 

612) = 2.373, p < .05 for the interaction.  These data indicate that rule learners 

learned the rule and then displayed low error, while exemplar learners had a 

slower rate of learning as they learned each of the points.  In addition, rule 

learners (M = 6.21) showed lower error overall than exemplar learners (M = 

9.09), F (1, 68) = 18.67, MSE = 77.42, p < .001, but this difference was driven by 

the lower error on blocks 4 through 10, all F’s (1, 69) > 13.55, all p’s < .001.  

When reducing the analysis to only the first and last blocks, rule learners (M = 

10.24) again had lower MAE overall than exemplar learners (M = 12.37), F (1, 

69) = 11.58, MSE = 13.82, p = .001.  However, the interaction term was non-

significant, F (1, 69) = 2.24, MSE = 12.60, indicating that, although rule learners 

performed better than exemplar learners overall and the learning rates were 

different, by the end of training both groups had learned the items equivalently. 
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 As described by McDaniel et al. (2012), it could be argued that exemplar 

learners simply become confused when seeing new items and this would be 

reflected in poor performance on all novel items, both interpolation and 

extrapolation.  While rule learners (M = 2.55) did have lower MAE than exemplar 

learners (M = 5.01) on interpolation trials, F (1, 70) = 24.98, MSE = 4.29, p < 

.001, both groups made predictions that closely followed the function for these 

points (see Figure 5a, lower panel).  A 2 (learner type) x 2 (trial type: interpolation 

vs. extrapolation) mixed ANOVA showed that the difference between the two 

learner types on extrapolation (Mdiff = 23.18) was significantly larger than the 

difference on interpolation (Mdiff = 2.46), F (1, 69) = 29.37, MSE = 129.49, p < 

.001, for the interaction.  Therefore the two groups differed primarily on their 

extrapolation MAE, showing very similar performance on training and on 

interpolation trials, which is consistent with models demonstrating that both 

exemplar and rule models perform well on interpolation but differ on extrapolation 

(DeLosh et al., 1997). 

 Conceptual passages and test.  After reading all of the passages, 

participants indicated how many passages they were able to read.  Sixty-two 

participants (88.6%) reported that they were able to read all or most of the 

passages in the allotted time.  The number of passages read (all, most, some, 

only a few) was equally distributed across learner types, χ2 (3, N = 71) = 2.84. 

The subsequent analyses were analyzed after excluding the participants who 

indicated that they were unable to read all or most of the passages (N = 8) and 
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the pattern of data remained the same.  Therefore, results for the full sample are 

reported below. 

 The test data were graded according to the grading criteria in Appendix C.  

Each item was scored in three ways—strict scoring, lenient scoring, and a score 

for whether the correct passage was used to answer the question.  A 2 (learner 

type) x 3 (question type: factual, inferential, connecting) mixed ANOVA was 

conducted on each type of scoring.  For the strict scoring, the interaction was not 

significant (F < 1), but there was a significant effect of question type (F (2, 138) = 

41.34, MSE = .022, p < .001), such that individuals scored highest on factual 

questions (M = .58) and lowest on connecting questions (M = .35), with inferential 

questions in between (M = .47; see Figure 7a).  In addition, collapsing across 

question type, rule learners (M = .51) performed better on the test overall than 

exemplar learners (M = .42), F (1, 69) = 4.58, MSE = .092, p < .05.  When 

reducing the analysis to only the factual and connecting questions (where the 

interaction was most expected), the interaction was still not significant, F < 1.  

The lenient scoring produced the same pattern of results, with the main effect of 

learner type dropping to marginal significance, F = 3.35, MSE = .054, p = .07.  

 When analyzing the correct passage scoring, factual items were not 

considered because all answers were associated with the correct passage.  

Therefore, for correct passage scoring, a 2 (learner type) x 2 (question type: 

inferential, connecting) mixed ANOVA produced a significant effect of question 

type, F (1, 69) = 140.35, MSE = .02, p < .001, such that participants used the 

correct passage more often on inferential items (M = .56) than on connecting 
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items (M = .29), where they were required to use information from the two 

connected passages to get credit (see Figure 7b).  However, there was no effect 

of learner type, F (1, 69) = 1.09, MSE = .04, and no interaction, F < 1. 

 Analogical reasoning.  Each participant was given a binary score of “1” if 

they mentioned the convergence solution in their response to the criterial 

problem and a score of “0” if they did not.  Rule learners (M = .57) did not 

significantly differ from exemplar learners (M = .56) on their use of the 

convergence solution, F < 1.  However, within the rule learners, there was a 

significant correlation between RAPM and use of the convergence solution (r = 

.35, p < .05), but not within the exemplar learners (r = .06). 

Other measures. Rule learners (M = .60) did not significantly differ from 

exemplar learners (M = .57) on RAPM, F < 1.  In addition, within the exemplar 

learners, RAPM was not significantly correlated with rate of learning (r = .10) as 

defined by the training block in which the participant reached a learning criterion 

of MAE < 10 (lower block number associated with faster rate of learning).  There 

was, however, a correlation that trended toward significance between RAPM and 

rate of learning for the rule learners (r = -.27, p = .11), such that rule learners who 

took fewer trials to reach learning criterion scored higher on RAPM.  There was 

also no correlation between RAPM and any of the test scores (all r’s < .19).  

Learner type did not predict any of the Kolb LSI learning modes, or the two 

dimensions of learning (all F < 1).  

 Demographics. As seen in Table 1, the two groups did not significantly 

differ in age, (F (1, 70) = 1.011, MSE = 4.54), grade point average (F < 1), or 
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ACT scores (F < 1; because some students reported only SAT scores, SAT 

scores were converted to ACT scores using the ACT/College Board concordance 

tables, 2008, in order to standardize the data).  Rule and exemplar learners also 

did not differ on sex (χ2 (1, N = 71) = .006), or race (χ2 (3, N = 69) = 2.77).  In 

order to examine academic major, participants were divided into those who 

indicated STEM (science, technology, engineering, or mathematics) majors, non-

STEM majors, or both (i.e. double-majors, one STEM and one non-STEM).  

Individuals who were undecided (N = 5) were removed from this analysis.  The 

two groups did not significantly differ in academic major when STEM, non-STEM, 

and double majors were included, χ2 (3, N = 71) = 2.55, nor when double majors 

were removed, χ2 (1, N = 50) = .1.52. 

 Function learning classifications revisited.  One potential issue with 

the above analyses lies in the manner in which the function learning classification 

was conducted.  Specifically, the confidence interval approach to classification 

selects participants on the basis of how closely they mirror the underlying V-

shaped function and compares these individuals to everyone else.  However, it is 

possible that other individuals may abstract part of a rule and need more training 

to abstract the entire rule, or that individuals are using a combination of exemplar 

and rule-based processing.  It is also possible that participants could use a rule 

plus exception model (Nosofsky et al., 1994) such that they might abstract a 

generally positive linear trend and only items in the 80-100 training range would 

be exceptions and therefore memorized points.  These types of learning are 

more difficult to distinguish with an MAE or confidence interval approach but 
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ignoring these possibilities could dampen effects that we see on other tasks.  In 

order to address this issue, a classification guide was used (see Appendix D) to 

distinguish rule patterns from exemplar patterns of extrapolation, removing 

ambiguous patterns of extrapolation from analyses (used by Fadler et al., 2012).  

This type of classification can therefore be considered an extreme groups 

classification, such that only the clearest rule learners and the clearest exemplar 

learners are included in the analysis. 

 Using the classification guide, two independent raters divided the learners 

into three groups: rule, exemplar, or ambiguous.  The two raters agreed on 

87.8% of the subjects’ classifications and all discrepancies were resolved before 

proceeding.  Using this approach participants were divided into 38 rule learners 

and 13 exemplar learners.  The patterns of results were similar to those 

described above, but there were no significant effects, presumably due to the few 

exemplar learners in the sample. 

 

Discussion 

 Rule learners and exemplar learners were successfully identified in a 

manner that replicated McDaniel et al. (2012).  While rule learners had lower 

MAE overall, both groups learned equivalently by the end of training. However, 

rule learners learned faster, indicating a qualitatively different strategy for 

learning. Importantly, the two types of learners also showed similar interpolation 

profiles and diverged specifically on extrapolation trials, consistent with formal 

models of each type of processing (DeLosh et al., 1997).  In addition, within the 
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rule learners, RAPM trended toward association with rate of learning, indicating 

that abstraction ability could be related to speed of abstracting the rule.  

However, no such correlation existed within the exemplar learners, indicating that 

exemplar learners might be using a qualitatively different strategy, unrelated to 

abstraction.  These data were again similar to McDaniel et al. where a significant 

correlation between RAPM and rate of learning was found within the rule learners 

but not the exemplar learners. 

 There was also evidence in Experiment 1 of stability of function learning 

tendency across materials. While there were no differences found on the 

analogical reasoning problems, this could be because both rule and exemplar 

processing could support success on these items.  That is, rule learners could 

have drawn on abstraction of the underlying schema to promote success.  Gick 

and Holyoak (1983) demonstrated that using two stories with differing surface 

features caused subjects to be significantly more likely to abstract the underlying 

schema and therefore abstract at similar levels as in the current study (M = .52).  

Exemplar learners, on the other hand, might have tried to recall the most similar 

problem they encountered in the current experiment.  Because there was a short 

(approximately 10 minute) delay, exemplar learners may have been able to 

easily recall one of the stories they previously read and be more successful with 

mapping the appropriate features.   There is some evidence for this conclusion 

as, within the rule learners, RAPM was significantly correlated with performance 

on the criterial convergence problem, but no correlation was found within the 

exemplar learners.  As above, this indicates that the ability to abstract was 
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associated with successful transfer in the rule learners, but that the exemplar 

learners were using a qualitatively different strategy to promote transfer.   

While the analogical reasoning task did not produce direct differences 

between groups, there were distinct differences on the assessment of conceptual 

learning. Rule learners outperformed exemplar learners on all question types, 

contrary to the hypothesis that exemplar learners should perform better on 

factual items.  However, these items were still conceptual in nature and utilized 

information that was needed for comprehension of the passage.  It is therefore 

possible that rule learners were making connections with prior knowledge in 

order to understand factual information, which in turn strengthened their memory 

for factual material and allowed them to perform well on these items. 

 Finally, it appeared that learning tendency represented a unique type of 

assessment that could not be explained by a general ability.  That is, there were 

no differences between rule and exemplar learners on RAPM or ACT scores.  

There was also no association between learning tendency and scores on the 

Kolb LSI or on more exploratory demographic items (sex, race) and these 

differences do not seem to change over time (as indicated by age) or mandate 

academic major selection.   

 

Experiment 2 

 While rule learners outperformed exemplar learners on all question types 

on the assessment of conceptual learning in Experiment 1, the expected 

interaction (learner type by question type) did not emerge.  This effect may have 
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occurred because rule learners were making connections between factual 

material and prior knowledge.  Converging evidence for the tendency for rule 

learners to make connections comes from the inferential items in which rule 

learners outperform exemplar learners.  Therefore, the first goal of Experiment 2 

was to replace the factual items with questions that asked about unnecessary 

details in each passage.  An example of one of these questions was, “What is the 

name of the thin membrane of skin found on a bat’s wing?” (Answer: Patagium.) 

These items involved examples of conceptual information that did not affect 

comprehension of the passage as a whole.  Briefly, Kintsch (1988) explained that 

text is processed at three distinct levels: surface, propositional, and situational 

levels.  The surface level involves the verbatim words and linguistic structure of a 

given sentence.  Sentences are then converted into propositions, which contain 

the meaning of the text.  The situational level then contains the overarching 

context of the text—the circumstances directly related to the information 

described in the text.   

On the function-learning task, exemplar learners use a strategy in which 

they memorize the input-output pairs.  If that type of strategy extends to text 

processing, exemplar learners should focus on memorization of the surface 

features of the text and might not create many links between propositions and to 

situation models.  More specifically, exemplar learners do not abstract the 

relational information in function learning.  In text processing, they also may not 

relate the propositions with each other or with, for example, prior knowledge.  

Rule learners, on the other hand, approach the function-learning task by trying to 
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abstract an underlying rule.  If they approach text processing similarly, they might 

develop considerable links between propositions and particularly with situation 

models to guide understanding.  Rule learners might therefore abandon the 

surface level features in favor of the gist of the text.  The two types of learners 

might therefore process the same text in different ways and these processes 

might lend themselves differentially to the three question types.   

The fact items from Experiment 1 were taken from sentences that were 

strongly linked with the rest of the passage in meaning and comprehension and 

would have been easily integrated and connected to existing situation models.  

Rule learners may have more strongly encoded this information than did 

exemplar learners who may have focused on the verbatim text instead of the 

meaning and associations.  The new example questions used in Experiment 2 

contained information that was somewhat irrelevant for meaning and 

comprehension.  These items would still have been converted into propositions 

but would have been less easily integrated with the propositions from the rest of 

the passage and certainly less integrated with existing situation models.  If rule 

learners are focused on information that can be readily integrated into situation 

models, they may have paid considerably less attention to example information.  

Exemplar learners may not necessarily discriminate between areas of more of 

less import for text comprehension, instead attempting to commit the surface 

level features to memory.  If this is the case, exemplar learners should be better 

able to recall these verbatim examples than are rule learners. It was therefore 

predicted that on the new surface-level example questions, exemplar learners 
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should outperform rule learners, having retained more of the surface-level 

features, while rule learners should remain superior on inferential and connecting 

questions. 

 The second goal of Experiment 2 was to replicate and extend the findings 

in McDaniel et al. (2012).  In Study 1b, McDaniel et al. trained subjects to 

categorize novel animals and then tested them on repeated training items and 

novel animals.  Performance at the end of training was not perfect (M = 74%), but 

when isolating effects to perfect learners, exemplar learners performed in a 

manner consistent with an exemplar strategy.  In the present study, a simpler 

rule was adopted. McDaniel et al. used an additive rule, in which any 

combination of two out of three critical features had to be present to be 

considered a builder, while in the current study a conjunctive rule was used, such 

that big animals with spots were considered builders and all others were 

considered diggers. In addition, the number of training blocks was increased in 

order to encourage greater learning by the end of training.   

In addition, the testing procedure was changed for the current study to 

reflect the differences in learning strategy.  Specifically, during training, once rule 

learners have adopted a rule, they may be less likely to pay attention to the other 

features of each animal, as those features are irrelevant to the current task.  

However, if exemplar learners are memorizing the animals, they may be more 

likely to notice changes in idiosyncratic features that are irrelevant to the rule 

because they may be using all of the features in order to memorize the exemplar 

as a unique item.  These differences would be clear on categorization of novel 
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animals (as seen in McDaniel et al), but also in recognition, such that exemplar 

learners would be more likely to discriminate between training and transfer items.  

If such an interaction emerged, it would indicate that the neither type of learning 

is inherently “better” than the other, but rather that the success of a given 

processing strategy depends on the goals of the current task. 

In the current study, two different types of lures were created for the 

testing phase, which reflect differences in processing (see Appendix E for 

examples of each type of lure).  Each lure was paired with a training item, such 

that the two were the same on most idiosyncratic features.  Recognition lures 

(called “Good Transfer”’ by McDaniel et al.) were then created by making small 

changes to features that were not critical for learning the rule.  These items may 

therefore be most difficult during recognition and disproportionately so for rule 

learners who may have disregarded the features that were not critical for the rule.  

Categorization lures (calls “Bad Transfer” by McDaniel et al.) were instead 

created by making changes to one of the critical features and therefore changing 

the category of the item.  If exemplar learners are using their closest memorized 

exemplar in order to categorize, they should perform poorly on these items.  

However, if rule learners have abstracted the rule, they should be able to 

categorize these items comparably to all other items.  The current study therefore 

extended the concept-learning paradigm used by McDaniel et al. by increasing 

the likelihood of learning the rule and by adding a recognition component in order 

to explore potential benefits of exemplar learning. 
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 McDaniel et al. also used an abstract coherent categories task, which was 

implemented in the current study.  Unfortunately, due to a programming error, 

there were only four unique items used during the training portion of this task and 

it does not stand as a direct replication of McDaniel et al. (who used eight training 

items).  This method may have encouraged an exemplar strategy by both types 

of learners because of the relatively small amount of effort required to memorize 

so few items and the difficulty in abstracting a general rule with so little variability.  

 As in Experiment 1, demographic information was collected to explore the 

extent to which individual differences might correlate.  Ravens Advanced 

Progressive Matrices was collected to replicate the findings of Experiment 1.  

However, as there were few differences between learners on analogical 

reasoning or the Kolb LSI, these measures were dropped from Experiment 2.  

Finally, there were enough subjects to allow comparisons using the extreme 

groups approach described above, such that individuals could be classified 

based on their extrapolation patterns and individuals who did not show a clear 

trend toward either rule- or exemplar-based processing could be removed.  It 

was expected that rule learners would outperform exemplar learners on 

categorization in the concept-learning and abstract coherent categories tasks 

and on the inferential and connecting questions over the passages.  It was 

expected that exemplar learners would outperform rule learners on recognition in 

the concept-learning task and on the new example questions over the passage. 

 

Method 
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Participants. Seventy-six participants were recruited from the Department 

of Psychology human subject pool and received either credit toward completion 

of a research participation requirement or cash payment ($5 for each half hour of 

participation).  Four participants did not return for the second session of the 

experiment or did not complete participation due to time constraints.  In addition, 

nine participants did not demonstrate adequate learning of the input-output pairs 

during training (mean absolute error on the final training block >10) and were 

excluded from further analysis.  Therefore, the final complete sample consisted 

of 62 participants.  However, due to time constraints and technical issues, the 

Regehr and Brooks task data were missing from 3 participants and the abstract 

concept categorization data were missing from 1 participant.  In addition, 

participants (N = 14) who did not show adequate learning of the training stimuli in 

the abstract coherent categories task (final training block accuracy ≤ 75%) were 

excluded from those analyses. 

Procedure. Participants were tested in small groups in two sessions, two 

days apart.  During session 1, participants completed a demographics 

questionnaire, the function-learning task, an abbreviated version of RAPM, and 

the concept-learning task (Regehr & Brooks, 1993).  During session 2, 

participants read the twelve passages, completed the abstract coherent 

categories task, and took a 30-item test over the passages.  This procedure is 

depicted in Figure 3. 

Session 1. Participants first completed the demographics questionnaire 

and the function-learning task, which was identical in type and procedure as in 
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Experiment 1.  Participants then completed the abbreviated version of RAPM, 

which was again identical to that of Experiment 1.  After RAPM, participants 

completed a modified version of the Regehr and Brooks’ (1993) concept learning 

task.  In this task, participants were shown images of fictitious animals that varied 

on six binary dimensions: body shape (angular or round), leg length (short or 

long), number of legs (two or six), neck (short or long), spots (spots or no spots), 

and animal size (big or small).  Each animal was classified as either a digger or a 

builder, and group membership was determined using a conjunctive rule, such 

that animals that were big with spots were classified as builders and all other 

animals were classified as diggers.  Each image was shown on a background 

such that image size could be judged with reference to the background image 

and therefore made salient (see Appendix E). 

Each training animal had a unique form across the six primary features 

described above.  For example, although some animals had six legs and others 

had two, the shape of the legs varied across each individual animal.  In this way, 

perceptual distinctiveness was maximized, while still allowing a rule to govern 

classification.  During training, each image was presented until the participant 

classified the animal as either a builder or digger by pressing designated keys.  

Participants were not presented with the rule, but were simply instructed to 

classify the animals into the appropriate category and to do so as quickly and 

accurately as possible.  After the participant made a response, they were told 

whether they were correct or incorrect.  There were a total of 4 animals in each 

category for a total of 8 stimuli, which were presented in random order within 
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each of 10 blocks, for a total of 80 trials.  There were two versions created such 

that animals that represented builders in one version were changed to diggers in 

the second version.  The two versions were then counterbalanced across 

participants. 

After training, participants completed a test, which consisted of three 

different trial types.  Eight of the items were repeated from the training portion, 

termed Repeated Training Items.  Four items were created by changing 

idiosyncratic features of the original image that were irrelevant for the rule (eye 

shape, toe shape, and leg length).  These items would be incorrectly identified as 

old items if individuals were only paying attention to the critical features for the 

rule (spots and size).  These items were therefore termed Recognition Lures, as 

they should be most difficult during recognition.  An additional four items were 

created by changing critical features associated with category membership (e.g. 

spots changed to no spots).  These items were similar to trained items and would 

be incorrectly categorized if subjects did not correctly apply the rule (i.e. if they 

categorized the item in the same way as its most similar trained item).  Therefore 

these items were termed Categorization Lures.  The final test therefore consisted 

of 8 Repeated Training Items, 4 Recognition Lures, and 4 Categorization Lures 

presented in random order. 

During the test, each image was presented on the screen and subjects 

were required to first make a button press to indicate if the item was old (had 

appeared in training) or new.  While the image was still on the screen, subjects 

made a second button press, classifying the animal as either a builder or digger.  
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Each image remained on the screen until the subject had made the recognition 

judgment and categorization judgment.  After completing the test, participants 

were reminded about the second session and dismissed. 

Session 2. During session 2, participants first read the same 12 passages 

in the same order as in Experiment 1, but were asked after each passage if they 

were able to complete their reading of the passage (Yes or No).  After reading all 

the passages, participants completed the abstract coherent categories task to 

replicate McDaniel et al. (2012).  The task was similar in nature to the 

classification condition used by Erickson et al. (2005, Experiment 3).  Participants 

were presented with a list of four attributes that described a machine and told 

that they would be classifying the machine as either a morkel or krenshaw.  The 

four features represented 1) where the machine operated, 2) the action it was 

used for, 3) what instrument it used, and 4) its means of locomotion, and the four 

features were presented in this order for all trials.  While participants were never 

explicitly told the rule, morkels were comprised of two sets of coherent features 

that, when combined, formed four features that were also coherent (i.e. made 

sense together).  Krenshaws were also composed of two sets of coherent 

features, but, when combined, no longer yielded a plausible machine (e.g. 

features 1 and 3 were coherent and 2 and 4 were coherent, but 2 and 3 could not 

be plausibly combined; see Table 2).  Participants were told that two machines of 

the same type could have different features and that machines of differing types 

could share some features.  Participants had unlimited time to classify each list of 

features by pressing an associated key and were then given feedback that 
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stated, “Yes, that was a ____.” or “No, that was a ____.”  The list of features 

stayed on the screen during feedback and subjects were given an unlimited 

amount of time to process feedback before moving on.  Four machines (two 

morkels and two krenshaws) were presented two times per block and randomly 

ordered within each of 8 blocks, for a total of 64 training trials. 

After training, subjects were told that they would see two features of the 

machines they had just classified and would need to categorize each set of 

features as belonging to either a morkel or krenshaw.  Participants were shown 

every combination of features except for those that were always presented 

together (i.e. features 1 and 3 and features 2 and 4) as consistent with the two-

feature test used by Erickson et al. (2005) for a total of 16 randomly ordered 

trials.  After each classification trial, participants were asked to rate their 

confidence in their classification on a scale of 1 (least confident, just guessing) to 

7 (certain) and did not receive any feedback. 

Participants were then given a novel classification test.  Participants were 

told that they would see new features of machines and would need to classify 

each set of features as belonging to morkels or krenshaws.  The features 

represented the same type of features (e.g. where it operates) in the same order 

as training, but with novel features.  For this test, morkels were again completely 

coherent and plausible machines.  Krenshaws, instead, were machines in which 

the location of operation was coherent with instrument used, but not with location 

and locomotion (see Table 2).  There were a total of 12 randomly ordered trials 
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(6 morkels, 6 krenshaws).  As in the two-feature test, there was no feedback and 

subjects rated their confidence on a scale from 1 to 7. 

After completing the abstract coherent categories task, subjects took a 

test over the passages, which was identical to that of Experiment 1 with the 

following exceptions.  The Fact questions were removed and replaced by a 

single detail-oriented question (termed Example questions) for each of the 12 

passages.  Therefore the test consisted of 12 Example questions, 12 Inferential 

questions, and 6 Connecting questions, for a total of 30 randomly ordered items.  

The procedure for presenting these items was identical to that of Experiment 1.  

When subjects completed the test, they were debriefed about both sessions and 

dismissed. 

 

Results 

 Function learning classification.  Subjects were classified as rule or 

exemplar learners according to the same confidence interval approach described 

in Experiment 1.  There were 9 participants whose MAE > 10 on the last training 

block and were excluded from further analyses.  After computing the MAE on 

extrapolation trials and classifying participants into groups, there were 33 rule 

learners (including 3 participants who displayed sine-like function learning) and 

34 exemplar learners. 

 Mean absolute errors for each training block are displayed in Figure 6.  A 

2 (learner type) x 10 (training block) ANOVA showed that, while rule learners (M 

= 8.08) had lower MAE overall than exemplar learners (M = 6.38), F (1, 62) = 
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8.09, p = .006, the two groups learned at approximately the same rate, F (9, 585) 

= 1.10, MSE = 8.09, for the interaction. When reducing the analysis to only the 

first and last blocks, rule learners (M = 10.54) no longer displayed lower MAE 

overall than exemplar learners (M = 11.53), F (1, 65) = 2.09, MSE = 15.80.  As in 

the above analysis, the interaction term was non-significant, F <1, indicating that, 

although rule learners performed nominally better than exemplar learners overall, 

the two groups learned at approximately the same rate and displayed equivalent 

amounts of learning by the end of training. 

As in Experiment 1, rule learners (M = 3.02) had significantly lower MAE 

on interpolation trials than exemplar learners (M = 4.77), F (1, 66) = 6.21, MSE = 

8.25, p < .05 but the difference was significantly larger on extrapolation trials (M 

=25.69), F (1, 65) = 40.36, MSE = 118.89, p < .001 for the interaction (see Figure 

5b).  Therefore, as in Experiment 1, the patterns are consistent with exemplar 

and rule-based models in that the groups show similar learning rates and 

interpolations patterns, but differ considerably on extrapolation (DeLosh et al., 

1997). 

Conceptual Passages and Test.  More than half (56.5%) of the subjects 

indicated that they finished reading all of the passages and 95% of the subjects 

indicated that they read more than half of the passages.  In addition, there was 

no difference between rule (M = 10.47) and exemplar learners (M = 11.07) on the 

number of passages they were able to read, F (1, 61) = 1.11, MSE = 4.96.  Table 

3 shows the number of participants who were unable to read each passage.  In 

order to avoid any decrement in performance due to these effects, if a participant 
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indicated that they were unable to finish reading a passage, it was removed from 

further analyses. 

 The test data were graded according to the same grading criteria as in 

Experiment 1 (see Appendix C).  For the strict scoring, there was a significant 

effect of question type, F (2, 120) = 4.20, MSE = .04, p < .05, such that 

participants scored highest on inferential questions (M = .39), followed by 

connecting questions (M = .36), and lowest on example questions (M = .30).  

However there was no interaction, F (2, 120) = 1.21, MSE = .04, and no effect of 

learner type, F < 1 (see Figure 8a).  The lenient scoring showed the same pattern 

of results and will not be further considered.  Participants were more likely to 

mention information from the correct passage when answering the inferential 

questions (M = .55) than the connecting questions (M = .25), F (1, 60) = 81.35, 

MSE = .03, p < .001.  However, there was again no interaction, F < 1, and no 

effect of learner type, F < 1 (see Figure 8b). 

 In order to determine if excluding the unread passages was responsible 

for changing the pattern of results from Experiment 1, the above analyses were 

conducted again, including all passages in the analysis.  However, the pattern of 

results was the same as those described above (see Table 4 for means with and 

without unread passages). 

Concept learning task. Individuals who correctly categorized less than 

75% of the items during the final training block (3 exemplar and 3 rule learners) 

were removed from subsequent analyses.  Rule (M = .94) and exemplar learners 
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(M = .95) did not differ on their accuracy on the last block of training, F < 1, and 

both groups showed very high accuracy by the end of training.  

Recognition.  As seen in Figure 9a, exemplar learners (M = .92) correctly 

recognized more of the repeated training items than did rule learners (M = .80), F 

(1, 60) = 5.11, MSE = .033, p < .05. However, when examining recognition of 

lures, both types of learners appeared to better recognize categorization lures 

than recognition lures (see Figure 9b).  These impressions were confirmed by a 2 

(learning type) x 2 (trial type: recognition lures, categorization lures) mixed 

ANOVA on the number of correct responses (correct rejections), which showed a 

main effect of trial type, F (1, 59) = 33.84, MSE = .02, p < .001, such that 

recognition lures were more prone to false alarms (64% reported as old) than 

categorization lures (40% reported as old).  There was no interaction (F < 1) and 

no main effect of learner type (F < 1).  To look at recognition performance more 

holistically, d’ scores were calculated for each individual by taking the 

standardized proportion correct on repeated training items (hits) and subtracting 

the standardized proportion incorrect collapsed across the two types of lures 

(false alarms).  As predicted, exemplar learners (d’ = 2.03) were better able to 

discriminate between old and new items than rule learners (d’ = 1.21), F (1,60) = 

5.43, MSE = 1.93, p < .05.   

Categorization. As seen in Figure 9a, there was no difference between 

rule (M = .88) and exemplar learners (M = .86) on categorization of repeated 

training items, F < 1.  However, when examining categorization of lures, it 

appeared that there was no difference between learners on recognition lures, but 
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that exemplar learners better categorized categorization lures (see Figure 9c).  It 

also appeared that recognition lures were much better categorized than 

categorization lures.  A 2 (learner type) x 2 (trial type) mixed ANOVA showed that 

the interaction was nonsignificant, F (1, 59) = 1.39, MSE = .056, but that 

recognition lures (M = .83) were indeed categorized significantly better than 

categorization lures (M = .47), F (1, 59) = 73.40, MSE = .056, p < .001. However 

there was no effect of learner type, F < 1. 

 Abstract Coherent Categories.  As indicated above (and consistent with 

McDaniel et al., 2012) individuals who correctly classified fewer than 75% of 

items were excluded from subsequent analyses.  Rule and exemplar learners 

showed similar rates of learning as demonstrated by a 2 (learner type) x 8 

(training block) mixed ANOVA, which showed a non-significant interaction, F < 1.  

However, both types of learners performed significantly better by the end of 

training, F  (7, 322) = 34.59, MSE = .02, p < .001 and there was no effect of 

learner type, F (1, 46) = 1.69, MSE = .12.  Furthermore, by the end of training, 

both groups showed very high performance (M > .94 for both groups). 

 There was no significant difference between learners on the two feature 

test, F (1, 46) = 1.70, MSE =.03, but the difference on confidence-adjusted 

scores showed a nonsignificant trend, F (1, 46) = 2.38, MSE = 4.29, p = .13, 

indicating that rule learners were somewhat more confident in their accurate 

responses (M = 3.57) than exemplar learners (M = 2.65). The two-feature test 

was also broken down into two item types (see Figure 10).  On half of the trials, 

there was a functional relationship between the items, such that knowing the rule 
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would allow for correct categorization (e.g. “rolls on wheels” or “slides on skis” 

paired with “operates on water” or “operates on land”).  However, for the other 

half of the trials, they could not be categorized based on the rule (e.g. “has a 

shovel” or “has a spongy material” paired with “rolls on wheels” or “slides on 

skis”).  A 2 (learner type) x 2 (item type: rule-based or not) mixed ANOVA 

showed that there was a significant effect of item type, F (1, 46) = 6.98, MSE = 

.02, p < .05, such that participants were better able to categorize the rule-based 

items (M = .81) than the others (M = .73).  However, there was no effect of 

learner type, F (1, 46) = 1.70, MSE = .07, and no interaction, F < 1.  On the novel 

test, there was no difference between learners in overall categorization, F < 1, or 

on the confidence-adjusted scores, F (1, 46) = 1.34, MSE = 9.46.  However, 

collapsing across learner type, scores on the novel test (M = .61, SD = .20) were 

significantly above chance, t (48) = 3.62, p < .01.  

 Demographics.  The two groups did not significantly differ in age, grade 

point average, or ACT scores (all F <1).  They also did not differ on sex (χ2 (1, N 

= 67) = .022), or race (χ2 (3, N = 66) = 2.50).  Major was analyzed in the same 

manner as in Experiment 1.  There was no significant effect of major when 

double majors were included (χ2 (2, N = 56) = 1.05) or removed (χ2 (1, N = 50) = 

1.02) from the analysis (see Table 1). 

 Ravens Advanced Progressive Matrices.  Rule learners (M = .65) did 

not differ from exemplar learners (M = .66) on RAPM, F < 1.  Within the exemplar 

learners, there was no correlation (r = .15) between RAPM and rate of learning 

(as indicated by the number of blocks it took to reach criterion; lower number 
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indicates faster learning) during the function learning task, but the correlation 

approached significance for rule learners (r = -.24, p = .17).  As depicted in 

Figure 11, when the data were combined across Experiments 1 and 2, the 

correlation within the rule learners was significant (r = -.25, p < .05), but not 

within the exemplar learners (r = .06), and the difference between these 

correlations was marginally significant, z = -1.79, p = .07.  RAPM was 

significantly correlated with much of the passage data, including correct scores 

on the inferential questions (r = .30, p < .05) and connecting questions (r = .32, p 

< .01) as well as use of the correct passage on the inferential questions (r - .33, p 

< .01) and connecting questions (r = .34, p < .01). 

 Function learning classifications revisited.  One of the goals of 

Experiment 2 was to analyze the data using an extreme groups approach 

according to the guidelines laid out in Appendix D.  Two independent raters 

classified subjects based on their pattern of extrapolation with 85% agreement.  

All discrepancies were resolved, resulting in 20 exemplar learners and 27 rule 

learners.  All of the above analyses were conducted again and displayed 

comparable patterns of results with the following exception:  rule learners (M = 

.87) categorized items significantly better than exemplar learners (M = .75), F (1, 

33) = 5.36, MSE = .02, p < .05, on the two-feature test during the concept-

learning task.  

 

Discussion 



 

51 

 The data from the function-learning task replicate that of Experiment 1.  

Subjects could be classified into two qualitatively different learning tendencies 

based on their extrapolation error rates.  They showed comparable patterns of 

learning and interpolation, replicating formal models distinguishing these two 

types of learning (DeLosh et al., 1997).  There was also no difference in RAPM 

performance between learning types, but within the rule learners, the correlation 

between RAPM and rate of learning trended toward significance (and reached 

significance when combined across experiments) but no such relationship 

existed within the exemplar learners.  These data replicate Experiment 1 and 

indicate that abstraction ability may be related to learning for rule learners, but 

not exemplar learners, again showing partial evidence that these are two 

qualitatively different strategies. 

 While the example questions did reduce the benefit for rule learners as 

predicted, the strong benefit that rule learners showed on inferential and 

connecting questions in Experiment 1 failed to replicate in Experiment 2. 

However, other measures showed a relationship with function-learning tendency.  

Within the concept-learning task, exemplar learners showed a benefit on 

recognition of repeated training items as well as greater recognition sensitivity 

(as measured by d’).  However, the benefits for exemplar learners on recognition 

did not extend to categorization. These data collectively indicate that exemplar 

learners were better able to recognize items they had previously seen, but for the 

categorization lures, they may have categorized based on the closest exemplar 

they saw during training.  Unfortunately, rule learners also showed a decline on 
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categorization and there are several potential explanations for this finding.  Rule 

learners may have been using a unidimensional rule plus exception strategy (e.g. 

Learning the rule, “If it has spots it is a builder, and everything else is a digger” 

and memorizing the single exception to that rule), resulting in excellent training 

performance, but lower performance on categorization of categorization lures.  

Indeed, there are several unidimensional rules that would have predicted chance 

performance on categorization of categorization lures.  It is also possible that 

some rule learners adopted an exemplar strategy during training because they 

were unable to learn the rule and therefore behaved as exemplar learners during 

transfer.  The observed behavior for these two explanations would be similar and 

therefore they cannot be disentangled with the current data.  

 As described at the beginning of Experiment 2, the abstract coherent 

categories task contained a programming error in which only 4 items were 

repeated within each block of training.  With so few exemplars, it was predicted 

that the task would be most easily accomplished with an exemplar strategy.  

Indeed, while training performance was high, there was no difference between 

learning types on the novel categorization test, indicating that rule learners had 

not abstracted the rule (or at least no better than exemplar learners).  On the 

two-feature test, there was a benefit for both types of learners on items in which 

rule-based information could aid in categorization. While on other tasks, the 

appearance of partial rule-based extrapolation could be explained by prior 

knowledge, subjects in the current study had no prior knowledge about what 

constituted a “morkel” or “krenshaw” or that the critical information was the 
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coherence of the machine. There are two other possible explanations for this 

pattern of data.  It is possible that both rule and exemplar learners could have 

abstracted a small amount of rule-based information.  In addition, while there was 

no difference between learners on the novel test, both types of learners 

performed above chance, which again indicates some understanding of rule-

based information.  This could be explained if individuals reached criterion 

through memorization (using an exemplar strategy) and then proceeded to try to 

find relationships between the items during the remainder of training.  An 

alternative possibility is that there is a confounding variable within the stimuli 

such that incoherent information is simply easier to remember.  Without subjects’ 

conscious awareness that a particular machine was being classified on the basis 

of coherence, they might better recall the category in which an incoherent item 

belongs.  However, that explanation could not account for above chance 

performance on the novel test items, which again indicates that both rule and 

exemplar learners seem to have abstracted some amount of rule-based 

information. 

 As in Experiment 1, there were no differences on any of the demographic 

characteristics.  In addition, while RAPM was not correlated with function learning 

tendency, it was significantly correlated with several aspects of conceptual 

learning.  While this is different than the pattern of results observed in 

Experiment 1, it seems that for Experiment 2, the processes underlying problem 

solving, concept learning, and abstraction are fundamentally different from those 

that govern the learning of prose passages. 
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General Discussion 

 Preliminary evidence exists that function learning tendency is a reliable 

and stable individual difference that predicts performance on a number of 

conceptual learning tasks as well as higher order cognitive tasks (McDaniel et al., 

2012; Fadler et al., 2012).  If these learning styles were shown to be stable 

across different materials, it could have important implications for education.  

Specifically, if rule learners are those that are better able to transfer to novel 

situations, educators may want to encourage this type of learning process.  

However, no such evidence that individual differences in function learning predict 

performance on classroom materials currently exists.  The present research was 

therefore designed to determine the extent to which the differences in function 

learning tendency are associated with the type of conceptual learning often 

represented in classrooms.   

 

Overview of Findings 

There were several important results that emerged in the current study.  

Rule and exemplar learners were classified based on their extrapolation patterns, 

which differed considerably, while training and interpolation patterns were very 

similar across learners.  These differences predicted patterns of behavior on 

analogical reasoning (as indicated by the significant correlation with RAPM in 

rule learners but not exemplar learners) in Experiment 1, while analogical 

reasoning performance was comparable.  In Experiment 2, function-learning 
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tendency predicted differences in recognition on the concept-learning task, but 

there were no differences between learners on performance on the abstract 

coherent categories task.  On the conceptual material, rule learners 

outperformed exemplar learners on each question type in Experiment 1, but this 

effect did not replicate in Experiment 2.  I will first discuss the results from the 

assessment of conceptual learning and potential explanations for the discrepant 

results across experiments and then discuss how the current research replicates 

and extends previous research on function learning tendencies.  Finally, I will 

describe potential implications for education and limitations that can be 

addressed in future studies. 

 

Application to Conceptual Learning 

 The primary goal of the current study was to determine the extent to which 

the above differences in learning tendencies have implications for classroom 

materials.  For the purposes of this study, classroom materials were defined as 

prose passages and questions aimed at assessing different levels of knowledge.  

In Experiment 1, a main effect emerged such that rule learners performed better 

on every type of question on the conceptual test, despite one question type being 

designed to support exemplar processing.  After replacing these questions with 

items that relied even more on surface-level details, the effect from Experiment 2 

failed to replicate, such that there were no differences between learners on any 

question type.  There are a few potential explanations for this discrepancy.  One 

uninteresting explanation is simply that the effects from one of the experiments 
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represents a Type I or Type II error, such that the results were not representative 

of true effects.  Other explanations for the discrepancy may come from the 

differences between Experiments 1 and 2.  These differences were the other 

tasks completed during the experimental session and the factual questions 

exchanged for example questions. 

 If the tasks completed after function learning in a given experiment had 

pushed participants to use a given strategy, they may have had an effect on the 

way the conceptual material was processed.  The tasks that were unique to 

Experiment 1 included the analogical reasoning task and the Kolb LSI, with the 

analogical reasoning task occurring during session 1, but the Kolb LSI 

immediately preceding the conceptual test.  Neither of these tasks seemed to 

encourage either rule or exemplar processing strategy to complete, although the 

Kolb may have heightened an individuals’ awareness of their own processing 

preferences (although there was no relationship between function learning 

tendency and Kolb scores).  In Experiment 2, the other tasks included the 

abstract coherent categories and concept-learning task, both of which can be 

completed using either a rule or exemplar strategy.  The abstract coherent 

categories task was completed immediately before the conceptual test, but it 

appeared that all individuals used some amount of both rule and exemplar-based 

processing on this task.  It is possible that the task immediately preceding the 

test could have led to some amount of priming which affected the way in which 

participants completed the conceptual test.  In this case, because rule and 

exemplar learners performed similarly on abstract coherent categories, they may 
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have therefore used similar processing on the subsequent test.  If these 

secondary tasks indeed affected the processing used on the conceptual test, it 

would indicate that the function-learning strategies are extremely flexible, such 

that individuals might have a general preference, but will adopt a different 

strategy quite easily. It would also indicate that the function learning tendencies 

are not only an encoding process, but have distinct retrieval processes, as the 

secondary tasks would not have affected encoding (the first task encountered 

during the second session was the conceptual passages). 

 The final difference between the two experiments is the change from 

factual questions to example questions.  As described above, the information in 

the factual questions was necessary for comprehension of the passage as a 

whole.  In addition, some of the information in the factual questions was also 

used in the inferential or connecting questions (Experiment 1).  However, this 

was never the case in the example questions (Experiment 2).  It is possible that 

answering the factual questions may have led to greater activation of information 

needed to answer the inferential and connecting questions, leading to a potential 

testing effect (see Roediger & Karpicke, 2006a for review).  Most studies 

demonstrating the testing effect compare a condition in which individuals restudy 

material to a condition in which individuals take a quiz.  On a later test in which 

the same items are (re)presented, individuals perform better if they had been 

previously quizzed (e.g. McDaniel & Fisher, 1991; Roediger & Karpicke, 2006b; 

Carpenter, Pashler, & Cepeda, 2009).  However, a few recent studies have 
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demonstrated that retrieval practice can also have a facilitative effect on related 

information (e.g. Chan, McDermott, & Roediger, 2006; Butler, 2010).   

In the current study, because the questions were randomized on the test, 

it is possible that answering factual questions may have had a facilitative effect 

on later related inferential or connecting questions.  Similarly, if inferential and 

connecting questions produced increased activation of the underlying factual 

information, they too could have had a facilitative effect on later factual items.  If 

rule learners are indeed more likely to make connections between information on 

just one of these item types, it could have produced facilitation on the others.  If 

this explanation were true, it would indeed indicate that rule learners were 

processing information in a manner different from exemplar learners and in a way 

that produces better transfer to related information.  In Experiment 2, the 

example questions may not have a facilitative effect on the inferential or 

conceptual items because these were not as closely related and therefore 

answering these items may not have produced the same boost in related 

information. Similarly, answering inferential and connecting questions may not 

have provided heightened activation of example items because they were 

unrelated, resulting in no benefit for these items as well. There was some 

evidence for the dissociation between these items as RAPM was significantly 

correlated with inferential and connecting question responses in Experiment 2, 

but not example questions. However, in Experiment 1, there was no relationship 

between RAPM and any of the passage data, indicating that a different type of 

processing might account for those data. One might expect that inferential and 
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connecting questions might still have had a facilitative effect on each other, but if 

these items were somehow too difficult for rule learners, they may not have 

received the same facilitative effect.  It is therefore unclear which of the above is 

the accurate explanation for the current data.   

 

Replication and Extension of Function Learning Differences 

The present research replicates previous findings (McDaniel et al., 2012) 

demonstrating multiple points of evidence for differences in function learning 

tendency.  In both Experiments 1 and 2, there were distinct differences in 

patterns of extrapolation, while interpolation and training patterns were very 

similar across groups.  These patterns are consistent with models of exemplar 

and rule learning (DeLosh et al., 1997).  Further data supporting an individual 

differences approach comes from the relationship between RAPM and rate of 

learning within the rule learners, but not the exemplar learners in both 

experiments (approaching significance in both).  Because RAPM assesses one’s 

ability to abstract, the relationship indicates that, among individuals who utilize a 

rule-based learning strategy, those who are better at abstraction to some degree 

learn the training points (and presumably the function rule governing the points) 

faster.  However, for exemplar learners, ability to abstract (RAPM) is unrelated to 

learning speed, indicating that these learners are adopting a qualitatively different 

type of strategy.  These differences occur despite the fact that there are no 

differences in the average RAPM scores for the two groups.  Thus, while rule and 



 

60 

exemplar learners have the same average ability to abstract, only for the rule 

learners is this ability somewhat associated with learning the function. 

 These individual differences may clarify why it is difficult to explain all 

data using a single model of rule or exemplar learning.  That is, the current 

debate in the concept-learning literature between pure exemplar models (e.g. 

Nosofsky, 1984; Kruschke, 1992) and pure rule-based models of learning (e.g. 

Bourne, 1984; Koh & Meyer, 1991; Nosofsky et al., 1994) may be resolved by 

including an individual difference factor.  Indeed, the proposed individual 

differences can be used to supplement current hybrid models of learning (e.g. 

Anderson & Betz, 2001) where individual differences have been found to reduce 

task-specific effects and have therefore been considered a hindrance (Jusin et 

al., 2003).  Proponents of hybrid models argue that the type of materials dictate 

the type of learning that will be used in a given situation.  If, on the other hand, a 

given task can be achieved with an exemplar or rule-based approach, individuals 

will diverge and adopt one of two qualitatively different strategies.  The present 

data also replicate the findings of McDaniel et al. (2012), which showed evidence 

that these differences are not isolated to function learning but can be seen 

across a range of tasks.  Specifically, although rule learners were not superior to 

exemplar learners on transfer performance in the concept-learning task in 

Experiment 2, the present data provided the first evidence that the more general 

benefit of rule learning on transfer (as seen in the function learning task) is 

coupled with a benefit of exemplar learning on recognition of previously seen 

items (see Figure 9a) and overall sensitivity to whether an exemplar has been 
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seen previously or not (as indicated by d’ scores).  Thus, while it could appear 

that rule learning is superior to exemplar learning for transfer (particularly in the 

function learning task), exemplar learning provides certain benefits as well, 

depending on the goals of the task. 

These data are also the first to indicate that there may be a relationship 

between function learning tendency and analogical reasoning, as seen in 

Experiment 1.  As in function learning training, there was no difference in 

success on the analogical reasoning task (as measured by the proportion of each 

type of learner using the convergence solution on the criterial problem).  

However, there was a relationship between likelihood of using the convergence 

solution and RAPM, but only within the rule learners.  These data again indicate 

that rule learners who have a higher ability to abstract (i.e. score higher on 

RAPM) are more likely to transfer in analogical reasoning.  However, there is no 

relationship between abstraction ability and analogical reasoning in the exemplar 

learners, indicating that they are using a qualitatively different approach, albeit 

one that is equally successful.  That is, while reading the two initial stories rule 

learners likely abstract the underlying convergence solution schema, which they 

then apply to the novel problem.  However, because of the relatively short delay 

between the stories and the criterial problem, exemplar learners may read the 

problem and think back to the closest task they have received to the current 

problem, which would be one of the stories.  They can then map the story onto 

the current problem and arrive at a solution.  If there was a longer delay, or a 

story in which the surface features more closely matched the criterial problem but 
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with a different solution, exemplar learners may not perform as well on these 

analogical reasoning problems.  

These ideas could also partially explain the data of Gick and Holyoak 

(1983).  When participants were given two stories with the convergence solution 

and similar features, they performed worse than when given two stories with 

different surface features.  This finding could be primarily because rule learners 

are unable to abstract the underlying schema.  That is, when rule learners try to 

relate two dissimilar stories, the only similarities are related to the problem 

solution, which may then be abstracted, but when there are similar surface 

features they may relate the stories based on these features and not as readily 

on the solution.  When given one convergence problem and one problem 

unrelated to the convergence solution, performance was at its worst.  This finding 

could be explained if rule learners were again unable to abstract and, in addition, 

some exemplar learners were choosing the wrong story as the closest exemplar 

(all stories differed in surface features in that condition).  Incorporating stories 

with differing surface features would help to determine if rule and exemplar 

learners are indeed using different strategies on these analogical reasoning 

problems. These data would then indicate that rule learning is not inherently 

superior to exemplar learning, as both types of learning may be used to 

accomplish similar goals. 

 

Implications for Education 
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 While the primary goal of the current study was to determine whether 

individual differences in function learning predict differences on conceptual 

learning, the data for the conceptual tasks were inconclusive.  However, there 

remain potential implications for education.  First and foremost, there are 

qualitative individual differences in function learning that can be reliably 

identified.  Second, these differences predict behavior in concept learning as well 

as correlations between RAPM and analogical reasoning.  Even if the differences 

in function learning were demonstrated not to predict differences on conceptual 

materials, the fact that rule and exemplar learners perform differently on these 

other tasks indicates that function-learning tendency might have important 

implications in the classroom.  Specifically, learning in the STEM disciplines 

might be more affected by function learning differences than in non-STEM 

disciplines because STEM disciplines require more learning from examples, as 

well as problem solving, both of which might be affected by function learning 

tendency.  Indeed, in a chemistry course at the author’s university, function-

learning tendencies were assessed and these differences predicted final course 

grades.  Additional empirical work is needed in order to determine whether there 

are similar implications for conceptual material in non-STEM classrooms and the 

extent to which STEM disciplines truly are affected by differences in learning 

tendency. 

 If these differences are shown to be strong indicators of performance in 

the classroom, there are many more potential implications for both educators and 

students.  It should be noted that exemplar learning does not necessarily 
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represent an ineffective strategy.  While many educators might assert that they 

want their students to use a rule learning strategy, there are certain courses in 

which an exemplar strategy may be most effective (e.g. learning foreign 

language vocabulary, memorizing anatomy).  Therefore, first and foremost, 

educators may need to be aware of the learning strategy that they want to 

encourage.  If we want to encourage rule learning in exemplar learners, it is 

possible that training in rule learning behavior may be beneficial for typical 

exemplar learners in classrooms that require this type of learning.  In the 

chemistry course listed above, a type of inquiry learning is being utilized to 

attempt to do just that, such that exemplar learners might benefit particularly from 

this type of instruction.  

It is also possible that these learning strategies are more flexible than they 

has been discussed throughout.  Educators may be able to simply tell students 

their course objectives and the way in which students will be assessed in order to 

prep them to use the most effective strategy. If true, it would be important that 

educators inform students of which strategy they want them to adopt and then 

assess accordingly.  That is, exemplar learners may have developed their 

strategy because it has been extremely effective in courses where they are 

required to recognize a memorized answer (as on most multiple-choice exams) 

in order to achieve the highest grade possible.  The extra effort required to learn 

rules and underlying concepts may be a wasted one when the assessment does 

not require this type of behavior. 
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Potential Limitations and Future Work 

 There are several possible limitations of the current study.  While the 

differences in function learning may have very real and important implications for 

education, the current work is limited in ecological validity.  Most of the tasks that 

are used in the current study would not be used in a classroom.  Therefore, 

additional work is needed either within the classroom or at least with classroom 

materials that might rely specifically on rule-based or exemplar-based 

processing.  In addition, in the current study conceptual material was 

operationally defined with learning from a set of unrelated prose passages. If 

rule-based processing is an encoding process, rule learners may not have had 

any reason to make connections between passages while learning.  However, 

within the classroom, individuals are more likely to learn from a continuous set of 

materials such as textbook chapters or a continuous lecture.  In that case, rule 

learners might be more likely to attempt to make connections between materials 

that seem relevant.  Therefore, additional work is needed within the laboratory to 

determine if differences in encoding produce changes in processing of 

conceptual material. 

 

Conclusions 

 The current study is among the first to demonstrate the stability of 

function-learning tendency across a range of tasks, and it is the first to 

demonstrate differential benefits of exemplar and rule-based processing.  The 

data indicate that individual differences in function-learning tendency have both 
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theoretical import, as a supplement to current hybrid models of categorization, as 

well as applied implications for classroom materials that might heavily rely on 

concept-learning or problem-solving.  While more evidence is necessary to 

determine the implications of individual differences in learning tendency, it is 

clear that this is an area of the concept-learning literature that is deserving of 

considerably more attention.  
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Table 1. 
Demographic characteristics as a function of learner type in Experiments 1 and 

2. 

 Experiment 1 Experiment 2 

 Rule Exemplar Rule Exemplar 

Age (Mean) 20.4 (1.44) 20.9 (2.68) 20.4 (2.89) 20.0 (1.45) 

Sex (Number)     

Female 21 19 20 20 

Male 16 15 13 14 

Race (Number)     

White 26 21 24 21 

Asian 7 9 6 7 

African 
American 2 2 2 5 

Hispanic 0 2 0 1 

GPA (Mean) 3.52 (.37) 3.53 (.37) 3.55 (.37) 3.53 (.32) 

ACT (Mean) 32.38 (1.98) 32.61 (1.58) 32.26 (3.18) 32.33 (2.27) 

Major (Number)     

STEM 20 12 19 19 

Non-STEM 8 10 4 8 

Both 7 9 3 3 

 

Note. Standard deviations are displayed in parentheses where applicable.
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Table 2. 

Abstract coherent categories stimuli taken from Erickson et al. (2005) and used 

in Experiment 2. 

  Coherent morkel Incoherent krenshaw 
 
Operates on land 
Works to gather harmful solids 
Has a shovel 
Rolls on wheels 
 

 
Operates on land 
Works to clean spilled oil 
Has a shovel 
Slides on skis Training 

Stimuli Operates on the surface of the water 
Works to clean spilled oil 
Has a spongy material 
Slides on skis 
 

Operates on the surface of water 
Works to gather harmful solids 
Has a spongy material 
Rolls on wheels 

Operates in highway tunnels 
Works to remove carbon dioxide 
Has a large intake fan 
Flies with a propeller 
 

Operates on the seafloor 
Works to remove broken glass 
Has a large intake fan 
Flies with a propeller 

Novel Test 
Stimuli Operates on the seafloor 

Works to remove lost fishing nets 
Has a hook 
Swims with fins 
 

Operates on the beach 
Works to remove carbon dioxide 
Has a hook 
Rolls on a tread 

 
Note.  The four features for each morkel item were coherent.  The four features 
for each krenshaw consisted of two pairs of coherent features (location-
instrument and pollutant-locomotion), but the two pairs did not fit together to 
provide a coherent whole. 
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Table 3. 

Proportion of subjects who indicated that they were unable to read each 

passage. 

 

Passage title Proportion of subjects 

Bats .05 

Tropical Cyclones .10 

Vaccines .15 

Bread .08 

Respiratory System .19 

Internet .13 

Reptiles .10 

Liver .13 

McCarthyism .18 

Volcanoes .06 

Flowers .06 

Balloons .03 
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Table 4. 

Test performance as a function of item type and learning tendency in Experiment 

2 with and without unread passages included. 

 All Passages Included Unread Passages Removed 

 Rule Exemplar Rule Exemplar 

Strict scoring     

Example .30 (.03) .26 (.03) .32 (.04) .28 (.04) 

Inferential .37 (.04) .40 (.04) .38 (.04) .41 (.04) 

Connecting .33 (.04) .38 (.04) .33 (.05) .39 (.05) 

Correct passage 
scoring     

Inferential .55 (.03) .56 (.03) .56 (.03) .54 (.03) 

Connecting .26 (.04) .24 (.04) .26 (.04) .25 (.04) 

 

Note: Standard deviations are displayed in parentheses.
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Figure 1a.  

Data from DeLosh et al. (1997) showing individual subjects who extrapolated 

according to the function. 

 

Figure 1b. 

Data from DeLosh et al. (1997) showing individual subjects who used output 

values from extreme points for extrapolation trials. 
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Figure 2.  

A taxonomy of transfer proposed by Barnett and Ceci (2002).  The upper box 

represents the content factor, while the lower box represents the context transfer. 
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Figure 3. 

Procedure used in Experiments 1 and 2. 

 

Experiment 1 
 
Session 1: 

 

Session 2: 

 
 
Experiment 2 
 
Session 1: 
 

 
 
Session 2: 
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Figure 4. 
 
Sample training screen used during the function-learning task in Experiments 1 

and 2. 
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Figure 5a. 
 
Average predicted values for extrapolation (upper panel) and interpolation (lower 

panel) for rule, exemplar, and sine learners in Experiment 1.  
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Figure 5b. 
 
Average predicted values for extrapolation (upper panel) and interpolation (lower 

panel) for rule, exemplar, and sine learners in Experiment 2. 
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Figure 6. 

Mean absolute errors in each training block as a function of condition in 

Experiment 1 (upper panel) and Experiment 2 (lower panel). 
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Figure 7a. 

Test performance (strictly scored) as a function of item type and learning 

tendency in Experiment 1. 

 

Note: Error bars represent the standard error of the mean. 
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Figure 7b. 

Use of the correct passage as a function of item type and learning tendency in 

Experiment 1. 

 

Note: Error bars represent the standard error of the mean. 
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Figure 8a. 

Test performance (strictly scored) as a function of item type and learning 

tendency in Experiment 2. 

 

Note. Error bars represent the standard error of the mean. 
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Figure 8b. 

Use of the correct passage as a function of item type and learning tendency in 

Experiment 2. 

 

Note. Error bars represent the standard error of the mean.
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Figure 9a. 

Recognition and categorization performance on repeated training items on the 

concept-learning task. 

 

Note. Error bars represent the standard error of the mean. 
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Figure 9b. 

Recognition performance as a function of type of lure and type of learner on the 

concept-learning task. 

 

Note. Error bars represent the standard error of the mean.
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Figure 9c. 

Categorization performance as a function of type of lure and type of learner on 

the concept-learning task. 

 

Note.  Error bars represent the standard error of the mean. 
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Figure 10. 

Proportion correct on the two-feature test as a function of item type and learner 

type on the abstract coherent categories task. 

 

Note. Error bars represent the standard error of the mean. 
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Figure 11. 

Ravens performance as a function of the training block on which each subject 

reached criterion on the function learning task combined across Experiments 1 

and 2.  Rule learners are depicted in the top panel; exemplar learners are 

depicted in the bottom panel. 

 
Rule learners 

 
 

Exemplar learners 



 

92 

Appendix A 

Convergence problems used in Experiment 1 

These problems are taken from Gick and Holyoak (1983, Experiment 3).  The 
first two problems were presented as reading comprehension stories, while the 
last problem was presented separately after a delay. 
 
 

RED ADAIR 
 
An oil well in Saudi Arabia exploded and caught fire. The result was a blazing 
inferno that consumed an enormous quantity of oil each day.  After initial efforts 
to extinguish it failed, famed firefighter Red Adair was called in.  Red knew that 
the fire could be put out if a huge amount of fire retardant foam could be dumped 
on the base of the well.  There was enough foam available at the site to do the 
job.  However, there was no hose large enough to put all the foam on the fire fast 
enough.  The small hoses that were available could not shoot the foam quickly 
enough to do any good.  It looked like there would have to be a costly delay 
before a serious attempt could be made.  However, Red Adair knew just what to 
do.  He stationed men in a circle all around the fire, with all of the available small 
hoses.  When everyone was ready, all of the hoses were opened up and foam 
was directed at the fire from all directions.  In this way a large amount of foam 
quickly struck the source of the fire.  The blaze was extinguished, and the Saudis 
were satisfied that Red had earned his three million dollar fee. 
 

FORTRESS 
 
A small country was ruled from a strong fortress by a dictator. The fortress was 
situated in the middle of the country, surrounded by farms and villages. Many 
roads led to the fortress through the countryside. A rebel general vowed to 
capture the fortress. The general knew that an attack by his entire army would 
capture the fortress. He gathered his army at the head of one of the roads, ready 
to launch a full-scale direct attack. However, the general then learned that the 
dictator had planted mines on each of the roads. The mines were set so that 
small bodies of men could pass over them safely, since the dictator needed to 
move his troops and workers to and from the fortress. However, any large force 
would detonate the mines. Not only would this blow up the road, but it would also 
destroy many neighboring villages. It therefore seemed impossible to capture the 
fortress.  However, the general devised a simple plan.  He divided his armies into 
small groups and dispatched each group to the head of a different road.  When 
all was ready, he gave the signal and each group marched down a different road.  
Each group continued down its road so that the entire army arrived together at 
the fortress at the same time.  In this way, the general captured the fortress and 
overthrew the dictator. 
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TUMOR PROBLEM 
 

Suppose you are a doctor faced with a patient who has a malignant tumor in his 
stomach.  It is impossible to operate on the patient, but unless the tumor is 
destroyed the patient will die.  There is a kind of ray that can be used to destroy 
the tumor.  If the rays reach it all at once at a sufficiently high intensity, the tumor 
will be destroyed.  Unfortunately, at this intensity the healthy tissue the rays pass 
through on the way to the tumor will also be destroyed.  At lower intensities the 
rays are harmless to healthy tissue, but they will not affect the tumor, either.  
What type of procedure might be used to destroy the tumor with the rays and at 
the same time avoid destroying the healthy tissue? 



 

94 

Appendix B 
 

Passages used in Experiment 1 and 2 

The passages are arranged such that the first 6 passages were taken from Butler 
(2010) and the next 6 passages were written for the current study. 

 
BATS 

 
Although bats and birds both fly, a bat wing actually has more in common 

with a human arm than a bird wing. A bird’s wing has fairly rigid bone structure, 
and the main flying muscles move the bones at the point where the wing 
connects to the body. In contrast, a bat has a much more flexible wing structure. 
It is similar to a human arm and hand, except it has a thin membrane of skin 
(called the patagium) extending between the “hand” and the body, and between 
each finger bone. Bats can use the wing like a hand, essentially moving through 
the air like a swimmer moves through water. The rigid bird wing is more efficient 
at providing lift, but the flexible bat wing allows for greater maneuverability.  

To help them navigate and find their prey in the dark, microbat species 
have developed a remarkable system called echolocation. By emitting high-
pitched sound waves and listening to the echoes, bats can determine with great 
precision the location of an object, how big it is, and the direction in which it is 
moving. Bats calculate the distance of the object by the amount of time it takes 
for the sound wave to return and the exact position of the object by comparing 
when the sound reaches its right ear to when the sound reaches its left ear. 
Similarly, a bat can tell how big an insect is based on the intensity of the echo: a 
smaller object will reflect less of the sound wave, and so will produce a less 
intense echo.  

Bats have a special physiological adaptation that enables them to hang 
upside down. A bat’s talons work like human fingers, except that humans must 
contract muscles to grasp an object, whereas bats must do the opposite – relax 
their muscles. When humans grasp an object, they contract several arm 
muscles, which in turn pull tendons connected to their fingers, which pull the 
fingers closed. To hang upside down, a bat opens its talons to grab hold of the 
surface, and then simply lets its body relax. The weight of the upper body pulls 
down on the tendons connected to the talons, causing them to clench. Since it is 
gravity that keeps the talons closed, instead of a contracted muscle, the bat 
doesn't have to exert any energy to hang upside down. 

Like all mammals, bats maintain their body temperature internally. 
However, unlike most mammals, bats allow their body temperature to sink to the 
ambient temperature whenever they are not active. As their temperature drops, 
they enter a torpor state, in which their metabolism slows down considerably. By 
reducing their biological activity and not maintaining a warm body temperature, 
bats conserve energy. This ability is important because flying all night is hard 
work. When the temperature is cold for long periods during the winter months, 
some bats enter a deeper torpor state called hibernation. Other bat species 
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follow a yearly migration pattern, traveling to cooler climates in the warm months 
and warmer climates in the cool months. This is why some regions experience 
“bat seasons” every year.  

 
 

TROPICAL CYCLONES 
   

Tropical cyclones often begin their lives as clusters of clouds and 
thunderstorms called tropical disturbances. In order to take the first step towards 
becoming a full-blown tropical cyclone, a disturbance must develop a pocket of 
low-pressure air at its center. This process, which can take anywhere from hours 
to days, begins with the thunderstorms in the disturbance releasing latent heat. 
This heat warms the air in the disturbance, causing oxygen molecules to expand 
and thereby lowering the density of the air. As the density of the air drops, so too 
does the air pressure. Once a low-pressure area exists, the first step is complete 
and the disturbance has the potential to take the next step in its development: 
beginning to rotate at high speeds.  

Once rotation is initiated, a tropical cyclone builds in strength through 
rapidly rising air at the center of the storm. As it moves across the ocean, it sucks 
up warm, moist tropical air from the surface of the water and dispenses cooler air 
aloft. A tropical cyclone's primary energy source is the release of the heat of 
condensation from water vapor in this rising air. The release of heat creates a 
pattern of wind that circulates around a center, like water going down a drain, 
and brings the rotation of the tropical cyclone to high speeds. In addition to the 
warm air being sucked up into the center of the storm, converging winds at the 
surface and higher altitudes also push warm air upwards, increasing the rotation. 

A tropical cyclone has two key parts. The low-pressure center of relative 
calm is called the eye. Weather in the eye is normally calm and free of clouds, 
although the sea may be extremely violent. Circular in shape, the eye may range 
in size from 5 to 120 miles in diameter, but most eyes are between 20 and 40 
miles across. The area surrounding the eye is called the eye wall, and it consists 
of a dense wall of clouds and thunderstorms. The eye wall is the part of the storm 
where the greatest wind speeds are found, clouds reach the highest, and 
precipitation is the heaviest. Interestingly, the eye wall actually creates the eye by 
sucking out any clouds or rain in the area. 

One measure of the size of a tropical cyclone is called the Radius of 
Outermost Closed Isobar (ROCI). The atmospheric pressure increases gradually 
as one moves away from the center of the storm, and the outermost closed 
isobar is the point at which the pressure returns to normal. ROCI is determined 
by measuring the radii from the center of the storm to its outermost closed isobar 
in each of the four quadrants surrounding the storm. The distances of the radii 
are then averaged to come up with a single value. If the ROCI is between 2 and 
3 degrees of latitude, then the cyclone is considered “small”. A ROCI between 3 
and 6 latitude degrees is considered “medium.” A “large” tropical cyclone has a 
ROCI of between 6 and 8 degrees.  
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VACCINES 
 

A vaccine is a biological preparation that establishes or improves immunity 
to a particular disease. Most vaccines are prophylactic, which means that they 
prevent or ameliorate the effects of a future infection by any natural pathogen. 
The flu vaccine is an example of a prophylactic vaccine that is given annually to 
protect against the influenza virus. However, vaccines have also been used for 
therapeutic purposes, such as for alleviating the suffering of people who are 
already afflicted with a disease. An example of such a therapeutic use is the 
vaccines currently being developed for the treatment of various types of cancer. 
Until recently, most vaccines have been aimed at children, but the development 
of therapeutic vaccines has increased the number of treatments targeted at 
adults.  

Over the following centuries, medical researchers like Edward Jenner and 
Louis Pasteur transformed the ancient technique of variolation into the modern 
day practice of inoculation with vaccines. Inoculation represented a major 
breakthrough because it reduced the risk of vaccination, while maintaining its 
effectiveness. Inoculation is the practice of deliberate infection through a skin 
wound. This new technique produces a smaller, more localized infection relative 
to variolation in which inhaled viral particles in droplets spread the infection more 
widely. The smaller infection works better because it is adequate to stimulate 
immunity to the virus, but it also keeps the virus from replicating enough to reach 
levels of infection likely to kill a patient.  

Some vaccines are made from dead or inactivated virulent organisms that 
have been killed with chemicals or heat. Examples are vaccines against 
influenza, cholera, and hepatitis. Other vaccines contain live, attenuated virus 
organisms that are cultivated under conditions that disable their virulent 
properties. Examples include yellow fever, measles, rubella, and mumps. 
Aluminium-based adjuvants, such as squalene, are typically added to boost 
immune response. Vaccines can be monovalent or polyvalent. A monovalent 
vaccine is designed to immunize against a single antigen or single 
microorganism. A polyvalent vaccine is designed to immunize against two or 
more strains of the same organism, or against two or more organisms. In certain 
cases, a monovalent vaccine may be preferable for rapidly developing a strong 
immune response.  

One challenge in vaccine development is economic: many of the diseases 
that could be eradicated with a vaccine, such as malaria, exist principally in poor 
countries. Although many vaccines have been highly cost effective and beneficial 
for public health, pharmaceutical firms and biotechnology companies have little 
incentive to develop vaccines for these diseases because there is little revenue 
potential. Even in more affluent countries, financial returns are usually minimal 
while the costs are great. The number of vaccines administered has actually 
risen dramatically in recent decades, but this rise is due to government mandates 
and support, rather than economic incentive. Thus, most vaccine development 
relies on “push” funding that is supplied by government, universities, and non-
profit organizations. 
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BREAD 
 

Flour provides the primary structure to bread because it contains proteins 
– it is the quantity of these proteins that determines the quality of the finished 
bread. Wheat flour contains two non-water soluble protein groups (glutenin and 
gliadin), which form the structure of the dough. When worked by kneading, the 
glutenin forms long strands of chainlike molecules while the shorter gliadin forms 
bridges between the strands of glutenin, resulting in a network of strands called 
gluten. The network of strands, or gluten, is responsible for the softness of the 
bread because it traps tiny air bubbles as the dough is baked. If the network of 
strands is more cohesive or tightly linked, the bread will be softer. Gluten 
development improves if the dough is allowed to rest between mixing and 
kneading.  

The amount of flour is the most significant measurement in a bread recipe. 
Professional bakers use a system known as Bakers’ Percentage in their recipe 
formulations. They measure ingredients by weight rather than by volume 
because it is more accurate and consistent, especially for dry ingredients. Flour 
is always stated as 100%, and the rest of the ingredients are a percent of that 
amount by weight. For example, common table bread in the U.S. uses 
approximately 50% water, whereas most artisan bread formulas contain 
anywhere from 60 to 75% water. The water (or sometimes another liquid like milk 
or juice) is used to form the flour into a paste or dough.  

Gas-producing chemicals can also be used as a leavening agent. 
Whereas yeast takes two to three hours to produce its leavening action, a dry 
chemical leavening agent like baking powder is instantaneous. Many commerical 
bakeries use chemical additives to speed up mixing time and reduce necessary 
fermentation time, so that a batch of bread may be mixed and baked in less than 
3 hours. “Quick bread” is the name that commercial bakers use for dough that 
does not require fermentation because of chemical additives. Often these 
chemicals are added to dough in the form of a prepackaged base, which also 
contains most or all of the dough’s non-flour ingredients. Commercial bakeries 
also commonly add calcium propionate to retard the growth of molds.  

The development of leavened bread can probably be traced to prehistoric 
times as well. Yeast spores occur everywhere, so any dough left to rest will 
become naturally leavened. For example, an uncooked dough exposed to air for 
some time before cooking would probably contain airborne yeasts as well as 
yeasts that grow on the surface of cereal grains. Thus, the most common source 
of leavening was early bakers retaining a piece of dough from the previous day to 
utilize as a form of dough starter. Although leavening is likely of prehistoric origin, 
the earliest archaeological evidence comes from ancient Egypt. Scientific 
analysis using electron microscopy has detected yeast cells in some ancient 
Egyptian loaves.  
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THE RESPIRATORY SYSTEM 
 

When a person inhales, the diaphragm and intercostal muscles (the 
muscles between the ribs) contract and expand the chest cavity. This expansion 
lowers the pressure in the lungs below the outside air pressure. Air then flows in 
through the airways (from high pressure to low pressure) and inflates the lungs. 
The lungs are made of spongy, elastic tissue that stretches and constricts during 
breathing. When a person exhales, the diaphragm and intercostal muscles relax 
and the chest cavity gets smaller. The decrease in volume of the cavity increases 
the pressure in the lungs above the outside air pressure. Air from the lungs (high 
pressure) then flows out of the airways to the outside air (low pressure). The 
cycle then repeats with each breath. 

Within the alveoli, gas exchange occurs through diffusion. Diffusion is the 
movement of particles from a region of high concentration to a region of low 
concentration. The oxygen concentration is high in the alveoli, so oxygen diffuses 
across the alveolar membrane into the pulmonary capillaries, which are small 
blood vessels that surround each alveolus. The hemoglobin in the red blood cells 
passing through the pulmonary capillaries has carbon dioxide bound to it and 
very little oxygen. The oxygen binds to hemoglobin and the carbon dioxide is 
released. Since the concentration of carbon dioxide is high in the pulmonary 
capillaries relative to the alveolus, carbon dioxide diffuses across the alveolar 
membrane in the opposite direction. The exchange of gases across the alveolar 
membrane occurs rapidly – usually in fractions of a second.  

Several factors can trigger such an override by the autonomic nervous 
system. One of these factors is the concentration of oxygen in the blood. 
Specialized nerve cells within the aorta and carotid arteries called peripheral 
chemoreceptors monitor the oxygen concentration of the blood. If the oxygen 
concentration decreases, the chemoreceptors signal to the respiratory centers in 
the brain to increase the rate and depth of breathing. These peripheral 
chemoreceptors also monitor the carbon dioxide concentration in the blood. 
Another factor is chemical irritants. Nerve cells in the airways can sense the 
presence of unwanted substances like pollen, dust, water, or cigarette smoke. If 
chemical irritants are detected, these cells signal the respiratory centers to 
contract the respiratory muscles, and the coughing that results expels the irritant 
from the lungs. 

Disorders of the respiratory system fall mainly into two classes. Some 
disorders make breathing harder, while other disorders damage the lungs' ability 
to exchange carbon dioxide for oxygen. Asthma is an example of a disease that 
influences the mechanics of breathing. During an asthma attack, the bronchioles 
constrict, narrowing the airways. This reduces the flow of air and makes the 
respiratory muscles work harder. In contrast, pulmonary edema is an example of 
a disease that minimizes or prevents gas exchange. Pulmonary edema occurs 
when fluid builds up in the area between the alveolus and pulmonary capillary, 
increasing the distance over which gases must exchange and slowing down the 
exchange. Various medical interventions are used treat disorders of the 
respiratory system, but coughing is the body’s main method of defense. 
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THE INTERNET 

 
The story of the Internet begins with the launch of the Soviet satellite 

Sputnik in 1957, which spurred the United States to establish the Advanced 
Research Projects Agency (ARPA) in order to regain a technological lead. A 
project leader at ARPA, Joseph Licklider, saw great potential in universal 
networking and initiated a project to build a network that relied on a new 
technology called packet switching. Packet switching is a mode of data 
transmission in which data is broken into chunks, called packets, which are sent 
independently and then reassembled at the destination. Alternative modes of 
data transmission, such as circuit switching, require a fixed connection between 
terminals, so each circuit can handle only one user at a time. In contrast, packet 
switching can accommodate multiple users, optimizing network use and 
minimizing data transmission time. 

Until the late 1980s, the networks were used for governmental and 
scientific research purposes only. However, this restriction on the networks came 
to an end when the U.S. Federal Networking Council approved the 
interconnection of the NSFNET to the commercial MCI Mail system in 1988. The 
opening of the network to commercial interests greatly accelerated the expansion 
of what is now called the Internet. Motivated by potential profits, commercial 
companies aggressively pursued the connection of existing networks and the 
creation of new networks. Although the Internet had existed for almost a decade, 
the network did not gain a public face until the 1990s. In 1991, the European 
Organization for Nuclear Research publicized a new project called the World 
Wide Web. Over the following two decades, the Internet evolved into its present-
day form.  

Most large communications companies that provide Internet service have 
their own dedicated backbones connecting various regions. In each region, the 
company has a Point of Presence (POP). Each POP is a place for users to 
access the company's network, often through a local phone number or dedicated 
line. Interestingly, there is no overall controlling network. Instead, several high-
level networks connect to each other through a Network Access Point (NAP). 
Each NAP is a physical infrastructure that allows different Internet service 
providers to exchange traffic between their networks. Dozens of large providers 
interconnect at NAPs in various cities, and trillions of bytes of data flow between 
the networks at these points. The Internet is largely a collection of huge 
corporate networks that all intercommunicate at the NAPs.  

What is incredible about the Internet is that a message can leave one 
computer and travel halfway across the world through several different networks 
and arrive at another computer in a fraction of a second. To accomplish this feat, 
all of these networks rely on routers. Routers are specialized computers that 
have two main functions. First, routers ensure that information makes it to the 
intended destination by determining where to send it along thousands of 
pathways. Second, routers make sure that information doesn't go where it's not 
needed, which is crucial for keeping large volumes of data from clogging the 
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connections of other users. Thus, the router joins the networks so they can 
communicate, but also protects them from one another. 
 
 

REPTILES 
 

 Most reptiles can be classified into three large groups: the turtles (order 
Chelonia), the snakes and lizards (order Squamata), and the alligators and 
crocodiles (order Crocodilia). Most reptiles share a number of general 
morphological features. In general, reptiles are lung-breathing vertebrates with 
two pairs of limbs and a horny, scaly skin. Reptiles are amniotes, which means 
that their large, yolky eggs have a protective layer called an amnion, which 
prevents them from drying out on land. Rather than laying eggs, some snakes 
and lizards bear their young live. 
 All reptiles breathe using lungs. Lung ventilation is accomplished 
differently in each main reptile group. In squamates, the lungs are ventilated 
almost exclusively by the axial musculature. This is also the same musculature 
that is used during locomotion. Because of this constraint, most squamates are 
forced to hold their breath during intense runs. Some, however, have found a 
way around it. Varanids, and a few other lizard species, employ buccal pumping 
as a complement to their normal “axial breathing.” This allows the animals to 
completely fill their lungs during intense locomotion, and thus remain aerobically 
active for a long time. Crocodilians actually have a muscular diaphragm that is 
analogous to the mammalian diaphragm. The difference is that the muscles for 
the crocodilian diaphragm pull the pubis (part of the pelvis, which is movable in 
crocodilians) back, which brings the liver down, thus freeing space for the lungs 
to expand. This type of diaphragmatic setup has been referred to as the “hepatic 
piston.” 
 Reptiles are cold-blooded creatures, which means that they derive their 
body heat from external sources (in contrast to homothermic animals that 
maintain a constant body temperature through internal mechanisms). Contrary to 
popular belief, the “cold-bloodedness” of reptiles does not mean that they 
maintain low body temperatures. Reptiles control their body temperature through 
a process of thermoregulation, and their internal temperature can fluctuate 
greatly according to their surroundings. Researchers have found that many 
reptiles exert precise control over body temperature by moving around to 
different areas within their surrounding habitat. 
 In late fall, reptiles generally begin a process called brumation, a type of 
dormancy similar to hibernation. However, brumation should bot be confused 
with hibernation; when mammals hibernate, they are actually asleep and 
metabolize stores of fat in order to maintain bodily functions and body 
temperature; when reptiles brumate, they are less active, and their metabolism 
slows down so they just do not need to eat as often. Reptiles can often go 
through the whole winter without eating. However, they do need to drink water 
and will often wake up to drink water and return to “sleep.” The brumation period 
is anywhere from one to eight months depending on the air temperature and the 
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size, age, and health of the reptile. Brumation is triggered by cold weater, lack of 
heat, and the decrease in the amount of hours of daylight in the winter. 
 
 

LIVER 
 

 The concept that certain organs, such as the liver, brain, and heart, 
enjoyed a higher status than others was first proposed and accepted in the 
earliest days of medical thought. Indeed, the Babylonians considered the liver to 
be the seat and mirror of the soul and, as a consequence, this organ became the 
focus of divination ceremonies, in which the livers of sacrificial animals were 
carefully inspected by priests for signs of damage prior to being offered as gifts to 
the gods. The observed condition of the excised organ was taken to portend the 
future and, especially, to predict whether or not conditions were favorable for 
battle. Prayers at these solemn ceremonies were even inscribed on tablets 
shaped like livers, many of which were subsequently recovered from countries 
bordering the Mediterranean, far beyond the limits of Babylon. 
 A multitude of functions of the liver have already been well described, and 
there are many more of which relatively little is currently known. Several of these 
functions include detoxification, protein synthesis, and production of biochemicals 
necessary for digestion. One of the most important – and easily recognizable 
when deranged – is the metabolism of the pigment, bilirubin, a chemical 
predominantly derived from products released during the normal destruction of 
red blood cells. Yellow discoloration of the eyes and the skin (jaundice) ensues 
when overproduction of bilirubin exceeds the liver’s metabolic capacity or when 
hepatic metabolism of bilirubin is impaired. 
 One virus that infects the liver is Hepatitis B. Hepatitis B is an infectious 
illness caused by hepatitis B virus (HBV) which infects the liver of humans, and 
causes an inflammation call hepatitis. The acute illness causes liver 
inflammation, vomiting, jaundice, and rarely, death. Chronic hepatitis B may 
eventually cause liver cirrhosis and liver cancer – a fatal disease with very poor 
response to current chemotherapy. The infection is preventable by vaccination, 
but regardless, about a third of the world’s population, more than 2 billion people, 
have been infected with hepatitis B virus. This includes 350 million chronic 
carriers of the virus. Transmission of hepatitis B virus results from exposure to 
infectious blood or body fluids. 
 The liver is necessary for survival; there is currently no way to 
compensate for the absence of liver function long term. However, the human liver 
is one of the few glands in the body that has the ability to regenerate from as little 
as 25% of its tissue. This is largely due to the unipotency of hepatocytes. 
Resection of liver can induce the proliferation of the remained hepatocytes until 
the lost mass is restored, where the intensity of the liver’s response is directly 
proportional to the mass resected. For almost 80 years surgical resection of the 
liver in rodents has been a very useful model to the study of cell proliferation. In 
is clear that, even though ancient cultures were mistaken as to the functions of 
the liver, they were certainly correct in attaching so much importance to it. 
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Indeed, the maxim that ‘life depends on the liver’ is as pertinent today as ever 
before. 
 
 

MCCARTHYISM 
 

 Originally coined to criticize the anti-communist pursuits of U.S. Senator 
Joseph McCarthy, “McCarthyism” soon took on a broader meaning, describing 
the excesses of similar efforts. The term is also now used more generally to 
describe reckless, unsubstantiated accusations, as well as demagogic attacks on 
the character or patriotism of political adversaries. During the McCarthy era, 
thousands of Americans were accused of being Communists or communist 
sympathizers and became the subject of aggressive investigations and 
questioning before government or private-industry panels, committees, and 
agencies. Suspicions were often given credence despite inconclusive or 
questionable evidence, and the level of threat posed by a person’s real or 
supposed leftist associations or beliefs was often greatly exaggerated. Many 
people suffered loss of employment, destruction of their careers, and even 
imprisonment. 
 The historical period that came to be known as the McCarthy era began 
well before Joseph McCarthy’s own involvement in it. Many factors contributed to 
McCarthyism, some of them extending back to the years of the First Red Scare, 
inspired by Communism’s emergence as a recognized political force. Thanks in 
part to its success in organizing labor unions and its early opposition to fascism, 
the Communist Party of the United States (CPUSA) increased its membership 
through the 1930s, reaching a peak of about 75,000 members in 1940-41. While 
the United States was engaged in World War II and allied with the Soviet Union, 
the issue of anti-communism was largely muted. With the end of World War II, 
the Cold War began almost immediately, as the Soviet Union installed repressive 
Communist puppet regimes across Central and Eastern Europe. 
 The Cold War was the continuing state of political conflict, military tension, 
proxy wars, and economic competition existing after World War II primarily 
between the Soviet Union and the United States. Although the primary 
participants’ military force never officially clashed directly, they expressed the 
conflict through military coalitions, strategic conventional force deployments, 
extensive aid to states deemed vulnerable, espionage, propaganda, conventional 
and nuclear arms races, appeals to neutral nations, rivalry at sports events, and 
technological competitions such as the Space Race, which began with the launch 
of Sputnik and culminated in the Apollo Moon landings. 
 Though McCarthyism might seem to be of interest only as a historical 
subject, the political divisions it created in the United States continue to make 
themselves manifest, and the politics and history of anti-Communism in the 
United States are still contentious. Portions of the massive security apparatus 
established during the McCarthy era still exist. Loyalty oaths are still required by 
the California Constitution for all officials and employees of the government of 
California. A number of observers have compared the oppression of liberals and 
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leftists during the McCarthy period to recent actions against suspected terrorists, 
most of them Muslims. In The Age of Anxiety: McCarthyism to Terrorism, author 
Haynes Johnson compares the “abuses suffered by aliens thrown into high 
security U.S. prisons in the wake of 9/11” to the excesses of the McCarthy era. 
Similarly, David D. Cole has written that the Patriot Act “in effect resurrects the 
philosophy of McCarthyism, simply substituting ‘terrorist’ for ‘communist.’”  
 
 

VOLCANOES 
 

 A volcano is an opening in the Earth’s crust that allows magma and gases 
from the core to escape.  Volcanoes are most commonly found on the edges of 
tectonic plates and are caused by the gradual divergence and convergence of 
the plates.   It is also possible for volcanoes to arise in the middle of tectonic 
plates by way of mantle plumes that allow magma to flow to the surface from the 
core.   When plates diverge, magma from the core of the Earth rises to form new 
ocean floor.  This new floor is often thin and the high pressure beneath can 
cause eruptions.  Volcanoes caused by diverging plates are usually underneath 
the water and simply produce more sea floor.  On the other hand, converging 
plates most frequently involve the subduction of an oceanic plate underneath a 
continental plate.  This produces a large offshore trench through which magma 
gradually seeps.  When the magma makes its way to the surface, the volcano 
emerges.  
 Volcanoes are fascinating geological features that interest many people.  
Thousands of visitors travel to the volcanoes of Hawaii every year to see the 
incredible sites.  Volcanoes are also a very common choice for science fair 
projects.  Elementary and middle school students of been making model 
volcanoes for many years, and it has become one of the most classic science fair 
projects.  In order to cause the eruption of a model volcano, vinegar is usually 
combined with baking soda.   A common mistake in making a model volcano is 
using baking powder instead of baking soda.  Baking powder does not react with 
vinegar as quickly as pure baking soda, and baking powder can also start 
reacting on its own because it contains the acid and base needed for the 
production of the carbon dioxide.  
 The eruption of a real volcano is much more spectacular than the eruption 
of a model volcano.  However, real volcanic eruptions are also very dangerous.  
Not only can the lava kill people, but volcanic ash that accompanies the lava can 
be hazardous. Volcanic ash consists of small tephra, which are bits of pulverized 
rock and glass created by volcanic eruptions, less than 2 millimeters (0.1 in) in 
diameter. The most devastating effect of volcanic ash comes from pyroclastic 
flows. These occur when a volcanic eruption creates an "avalanche" of hot ash, 
gases, and rocks that flow at high speed down the flanks of the volcano. These 
flows can be impossible to outrun. 
 Many cities have been wiped out by volcanoes, and their threats continue 
today.  The ancient civilization of Pompeii was destroyed in 79 AD by Mount 
Vesuvius. In 1902, the city of St. Pierre in Martinique was destroyed by a 
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pyroclastic flow which killed over 29,000 people.   Mauna Loa in Hawaii has been 
active for at least 700,000 years.  While its most recent eruption in 1984 did not 
cause any fatalities, the eruptions in 1926 and 1950 destroyed several villages 
and the city of Hilo.  
 
 

FLOWERS 
 

 Flowering plants can be annual, perennial or biennial. Although flowering 
plants have a range of life spans and blooming periods, all flowers follow the 
same growing process. Flowering plants produce male pollen and have female 
flower parts. As the flower blooms, it produces pollen that's released into the air 
by rain and wind. The released pollen travels its path and seeks to fertilize the 
female parts of the flower.  Flowers can also be fertilized by bees and other 
insects.  When a bee lands on a flower to obtain nectar from the flower, pollen 
sticks to the bee and is then transferred to the next flower the bee lands on.  
Through this process, a flower in one garden could pollinate a flower a mile 
away!  

Flowers, like all plants need sunlight, water, and nutrients to grow.  
Sunlight is essential for photosynthesis.  Photosynthesis is a process that 
converts carbon dioxide into organic compounds, especially sugars, using the 
energy from sunlight. Photosynthesis occurs in two stages.  In the first stage, 
light-dependent reactions capture the energy of light and use it to make the 
energy-storage molecules ATP and NADPH. During the second stage, the light-
independent reactions use these products to capture and reduce carbon dioxide. 

 Water is necessary for all life, but different flowers need different amounts 
of water.  For example, perennial flowers need less water than potted flower.  It is 
important to know how much water flowers need before planting them so the 
flowers do not get over watered and die.  Flowers absorb water through their 
roots by the process of diffusion.   In a garden, the roots of flowers will actually 
grow in search for water supplies.  The proper nutrients for flowers can come 
from the surrounding environment, but when planting flowers in a garden, it is 
often helpful to fertilize.  Fertilization helps flowers bloom bigger and last longer. 
Though naturally growing flowers may not have ample fertilization, it's good 
practice to fertilize flowers at least once or twice each year. Fertilization feeds 
flowers with the nutrients that soil might not provide. These nutrients include 
nitrogen, phosphorus and potassium. Nitrogen promotes the growth of foliage 
and other green structures of the plant. Phosphorus promotes strong root 
development and flower strength. Potassium promotes the overall health and 
strength of the entire plant and its flowers. Fertilizer replenishes the surrounding 
soil and balances the pH levels to complement the flower's acidic requirements.  

Pruning- along with proper fertilization, watering and sunlight--promotes 
vigorous flower growth. Pruning is the process of removing stems, branches and 
flowers strategically from the plant. When completed successfully, the plant 
blooms with a plentiful amount of flowers that are of a greater quantity and quality 
than the previous blooms. While pruning involves removing dead or wilted 
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branches and flowers, new growth can also be eliminated to make room for 
additional growth. 
 
 

BALLOONS 
 

A balloon is an inflatable flexible bag filled with a gas, such as helium, 
hydrogen, nitrous oxide, oxygen, or air. Modern balloons can be made from 
materials such as rubber, latex, polychloroprene, or a nylon fabric, while some 
early balloons were made of dried animal bladders. Some balloons are used for 
practical purposes such as meteorology, medical treatment, military defense, or 
transportation.  Today however, most balloons are used for decorative purposes.  
Decorative balloons come is all shapes, colors, and sizes.  Balloons can be 
found at almost any celebration, but this decoration necessity would not exist 
with out the work of Michael Faraday who invented the rubber balloon 1824.   

While the most common use for balloons today is decoration, balloons 
were used for other purposes for many years. The first record of balloons is from 
220-80 AD when Zhuge Liang of the Shu Han kingdom used airborne lanterns for 
military signaling.  There is also speculation that the Nazca culture of Peru began 
using hot air balloon 1500-2000 years ago to design their famous ground lines 
and figures, the largest of which is 660 feet across.  Surprisingly, the balloon is 
the oldest successful human-carrying flight technology.  On November 21, 1783, 
Jean Francois Pilatre de Rozier and Francois Laurent d’Arlandes made the first 
hot air balloon trip.  

A hot air balloon consists of a bag called the envelope with an opening at 
the bottom called the mouth or throat.  This envelope is capable of containing 
heated air and is usually made out of light-weight, but strong, synthetic fabric.  
The fabric is often coated with silicone or polyurethane to make it impermeable to 
air. Suspended beneath the envelope is a gondola or wicker basket, which 
carries passengers and a source of heat, in most cases an open flame.  At the 
top of the balloon, there is a vent that enables the pilot to allow hot air to escape 
through the top of the balloon in order to control the rate of decent.  Like any 
aircraft, it is important for the pilot to make a smooth landing in order to ensure 
the safety of those on board the aircraft.  

Today, hot air balloons are very popular. There are many hot air balloon 
festivals around the world that millions of people attend each year. At these 
festivals, balloons of all shapes can be found.  The art of hot air balloon design 
has become increasingly complex and designs now range from the traditional 
round balloon to hotdogs, flowers, cows and insects.   Hundreds of hot air 
balloons fill the sky at these festivals and many also include balloon races.  The 
first hot air balloon races was the Gordon Bennett Balloon Race, which took 
place in 1906 in Paris France and was won by Americans Frank Lahm, and 
Henry Hersey.  Lahm went on to become the first Army’s first certified pilot in 
1909.  
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Appendix C 

Questions and grading criteria used in Experiments 1 and 2 

The passages are broken down by item type.  Factual, Inferential, and 
Connecting questions were used in Experiment 1.  Example, Inferential, and 
Connecting questions were used in Experiment 2.  Factual and Inferential 
questions were adapted from Butler (2010), while Example and Connecting 
questions were written for this study. 
 
NOTE:  For the Factual and Example questions, any answer was considered as 
having come from the correct passage because the correct passage was listed in 
the question.  Strict scoring indicates the criterion for a correct score.  Lenient 
scoring indicates the criterion for partial credit. 
 

FACTUAL 
 
Bats have specially adapted talons that enable them to hang upside down. How 
do these talons function?  
 
 Answer: A bat must relax its muscles to grip an object, which is the opposite 

of how human fingers work. The weight of the upper body pulls down on the 
tendons connected to the talons, causing them to clench and gravity keeps 
the talons closed. 

 
Strict scoring: Relax muscles; hang upside down, gravity/body weight 
closes the talons. 

 
Lenient scoring: Mentioning only relaxing muscles, or only gravity- not both 

 
When bats sleep during the day, they enter a torpor state. What happens to bats 
physiologically when in a torpor state? 
 
 Answer: Bats allow their body temperature to sink to the ambient 

temperature whenever they are inactive. As their body temperature drops, 
they enter a torpor state. When in a torpor state, a bat’s metabolism slows 
down, reducing biological activity and conserving energy. 

 
Strict scoring: Body temperature sinks and metabolism slows conserving 
energy 

 
Lenient scoring: only mentioning one of the above 

 
Vaccines are biological preparations that commonly used in modern medicine. 
What are the two main ways in which vaccines are used today? 
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 Answer: Most vaccines are used for prophylactic purposes, which means 
that they prevent or ameliorate the effects of a future infection by any 
natural pathogen. However, vaccines have also been used for therapeutic 
purposes, such as alleviating the suffering of people who are already 
afflicted with a disease. 

 
Strict scoring: To prevent disease and for therapeutic purposes 

 
Lenient scoring: if only give one use 

 
Vaccines vary in terms of their valence. What does the valence of a vaccine refer 
to? 
 
 Answer: The valence of the vaccine refers the number of different antigens 

contained in the vaccine. A monovalent vaccine is designed to immunize 
against a single antigen or single microorganism. A polyvalent vaccine is 
designed to immunize against two or more strains of the same organism, or 
against two or more organisms. 

 
Strict scoring: Valence= the number of diseases the vaccine treats 

 
Lenient scoring: no partial credit given for this item 

 
Communications companies that provide Internet service to individuals depend 
on Points of Presence (POPs) and Network Access Points (NAPs). What is the 
difference between POPs and NAPs? 
 
 Answer: A Point of Presence is a place for users to access an Internet 

service provider's network, often through a local phone number or dedicated 
line. In contrast, a Network Access Point is a physical infrastructure that 
allows different Internet service providers to exchange traffic between their 
networks. 

 
Strict scoring: POP= place for users to access Internet. NAP= place where 
Internet provides exchange traffic between networks 

 
Lenient scoring: if they get one correct 

 
Routers are crucial to the workings of the Internet. What two main functions do 
they serve? 
 
 Answer: Routers are specialized computers that have two main functions. 

First, routers ensure that information makes it to the intended destination by 
determining where to send it along thousands of pathways. Second, routers 
make sure that information doesn't go where it's not needed, which is 
crucial for keeping large volumes of data from clogging the connections of 
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other users. 
 

Strict scoring: Make sure information goes to the right place and make sure 
info does not go where it is not needed 

 
Lenient scoring: if they get one of the two  

 
The part of a tropical cyclone surrounding the eye is called the eye wall. What 
are the conditions in the eye wall like? 
 
 Answer: The area surrounding the eye is called the eye wall, and it consists 

of a dense wall of clouds and thunderstorms. The eye wall is the part of the 
storm where the greatest wind speeds are found, clouds reach the highest, 
and precipitation is the heaviest.  

 
Strict scoring: Dense wall of clouds, highest winds, most precipitation, most 
intense part of the storm 

 
Lenient scoring: if only mention one thing. Ex: high winds. Need at least 2.  
 

The Radius of Outermost Closed Isobar (ROCI) is a measure of the size of a 
tropical cyclone. How is ROCI determined? 
 
 Answer: The Radius of Outermost Closed Isobar (ROCI) is determined by 

measuring the radii from the center of the storm to its outermost closed 
isobar in the four quadrants surrounding the storm. The outermost closed 
isobar is the point at which the atmospheric pressure returns to normal as it 
gradually increases from the storm center. The distances of the radii are 
averaged to come up with a single value. 

 
Strict scoring: Measure radius from eye to where the pressure returns to 
normal-in 4 quadrants, average.  

 
Lenient scoring: radius from eye to eye wall/ or where pressure returns to 
normal. (Have to write average the 4 quadrants for full credit) 

 
Flour contains proteins. How do these proteins contribute to the consistency or 
texture of bread? 
 
 Answer: When worked by kneading, the non-water soluble proteins in flour 

form a network of strands called gluten, which is responsible for the 
softness of the bread because it traps tiny air bubbles as the dough is 
baked. If the network of strands is more cohesive or tightly linked, the bread 
will be softer. 
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Strict scoring: The proteins create stands that trap air bubbles and create 
the softness of the bread 

 
Lenient scoring: only mentioning the strands or just saying that they make 
to bread softer- need both parts to get full credit  

 
Professional bread makers use a system called Bakers’ Percentage. How does 
this system work? 
 
 Answer: Bakers' Percentage is a system in which ingredients are measured 

by weight instead of by volume. Measurement by weight is more accurate 
and consistent, especially for dry ingredients. Flour is always stated as 
100%, and the rest of the ingredients are a percent of that amount by 
weight. 

 
Strict scoring: Measured by weight instead of volume AND Flour is 100% 
(everything else is a percentage of the flour) 

 
Lenient scoring: one of the two  

 
In the human respiratory system, a low concentration of oxygen in blood can 
trigger breathing automatically. How does this occur? 
 
 Answer: Low concentration of oxygen in the blood will trigger an override by 

the autonomic nervous system. Specialized nerve cells within the aorta and 
carotid arteries called peripheral chemoreceptors monitor the oxygen 
concentration. If the oxygen concentration decreases, the chemoreceptors 
signal the respiratory centers in the brain to increase the rate and depth of 
breathing. 

 
Strict scoring: Low concentration of oxygen triggers special nerve cells 
(must mention the cells) that tell the brain to increase breathing  

 
Lenient scoring: anything about the diaphragm contracting and expanding, 
or concentration gradients 

 
There are two main classes of breathing disorders that can affect the human 
respiratory system. How does each class of disorder affect the respiratory 
system? 
 
 Answer: Disorders of the respiratory system fall mainly into two classes. 

Some disorders make breathing harder, while other disorders damage the 
lungs' ability to exchange carbon dioxide for oxygen. 

 
Strict scoring: Making breathing harder and preventing lungs to exchange 
carbon dioxide for oxygen (gas exchange) 
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Lenient scoring: one of the two 

 
INFERENTIAL 

 
The U.S. Military is looking for inspiration in developing a new type of aircraft that 
promotes increased maneuverability. How would this new type of aircraft differ 
from traditional aircrafts like fighter jets?   
 
 Answer: Traditional aircrafts are modeled after bird wings, which are rigid 

and good for providing lift. Bat wings are more flexible, and thus an aircraft 
modeled on bat wings would have greater maneuverability. 

 
Strict scoring: More flexible/maneuverable wings (don’t have to say bats-
this information was clearly from the bats passage) 

 
Lenient scoring: .5= things other than flexibility that still make sense 

 
Correct passage scoring: Bats- if they get the flexible wings, it had to come 
from Bats 

 
Submarines use sound waves (SONAR) to navigate underwater. Using SONAR, 
how does a submarine determine that an object is moving towards it (i.e. rather 
than away from it)? 
 
 Answer: The submarine can tell the direction that an object is moving by 

calculating whether the time it takes for the sound waves to return changes 
over time. If the object is moving towards the submarine, the time it takes 
the sound wave to return will get steadily shorter. Also, the intensity of the 
sound wave will increase because object will reflect more of the sound 
wave as it gets closer. 

 
Strict scoring: Calculate the time it takes for sound waves to return, if the 
sound waves return faster, object is moving toward 

 
Lenient scoring: 0.5= if they don’t mention how to tell if the object is moving 
towards them (waves returning faster) 

 
Correct passage scoring: Bats- if mention frequency of echoes, comes from 
bat passage. 

 
Controlled burning involves setting small fires as a forest management 
technique.  How might this method be used to prevent wildfires? 
 
 Answer: Controlled burning involves setting small fires under controlled 

conditions that eliminate the dry brush that fuels wildfires and limits the risk 
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of the fire spreading out of control. 
 

Strict scoring: Small controlled fires will prevent large uncontrollable fires, 
pruning 

 
Lenient scoring: .5= destroy brush, create space between potential fires 

 
Correct passage scoring: Mention vaccines or pruning 

 
Research in some fields, such as renewable energy, is not commercially 
profitable. Where might funding come from to encourage companies to conduct 
research on the development of things like renewable energy? 
 
 Answer: Like vaccine development, research on renewable energy 

technology relies on "push" funding that is supplied by government, 
universities, and non-profit organizations. 

 
Strict scoring: The government, universities, nonprofit groups –must 
mention two or something about the idea of push funding.  

 
Lenient scoring: .5= only mention one (e.g. “government”) 

 
Correct passage scoring: If mention any of these, then came from correct 
passage. 

 
When engineers move historic buildings from one location to another, it is a 
challenge to move such a massive object. How do engineers accomplish this 
daunting task? 
 
 Answer: Packet switching is a mode of data transmission in which data is 

broken into chunks, called packets, which are sent independently and then 
reassembled at the destination. Engineers use a similar method in which 
they take apart the building, move the pieces of the building to the new 
location, and then reassemble them. 

 
Strict scoring: Break the building down into small pieces, move the pieces, 
and put it back together  

 
Lenient scoring: 0.5= just “piece by piece” or incomplete description 

 
Correct passage scoring: If mention breaking down, get credit 

 
In 1983, an old “radio telephone” patent expired, allowing more companies 
access to this technology. Why would the expiration of the “radio telephone” 
patent affect the mobile phone industry? 
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 Answer: The interconnection of the NSFNET to the commercial MCI Mail 
system in 1988 signaled the opening of the network to commercial interests, 
which greatly accelerated the expansion of the Internet. Likewise, the 
expiration of the “radio telephone” patent opened the mobile phone industry 
to commercial interests and led to its expansion. 

 
Strict scoring: Expiration of the patent opens the industry to commercial 
interest (competition), which leads to improvement; must mention both 
commercial interest and improvements 
 
Lenient scoring: 05. = just saying “competition”  

 
Correct passage scoring: Anything about commercial interests 
 

How would hot summer temperatures affect the confined air in car tires? 
 
 Answer: Heat in the summer causes oxygen molecules in car tires to 

expand. However, since there is nowhere for the air to expand, the air 
pressure increases. 

 
Strict scoring: The heat causes air molecules to expand, increasing the air 
pressure, 

 
Lenient scoring: 0.5= just saying air expands.  Or says that the air pressure 
would increase but for the wrong reason. Or tire gets larger 

 
Correct passage scoring: Must mention air pressure 

 
In order for a car to run properly, the pistons inside the engine require energy to 
spin. What might be the process that is responsible for spinning the engine 
components of a car? 
 
 Answer: In a car engine, gasoline is burned inside the cylinders, giving rise 

to a tremendous amount of heat, and this heat does the work of spinning 
the engine components. 

 
Strict scoring: Gasoline is burned (or combustion) which creates heat, the 
heat spins the engine 

 
Lenient scoring: 0.5= just combustion (need to have that the energy to spin 
the pistons comes from heat) 

 
Correct passage scoring: Must mention heat or energy and spinning 
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Many products that can be traced to ancient times have been enhanced recently 
by the use of chemical additives. Paint is one product that has been updated – 
what function might the chemical additives in paint serve? 
 
 Answer: Quick bread is the name that commercial bakers use for dough 

that does not require fermentation because of chemical additives, which 
speeds up mixing time. Similarly, chemical additives are used in paint to 
speed up the drying time. 

 
Strict scoring: Chemical additives make the paint dry quicker 

 
Lenient scoring: 0.5= Any of the following- last longer, prevent weathering 

 
Correct passage scoring: Have to get that is makes it dry faster just like 
chemical additives in bread make it rise faster or any other blatant 
connection 

 
Cladosporium is a type of mold found in the air that can induce asthmatic 
symptoms in people. While eliminating cladosporium would help to reduce 
asthma attacks, why would this task be difficult to achieve? 
 
 Answer: Yeast spores naturally occur everywhere, including in the air and 

many surfaces. Likewise, cladosporium occurs in the air and thus 
eliminating it would be very difficult. 

 
Strict scoring: Yeast is in the air, it is hard to eliminate because it is 
everywhere  

 
Lenient scoring: 0.5= it is hard to get rid of things in the air (need to say 
WHY to get full credit) 

 
Correct passage scoring: Must mention connection to yeast 

 
A bellows is a compressible container with an outlet nozzle that allows a metal 
worker to manipulate air pressure in order to deliver air in iron smelting. How 
might a bellows work? 
 
 Answer: Breathing in humans depends on air pressure. Similar to the lungs, 

when a bellows is expanded, it fills with air (high to low pressure). When a 
bellows is compressed, it increases the pressure in the bellows above the 
outside air pressure and the air flows out. 

 
Strict scoring: Changes in air pressure cause the air to go in and out. Low 
pressure inside cause air to come it, compressing it increases pressure so 
air goes out.  
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Lenient scoring: 0.5= if they just say compress the container. Need to say 
WHY the air moves (difference in air pressure) to get full credit 

 
Correct passage scoring: Anything about air pressure counts 

 
When a cube of sugar is placed into hot tea, the particles dissolve and spread 
throughout the cup. Why does a sugar cube dissolve in hot tea?  
 
 Answer: Within the alveoli, gas exchange occurs through diffusion. Diffusion 

is the movement of particles from a region of high concentration to a region 
of low concentration. When a high concentration of sugar (the cube) is 
placed in hot tea, the sugar molecules with diffuse throughout the water 
because the concentration of sugar is lower. 

 
Strict scoring: Diffusion- the sugar cube is a high concentration the tea is 
low concentration of sugar, dissolving makes the concentrations equal  

 
Lenient scoring: 0.5= evening out temperature or breaking down molecules  

 
Correct passage scoring: Have to get diffusion to get correct passage or 
concentrations 

 
CONNECTING 

 
How do bats survive during winter months? 
 
 Answer: Bats enter a state of hibernation by lowering their body 

temperature.  They survive during this time by slowly using up the fat that 
they built up before the winter months in order to maintain slowed bodily 
functions. 

 
Strict scoring: Hibernation or torpor state.  Must mention at least two things 
or migration and something that happens during hibernation 

 
Lenient scoring: 0.5= if just say hibernation or migration 

 
Correct passage scoring: Must mention that they live off stores of fat  

 
What is a specific prevention of damage to the liver and how is that prevention 
designed? 
 
 Answer: Hepatitis B is a virus that attacks the liver that can be prevented 

with a vaccine that is designed through dead or inactivated virulent Hep B 
organisms that were killed with chemicals or heat. 

 
Strict scoring: Hepatitis B vaccination 
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Lenient scoring: 0.5= Just mention Hep B or just vaccine 

 
Correct passage scoring: Must mention both hepatitis B and how vaccines 
are designed 

 
What major global events led to the invention of the internet? 
 
 Answer: Throughout the Cold War, there was a Space Race between the 

Soviet Union and the United States, which eventually led the United States 
to establish the Advanced Research Projects Agency (ARPA) in order to 
gain a technological lead. 

 
Strict scoring: The launch of Sputnik, Cold war, Space Race; must mention 
2 of these 

 
Lenient scoring: 0.5= deprivitization of the internet; just Sputnik or just Cold 
War 

 
Correct passage scoring: Must mention the Cold War or Space Race to get 
credit. Just Sputnik doesn’t count 

 
What causes hot air balloons to rise? 
 
 Answer: The burner, or heat source, heats the air with in the balloon.  The 

air molecules then expand which lowers the density of the air within the 
balloon. When the air within the balloon is lower than the air surrounding the 
balloon, the balloon with rise.  

 
Strict scoring: Air inside balloon is heated by heat source (open flame).  
Less dense air inside; decreased air pressure 

 
Lenient scoring: 0.5= hot air, or expansion of air  

 
Correct passage scoring: Must mention why hot air rises- molecules 
expand/less dense; air pressure 

 
How do chemical leavening agents make bread rise? 
 
 Answer: Baking powder, the most common chemical used to leaven bread 

contains both acid and base that react to produce carbon dioxide.  
 

Strict scoring: Chemical leaving agents (baking powder) release gas  
 

Lenient scoring: 0.5= form air pockets, works instantly 
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Correct passage scoring: Releases carbon dioxide specifically  
 

How do plants get water? 
 
 Answer: Plants absorb water through their roots by the process of diffusion. 

In diffusion, molecules pass through membranes from higher concentration 
to water concentration.  When a plant is watered, there is a higher 
concentration of water molecules around the roots than inside the roots, so 
water goes into the root and can then be used throughout the plant.  

 
Strict scoring: Through their roots, by diffusion- high concentration to low 
concentration  

 
Lenient scoring: 0.5= rain, by watering, just through roots 

 
Correct passage scoring: Diffusion  

 
EXAMPLE 

 
How large is the largest of the Nazca ground lines? 
 
 Answer: 660 feet across 
 

Strict scoring: 600 or 660 feet across 
 

Lenient scoring: switch to miles or something close to 660 (e.g. 6600) 
 

What is the name of the thin membrane of skin found on a bat’s wing? 
 
 Answer: Patagium 
 

Strict scoring: Very close to patagium in spelling and/or pronunciation 
 

Lenient scoring: Words that start with “p” but do not look much like 
patagium 

 
What is the percent of water in most artisan bread? 
 
 Answer: 60-75% 
 

Strict scoring: 60 or 60% to 70 or 75% 
 

Lenient scoring: must be close to range (down to 50, up to 80); only 
mentioning one end of range 
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What energy-storage molecules are created during the first stage of 
photosynthesis? 
 
 Answer: ATP and NADPH 
 

Strict scoring: close to correct on both 
 

Lenient scoring: only one correct 
 

What was the name of the project leader at ARPA who first explored the use of 
packet switching? 
 
 Answer: Joseph Licklider 
 

Strict scoring: Something that is close to Licklider in spelling or 
pronunciation 

 
Lenient scoring: Joseph only or “starts with L” 

 
What percentage of liver tissue is made up of hepatocytes? 
 
 Answer: 70-80% 
 

Strict scoring: 70 or 75% to 80% 
 

Lenient scoring: one number within range 
 

Who wrote The Age of Anxiety: McCarthyism to Terrorism?  
 
 Answer: Haynes Johnson 
 

Strict scoring: Either Haynes or Johnson 
 

Lenient scoring: anything that looks close to Haynes or “starts with a J” 
 

What is the name of the protective layer, which covers the eggs of reptiles? 
 
 Answer: Amnion 
 

Strict scoring: Amnion (misspellings allowed) 
 

Lenient scoring: words that start with “a” and are somewhat close to amnion 
 

What is an example of a disorder that minimizes or prevents gas exchange in the 
lungs? 
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 Answer: Pulmonary edema 
 

Strict scoring: Pulmonary edema (misspellings allowed) 
 

Lenient scoring: close to or just pulmonary; not asthma 
 

How large is the eye of most tropical cyclones? 
 
 Answer: 20-40 miles across 
 

Strict scoring: 20-40 miles, meters in diameter/radius 
 

Lenient scoring: only one number right or listed, close to range but wrong 
numbers 

 
What is an example of an aluminum-based adjuvant? 
 
 Answer: squalene 
 

Strict scoring: squalene or something close to it 
 

Lenient scoring: other words that start with “s” or a definition instead of an 
example 

 
How many people in Martinique were killed in a 1902 volcanic eruption? 
 
 Answer: over 29,000 
 

Strict scoring: anything between 25,000 and 30,000 
 

Lenient scoring: 20,000 or a rearrangement of numbers, e.g. 2090 
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Appendix D 
 

Function learning classification guide used in Experiments 1 and 2 
 

This guide was used to re-analyze the data from Experiments 1 and 2 according 
to an extreme groups approach. 

 
Overall Guidelines 
 
1. Before beginning classification, be sure the graphs have been randomized 

and that you have something to cover the middle section (training range) of 
each graph.  This is to ensure that you are not thrown off by patterns that 
might emerge between training and extrapolation.  We are interested in 
extrapolation performance only. 

2. On each graph, cover the training section (80-120) and examine the patterns 
of both left and right extrapolation.  When you feel confident about your 
response, sort the graphs into three piles: exemplar, rule, or ambiguous 
(details below). 

 
Rule learners 
 
1. Rule learners are typically defined as anyone who has a clear negative slope 

on the left and positive slope on the right side of the function.  The slopes 
may range from exactly on the V-shaped function to much lower slopes, so 
long as it is clear that both sides are sloping in the correct direction according 
to the underlying function. 

 

 
 

2. If the pattern clearly follows a sine function (oscillating with very little 
spread/scatter, showing distinct lower vertices), this is also classified as a rule 
learner. 
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3. If there are very distinct downward slopes on both sides (with very little 
spread, not scattered, very linear), this is also classified as a rule learner.  

 
Exemplar learners 
 
1. Exemplar learners are typically defined as those individuals showing flat 

extrapolation (i.e. near a zero slope on both sides). 
 

 
 

2. Exemplar learners may also show extrapolation that has a large spread or 
looks scattered (i.e. no pattern to the data), so long as there is not a clear 
upward or downward linear slope. 
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3. A small amount of positive slope is allowed on the right side only.  If the slope 
is close to that of the function, it does not count as a small positive slope. 

 

 
 
Ambiguous 
 
1. If the data does not fall into one of the distinct categories above it is 

considered ambiguous.  There are many possible patterns of data that could 
be considered ambiguous.  A few of the more common include: 
a. If the slope on both the left and right sides are clearly positive. 

 

 
 

b. If it is difficult to tell if the slope is flat or negative, flat or positive, scattered 
or linear.  When in doubt, call it ambiguous. 

c. If one side closely approximately the slope of the function and the other is 
flat/scattered. 

2. Less common examples include: 
a. If there are multiple discrepant points: most of the points show flat 

extrapolation, but a few closely approximate the function or vice versa. 
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b. If the extrapolation patterns are parallel (both positive, but in the same 
range) 

c. Any other “weird” pattern to the extrapolation data. 
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Appendix E 
 

Concept learning stimuli from one of the counterbalances used in Experiment 2. 
 

Training Items         Recognition Lures 
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Training items     Categorization Lures 
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