
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-28

2005-06-13

Addressing Queuing Bottlenecks at High Speeds Addressing Queuing Bottlenecks at High Speeds

Sailesh Kumar, Jonathan Turner, and Patrick Crowley

Modern routers and switch fabrics can have hundreds of input and output ports running at up to

10 Gb/s; 40 Gb/s systems are starting to appear. At these rates, the performance of the

buffering and queuing subsystem becomes a significant bottleneck. In high performance

routers with more than a few queues, packet buffering is typically implemented using DRAM for

data storage and a combination of off-chip and on-chip SRAM for storing the linked-list nodes

and packet length, and the queue headers, respectively. This paper focuses on the performance

bottlenecks associated with the use of off-chip SRAM. We show how... Read complete abstract Read complete abstract

on page 2. on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Kumar, Sailesh; Turner, Jonathan; and Crowley, Patrick, "Addressing Queuing Bottlenecks at High Speeds"
Report Number: WUCSE-2005-28 (2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/946

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/946?utm_source=openscholarship.wustl.edu%2Fcse_research%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/946

Addressing Queuing Bottlenecks at High Speeds Addressing Queuing Bottlenecks at High Speeds

Sailesh Kumar, Jonathan Turner, and Patrick Crowley

Complete Abstract: Complete Abstract:

Modern routers and switch fabrics can have hundreds of input and output ports running at up to 10 Gb/s;
40 Gb/s systems are starting to appear. At these rates, the performance of the buffering and queuing
subsystem becomes a significant bottleneck. In high performance routers with more than a few queues,
packet buffering is typically implemented using DRAM for data storage and a combination of off-chip and
on-chip SRAM for storing the linked-list nodes and packet length, and the queue headers, respectively.
This paper focuses on the performance bottlenecks associated with the use of off-chip SRAM. We show
how the combination of implicit buffer pointers and multi-buffer list nodes can dramatically reduce the
impact of buffering and queuing subsystem on queuing performance. We also show how combining it
with coarse-grained scheduling can improve the performance of fair queuing algorithms, while also
reducing the amount of off-chip memory and bandwidth needed. These techniques can reduce the
amount of SRAM needed to hold the list nodes by a factor of 10 at the cost of about 10% wastage of the
DRAM space, assuming an aggregation degree of 16.

https://openscholarship.wustl.edu/cse_research/946?utm_source=openscholarship.wustl.edu%2Fcse_research%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/946?utm_source=openscholarship.wustl.edu%2Fcse_research%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages

Abstract

Modern routers and switch fabrics can have hundreds
of input and output ports running at up to 10 Gb/s; 40
Gb/s systems are starting to appear. At these rates, the
performance of the buffering and queuing subsystem
becomes a significant bottleneck. In high performance
routers with more than a few queues, packet buffering is
typically implemented using DRAM for data storage and
a combination of off-chip and on-chip SRAM for storing
the linked-list nodes and packet length, and the queue
headers, respectively. This paper focuses on the
performance bottlenecks associated with the use of off-
chip SRAM. We show how the combination of implicit
buffer pointers and multi-buffer list nodes can
dramatically reduce the impact of buffering and queuing
subsystem on queuing performance. We also show how
combining it with coarse-grained scheduling can
improve the performance of fair queuing algorithms,
while also reducing the amount of off-chip memory and
bandwidth needed. These techniques can reduce the
amount of SRAM needed to hold the list nodes by a
factor of 10 at the cost of about 10% wastage of the
DRAM space, assuming an aggregation degree of 16.

1. Introduction

High speed packet queuing is crucial to the
performance of the high throughput packet switching
systems used at the core of the Internet. As the Internet
takes on a more central role in mission-critical
applications, there is a growing need for sophisticated
queuing subsystems that can isolate traffic on either a per
flow or aggregate flow basis. Such subsystems on router
line cards are both a significant contributor to the cost of
routers and a potential performance bottleneck because
backbone routers require queuing subsystems capable of
holding as much data as the link can forward in 100 to
500 ms [1]. An OC192c link requires between 125 and
625 MB of buffer space operating at 10 Gb/s. With 40
Gb/s links, both speed and size will quadruple.

For routers that implement a simple FIFO output
queue, it’s possible to use a very simple queuing
architecture in which a large circular buffer is
implemented in DRAM. This requires a single on-chip
queue descriptor, which provides head and tail pointers

* This work was supported in part by NSF grants

CCF-0430012 and CNS-0325298 and by a gift from
Intel Corp.

and possibly packet and byte counters. One can extend
this approach to systems with a small number of queues,
but if more than a handful of queues are needed, the
static partitioning required by the simple circular buffer
leads to significant fragmentation of the memory space.
In practice, the circular buffer is difficult to apply even
in contexts where the number of separate queues is quite
small. The reason for this is that most high throughput
routers break variable length packets into smaller fixed
length cells for transmission through the switch fabric
that connects the line cards together (we use the term
“cell” in a generic sense). This means that cells
belonging to different packets arrive at the output side of
the router interleaved with one another. The output line
card must logically separate them as they come in. One
way to do this is to reassemble packets into separate
reassembly buffers before passing them to the queuing
subsystem. However, this requires a separate buffering
stage, which increases memory bandwidth and power
consumption. While one might write several packets into
the circular buffer concurrently (assuming that the packet
lengths are known when the first cell is received), this
makes it awkward to discard arriving packets that
contain an error that is discovered late in the processing
of a packet. For these reasons, the simple circular buffer
is rarely used.

Linked lists are a natural alternative to circular
buffers. With linked list queues, arriving cells can be
stored directly into fixed-size buffers in DRAM; buffer
pointers are passed to the queuing subsystem, which
stores these in linked list queues after a logical packet
reassembly operation has been performed. Linked list
queues have the advantage that they place no restriction
on how the memory is used. Queues may dynamically
share the available memory space or may be restricted in
their use, according to policy. This intrinsic flexibility is
the key factor in their popularity.

However, linked list queues are not without problems.
In a typical implementation, queue descriptors are stored
in the on-chip SRAM, while the linked list nodes
themselves are stored in off-chip SRAM. The use of off-
chip storage is needed to scale the list node storage in
proportion with the DRAM storage. The latency
associated with the use of off-chip SRAM can be a
serious performance bottleneck. In particular, the rate at
which we can perform back-to-back reads from the same
queue is limited by the memory latency. While
synchronous memory bandwidths have improved
significantly in recent years, the memory latency,

Dept. of Computer Science and Engineering
Washington University in St. Louis, MO, 63130

sailesh@arl.wustl.edu, jon.turner@wustl.edu, pcrowley@wustl.edu

Addressing Queuing Bottlenecks at High Speeds

Sailesh Kumar, Jonathan Turner, Patrick Crowley*

measured in clock ticks, has been getting worse. This
implies that as link speeds continue to increase, the
effective worst-case memory bandwidth of the off-chip
SRAM will be unable to keep pace.

The cost of off-chip SRAM is also a significant
concern. While DRAM prices have dropped dramatically
over the years, high performance SRAM has remained
relatively expensive. On a per byte basis, SRAM is more
than 100 times costlier than DRAM. So, in a system that
stores a single four byte pointer for every 64 byte
memory buffer, the cost of the SRAM can be six times
the cost of the DRAM. Increasing the DRAM buffer size
provides only a limited relief from this problem, as
minimum size IP packets with just 40 bytes are
extremely common in Internet traffic.

Another factor crucial to the effectiveness of queuing
is the algorithms used to schedule the queues. Practical
algorithms can be broadly classified as either timestamp
or round-robin. Time stamp based algorithms try to
emulate a GPS [2] by sending packets in approximately
the same order as sent by a reference GPS server. This
involves the computation of timestamps for various
queues, and sorting them in an increasing order. Round-
robin schedulers avoid the sorting bottleneck by
assigning time slots to the queues and transmitting
multiple packets with cumulative size up to a maximum
sized packet from the queue in the current slot. Both
schedulers require retrieving the length of subsequent
packets in the queue after transmitting any packet and
before scheduling the next packet. Therefore queuing
subsystems typically store the packet lengths in off-chip
SRAM along with the linked-list pointers, which ensures
faster access while also scaling the queuing subsystem in
proportion to the DRAM. Nevertheless, an off-chip
access involved in retrieving the packet lengths remains
a potential bottleneck.

Several authors [3][4][5] have studied the
performance issues surrounding the DRAM used for

packet storage. However, relatively little attention has
been given to the off-chip SRAM. We find that off-chip
SRAM can be a significant contributor to the cost of the
packet queuing subsystem and can place serious limits
on its performance, particularly as link speeds scale
beyond 10 Gb/s. This paper shows how queuing
subsystems using a combination of implicit buffer
pointers, multi-buffer list nodes and coarse grained
scheduling can dramatically improve the worst-case
performance, while also reducing the SRAM bandwidth
and capacity needed to achieve high performance. The
remainder of the paper is organized as follows. Details of
a linked-list based queuing subsystem are given in
Section 2. Section 3 introduces buffer aggregation and
Section 4 analyzes its performance. Section 5 reports the
performance results on an experimental queuing setup.
Section 6 summarizes benefits and drawbacks. Section 7
concludes the paper.

2. Linked-List Queues and Bottlenecks

In this paper, we consider a high performance
queuing subsystem architecture using a combination of
DRAM for packet storage, on-chip SRAM for queue
descriptors and off-chip SRAM to implement linked list
queues. Linked list queues can be implemented in either
of the following two ways: a) implicit mapping in which
the address of the linked list nodes in SRAM directly
imply the address of the buffers in DRAM, or b) explicit
mapping in which buffers are dynamically mapped to the
list nodes (consequently the list node explicitly stores the
buffer address). Implicit mapping clearly eliminates the
need to store buffer identifiers at the nodes. Explicit
mapping, on the other hand, is effective for multicasting,
because it allows a buffer to exist at multiple list nodes.
In this paper, we focus on implicit mapping and leave
our multicast solution to future work. The schematic of
the queuing subsystem with implicitly mapped linked-
list nodes is shown in Figure 1. We enumerate the key
features below:

� DRAM consists of fixed sized buffers; the address
of each buffer is referred to as the buffer identifier.

� A free queue keeps all unused buffers. Packet
queues hold the active buffers. A buffer is taken
from the free queue upon cell arrival (we assume
that packets either arrive as fixed sized cells, or are
fragmented as they arrive) and added to the target
packet queue.

� Every linked-list node stores a) the address of the
next node of the queue, b) a bit to indicate if a new
packet starts at the next node and c) the length of the
packet starting at the next node. Storing packet
lengths at the node before the one where it starts,
saves the write and read associated with the store
and retrieve of the packet length, as it is done with
the reads and writes of the links.

2 96B 1

7

X

11 40B 1

4

X

0 11 40B

9 4 80B

pkt1, cell1 (40B)

pkt2, cell1(64B)

pkt2, cell1 (16B)

pkt2, cell2 (32B)

pkt1, cell1 (64B)

pkt3, cell1 (40B)

DRAMSRAMOn-chip

One-to-one
implicit

mapping

Head
node

Tail
node Head packet

length

Next packet
length

Next node

Next SOP bit

Head Tail

Free queue
descriptor

Figure 1: Queue structure with implicit mapping;
on-chip memory stores queue descriptor, SRAM

implements linked-lists and also stores packet
lengths, DRAM stores packets.

� Queues are identified by queue descriptor, which
stores the head and tail node of the linked-list. It
also stores the length of the first packet in the queue
as a consequence of the above feature, where packet
lengths are stored one node ahead, which also
enables the length of packets at the head of every
queue to be readily available (as queue descriptors
are kept on-chip).

Such a queuing structure provides several benefits:
reduced memory fragmentation, few restrictions on
queue sizes, and scalability. However, to demonstrate its
effectiveness we must consider the following bottlenecks
as well.

2.1. SRAM latency and Dequeue Throughput

Since linked-list nodes are stored in off-chip SRAM,
every dequeue involves an off-chip read access, which is
20 ns even with today’s state-of-the-art technology
(considering inter-chip communication latencies). Thus,
whenever multiple cells are sent from a queue, each
subsequent cell requires 20 ns, which translates into a
throughput of about 25 Gbps with 64-byte cells. This is a
serious concern since sending multiple cells back-to-
back from a singe queue is the common case,
considering that average Internet packet length is more
than 200 bytes. Moreover, round-robin fair queuing
algorithms often send several cells (i.e., the number of
cells equaling the maximum packet size) whenever a
queue is selected.

2.2. Fair queuing algorithms performance

Another potential bottleneck in queuing subsystems is
the efficiency of the fair queuing algorithms which
schedule the queues. Most queuing algorithms select
queues based upon the length of the packet at the head of
either the current queue or all queues. When packet
lengths are stored in an SRAM (with linked-list nodes in
this case), an off-chip reference is required after sending
every packet. Pre-fetching the lengths of a few packets at
the beginning of every queue provides only a limited
relief, because several packets are sent from a queue, one
after another, quite frequently.

2.3. Linked-list memory

A large packet buffer requires a proportionally large
memory to store the linked-list nodes. For example, a
512 MB packet buffer requires 40 MB of linked-list
memory, approximately 8% of the buffer. Since the per
bit cost of SRAM is 100 times higher than DRAM, the
cost of this SRAM would be 8 times that of DRAM.
Moreover, SRAM of this size requires at least 12 chips
(maximum available SRAM density is 36 Mbit per chip)
while data memory requires only 4 chips (maximum
DRAM density is 1 Gbit per chip). Requiring 16 chips
for the packet buffer at every line card clearly raises

concerns over the scalability and reliability of the entire
system, given the power consumption and on-board
design complexity involved.

Another issue surrounding such a linked-list structure
is the required memory bandwidth. Each arriving and
departing packet requires two linked-list operations, one
targeting the free queue and one target the destination
queue, for a total of 4 operations per arrival/departure
time. The fastest commercially available memory (QDR-
SRAM running at 250 MHz DDR clock) allows only 4
random accesses every 16 ns while the inter arrival time
of 64-byte cells at 40 Gbps is 12 ns. Thus, the random
access bandwidth of the linked-list memory is also a
potential bottleneck.

3. Using Multi Buffer List Nodes

We propose using multi-buffer list nodes (also called
aggregated buffers) in which every list node contains
multiple buffers. Figure 2 illustrates a queue of multi-
buffer nodes. When multiple cells are referenced in each
linked list node, fewer link list traversals will be required
thus reducing the memory bandwidth requirement.
Moreover, implicitly mapped multi-buffer nodes reduce
the ratio of list nodes to DRAM buffers, thereby
reducing the linked-list memory size for a given number
of buffers. While memory size is important, the most
notable benefit of buffer aggregation is that it ensures
that linked-list memory access latency and bandwidth
doesn’ t limit the performance. Multi-buffer list nodes
remain effective for both explicit as well as implicit
mapping; however, here we consider implicit mapping.

Implicit mapping, by definition, keeps a one-to-one
static map between buffers and list nodes. With buffer
aggregation, every list node is uniquely mapped to X
buffers where X is referred to as the degree of
aggregation. While it is possible to map any arbitrary set
of X buffers, such a mapping will unnecessarily
complicate the translation of list nodes to buffer IDs. A
simple and efficient mapping is direct mapping, in which
a set of contiguous buffers are mapped to a list node with
the address of the first buffer being the same as the
node’s address. A special case occurs when the degree of

Next node Next node Next node Next node. . .

. . .
No Data

:

First Cell

0

:
:

X-1

Cell

:

:

Cell

:

:

Cell

:

Last Cell

No Data

:

Head node Tail node

Head occupancy

Implicit mapping

Tail occupancy

Queue descriptor

Figure 2: Queue descriptors, linked list nodes and

DRAM buffers with buffer aggregation

aggregation is a power of 2, when translation from list
node to its buffers involves only bit shifts. We consider
such direct one-to-one mappings due to their simplicity
and efficiency.

A new list node is allocated for an arriving cell only if
all X buffers at the tail node of the corresponding queue
are full. Similarly, the head node is de-allocated only
after transmitting all X buffers from it. Thus, in order to
make the node allocation or de-allocation decision for
any cell, the buffer occupancy of the tail and head nodes
must be examined. For arriving cells, therefore, the
destination queue must be known before the cell can be
stored. This means that packet classification must occur
prior to storage. It may be argued that this will require
additional on-chip buffers to hold the arriving packets
while they are classified. We find that this additional
buffering is very small in practical systems given that the
packet header arrives first and that classification must be
fast enough to handle back-to-back minimum sized
packets.

4. Performance with Buffer Aggregation

When queues are backlogged, aggregated buffers help
because, on average, linked list operations and buffer
allocations are only required every X cells for
aggregation degree X. To demonstrate the broad benefit
of aggregated buffers, we must consider two important
cases. First, when queues are not heavily backlogged and
the average queue length remains low, node allocation
and de-allocation may occur more frequently. Second, it
may be that many or all queues have a near-empty
aggregated buffer at the head position (or a near-full
buffer at the tail); in this scenario, a potentially long
sequence of de-allocations (and allocations) is a concern.
Before considering these scenarios, we will establish the
following result.

Lemma 1: Without aggregation, linked-list memory
must allow 2 accesses every T, where T is the smaller of
the inter-cell arrival and inter-cell departure times.

Proof: Let the cell arrival and departure intervals be
Ta and Td, respectively. For every arriving cell, a node is

de-allocated from the free queue and linked to the
packet’s queue. Similarly for every departing cell, a node
is de-allocated from the packet’s queue and linked to the
free queue. While, each of these requires two accesses to
the link memory, node reuse (via a free node buffer) can
save two accesses during every max(Ta, Td). Therefore
during any period max(Ta, Td), we need 2*max(Ta,
Td)/min(Ta, Td) accesses. Thus, 2 link accesses during
every min(Ta, Td) is sufficient (although a small buffer
may be needed to hold few link nodes because the node
addition and removal times may be different). �

4.1. Scenario 1: queues remain near empty

When average queue length is small, link memory
might be accessed relatively frequently, especially if the
queue length falls below X cells. If the average queue
length is l cells (l < X), a cell will require a link access
every l cells. It can be argued that when l becomes 1, an
aggregated buffer will require as many link accesses as
in the non-aggregated case resulting in no performance
improvement. This is true, however this scenario does
not represent a bad case since no link list operations are
required (i.e., with only one cell per queue, no back-to-
back dequeues will be performed).

4.2. Scenario 2: queues with near-empty heads

In this scenario, it can be argued that even if the
linked-list is accessed once for every X cells on an
average, the worst-case queuing throughput can remain
the same. For example, it is possible that head node of
several queues contains only one cell, and these queues
are scheduled one after another. Similarly, a stream of
packets could arrive at queues whose tail node is full. In
these worst-case scenarios, linked list accesses can
remain the same as in the non-aggregated case.
Moreover, it can also be argued that buffer aggregation
might make node reuse tricky because their allocation
and de-allocation becomes non-deterministic.

The arguments for the worst-case scenarios are valid,
but we find that adding small enqueue and dequeue
buffers to accommodate periods of worst-case node

enque
uer

deque
uer

Linked list memory

Arrival
process

Departure process
(Scheduler)

Se

Sd = 1
Elastic buffer

holds free nodes
Consumes Produces

1
XTs

1
XTa

So
X-1
XTs

1
Ta

1
Td

1
Ts

1
Ts

balan
cer

enqueuer
queue

output
queue

Figure 3: Queuing subsystem model around the linked-list memory accesses

occupancy is an effective way to keep the average
performance very high. An important consequence of
this change is that we meet worst-case performance
requirements probabilistically. However, we will show
that modest buffering requirements can provide
acceptably low drop probabilities.

Figure 3 shows our system model. The enqueuer,
balancer, and dequeuer nodes represent the active
components, which accesses the link memory. The
elastic buffer implements node reuse so that deallocated
nodes can immediately be allocated to another queue
without an off-chip transaction.

The input queue at the enqueuer and the output queue
at the dequeuer provide buffering during worst-case
conditions. The objective is to keep the enqueuer queue
near empty and the output queue near full because the
probability that enqueuer-queue overflows will be the
cell discard probability and the probability that output-
queue underflows will be the output link under-
utilization. To demonstrate that the system can meet
worst-case conditions with very high probability, we
have a developed a discrete time Markov model to
determine the size distribution of these queues.
Comprehensive model details can be found in the
Appendix. In the next section, we report the results for
an experimental setup and technological parameters.

4.3. Experimental setup and results

In order to validate the effectiveness of buffer
aggregation, we will now apply our model to an
experimental setup shown in Error! Reference source
not found.. Each link operates at OC768 rate and
queuing subsystems are employed at both input and
output side of the switch. We assume 64 byte cell
switching and consider switch speedups of 1 and 2. With
speedup 1, a 40 Gb/s link rate requires one dequeue and
one enqueue every 12 ns. With a speedup of 2, the input
subsystem has to perform a dequeue every 6 ns (Td),
while the output subsystem has to perform an enqueue
every 12 ns (Ta). We keep on-chip processing time for

enqueues and dequeues (Ts) at 3 ns; thus the on-chip
processing speed is sufficient to keep up with the
enqueue and dequeue rates.

If a next generation QDR-III SRAM running at 333
MHz is used to implement the linked list, it will support
a random access every 3 ns (Tm) and will have an access
latency of 15 ns (Tr), (assuming an aggressive chip-to-
chip communication latency). Memory bandwidth is
clearly sufficient (from Lemma 1) even without buffer
aggregation. However, access latency clearly exceeds the
dequeue intervals of 12 ns and 6 ns, thus cells can’t be
dequeued sufficient rates. Buffer aggregation of degree 2
should solve this problem instance. However, in order to
demonstrate the effectiveness of buffer aggregation, we
consider a slower SDR-SRAM with a clock period, Tm of
12 ns and latency, Tr of 24 ns. Below, we summarize the
performance of aggregated buffers for the different
combinations of queuing subsystems and speedups.

4.3.1. Input/Output queuing; Switch speedup = 1
In this case Ta and Td are both 12 ns. From the analysis

presented in the Appendix, the queuing subsystems
become stable with a degree of aggregation of 4 or
higher. From the results plotted in Figure 5, it is clear
that when degree of aggregation is more than 4, cell
discard probability and output link utilization improves
with increasing enqueuer/output queues. In the same
figure, we also report the steady-state of various states of
the enqueuer and output queue. It is apparent that the
likelihood of the enqueuer queue being full and the
output queue being empty is very low.

4.3.2. Output queuing; Switch speedup = 2
Ta and Td are 6 and 12 ns. Queuing subsystem

becomes stable with a degree of aggregation of 4 or
higher. We report the above results in Figure 5.

4.3.3. Input queuing; Switch speedup = 2
Ta is 12 ns and Td is 6 ns. Queuing subsystem becomes

stable with a degree of aggregation of 10 or higher and
we report the above results in Figure 5.

It is apparent from these results that a higher degree of
aggregation improves the performance for relatively
smaller request buffers. It is also apparent that larger
elastic buffer and enqueuer and output queues benefits
only when queuing subsystem parameters are stable.

5. Coarse-Grained Scheduling

We have mentioned that most queuing subsystems
store packet lengths and boundary bits with the linked-
list nodes. Such a structure results in poor space
efficiency because a) short packets don’t use all length
bits and b) long packets don’t use length bits at the nodes
pointing to the middle of packet (MOP). Buffer
aggregation can improve this inherent inefficiency with

:
:

Input
Queuing

Output
Queuing

crossbar
speedup = 1, 2

:

:

:
:

:

:

Figure 4: Experimental setup for the queuing

subsystem performance analysis; every link rate is
OC768 (40 Gbps). Two scenarios with switch speedup

1 and 2 have been considered.

the help of the following mechanism to encode the
packet boundary and length.

5.1. Storing packet boundary and length

We use an alternate mark inversion (AMI) encoding to
mark the packet boundary, and keep X bits every node
for this purpose. A sequence of bits of the same polarity
indicates the continuation of a packet. As soon as a bit
alternates, the end of the current packet is inferred. To
store the packet lengths, we argue that (X-1)log2C+log2P
bits at every node is sufficient, where C is the cell size
and P the maximum packet size. We take the three
possible scenarios and show that these many bits are
sufficient. A) When all packets at a node are single cell,
they will need a total of X*log2C bits, less than what we
have. B) If a packet spans n buffers but lies entirely
within a node, it will need log2(n*C) bits while n*log2C
bits is available for it, which is sufficient because

0 log)(log 22 >∀×≤ nCnnC . C) When a packet starts

at a node and ends at another, it will need log2P bits.
Since only one such packet can exist at a node, its length
can be stored. The resulting node structure with the
boundary and length bits is shown in Error! Reference
source not found..

This scheme improves the space efficiency to store
packet lengths from log2P bits per cell to roughly log2C
bits per cell for higher degree of aggregations. The flip
side of a high aggregation is that it increases the size of

queue descriptors, which store the packet length and
boundary of the head (and possibly the tail) node. We
now introduce a coarse-grained approach to storing
packet lengths which reduces the queue descriptor size
as well as the node sizes.

5.2. Storing packet lengths

In this coarse grained approach, we use a clever
encoding to store the packet lengths. A multi-buffer node
stores only the AMI encoded packet boundary mask
(requires X bits) and the cumulative length of all packets
starting at the node, i.e. whose SOP cell resides there
(requires log2(X*C+P) bits). This scheme clearly reduces
the space required to store the packet lengths from
roughly log2C bits per cell in the first scheme to roughly
(log2X*C)/X bits per cell. Consequently, the size of
queue descriptor also gets reduced.

However, the length of packets (in bytes) beginning at
any node can’t be determined with this scheme, therefore
the question arises: how will the scheduler schedule the
packets? We show that the information present at the
nodes is sufficient to ensure a fairly accurate scheduling
because the cell count of any packet can be determined.
Also, after sending the last packet from a multi-buffer
node, the total number of bytes sent from the node can
be determined. We will now briefly discuss how fair
scheduling can be maintained.

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

2 4 6 8 10 12 14 16
Degree of aggregation, X

Cell loss rate (enqueuer Q = 16)
Output link idle (output Q = 32)
Cell loss rate (enqueuer Q = 32)
Output link idle (output Q = 64)

2 4 6 8 10 12 14 16
Degree of aggregation, X

2 4 6 8 10 12 14 16
Degree of aggregation, X

Input queuing, switch speedup = 2 Output queuing, switch speedup = 2 Both queuing, switch speedup = 1

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 4 8 12 16 20 24 28 32
Occupancy level

Enqueuer queue

Output queue

0 4 8 12 16 20 24 28 32
Occupancy level

0 4 8 12 16 20 24 28 32
Occupancy level

Degree of aggregation = 12
Input queuing, speedup = 2

Degree of aggregation = 8
Output queuing, speedup = 2

Degree of aggregation = 6
Both queuing, speedup = 1

 Figure 5: A) Upper row plots the cell discard rate and output link utilization for 2 sets of enqueuer queue
and output queue sizes). Link rate is 40 Gbps and linked-lists memory clock period is 12 ns and access
latency is 24 ns. B) Steady-state probability of the enqueuer queue, and output queues (various queue
capacities: output queue = 32, elastic buffer = 16, enqueuer queue = 16).

5.3. Using coarse-grained scheduling

In coarse-grained scheduling, packet lengths are
represented as multiples of cells (64-byte, etc) instead of
bytes, and the fair queuing algorithm selects queues
based upon cell counts. Note that such a policy might
result in persistent unfairness and poor delay bounds for
the flows with relatively odd sized packets. For example,
in a system with 64-byte cells, a flow with all 65-byte
packets will send as many packets as a flow with equal
priority and 128-byte packets. In order to ensure long-
term fairness, we propose a simple technique which uses
the cumulative packet length information stored at every
node. With cumulative byte and cell counts of every
packet starting at a node known, we compute the
normalized average number of bytes in every packet
using the following equation,

�

�
×

=
nodeat packets all

nodeat packets all

(cells)Length

(bytes)Length (cells)Length
(bytes)Length

When the fair queuing algorithm makes selections
based upon the above packet length, long term fairness is
ensured. In fact, fairness is ensured within a time
window equal to the time needed to send all packets in a
single multi-buffer node. Since a maximum of X packets
can begin at a node, fairness is ensured for every X
packets transmitted from a queue. We leave the further
analysis of this issue to future work.

6. Summarizing Benefits and Drawbacks

With buffer aggregation, cells can be sent at a rate of
X cells per linked-list memory access time, if linked-list
accesses are the only bottleneck. A high degree of
aggregation will eliminate the bottleneck of linked-list
memory access latency and bandwidth. Indeed, cheaper
linked-list memories with less random access bandwidth
and higher latencies can be used, as compared to a
traditional approach.

Another notable benefit of buffer aggregation is a
factor of X reduction in the number of linked-list nodes.
With the addition of coarse-grained scheduling, this
translates into a factor of X reduction in linked-list
memory. A large X, therefore, can enable on-chip
memories to be used, which will eliminate an external
component and the associated interface.

However, aggregated buffers may result in wastage of
DRAM space when the head and tail nodes are not fully
occupied. In the worst case, every queue can waste (X-1)
buffers in the head and tail node, thus,

)1(queues of No2space Wasted −××= X
For a system with 512 MB of DRAM, 64 thousand

queues, and 64-byte cells; a degree of aggregation of 8
will translate into wastage of about 10% of DRAM space
in the worst-case and about 5% in average case.

Buffer aggregation might also require a careful design
to ensure good DRAM efficiency. With buffer
aggregation, arriving cells typically occupy the first
available buffer at the tail node. Therefore, traditional
DRAM bank arbitration techniques can’t always be used
with writes; this can result in reduced DRAM efficiency.
We believe that out-of-order writes, along with re-
ordering, can solve this problem. Nonetheless, we leave
this issue to future work.

7. Conclusions

In this paper, we have pointed out the potential
bottlenecks associated with the linked-list queuing
subsystems as the link rates scales beyond 10 Gb/s. We
have proposed the use of buffer aggregation, which
employs multi-buffer linked-list nodes. With the aid of a
discrete time Markov analysis, we have shown that
multi-buffer list nodes can significantly improve queuing
throughput and practically eliminate the queuing
bottlenecks associated with the linked-list memory
bandwidth and access latency. Multi-buffer list nodes
when combined with the implicit mapping and coarse-
grained scheduling can reduce the amount of SRAM
needed to hold the list nodes by a factor of 10 at the cost
of about 10% wastage of the DRAM space, assuming an
aggregation degree of 16. Such reductions in SRAM size
can translate into significant cost savings considering
that cost of SRAM frequently dominates that of DRAM
in high speed queuing subsystems.

8. References
[1] C. Villamizar and C. Song, “High Performance TCP in

ANSNET,” Computer Communication Review, Vol. 24, No. 5, pp.
45-60, Oct. 1994.

[2] A. K. Parekh, “ A generalized processor sharing approach to
flow control in integrated services networks,” Ph.D. thesis, Dept.
of Elect. Eng. and Comput. Sci., M.I.T., Feb. 1992.

[3] S. Iyer, R. R. Compella, and N. McKeown, “Designing
Buffers for Router Line Cards,” Stanford University HPNG
Technical Report - TR02-HPNG-031001, Stanford, CA, 2002.

[4] S. Iyer, R. R. Kompella, and N. McKeown, “ Analysis of a
Memory Architecture for Fast Packet Buffers,” IEEE HPSR’02,
Dallas, May 2001.

[5] A. Nikologiannis, M. Katevenis, “Efficient Per-Flow Queuing
in DRAM at OC-192 Line Rate using Out-of-Order Execution
Techniques,” Proc. IEEE Int. Conf. on Communications
(ICC'2001), Helsinki, Finland, pp. 2048-2052, June 2001.

MOP
Cell

EOP
Cell

SOP
Cell

MOP
Cell

MOP
Cell

EOP
Cell

SOP/
EOP

SOP/
EOP

SOP
Cell

MOP
Cell

1 1 0 0 0 0 1 0 1 1

Unused Length Length Length Length

4*log2C bits log2P bits
log2C log2C

Data in the buffers at this list node

Packet boundary mask

Packet length mask

Figure 6: Data structure for packet boundary and

length with a degree of aggregation of 10.

9. Appendix

Model of the queuing subsystem with bottleneck

formulated around the linked list memory bandwidth and
access latency is shown in Figure 3 (Section 4). We
assume that latency associated with the dequeues from
free queue aren’t the bottleneck (multiple free queues can
be employed for this purpose and free nodes can be
dequeued from them in a round-robin order). We first
isolate the arrival and departure processes. Arrival
process maps the arriving cells to a queue and enqueues
them as quickly as possible. Departure process dequeue
cells from the queues selected by the scheduler at a rate
sufficient to keep the output link busy. With buffer
aggregation, the occupancies of head and tail node
increases linearly with arriving cells, thus the occupancy
of head and tail node remains random at any random
time instant. Therefore, likelihood of nodes allocation
and de-allocation remains uniform random with a
probability of 1/X, irrespective of the queue selection
order.

Since linked-list memory is the bottleneck, cells that
don’t need a link access are processed quickly while
others wait for the memory. We keep a queue at the
arrival process to hold such cells and refer to it as
enqueue-queue; cells from this queue are processed by
an enqueuer as it gets to access the link memory. A
similar queue for dequeues can’t be employed because 1)
Dequeues has to be performed strictly in order and
therefore departure process can’t continue if some
requests are waiting for the link access, 2) Even if we
allow out-of-order dequeues; due to the linked-list
structure, subsequent cells from a queue can be dequeued
only after the one requiring the link access is dequeued.
3) Third reason has to do with the operation of scheduler
which requires the packet lengths in order to make
selections. Since the queuing subsystems, we consider,
stores packet length at the list nodes, whenever a
dequeue requires link access, length of the next packet is
available only after the access is serviced and only
thereafter, scheduler can proceed.

Our principle metric of the efficiency of departure
process is output link utilization, i.e. how often the
output link remains busy. We maximize this metric by
keeping an output queue in which departure process
stores the dequeued cells. This queue is serviced at the
output link rate and the objective is to keep it non-empty.
In order to simplify the model, we also keep a dequeue-
queue. Departure process dequeues the cells right away
if link access is not required otherwise puts the request
into the dequeue-queue. A dequeuer services the requests
from this queue as the link memory is available and puts
the dequeued cells in the output queue. Clearly,
departure process stalls whenever dequeue-queue

remains non-empty, therefore, we keep the size of
dequeue-queue at 1.

The queuing subsystem also incorporates an elastic
buffer, which holds few free list nodes. Enqueuer
services requests from the enqueue-queue only if elastic
buffer has free nodes available and the dequeuer services
requests from the dequeue-queue only if elastic buffer
has some free space. A balancing process tries to keep
this elastic buffer nearly half filled, by accessing the link
memory.

Our objective is to compute the probability that the
enqueue-queue overflows, which will be the cell discard
probability and the probability that output-queue
underflows. We solve the queuing subsystem model
(shown in Section 4) using a discrete time Markov
analysis. Let Ta and Td be the inter cell arrival and
departure times; the linked-list memory allows an access
every Tm, with the read access latency being Tr. Also, let
the enqueue and dequeue process takes Ts time to service
requests that doesn’t need a link access. Thus, the one
which needs a link access will take (Ts+Tw) and
(Ts+Tw+Tr) respectively, where Tw is the waiting time of
a request in the queue. The queuing subsystem is called
to be in a stable state when following three conditions
are satisfied,

2

),min(
 da

m

TTX
T

×
< (1)

X

XT

X

TTT
T ssrm

d

)1(),max(

−
+

+
> (2)

X

XT

X

TT
T ssm

a

)1(),max(

−
+> (3)

Equation 1 requires at most X times lower link
bandwidth than in a non-aggregated system given by
Lemma 1. Equation 2 requires that the memory latency
should have a toll on only one cell among X cells.
Equation 3 is similar with the exception that enqueue
process doesn’t incur any link read access latency. An
ideal queuing subsystem in a stable state, should keep
the outgoing link busy and also keep up with the
incoming link. With the aid of discrete time Markov
analysis, we will now show that an aggregated queuing
subsystem, in stable state, also ensures nearly zero cell
loss probability and 100% output link utilization.

We let the size of enqueue-queue, dequeue-queue,
output-queue and elastic buffer be Se, Sd, So and B,
respectively, and fe, fd, fo and f be their fill levels. Note
that Sd is 1. In order to enable stable balancing of the
elastic buffer, we define a threshold � , such that the
balancer contends for link access to balance the elastic
buffer only when its occupancy deviates by more than �
from the mean B/2. We also dynamically give the link
access to either enqueuer, or dequeuer or the elastic
buffer based on their urgency � e, � d and � b. Urgency is
defined as the normalized imbalance and is given by the

following equations for the enqueuer, dequeuer and
elastic buffer, respectively,

eee Sf /=α (4)

oood SFS /)(−=α (5)

else

BfwhenBBf

fBwhenBfB

b

0

)2/()2//()2/(

)2/()2//()2/(

∆+>∆−∆−−
>∆−∆−−∆−

=α (6)

Clearly, the system performance is maximized when
a) the enqueue-queue is least likely to get filled, b)
elastic buffer remains balanced and c) output-queue
remains non-empty.

We will now define a discrete time Markov chain to
model the system. We first define a variable t, which
increments every unit time and rolls over once it reaches
N, where N is the least common multiple (LCM) of Ta,
Td, Ts and Tm. t is used as the reference for all events as
follows.

Probability that a request arrives in the enqueue-queue
is,

else0

)0mod and (when /1 =<
=

aee
e

TtSfX
P (7)

Probability that a request arrives in the dequeue-queue
is,

else0

)0mod and and 0(when /1 =≠=
=

sood
d

TtSffX
P (8)

Probability that a request which doesn’t need a link
access, arrives in the output queue is,

else0

)0mod and and 0(when 1 =≠=−
= sood

o
TtSffX

X
P (9)

Link memory request is serviced whenever (t mod Tm)
is 0.

We define another variable, w, which indicates the
time for which dequeuer must wait to receive the data
read from the link memory. w is set to Tr whenever link
memory serves the dequeuer, and decrements every unit
time thereafter. When it reaches 1, data is received,
request from the dequeue-queue is flushed and dequeued
cell is written into the output queue.

State of the queuing subsystem is defined as (fe, fd, fo,
f, w, t). We let π(fe, fd, fo, f, w, t) denote the steady-state
probability that the system is in state (fe, fd, fo, f, w, t). To
compute the steady-state probabilities of all states, we
need to specify transition probabilities that give the
probability of a transition from one state to another. Let
δ(s1,s2) denote the transition probability from state s1 to
state s2. Then, we can write, �

=
1

),()()(2112 s
ssss δππ (10)

To simplify the specification of the transition
probabilities, we view the transition as happening in four
phases; an arrival phase followed two service phases,
followed by a departure phase. During the arrival phase,
new entries may (or may not) arrive in the enqueue,

dequeue or output queues. During the first service phase,
a memory request from one of the three requesters is
serviced. During the second service phase, data read
from the link memory may arrive hence the dequeued
cell is written into the output queue and the dequeue-
request is flushed from the dequeue-queue. During the
departure phase, an entry from the output queue is sent. t
is incremented and w is decremented during the
departure phase. If we let δa(s1,s2), δs1(s1,s2), δs2(s1,s2)
and δd(s1,s2) represent the probability of a transition
between the phases, and πa(s), πs1(s), and πs2(s) be the
intermediate state probabilities, they can be related
through the following equations, �

=
1

),()()(2112 s aa ssss δππ (11)
�

=
1

),()()(211121 s sas ssss δππ (12)
�

=
1

),()()(2121122 s sss ssss δππ (13)
�

=
1

),()()(21122 s ds ssss δππ (14)

We can use these equations to solve for the steady
state probabilities as follows. First, we assign initial
values to π(s). To ensure that the system is equally likely
to be with any value of t, not just in the steady state, we
assume that the reference counter is initialized to a
random value. We also let the elastic buffer half filled
and other queues empty initially. We reflect these initial
values in our model, by initializing

NtB /1),0,2/,0,0,0(=π for all values of t and letting
all the other state probabilities be zero. We use these
initial state probabilities, together with the transition
probabilities δa(s1,s2) to compute values of πa(s). We
then use a) πa(s) and δs1(s1,s2) to compute πs1(s), b) πs1(s)
and δs2(s1,s2) to compute πs2(s) and finally c) πs2(s) and
δd(s1,s2) to compute the new π(s). We continue in this
fashion until successively computed values of π(s)
converge.

Note that t is the reference counter, and therefore the
state probabilities associated with any value of t must
sum to 1/N at all time instants,

Ntwffff
wffff ode

ode
/1),,,,,(

,,,,
=

�
π (15)

With these preliminaries out of the way, we can
proceed to specify the transition probabilities. Transition
probabilities for the arrival phase are,

deodeodea PPtwfffftwffff ×=++)),,,,1,1(),,,,,,((δ (16)

oeodeodea PPtwfffftwffff ×=++)),,,1,,1(),,,,,,((δ (17)
)1()),,,,,1(),,,,,,((odeodeodea PPPtwfffftwffff −−=+δ (18)

deodeodea PPtwfffftwffff)1()),,,,1,(),,,,,,((−=+δ (19)

oeodeodea PPtwfffftwffff)1()),,,1,,(),,,,,,((−=+δ (20)
)1)(1()),,,,,(),,,,,,((odeodeodea PPPtwfffftwffff −−−=δ (21)

Transition probabilities for the first service phase are,
If ((t mod Tm � 0) or (� b = � e = 0 and (� d = 0 or w �

0)),

1)),,,,,(),,,,,,((1 =twfffftwffff odeodesδ (22)
If (� e

�
 � b and (� e

�
 � d or w � 0)),

1)),,1,,,1(),,,,,,((1 =−− twfffftwffff odeodesδ (23)
If (w = 0 and � d

�
 � b and � d

�
 � e),

1)),,1,,,(),,0,,,,((1 =+ tTfffftffff rodeodesδ (24)
If (� b

�
 � e and (� d

�
 � d or w � 0) and f < B/2),

1)),,1,,,(),,,,,,((1 =+ twfffftwffff odeodesδ (25)
If (� b

�
 � e and (� d

�
 � d or w � 0) and f > B/2),

1)),,1,,,(),,,,,,((1 =− twfffftwffff odeodesδ (26)
Transition probabilities for the second service phase

are,
If (w = 1 and fd > 0),

1)),,,1,1,(),,,,,,((2 =+− twfffftwffff odeodesδ (27)
Else

1)),,,,,(),,,,,,((2 =twfffftwffff odeodesδ (28)
This essentially indicates that when w reaches 1, data

read from the link memory arrives, the dequeued cell is
put into the output queue and request is flushed from the
dequeue-queue.

Transition probabilities for the departure phase are,
If (t mod Td = 0 and fo > 0),

1)),,,1,,(),,,,,,((=+−− twfffftwffff odeodedδ (29)
Else

1)),,,,,(),,,,,,((=+− twfffftwffff odeodedδ (30)
Where, w- = max(0, w-1) and t- = (t+1)mod(N)
With these equations, we compute steady-state

probabilities as described. Note that when computing a
steady-state probability value, many distinct values are
summed together. During such summations, small values
are often added to much larger values leading to loss of
precision. One can minimize the potential for loss of
precision by first computing the values to be summed,
sorting these values, and then adding them in order from
the smallest to the largest. One can also normalize the
results after every step. In general, steady-state
probabilities should sum to 1 at the end of each step.

Given the steady-state probabilities, we can compute
the probability that an arriving cell is discarded as, �

×=
twfff odee

od
twfffSP

,,,,
),,,,,()discardPr(π (31)

and the output link utilization as, �
−=

twfff de
de

twfff
,,,,

),,,0,,(1util.link Output π (32)

	Addressing Queuing Bottlenecks at High Speeds
	Recommended Citation
	Addressing Queuing Bottlenecks at High Speeds

	tmp.1469562486.pdf.i5tbg

	Abstract: Abstract: Modern routers and switch fabrics can have hundreds of input and output ports running at up to 10 Gb/s; 40 Gb/s systems are starting to appear. At these rates, the performance of the buffering and queuing subsystem becomes a significant bottleneck. In high performance routers with more than a few queues, packet buffering is typically implemented using DRAM for data storage and a combination of off-chip and on-chip SRAM for storing the linked-list nodes and packet length, and the queue headers, respectively. This paper focuses on the performance bottlenecks associated with the use of off-chip SRAM. We show how the combination of implicit buffer pointers and multi-buffer list nodes can dramatically reduce the impact of buffering and queuing subsystem on queuing performance. We also show how combining it with coarse-grained scheduling can improve the performance of fair queuing algorithms, while also reducing the amount of off-chip memory and bandwidth needed. These techniques can reduce the amount of SRAM needed to hold the list nodes by a factor of 10 at the cost of about 10% wastage of the DRAM space, assuming an aggregation degree of 16.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: June 13, 2005
	Author: Authors: Kumar, Sailesh; Turner, Jonathan; Crowley, Patrick
	Title: Addressing Queuing Bottlenecks at High Speeds
	ReportNumber: 2005-28
	DepartmentName: Department of Computer Science & Engineering

