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Abstract

Modern routers and switch fabrics can have hundreds
of input and output ports running at up to 10 Gb/s; 40
Gb/s systems are starting to appear. At these rates, the
performance of the buffering and queuing subsystem
becomes a significant bottleneck. In high performance
routers with more than a few queues, packet buffering is
typically implemented using DRAM for data storage and
a combination of off-chip and on-chip SRAM for soring
the linked-lig nodes and packet length, and the queue
headers, respectively. This paper focuses on the
performance bottlenecks associated with the use of off-
chip SRAM. We show how the combination of implicit
buffer pointers and multi-buffer list nodes can
dramatically reduce the impact of buffering and queuing
subsystem on queuing performance. We also show how
combining it with coarse-grained scheduling can
improve the performance of fair queuing algorithms,
while also reducing the amount of off-chip memory and
bandwidth needed. These techniques can reduce the
amount of SRAM needed to hold the list nodes by a
factor of 10 at the cost of about 10% wastage of the
DRAM space, assuming an aggregation degree of 16.

1. Introduction

High speed packet queuing is cruciad to the
performance of the high throughput packet switching
systems used at the core of the Internet. As the Internet
takes on a more central role in mission-critical
applications, there is a growing need for sophisticated
gueuing subsystems that can isolate traffic on either a per
flow or aggregate flow basis. Such subsystems on router
line cards are both a significant contributor to the cost of
routers and a potential performance bottleneck because
backbone routers require queuing subsystems capable of
holding as much data as the link can forward in 100 to
500 ms [1]. An OC192c link requires between 125 and
625 MB of buffer space operating at 10 Gh/s. With 40
Gb/s links, both speed and size will quadruple.

For routers that implement a simple FIFO output
gueue, it's possible to use a very simple queuing
architecture in which a large circular buffer is
implemented in DRAM. This requires a single on-chip
gueue descriptor, which provides head and tail pointers

" This work was supported in part by NSF grants
CCF-0430012 and CNS-0325298 and by a gift from
Intel Corp.

and possibly packet and byte counters. One can extend
this approach to systems with a small number of queues,
but if more than a handful of queues are needed, the
dtatic partitioning required by the simple circular buffer
leads to significant fragmentation of the memory space.
In practice, the circular buffer is difficult to apply even
in contexts where the number of separate queues is quite
small. The reason for this is that most high throughput
routers break variable length packets into smaller fixed
length cells for transmission through the switch fabric
that connects the line cards together (we use the term
“cel” in a generic sense). This means that cels
bel onging to different packets arrive at the output side of
the router interleaved with one another. The output line
card must logically separate them as they come in. One
way to do this is to reassemble packets into separate
reassembly buffers before passing them to the queuing
subsystem. However, this requires a separate buffering
stage, which increases memory bandwidth and power
consumption. While one might write several packetsinto
the circular buffer concurrently (assuming that the packet
lengths are known when the first cel is received), this
makes it awkward to discard arriving packets that
contain an error that is discovered late in the processing
of a packet. For these reasons, the simple circular buffer
israrely used.

Linked lists are a natura dternative to circular
buffers. With linked list queues, arriving cells can be
stored directly into fixed-size buffers in DRAM; buffer
pointers are passed to the queuing subsystem, which
stores these in linked list queues after a logical packet
reassembly operation has been performed. Linked list
gueues have the advantage that they place no restriction
on how the memory is used. Queues may dynamically
share the available memory space or may be restricted in
their use, according to policy. Thisintrinsic flexibility is
the key factor in their popularity.

However, linked list queues are not without problems.
In atypical implementation, queue descriptors are stored
in the on-chip SRAM, while the linked list nodes
themselves are stored in off-chip SRAM. The use of off-
chip storage is needed to scale the list node storage in
proportion with the DRAM storage. The latency
associated with the use of off-chip SRAM can be a
serious performance bottleneck. In particular, the rate at
which we can perform back-to-back reads from the same
queue is limited by the memory latency. While
synchronous memory bandwidths have improved
significantly in recent years, the memory latency,
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Figure 1: Queue structure with implicit mapping;
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implements linked-lists and also stor es packet
lengths, DRAM stor es packets.

measured in clock ticks, has been getting worse. This
implies that as link speeds continue to increase, the
effective worst-case memory bandwidth of the off-chip
SRAM will be unableto keep pace.

The cost of off-chip SRAM is also a significant
concern. While DRAM prices have dropped dramatically
over the years, high performance SRAM has remained
relatively expensive. On a per byte basis, SRAM ismore
than 100 times costlier than DRAM. So, in a system that
stores a single four byte pointer for every 64 byte
memory buffer, the cost of the SRAM can be six times
the cost of the DRAM. Increasing the DRAM buffer size
provides only a limited relief from this problem, as
minimum Sze |IP packets with just 40 bytes are
extremely common in Internet traffic.

Ancther factor crucial to the effectiveness of queuing
is the algorithms used to schedule the queues. Practical
algorithms can be broadly classified as either timestamp
or round-robin. Time stamp based agorithms try to
emulate a GPS [2] by sending packets in approximately
the same order as sent by a reference GPS server. This
involves the computation of timestamps for various
gueues, and sorting them in an increasing order. Round-
robin schedulers avoid the sorting bottleneck by
assigning time dots to the queues and transmitting
multiple packets with cumulative size up to a maximum
sized packet from the queue in the current dot. Both
schedulers require retrieving the length of subsequent
packets in the queue after transmitting any packet and
before scheduling the next packet. Therefore gqueuing
subsystems typically store the packet lengths in off-chip
SRAM aong with the linked-list pointers, which ensures
faster access while also scaling the queuing subsystem in
proportion to the DRAM. Nevertheless, an off-chip
access involved in retrieving the packet lengths remains
a potential bottleneck.

Several authors [3][4][5] have studied the
performance issues surrounding the DRAM used for

packet storage. However, relatively little attention has
been given to the off-chip SRAM. We find that off-chip
SRAM can be a significant contributor to the cost of the
packet queuing subsystem and can place serious limits
on its performance, particularly as link speeds scale
beyond 10 Gh/s. This paper shows how queuing
subsystems using a combination of implicit buffer
pointers, multi-buffer list nodes and coarse grained
scheduling can dramatically improve the worst-case
performance, while also reducing the SRAM bandwidth
and capacity needed to achieve high performance. The
remainder of the paper is organized as follows. Details of
a linked-list based queuing subsystem are given in
Section 2. Section 3 introduces buffer aggregation and
Section 4 analyzes its performance. Section 5 reportsthe
performance results on an experimental queuing setup.
Section 6 summarizes benefits and drawbacks. Section 7
concludes the paper.

2. Linked-List Queues and Bottlenecks

In this paper, we consider a high performance
gueuing subsystem architecture using a combination of
DRAM for packet storage, on-chip SRAM for queue
descriptors and off-chip SRAM to implement linked list
gueues. Linked list queues can be implemented in either
of the following two ways: @) implicit mapping in which
the address of the linked list nodes in SRAM directly
imply the address of the buffersin DRAM, or b) explicit
mapping in which buffers are dynamically mapped to the
list nodes (consequently the list node explicitly stores the
buffer address). Implicit mapping clearly eiminates the
need to store buffer identifiers at the nodes. Explicit
mapping, on the other hand, is effective for multicasting,
because it allows a buffer to exist at multiple list nodes.
In this paper, we focus on implicit mapping and leave
our multicast solution to future work. The schematic of
the queuing subsystem with implicitly mapped linked-
list nodes is shown in Figure 1. We enumerate the key
features below:

* DRAM consists of fixed sized buffers; the address
of each buffer isreferred to asthe buffer identifier.

= A free queue keeps all unused buffers. Packet
gueues hold the active buffers. A buffer is taken
from the free queue upon cdl arrival (we assume
that packets either arrive as fixed sized cdls, or are
fragmented as they arrive) and added to the target
packet queue.

= Every linked-list node stores &) the address of the
next node of the queue, b) a bit to indicate if a new
packet starts at the next node and c) the length of the
packet starting at the next node. Storing packet
lengths at the node before the one where it starts,
saves the write and read associated with the store
and retrieve of the packet length, as it is done with
the reads and writes of the links.



=  Queues are identified by queue descriptor, which
stores the head and tail node of the linked-list. It
also stores the length of the first packet in the queue
as a consequence of the above feature, where packet
lengths are stored one node ahead, which aso
enables the length of packets at the head of every
gueue to be readily available (as queue descriptors
are kept on-chip).

Such a queuing structure provides several benefits:
reduced memory fragmentation, few restrictions on
gueue sizes, and scalability. However, to demonstrate its
effectiveness we must consider the following bottlenecks
aswdl.

2.1. SRAM latency and Dequeue Throughput

Since linked-list nodes are stored in off-chip SRAM,
every dequeue involves an off-chip read access, which is
20 ns even with today's date-of-the-art technology
(considering inter-chip communication latencies). Thus,
whenever multiple cdlls are sent from a queue, each
subsequent cell requires 20 ns, which trandates into a
throughput of about 25 Gbps with 64-byte cells. Thisisa
serious concern since sending multiple cells back-to-
back from a singe queue is the common case
considering that average Internet packet length is more
than 200 bytes. Moreover, round-robin fair queuing
algorithms often send severd cells (i.e., the number of
cells equaling the maximum packet size) whenever a
gueue is selected.

2.2. Fair queuing algorithms per formance

Ancther potential bottleneck in queuing subsystemsis
the efficiency of the fair queuing algorithms which
schedule the queues. Most queuing algorithms select
gueues based upon the length of the packet at the head of
either the current queue or all queues. When packet
lengths are stored in an SRAM (with linked-list nodesin
this case), an off-chip reference is required after sending
every packet. Pre-fetching the lengths of a few packets at
the beginning of every queue provides only a limited
relief, because severa packets are sent from a queue, one
after another, quite frequently.

2.3. Linked-list memory

A large packet buffer requires a proportionaly large
memory to store the linked-list nodes. For example, a
512 MB packet buffer requires 40 MB of linked-list
memory, approximately 8% of the buffer. Since the per
bit cost of SRAM is 100 times higher than DRAM, the
cost of this SRAM would be 8 times that of DRAM.
Moreover, SRAM of this size requires at least 12 chips
(maximum available SRAM density is 36 Mbit per chip)
while data memory requires only 4 chips (maximum
DRAM density is 1 Ghit per chip). Requiring 16 chips
for the packet buffer at every line card clearly raises
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Figure 2: Queue descriptors, linked list nodes and
DRAM bufferswith buffer aggregation

concerns over the scalahility and reliability of the entire
system, given the power consumption and on-board
design complexity involved.

Another issue surrounding such a linked-list structure
is the required memory bandwidth. Each arriving and
departing packet requires two linked-list operations, one
targeting the free queue and one target the destination
gueue, for a total of 4 operations per arrival/departure
time. The fastest commercially available memory (QDR-
SRAM running at 250 MHz DDR clock) allows only 4
random accesses every 16 ns while the inter arrival time
of 64-byte cells at 40 Gbps is 12 ns. Thus, the random
access bandwidth of the linked-list memory is also a
potential bottleneck.

3. Using Multi Buffer List Nodes

We propose using multi-buffer list nodes (also called
aggregated buffers) in which every list node contains
multiple buffers. Figure 2 illustrates a queue of muilti-
buffer nodes. When multiple cells are referenced in each
linked list node, fewer link list traversals will be required
thus reducing the memory bandwidth requirement.
Moreover, implicitly mapped multi-buffer nodes reduce
the ratio of list nodes to DRAM buffers, thereby
reducing the linked-list memory size for a given number
of buffers. While memory size is important, the most
notable benefit of buffer aggregation is that it ensures
that linked-list memory access latency and bandwidth
doesn’t limit the performance. Multi-buffer list nodes
remain effective for both explicit as well as implicit
mapping; however, here we consider implicit mapping.

Implicit mapping, by definition, keeps a one-to-one
static map between buffers and list nodes. With buffer
aggregation, every list node is uniquely mapped to X
buffers where X is referred to as the degree of
aggregation. Whileit is possible to map any arbitrary set
of X buffers, such a mapping will unnecessarily
complicate the trandation of list nodes to buffer IDs. A
simple and efficient mapping is direct mapping, in which
a set of contiguous buffers are mapped to alist node with
the address of the first buffer being the same as the
node's address. A special case occurs when the degree of
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aggregation is a power of 2, when trandation from list
node to its buffers involves only bit shifts. We consider
such direct one-to-one mappings due to their simplicity
and efficiency.

A new list nodeis allocated for an arriving cdl only if
al X buffers at the tail node of the corresponding queue
are full. Smilarly, the head node is de-allocated only
after tranamitting al X buffers from it. Thus, in order to
make the node allocation or de-allocation decision for
any cell, the buffer occupancy of the tail and head nodes
must be examined. For ariving cels, therefore, the
destination queue must be known before the cdl can be
stored. This means that packet classification must occur
prior to storage. It may be argued that this will require
additional on-chip buffers to hold the arriving packets
while they are classified. We find that this additional
buffering is very small in practical systems given that the
packet header arrives first and that classification must be
fast enough to handle back-to-back minimum sized
packets.

4. Performance with Buffer Aggregation

When queues are backlogged, aggregated buffers help
because, on average, linked list operations and buffer
alocations are only required every X cels for
aggregation degree X. To demonstrate the broad benefit
of aggregated buffers, we must consider two important
cases. First, when queues are not heavily backlogged and
the average queue length remains low, node allocation
and de-alocation may occur more frequently. Second, it
may be that many or all queues have a near-empty
aggregated buffer at the head position (or a near-full
buffer at the tail); in this scenario, a potentially long
sequence of de-allocations (and alocations) is a concern.
Before considering these scenarios, we will establish the
following result.

Lemma 1. Without aggregation, linked-lis memory
must allow 2 accesses every T, where T isthe smaller of
the inter-cell arrival and inter-cell departure times.

Proof: Let the cell arrival and departure intervals be
T, and Ty, respectively. For every arriving cell, anodeis

Departure process Q =
(Scheduler)

Figure 3: Queuing subsystem model around the linked-list memory accesses

de-alocated from the free queue and linked to the
packet’s queue. Similarly for every departing cell, anode
is de-allocated from the packet’s queue and linked to the
free queue. While, each of these requires two accesses to
the link memory, node reuse (via a free node buffer) can
save two accesses during every max(T,, Tg). Therefore
during any period max(T, Tg), we need 2*max(T,,
Tg)/min(T,, Tg) accesses. Thus, 2 link accesses during
every min(T,, Tg) is sufficient (although a small buffer
may be needed to hold few link nodes because the node

addition and removal times may be different). m

4.1. Scenario 1: queuesremain near empty

When average queue length is smal, link memory
might be accessed relatively frequently, especially if the
queue length falls below X cdlls. If the average queue
length is| cdls (I < X), a cdl will require a link access
every | cdls. It can be argued that when | becomes 1, an
aggregated buffer will require as many link accesses as
in the non-aggregated case resulting in no performance
improvement. This is true, however this scenario does
not represent a bad case since no link list operations are
required (i.e., with only one cell per queue, no back-to-
back dequeues will be performed).

4.2. Scenario 2: queues with near-empty heads

In this scenario, it can be argued that even if the
linked-list is accessed once for every X cells on an
average, the worst-case queuing throughput can remain
the same. For example, it is possible that head node of
several queues contains only one cell, and these queues
are scheduled one after another. Similarly, a stream of
packets could arrive at queues whose tail nodeis full. In
these worst-case scenarios, linked list accesses can
remain the same as in the non-aggregated case.
Moreover, it can aso be argued that buffer aggregation
might make node reuse tricky because their allocation
and de-all ocation becomes non-determinigic.

The arguments for the worst-case scenarios are valid,
but we find that adding smal enqueue and dequeue
buffers to accommodate periods of worst-case node
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occupancy is an effective way to keep the average
performance very high. An important consequence of
this change is that we meet worst-case performance
requirements probabilistically. However, we will show
that modest buffering requirements can provide
acceptably low drop probabilities.

Figure 3 shows our system model. The enqueuer,
balancer, and dequeuer nodes represent the active
components, which accesses the link memory. The
elagtic buffer implements node reuse so that deallocated
nodes can immediately be allocated to ancther queue
without an off-chip transaction.

The input queue at the enqueuer and the output queue
at the dequeuer provide buffering during worst-case
conditions. The objective is to keep the enqueuer queue
near empty and the output queue near full because the
probability that enqueuer-queue overflows will be the
cell discard probability and the probability that output-
gueue underflows will be the output link under-
utilization. To demondrate that the system can meet
worst-case conditions with very high probability, we
have a developed a discrete time Markov mode to
determine the size didribution of these queues.
Comprehensive model details can be found in the
Appendix. In the next section, we report the results for
an experimental setup and technological parameters.

4.3. Experimental setup and results

In order to validate the effectiveness of buffer
aggregation, we will now apply our modd to an
experimental setup shown in Error! Reference source
not found.. Each link operates at OC768 rate and
gueuing subsystems are employed at both input and
output side of the switch. We assume 64 byte cdl
switching and consider switch speedups of 1 and 2. With
speedup 1, a 40 Ghb/s link rate requires one dequeue and
one enqueue every 12 ns. With a speedup of 2, the input
subsystem has to perform a dequeue every 6 ns (Ty),
while the output subsystem has to perform an enqueue
every 12 ns (T,). We keep on-chip processing time for

enqueues and dequeues (Tg) at 3 ns; thus the on-chip
processing speed is sufficient to keep up with the
engueue and dequeue rates.

If a next generation QDR-111 SRAM running at 333
MHz is used to implement the linked list, it will support
a random access every 3 ns (T,,,) and will have an access
latency of 15 ns (T,), (assuming an aggressive chip-to-
chip communication latency). Memory bandwidth is
clearly sufficient (from Lemma 1) even without buffer
aggregation. However, access latency clearly exceeds the
dequeue intervals of 12 ns and 6 ns, thus cells can't be
dequeued sufficient rates. Buffer aggregation of degree 2
should solve this problem instance. However, in order to
demonstrate the effectiveness of buffer aggregation, we
consider a dower SDR-SRAM with a clock period, Tp, of
12 ns and latency, T, of 24 ns. Below, we summarize the
performance of aggregated buffers for the different
combinations of queuing subsystems and speedups.

4.3.1. Input/Output queuing; Switch speedup = 1

In this case T, and Ty are both 12 ns. From the analysis
presented in the Appendix, the queuing subsystems
become stable with a degree of aggregation of 4 or
higher. From the results plotted in Figure 5, it is clear
that when degree of aggregation is more than 4, cell
discard probability and output link utilization improves
with increasing enqueuer/output queues. In the same
figure, we also report the steady-state of various states of
the enqueuer and output queue. It is apparent that the
likdihood of the enqueuer queue being full and the
output queue being empty isvery low.

4.3.2. Output queuing; Switch speedup =2

T, and Ty are 6 and 12 ns. Queuing subsystem
becomes stable with a degree of aggregation of 4 or
higher. Wereport the above resultsin Figure 5.

4.3.3. Input queuing; Switch speedup = 2

Tais12 nsand Ty is6 ns. Queuing subsystem becomes
stable with a degree of aggregation of 10 or higher and
we report the above resultsin Figure 5.

It is apparent from these results that a higher degree of
aggregation improves the performance for relatively
smaller request buffers. It is also apparent that larger
elagtic buffer and enqueuer and output queues benefits
only when queuing subsystem parameters are stable.

5. Coarse-Grained Scheduling

We have mentioned that most queuing subsystems
store packet lengths and boundary bits with the linked-
list nodes. Such a dructure results in poor space
efficiency because a) short packets don’t use all length
bits and b) long packets don’t use length bits at the nodes
pointing to the middle of packet (MOP). Buffer
aggregation can improve this inherent inefficiency with
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Figure 5: A) Upper row plotsthe cell discard rate and output link utilization for 2 sets of enqueuer queue
and output queue sizes). Link rate is 40 Gbps and linked-lists memory clock period is 12 ns and access
latency is 24 ns. B) Steady-state probability of the enqueuer queue, and output queues (various queue
capacities. output queue = 32, elastic buffer = 16, enqueuer queue = 16).

the help of the following mechanism to encode the
packet boundary and length.

5.1. Storing packet boundary and length

We use an dternate mark inversion (AMI) encoding to
mark the packet boundary, and keep X bits every node
for this purpose. A sequence of hits of the same polarity
indicates the continuation of a packet. As soon as a hit
alternates, the end of the current packet is inferred. To
store the packet lengths, we argue that (X-1)log,C+log,P
bits at every node is sufficient, where C is the cdl size
and P the maximum packet size. We take the three
possible scenarios and show that these many hits are
sufficient. A) When all packets at a node are single cdl,
they will need atotal of X*log,C hits, less than what we
have. B) If a packet spans n buffers but lies entirely
within a node, it will need log,(n*C) bits while n*log,C
bits is available for it, which is sufficient because
log,(nC)<nxlog,C O n>0. C) When a packet starts
at a node and ends at another, it will need log,P bits.
Since only one such packet can exist at anode, its length
can be stored. The resulting node structure with the
boundary and length bitsis shown in Error! Reference
sour ce not found..

This scheme improves the space efficiency to store
packet lengths from log,P bits per cell to roughly log,C
bits per cell for higher degree of aggregations. The flip
side of a high aggregation is that it increases the sze of

gueue descriptors, which store the packet length and
boundary of the head (and possibly the tail) node. We
now introduce a coarse-grained approach to storing
packet lengths which reduces the queue descriptor size
aswell asthe node sizes.

5.2. Storing packet lengths

In this coarse grained approach, we use a clever
encoding to store the packet lengths. A multi-buffer node
stores only the AMI encoded packet boundary mask
(requires X hits) and the cumulative length of all packets
gtarting at the node, i.e. whose SOP cell resides there
(requires log,(X* C+P) bits). This scheme clearly reduces
the space required to store the packet lengths from
roughly log,C bits per cell in the first scheme to roughly
(logoX*C)/X bits per cell. Consequently, the size of
gueue descriptor also gets reduced.

However, the length of packets (in bytes) beginning at
any node can’t be determined with this scheme, therefore
the question arises: how will the scheduler schedule the
packets? We show that the information present at the
nodes is sufficient to ensure a fairly accurate scheduling
because the cell count of any packet can be determined.
Also, after sending the last packet from a multi-buffer
node, the total number of bytes sent from the node can
be determined. We will now briefly discuss how fair
scheduling can be maintained.



Packet length mask log,C log,C

4*0g,C bits log,P bits—
| Unused | Length |Length|Length| Length |
Packet boundary mask
[l afoJofJofofJsfofa]al]

Data in the buffers at this list node

MOP | EOP | SOP | MOP | MOP | EOP | SOP/ | SOP/| SOP | MOP
Cell | Cell | Cell | Cell | Cell [ Cell [ EOP [ EOP | Cell | Cell

Figure 6: Data structure for packet boundary and
length with a degree of aggregation of 10.

5.3. Using coar se-grained scheduling

In coarse-grained scheduling, packet lengths are
represented as multiples of cells (64-byte, etc) instead of
bytes, and the fair queuing agorithm selects queues
based upon cell counts. Note that such a policy might
result in persistent unfairness and poor delay bounds for
the flows with relatively odd sized packets. For example,
in a system with 64-byte cdls, a flow with al 65-byte
packets will send as many packets as a flow with equal
priority and 128-byte packets. In order to ensure long-
term fairness, we propose a simple technique which uses
the cumulative packet length information stored at every
node. With cumulative byte and cell counts of every
packet starting a a node known, we compute the
normalized average number of bytes in every packet
using the following equation,

Length (cells) x> eckessa node - ENGEN (bYtES)
zal packetsat node ngth (Cdls)

When the fair queuing agorithm makes selections
based upon the above packet length, long term fairnessis
ensured. In fact, fairness is ensured within a time
window equal to the time needed to send al packetsin a
single multi-buffer node. Since a maximum of X packets
can begin at a node, fairness is ensured for every X
packets transmitted from a queue. We leave the further
andysis of thisissueto future work.

Length (bytes) =

6. Summarizing Benefits and Drawbacks

With buffer aggregation, cells can be sent at a rate of
X cells per linked-list memory access time, if linked-list
accesses are the only bottleneck. A high degree of
aggregation will eiminate the bottleneck of linked-list
memory access latency and bandwidth. Indeed, cheaper
linked-list memories with less random access bandwidth
and higher latencies can be used, as compared to a
traditional approach.

Ancther notable benefit of buffer aggregation is a
factor of X reduction in the number of linked-list nodes.
With the addition of coarse-grained scheduling, this
trandates into a factor of X reduction in linked-list
memory. A large X, therefore, can enable on-chip
memories to be used, which will diminate an externa
component and the associated interface.

However, aggregated buffers may result in wastage of
DRAM space when the head and tail nodes are not fully
occupied. In the worst case, every queue can waste (X-1)
buffers in the head and tail node, thus,

Woasted space=2x Noof queuesx (X —1)

For a system with 512 MB of DRAM, 64 thousand
queues, and 64-byte cells; a degree of aggregation of 8
will trandate into wastage of about 10% of DRAM space
in the worst-case and about 5% in average case.

Buffer aggregation might also require a careful design
to ensure good DRAM efficiency. With buffer
aggregation, arriving cells typically occupy the first
available buffer at the tail node. Therefore, traditiona
DRAM bank arbitration techniques can’t always be used
with writes; this can result in reduced DRAM efficiency.
We believe that out-of-order writes, along with re-
ordering, can solve this problem. Nonetheless, we leave
thisissue to future work.

7. Conclusions

In this paper, we have pointed out the potentia
bottlenecks associated with the linked-list queuing
subsystems as the link rates scales beyond 10 Gb/s. We
have proposed the use of buffer aggregation, which
employs multi-buffer linked-list nodes. With the aid of a
discrete time Markov anaysis, we have shown that
multi-buffer list nodes can significantly improve queuing
throughput and practicaly eiminate the queuing
bottlenecks associated with the linked-list memory
bandwidth and access latency. Multi-buffer list nodes
when combined with the implicit mapping and coarse-
grained scheduling can reduce the amount of SRAM
needed to hold the list nodes by a factor of 10 at the cost
of about 10% wastage of the DRAM space, assuming an
aggregation degree of 16. Such reductionsin SRAM size
can trandate into significant cost savings considering
that cost of SRAM frequently dominates that of DRAM
in high speed queuing subsystems.
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9. Appendix

Model of the queuing subsystem with bottleneck
formulated around the linked list memory bandwidth and
access latency is shown in Figure 3 (Section 4). We
assume that latency associated with the dequeues from
free queue aren’t the bottleneck (multiple free queues can
be employed for this purpose and free nodes can be
dequeued from them in a round-robin order). We first
isolate the arrival and departure processes. Arriva
process maps the arriving cells to a queue and enqueues
them as quickly as possible. Departure process dequeue
cells from the queues selected by the scheduler at arate
sufficient to keep the output link busy. With buffer
aggregation, the occupancies of head and tail node
increases linearly with arriving cells, thus the occupancy
of head and tail node remains random at any random
time ingant. Therefore, likelihood of nodes allocation
and de-allocation remains uniform random with a
probability of 1/X, irrespective of the queue selection
order.

Since linked-list memory is the bottleneck, cells that
don’'t need a link access are processed quickly while
others wait for the memory. We keep a queue at the
arrival process to hold such cells and refer to it as
engueue-queue; cels from this queue are processed by
an enqueuer as it gets to access the link memory. A
similar queue for dequeues can't be employed because 1)
Dequeues has to be performed drictly in order and
therefore departure process can't continue if some
requests are waiting for the link access, 2) Even if we
alow out-of-order degueues, due to the linked-list
structure, subseguent cells from a queue can be dequeued
only after the one requiring the link access is dequeued.
3) Third reason has to do with the operation of scheduler
which requires the packet lengths in order to make
selections. Since the queuing subsystems, we consider,
stores packet length a the list nodes, whenever a
dequeue requires link access, length of the next packet is
available only after the access is serviced and only
thereafter, scheduler can proceed.

Our principle metric of the efficiency of departure
process is output link utilization, i.e. how often the
output link remains busy. We maximize this metric by
keeping an output queue in which departure process
stores the degueued cells. This queue is serviced at the
output link rate and the objective isto keep it non-empty.
In order to simplify the model, we also keep a dequeue-
gueue. Departure process dequeues the cells right away
if link access is not required otherwise puts the request
into the dequeue-queue. A dequeuer services the requests
from this queue as the link memory is available and puts
the dequeued cells in the output queue. Clearly,
departure process dalls whenever degueue-queue

remains non-empty, therefore, we keep the size of
dequeue-queue at 1.

The queuing subsystem also incorporates an elastic
buffer, which holds few free list nodes. Enqueuer
services requests from the enqueue-queue only if eastic
buffer has free nodes available and the dequeuer services
requests from the dequeue-queue only if eastic buffer
has some free space. A balancing process tries to keep
this elastic buffer nearly half filled, by accessing the link
memory.

Our objective is to compute the probability that the
enqueue-queue overflows, which will be the cell discard
probability and the probability that output-queue
underflows. We solve the queuing subsystem model
(shown in Section 4) using a discrete time Markov
andysis. Let T, and Ty be the inter cell arrival and
departure times; the linked-list memory allows an access
every T, with the read access latency being T,. Also, let
the enqueue and dequeue process takes Ts time to service
requests that doesn’t need a link access. Thus, the one
which needs a link access will take (Ts+T,) and
(Ts+TwtT,) respectively, where T,, is the waiting time of
arequest in the queue. The queuing subsystem is called
to be in a stable state when following three conditions
are satisfied,

T < Xxmn;(l’a,Td) (1)

max(T,, +T,,T,) +TS(X i)
X X
T > max(rm,TS)+TS(X 1 3)
X X

Equation 1 requires at most X times lower link
bandwidth than in a non-aggregated system given by
Lemma 1. Equation 2 requires that the memory latency
should have a toll on only one cdl among X cdls.
Equation 3 is similar with the exception that enqueue
process doesn’'t incur any link read access latency. An
ideal queuing subsystem in a stable state, should keep
the outgoing link busy and also keep up with the
incoming link. With the aid of discrete time Markov
analysis, we will now show that an aggregated queuing
subsystem, in stable state, also ensures nearly zero cell
loss probability and 100% output link utilization.

We let the size of engqueue-queue, dequeue-queue,
output-queue and elastic buffer be S, &, & and B,
respectively, and f., fg, f, and f be their fill levels. Note
that S is 1. In order to enable stable balancing of the
elastic buffer, we define a threshold A, such that the
balancer contends for link access to balance the dastic
buffer only when its occupancy deviates by more than A
from the mean B/2. We aso dynamically give the link
access to ether enqueuer, or dequeuer or the dastic
buffer based on their urgency o, og and a,. Urgency is
defined as the normalized imbalance and is given by the

T, > 2




following eguations for the enqueuer, dequeuer and
elagtic buffer, respectively,
a,=f1,/S,
ad :(So - Fo)/so
(B/2-A-1f)/(B/2-A) when (B/2-A>f)
a,=(f -B/2-A7)/(B/2-A) when (f>B/2+A)(6)
0 else

Clearly, the system performance is maximized when
a) the enqueue-queue is least likely to get filled, b)
elagtic buffer remains balanced and c) output-queue
remains non-empty.

We will now define a discrete time Markov chain to
model the system. We first define a variable t, which
increments every unit time and rolls over once it reaches
N, where N is the least common multiple (LCM) of T,,
Ta, Ts and T, tis used as the reference for all events as
follows.

Probability that a request arrives in the enqueue-queue
is,

(4)
()

1/ X when (f,<S, and tmodTa=0)
0 d (7)
se
Probability that arequest arrivesin the dequeue-queue
is,
P 1/ X when (fa=0and fo #Z S andt modTs = 0)
d —

0 ese ®

Probability that a request which doesn’t need a link
access, arrives in the output queueis,

b, = X -%( when (fa=0and fo# S andtmodTs = 0) ©
0 else

Link memory request is serviced whenever (t mod Tp,)
isO.

We define ancther variable, w, which indicates the
time for which dequeuer must wait to receive the data
read from the link memory. wis set to T, whenever link
memory serves the dequeuer, and decrements every unit
time thereafter. When it reaches 1, data is received,
request from the dequeue-queue is flushed and dequeued
cell iswritten into the output queue.

State of the queuing subsystem is defined as (fe, fq, fo,
f, w, t). Welet 7 f,, fq, fo, f, W, t) denote the steady-state
probability that the system isin state (fe, fg, fo, f, W, t). TO
compute the steady-state probabilities of all states, we
need to specify transition probabilities that give the
probability of a trandtion from one state to another. Let
0(s1,S2) denote the transition probability from state s; to
gtate s,. Then, we can write,

(s,) =) M(s)A(s,.s,) (10)

To simplify the specification of the transtion
probabilities, we view the transition as happening in four
phases; an arrival phase followed two service phases,
followed by a departure phase. During the arrival phase,
new entries may (or may not) arrive in the enqueue,

e

dequeue or output queues. During the first service phase,
a memory request from one of the three requesters is
serviced. During the second service phase, data read
from the link memory may arrive hence the dequeued
cell is written into the output queue and the degueue-
request is flushed from the dequeue-queue. During the
departure phase, an entry from the output queueis sent. t
is incremented and w is decremented during the
departure phase. If we let &(s1,S), &1(S1,S), 02(SL,S2)
and 0u(s,S) represent the probability of a transition
between the phases, and 1(s), T6:1(S), and Tt2(S) be the
intermediate state probabilities, they can be related
through the following equations,

(ACYEDIRLCYLACIEY (11)
(ACYED I ACILHCTEN (12)
T,(8,) = 2, Ta(8)95(81,S,) (13)
n(s,) = X, Mp(8)34(s1,S,) (14)

We can use these eguations to solve for the steady
state probabilities as follows. First, we assign initial
valuesto 11s). To ensure that the system isequally likely
to be with any value of t, not just in the steady state, we
assume that the reference counter is initialized to a
random value. We also let the eastic buffer half filled
and other queues empty initially. We reflect these initial
values in our modedl, by initializing
71(0,0,0,B/2,0,t) =1/ N for all values of t and letting
al the other state probabilities be zero. We use these
initial state probabilities, together with the transition
probabilities d,(s1,s;) to compute values of T,(s). We
then use @) T(S) and 0« (S1,S) to compute T (S), b) T61(S)
and 3x(s1,S) to compute Tix(s) and finally ¢) Ttx(s) and
0q(S1,S2) to compute the new 11(s). We continue in this
fashion until successively computed values of T1S)
converge.

Note that t is the reference counter, and therefore the
state probabilities associated with any value of t must
sum to /N at all time ingtants,

Zfe,fd,fo,f,w”(fe' fo fo, oW t)=1/N (15)
With these preiminaries out of the way, we can

proceed to specify the transition probabilities. Transition

probabilities for the arrival phase are,

O, ((fo, fyu o, £ owt), (F +1 f, +1 f ), f W t)) =R, xP,

O, ((f,, Ty, fo, Fowt), (f, +1 fy, f, +1 f,wW,t)) =P, xP,

O, ((f, fy, T, Fow ), (f +1 1y, f,, f,Wit)=P,1-P,-P,)

o, ((f,, f Bowt), (f,, fy +1 f,, fLow ) =(1-P,)P,

O, ((f,, g, fo, Fowt),(f,, fy, f, +L f,wit))=1-P)P,

O, ((f,, Ty, Ty, fowt),(f,, fy, fo, foW 1)) =(1-PR)A-P,-P,)
Trangtion probabilities for the first service phase are,
If (tmod Ty #0) or (p=0cte=0and (ag =0 0r w#

0)),

a

o
o
o
o

(16)
(17)
(18)
(19)
(20)
(21)



sl((felfd' o'fIWt)(f dr o'f'W’t))zl (22)
If (0e> o N (0> 0y OF W# 0)),

a((fer oo fon Fw0), (Fo =1 fy, fy, f =1 w,1)) =1 (23)
If (w=0and og> ap and og> atg),

O4((fe, fq, fo, £,0,0),(Fe, f4, £, f +1T,,1)) =1 (24)
If (0p> 0 and (0g> 0g Or W# 0) and f < B/2),

O4((fe, fq. fo, FLowt), (fe, fo, fo, F +Lwit)) =1 (29)
If(ab>aeand(adzadorW¢O) and f > B/2),

sl((felfd' o'fIWIt)v(fe dr o' ]'th)) 1 (26)

Trangtion probabilities for the second service phase
are,
If (w=1andfy>0),

O, ((fe, fy, Ty, £owt),(f,, fy =1, f, +1, f,wt)) =1 (27)
Else
O, ((fe, Ty, o, Fowt), (fe, fy, fo, fowit)) =1 (28)

This essentialy indicates that when w reaches 1, data
read from the link memory arrives, the dequeued cdll is
put into the output queue and request is flushed from the
dequeue-queue.

Trangtion probabilities for the departure phase are,

If(t mode:Oandf >O)

O, ((F., fy, f, Fowt),(F, fy, £, =1, fLw-t+) =1 (29)
Else
5((f dv 01f Wt) (f d' o’f’W_’t+)):1 (30)

Where, w- = max(0, w-1) and t- = (t+1)mod(N)

With these eguations, we compute steady-state
probabilities as described. Note that when computing a
steady-state probability value, many distinct values are
summed together. During such summations, small values
are often added to much larger values leading to loss of
precision. One can minimize the potential for loss of
precision by first computing the values to be summed,
sorting these values, and then adding them in order from
the smallest to the largest. One can aso normdize the
results after every step. In generd, steady-state
probabilities should sum to 1 at the end of each step.

Given the steady-state probabilities, we can compute
the probability that an arriving ceII isdiscarded as,

Pr(discard) = P, x Zf ot T(Sen T o FLwit) (31)
and the output link utilization as,
Output link utiI.=1—Zf o T 14,0, FLwit) (32)
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