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Abstract 

Modern routers and switch fabrics can have hundreds 
of input and output ports running at up to 10 Gb/s; 40 
Gb/s systems are starting to appear. At these rates, the 
performance of the buffering and queuing subsystem 
becomes a significant bottleneck. In high performance 
routers with more than a few queues, packet buffering is 
typically implemented using DRAM for data storage and 
a combination of off-chip and on-chip SRAM for storing 
the linked-list nodes and packet length, and the queue 
headers, respectively. This paper focuses on the 
performance bottlenecks associated with the use of off-
chip SRAM. We show how the combination of implicit 
buffer pointers and multi-buffer list nodes can 
dramatically reduce the impact of buffering and queuing 
subsystem on queuing performance. We also show how 
combining it with coarse-grained scheduling can 
improve the performance of fair queuing algorithms, 
while also reducing the amount of off-chip memory and 
bandwidth needed. These techniques can reduce the 
amount of SRAM needed to hold the list nodes by a 
factor of 10 at the cost of about 10% wastage of the 
DRAM space, assuming an aggregation degree of 16. 

1. Introduction 

High speed packet queuing is crucial to the 
performance of the high throughput packet switching 
systems used at the core of the Internet. As the Internet 
takes on a more central role in mission-critical 
applications, there is a growing need for sophisticated 
queuing subsystems that can isolate traffic on either a per 
flow or aggregate flow basis. Such subsystems on router 
line cards are both a significant contributor to the cost of 
routers and a potential performance bottleneck because 
backbone routers require queuing subsystems capable of 
holding as much data as the link can forward in 100 to 
500 ms [1]. An OC192c link requires between 125 and 
625 MB of buffer space operating at 10 Gb/s. With 40 
Gb/s links, both speed and size will quadruple. 

For routers that implement a simple FIFO output 
queue, it’s possible to use a very simple queuing 
architecture in which a large circular buffer is 
implemented in DRAM. This requires a single on-chip 
queue descriptor, which provides head and tail pointers 
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and possibly packet and byte counters. One can extend 
this approach to systems with a small number of queues, 
but if more than a handful of queues are needed, the 
static partitioning required by the simple circular buffer 
leads to significant fragmentation of the memory space. 
In practice, the circular buffer is difficult to apply even 
in contexts where the number of separate queues is quite 
small. The reason for this is that most high throughput 
routers break variable length packets into smaller fixed 
length cells for transmission through the switch fabric 
that connects the line cards together (we use the term 
“cell”  in a generic sense). This means that cells 
belonging to different packets arrive at the output side of 
the router interleaved with one another. The output line 
card must logically separate them as they come in. One 
way to do this is to reassemble packets into separate 
reassembly buffers before passing them to the queuing 
subsystem. However, this requires a separate buffering 
stage, which increases memory bandwidth and power 
consumption. While one might write several packets into 
the circular buffer concurrently (assuming that the packet 
lengths are known when the first cell is received), this 
makes it awkward to discard arriving packets that 
contain an error that is discovered late in the processing 
of a packet. For these reasons, the simple circular buffer 
is rarely used. 

Linked lists are a natural alternative to circular 
buffers. With linked list queues, arriving cells can be 
stored directly into fixed-size buffers in DRAM; buffer 
pointers are passed to the queuing subsystem, which 
stores these in linked list queues after a logical packet 
reassembly operation has been performed. Linked list 
queues have the advantage that they place no restriction 
on how the memory is used. Queues may dynamically 
share the available memory space or may be restricted in 
their use, according to policy. This intrinsic flexibility is 
the key factor in their popularity. 

However, linked list queues are not without problems. 
In a typical implementation, queue descriptors are stored 
in the on-chip SRAM, while the linked list nodes 
themselves are stored in off-chip SRAM. The use of off-
chip storage is needed to scale the list node storage in 
proportion with the DRAM storage. The latency 
associated with the use of off-chip SRAM can be a 
serious performance bottleneck. In particular, the rate at 
which we can perform back-to-back reads from the same 
queue is limited by the memory latency. While 
synchronous memory bandwidths have improved 
significantly in recent years, the memory latency, 
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measured in clock ticks, has been getting worse. This 
implies that as link speeds continue to increase, the 
effective worst-case memory bandwidth of the off-chip 
SRAM will be unable to keep pace. 

The cost of off-chip SRAM is also a significant 
concern. While DRAM prices have dropped dramatically 
over the years, high performance SRAM has remained 
relatively expensive. On a per byte basis, SRAM is more 
than 100 times costlier than DRAM. So, in a system that 
stores a single four byte pointer for every 64 byte 
memory buffer, the cost of the SRAM can be six times 
the cost of the DRAM. Increasing the DRAM buffer size 
provides only a limited relief from this problem, as 
minimum size IP packets with just 40 bytes are 
extremely common in Internet traffic. 

Another factor crucial to the effectiveness of queuing 
is the algorithms used to schedule the queues. Practical 
algorithms can be broadly classified as either timestamp 
or round-robin. Time stamp based algorithms try to 
emulate a GPS [2] by sending packets in approximately 
the same order as sent by a reference GPS server. This 
involves the computation of timestamps for various 
queues, and sorting them in an increasing order. Round-
robin schedulers avoid the sorting bottleneck by 
assigning time slots to the queues and transmitting 
multiple packets with cumulative size up to a maximum 
sized packet from the queue in the current slot. Both 
schedulers require retrieving the length of subsequent 
packets in the queue after transmitting any packet and 
before scheduling the next packet. Therefore queuing 
subsystems typically store the packet lengths in off-chip 
SRAM along with the linked-list pointers, which ensures 
faster access while also scaling the queuing subsystem in 
proportion to the DRAM. Nevertheless, an off-chip 
access involved in retrieving the packet lengths remains 
a potential bottleneck. 

Several authors [3][4][5] have studied the 
performance issues surrounding the DRAM used for 

packet storage. However, relatively little attention has 
been given to the off-chip SRAM. We find that off-chip 
SRAM can be a significant contributor to the cost of the 
packet queuing subsystem and can place serious limits 
on its performance, particularly as link speeds scale 
beyond 10 Gb/s. This paper shows how queuing 
subsystems using a combination of implicit buffer 
pointers, multi-buffer list nodes and coarse grained 
scheduling can dramatically improve the worst-case 
performance, while also reducing the SRAM bandwidth 
and capacity needed to achieve high performance. The 
remainder of the paper is organized as follows. Details of 
a linked-list based queuing subsystem are given in 
Section 2. Section 3 introduces buffer aggregation and 
Section 4 analyzes its performance. Section 5 reports the 
performance results on an experimental queuing setup. 
Section 6 summarizes benefits and drawbacks. Section 7 
concludes the paper. 

2. Linked-List Queues and Bottlenecks 

In this paper, we consider a high performance 
queuing subsystem architecture using a combination of 
DRAM for packet storage, on-chip SRAM for queue 
descriptors and off-chip SRAM to implement linked list 
queues. Linked list queues can be implemented in either 
of the following two ways: a) implicit mapping in which 
the address of the linked list nodes in SRAM directly 
imply the address of the buffers in DRAM, or b) explicit 
mapping in which buffers are dynamically mapped to the 
list nodes (consequently the list node explicitly stores the 
buffer address). Implicit mapping clearly eliminates the 
need to store buffer identifiers at the nodes. Explicit 
mapping, on the other hand, is effective for multicasting, 
because it allows a buffer to exist at multiple list nodes. 
In this paper, we focus on implicit mapping and leave 
our multicast solution to future work. The schematic of 
the queuing subsystem with implicitly mapped linked-
list nodes is shown in Figure 1. We enumerate the key 
features below: 

�  DRAM consists of fixed sized buffers; the address 
of each buffer is referred to as the buffer identifier. 

�  A free queue keeps all unused buffers. Packet 
queues hold the active buffers. A buffer is taken 
from the free queue upon cell arrival (we assume 
that packets either arrive as fixed sized cells, or are 
fragmented as they arrive) and added to the target 
packet queue. 

�  Every linked-list node stores a) the address of the 
next node of the queue, b) a bit to indicate if a new 
packet starts at the next node and c) the length of the 
packet starting at the next node. Storing packet 
lengths at the node before the one where it starts, 
saves the write and read associated with the store 
and retrieve of the packet length, as it is done with 
the reads and writes of the links. 
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�  Queues are identified by queue descriptor, which 
stores the head and tail node of the linked-list. It 
also stores the length of the first packet in the queue 
as a consequence of the above feature, where packet 
lengths are stored one node ahead, which also 
enables the length of packets at the head of every 
queue to be readily available (as queue descriptors 
are kept on-chip). 

Such a queuing structure provides several benefits: 
reduced memory fragmentation, few restrictions on 
queue sizes, and scalability. However, to demonstrate its 
effectiveness we must consider the following bottlenecks 
as well. 

2.1. SRAM latency and Dequeue Throughput  

Since linked-list nodes are stored in off-chip SRAM, 
every dequeue involves an off-chip read access, which is 
20 ns even with today’s state-of-the-art technology 
(considering inter-chip communication latencies). Thus, 
whenever multiple cells are sent from a queue, each 
subsequent cell requires 20 ns, which translates into a 
throughput of about 25 Gbps with 64-byte cells. This is a 
serious concern since sending multiple cells back-to-
back from a singe queue is the common case, 
considering that average Internet packet length is more 
than 200 bytes. Moreover, round-robin fair queuing 
algorithms often send several cells (i.e., the number of 
cells equaling the maximum packet size) whenever a 
queue is selected. 

2.2. Fair queuing algorithms performance 

Another potential bottleneck in queuing subsystems is 
the efficiency of the fair queuing algorithms which 
schedule the queues. Most queuing algorithms select 
queues based upon the length of the packet at the head of 
either the current queue or all queues. When packet 
lengths are stored in an SRAM (with linked-list nodes in 
this case), an off-chip reference is required after sending 
every packet. Pre-fetching the lengths of a few packets at 
the beginning of every queue provides only a limited 
relief, because several packets are sent from a queue, one 
after another, quite frequently. 

2.3. Linked-list memory  

A large packet buffer requires a proportionally large 
memory to store the linked-list nodes. For example, a 
512 MB packet buffer requires 40 MB of linked-list 
memory, approximately 8% of the buffer. Since the per 
bit cost of SRAM is 100 times higher than DRAM, the 
cost of this SRAM would be 8 times that of DRAM. 
Moreover, SRAM of this size requires at least 12 chips 
(maximum available SRAM density is 36 Mbit per chip) 
while data memory requires only 4 chips (maximum 
DRAM density is 1 Gbit per chip). Requiring 16 chips 
for the packet buffer at every line card clearly raises 

concerns over the scalability and reliability of the entire 
system, given the power consumption and on-board 
design complexity involved. 

Another issue surrounding such a linked-list structure 
is the required memory bandwidth. Each arriving and 
departing packet requires two linked-list operations, one 
targeting the free queue and one target the destination 
queue, for a total of 4 operations per arrival/departure 
time. The fastest commercially available memory (QDR-
SRAM running at 250 MHz DDR clock) allows only 4 
random accesses every 16 ns while the inter arrival time 
of 64-byte cells at 40 Gbps is 12 ns. Thus, the random 
access bandwidth of the linked-list memory is also a 
potential bottleneck. 

3. Using Multi Buffer List Nodes 

We propose using multi-buffer list nodes (also called 
aggregated buffers) in which every list node contains 
multiple buffers. Figure 2 illustrates a queue of multi-
buffer nodes. When multiple cells are referenced in each 
linked list node, fewer link list traversals will be required 
thus reducing the memory bandwidth requirement. 
Moreover, implicitly mapped multi-buffer nodes reduce 
the ratio of list nodes to DRAM buffers, thereby 
reducing the linked-list memory size for a given number 
of buffers. While memory size is important, the most 
notable benefit of buffer aggregation is that it ensures 
that linked-list memory access latency and bandwidth 
doesn’ t limit the performance. Multi-buffer list nodes 
remain effective for both explicit as well as implicit 
mapping; however, here we consider implicit mapping. 

Implicit mapping, by definition, keeps a one-to-one 
static map between buffers and list nodes. With buffer 
aggregation, every list node is uniquely mapped to X 
buffers where X is referred to as the degree of 
aggregation. While it is possible to map any arbitrary set 
of X buffers, such a mapping will unnecessarily 
complicate the translation of list nodes to buffer IDs. A 
simple and efficient mapping is direct mapping, in which 
a set of contiguous buffers are mapped to a list node with 
the address of the first buffer being the same as the 
node’s address. A special case occurs when the degree of 
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aggregation is a power of 2, when translation from list 
node to its buffers involves only bit shifts. We consider 
such direct one-to-one mappings due to their simplicity 
and efficiency. 

A new list node is allocated for an arriving cell only if 
all X buffers at the tail node of the corresponding queue 
are full. Similarly, the head node is de-allocated only 
after transmitting all X buffers from it. Thus, in order to 
make the node allocation or de-allocation decision for 
any cell, the buffer occupancy of the tail and head nodes 
must be examined. For arriving cells, therefore, the 
destination queue must be known before the cell can be 
stored. This means that packet classification must occur 
prior to storage. It may be argued that this will require 
additional on-chip buffers to hold the arriving packets 
while they are classified. We find that this additional 
buffering is very small in practical systems given that the 
packet header arrives first and that classification must be 
fast enough to handle back-to-back minimum sized 
packets. 

4. Performance with Buffer Aggregation 

When queues are backlogged, aggregated buffers help 
because, on average, linked list operations and buffer 
allocations are only required every X cells for 
aggregation degree X. To demonstrate the broad benefit 
of aggregated buffers, we must consider two important 
cases. First, when queues are not heavily backlogged and 
the average queue length remains low, node allocation 
and de-allocation may occur more frequently. Second, it 
may be that many or all queues have a near-empty 
aggregated buffer at the head position (or a near-full 
buffer at the tail); in this scenario, a potentially long 
sequence of de-allocations (and allocations) is a concern. 
Before considering these scenarios, we will establish the 
following result. 

Lemma 1: Without aggregation, linked-list memory 
must allow 2 accesses every T, where T is the smaller of 
the inter-cell arrival and inter-cell departure times. 

Proof: Let the cell arrival and departure intervals be 
Ta and Td, respectively. For every arriving cell, a node is 

de-allocated from the free queue and linked to the 
packet’s queue. Similarly for every departing cell, a node 
is de-allocated from the packet’s queue and linked to the 
free queue. While, each of these requires two accesses to 
the link memory, node reuse (via a free node buffer) can 
save two accesses during every max(Ta, Td). Therefore 
during any period max(Ta, Td), we need 2*max(Ta, 
Td)/min(Ta, Td) accesses. Thus, 2 link accesses during 
every min(Ta, Td) is sufficient (although a small buffer 
may be needed to hold few link nodes because the node 
addition and removal times may be different). �  

4.1. Scenario 1: queues remain near empty 

When average queue length is small, link memory 
might be accessed relatively frequently, especially if the 
queue length falls below X cells. If the average queue 
length is l cells (l < X), a cell will require a link access 
every l cells. It can be argued that when l becomes 1, an 
aggregated buffer will require as many link accesses as 
in the non-aggregated case resulting in no performance 
improvement. This is true, however this scenario does 
not represent a bad case since no link list operations are 
required (i.e., with only one cell per queue, no back-to-
back dequeues will be performed).  

4.2. Scenario 2: queues with near-empty heads 

In this scenario, it can be argued that even if the 
linked-list is accessed once for every X cells on an 
average, the worst-case queuing throughput can remain 
the same. For example, it is possible that head node of 
several queues contains only one cell, and these queues 
are scheduled one after another. Similarly, a stream of 
packets could arrive at queues whose tail node is full. In 
these worst-case scenarios, linked list accesses can 
remain the same as in the non-aggregated case. 
Moreover, it can also be argued that buffer aggregation 
might make node reuse tricky because their allocation 
and de-allocation becomes non-deterministic. 

The arguments for the worst-case scenarios are valid, 
but we find that adding small enqueue and dequeue 
buffers to accommodate periods of worst-case node 
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occupancy is an effective way to keep the average 
performance very high. An important consequence of 
this change is that we meet worst-case performance 
requirements probabilistically. However, we will show 
that modest buffering requirements can provide 
acceptably low drop probabilities. 

Figure 3 shows our system model. The enqueuer, 
balancer, and dequeuer nodes represent the active 
components, which accesses the link memory. The 
elastic buffer implements node reuse so that deallocated 
nodes can immediately be allocated to another queue 
without an off-chip transaction.  

The input queue at the enqueuer and the output queue 
at the dequeuer provide buffering during worst-case 
conditions. The objective is to keep the enqueuer queue 
near empty and the output queue near full because the 
probability that enqueuer-queue overflows will be the 
cell discard probability and the probability that output-
queue underflows will be the output link under-
utilization. To demonstrate that the system can meet 
worst-case conditions with very high probability, we 
have a developed a discrete time Markov model to 
determine the size distribution of these queues. 
Comprehensive model details can be found in the 
Appendix. In the next section, we report the results for 
an experimental setup and technological parameters. 

4.3. Experimental setup and results 

In order to validate the effectiveness of buffer 
aggregation, we will now apply our model to an 
experimental setup shown in Error! Reference source 
not found.. Each link operates at OC768 rate and 
queuing subsystems are employed at both input and 
output side of the switch. We assume 64 byte cell 
switching and consider switch speedups of 1 and 2. With 
speedup 1, a 40 Gb/s link rate requires one dequeue and 
one enqueue every 12 ns. With a speedup of 2, the input 
subsystem has to perform a dequeue every 6 ns (Td), 
while the output subsystem has to perform an enqueue 
every 12 ns (Ta). We keep on-chip processing time for 

enqueues and dequeues (Ts) at 3 ns; thus the on-chip 
processing speed is sufficient to keep up with the 
enqueue and dequeue rates. 

If a next generation QDR-III SRAM running at 333 
MHz is used to implement the linked list, it will support 
a random access every 3 ns (Tm) and will have an access 
latency of 15 ns (Tr), (assuming an aggressive chip-to-
chip communication latency). Memory bandwidth is 
clearly sufficient (from Lemma 1) even without buffer 
aggregation. However, access latency clearly exceeds the 
dequeue intervals of 12 ns and 6 ns, thus cells can’t be 
dequeued sufficient rates. Buffer aggregation of degree 2 
should solve this problem instance. However, in order to 
demonstrate the effectiveness of buffer aggregation, we 
consider a slower SDR-SRAM with a clock period, Tm of 
12 ns and latency, Tr of 24 ns. Below, we summarize the 
performance of aggregated buffers for the different 
combinations of queuing subsystems and speedups. 

4.3.1. Input/Output queuing; Switch speedup = 1 
In this case Ta and Td are both 12 ns. From the analysis 

presented in the Appendix, the queuing subsystems 
become stable with a degree of aggregation of 4 or 
higher. From the results plotted in  Figure 5, it is clear 
that when degree of aggregation is more than 4, cell 
discard probability and output link utilization improves 
with increasing enqueuer/output queues. In the same 
figure, we also report the steady-state of various states of 
the enqueuer and output queue. It is apparent that the 
likelihood of the enqueuer queue being full and the 
output queue being empty is very low. 

4.3.2. Output queuing; Switch speedup = 2 
Ta and Td are 6 and 12 ns. Queuing subsystem 

becomes stable with a degree of aggregation of 4 or 
higher. We report the above results in  Figure 5. 

4.3.3. Input queuing; Switch speedup = 2 
Ta is 12 ns and Td is 6 ns. Queuing subsystem becomes 

stable with a degree of aggregation of 10 or higher and 
we report the above results in  Figure 5. 

It is apparent from these results that a higher degree of 
aggregation improves the performance for relatively 
smaller request buffers. It is also apparent that larger 
elastic buffer and enqueuer and output queues benefits 
only when queuing subsystem parameters are stable. 

5. Coarse-Grained Scheduling 

We have mentioned that most queuing subsystems 
store packet lengths and boundary bits with the linked-
list nodes. Such a structure results in poor space 
efficiency because a) short packets don’t use all length 
bits and b) long packets don’t use length bits at the nodes 
pointing to the middle of packet (MOP). Buffer 
aggregation can improve this inherent inefficiency with 
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the help of the following mechanism to encode the 
packet boundary and length. 

5.1. Storing packet boundary and length 

We use an alternate mark inversion (AMI) encoding to 
mark the packet boundary, and keep X bits every node 
for this purpose. A sequence of bits of the same polarity 
indicates the continuation of a packet. As soon as a bit 
alternates, the end of the current packet is inferred. To 
store the packet lengths, we argue that (X-1)log2C+log2P 
bits at every node is sufficient, where C is the cell size 
and P the maximum packet size. We take the three 
possible scenarios and show that these many bits are 
sufficient. A) When all packets at a node are single cell, 
they will need a total of X*log2C bits, less than what we 
have. B) If a packet spans n buffers but lies entirely 
within a node, it will need log2(n*C) bits while n*log2C 
bits is available for it, which is sufficient because 

0     log)(log 22 >∀×≤ nCnnC . C) When a packet starts 

at a node and ends at another, it will need log2P bits. 
Since only one such packet can exist at a node, its length 
can be stored. The resulting node structure with the 
boundary and length bits is shown in Error! Reference 
source not found.. 

This scheme improves the space efficiency to store 
packet lengths from log2P bits per cell to roughly log2C 
bits per cell for higher degree of aggregations. The flip 
side of a high aggregation is that it increases the size of 

queue descriptors, which store the packet length and 
boundary of the head (and possibly the tail) node. We 
now introduce a coarse-grained approach to storing 
packet lengths which reduces the queue descriptor size 
as well as the node sizes. 

5.2. Storing packet lengths  

In this coarse grained approach, we use a clever 
encoding to store the packet lengths. A multi-buffer node 
stores only the AMI encoded packet boundary mask 
(requires X bits) and the cumulative length of all packets 
starting at the node, i.e. whose SOP cell resides there 
(requires log2(X*C+P) bits). This scheme clearly reduces 
the space required to store the packet lengths from 
roughly log2C bits per cell in the first scheme to roughly 
(log2X*C)/X bits per cell. Consequently, the size of 
queue descriptor also gets reduced. 

However, the length of packets (in bytes) beginning at 
any node can’t be determined with this scheme, therefore 
the question arises: how will the scheduler schedule the 
packets? We show that the information present at the 
nodes is sufficient to ensure a fairly accurate scheduling 
because the cell count of any packet can be determined. 
Also, after sending the last packet from a multi-buffer 
node, the total number of bytes sent from the node can 
be determined. We will now briefly discuss how fair 
scheduling can be maintained. 
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 Figure 5: A) Upper row plots the cell discard rate and output link utilization for 2 sets of enqueuer queue 
and output queue sizes). Link rate is 40 Gbps and linked-lists memory clock period is 12 ns and access 
latency is 24 ns. B) Steady-state probability of the enqueuer queue, and output queues (various queue 
capacities: output queue = 32, elastic buffer = 16, enqueuer queue = 16). 



5.3. Using coarse-grained scheduling 

In coarse-grained scheduling, packet lengths are 
represented as multiples of cells (64-byte, etc) instead of 
bytes, and the fair queuing algorithm selects queues 
based upon cell counts. Note that such a policy might 
result in persistent unfairness and poor delay bounds for 
the flows with relatively odd sized packets. For example, 
in a system with 64-byte cells, a flow with all 65-byte 
packets will send as many packets as a flow with equal 
priority and 128-byte packets. In order to ensure long-
term fairness, we propose a simple technique which uses 
the cumulative packet length information stored at every 
node. With cumulative byte and cell counts of every 
packet starting at a node known, we compute the 
normalized average number of bytes in every packet 
using the following equation, 

�

�
×

=
nodeat  packets all

nodeat  packets all

(cells)Length 

(bytes)Length (cells)Length 
(bytes)Length 

 

When the fair queuing algorithm makes selections 
based upon the above packet length, long term fairness is 
ensured. In fact, fairness is ensured within a time 
window equal to the time needed to send all packets in a 
single multi-buffer node. Since a maximum of X packets 
can begin at a node, fairness is ensured for every X 
packets transmitted from a queue. We leave the further 
analysis of this issue to future work. 

6. Summarizing Benefits and Drawbacks  

With buffer aggregation, cells can be sent at a rate of 
X cells per linked-list memory access time, if linked-list 
accesses are the only bottleneck. A high degree of 
aggregation will eliminate the bottleneck of linked-list 
memory access latency and bandwidth. Indeed, cheaper 
linked-list memories with less random access bandwidth 
and higher latencies can be used, as compared to a 
traditional approach. 

Another notable benefit of buffer aggregation is a 
factor of X reduction in the number of linked-list nodes. 
With the addition of coarse-grained scheduling, this 
translates into a factor of X reduction in linked-list 
memory. A large X, therefore, can enable on-chip 
memories to be used, which will eliminate an external 
component and the associated interface. 

However, aggregated buffers may result in wastage of 
DRAM space when the head and tail nodes are not fully 
occupied. In the worst case, every queue can waste (X-1) 
buffers in the head and tail node, thus, 

)1(queues of No2space Wasted −××= X  
For a system with 512 MB of DRAM, 64 thousand 

queues, and 64-byte cells; a degree of aggregation of 8 
will translate into wastage of about 10% of DRAM space 
in the worst-case and about 5% in average case. 

Buffer aggregation might also require a careful design 
to ensure good DRAM efficiency. With buffer 
aggregation, arriving cells typically occupy the first 
available buffer at the tail node. Therefore, traditional 
DRAM bank arbitration techniques can’t always be used 
with writes; this can result in reduced DRAM efficiency. 
We believe that out-of-order writes, along with re-
ordering, can solve this problem. Nonetheless, we leave 
this issue to future work. 

7. Conclusions 

In this paper, we have pointed out the potential 
bottlenecks associated with the linked-list queuing 
subsystems as the link rates scales beyond 10 Gb/s. We 
have proposed the use of buffer aggregation, which 
employs multi-buffer linked-list nodes. With the aid of a 
discrete time Markov analysis, we have shown that 
multi-buffer list nodes can significantly improve queuing 
throughput and practically eliminate the queuing 
bottlenecks associated with the linked-list memory 
bandwidth and access latency. Multi-buffer list nodes 
when combined with the implicit mapping and coarse-
grained scheduling can reduce the amount of SRAM 
needed to hold the list nodes by a factor of 10 at the cost 
of about 10% wastage of the DRAM space, assuming an 
aggregation degree of 16. Such reductions in SRAM size 
can translate into significant cost savings considering 
that cost of SRAM frequently dominates that of DRAM 
in high speed queuing subsystems. 
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9. Appendix 

 
Model of the queuing subsystem with bottleneck 

formulated around the linked list memory bandwidth and 
access latency is shown in Figure 3 (Section 4). We 
assume that latency associated with the dequeues from 
free queue aren’t the bottleneck (multiple free queues can 
be employed for this purpose and free nodes can be 
dequeued from them in a round-robin order). We first 
isolate the arrival and departure processes. Arrival 
process maps the arriving cells to a queue and enqueues 
them as quickly as possible. Departure process dequeue 
cells from the queues selected by the scheduler at a rate 
sufficient to keep the output link busy. With buffer 
aggregation, the occupancies of head and tail node 
increases linearly with arriving cells, thus the occupancy 
of head and tail node remains random at any random 
time instant. Therefore, likelihood of nodes allocation 
and de-allocation remains uniform random with a 
probability of 1/X, irrespective of the queue selection 
order. 

Since linked-list memory is the bottleneck, cells that 
don’t need a link access are processed quickly while 
others wait for the memory. We keep a queue at the 
arrival process to hold such cells and refer to it as 
enqueue-queue; cells from this queue are processed by 
an enqueuer as it gets to access the link memory. A 
similar queue for dequeues can’t be employed because 1) 
Dequeues has to be performed strictly in order and 
therefore departure process can’t continue if some 
requests are waiting for the link access, 2) Even if we 
allow out-of-order dequeues; due to the linked-list 
structure, subsequent cells from a queue can be dequeued 
only after the one requiring the link access is dequeued. 
3) Third reason has to do with the operation of scheduler 
which requires the packet lengths in order to make 
selections. Since the queuing subsystems, we consider, 
stores packet length at the list nodes, whenever a 
dequeue requires link access, length of the next packet is 
available only after the access is serviced and only 
thereafter, scheduler can proceed. 

Our principle metric of the efficiency of departure 
process is output link utilization, i.e. how often the 
output link remains busy. We maximize this metric by 
keeping an output queue in which departure process 
stores the dequeued cells. This queue is serviced at the 
output link rate and the objective is to keep it non-empty. 
In order to simplify the model, we also keep a dequeue-
queue. Departure process dequeues the cells right away 
if link access is not required otherwise puts the request 
into the dequeue-queue. A dequeuer services the requests 
from this queue as the link memory is available and puts 
the dequeued cells in the output queue. Clearly, 
departure process stalls whenever dequeue-queue 

remains non-empty, therefore, we keep the size of 
dequeue-queue at 1. 

The queuing subsystem also incorporates an elastic 
buffer, which holds few free list nodes. Enqueuer 
services requests from the enqueue-queue only if elastic 
buffer has free nodes available and the dequeuer services 
requests from the dequeue-queue only if elastic buffer 
has some free space. A balancing process tries to keep 
this elastic buffer nearly half filled, by accessing the link 
memory. 

Our objective is to compute the probability that the 
enqueue-queue overflows, which will be the cell discard 
probability and the probability that output-queue 
underflows. We solve the queuing subsystem model 
(shown in Section 4) using a discrete time Markov 
analysis. Let Ta and Td be the inter cell arrival and 
departure times; the linked-list memory allows an access 
every Tm, with the read access latency being Tr. Also, let 
the enqueue and dequeue process takes Ts time to service 
requests that doesn’t need a link access. Thus, the one 
which needs a link access will take (Ts+Tw) and 
(Ts+Tw+Tr) respectively, where Tw is the waiting time of 
a request in the queue. The queuing subsystem is called 
to be in a stable state when following three conditions 
are satisfied, 
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Equation 1 requires at most X times lower link 
bandwidth than in a non-aggregated system given by 
Lemma 1. Equation 2 requires that the memory latency 
should have a toll on only one cell among X cells. 
Equation 3 is similar with the exception that enqueue 
process doesn’t incur any link read access latency. An 
ideal queuing subsystem in a stable state, should keep 
the outgoing link busy and also keep up with the 
incoming link. With the aid of discrete time Markov 
analysis, we will now show that an aggregated queuing 
subsystem, in stable state, also ensures nearly zero cell 
loss probability and 100% output link utilization. 

We let the size of enqueue-queue, dequeue-queue, 
output-queue and elastic buffer be Se, Sd, So and B, 
respectively, and fe, fd, fo and f be their fill levels. Note 
that Sd is 1. In order to enable stable balancing of the 
elastic buffer, we define a threshold � , such that the 
balancer contends for link access to balance the elastic 
buffer only when its occupancy deviates by more than �  
from the mean B/2. We also dynamically give the link 
access to either enqueuer, or dequeuer or the elastic 
buffer based on their urgency � e, � d and � b. Urgency is 
defined as the normalized imbalance and is given by the 



following equations for the enqueuer, dequeuer and 
elastic buffer, respectively, 

eee Sf /=α  (4)

oood SFS /)( −=α  (5)
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Clearly, the system performance is maximized when 
a) the enqueue-queue is least likely to get filled, b) 
elastic buffer remains balanced and c) output-queue 
remains non-empty. 

We will now define a discrete time Markov chain to 
model the system. We first define a variable t, which 
increments every unit time and rolls over once it reaches 
N, where N is the least common multiple (LCM) of Ta, 
Td, Ts and Tm. t is used as the reference for all events as 
follows. 

Probability that a request arrives in the enqueue-queue 
is, 

else0
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aee
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Probability that a request arrives in the dequeue-queue 
is, 

else0

)0mod and  and 0(when  /1 =≠=
=

sood
d

TtSffX
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Probability that a request which doesn’t need a link 
access, arrives in the output queue is, 

else0
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X
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Link memory request is serviced whenever (t mod Tm) 
is 0. 

We define another variable, w, which indicates the 
time for which dequeuer must wait to receive the data 
read from the link memory. w is set to Tr whenever link 
memory serves the dequeuer, and decrements every unit 
time thereafter. When it reaches 1, data is received, 
request from the dequeue-queue is flushed and dequeued 
cell is written into the output queue. 

State of the queuing subsystem is defined as (fe, fd, fo, 
f, w, t). We let π( fe, fd, fo, f, w, t) denote the steady-state 
probability that the system is in state (fe, fd, fo, f, w, t). To 
compute the steady-state probabilities of all states, we 
need to specify transition probabilities that give the 
probability of a transition from one state to another. Let 
δ(s1,s2) denote the transition probability from state s1 to 
state s2. Then, we can write, �

=
1

),()()( 2112 s
ssss δππ  (10)

To simplify the specification of the transition 
probabilities, we view the transition as happening in four 
phases; an arrival phase followed two service phases, 
followed by a departure phase. During the arrival phase, 
new entries may (or may not) arrive in the enqueue, 

dequeue or output queues. During the first service phase, 
a memory request from one of the three requesters is 
serviced. During the second service phase, data read 
from the link memory may arrive hence the dequeued 
cell is written into the output queue and the dequeue-
request is flushed from the dequeue-queue. During the 
departure phase, an entry from the output queue is sent. t 
is incremented and w is decremented during the 
departure phase. If we let δa(s1,s2), δs1(s1,s2), δs2(s1,s2) 
and δd(s1,s2) represent the probability of a transition 
between the phases, and πa(s), πs1(s), and πs2(s) be the 
intermediate state probabilities, they can be related 
through the following equations, �
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We can use these equations to solve for the steady 
state probabilities as follows. First, we assign initial 
values to π(s). To ensure that the system is equally likely 
to be with any value of t, not just in the steady state, we 
assume that the reference counter is initialized to a 
random value. We also let the elastic buffer half filled 
and other queues empty initially. We reflect these initial 
values in our model, by initializing 

NtB /1),0,2/,0,0,0( =π  for all values of t and letting 
all the other state probabilities be zero. We use these 
initial state probabilities, together with the transition 
probabilities δa(s1,s2) to compute values of πa(s). We 
then use a) πa(s) and δs1(s1,s2) to compute πs1(s), b) πs1(s) 
and δs2(s1,s2) to compute πs2(s) and finally c) πs2(s) and 
δd(s1,s2) to compute the new π(s). We continue in this 
fashion until successively computed values of π(s) 
converge. 

Note that t is the reference counter, and therefore the 
state probabilities associated with any value of t must 
sum to 1/N at all time instants, 

Ntwffff
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With these preliminaries out of the way, we can 
proceed to specify the transition probabilities. Transition 
probabilities for the arrival phase are, 

deodeodea PPtwfffftwffff ×=++ )),,,,1,1(),,,,,,((δ  (16)
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)1()),,,,,1(),,,,,,(( odeodeodea PPPtwfffftwffff −−=+δ  (18)

deodeodea PPtwfffftwffff )1()),,,,1,(),,,,,,(( −=+δ  (19)
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)1)(1()),,,,,(),,,,,,(( odeodeodea PPPtwfffftwffff −−−=δ  (21)

Transition probabilities for the first service phase are, 
If ((t mod Tm �  0) or ( � b = � e = 0 and ( � d = 0 or w �  

0)), 
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Transition probabilities for the second service phase 

are, 
If (w = 1 and fd > 0), 

1)),,,1,1,(),,,,,,((2 =+− twfffftwffff odeodesδ  (27)
Else 

1)),,,,,(),,,,,,((2 =twfffftwffff odeodesδ  (28)
This essentially indicates that when w reaches 1, data 

read from the link memory arrives, the dequeued cell is 
put into the output queue and request is flushed from the 
dequeue-queue. 

Transition probabilities for the departure phase are, 
If (t mod Td = 0 and fo > 0), 

1)),,,1,,(),,,,,,(( =+−− twfffftwffff odeodedδ  (29)
Else 

1)),,,,,(),,,,,,(( =+− twfffftwffff odeodedδ  (30)
Where, w- = max(0, w-1) and t- = (t+1)mod(N)  
With these equations, we compute steady-state 

probabilities as described. Note that when computing a 
steady-state probability value, many distinct values are 
summed together. During such summations, small values 
are often added to much larger values leading to loss of 
precision. One can minimize the potential for loss of 
precision by first computing the values to be summed, 
sorting these values, and then adding them in order from 
the smallest to the largest. One can also normalize the 
results after every step. In general, steady-state 
probabilities should sum to 1 at the end of each step. 

Given the steady-state probabilities, we can compute 
the probability that an arriving cell is discarded as, �
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and the output link utilization as, �
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