
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-25

2005-05-30

Processor Generator v1.3 (PG13) Processor Generator v1.3 (PG13)

Eduard V. Kotysh and Patrick Crowley

This project presents a novel automated framework for microprocessor instruction set

exploration that allows users to extend a basic MIPS ISA with new multimedia instructions

(including custom vector instructions, a la AltiVec and MMX/SSE). The infrastructure provides

users with an extension language that automatically incorporates extensions into a

synthesizable processor pipeline model and an executable instruction set simulator. We

implement popular AltiVec and MMX extensions using this framework and present experimental

results that show significant performance gains of customized microprocessor.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Kotysh, Eduard V. and Crowley, Patrick, "Processor Generator v1.3 (PG13)" Report Number:
WUCSE-2005-25 (2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/943

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/943?utm_source=openscholarship.wustl.edu%2Fcse_research%2F943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

 1

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

PROCESSOR GENERATOR v1.3 (PG13)

by

Eduard V. Kotysh B.S. Applied Science

Prepared under the direction of Dr. Patrick Crowley

A project presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Master of Science

May, 2005

Saint Louis, Missouri

 2

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

ABSTRACT

PROCESSOR GENERATOR v1.3 (PG13)

by Eduard V. Kotysh

ADVISOR: Dr. Patrick Crowley

May, 2005

Saint Louis, Missouri

This project presents a novel automated framework for
microprocessor instruction set exploration that allows
users to extend a basic MIPS ISA with new multimedia
instructions (including custom vector instructions, a la
AltiVec and MMX/SSE). The infrastructure provides users
with an extension language that automatically incorporates
extensions into a synthesizable processor pipeline model
and an executable instruction set simulator. We implement
popular AltiVec and MMX extensions using this framework and
present experimental results that show significant
performance gains of customized microprocessor.

 3

CONTENTS

1. INTRODUCTION .. 5
2. HIGH-LEVEL DESIGN... 5
 2.1 Base MIPS IV Processor.. 6
 2.2 Interpreter .. 6
 2.3 Assembler ... 7
 2.4 Compiler .. 7
 2.5 Simulator.. 7
 2.6 Data Flow .. 7
3. IMPLEMENTATION... 7
 3.1 General Parameters... 8
 3.2 Instruction/Data Memory... 9
 3.3 Register Files ... 9
 3.4 Base Instructions.. 9
 3.5 ISA Extensions ... 9
 3.6 ALU Extensions.. 9
 3.7 IR Layouts .. 10
 3.8 Pipeline .. 11
 3.9 Exceptions .. 11
 3.10 Compiler .. 11
 3.11 Assembler ... 11
 3.12 Simulator.. 12
 3.13 Spartacus Processor .. 12
 3.14 Components.. 12
 3.15 Base Instruction Set ... 13
 3.16 Implemented Extensions... 13
 3.17 Interpreter .. 14
 3.18 Keywords.. 14
 3.19 Two-stage Architecture .. 14
 3.20 Example.. 14
 3.21 Limitations ... 16
 3.22 Assembler ... 16
 3.23 Executing Scripts ... 17
 3.24 Compilation Batch ... 17
 3.25 Simulation Batch .. 18
4. SYNTHESIS ... 18
 4.1 Worst Slack.. 19
 4.2 Performance Summary... 19
5. TESTING.. 20
6. CONCLUSION / FUTURE WORK.. 24
7. ADDITIONAL RESOURCES .. 25
8. REFERENCES / THANKS ... 25

 4

LIST OF FIGURES

Figure 1: PG13 Infrastructure ... 6
Figure 2: Framework Interface ... 8
Figure 3: IR: OP Layout ... 10
Figure 4: IR: SP Layout .. 10
Figure 5: Spartacus Base Processor .. 12
Figure 6: Base Instruction Set... 13
Figure 7: Implemented Extensions ... 14
Figure 8: Sample Vector-add Extension ... 15
Figure 9: Extension Parameters .. 16
Figure 10: Compilation Batch... 17
Figure 11: Compilation Batch Execution ... 18
Figure 12: Worst Slack Report ... 19
Figure 13: Performance Report... 19
Figure 14: Custom ALU Extension .. 20
Figure 15: Custom Vecadd8_mmx Extension .. 21
Figure 16: Assembly for Customized Execution.. 21
Figure 17: Performance with the vector extension ... 22
Figure 18: Assembly Without Custom Extension .. 23
Figure 19: Performance without the vector extension .. 24

 5

1. INTRODUCTION
Custom microprocessors have gained large popularity in the industry, as well as in
academia. A small amount of custom logic can make a large improvement in
performance, but has historically required a costly custom processor design. Not only
does it take a considerate amount of money to develop the desired functionality, but it
is also a difficult and timely process to perform.

The solution is to provide a friendly customization environment that allows easy
modification of an existing microprocessor to suit the desired requirements. For this
purpose, companies like Tensilica Inc. [4] have developed instruction extension
languages to aid in the tailoring process and achieve desired functionality. Their tools
provide an automated and easy way to implement custom extensions; however, the
tools are usually expensive and require learning of a new language.

I have developed an open-source infrastructure for microprocessor customization that
allows users to extend a basic MIPS ISA with new instructions, including custom
vector instructions, a la AltiVec or MMX/SSE [1][2]. The infrastructure contains a
synthesizable MIPS IV-compatible [3] processor written in VHDL and an automated
extensibility framework written in JAVA. The framework provides users with a low-
level VHDL-like extension language that automatically incorporates new extensions
into a synthesizable processor pipeline model and an executable simulator. This
project addresses all the issues with current extension frameworks: it is a free open-
source project; it is completely automated (integrated interpreter, generator,
assembler and simulator); and its language is based on VHDL, so computer
architecture developers don’t have to learn a new extension language.

This infrastructure is an experimental project, developed as a learning tool for
graduate and undergraduate level computer engineers, as well as professional
microprocessor developers. Basic knowledge of VHDL and computer architecture is
required to be able to define new extensions and take advantage of available
components to exploit parallelism.

This report is organized as follows: section 2 describes the high-level design of PG13
infrastructure explaining the function of each component within the framework;
section 3 goes into implementation details of how each component works; section 4
presents synthesis results of the Spartacus base microprocessor with two embedded
extensions; section 5 describes the testing techniques employed and the results
observed during testing; section 6 draws conclusions from the developed system;
finally, section 7 contains references and people who made PG13 possible.

2. HIGH-LEVEL DESIGN
Figure 1 captures the high level view of PG13 infrastructure. Components placed
inside the processor generator are the integrated framework pieces stitched together
for automation. User can invoke those parts by simply pressing a button on the GUI
interface.

 6

Figure 1: PG13 Infrastructure

Entire framework consists of 5 major components: Base MIPS IV processor,
Interpreter, Assembler, VHDL Compiler batch, and Simulator batch.

Base MIPS IV Processor
For this project, I have developed a synthesizable model of a single-threaded, 5-stage
pipeline MIPS IV microprocessor in VHDL. It contains:
� 35 MIPS-compatible instructions [3]
� 2 reconfigurable Register Files (32-bit and 64-bit)
� 3 ALUs (32-bit, 64-bit, and vector ALU)
� Reconfigurable instruction memory
� Reconfigurable dual-ported data memory

Interpreter
Interpreter is the most complex part of the framework. On a high level, it serves 2
primary functions:
1) Takes user-defined configuration parameters (such as Register File size, clock

period, etc.) and modifies the base processor according to given specifications.
2) Takes the new extension created by the user, parses it, and translates it to

corresponding VHDL blocks and adds these blocks to the processor.

Custom
VHDL

MIPS IV
custom model

Processor Generator Framework

Interpreter

Assembler

Compiler
(vcom)

Simulator
(vsim)

Spartacus
VHDL

MIPS IV bare

DMEM size 64
VAdd {
 …
}

User Input
configuration

ADDI R1 R1 5
VAdd 31 15 16
…

User Input
instructions

VAdd.do

.do File

Call Scripts

ModelSim

 7

Assembler
I wrote a custom assembler for the Spartacus processor that converts human-readable
MIPS assembly into binary code for the microprocessor’s Instruction Register (IR). It
then incorporates the produced binary into a .do simulation testbench. It’s important
to note that my assembler can also translate the instructions of the new extensions that
just have been created, since it has access to the produced custom VHDL processor.

Compiler
The integrated compiler batch script can call the ModelSim compiler (vcom) with
preferred arguments, such as synthesis check, explicit conflict resolution, 93’ syntax
support and others. The compilation batch is spawned in a new process and involves
all generated VHDL files that are compiled with proper dependencies. This step has
to be done before simulation is started; otherwise, the architecture in simulation will
be outdated.

Simulator
Integrated simulator batch script calls ModelSim simulator (vsim) with provided .do
testbench and automatically configured architecture. It spawns a separate process that
starts ModelSim simulation and runs for as long as specified by the user. All the
signals, components and waves are available for viewing and debugging, as in regular
ModelSim simulation mode.

Data Flow
The following chain of events will take place in the process of generating a new
custom processor using PG13 infrastructure:
1. The PG13 framework GUI is started by the user
2. User sets desired configuration parameters on the microprocessor
3. User inputs the implementation of the new extension
4. Interpreter parses user input and builds the new VHDL model of the processor
5. Compiler verifies correctness of the new VHDL model
6. User writes desired MIPS assembly instructions
7. Assembler converts them into binary representation and builds a .do testbench
8. Simulator takes the .do testbench and the user-specified running time and creates

a simulation model for the new microprocessor
9. Compiler verifies the synthesis compatibility of the new processor

3. IMPLEMENTATION
At the heart of the infrastructure lies the GUI framework that provides an easy,
interactive way to access, use and modify the processor components in an automated
fashion.

Written entirely in JAVA swing, it runs on any platform as a jar executable.

 8

Figure 2: Framework Interface

As can be seen in Figure 2, the entire framework is subdivided into step-by-step
configurations (called tabs) to ensure a safe and orderly flow of events that is intuitive
to the user. Each tab panel serves a unique function and passes on its results using
shared memory down the chain of events.
Following is the description of each tab panel and its implementation:

General Parameters
This section lets you personalize the processor by doing the following:
� Naming the top-level entity
� Setting the clock period (i.e. 20ns)
� Setting the edge of the clock (rising/falling)
� Adding a reset signal to the controller
� Specifying what processor components should be added to the build, such as

additional registers, vector ALU, etc.
When the Save button is clicked, all the parameter configurations that user specified
are encoded into a file and passed along to the Interpreter. For general parameters,
such as clock period, the interpreter creates a copy of the old VHDL configuration,
seeks into the appropriate place to make a change and writes the new parameters. In
order to include only the desired processor components, the Interpreter creates only
requested component mappings and declarations at the top-level entity.

 9

Instruction/Data Memory
Current instruction and data memories are implemented as double arrays of size word
(32 bit).

For instruction memory, the user can change the size of the memory (how many
blocks) but cannot change the size of the block, for the Instruction Register is based
on a 32-bit architecture and the microprocessor is currently single-threaded; therefore,
no parallelism can be achieved from fetching two instructions at once. The future
work section addresses this thought in more detail, leaving it for the upcoming groups
to develop multi-threading support for this project.

For data memory, the user is allowed to change the size of the memory, as well as the
size of the block in memory providing maximum flexibility to achieve speedup. Data
memory is made dual-ported for optimal performance of the vector memory
operations.

Reset signal is optional for simulation, but strongly recommended for a synthesizable
model to avoid massive creation of feedback MUXes by the synthesizer.

Register Files
I have implemented two register files (32 and 64-bit) to support MMX extensions
using 64-bit MMX registers. Both register files are dual-ported.

User can specify the size of each register file, which will determine the number of
register mappings generated within the regFile entity.

Base Instructions
In this tab panel, user can check or uncheck the base MIPS instructions he or she
wants implemented in the microprocessor. This allows saving resources and utilizing
only the required functionality at the base level. Currently, 35 base MIPS instructions
are implemented.

ISA Extensions
This section lets the user create custom instruction extensions, such as AltiVec,
3DNOW! and MMX extensions [1][2]. The user writes the implementation of the
extension he wants, expressing what he wants this instruction to do at every stage of
the pipeline. The implementation of each stage is written in a VHDL- or Verilog-like
syntax, which is easy and familiar to computer architecture developers. For more
information on the syntax of the language and how to write custom extensions in
general, refer to the PG13 manual.
After the implementation is entered, the parser checks for syntax errors and
interpreter translates and incorporates the implementation into the microprocessor.
When interpreter is done, the user can view the produced VHDL and interpretation
parameters for correctness check or debugging purposes.

ALU Extensions

 10

In order to exploit maximum parallelism, I provide the ability to create custom ALU
operations that can be later used in the implementation of an ISA extension. This
becomes very beneficial for the implementation of custom vector instructions, where
several adds or multiplies can be performed in one cycle. Consider the following
example of a custom vector add instruction:

vecadd8_mmx (memLoc dest, mmxReg r1, mmxReg r9)

This instruction vector adds 64-bit MMX registers in 32-bit chunks and stores the
results in memory:

dest[0] = r1(63:32) + r9(63:32)
dest[1] = r1(31:0) + r9(31:0)

dest[2] = r2(63:32) + r10(63:32)
dest[3] = r2(31:0) + r10(31:0)

dest[14] = r8(63:32) + r16(63:32)
dest[15] = r8(31:0) + r16(31:0)

To execute this instruction in N clock cycles (where N is the length of the vector, in
this case 8) we will need to perform two 32-bit adds in one cycle. ALU Extension
environment lets you create a custom operation for the vector ALU that will do just
that.

IR Layouts
Currently, there are two fixed Instruction Register layouts that are MIPS-compatible,
used for regular operations and special operations.

Figure 3: IR: OP Layout

Figure 4: IR: SP Layout

SPECIAL Rs Rt

000000 00000 00000

31 26 25 21 20 16 15

Immediate/Offset

0000 0000 0000 0000

0

SPECIAL Rs Rt Rd 0 OPCODE

000000 00000 00000 00000 00000 000000

31 26 25 21 20 16 15 11 10 6 5 0

 11

Figure 3 depicts the OP (OPCODE-active field) layout for instructions that do not
operate on immediates or offsets. SP (SPECIAL-active field) layout shown in Figure
4 is used for Store, Load, Branch and immediate addressing instructions.

Considering the timeframe of this project, these layouts were made predetermined
and cannot be altered by user, for MIPS backwards compatibility will be ruined by
changing any of the IR fields. However, the user must still carefully consider these
layouts before creating a custom extension to not exceed the maximum number of
operands and fit data within the available range of the operand bits; hence, this tab
panel was included.

Pipeline
This section allows the user to create new debug signals and set them to monitor each
stage of the pipeline. First, user provides the definition of the signal, which is added
to the processor implementation and the .do testbench for visual simulation. Then,
user wires the created debug signal in any stage of the pipeline to any other signal, be
it register file output or memory address. The wiring information is also converted
into VHDL and added to the microprocessor by the interpreter.

Exceptions
In this tab, the user has quick access to the list of trap codes and exceptions that might
occur during the simulation for convenience.

Compiler
This tab allows users to choose the options to supply to the vcom compiler script for
microprocessor compilation. Below are currently available options:
� Check for compliance with synthesis rules
� Resolve resolution conflicts in favor of explicit functions
� Enable support for VHDL 1076-1993
� Print the source line with error messages

After the options have been selected, the compiler spawns a separate command line
process, where it sets the ModelSim environmental variables, navigates to the vhdl
directory and calls the vcom compiler with appropriate arguments on all of the VHDL
files generated. This step must be performed before simulation is called on the
generated files.

Assembler
In this window, the user specifies the output .do file and writes assembly instructions
in MIPS format that he/she wants the processor to execute during the simulation.
Assembler then runs a syntax check on the written assembly and, if passed, translates
assembly into binary representation, encapsulates it into the .do testbench and writes
everything out to the user-specified file.

 12

Simulator
It is important to note that before proceeding with simulation, the user is required to
execute the compilation step to not get out of synch and have a valid .do testbench to
run the simulation on.

In this section, the user first chooses the .do testbench file to run the simulation on
and then specifies the amount of time to run the simulation. After this information is
set, the simulator will once again set the ModelSim environmental variables, navigate
to the proper directory and call the vsim simulator with appropriate arguments on the
top-level entity of the generated microprocessor.

Spartacus Processor
I have developed a MIPS IV-compatible microprocessor based on classic 5-stage
pipeline architecture (Fetch, Decode, Execute, Memory, Writeback).

Figure 5: Spartacus Base Processor

Components
As seen from Figure 5, it contains controller (the top-level entity) and 10 components:
clock, instruction memory, data memory, 2 register files, 32-bit register, 64-bit
register, and 3 ALUs. Controller reads instructions from instruction memory via a
single read port (32 bits/cycle). Data memory is dual-ported, and therefore, the
controller can write data via two write ports (two 32-bit/cycle) and read data via two

SPARTACUS

CLK

Controller

RegFile
32

RegFile
64

ALU32 ALU64

ALU Vec

IMEM

DMEM

Reg32

Reg64

User
Instructions

32

32

rd port

wr port

mapping

 13

read ports (two 32-bit/cycle). Controller has maps to 3 ALUs (32-bit, 64-bit and a
vector ALU) and a clock. It’s also connected to two register files via two read ports
and one write port each. Each register file deploys 32 maps to the register component.
Clock is symmetrical and has an adjustable period. A separate clocked process is used
in the controller to latch signals instead of creating registers out of them. The default
state machine design is used, where one process is dedicated solely to assigning the
current state on every rising clock edge and another process is based on sensitivity list
and assigns the next state based on the current state it’s in.

Base Instruction Set
The base of the Spartacus core contains 35 instructions shown in Figure 6.

Function Opcode Description
OP_ADD 100000 add
OP_ADDU 100001 add unsigned
SP_ADDI 001000 add immediate
SP_ADDIU 001001 add immediate unsigned
OP_AND 100100 and
SP_ANDI 001100 and immediate
SP_BEQ 000100 branch on equal
SP_BGTZ 000111 branch on >0
SP_BLEZ 000110 branch on <=0
SP_BNE 000101 branch on not equal
OP_DADD 101100 64bit add
OP_DADDU 101101 64bit add unsigned
SP_DADDI 011000 64bit add immediate
SP_DADDIU 011001 64bit add imm unsigned
OP_DDIV 011110 64bit divide
OP_DDIVU 011111 64bit divide unsigned
OP_DIV 011010 divide
OP_DIVU 011011 divide unsigned
OP_DMULT 011100 64bit multiply
OP_DMULTU 011101 64bit multiply unsigned
OP_DSLL 111000 64bit shift left logical fixed
OP_DSLLV 010100 64bit shift left logical variable
OP_DSRA 111011 64bit shift right arith fixed
OP_DSRAV 010111 64bit shift right arith variable
OP_DSRL 111010 64bit shift right logic fixed
OP_DSRLV 010110 64bit shift right logic variable
OP_DSUB 101110 64bit subtract
OP_DSUBU 101111 64bit subtract unsigned
SP_LW 100011 load word
SP_SW 101011 store word
OP_MFHI 010000 move from 32bit HI register
OP_MFLO 010010 move from 32bit LO register
OP_MFDHI 010001 move from 64bit HI register
OP_MFDLO 010011 move from 64bit LO register

Figure 6: Base Instruction Set

This set of instructions contains standard logic, arithmetic, branch and memory
operations, with support for 32-bit and 64-bit architecture as well.

Implemented Extensions
The following extensions have been implemented and tested using PG13 framework:

 14

Function Description Type
Vecadd32_mem vector adds 32-bit values in memory AltiVec
Vecadd64_mmx vector adds values of mmx registers Mixed
Vecadd16_hybrid vector adds values of mmx registers in 16-bit chunks Mixed

and stores the results into memory
Vecld vector indexed load AltiVec
Vecmax vector maximum extraction AltiVec
Maskmove streaming store using byte mask MMX/3DNOW!
PavgB packed averaging of bytes of mmx regsiters MMX/3DNOW!

Figure 7: Implemented Extensions

The functionality of this entire set of instructions can be added to the base MIPS
processor in less than 20 minutes. Most of these (as indicated in parenthesis) were
taken from AltiVec or MMX manual and implemented to show how easy it is to
create non-standard extensions using this framework. In addition, they provide good
examples to study for new users of PG13.

Interpreter
Interpreter is the central part of the PG13 framework, what actually does most of the
work and performs translation from user-given implementation into VHDL code on
the microprocessor.

Keywords
The interpreter employs a translation language that converts user’s definition of the
custom extension to VHDL code for the microprocessor. The language employs
special keywords to simplify the declarations for the user. These keywords can be
used to declare particular steps to perform at each pipeline stage, to specify a vector
extension and vector length, or simply to decrement/increment a certain signal. For
full list of special keywords and their functionalities, please refer to the PG13 manual
documentation.

Two-stage Architecture
Interpreter works in two stages. In the first stage, it will analyze the declaration of
user’s extension and identify all the operands and its types, the type of IR layout to
use, and find and reserve a free opcode for that instruction. In the second stage, the
interpreter will analyze the implementation scope of the instruction. It will set the
loop variables if any (only for vector instructions), go through each pipeline
declaration stage, perform translation of signal names to standardize with the
processor and deploy pipeline code on the microprocessor in VHDL, taking care of
the sensitivity list and code dependencies in microprocessor VHDL.

Example
In order to better understand how the interpreter works and what it does, consider the
following simple example and all will become clear:

 15

Suppose a user would like to create a vector-add operation in memory that adds
memory locations starting at “dest” and “s1” in a vector fashion with a vector length
of “s2”.

Figure 8 shows the correct user implementation of this instruction:

operation vecadd32_mem (memLoc dest, memLoc s1, imm32 s2)
 loop s2
 {
 Decode
 dmemory_address1 <= x"000000" & "000" & dest;
 dmemory_address2 <= x"000000" & "000" & s1;

 Execute
 alu32_operation <= OP_ADD;
 alu32_source1 <= dmemory_data_out1;
 alu32_source2 <= dmemory_data_out2;

 Memory
 dmemory_write_en1 <= '1';
 dmemory_address1 <= x"000000" & "000" & dest;
 dmemory_data_in1 <= alu32_result;

 Writeback
 decrement dest 1;
 decrement s1 1;
 }

Figure 8: Sample Vector-add Extension

The first stage of interpreter will parse out the name of the operation
(vecadd32_mem), reserve a free and valid opcode for this instruction by looking in
the database of currently used opcodes in the microprocessor, identify the source and
destination operands (dest, s1, s2) and their types (memory location, memory
location, and 32-bit immediate) and choose the proper IR layout for this instruction
(SP layout because of the immediate, refer to Figures 3 and 4). Depending on the
layout, different source/destination signal names will have to be substituted in order
to suit VHDL implementation at the microprocessor level.

The second stage will work on the scope of the instruction implementation.
Interpreter will see that this is a vector instruction by parsing in the loop keyword and
know that s2 is the length of the vector (number of times to perform the
implementation scope) and that inside the brackets is the implementation of the vector
instruction. At this point, the interpreter produces the parameter file, shown in Figure
9, that can be later viewed by the user to trace what happened for educational,
debugging or simply curiosity reasons.

 16

Figure 9: Extension Parameters

Next, the interpreter will analyze each pipeline stage implementation, add necessary
signals to the sensitivity list, perform translation of names “dest”, “s1”, “s2” and
others to valid signal names, interpret keyword functions like “decrement” into valid
registered vhdl code and so on. After all the formalities have been translated, the
produced VHDL implementation is added to the microprocessor files in appropriate
places (i.e. the controller, ALU, etc.)

Similarly, the ALU extensions are translated by the interpreter, and then users can use
them in the declaration of their ISA extension to exploit more parallelism.

Limitations
PG13 framework allows users to implement any kind of extensions, as long as they
can be implemented considering the current microprocessor resources and
architecture. In other words, the users are limited to the use of signals and
components available in the Spartacus MIPS IV processor. However, the processor
core was specifically designed to accommodate all currently known MIPS, MMX and
AltiVec extensions and written for easy scalability, and therefore, experienced users
are encouraged to become developers and extend the processor implementation as the
needs grow.

Assembler
The goal of the Assembler is to take human-readable MIPS assembly instructions and
convert them into binary representations that Spartacus understands during
simulation. Hence, it produces the binary, encapsulates it into the .do simulation
testbench and passes the file to the simulator.

Basically, the Assembler needs to know two things before it can produce the binary
for the instruction: the opcode of the instruction and the IR layout it uses. After that, it
knows exactly how much to padd each field and where in the 32-bit binary string to
place each operand. The opcode for instruction is looked up by the Assembler in the
opcode database file, which already contains the new ISA extensions, which lets the
user create a new extension and immediately after write assembly for it. The IR
layout information is passed to the Assembler by the Interpreter. After these two
things are known, the Assembler runs a syntax check on the given code and notifies

func:name=vecadd32_mem;
dest:name=instr_rs_out;
dest:type=memLoc;
s1:name=instr_rt_out;
s1:type=memLoc;
s2:name=instr_immoff_out;
s2:type=imm32;
dest:width=32;
s1:width=32;
s2:width=32;
func:code=111111;
func:type=SP;
loop_en <= '1';
loop_cnt <= instr_immoff_out;

 17

the user of the instruction errors including errors in the number of operands supplied,
the type of the operands, unknown operations and etc. If syntax check passes on all of
the instructions, the Assembler constructs the 32-bit binary representation of each
instruction, deposits them to the instruction memory signal one by one in the .do
testbench, and passes the .do file to the simulator.

Executing Scripts
These scripts are essentially child processes that are spawned by my framework
calling external executables provided by ModelSim with user-defined parameters.
I chose to use two of those executables: vcom and vsim that are described below.
Environmental setup is performed (PATH setting) before each batch execution.

Compilation Batch
There are several compilation batch files that are called depending on which
arguments and options were selected by the user in the GUI framework environment.
For example, if user selected synthesis check and explicit conflict resolution options,
the following batch will be executed:

::Set ModelSim 5.7e Environment varibles
set LM_LICENSE_FILE=regNumber@licenseServer
set MGLS_LICENSE_SERVER=regNumber@licenseServer
set PATH=p:\Modeltech_5.7e\win32;%PATH%

:: Fire Up ModelSim 5.7e
cd extensions
cd vhdl
vcom *.vhd -93 -work PG13 -source -explicit -check_synthesis

Figure 10: Compilation Batch

The first three lines set the environment and license for the ModelSim software;
therefore, the user is required to have ModelSim installed on his/her workstation, or
perform compilation and simulation steps outside the framework. Next, the batch
navigates out of the framework directory to the VHDL directory and calls vcom
compiler to run over all VHDL files in the directory specifying the top-level entity
and options provided by the user.

 18

Figure 11: Compilation Batch Execution

The entire batch call is depicted in Figure 11. This process lets users see if there were
errors encountered during the compilation.

Simulation Batch
A very similar process is adopted in this batch. The vsim application is called with the
assembled .do testbench file on a given processor architecture. Vsim will spawn its
own child process, in which ModelSim application is loaded, opening the signals,
structures, and waves of the microprocessor and running the simulation steps outlined
in the .do file. The user has access to all debugging windows and resources as in
normal ModelSim simulation.

4. SYNTHESIS
Synthesis has been performed using: Synplicity Compiler and Xilinx Technology
Mapper version 7.3. The target platform of choice was Xilinx Virtex-E part
XCV2000E package FG1156, at speed -6 [5]. This platform has the following
characteristics: 43,200 Logic cells, 80x120 CLB array, 2.5M system gates, and
655,360 block RAM bits.

 19

The synthesized design of PG13 microprocessor utilizes:
16866.72 LUTs (78%), 9/16 Global clock buffers (56%), 1/56 Block RAMs (1%),
and 9056 Register bits (42%). Considering this is not optimized, it leaves a good
amount of room for implementations of the new custom extensions by users.

Starting Points with Worst Slack

 Starting
Instance Reference Time Slack
 Clock
--
instr_special_out[0] controller|clk 0.449 -8.886
instr_special_out_fast[3] controller|clk 0.449 -5.895
instr_special_out_fast[5] controller|clk 0.449 -5.895
instr_special_out_fast[1] controller|clk 0.449 -5.726
instr_special_out_fast[2] controller|clk 0.449 -5.726
instr_opcode_out[4] controller|clk 0.449 -5.455
instr_opcode_out[5] controller|clk 0.449 -5.378
instr_opcode_out[2] controller|clk 0.449 -5.329
instr_opcode_out[3] controller|clk 0.449 -5.329
current_state[1] controller|clk 0.449 -5.280
==
Ending Points with Worst Slack
**

Figure 12: Worst Slack Report

As can be seen from generated report shown in Figure 12, the path with the worst
slack happens at signal that captures the special opcode field of the instruction. Most
of the 35 implemented instructions use the special IR layout and hence the special
field of the instruction is passed to other entities a lot (i.e. ALU32, ALU64, ALU
vector) and used within controller in several stages of the pipeline to determine the
operations needed to perform on that instruction.

With the requested frequency of 500 MHz and inferred worst slack of -8.886, the
performance was estimated at around 92MHz, leaving plenty of performance room
for new customized instructions, as can be seen from Figure 13.

Performance Summary

Worst slack in design: -8.886
 Requested Estimated Estimated
Starting Clock Frequency Frequency Period Slack

controller|clk 500.0 MHz 98.6 MHz 10.146 -8.146
current_state_inferred_clock[4] 500.0 MHz 389.9 MHz 2.565 -0.565
System 500.0 MHz 91.9 MHz 10.886 -8.886
==

Figure 13: Performance Report

 20

5. TESTING
First and foremost, I have tested each individual instruction (35 total) on the base of
the Spartacus processor. I made sure each of them performed in the correct amount of
time and with valid results. I have then tested multiple instructions within each
section (memory accesses – stores and loads, logical operations, arithmetic
operations). The final test included a set of small programs that combined cross-
section instructions like register file loads and memory stores.

Each framework component was tested separately as the development of the whole
infrastructure progressed. Similar to the bottom-up technique, this insured that the
higher level components will function correctly because of the tested lower-level
infrastructure that it depends on. Once all components were in place, the automation
process was deployed that stitched the components’ functionalities together into an
automated fashion. Then, the automation technique was tested by creating very
simple instruction extensions using the framework.

After being able to create simple instructions, I tried to implement an AltiVec vector
add extension using the framework, incorporating the interpreter, compiler, assembler
and simulator altogether. The next step was testing custom ALU operations and
making sure they are available for use in ISA extension editor right after creation.
This was a difficult step because the entire implementation and various shared
configuration files must be updated before the build process of the new extension
begins. After this was successful, I have experimented with several MMX and other
AltiVec extensions and left them in the framework to serve as examples for new users
and developers. During this testing phase, I have timed the execution of extensions
like vecadd8_mmx (described in section 3.1.6) that employ custom ALU operations
to exploit parallelism and made sure the performance was as expected.

Consider an example where the user would like to add two mmx registers in 32-bit
data chunks and store the results to memory for a vector length of 8. To exploit
parallelism, the user can use PG13 to first create a custom vector ALU operation that
performes two 32-bit adds in one clock cycle (Figure 14).

operation VADD32 (gen64 dest, gen64 s1, gen64 s2)
 {
 dest(31 downto 0) <= s1(31 downto 0) + s2(31 downto 0);
 dest(63 downto 32) <= s1(63 downto 32) + s2(63 downto 32);
 }

Figure 14: Custom ALU Extension

Now that we can perform two 32-bit adds in parallel, we can include this
functionality in the definition of our ISA Extension (Figure 15).

 21

operation vecadd8_mmx (memLoc dest, mmxReg s1, mmxReg s2)
 loop 8
 {
 Decode

 Execute
 aluVec_operation <= OP_VADD32;
 aluVec_source1 <= regfile64_data_out1;
 aluVec_source2 <= regfile64_data_out2;

 Memory
 dmemory_write_en1 <= '1';

dmemory_write_en2 <= '1';
 dmemory_address1 <= x"000000" & "000" & dest;
 dmemory_address2 <= x"000000" & "000" & dest+1;
 dmemory_data_in1 <= aluVec_result(63 downto 32);
 dmemory_data_in2 <= aluVec_result(31 downto 0);

 Writeback

decrement dest 2;
 decrement s1 1;
 decrement s2 1;
 }

Figure 15: Custom Vecadd8_mmx Extension

As can be seen from Figure 15, we’re employing the VADD32 ALU operation we
just created to perform the parallel addition of 32-bits in mmx registers. Then, in
Memory stage, we write both results into memory and go to the next set of registers
and memory locations in the writeback stage.

The assembly for the entire operation becomes what’s depicted in Figure 16. We
preload the mmx registers R1-R8 with values 13, 14, …, 20. Then we preload mmx
registers R9-R16 with values 333, 334, …, 340; and then, we execute our custom
extension that vector adds two mmx registers in 32-bit chunks and saves the results to
two 32-bit memory locations, doing so for the vector length of 8.

Figure 16: Assembly for Customized Execution

SP_DADDI R1 R1 13
SP_DADDI R2 R2 14
SP_DADDI R3 R3 15
SP_DADDI R4 R4 16
SP_DADDI R5 R5 17
SP_DADDI R6 R6 18
SP_DADDI R7 R7 19
SP_DADDI R8 R8 20
SP_DADDI R9 R9 333
SP_DADDI R10 R10 334
SP_DADDI R11 R11 335
SP_DADDI R12 R12 336
SP_DADDI R13 R13 337
SP_DADDI R14 R14 338
SP_DADDI R15 R15 339
SP_DADDI R16 R16 340
OP_vecadd8_mmx 16 R8 R16

 22

As can be seen from the simulation capture (Figure 17) after the preloading of the
mmx registers, the execution of the custom extension and getting the result takes
3200ns.

Figure 17: Performance with the vector extension

Now let’s compare what would the performance be if we didn’t design the parallel
extension. The assembly code becomes what’s shown in Figure 18.

 23

SP_DADDI R1 R1 13 SP_MVDU R1 R1 0 SP_SW 9 R9 0
SP_DADDI R2 R2 14 SP_MVDL R2 R1 0 SP_SW 11 R11 0
SP_DADDI R3 R3 15 SP_MVDU R3 R2 0 SP_SW 12 R12 0
SP_DADDI R4 R4 16 SP_MVDL R4 R2 0 SP_SW 13 R13 0
SP_DADDI R5 R5 17 SP_MVDU R5 R3 0 SP_SW 14 R14 0
SP_DADDI R6 R6 18 SP_MVDL R6 R3 0 SP_SW 15 R15 0
SP_DADDI R7 R7 19 SP_MVDU R7 R4 0 SP_SW 16 R16 0
SP_DADDI R8 R8 20 SP_MVDL R8 R4 0
SP_DADDI R9 R9 333 SP_MVDU R9 R5 0
SP_DADDI R10 R10 334 SP_MVDL R10 R5 0
SP_DADDI R11 R11 335 SP_MVDU R11 R6 0
SP_DADDI R12 R12 336 SP_MVDL R12 R6 0
SP_DADDI R13 R13 337 SP_MVDU R13 R7 0
SP_DADDI R14 R14 338 SP_MVDL R14 R7 0
SP_DADDI R15 R15 339 SP_MVDU R15 R8 0
SP_DADDI R16 R16 340 SP_MVDL R16 R8 0
OP_DADD R1 R1 R9 SP_SW 1 R1 0
OP_DADD R2 R2 R10 SP_SW 2 R2 0
OP_DADD R3 R3 R11 SP_SW 3 R3 0
OP_DADD R4 R4 R12 SP_SW 4 R4 0
OP_DADD R5 R5 R13 SP_SW 5 R5 0
OP_DADD R6 R6 R14 SP_SW 6 R6 0
OP_DADD R7 R7 R15 SP_SW 7 R7 0
OP_DADD R8 R8 R16 SP_SW 8 R8 0

Figure 18: Assembly Without Custom Extension

As expected, now that we don’t have the vector instruction, in order to add the values
in mmx registers, we would use the regular 64-bit adder instruction DADD and then
move higher 32 bits and lower 32 bits into regular 32-bit registers, the values of
which will then be stored in memory.

This imitational behaviour simulated for 15900ns (Figure 19) to achieve the same
result as with the custom vector extension.

This gives us almost a 5x speedup with that particular custom extension. The even
greater parallelisms can be exploited in custom vector extensions that perform data
operation on smaller data chunks, such as bytes instead of 32-bit words.

 24

Figure 19: Performance without the vector extension

6. CONCLUSION / FUTURE WORK
I have successfully developed an infrastructure which allows users to develop custom
ISA and ALU extensions in an easy environment. By providing an automated
framework where users can go from specification to simulation in less than 5 minutes,

 25

this project gives maximum flexibility and functionality, saving time to dig into
multiple VHDL entities or learning a new extension language. The design lets users
exploit parallelism by defining their own ALU operations and employing them later
in custom ISA extensions.

As much success as this project has been, there was only a fixed amount of features I
could implement in a given time frame. I have tried to concentrate on the most
important features that had to be implemented first, and on scalability of the design
overall to let future groups add functionality with ease. Below is the main list of
features I wanted, but didn’t have time to implement that should be considered by
future groups working on this project:
� Multithreading (currently, Spartacus is single-threaded)
� Reconfigurable block size for Instruction memory (once multithreading is done)
� A C compiler developed for this infrastructure
� More tools to specifically exploit parallelism in extensions

7. ADDITIONAL RESOURCES
For more information on the project, please visit http://www.kotysh.com/PG13.

Detailed documentation is written on the use of the entire framework and can be
downloaded from the project website.

This is an open-source project, and executables, as well as source code can be
downloaded from the project website and distributed under Author’s name.

8. REFERENCES / THANKS
I would like to thank my advisor, Patrick Crowley, and a colleague, Kristian
Georgiev, for helping with the design and implementation decisions and for making
this project possible.

References
[1] AltiVec Technology Programming Interface Manual. Rev.0 1999.
 AltiVec.org The altivec information source http://www.altivec.org

[2] AMD Extensions to the 3DNOW! and MMX Instruction Sets Manual

[3] MIPS IV Instruction Set Manual. Rev. 3.2 1995

[4] Tensilica Inc. TIE Tensilica Instruction Extension Language

http://www.tensilica.com

[5] Xilinx Inc. Online specifications source Virtex-E parts http://www.xilinx.com/

	Processor Generator v1.3 (PG13)
	Recommended Citation

	tmp.1469562486.pdf.1DteV

	Abstract: Abstract: This project presents a novel automated framework for microprocessor instruction set exploration that allows users to extend a basic MIPS ISA with new multimedia instructions (including custom vector instructions, a la AltiVec and MMX/SSE). The infrastructure provides users with an extension language that automatically incorporates extensions into a synthesizable processor pipeline model and an executable instruction set simulator. We implement popular AltiVec and MMX extensions using this framework and present experimental results that show significant performance gains of customized microprocessor.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: May 30, 2005
	Author: Authors: Kotysh, Eduard V.; Crowley, Patrick
	Title: Processor Generator v1.3 (PG13)
	ReportNumber: 2005-25
	DepartmentName: Department of Computer Science & Engineering

