
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-22

2005-04-30

Achieving Flexibility in Direct-Manipulation Programming Achieving Flexibility in Direct-Manipulation Programming

Environments by Relaxing the Edit-Time Grammar Environments by Relaxing the Edit-Time Grammar

Benjamin E. Birnbaum and Kenneth J. Goldman

Structured program editors can lower the entry barrier for beginning computer science students

by preventing syntax errors. However, when editors force programs to be executable after every

edit, a rigid development process results. We explore the use of a separate edit-time grammar

that is more permissive than the runtime grammar. This helps achieve a balance between

structured editing and flexibility, particularly in live development environments. JPie is a

graphical programming environment that applies this separation to the live development of Java

applications. We present the design goals for JPie’s edit-time grammar and describe how its

implementation supports a balance... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Birnbaum, Benjamin E. and Goldman, Kenneth J., "Achieving Flexibility in Direct-Manipulation
Programming Environments by Relaxing the Edit-Time Grammar" Report Number: WUCSE-2005-22
(2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/940

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/940?utm_source=openscholarship.wustl.edu%2Fcse_research%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/940

Achieving Flexibility in Direct-Manipulation Programming Environments by Achieving Flexibility in Direct-Manipulation Programming Environments by
Relaxing the Edit-Time Grammar Relaxing the Edit-Time Grammar

Benjamin E. Birnbaum and Kenneth J. Goldman

Complete Abstract: Complete Abstract:

Structured program editors can lower the entry barrier for beginning computer science students by
preventing syntax errors. However, when editors force programs to be executable after every edit, a rigid
development process results. We explore the use of a separate edit-time grammar that is more
permissive than the runtime grammar. This helps achieve a balance between structured editing and
flexibility, particularly in live development environments. JPie is a graphical programming environment
that applies this separation to the live development of Java applications. We present the design goals for
JPie’s edit-time grammar and describe how its implementation supports a balance between structure and
flexibility. As further illustration of the benefits of a relaxed edit-time grammar, we present “mixed-mode
editing,” an integration of textual and graphical editing for added flexibility.

https://openscholarship.wustl.edu/cse_research/940?utm_source=openscholarship.wustl.edu%2Fcse_research%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/940?utm_source=openscholarship.wustl.edu%2Fcse_research%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages

Achieving Flexibility in Direct-Manipulation Programming Environments by
Relaxing the Edit-Time Grammar

Benjamin E. Birnbaum and Kenneth J. Goldman
Computer Science and Engineering
Washington University in St. Louis

{beb2, kjg}@cse.wustl.edu

Abstract

Structured program editors can lower the entry

barrier for beginning computer science students by
preventing syntax errors. However, when editors
force programs to be executable after every edit, a
rigid development process results. We explore the
use of a separate edit-time grammar that is more
permissive than the runtime grammar. This helps
achieve a balance between structured editing and
flexibility, particularly in live development
environments. JPie is a graphical programming
environment that applies this separation to the live
development of Java applications. We present the
design goals for JPie’s edit-time grammar and
describe how its implementation supports a balance
between structure and flexibility. As further
illustration of the benefits of a relaxed edit-time
grammar, we present “mixed-mode editing,” an
integration of textual and graphical editing for added
flexibility.

1. Introduction

Learning syntax is a prerequisite to textual
programming. However, it can distract beginners from
deeper concepts, leaving them with the mistaken
impression that computer science is about arcane rules
instead of deep ideas.

Direct-manipulation programming environments
(DMPEs) have been offered as a solution to this
problem [8, 10]. In a DMPE, programs are presented
graphically and can be manipulated with direct
manipulation gestures like drag-and-drop. By only
allowing gestures that lead to syntactically correct
programs, a DMPE can prevent syntax errors,
alleviating most syntax concerns for beginners.

However, if a DMPE requires that programs always
be in an executable state, editing is less flexible.
Therefore, there is a need for environments that find a
balance between error-prone but flexible textual
editing and safe but inflexible structured editing [10].

This paper presents an approach to adding some
flexibility to DMPEs by separating the edit-time
grammar (rules for valid programs after each edit)
from the runtime grammar (rules for valid programs at
execution). We argue that an edit-time grammar that is
more permissive than the runtime grammar can
provide the opportunity to control the balance between
structure and flexibility.

A potential danger of using a relaxed edit-time
grammar is that syntax concerns may resurface
because programmers must fix the parts of the program
that do not conform to the runtime grammar (called
discrepancies) before execution can proceed.
Therefore, it is important to choose an edit-time
grammar carefully so that these discrepancies are few
in number and easy to understand. Also, DMPEs that
support live software development help alleviate this
problem by allowing the user to handle discrepancies
incrementally and as late as possible.

Even with a relaxed edit-time grammar, the
graphical manipulation of programs may not be as
quick or flexible as free-form textual editing.
Beginners may benefit from the structure of graphical
programming enough to warrant this inflexibility, but
more experienced users may want a less restrictive
environment that still provides more support than free-
form textual editing. To this end, we present mixed-
mode editing, the integration of flexible textual and
graphical editing in an environment that prevents
syntax mistakes. We show how a relaxed edit-time
grammar makes it possible to integrate such a system
of editing into a DMPE. That this form of editing can
provide sufficient flexibility is supported by recent
research showing that even experienced programmers

use only a small amount of the freedom provided by
textual environments [11].

Our research vehicle is JPie [3, 4], a DMPE that
uses separate edit-time and runtime grammars for
flexible live development of Java applications.

We begin with an introduction to JPie and a
discussion of related work. Section 2 presents
principles for choosing an edit-time grammar and
discusses JPie’s edit-time grammar in relation to these
principles. In Section 3, we show how a live
development environment can lessen the burden of
fixing discrepancies from the runtime grammar.
Section 4 discusses mixed-mode editing and shows
how our implementation was facilitated by JPie’s
relaxed edit-time grammar. Section 5 provides a
preliminary evaluation of JPie based on classroom
observations, and Section 6 describes directions for
future work.

1.1 Background on JPie

JPie is a graphical programming environment that

supports live development of Java applications. In
JPie, programs can be modified as they run, and class
changes immediately affect all existing instances. Live
development proceeds through the use of dynamic
classes [6] that represent program structure and enable
live interpreted execution.

In JPie, programs are presented using a visual
representation based on the syntax and semantics of
Java. Figure 1 shows a method from a student lab to
create an animated character (“sprite”) that runs away
from other sprites that come within its “radar.”

The principle visual unit in JPie is the capsule,
which represents types, variable declarations, variable
accesses, properties, methods, method calls,
constructors, constructor calls, and can also
encapsulate constants and expressions. Users create
programs by manipulating capsules through direct
manipulation gestures and by building expressions
using a calculator-like interface. Programs are divided
into semantic regions [5], and the result of each
gesture depends on the semantic region in which it is
performed.

Because JPie keeps a persistent model of the
program as it is being developed, it has the ability to
accept editing gestures only if they can lead to
structurally correct programs. As we will discuss in
detail, JPie’s definition of “correct” at edit-time is less
restrictive than its definition at runtime. This allows
increased editing flexibility without sacrificing the
support of a DMPE. It also allows the integration of
structured textual expression editing.

1.2 Related Work

Computer science educators have long recognized

the difficulty of learning syntax and its potential to
distract students from deeper ideas. A detailed account
of efforts to make computer science more accessible
for beginners can be found in [9].

One line of research has focused on preventing
syntax mistakes through programming environments.
The Cornell Program Synthesizer [14] was one of the
first “syntax-based editors.” Instead of presenting
programs as a series of lines, the Program Synthesizer
presents programs based on the underlying language
grammar. It prevents most syntax mistakes by only
allowing large-scale editing through templates that are
embedded with the language’s syntax. For smaller
scale structures like assignment statements, it allows
free-form textual editing but alerts the user to any
syntax mistakes when expressions are completed. Like
JPie, the Program Synthesizer supports live

Figure 1. Graphical representation in JPie

development, in that programs can be executed until an
empty statement is reached and then resumed after the
statement is completed. The more flexible low-level
editing resembles JPie’s mixed-mode editing.

Direct-manipulation user interfaces [13] have
enabled the transformation of the older syntax-directed
editor concept into a graphical direct-manipulation
programming environment (DMPE). These have been
offered as a more promising means of using the
programming environment to prevent syntax errors
[12]. Like syntax-directed editors, DMPEs present
programs based on structure instead of lines and can
constrain edits so that only structurally valid programs
are created. However, unlike syntax-directed editors,
the structure of a DMPE is not necessarily based on the
formal syntax of the underlying grammar. Instead, it
may use a combination of syntax and semantics to
represent programs. DMPEs get their name from their
editing mechanism: programs are represented
graphically and edited by direct manipulation of
program components.

One of the most prominent DMPEs is Alice2 [2, 8],
which introduces students to object-oriented
programming through the creation of 3-D virtual
worlds. Alice2 prevents all syntax mistakes through a
drag-and-drop interface for creating programs.
However, because the grammar that Alice2 enforces is
the runtime grammar of the language, programs must
be in an executable state after each edit. For example,
if a method call is created, the expressions for each
actual parameter must be filled in before any other
edits can be made. Recent observations have shown
that users of Alice2 were more likely to rewrite code
than modify existing code [10].

In general, constrained visual editing of a complex
language can be cumbersome. JPie’s editing
mechanisms differ from previous syntax-directed
editors and DMPEs in that the grammar it enforces
after each edit is more permissive than the runtime
grammar. This provides more freedom in the order in
which modifications to the program are made. In
addition, JPie supports live program modification,
which permits a more fluid development process and
allows the programmer to incrementally modify
portions of the program that do not conform to the
runtime grammar. Furthermore, mixed-mode editing
in JPie provides an alternative view that can help
transition beginners to textual environments.

2. Relaxed Edit-Time Grammar

In this paper, we informally define a grammar to be

a set of rules to which a program must conform. These

rules are not necessarily the production rules of a formal
grammar, but are the collection of predicates that a
program must satisfy. The edit-time grammar is the set
of rules enforced at each edit, and the runtime grammar
is the set of rules that are required for execution. A
relaxed edit-time grammar is an edit-time grammar
whose rules are a proper subset of the rules of the
runtime grammar. For each rule of the runtime grammar
that is not present in the edit-time grammar, we say that
there is a relaxation in the edit-time grammar. A
runtime discrepancy (or discrepancy, for short) is a
place in the program that conforms to the edit-time
grammar but not the runtime grammar. Execution of the
program cannot proceed past a discrepancy until it is
fixed. For a given edit-time grammar, we can enumerate
the types of discrepancies that can occur.

2.1 Design Goals for an Edit-Time Grammar

The purpose of a relaxed edit-time grammar is

increased editing flexibility. For any given expression,
there should be multiple ways of creating that
expression. It should also be easy to change one
expression to another through various editing paths.

However, the tradeoff to the added flexibility of a
relaxed edit-time grammar is that beginners must use
some of their conceptual resources to understand and
correct runtime discrepancies. It is important to
minimize this overhead. Live development of programs
(described in detail in the next section) helps address this
problem, but careful design of the edit-time grammar is
crucial. Specifically, we offer the following principles:

• Similarity – The number of relaxations should be

as small as possible. Each relaxation of the edit-
time grammar results in one or more types of
syntactic problems that are not prevented by the
DMPE. These discrepancies may increase the
conceptual load for programmers as they repair
them. Therefore, relaxations should be made only
if they significantly enhance flexibility.

• Simplicity – Only a basic knowledge of
programming should be required to understand
and correct each runtime discrepancy.

• Error-locality – Discrepancies should not require
repairs that involve edits in more than one place.
Error-locality makes discrepancies easier to
conceptualize and repair.

2.2 JPie’s Edit-Time Grammar

JPie’s runtime grammar is modeled closely after

Java’s, although it contains a few modifications that

reduce complexity for beginning programmers (such as
allowing uncaught checked exceptions). The edit-time
grammar contains the following relaxations for
increased editing flexibility:

• Empty expressions
• Type mismatches
• References to deleted methods and variables
• Empty operator placeholders

Both the first and the last of these relaxations

facilitate the explicit representation and manipulation
of non-terminals (defined in a formal grammatical
sense) as if they were terminals. This allows the
environment to preserve structure while supporting
many editing patterns. In a flexible environment, the
programmer must be able to temporarily leave a non-
terminal incomplete while editing some other part of
the program. For example, it may be desirable to use
the value of a method invocation before filling in the
actual parameter expression in that invocation.
However, it is important that the DMPE explicitly
represent the unfinished non-terminal so that the
structure of the program is always apparent to the
programmer. An example of this explicit
representation in JPie is shown in Figure 2. Both the
graphical and textual representations of a chain of
method calls explicitly represent the actual parameter
expression non-terminal as an empty box.

Runtime discrepancies in JPie are flagged at edit-
time so that the programmer has the opportunity to fix
them before execution. For example, empty
expressions and type mismatches are shown with a red
border and references to deleted methods and variables
are grayed out.

Currently, JPie does not allow the user to customize
the environment by deciding which relaxations are
permitted, but one could imagine implementing such a
feature in the context of learning curve management
[1]. Limiting the relaxations for beginning users
would lower the number of discrepancies they face at
the expense of some flexibility.

In this section, we will show how the first three
relaxations fit the design requirements from the
previous section. (The last relaxation was made to
increase flexibility in textual editing, so we defer its

Figure 2. Representation of non-terminals

discussion to Section 4.2.3, where textual editing is
discussed.) We will show that each relaxation
significantly increases flexibility. Since there are only
a few relaxations, the similarity requirement is
satisfied. The other requirements will be discussed
individually for each relaxation.

2.2.1 Empty Expressions

The first relaxation allows empty expressions to act

as placeholders and to be manipulated as if they are not
empty. These empty expressions can occur in many
places, including an actual parameter expression of a
method invocation, an operand of an arithmetic or
boolean operator, the expression in a return statement,
and the destination of an assignment statement.

Empty expressions permit increased abstraction and
flexibility during editing by providing the freedom to
create the skeleton of an implementation before filling
in the details of each sub-expression. As concrete
examples of this, consider the following scenarios that
are made possible with empty expressions. A
programmer can use a method invocation before
deciding what the actual parameters should be; leave
portions of arithmetic expressions not filled in while still
manipulating them as if they are complete expressions;
and create part of an assignment statement, realize that a
local variable is needed to store the value of the
assignment, and then fill in the rest of the assignment
statement before creating the local variable. A more
subtle advantage of allowing empty expressions is that
formal parameters can be added to method declarations
if there are already invocations of that method. Each
existing invocation can gain an empty actual parameter
expression for the new formal parameter.

In creating an edit-time grammar that facilitates
this top-down expression building, there is an
alternative to allowing empty expressions. When the
programmer does not specify what an expression
should be, the environment could supply a default
value based on its expected type. This is the approach
that Alice2 takes. However, we argue that this
approach is inferior to simply allowing empty
expressions. An expression that contains default
values would look identical to an expression that
happened to have those same values, which is
undesirable because there would be no explicit way for
the programmer to know that an expression with
default values should be filled in. If users forget to fill
in the correct values, they could face unexpected logic
errors that are difficult to debug. JPie’s solution of
having empty statements that cause runtime
discrepancies forces the user to fill them in before they
are executed, avoiding such logic errors.

We have shown that empty expressions increase
flexibility by allowing top-down editing patterns
without forcing premature decisions about sub-
expressions. The simplicity requirement is satisfied,
since empty expressions are easy to understand,
especially when represented explicitly. Finally,
repairing an empty expression merely involves filling
that expression, so error-locality is also satisfied.

2.2.2 Type Mismatches

In strongly-typed languages like Java, expressions

have expected types. For example, the actual
parameter expression has an expected type that
matches the type of the formal parameter. JPie’s edit-
time grammar allows the type of an expression to
differ from the expected type.

Allowing type mismatches provides the flexibility
of incremental construction of expressions. For
example, consider the construction of an actual
parameter expression with an expected type of
Number. An edit-time grammar that allows type
mismatches permits the programmer to paste another
expression that may have a type other than Number,
say Rectangle. This is desirable if the programmer
intends to call a method on this expression that returns
a number, like getWidth. If, on the other hand, the
edit-time grammar does not allow type mismatches,
then the programmer must create the entire expression
in one atomic editing step.

Type mismatches also increase editing flexibility by
permitting programmers to change the type of a
variable or the return type of a method, even if that
variable or method is used elsewhere in the program.
With type mismatches allowed, the types in
expressions that access the variable or method can
change along with the type of the variable or method
itself. Any resulting type mismatches can simply be
flagged and, if necessary, caught at runtime.

Types must be understood early by any user of a
strongly-typed language, so type mismatches satisfy
the simplicity requirement. A type mismatch merely
requires an expression-level repair, so type mismatches
also satisfy the error-locality requirement.

2.2.3 References to Deleted Methods and Variables

Allowing programs to contain references to

deleted methods and variables provides the flexibility
of deleting a declaration while there are still
references to it and then replacing or deleting those
references as appropriate. The alternative is to
require that each reference to a method or variable be

deleted before that method or variable is deleted, as
required by Alice2. However, this increases the
conceptual load for programmers, since they must
think about what should happen to every use before
deleting the declaration. This increase in effort may
discourage making such edits and thus reduce
flexibility. Moreover, if classes are edited in
independent files, explicit representation of deleted
items is necessary. Otherwise, one could never
delete a public member because it might be
referenced in another file that is currently not open.

Only a basic understanding of how method
invocations and variable accesses work is required to
understand why a reference to a deleted method or
variable cannot execute, so the simplicity requirement
is satisfied. The error-locality requirement is satisfied
because each reference can be fixed independently.

2.2.4 Implementation

In JPie’s backend representation, the nodes in the

parse tree representing non-terminals have associated
visual representations (textual and graphical) and
have associated editors for replacing them by
terminals or other expressions. After each edit, JPie
traverses the affected subtree to provide error
feedback for discrepancies. JPie uses the results of
these validation tests during execution to pause the
program at discrepancies and wait for the user to
repair them.

3. Live Development

As discussed in the previous section, a risk of

relaxing the edit-time grammar is that beginners must
spend time fixing runtime discrepancies. We have
discussed choosing an edit-time grammar to minimize
the impact of discrepancies. We now show how live
development in a DMPE lets users postpone decisions
about discrepancies until runtime, extending the life of
the edit-time grammar as long as possible into runtime
and minimizing effort expended on discrepancies.

We define live development in a DMPE as the
ability to edit programs as they run. If execution
reaches a statement that has a runtime discrepancy, it
can be paused until the statement is executable and
then resumed from where it left off. Live development
has a number of advantages that are beyond the scope
of this paper [6], but its primary advantage in this
context is that it eases the burden of fixing runtime
discrepancies, thereby mitigating the extra attention to
syntax that a relaxed edit-time grammar entails.

To understand how live development can ease the
process of fixing discrepancies, consider the
following example. Suppose that a user deletes a
method in JPie. This action will cause all of its
method calls to have the runtime discrepancy of a
call to a deleted method. If the DMPE is a compiled
environment, then the user may be forced to deal
with each of these discrepancies before the program
can run. However, these calls to deleted methods
might be in sections of the program that are rarely or
never executed. Furthermore, some of the calls
might be in methods that are eventually deleted in
their entirety. Postponing the resolution of these
discrepancies until runtime can only decrease the
number of discrepancies that must be resolved, since
some of these discrepancies might never be
executed. Even if all of the discrepancies are
executed, dealing with them one at a time may
simplify the process for the user. Thus, supporting
live development can assist the user in using a
relaxed edit-time grammar.

DMPEs lend themselves naturally to live
development. To maintain syntactic integrity, a DMPE
must maintain some backend representation of
programs as they are edited. If this same
representation is used for interpreted execution, then a
change to this representation can immediately take
effect on execution [6]. If a DMPE cannot support live
development, then the discussion in Section 2 on
editing flexibility still applies, but the user may be
forced to fix all discrepancies before execution, which
would make it harder for beginners to take advantage
of a relaxed edit-time grammar.

4. Mixed-Mode Editing

To provide the flexibility of textual editing and to

transition beginners to textual environments, a
DMPE that integrates textual editing with direct
manipulation is desirable. A DMPE that implements
this mixed-mode editing must have a relaxed edit-
time grammar, since intermediate states of textual
editing are not always executable. In this section,
we show how JPie’s edit-time grammar supports this
integration.

In JPie, mixed-mode editing is nested within the
graphical view, as shown in Figure 3. For each
expression, users can choose textual or graphical
editing at will. Larger scale textual edits, such as
control statements and blocks, are not currently
supported. However, such support may not be
necessary, since programmers rarely substitute one
control construct by another [11].

Figure 3. Mixed-mode editing in JPie

4.1 Requirements

 The above ideas motivate the following design

requirements for mixed-mode editing:

• Syntactic Safety – It should not be possible to
type syntactically incorrect expressions. For
example, if only size and getSize() are in
scope, then typing s or g into an empty expression
is allowed, but typing d is not, since it cannot
lead to a syntactically correct expression.

• Flexibility – It should be possible to create an
expression in a variety of ways, and these should
be consistent with common editing patterns [11].
For example, it should be possible to add
operators to an expression in a variety of orders.

• Integration – It should be possible to switch
between graphical and textual editing and to mix
direct manipulation gestures between the graphical
and textual views.

In order to provide integration and syntactic safety,

the program represented by the text must be consistent
with the backend model of the DMPE. Therefore, the
central challenge of mixed-mode editing is to keep the
text as close to the model as possible without over-
constraining the way programmers edit the text.
Consistency and flexibility are competing concerns,
and our goal is to find a careful balance between them.

4.2 Edit-time Grammar

The tradeoff between consistency and flexibility is

determined by the choice of the edit-time grammar. In
the following sections, we describe how the relaxations
in JPie’s edit-time grammar enable mixed-mode
editing.

4.2.1 Empty Expressions

As in graphical editing, empty expressions provide

the programmer with the freedom to choose the order
in which to fill in sub-expressions. This is convenient
in graphical editing, but is absolutely essential in
textual editing. A text editor that forced programmers
to fill in every sub-expression in a prescribed order
would be highly modal and very inflexible.

4.2.2 Type Mismatches

As in graphical editing, type mismatches in textual

editing allow the incremental construction of
expressions. As an example, consider the construction
of a chain expression, which we define to be a string
of variable and method accesses like

variable.method1().method2()

that might be found in a language like Java. During
the construction of the chain expression, intermediate
states like variable.method1()might not match
the expected type. However, the model must be
updated after these intermediate states are completed
so that the environment can enforce syntactic safety.
For instance, in our example the environment must
know that the programmer is accessing a method on
the return type of method1() to know whether

variable.method1().m

could lead to a syntactically correct expression. This
required model update can occur only if type
mismatches are allowed in the edit-time grammar.

4.2.3 Empty Operators

An empty operator is a placeholder for an

undetermined infix operator expression whose
operands may be specified. Empty operators are a
relaxation made specifically for mixed-mode editing.
Empty operators facilitate textual editing patterns that
involve an intermediate state in which two operands of
an infix operator expression are juxtaposed.

For example, one of the common editing patterns
found in [11] is that of creating an infix operator
expression when the two operands are already present,
as in transforming foobar to foo+bar. This edit is
an intermediate state in changing one infix operator to
another and in prefixing an expression with an operand
and an operator. Allowing an empty operator between
foo and bar (so that the text is foo bar) should be
allowed to support these edits.

4.3 Implementation

The relaxed edit-time grammar implemented in JPie

supports the features outlined in this section.
Consistency between text and graphics is maintained
using a hierarchical “editor tree” that links the textual
representation of expressions to JPie’s internal model.
Each editor responds to keyboard input differently,
depending on the semantics of the underlying model.

5. Evaluation

JPie has been used for four semesters in an

introductory computer science class for non-majors at
Washington University. Students in the class use JPie
as a tool to explore fundamental computer science
concepts. Informal observations and student
evaluations indicate that the curriculum [3] has been
successful for a wide demographic of students.

Students take advantage of the flexibility of the
edit-time grammar to modify code and to construct
portions of a solution with placeholders. They have
been able to create fairly involved projects (like a
client-server chat program) in one or two ninety-
minute classes. Their questions overwhelmingly focus
on program logic or design instead of syntax,
providing evidence that JPie is supportive enough to
allow beginners to focus on higher-level ideas.

Students often fix discrepancies at runtime and
continue execution. However, they sometimes restart
programs after inadvertently terminating executing
threads that “pop up” in the JPie debugger window
because of a discrepancy. To encourage users to take
full advantage of live execution, we are considering
delaying the appearance of the debugger until the
current sequence of edits is completed.

Members of JPie’s development team have used
mixed-mode editing to create programs during testing
and course development. These more experienced
users often prefer mixed-mode editing to graphical
editing because of its increased flexibility. Because
mixed-mode editing is a recent addition to JPie, it has
not yet been evaluated in a classroom setting.

6. Future Work

We plan to conduct usability tests and a formal

study of JPie as an educational tool when it is
introduced in the introductory computer science class
for majors at Washington University. These tests
could be conducted in terms of the Cognitive
Dimensions framework [7] and could be used to
compare the usability of mixed-mode editing to that of
textual programming environments like Eclipse.

7. Conclusion

Relaxing the edit-time grammar facilitates a balance

between structure and flexibility in the editing process.
Live development helps to minimize the impact of
discrepancies between the edit-time and runtime
grammars. As evidenced by mixed-mode editing in
JPie, a relaxed edit-time grammar permits the
integration of textual editing into a DMPE, both to
enhance flexibility and to support students in their
transition to textual programming environments.

8. Acknowledgements

We thank all past and present members of the JPie

development team. We are grateful to Ben
Brinckerhoff for his contributions during the design
and implementation of mixed-mode editing. We also
thank Ben Brinckerhoff, Sajeeva Pallemulle, and Joyce
Santos for helpful comments on drafts of this paper.
This work was supported in part by National Science
Foundation grant 0305954.

9. References

[1] B.H. Brinckerhoff and K.J. Goldman, Learning Curve
Management in Educational Programming Environments,
tech. report TR-2004-78, Dept. of Computer Science and
Engineering, Washington University, 2004.
[2] S. Cooper, W. Dann, and R. Pausch, “Alice: A 3-D Tool
for Introductory Programming Concepts,” Proc. 5th CCSC
Northeastern Conference, Consortium for Computing in
Colleges, 2000, pp. 107-116.

[3] K.J. Goldman, “A Concepts-First Introduction to
Computer Science,” Proc. 35th Technical Symposium on
Computer Science Education (SICCSE 04), ACM Press,
2004, pp. 432-436.
[4] K.J. Goldman, “An Interactive Environment for
Beginning Java Programmers,” Science of Computer
Programming, vol. 53, no. 1, October 2004, pp. 3-24.
[5] K.J. Goldman, Capsules and Semantic Regions for Code
Visualization and Direct Manipulation of Live Programs,
tech. report TR-2004-79, Dept. of Computer Science and
Engineering, Washington University, 2004.
[6] K.J. Goldman, Live Software Development with Dynamic
Classes, tech. report TR-2004-81, Dept. of Computer
Science and Engineering, Washington University, 2004.
[7] T.R.G. Green and M. Petre, “Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’
Framework,” Journal of Visual Languages and Computing,
vol. 7, no. 2, 1996, pp. 131-174.
[8] C. Kelleher et al., “Alice2: Programming without Syntax
Errors,” Proc. 15th ACM Symp. User Interface Software and
Technology (UIST 02), ACM Press, 2002.
[9] C. Kelleher and R. Pausch, Lowering the Barriers to
Programming: a survey of programming environments and
languages for novice programmers, tech. report CMU-CS-
03-137, School of Comp. Science, Carnegie Mellon, 2003.
[10] A.J. Ko, “Designing a Flexible and Supportive Direct-
Manipulation Programming Environment,” Proc. 2004 IEEE
Symp. Visual Languages – Human Centric Computing
(VLHCC 04), IEEE Computer Society, 2004, pp. 277-278.
[11] A.J. Ko, H. Aung, and B.A. Myers, “Design
Requirements for More Flexible Structured Editors from a
Study of Programmers’ Text Editing,” Extended Abstracts
CHI 2005: Human Factors in Computing Systems, ACM
Press, 2005.
[12] M. Read and C. Marlin, “Generating Direct
Manipulation Program Editors within the MultiView
Programming Environment,” Joint Proc. 2nd Int’l Software
Architecture Workshop and Int’l Workshop on Multiple
Perspectives in Software Development, ACM Press, 1996,
pp. 232-236.
[13] B. Schneiderman, “Direct Manipulation: A Step Beyond
Programming Languages,” IEEE Computer, vol. 16, no. 8,
August 1983, pp. 57-69.
[14] T. Teitelbaum and T. Reps, “The Cornell Program
Synthesizer: a Syntax-Directed Programming Environment,”
Communications of the ACM, vol. 24, no. 9, September
1981, pp. 563-573

	Achieving Flexibility in Direct-Manipulation Programming Environments by Relaxing the Edit-Time Grammar
	Recommended Citation
	Achieving Flexibility in Direct-Manipulation Programming Environments by Relaxing the Edit-Time Grammar

	tmp.1469562486.pdf.pHDBi

	Abstract: Abstract: Structured program editors can lower the entry barrier for beginning computer science students by preventing syntax errors. However, when editors force programs to be executable after every edit, a rigid development process results. We explore the use of a separate edit-time grammar that is more permissive than the runtime grammar. This helps achieve a balance between structured editing and flexibility, particularly in live development environments. JPie is a graphical programming environment that applies this separation to the live development of Java applications. We present the design goals for JPie™s edit-time grammar and describe how its implementation supports a balance between structure and flexibility. As further illustration of the benefits of a relaxed edit-time grammar, we present ﬁmixed-mode editing,ﬂ an integration of textual and graphical editing for added flexibility.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: March 30, 2005
	Author: Authors: Birnbaum, Benjamin E.; Goldman, Kenneth J.
	Title: Achieving Flexibility in Direct-Manipulation Programming Environments by Relaxing the Edit-Time Grammar
	ReportNumber: 2005-22
	DepartmentName: Department of Computer Science & Engineering

