
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-17

2005-04-28

Programming Robots by Description and Advice Programming Robots by Description and Advice

Andrew J. Martignomi III

Programming robots to perform tasks autonomously is difficult. The environment or even the

task may change at any moment. The main drawback is that this programming requires a team

of highly skilled roboticists to monitor the robot and change its programming to accomplish the

task. The system presented here allows robot controllers to be constructed by a non-specialist,

using the included restricted natural language parser. The controller can further be refined by a

non-specialist using keywords which represent the changes that each parameter makes to the

behavior. To show that the system is viable, controllers made by the system... Read complete Read complete

abstract on page 2. abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Martignomi, Andrew J. III, "Programming Robots by Description and Advice" Report Number:
WUCSE-2005-17 (2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/934

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/934?utm_source=openscholarship.wustl.edu%2Fcse_research%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/934

Programming Robots by Description and Advice Programming Robots by Description and Advice

Andrew J. Martignomi III

Complete Abstract: Complete Abstract:

Programming robots to perform tasks autonomously is difficult. The environment or even the task may
change at any moment. The main drawback is that this programming requires a team of highly skilled
roboticists to monitor the robot and change its programming to accomplish the task. The system
presented here allows robot controllers to be constructed by a non-specialist, using the included
restricted natural language parser. The controller can further be refined by a non-specialist using
keywords which represent the changes that each parameter makes to the behavior. To show that the
system is viable, controllers made by the system are compared to direct programming on two common
robot tasks. The assembled and tuned controllers are shown to perform similarly to direct programming
in performance, even better in several cases, but without the large development/testing time that direct
programming requires.

https://openscholarship.wustl.edu/cse_research/934?utm_source=openscholarship.wustl.edu%2Fcse_research%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/934?utm_source=openscholarship.wustl.edu%2Fcse_research%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

PROGRAMMING ROBOTS BY DESCRIPTION AND ADVICE

by

Andrew J. Martignoni III, B.S. C.S., B.S. Phys.

Prepared under the direction of Professor William D. Smart

A project presented to the Sever Institute of
Washington University in partial fulfillment

of the requirements for the degree of

Master of Science

May, 2005

Saint Louis, Missouri

Contents

1 Introduction . 1

1.1 Getting a Robot to Perform a Task . 1
1.2 A Better Way . 1

2 Constructing a Starting Point . 3

2.1 Overview . 3
2.2 Parsing the Words . 5
2.3 The Meaning of the Words . 5
2.4 Connecting the Meanings . 6
2.5 Execution . 7
2.6 Components . 8
2.7 Related Work . 9

3 Tuning . 10

3.1 Semantic vs. Literal . 10
3.2 Adjustment Functions . 10
3.3 Related Work . 11

4 Discussion . 13

4.1 Closed World . 13
4.2 Limited Objects . 13
4.3 Limited Behaviors . 14

5 Experimental Results . 16

5.1 The Two Trials . 16
5.1.1 Keeping it Seen (KIS) . 16
5.1.2 Corridor Traversal (CT) . 17

5.2 The Competitors . 18
5.3 Results . 18

Appendix A List of Working Components . 21

Appendix B List of Words in Dictionary . 22

i

Appendix C Grammar of Natural Language Input . 23

Appendix D Word Meanings in Dictionary . 25

D.1 Verb components . 27

Appendix E Example Controllers . 31

E.1 “Carefully follow the blue ball” . 31
E.2 “Follow me carefully” . 32
E.3 “Drive to here while avoiding objects” . 32
E.4 “Avoid the blue ball and come here carefully” . 33
E.5 “Keep the wall left input at one point three and keep driving at point one” 33

References . 36

ii

1

Chapter 1

Introduction

Observers of mobile robots have an abundance of insight on how to perform tasks, especially when
they see the robot fail. This insight could be useful advice for the robot. Most tasks for a mobile
robot tend to be similar to tasks that humans themselves have done, so in that sense most humans
can be good teachers. Mobile robots, for the most part, are controlled by programs written ahead
of time to perform a set task in a set way.

1.1 Getting a Robot to Perform a Task

When we want to make a mobile robot perform a task, we program the computer in the robot at a
low level to attempt to solve the task. As in any computer application, the program code must be
debugged to remove any errors. In mobile robotics applications, the behavior of the robot must also
be debugged, since it is not always clear how the sensors and motors of the robot are affected by or
affect the world. This level of programming requires expertise and acquiring the level of expertise
required costs money.

The program written for the robot is typically a fixed solution for the given task. It cannot
be changed without going through the development process again, incurring more costs. In addition,
a change in the environment can cause performance degradation and possibly failure of the system.

1.2 A Better Way

Ideally, we would like people with little or minimal training to be able to instruct the robot. We
would like this instruction to be at a behavioral level, such as “Follow the truck, and stay away
from trees.” We would expect to see good performance from the robot. Since the task specification
might not be exactly right, the robot may fail at some part of the task and so needs to be capable
of adapting to improve its behavior. This adaptation should be directed from a very high level, i.e.
“Good robot” or “Move faster”.

After working with mobile robots using the low level programming method, we have observed
some aspects of the larger problem. Two such observations are the inspiration for this work. First,
many common mobile robot tasks have similar characteristics, such as keeping a sensor reading at a

2

pre-defined value or balancing two sensor readings. As one would expect, since the tasks are similar,
the programs to solve them have similar portions of program code. Also, a description of the desired
task is a behavioral specification of that task, which leads to the second observation. There can be
a direct mapping between words in the natural language specification and the portions of program
code which achieves the task, based on the semantics of the specification. The work in this project
attempts to use that information to create a system which allows robots to be trained as in § 1.2.

We have created a system to behaviorally specify a task in limited natural language. Each
of the words recognized by the system is mapped to a specific portion of executable program code.
The system contains a fixed set of these code modules. They are composed into a complete program
based on the limited natural language task description. Once composed, the completed program can
be run on the robot. The programs generated in this manner provide reasonable behavior, but still
are programs which provide a fixed control policy. Because this is a coarse way to specify code, the
resulting behavior is not well-optimized. The system provides a method of tuning the performance
by changing the parameters on which the system depends. The behavioral advice, such as “Go
faster”, is mapped to a specific parameter change. Chapter 2 explains how the system composes the
program from the limited natural language task description. Chapter 3 looks at the possible changes
to the initial program. In Chapter 4, we discuss the limitations of the current system. Results are
reported in Chapter 5.

3

Chapter 2

Constructing a Starting Point

Since, in essence, the goal is to communicate a solution to the robot, the first step is to pick a
starting point, i.e. a strategy of controlling the robot. The starting point should allow the trainer
and robot both “see” the same events1, while keeping the robot moving through the environment.
In this system, the controller that serves as the starting point is selected to ensure that the robot
is safe from harm (i.e. hitting objects, falling down stairs, etc.) and reacts to the objects related to
the task in some way. The system accomplishes this by combining bits of executable code based on
a few key words from the trainer.

2.1 Overview

The first step to constructing a controller from a task description is the decoding process. The
system uses a limited natural language for its input from the trainer. Using a simple grammar,
each symbol of input is given a meaning. In this framework, each word has a single meaning and
part of speech. For example, the word “Ball” is labeled as a noun and is semantically linked to the
component which tracks a ball. Some words’ meanings are not important, such as the articles “a”,
“an”, and “the”, which are used only to help the grammar parse the task description. See Figure 2.1
for an example of tagging words of a sentence with their part of speech.

The system uses two sentence structures:
1Not that the robot actually sees the situation like the human, but that the robot’s sensors measure the same

event that the human sees.

VERB NOUN

ADJECTIVES

ADVERB

Carefully follow the red ball

Figure 2.1: A diagram showing the parts of speech.

4

S → Sentence
Sentence → VERB Object

VERB Object ADVERB
ADVERB VERB Object

Object → Λ
NOUN
Adjectives NOUN
ARTICLE NOUN
ARTICLE Adjectives NOUN

Adjectives → Adjectives ADJECTIVE
ADJECTIVE

Figure 2.2: A sample grammar which parses task descriptions.

BallTracker Follow AvoidObjects Motor

Color

Filter Component

Hardware Component

Computation Component

Speed DistP

X

Y

Distance

Found

T

R

T

R

Figure 2.3: A complete controller for following a ball.

1. [ADVERB] VERB [NOUN[<ADJECTIVE(s)>]]

2. VALUE RELATION VALUE

For example, the task “Carefully follow the red ball.” is rearranged as in Figure 2.1. The
sample grammar in Figure 2.2 is a subset of the grammar used to parse and output form 1. Nouns,
verbs, and adverbs are replaced with executable code from the system. This portion of code is
called a component of the system, discussed in more detail in § 2.6. Adjectives have a meaning that
modifies a components’ interaction with the controller.

Once each of the components have been instantiated, the controller must be ‘wired’ together.
The example has only three components, from “follow”, “ball”, and “Carefully”. The system in-
stantiates each object and connects it based on the number of inputs and outputs. A noun’s outputs
have standard meanings which specify a locatation in the environment. A verb takes zero or more
nouns as inputs and has motor commands (actions) as outputs. Since adverbs modify verbs, they
become filters on the verb’s output, taking motor commands in and outputting the modified motor
commands. A sample controller for the example is shown in Figure 2.3.

5

Each of the component parameters shown across the top in Figure 2.3 can be tuned to
enhance the controller’s performance. Each component provides its own key words which are used to
tune the parameter. For example, a proportional controller might use the words “More Aggressively”
and “Less Aggressively” to allow the trainer to tune the gain. These words map directly to parameter
value changes in the component. More complex setups could be useful, but are outside the scope of
this work and are unnecessary for the controllers used here.

2.2 Parsing the Words

In this work, the natural language input comes from the trainer typing sentences on the keyboard.
Using this method avoids the additional problems associated with speech recognition. The decoding
process begins by determining each word’s associated part of speech, such as noun, verb, etc. This is
accomplished by a simple lookup, not through grammar. The list of words used by the system and
their parts of speech are listed in Appendix B. The stream of these parts of speech is parsed using an
LALR(1) parser with the grammar shown in Appendix C. After parsing and rearranging the words
as discussed in § 2.1, “Carefully follow the red ball”, or ADVERB VERB ARTICLE ADJECTIVE
NOUN, becomes “Carefully” “Follow” “ball”<“red”>, or ADVERB VERB NOUN<ADJECTIVE>,
which fits the first form of task descriptions. The first component in the list will have its outputs
connected to the Motor component, allowing the components to control the robot.

2.3 The Meaning of the Words

The meaning of the words is looked up from a table given to the system. The complete list of
meanings is given in Appendix D. Each word is given exactly one meaning, just as each word is
given one part of speech, limiting the complexity of natural language that can be processed. The
meaning of a word falls into one of three categories:

1. The name of a component. Whenever this word appears in a sentence, the named compo-
nent will be part of the final controller.

2. A parameter value. If this word appears linked (through the grammar) to a component,
then the parameter’s default value will be replaced with the value here.

3. A number. Some sentences may use literal numeric values, like “twenty one point seven”
which must be translated to 21.7.

For example, the word “ball” is given the associated meaning of “BallTracker”, which is the
name of a component which uses a color blob tracker and returns information about the largest blob
of a given color, determined by its one parameter. The word “red” has a meaning of “%Color=0”
which means that the Color parameter of a component should be set to zero. When these words are
used together, “red ball” means a BallTracker component with its parameter set to zero, which is
the index into the blob tracker’s color table representing the color red.

To construct the controller for the task “Carefully”# “follow” “ball”<“red”>, each word
in the description is replaced with its labeled meaning, giving the component list AvoidObjects#

6

Follow

X

Y

Distance

Found

Speed DistP

Translate Velocity

Rotate Velocity

O
u

tp
u

ts

Parameters

In
p

u
ts

Figure 2.4: A component implementing the ‘follow’ behavior.

Follow BallTracker<0>. The parameters from adjectives are matched with their corresponding
parameters in the nouns and written in short form as in BallTracker<0>. The word “Carefully”
has a meaning of the object avoidance filter named AvoidObjects.

2.4 Connecting the Meanings

The key to constructing the controller based on a short description is the components of the system.
They provide the knowledge of the system in executable form, which can be connected in many
ways. The system described here does not allow cyclic connections, but components are allowed to
have internal state and could easily store information for later use. More complex components can
also be constructed out of other components, using a simple extensible language. Each component
is dynamically created at run-time by specifying the component’s name. One of the components
of the system used in the above example is named Follow, shown in Figure 2.4. It has 4 inputs,
3 parameters, and 2 outputs. The inputs on the left of the module represent the direction and
distance to some object that should be followed. The outputs on the right are assumed to be motor
commands. The top lines are parameters, controlling values for rotational gain, following distance,
and translation speed. A more complete description of the Follow component is in § D.1.

Once each of the words’ meanings has been established, the controller must be ‘wired’
together. The example here has only three components, but other controllers may have more.
The system instantiates each object and looks at the number of inputs and outputs.

Nouns in the system have no inputs and four outputs. The outputs have standard meanings
which describe the position of the object in the environment. In the example, BallTracker<0>

doesn’t require any connections since it has no inputs2, but the brackets at the end specify its
parameter settings. BallTracker has one parameter which refers to the color of the ball being
tracked. In this case, the parameter will be set to zero.

2Technically, BallTracker has the camera mounted on the robot as input, but this input is not represented in the
system since the input is not the output of a component. Simillarly, the Motor component is said to have no outputs.

7

Verbs in the system take a multiple of four inputs. Verb components which have no inputs,
such as Spin or Stay, do not require any nouns. Verbs with four or eight components require one
or two nouns, respectively. In the example, Follow requires one noun, and hence has four inputs.
Therefore, the system connects the four outputs from the BallTracker<0> component to the four
inputs of the Follow component. Verbs also have a number of outputs which correspond to the
actions of the mobile robot. Most verbs have two outputs, the first for translation and the second
for rotation. Others may have three outputs, to control the pan–tilt unit and the zoom of the
camera, or they may have five outputs, to control both devices. In this example, Follow has two
outputs, and so should control the motors of the robot.

Since the task description has an adverb, its corresponding component, AvoidObjects, is
connected as a filter on the motor outputs. The AvoidObjects component has two inputs and
two outputs, which passes the Follow component’s motor commands through unless an object is
obstructing the path. Once all three of the components are wired together, the outputs of the verb
or verb/adverb pair are connected to the components which control the robots motors. In this
example, a Motor component is created and connected to the AvoidObjects component outputs.

The completed controller is shown in Figure 2.3. The Color parameter gets a value of zero,
while the other parameters (from the Follow component) are not specified and so get the default
value. For Follow, these values happen to be Speed = .2, P = .01, Dist = .5. Since all of the
components are assumed to be in SI units, the speed of the robot when using this controller is
.2 ms−1, the rotational gain is .01 s−1, and the following distance is .5 m. Additional examples of
complete controllers constructed from task descriptions are included in Appendix E.

2.5 Execution

Once the controller has been constructed, it can then be prepared for execution on the mobile robot.
The components have all been instantiated and connected to one another. To ensure that all inputs
have been computed before they are needed, the system topologically sorts the components. Since
the controller will always be acyclic, the sort will succeed. Each component can then be executed in
turn and all inputs will be current. Since each component may need some initialization, the system
gives each component the following life cycle:

1. Init Hardware (optional)

2. Initialize

3. Execute

4. Shutdown

5. Release Hardware (optional)

The optional parts of the life cycle are for those components which use part of the hardware
which makes up the robot. It is necessary to distinguish between hardware components such as
BallTracker or Motor and computation components such as Follow and Multiply. Hardware
components must share the hardware devices which make up the robot, and hence need additional

8

Add
Const

Multiply
B

A

A−B

−1

Subtract

Figure 2.5: A computation component made from other components.

initialization and shutdown. These additional steps are also the reason that only computation
components can be used to construct other components.

2.6 Components

The control programs used as a starting point in this work are composed of components. They
are designed to be flexible. Each built-in component has a certain number of inputs, outputs, and
parameters. For example, a component to perform an addition operation would have two inputs
and one output. Parameters are numbers which are constant during any given run of the controller,
and can be tuned between runs by advice given from the user. The inputs can be connected to any
output in the controller, and outputs may have any number of inputs connected to them. Appendix A
contains a list of the working components used for the system presented here.

Each component is a collection of executable code along with all the semantic knowledge
about the word or words it represents. For added generality, the parameters can be tuned, and
are semantically linked to keywords built-in to the component. Since the controller is meant to be
run on a mobile robot, some of the components interface with the hardware devices on the robot.
Components which use the robot’s hardware are called hardware components. All other components
are called computation components. These computation components compute a value which only
depends on their inputs and parameters, not any sensor available to the robot. A special type
of component is the filter component. The filter component takes motor commands as inputs and
outputs the modified commands. It is important to note that filter components may also be hardware
components or computation components, depending on its use of hardware.

Computation components can be nested inside one another to make more complicated
computation components. For example, the component Subtract might be constructed out of a
Multiply component and a constant, -1, represented by a Const<-1> component3, with an Add

component to add the negated input with the unnegated input, as shown in Figure 2.5.
3The Const component takes one parameter and copies it directly to its only output, thus making a constant.

9

2.7 Related Work

Since one of the goals of the work here is to provide a natural way to express a control program, it
is convenient to have a system which understands some natural language commands. In the work
here, only a simple LALR(1) parser is used. More advanced language processing is outside the scope
of the work here due to numerous pitfalls in language processing [4] which would distract from the
overall goal.

The components here are similar to elements of Visual Programming. Burnett, Goldberg
and Lewis’s book [1] is a good reference on programming such visual languages in an object–oriented
way. Visual Programming is a method of writing programs from graphical or picture–based repre-
sentations of the programming language’s grammar. Some visual programming languages use data
flow diagrams, with “wires” that connect the components and show the component’s relationships.
The work here involves components which directly relate to these techniques. Each of the compo-
nents has a number of inputs, outputs, and parameters which can easily be represented by graphical
icons and “wires” linking them together, as shown in Figures 2.3(controller) and 2.4.

This chapter handled connecting the inputs and outputs of the components. The parameters
can get values from the task description, but most parameters get a default value. What if that
value is not correct? The next chapter discusses how to use the system to tune the behavior of the
robot after giving it a task description.

10

Chapter 3

Tuning

Each of the component parameters can be tuned in the controller to enhance performance. Each
component provides its own key words which are used to tune the parameter. For example, the
proportional controller implemented by the P component uses the words “More Aggressively” and
“Less Aggressively” to allow the trainer to tune the gain. The tuning words are separated into
categories which correspond to the robots actions, such as “Turn” for rotation. The category is
chosen based on the connections in the controller, so a P-controller connected to the rotational
input of the Motor component is in the “Turn” category. Other components may create their own
category to add tuning words.

In the example, the robot is instructed to follow a red ball. If the ball is recognized by
the vision system, it will follow the ball by turning towards it and driving forward. If the ball
is particularly fast in moving side to side and the camera loses sight of the ball frequently, the
trainer can use the tuning words “Turn More Aggressively” to make the robot keep up with the
ball. Likewise if the ball is moving too quickly away from the robot, the tuning words “More Speed”
would be helpful.

3.1 Semantic vs. Literal

One might argue that the tuning keywords should be more literal, since a natural language de-
scription might be misleading. It is possible to use the words “Double the gain on the P-controller
connected to the rotational motor output” which is the correct description of what “Turn More
Aggressively” does. The main issue is that the focus for the work presented here is to allow people
who may not know what a P-controller is to use the system. For them, the choice of describing the
behavioral change to the system, i.e. “Turn More Aggressively”, is more appropriate.

3.2 Adjustment Functions

These tuning words provide a behavioral description of the changes a parameter change produces.
This makes the system easier to use for trainers that do not know the lower level details of the
robot’s controller. One problem is that a specific set of words is not usually as expressive as typing

11

in a new “magic number”. A pair of words cannot easily navigate the space of real numbers. This
is an open problem, and one which needs to be addressed. To that end, a formal description of the
problem is presented here.

Given a real-valued variable x, and an unknown optimal value x∗, define a finite family of
functions fi : R → R, such that a sequence of function applications from this family map the initial
value x0 to the optimal value x∗. For example, if x0 = 1 and x∗ = 5 when the available functions
are f1(x) = 2x and f2(x) = x + 1, then one solution would be {f1, f1, f2} or

f2(f1(f1(1))) = 2(2(1)) + 1 = 5 = x∗.

If x∗ had not been an integer of the same sign as x0, these functions would not be able to
reach the optimal value. A small set of functions which are describable in natural language, such as
a little more, that provide a way to approach the optimal value in as few function applications as
possible would be the best solution for this type of system. The functions should have a reachable
set which mostly covers the set of real numbers, but pays particular attention to the region around
zero, and the values with just a few decimal places.

The system here uses the functions f1(x) = 1.1x and f2(x) = 0.9x to provide tuning.
Another method might use a binary search approach, using the minimum and maximum of previous
values which were too high or too low. The functions would be

fH(x) =
max L + minH ∪ {x}

2

and

fL(x) =
max L ∪ {x}+ minH

2

where H and L are sets of previous responses which were designated too high or too low, respectively.
The difficulty in deriving good families of functions is that it is not enough to have the set

of real numbers in the reachable set of all combinations of compositions of the fi’s, but we want to
be ε-close in n steps, where n is a small number. For example, for binary search, given ε and the
range of possible values [0, h], we can compute n as

n = log2

h

ε
.

In addition, it may not be necessary to cover the set of real numbers, but a reasonable subset which
is meaningful for a given parameter. The limits on the parameter might be based on hardware
limitations such as motor speed or torque limits.

3.3 Related Work

The tuning presented here is really a form of advice. While the robot is moving, a person telling it
“Turn More Aggressively” is giving it additional information to try to increase its performance. The
idea of agents incorporating advice has been around for a long time [8]. McCarthy suggests the use

12

of advice for systems which use logical inference and theorem proving. McCarthy’s advice consists
of sentences in a language the system understands, in his case, predicate logic. Some researchers
attempt to use advice directly by modifying the structure of an Artificial Neural Network (ANN) [9].
Some work modifies the ANN by setting the initial weights prior to learning to large positive values
instead of small random ones [10]. This method does improve learning rates, but requires specific
knowledge about the environment and the function of the ANN being trained. These techniques seem
more like seeding initial knowledge rather than giving advice in McCarthy’s sense. Later methods
[6, 7] translate the advice into nodes of the ANN to allow the network to use the advice if it helps
achieve the goal, or ignore it otherwise. The advice is input as a boolean program, and hence requires
a user to know the syntax of the language and the symbolic entities which the agent understands.
The advice can thereafter be refined or become completely unrecognizable after continued learning.

Without having direct knowledge of how to incorporate the advice received into the final
controller, advice can be difficult to use effectively [5]. The advice may be decoded incorrectly,
leading to the wrong behavior. Also, the advice may be correctly interpreted, but the desired
behavior may not work as intended due to randomness in the environment.

Riley, Veloso, and Kaminka [12] advise their soccer–playing robots with a special advice
language. The limitations of the language seem to keep the system tied to very specific states, rather
than allowing for generalization. This limitation seems to contribute to the “coaching problem” the
authors describe.

Clouse and Utgoff [2, 3] use automated agents which give the advice to the learning agent.
The training agent seems to be little more than a hand–coded control program which is tuned to be
able to reach the goal state from any random state. The system also has a parameter to select the
amount of advice to use, which equates to performing some random actions to explore the space.
This seems to be a predecessor to Smart’s work [14, 15] which takes input from a hand–coded
procedure or a human with a joystick. Smart’s JAQL framework bootstraps learning using this
external control which shows “interesting” parts of the state space [13]. Since a large part of the
learning time in Q–Learning is in exploring the space to find the sparse rewards [16], this method
allows the agent to see rewards almost immediately.

The parameters of the controllers here can be adjusted from natural language advice words
built into the system. Since the system takes “advice” at run–time and can be used as an “auto-
mated” training agent, this work is similar to a combination of two of the above methods.

Given the tuning methods from this chapter, and assuming that the optimal value can be
found for each parameter, it may still be possible that the robot does not perform the task as it was
intended to. The next chapter discusses the possible remedies for the shortcomings of the system
presented so far.

13

Chapter 4

Discussion

The system so far leverages previous knowledge about the tasks the robot will be required to do,
and uses that to construct sequences of executable code that attempt to accomplish the task. There
are, however, limitations to the system as it stands.

4.1 Closed World

The system puts the robot under the closed world assumption[11]. The system has a fixed set of
objects and behaviors that describe how the world works. Since the robot has a limited skill set,
the closed world assumption is acceptable for the types of tasks this system can perform.

4.2 Limited Objects

The number of words in use by the system (Appendix B) is fairly small. The main problem is that
there are only a few types of objects that the system can recognize. If a robot using this system
were to be deployed in an area with arrow signs telling it which way to go, the sentence “Follow the
arrows” doesn’t mean anything to the robot since the word “arrows” doesn’t have a meaning.

The solution is to add a component to the system, say ArrowTracker, and assign the words
“arrow” and “arrows” the meaning of “ArrowTracker”. Making the ArrowTracker component would
take a programmer, since it interfaces with the robot’s hardware, seemingly defeating the purpose
of the system presented here. The goal of the system, however, is to reduce the need for robot
programmers after the robot has been deployed.

Recognizing objects from a camera view or laser scan is difficult. Writing robust recognizer
code generally takes a specialist programmer anyway, so until a universal recognizer exists, robot
deployments will benefit from special purpose code for recognizing objects. This system simply
decouples the effort from that of the behavior of the robot, so that each can be reused and combined
in different ways.

Thus, the answer to the limited objects problem is simply to add more built-in program
code, which is outside the scope of this project. The set of recognizers in the system were chosen as
a simple set which could be used to demonstrate the capabilities of the system without spending a

14

Subtracts the second input from the first
Input: A,B
Output: Difference

Negate (B) => nB
Add (A,nB) => Difference

Figure 4.1: The text needed to create the Sub component.

disproportionate amount of time on the recognizer code. The focus of the work is, after all, on the
behavior of the system.

4.3 Limited Behaviors

The problem remains of how to expand the system to incorporate new behaviors. First, new be-
haviors may always be programmed into the system directly. Interestingly enough, there are no
behaviors in the system presented here which were entered by direct programming. The second way
to add behaviors is by using the simple extensible language which is built into the system. The final
way is to transfer the knowledge from the controller into a learning agent, and then let it learn the
proper behavior.

Programming behaviors for mobile robots often involves a lot of the same techniques over
and over again. These techniques, such as proportional controllers, have been programmed into
the system as components, such as P, which implements a P-controller. Other primitives, such as
addition, subtraction, if-then-else, and range checking allow many behaviors to be built without the
need for further direct programming.

The language built into the system relies on the names of the components. Since each built-
in component can be created by its name, a new component can be made from a text file which
is mainly a list of the components needed and the connections between them. An example file to
create a Sub component is shown in Figure 4.1. The header lines, except for the comment, define the
inputs and outputs of the component. Parameters can be defined using the Parameters: header
line. Another header line, Defaults:, specifies the default parameter values for each parameter of
the component. After the header lines, each line starts with the name of a component, followed by
a list of symbols in parentheses. Each symbol represents a connection. Note that the component
Negate takes one input, B, which is also one of the inputs to the Sub component. The symbols,
like B, act as wires connecting inputs to outputs. After the input list a => appears, followed by
a list of symbols which define its outputs, like nB. The symbol nB can now be used as a symbol
representing the output of the Negate component. The last line uses the input symbol A and the
new nB symbol as inputs to Add, and connects its output to the output for the Sub component.
This language is extensible, because each new component created can be used to make others. For
example, the Negate used by the Sub was actually loaded from a different file, whose text is listed
in Figure 4.2. Note also that parameters can be given values by placing them in angle brackets next
to the component name. For more complex examples and examples of behaviors, see § D.1.

15

#Negation Component
#
Takes one input x and returns -x
#
Input: X
Output: Minus_X

P<-1>(X) => Minus_X

Figure 4.2: The text needed to create the Negate component.

Learning can be used as an extension to this system. Since learning has been shown to
greatly benefit from provided experience [13, 16], agents which started from the knowledge in the
generated controllers made by this system will significantly outperform standard learning techniques
over the same state space. The next chapter shows how the performance of this system compares
to direct programming.

16

Chapter 5

Experimental Results

To relate the performance of the system presented here to other established work, two sample
tasks were constructed. These trial tasks represent some common robot applications involving
sensor/motor interaction.

5.1 The Two Trials

The two tasks used in this comparison are object tracking and corridor following. Both tasks involve
obstacle avoidance. Each task is described in detail in the following sections. Two task-specific
evaluation metrics are used to rank the competitors.

5.1.1 Keeping it Seen (KIS)

This task measures a robot’s ability to keep track of a specific object and ensure it does not get
away. Since the area has obstacles, it is necessary to move the robot in order to view the object.
This task uses the laser range finder and blobfinder to drive the motors. Those are the only devices
available (e.g., the full camera image is not available).

Environment. A round blue object, initially visible to the robot moves to the opposite corner of
the environment at a constant speed. The object stops near the corner of the environment.

Goal. The goal is to keep the blue object visible to the robot as much as possible, and stop at a
predetermined distance from the blue object.

Evaluation Metric. This task is scored in two parts. First, every 0.1 seconds the robot receives:

• -0.1 points if the object is not visible to the robot’s camera

• -1 point if the robot is in contact with an obstacle or wall

Second, after the ball stops and the robot has stopped moving for 5 seconds, the robot
receives the following:

17

• +50 points if the robot is facing the blue object within 3 degrees

• +25 points if the robot is facing the object between 3 and 10 degrees

• -1 point for each centimeter above or below one meter from the object in the direction of the
robot

Variations. To examine the robustness of the candidates, the task is scored on three variations.
The difference is in the speed of the ball’s movement. The trials are run using 0.1m/s, 0.2m/s, and
0.3m/s, in that order. The test environment uses the slowest speed and the obstacles are not in their
official test positions. The obstacles are placed in one corner so the user can move them around to
test their controller.

5.1.2 Corridor Traversal (CT)

Many jobs require getting from one place to another. In this task the robot is to traverse a mostly
uncluttered corridor and reach a point near the center end of the corridor. This task uses only the
laser range finder to drive the motors.

Environment. The robot starts off the center line of the corridor, facing in the general direction
of the end to be reached, but not exactly. The angle is no more than 60 degrees from the center line.

Goal. There are two goals for this task. The first is to reach the area near end of the corridor. The
second is to be as close as possible to the center line of the corridor while driving to the location.

Evaluation Metric. The scoring for this task is also in two parts. First, every 0.1 seconds the
robot receives:

• -1 point per meter from the center line of the corridor

• -1 point if the robot is in contact with an obstacle or wall

Second, after the robot has stopped moving for 5 seconds, the robot receives the following:

• +50 points if the robot is within 10 cm of the center line of the corridor

• +25 points if the robot is between 10 cm and 30 cm from the center line

• -1 point for each centimeter above or below one meter from the end of the corridor along the
center line

Variations. The candidates in this task must show that they can navigate successively longer
corridors. The corridors are 5, 10, and 15 meters in length. Each has several rectangular obstacles
placed along the wall. The robots starting position is also varied so the angle and distance from the
center are not constant for each corridor. The test environment uses the shortest corridor and the
obstacles are not in their official test positions. The obstacles are placed in the middle so the user
can move them around to test their controller. Also, since there are more opportunities for negative

18

points to accumulate in longer corridors, the bonus points at the end of the corridor are multiplied
by the trial number (i.e., the large bonus is +100 for the second corridor, +150 for the third).

5.2 The Competitors

This section briefly describes how each of the controllers compared here were derived. Once each
was constructed based on the test environment, the same controller was tested on each of the three
variations of the two trial tasks.

Handwritten Code. The direct comparison of this projectis to handwritten code. Once the
rules and metrics were chosen, the author wrote a simple program for each task and, using a test
environment, debugged and tuned the behavior. The time to accomplish this development cycle was
recorded. The time spent on the Keeping it Seen task was 72 minutes, while Corridor Traversal took
108 minutes.

Assembled. The system presented here was used to construct a controller for the robot using a
single English sentence. For the Keeping it Seen task, the sentence was “Carefully follow the blue
ball.” The Corridor Traversal task used “Carefully follow the corridor.” All values affecting the
operation of the controller were left at their default values.

Assembled and Tuned. Using the test environments, the controllers were tuned using commands
like “Turn More Aggressively” and “Drive Faster” to change the parameter values of the controllers.
Once the author was satisfied that the controller was performing well, the controller was saved and
used for testing.

5.3 Results

The bottom line for this project is its comparison to direct coding. Based on the limited study
the system seems to provide a similar level of performance compared to the more time–intensive
programmed controllers, although there were some cases were the programmed solution achieved
slightly better results. The system–assembled controllers, however, seem more robust to changing
conditions even without re–tuning, which would produce further gains in performance.

Keeping it Seen. The graph in Figure 5.1 displays the average score of the three controllers
over 10 runs. The three separate variations of this trial are labeled KIS 1, KIS 2, and KIS 3. The
controllers were programmed or tuned on the first trials speed. The second and third trials used the
same controllers, to indicate the robustness of the solutions. The negative score for the programmed
variation was a result of 6 of the 10 runs failing to maneuver around an obstacle, which was scored
at -100, the minimum score. The obstacle avoidance code in the programmed solution was not
as well polished as that built into the assembled controller. Aside from that, the performance of
the assembled and tuned controller is on par with that of programming, although with the system
presented here it took much less time to create the solution.

19

���������
	���
��������������������! #"%$�&('*)

+-,/.

0-1/2

3-4/5

6-7/8

9;:#<

=

>#?

@/A

B/C

D/E

F/G

HJILKNM OJPLQSR TVUXWSY
Z\[
]^_
`a
b\c
def

gVhjilknmporq/snt uJv#wpxzy�{/| }r~ �J�#�p�j�!�/� �r�������/�l�r�

Figure 5.1: Performance on the Keeping it Seen task.

���������
	���
�������������������� ��!#"�$�%�&('�)+*-,

.

/10

213

465

718

9�:<;

=�>1?

@�A1B

CEDGF HEIKJ L-MON

PRQ
STU
VW
XRY
Z[\

]_^a`cb<d�e6f1g<h ikj�l�monqp1r s6t ukv�w�xay�z1{ |6}�~O���1�c�6�

Figure 5.2: Performance on the Corridor Traversal task.

20

Corridor Traversal. Figure 5.2 illustrates that the programmed controller achieved significantly
better results in the first two variations of the trial. This was because the programmed controller
drove the robot backwards if it was facing far enough away from the center line, while the assembled
controller only drove forward. This kept the programmed controller from losing some points in
the beginning, when the robot starts far off the center line. The programmed controller did have
problems with the longer corridors, since the obstacles on the wall tended to obscure the features it
was looking for in the laser range data.

The assembled and tuned controller had mixed reviews compared to direct programming. It
performed better in some cases and worse in others. The places with lower performance, however,
are more than outweighed by the increased robustness that comes from modular, polished code, and
a reduced time-to-solution for the tasks. Moreover, if an assembled solution were not performing
at the desired level of performance, and a programmer must be called in, the programming time
could be significantly reduced by providing the data from the assembled controller’s trials. An
additional benefit may be obtained from parts of the source code that makes up the controller, since
the programmer may be able to determine which specific part of the controller failed and replace
just that component.

21

Appendix A

List of Working Components

The components below are all working and usable in the current system. The left column contains
all the built-in modules which are used to construct the added modules in the second column. The
rightmost column contains modules which directly use hardware connected to the robot, and hence
are less generic and not allowed to be used as components of other modules.

Built-In Modules

Add

Alias

Constant

P

I

D

FlipFlop

Multiply

If

InRange

Smooth

Smoother

SpeedFactor

Thresh

Added Verb Modules

Avoid

Follow

Spin

Stay

Other Added Modules

Average

Dist2Error

KeepEqual

Negate

PD

PID

Select22

Sub

Hardware Modules

AvoidObjects

BallTracker

CorridorTracker

HereTracker

LaserRegions

Motor

PersonTracker

SafeMotor

22

Appendix B

List of Words in Dictionary

Adjectives

RED

GREEN

BLUE

LONG

SHORT

MY

YOUR

GREATER

MORE

LESS

SMALLER

ALIKE

SAME

EQUAL

DIFFERENT

X

Y

DISTANCE

FOUND

LEFT

RIGHT

Adverbs

QUICKLY

SLOWLY

DOWN

UP

SMOOTHLY

CAREFULLY

Verbs

COME

GET

GO

DRIVE

KEEP

KEEPING

TRY

TRYING

DRIVING

MOVING

TURNING

LOOKING

PANNING

TILTING

ZOOMING

AVOIDING

FOLLOW

AVOID

SPIN

STAY

Articles

A

AN

THE

Nouns

BALL

ME

I

CORRIDOR

HERE

INPUT

OBJECTS

WORD

WALL

Prepositions

WITH

IN

FOR

FROM

AT

TO

ON

NEAR

BY

ABOVE

BELOW

THAN

OF

Conjunctions

AND

BUT

OR

WHILE

BEFORE

Number
Words

ZERO

OH

ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

TEN

ELEVEN

TWELEVE

THIRTEEN

FOURTEEN

FIFTEEN

SIXTEEN

SEVENTEEN

EIGHTEEN

NINTEEN

TWENTY

THIRTY

FORTY

FIFTY

SIXTY

SEVENTY

EIGHTY

NINETY

BILLION

MILLION

THOUSAND

HUNDRED

TENTH

TENTHS

HUNDREDTH

HUNDREDTHS

THOUSANDTH

THOUSANDTHS

MILLIONTH

MILLIONTHS

MINUS

NEGATIVE

POINT

DOT

23

Appendix C

Grammar of Natural Language

Input

Terminal Symbols:

VERB, NOUN, ADVERB Word of the specified part of speech
ADJECTIVE, ARTICLE
CONJUNCTION, PREPOSITION

END OF SENTENCE End of sentence marker: . ? ! etc.
UNKNOWN A word not recognized by the dictionary
NUM WORD A number word, like ’two’ or ’hundred’
NUMBER A literal number: 345
KEEP, TRY, INPUT, WORD Special words which represent themselves
Λ Null string (lambda)

root → Λ
root any sentence END OF SENTENCE
root error END OF SENTENCE
root error UNKNOWN error END OF SENTENCE

any sentence → Λ
sentence CONJUNCTION sentence
sentence
special command
special command CONJUNCTION special command
sentence CONJUNCTION special command
definition

sentence → predicate
subject predicate

subject → descr noun

predicate → descr verb

24

descr verb → VERB
VERB object
VERB ADVERB
ADVERB VERB
VERB ADVERB object
ADVERB VERB object
VERB object ADVERB

object → descr noun
descr noun prep
prep

descr noun → NOUN
adjectives NOUN
ARTICLE NOUN
ARTICLE adjectives NOUN

adjectives → ADJECTIVE
adjectives ADJECTIVE

prep → PREPOSITION descr noun

special command → KEEP keep clause
TRY try clause

keep clause → sensor relate value by clause
sensor CONJUNCTION sensor comp clause by clause
VERB relate value

relate value → PREPOSITION value
ADJECTIVE PREPOSITION value

by clause → Λ
PREPOSITION VERB

comp clause → ARTICLE ADJECTIVE
ADJECTIVE

sensor → descr noun ADJECTIVE INPUT

value → NUMBER
num word
ARTICLE NUM WORD

num word → NUM WORD
num word NUM WORD

try clause → Λ

definition → ARTICLE WORD UNKNOWN

25

Appendix D

Word Meanings in Dictionary

Adjectives

RED %Color=0
GREEN %Color=1
BLUE %Color=2
LONG %Length=1.5
SHORT %Length=.5
MY
YOUR
GREATER KeepGreater
MORE KeepGreater
LESS KeepLess
SMALLER KeepLess
ALIKE KeepEqual
SAME KeepEqual
EQUAL KeepEqual
DIFFERENT KeepNotEqual
X (0)
Y (1)
Distance (2)
Found (3)
Left (2)
Right (1)

Articles

A
AN
THE

Verbs

COME Follow<,,0.0>
GET Follow<,,0.2>
GO Follow<,,0.3>
DRIVE Follow<,,0.0>
KEEP :266
KEEPING :266
TRY :267
TRYING :267
DRIVING Motor(0)
MOVING Motor(0)
TURNING Motor(1)
LOOKING PTZ(0)
PANNING PTZ(0)
TILTING PTZ(1)
ZOOMING PTZ(2)
AVOIDING AvoidObjects
FOLLOW Loaded from file
AVOID Loaded from file
SPIN Loaded from file
STAY Loaded from file

Adverbs

QUICKLY SpeedFactor<1.5>#
SLOWLY SpeedFactor<.5>#
DOWN
UP
SMOOTHLY Smoother<.9>#
CAREFULLY AvoidObjects#

Nouns

BALL BallTracker
ME PersonTracker
I PersonTracker
CORRIDOR CorridorTracker

HERE HereTracker
INPUT :268
OBJECTS
WORD :271
WALL LaserRegions

26

Prepositions

WITH
IN
FOR
FROM
AT KeepEqual
TO KeepEqual
ON KeepEqual
NEAR KeepEqual
BY KeepEqual
ABOVE KeepGreater
BELOW KeepLess
THAN
OF

Conjunctions

AND
BUT
OR
WHILE
BEFORE

Number Words

ZERO 0
OH 0
ONE 1
TWO 2
THREE 3
FOUR 4
FIVE 5
SIX 6
SEVEN 7

EIGHT 8
NINE 9
TEN 10
ELEVEN 11
TWELVE 12
THIRTEEN 13
FOURTEEN 14
FIFTEEN 15
SIXTEEN 16
SEVENTEEN 17
EIGHTEEN 18
NINETEEN 19
TWENTY 20
THIRTY 30
FORTY 40
FIFTY 50
SIXTY 60
SEVENTY 70
EIGHTY 80
NINETY 90
BILLION *1000000000
MILLION *1000000
THOUSAND *1000
HUNDRED *100
TENTH /10
TENTHS /10
HUNDREDTH /100
HUNDREDTHS /100
THOUSANDTH /1000
THOUSANDTHS /1000
MILLIONTH /1000000
MILLIONTHS /1000000
MINUS -
NEGATIVE -
POINT .
DOT .

27

D.1 Verb components

Definition of Follow

Follow verb

Input: X,Y,Distance,Found

Output: T,R

Param: %Speed,%Pr,%Dist

Defaults: .2,.01,.5

Make the Distance input an error signal

Dist2Error<%Dist> (Distance,Found) => Z

InRange<1e-5,1e30>(Z) => CanGo

Const<0>() => Stop

Const<%Speed>() => Go

If (Go,Stop,CanGo) => T

P<%Pr>(X) => R

R

T

Found

Distance

X

Y

P

Speed Dist

If

Dist2Err

Const

Const

0

InRange

−5 30

10 10

Follow

P

Figure D.1: A diagram of the inner workings of the Follow component.

28

Definition of Avoid

Avoid action, mostly "don’t look at"

Input: X,Y,Distance,Found

Output: T,R

Param: %P,%Dist

Default: .01,1

Dist2Error<%Dist>(Distance,Found) => Z

Const<0>() => Zero

Const<-.1>() => Backup

Alias (X) => C

InRange<-40,40>(C) => InCenter

InRange<-1e30,-1e-5>(Z) => TooClose

Multiply (InCenter,TooClose) => ShouldBackup

If (Backup,Zero,ShouldBackup) => T

Negate (C) => AvoidX

P<%P>(AvoidX) => R

TIf

Alias

Const

−.1

Const

0

P Dist

RP

X

Distance

Y

Found
Dist2Err

Multiply

InRange

−5−30

10 10

InRange

40−40

Negate

Avoid

Figure D.2: A diagram of the inner workings of the Avoid component.

29

Definition of Spin

Control Signals to spin the robot around

Output: T,R

Param: %Speed

Default: .5

Const<0> () => T

Const<%Speed> () => R

R

T

Speed

Const

0

Const

Spin

Figure D.3: A diagram of the inner workings of the Spin component.

30

Definition of Stay

Robot is completely stopped

Output: T,R

Const<0> () => T

Const<0> () => R

R

TConst

0

Const

0

Stay

Figure D.4: A diagram of the inner workings of the Stay component.

31

Appendix E

Example Controllers

Five demonstration tasks were chosen and executed using the framework on a real mobile robot. It
is difficult to give performance metrics on paper, so each task has a qualitative description in the
Behavior section.

E.1 “Carefully follow the blue ball”

Setup. A round blue object was moved within view of the robot’s camera. The object is slowly
moved away from the robot to lead the robot down a corridor. The path of the object is not straight,
but rather moves from one side of the corridor to the other randomly to ensure that the robot is
actually seeking the blue object. The controller constructed for this task used a P-controller to
control the robot’s rotation and keep it centered on the blue object.

Behavior. The robot turned toward the blue object continuously and drove toward it. If the blue
object happened to go outside of the camera’s view, the robot stopped moving. It drove forward at
a constant velocity whenever the object was at least a certain distance away. If the object was too
far away, however, the robot would stop since it no longer was visible to the BallTracker.

BallTracker Follow AvoidObjects Motor

Color

Filter Component

Hardware Component

Computation Component

Speed DistP

X

Y

Distance

Found

T

R

T

R

Figure E.1: The controller for the task “Carefully follow the blue ball.”

32

PersonTracker Follow AvoidObjects Motor

Filter Component

Hardware Component

Computation Component

Speed DistP

X

Y

Distance

Found

T

R

T

R

Figure E.2: The controller for the task “Follow me carefully.”

E.2 “Follow me carefully”

Setup. This task involves trajectory following. The word “me” refers to the path of the person
walking in front of the robot. The laser range finder is used to watch for movement and record the
position of movement relative to the robot. Once enough movement is seen to establish a trajectory,
the robot emits a sound telling the person to wait while it catches up. The robot then drives to each
point seen by the laser to approximate the trajectory it witnessed. A different sound is emitted to
let the user know to continue walking. For evaluation purposes, a line of masking tape was placed
on the carpet for the person to walk along. The controller is the same as in the task in section
E.1, with a different tracker component. The tracker for this task uses the laser to locate points of
movement instead of a colored object in the camera view.

Behavior. The robot imitated the path of the person that walked along the masking tape. The
system currently cannot respond to movement from more than one source. It assumes that all
movement is from the same source and follows it in the order it was received. This can also include
intermittent reflections from a shiny metal chair leg as movement.

E.3 “Drive to here while avoiding objects”

Setup. The “here” referred to in the task description is actually a blue sign of a certain height.
The height of the sign is important because it is used to determine the distance to the sign from
the camera view. The camera is used exactly once to determine the location of “here” and then the
robot attempts to drive to that location. The “here” sign is removed after the robot begins moving,
and the location is marked with masking tape for evaluation purposes. The movement is controlled
by a follow mechanism as in the task of section E.1, but tries to get closer to the target because the
word “Drive” was used instead of “Follow” as in previous trials. Appendix D shows the meaning of
the word “Drive” is similar to “Follow” but changes the distance parameter.

Behavior. The robot drove to the marked location and stopped when it got within a certain
distance. A few obstacles were placed in the robot’s path, and it still reached the goal. When

33

HereTracker Follow AvoidObjects Motor

Filter Component

Hardware Component

Computation Component

Speed DistP

X

Y

Distance

Found

T

R

T

R

Figure E.3: The controller for the task “Drive to here while avoiding objects.”

objects completely blocked the path to the goal, the robot wandered back and forth along the
obstacles. If an opening appeared, it would then proceed to the goal. Certain types of obstacles
would prevent the robot from reaching the goal, such as corners where each side of the corner was
longer than a meter or two, and the corner was pointed roughly in the direction of the goal. This
type of corner would cause the robot to turn around, leave the corner, and turn back toward the
goal, which placed it back in the corner again.

E.4 “Avoid the blue ball and come here carefully”

Setup. This task involves the round blue object again, but this time the robot is told to avoid the
object. Its secondary goal is to get to the location “here”, as specified in section E.3. The controller
consists of two parts, one of which is the “drive to here” controller, and the other is the Avoid

component which has a negated P-controller to look away from the blue object, and a test to see if
the object is centered which drives the robot backward slowly.

Behavior. The robot attempted to drive to “here”, but whenever the blue object was visible, it
stopped and looked away from the object. If the object persisted in the center region of the camera,
then the robot backed up slowly. The avoid behavior was active whenever the blue object was
visible, otherwise the “drive to here” behavior is active. If the blue object was held at certain points
between the robot and the “here” location, the robot never was able to reach the goal. By using the
tuning words “Drive Smoothly”, the behaviors blended together and the robot was able to continue
moving forward long enough to drive around the blue object.

E.5 “Keep the wall left input at one point three and keep

driving at point one”

Setup. The task description of this task uses the second form (see section 2.1), to specify a
relationship to be enforced between values. This low–level method of specifying tasks can be useful
for constructing other behaviors. The given task allows the robot to follow a wall at a given distance.

34

Follow AvoidObjectsHereTracker

X

Y

Distance

Found

T

R

Speed DistP

Sel
R
T

R
T

BallTracker

X

Y

Distance

Found

Avoid

DistPColor

Filter Component

Hardware Component

Computation Component

Select22

T

R
Motor

Figure E.4: The controller for the task “Avoid the blue ball and come here carefully.”

Masking tape was placed on the floor parallel to the wall at the intended distance for evaluation
purposes.

Behavior. The robot drove along the wall approximately where the masking tape was placed.
When a corner was encountered, the robot curved around the corner, overshot the tape line and
then returned to it and continued down the wall. This behavior was expected because of the P-
controller used to keep the values equal. The robot continuously drove at a velocity of .1 ms−1, as
specified in the task description. The task description does not include any obstacle avoidance, so
any objects not touching the wall were hit. Also the gain of the P-controller used was very important
in deciding how quickly the wall could change and still have the robot follow it.

35

T

R
Motor

Const

Constant

Const

Constant

LaserRegions

KeepEqual

Filter Component

Hardware Component

Computation Component

Figure E.5: The controller for the task “Keep the wall left input at one point three and keep driving
at point one.”

36

References

[1] Margaret M. Burnett, Adele Goldberg, and Ted G. Lewis, editors. Visual Object-Oriented
Programming: Concepts and Environments. Prentice-Hall/Manning, 1995.

[2] J. A. Clouse and P. E. Utgoff. A teaching method for reinforcement learning. In Proceedings
of The International Conference on Machine Learning, pages 92–101, San Mateo, CA, 1992.
Morgan Kaufmann.

[3] Jeffrey Clouse. Learning from an automated training agent. In Diana Gordon, editor, Working
Notes of the ICML ’95 Workshop on Agents that Learn from Other Agents, Tahoe City, CA,
1995.

[4] Colleen E. Crangle and Patrick Suppes. Language and Learning for Robots. Cambridge Uni-
versity Press, Stanford, CA: Center for the Study of Language and Information, 1994.

[5] F. Hayes-Roth, P. Klahr, and D. J. Mostow. Advicetaking and knowledge refinement: An
iterative view of skill acquisition. Technical report, Rand Corporation, 1980.

[6] Richard Maclin and Jude W. Shavlik. Incorporating advice into agents that learn from rein-
forcements. In National Conference on Artificial Intelligence, pages 694–699, 1994.

[7] Richard Maclin and Jude W. Shavlik. Creating advice-taking reinforcement learners. Machine
Learning, 22(1-3):251–281, 1996.

[8] John McCarthy. Programs with common sense. In Proceedings of the Teddington Conference on
the Mechanization of Thought Processes, pages 75–91, London, 1959. Her Majesty’s Stationary
Office.

[9] Y. Abu Mostafa. Learning from hints in neural networks. Journal of Complexity, 6:192–198,
1990.

[10] C. W. Omlin and C. Lee Giles. Training second-order recurrent neural networks using hints.
In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth International Conference on
Machine Learning, pages 363–368, San Mateo, CA, 1992. Morgan Kaufmann Publishers.

[11] R. Reiter. Logic and Data Bases, chapter On Closed–World Data Bases, pages 55–76. Plenum
Press, 1978.

[12] P. Riley, M. Veloso, and G. Kaminka. An empirical study of coaching. In Distributed Au-
tonomous Robotic Systems 6, pages 215–224. Springer-Verlag, 2002.

37

[13] William D. Smart. Making Reinforcement Learning Work on Real Robots. PhD thesis, Depart-
ment of Computer Science, Brown University, May 2002.

[14] William D. Smart and Leslie Pack Kaelbling. Reinforcement learning for robot control. In
Mobile Robots XVI (Proc. SPIE 4573), 2001.

[15] William D. Smart and Leslie Pack Kaelbling. Effective reinforcement learning for mobile robots.
In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA
2002), 2002.

[16] S. B. Thrun. Efficient exploration in reinforcement learning. Technical Report CMU-CS-92-102,
School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1992.

	Programming Robots by Description and Advice
	Recommended Citation
	Programming Robots by Description and Advice

	tmp.1469562486.pdf.0LnW_

	Abstract: Abstract: Programming robots to perform tasks autonomously is difficult. The environment or even the task may change at any moment. The main drawback is that this programming requires a team of highly skilled roboticists to monitor the robot and change its programming to accomplish the task. The system presented here allows robot controllers to be constructed by a non-specialist, using the included restricted natural language parser. The controller can further be refined by a non-specialist using keywords which represent the changes that each parameter makes to the behavior. To show that the system is viable, controllers made by the system are compared to direct programming on two common robot tasks. The assembled and tuned controllers are shown to perform similarly to direct programming in performance, even better in several cases, but without the large development/testing time that direct programming requires.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: April 28, 2005
	Author: Authors: Martignoni III, Andrew J.
	Title: Programming Robots by Description and Advice, Master's Thesis, May 2005
	ReportNumber: 2005-17
	DepartmentName: Department of Computer Science & Engineering

