
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Theses and Dissertations (ETDs)

1-1-2009

Partial Order Reduction for Planning Partial Order Reduction for Planning

You Xu

Follow this and additional works at: https://openscholarship.wustl.edu/etd

Recommended Citation Recommended Citation
Xu, You, "Partial Order Reduction for Planning" (2009). All Theses and Dissertations (ETDs). 934.
https://openscholarship.wustl.edu/etd/934

This Thesis is brought to you for free and open access by Washington University Open Scholarship. It has been
accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/934?utm_source=openscholarship.wustl.edu%2Fetd%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Dr. Jeremy Buhler

Dr. Yixin Chen
Dr. Chenyang Lu

PARTIAL ORDER REDUCTION FOR PLANNING

by

You Xu

A thesis presented to the School of Engineering
of Washington University in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Dec 2009
Saint Louis, Missouri

copyright by

You Xu

2009

ABSTRACT OF THE THESIS

Partial Order Reduction for Planning

by

You Xu

Master of Science in Computer Science

Washington University in St. Louis, 2009

Research Advisor: Professor Yixin Chen

Partial Order Reduction (POR) is a technique that reduces the search space by rec-

ognizing interchangeable orders between actions and expanding only a subset of all

possible orders during the search. It has been extensively studied in model checking

and has proven to be an enabling technique for reducing the search space and costs.

Several POR algorithms have been proposed in planning, including the Expansion

Core (EC) and Stratified Planning (SP) algorithms. Being orthogonal to the devel-

opment of accurate heuristic functions, these reduction methods show great potential

to improve the planning efficiency from a new perspective. However, it is unclear how

these POR methods relate to each other and whether there exist stronger reduction

methods.

In this thesis, we have proposed a unifying theory that provides a necessary and

sufficient condition for two actions to be semi-commutative. We have also revealed

that semi-commutativity is the central property that enables POR. We have also

interpreted both EC and SP algorithms using this new theory. Further, we have

ii

proposed new, stronger POR algorithms based on the new theory. We have also

applied these new algorithms to solve benchmark problems across various planning

domains. Experimental results have shown significant search cost reduction.

iii

Acknowledgments

I would like to thank my advisor, Dr. Yixin Chen.

I would like to thank Professors Jeremy Buhler and Chenyang Lu for serving on my

Master of Science committee.

I would also like to thank Ruoyun Huang, Minmin Chen, Guohui Yao, Qiang Lu,

Jianxia Chen and all other members in our research group for providing insightful

comments on the work.

You Xu

Washington University in Saint Louis

Dec 2009

iv

Contents

Abstract . ii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Automated Planning . 1
1.2 Observations of Partial Order Structure 3

1.2.1 Example I: A Simplified Truck Problem 3
1.2.2 Example II: A Maze Problem 5

1.3 Contributions . 6
1.4 Thesis Outline . 7

2 Background and Previous Work . 8
2.1 Classic Planning and Problem Formulations 8

2.1.1 STRIPS Formalism . 8
2.1.2 SAS+ Formalism . 10

2.2 Existing Methods . 11
2.2.1 Model Checking Approaches 11
2.2.2 SAT Approaches . 11

2.3 State Space Search for Planning . 12
2.3.1 General State Space Search Procedure 12
2.3.2 Heuristic Search . 14
2.3.3 Existing Heuristics in Planning 14
2.3.4 Existing Search Methods in Planning 18

2.4 Search Space Reduction in Planning 20
2.4.1 Partial Order Reduction . 21

2.5 Conclusion . 23

3 General Theory for Partial Order Reduction 24
3.1 A Unifying Theory . 24

3.1.1 Semi-commutative Conditions 24
3.1.2 Semi-Commutative Action and Path Pairs 26
3.1.3 Categories of search and reduction 29

v

3.2 Interpretations of POR Algorithms 31
3.2.1 Stratified planning (SP) . 31
3.2.2 Expansion core (EC) algorithm 35

3.3 New POR Algorithms for Planning 38
3.4 Conclusion . 41

4 Experimental results . 42

5 Conclusion and Future Work . 46

References . 47

Vita . 49

vi

List of Tables

4.1 Comparison of several algorithms. We give number of generated nodes,
number of expanded nodes, and CPU time in seconds. ”-” means timeout
after 300 seconds. 44

4.2 Comparison of FD and AC+ on freecell (free) and pipesworld (pipe) do-
mains. We show numbers of expanded and generated nodes. ”-” means
timeout after 1800s. 45

vii

List of Figures

1.1 Number of generated nodes by the FD planning on the Driverlog domain 2
1.2 A simplified Truck problem . 3
1.3 The solution to the Truck problem with only one truck 4
1.4 The solution to the Truck problem with two trucks 4
1.5 The solution to the Truck problem with two trucks 4
1.6 A Maze Problem on 2D plane . 5

2.1 The DTG and Causal Graph in the Truck Problem 16

3.1 The causal graph and a stratification of Truck-02. 32
3.2 Stratified Planning Strategy . 33

viii

Chapter 1

Introduction

1.1 Automated Planning

Planning is one of our daily activities that involves arranging a series of actions in

order to achieve certain goals. There are an abundance of planning problems in our

daily life, even though we might not notice. For instance, we can describe the task

“filling the gas tank” as a planning problem. This problem involves several actions

like “select the gas type”, “remove the nozzle”, “stop the car”, “swipe the credit

card” and “open the gas tank lid”. Each of these actions will cause the changing of

some physical states. For instance, “remove the nozzle” will cause the state of the

nozzle to change from in the dock to in your hand. Those state changes caused by

actions are usually called effects. We want to arrange actions such that finally the

effects of those actions construct the final goal state: a full tank of gas.

Another important concept in planning is called precondition. For instance, the action

“remove the nozzle” will not be valid if the nozzle is not on its dock in the first place.

Similarly, the action “fill the gas tank” can only happen if the nozzle is in your hand.

In both cases, we observe that those actions require “preconditions” that must be

satisfied to make those actions executable.

Thus, informally, a planning problem can be defined as to find a sequence of actions

such that every action in the sequence gets preconditions satisfied when executed,

and the collective effect of these actions will lead us from the initial state to a goal

state we want to achieve.

1

Figure 1.1: Number of generated nodes by the FD planning on the Driverlog domain

While the correct action sequence is easy to get for small instances like “buying gas”,

other complicated planning tasks are beyond the abilities of human beings because

there are too many actions to pick from and usually millions of combinations need to

be tested by trial and error. Therefore, it is necessary to explore the method of solving

planning problems on modern computers. Since computers usually do not have the

domain knowledge of the planning problem, we focus more on planning systems that

require no domain specific knowledge. In Artificial Intelligence (AI) research, the

subject of using computers to solve planning problems automatically without any

domain specific knowledge is called “automated planning”.

Not only is automated planning of practical significance, it is also important in the-

oretical AI research. In fact, many other important AI problems such as the discrete

time scheduling problem, the constraint satisfactory problem and the general state

space search problem can be formulated as planning problems. Thus, planning prob-

lem are considered to be the hardcore of AI research.

The state of the art methods of solving planning problems are to use state space

search with heuristic functions acquired from structural analysis. We will explain in

2

Figure 1.2: A simplified Truck problem

detail the heuristic based state space search methods of solving planning problems

in Chapter 2. Here it is sufficient to know that one of the key challenge of using

state space search methods is the exponential increase of search space with problem

size, even when a high quality heuristic function is present. Figure 1.1 shows the

exponential growth of the number of states in the search space when the size of the

problem increases in the Driverlog planning domain using Fast Downward planner,

which utilizes FF and causal graph heuristics.

1.2 Observations of Partial Order Structure

Both theoretical and experimental results indicate that the search space explosion still

exists even when the heuristic estimation is almost perfect [13]. One of the reasons is

that equivalent paths and duplicated states are generated during the search. These

duplicated paths and duplicated states can be eliminated safely without affecting the

correctness of our search. We use the following two examples to illustrate this point.

1.2.1 Example I: A Simplified Truck Problem

Truck is a planning domain that appeared in the fifth International Planning Compe-

tition. The basic object is to transport several goods from a city to another. Here we

3

simplify this domain and give a very simple example to illustrate our observations.

The simplified problem is shown in Figure 1.2

In this simple problem, we have two trucks T1 and T2, and two goods P1 and P2,

all initially in City C1. The goal is to transport both goods to city C2, as shown

in gray. We also know that cities C1 and C2 are connected. For this problem, one

possible solution is to use truck T1 only to move both goods to C2. Figure 1.3 shows

the solution plan.

load T1 P1 drive T1 C1 C2 unload T1 P1

drive T1 C2 C1

load T1 P2 drive T1 C1 C2 unload T1 P2

Figure 1.3: The solution to the Truck problem with only one truck

We can, however, use two trucks to transport two packages, one truck for each package.

For instance, if we use T2 for transporting P2, the new solution is listed in Figure 1.4.

load T1 P1 drive T1 C1 C2 unload T1 P1

load T2 P2 drive T2 C1 C2 unload T2 P2

Figure 1.4: The solution to the Truck problem with two trucks

We observe that the actions related to T1 are independent of the actions for T2. Thus,

we can arbitrarily swap the order of some independent actions without affecting the

final goal. For example, by swapping the actions “load T2 P2” and “unload T1 P1”,

we can get the following solution in Figure 1.5

load T1 P1 drive T1 C1 C2 unload T2 P2

load T2 P2 drive T2 C1 C2 unload T1 P1

Figure 1.5: The solution to the Truck problem with two trucks

Essentially, by permuting these actions while preserving the required precondition

constraints, there are in total
(

6
3

)
= 20 equivalent ways to achieve the same goal.

Traditional search algorithm will explore all of these paths since it is unwise to ignore

4

Figure 1.6: A Maze Problem on 2D plane

any path that can lead to the goal. Now if we decide that “load T1 P1” must happen

before “load T2 P2” and ignore any paths where this order does not hold, then only(
5
2

)
= 10 possible paths left to explore. We call this order a partial orders since it

only involve the orders of a subset of actions. As we can see, imposing a single pair

partial order can reduce the path enumeration by half. If we impose more partial

orders, for instance, T2 can only work after T1 has finished unloading goods, then

there is only one possible solution left – the exemplar solution discussed above.

As we can see from this example, without affecting the correctness of our solution,

partial order can be imposed to reduce the number of paths we need to explore during

search. We will discuss in detail in the next chapter the relationship between the size

of the paths and the size of the search space. Here it is sufficient to know that in this

case, partial order can reduce the number of paths by an order of magnitude.

1.2.2 Example II: A Maze Problem

In our first example, we showed that imposing partial order to actions can result in

reduced paths. Here we use another example to show that imposing partial order can

5

result in a reduced number of states. Figure 1.6 shows a simple maze. The explorer of

this maze starts from point S and his destination is T . Starting from S, the explorer

usually has more than one path to choose from. Thus, the explorer can explore all

14 crossings. However, if a partial order is imposed such that actions a, b, c must

be executed before actions i, j, k, the explorer will have only one path to explore, as

marked by squares in the above graph. Other nodes marked by circles are previously

reachable by an extensive exploration algorithm. They are, however, eliminated after

partial order is imposed. In this case, the explored nodes are reduced from 16 to

7, or from N2 to 2N − 1 for a general 2-dimensional maze with N edges on each

dimension. If we extend this Maze domain to higher dimensions, the explored nodes

can be reduced from Nk to kN −1 if the dimension number is k. This example shows

that partial orders can also significantly reduce the number of nodes explored in the

search space.

In summary, both examples show that by imposing a partial order onto action pairs,

the number of paths and number of nodes can be significantly reduced, even when a

perfect heuristic is used. We name this family of methods “partial order reduction”

as they impose partial orders to the solution to reduce search space.

Although the basic idea behind partial order reduction is intuitive, it is still unclear

how to pick these pairs and what partial order should be imposed. It is also unclear

what the general theory for doing partial order reduction method for planning is. The

answers to these questions comprise the main contributions of this thesis.

1.3 Contributions

The main contributions of this thesis are as follows:

a) We propose a general theory for doing partial order reduction in planning. We

prove several necessary conditions for partial order reduction methods.

b) Based on our general theory, we successfully explain two previously proposed space

reduction methods in an unified manner.Our explanation also provides more insights

on designing other partial order reduction methods.

6

c) Built on the general partial order reduction theory, we propose a partial order

reduction method based on direct analysis of actions. We implement this reduction

method and test it extensively on several planning benchmarks. Experimental results

show that it performs better than the Stratified Planning, a partial order reduction

approach.

1.4 Thesis Outline

This thesis is organized as follows:

In Chapter 2, we introduce the background of automated planning and review pre-

vious work. We first introduce several formalisms for automated planning. Second,

we introduce the framework of using informed state space search to solve automated

planning problems. Finally, we review existing space reduction methods in planning,

and discuss their assumptions, major ideas and limitations.

In Chapter 3, we present our theoretical work on the necessary condition of partial

order reduction. We first introduce the basic concepts in partial order reduction.

Then we present our central theorem based on semi-commutative action pairs. Then,

we discuss the basic concept of causal graph analysis and introduce the main ideas

behind two existing space reduction methods: Stratified Planning (SP) and Explosion

Core (EC). Then, we use our theory to unify these two methods. Finally, we propose

a modified version of the Stratified Planning algorithm based on action relationship

analysis.

In Chapter 4, we test our proposed algorithms on several planning benchmarks. We

compare the performance of our algorithm with the Stratified Planning algorithm on

these benchmarks.

Finally, in Chapter 5, we summarize the research work in this thesis and discuss some

future directions to extend this research.

7

Chapter 2

Background and Previous Work

In this chapter, we first introduce several basic concepts of automated planning and

three major formulations for classic planning domains.

2.1 Classic Planning and Problem Formulations

Depending on the different categories of constraints on actions, automated planning

problems can be divided into two categories: non-temporal planning and temporal

planning. Actions in temporal planning problems might have starting time or ending

time constraints and durations. In contrast, actions in non-temporal planning have

no time constraints and each action can be treated as an atomic operation. In this

thesis, we only consider the family of non-temporal planning problems where any

possible state in this planning problem can be described using propositional logic.

These problems are usually defined as classic planning problems.

Given a planning problem domain, the first step is to formulate it in a language

that a computer can understand. We introduce two popular formalisms–STRIPS and

SAS+.

2.1.1 STRIPS Formalism

STRIPS (Stanford Research Institute Problem Solver) is an automated planner devel-

oped by Richard Fikes and Nils Nilsson. This planner first adopted a propositional

8

logic system to describe the planning problem. Now, the term “STRIPS” is often

used to refer to the propositional logic system for describing planning problems.

Definition 1 A STRIPS planning task P can be written as a four tuple (F, I, O, G),

where F is a set of facts, O is a set of actions. I ⊂ F and G ⊂ F are the set of initial

facts and goal facts, respectively. For each action o ∈ O, Po, Ao and Do denote the

set of preconditions, add effects and delete effects, respectively. F are propositional

atoms and Po, Ao and Do are all logical conjunctions of atoms in the propositional

logic system.

The semantics of STRIPS are as follows: if all preconditions of an action a are satisfied

at some state s, a is applicable at s. Add effects will become true after the execution

of a at s, and delete effects will no longer be true after the execution.

For instance, in the truck domain, action “load T1 P1 at C1” has preconditions “AT

P1 C1, AT P1 C1”. Thus, this action is applicable at the initial state. Its add effect

is “AT P1 T1” and its delete effect is “AT P1 C1”. After the execution of this action,

P1 will be in T1 (added) and AT P1 C1 will no longer be true (deleted).

Since everything in the STRIPS formalism is based on the propositional logic, we

usually say that STRIPS adopts the propositional logic paradigm for modeling plan-

ning problems. Similar to the fact that first order logic is the natural extension to

the propositional logic paradigm, Action Description Language (ADL) and its super

set Planning Domain Definition Language (PDDL) are two formalisms based on first

order logic1. Most of the benchmarks used in this thesis are essentially formulated in

ADL and PDDL instead of STRIPS because ADL and PDDL descriptions are usually

more terse than STRIPS descriptions. This difference is, however, not important for

this thesis since we can always transform an ADL/PDDL formulated classic planning

problem to a STRIPS representation.

1PDDL also contains other extensions for temporal planning problems.

9

2.1.2 SAS+ Formalism

SAS+ is another way to formulate planning problems. Rather than using proposi-

tional atoms, the SAS+ formalism models states by multi-valued state variables.

Definition 2 In SAS+ formalism, a planning problem is defined as a tuple Π =

(X, O, S, SI , SG). Here, X = {x1, x2, · · ·xN) is a set of multiple-valued state variables,

each with an associated finite domain Dom(xi). O is a set of actions and each action

o ∈ O is a tuple (pre(o), eff(o)), where both pre(o) and eff(o) define some partial

assignments of variables in the form xi = vi, vi ∈ Dom(xi). S is the set of states. SG

is a partial assignment that defines the goal and SI is a full assignment of all state

variables that defines the initial state. Variables involved in SG are defined as goal

variables.

For a given state s and an action o, when all variable assignments in pre(o) are met

in state s, action o is applicable or enabled in state s. After applying o to s, the

state variable assignment will be changed to a new state s′ according to eff(o)and

eff(o). We denote the resulting state of applying an applicable action o to state s

as s′ = apply(s, o).

There is a natural correspondence between SAS+ and STRIPS formalisms of planning

problems. For an action o, Po, Ao and Do correspond to the variables assignments

in pre(o), eff(o), respectively. We shall also note that there are existing works to

translate the STRIPS formalism to a SAS+ formalism. In most of the cases, we do not

need to consider the differences between SAS+ and STRIPS. It is, however, important

to know that in this thesis, we proved our theory mainly on STRIPS formalism and

we applied our theory to Fast Downward, a SAS+ based automated planner. This

is because STRIPS is more suitable for theoretical analysis and SAS+ formalism is

easier to use in algorithm implementation. In this thesis, we will point out our use of

specific formalisms if it is not clear from the context, otherwise we will use whichever

is more convenient for description.

10

2.2 Existing Methods

Many works are proposed for solving classic planning problems. We first briefly

review several existing works that are beyond the main scope of this thesis and then

dedicate a subsection to discuss the state space search approach for solving automated

planning, which is the family of methods this thesis belongs to.

2.2.1 Model Checking Approaches

The first family of method involves using model checking approaches to solve planning

problems [7, 11, 8]. The basic idea is to transform the planning problem into a model

checking problem and use existing model checkers to solve the planning problem. The

binary decision graph (BDD) is used to denote the abstract search space. In every

round, if the goal is not in the abstract search space, the model checker will expand

one more layer and construct a new BDD using some BDD operations based on the

BDD in the last round. Since search space is represented implicitly using BDD, this

family of methods is also called symbolic planning. The main problem with this

family of approaches is that structural information of the planning domain is usually

lost during the translation from planning problem to model checking formulation.

For a model checker, even if the search is conducted in an abstract space, uninformed

search would still result in huge BDDs.

2.2.2 SAT Approaches

Similar to the first approach, planning problems can be transformed into a sequence

of boolean satisfiability problems (SAT) [17, 6]. The basic idea is to treat the solving

procedure of a planning task as mapping actions into steps such that goal conditions

can be satisfied by executing actions step by step from the initial state. Thus, this

method asks a series of questions “can this planning problem be solved in N steps”

starting from N = 1. These questions are then encoded into a SAT formulation and

SAT solvers are employed to decide their satisfiability. We omit the technical details

of the encoding here. It is easy to see that if we try from N = 1 up to N = k

11

where the SAT problem is first time satisfiable, then k is the minimal number of

steps to solve this planning problem. In fact, one of the advantages of using a SAT

based method is that it returns the optimal solution in the sense of number of steps.

The disadvantages are, however, obvious: SAT problems themselves are in the NPC

complexity category; despite the rapid development of SAT solvers, it is still hard to

solve large instances of SAT problems. In practice where optimality is not required,

state-of-the-art heuristic search based approaches are usually one or more orders of

magnitudes faster than SAT based methods.

Besides these two methods, there are also other approaches such as partial order

planning, hierarchical planning [9] and graph planning [2]. Since these works are,

however, less relevant to the work in this thesis, we omit the detailed discussions of

these methods here.

2.3 State Space Search for Planning

Like SAT approaches and Model checking approaches, state space search methods can

be used to solve planning problems. State space search is so far the most successful

method in practice, as most of the winning planners of the International Planning

Competitions are using heuristic search framework. Since our work in this thesis is

also based the state space search method, we explain it thoroughly in this section.

2.3.1 General State Space Search Procedure

In short, the state space search method is the practice of finding a path (or a sequence

of actions in planning) that links the initial state to a goal state through exploring

states in the “state space”.

Figure 1 shows a general state space search algorithm. We usually denote the “insert

successor(node)” step as the expansion step.

We also introduce the following definitions that are related to state space search

procedure:

12

Algorithm 1: General State Space Search Procedure

Input: problem, fringe
Output: found or failure
closed ← ∅ ;
insert initial state to fringe ;
while True do

if fringe is empty then
return failure

end
node ← Remove-First (fringe) ;
if node is Goal then

return found
end
if node is not in closed then

add node to closed ;
insert successor(node) to fringe ;

end

end

Definition 3 The state space graph SG is a directed graph where each node is a state,

and each edge (u, v) is an edge in SG if and only if v is in successor(u). All nodes

in this graph comprise the search space for this problem. Here v is the successor of u

and v is the precedence of v.

Definition 4 A search path is defined as a path in the state space graph. A goal path

is a search path starting from the initial state to some goal state.

Definition 5 The set of expanded states is the set of all nodes in closed when the

search procedure terminates. The explored space is the set of expanded states and the

paths between them.

Later on in this thesis, for simplicity, when there is no ambiguity, we use ‘path’ for

‘search path’.

Solving planning problems using Algorithm 1 is straightforward. We start from the

initial state and apply applicable actions in the expansion step to generate successor

states until we reach some goal state or get failure. Then, if a goal state can be

13

found, by tracing back from this goal state, a goal path can be extracted and the

corresponding action sequence is a valid solution to the planning problem. The main

challenge here is to find the solution without triggering the space explosion problem.

Since the state space for a planning problem is fixed once the problem is defined, what

we really want to do is to reduce the explored search space. Two major techniques

can be used to reduce the explored space: heuristic search and space reduction. We

first introduce heuristic search.

2.3.2 Heuristic Search

Recall that in Algorithm 1, fringe is a configurable data structure defined by users.

For example, if fringe is implemented as a stack, the above algorithm will be a depth

first search procedure. Generally, nodes in fringe can be accessed in any order other

than in a FIFO or LIFO manner. The key idea of heuristic search is to use “heuristic

function” to help ordering nodes in fringe. For a given search space, the heuristic

function is defined as follows:

Definition 6 Heuristic function h is a function that maps nodes in search space into

numerical values. For a node n, h(n) typically estimates the distance from n to goal.

A heuristic function is called admissible if it always underestimates the distance.

2.3.3 Existing Heuristics in Planning

Many successful heuristics have been proposed in the last decade. We briefly review

several successful heuristics2 for solving planning problems.

The Fast-Forward Heuristic

The Fast-Forward (FF) heuristic [14] was proposed by Hoffmann in 2000. The Fast-

Forward planner that utilizes FF heuristic was the most successful planner in the

2Here we refer to heuristics employed in award winning planners or heuristics that have high
impact in planning research.

14

AIPS 2000 planning system competition. To illustrate the FF heuristic, we first

introduce a special data structure called the Planning Graph (PG) [20].

PG is a graph that has alternate layers of actions and facts. Starting from the initial

state as the initial fact layer, we can apply all applicable actions with respect to this

fact layer. All these applicable actions comprise a new action layer. The next fact

layer is constructed of the union of the facts in the previous layer and all the add

effects of the actions in previous action layer. This procedure will be repeated until

the fact layers finally converge to a fixed set. This convergence is guaranteed since

there are only a fixed number of facts and fact layers are monotonically increasing.

Note that no delete effects of the actions are considered in constructing PG.

FF evaluates the heuristic value of a given state s by construction PG using s as the

initial state. After PG is constructed, FF extracts a goal path from constructed PG

and uses the length of this path as the heuristic value. Since the extracted plan is

just one of the many possible plans from s to goal and it is not necessarily an optimal

plan, FF heuristic is not admissible since it might overestimate the distance from s

to goal.

The Fast Downward Heuristic

The Fast Downward (FD) heuristic [12] was proposed by Helmert in 2006. The Fast

Downward planner that utilizes FD heuristic was one of the winners of IPC 2006

planning competition. Unlike FF, which uses STRIPS formalism, FD uses SAS+

formalism.

To illustrate the FD heuristic, we first introduce two concepts: Domain Transition

Graph (DTG) and Causal Graph (CG).

Definition 7 For a SAS+ task, for each state variable Xi, i = 1, · · · , N , its Domain

Transition Graph (DTG) Gi is a directed graph. the vertex set V (Gi) is Dom(xi).

An edge ei = (vi, v
′
i) belongs to E(Gi), the edge set of Gi, if there is an action o with

vi ∈ pre(o) and v′i ∈ eff(o). We denote the association relationship between action o

and edge ei by o ` ei.

15

(a) The DTG of P1 and P2 (b) The Causal Graph

Figure 2.1: The DTG and Causal Graph in the Truck Problem

In our truck example, if we treat the position of package P1 as a variable x, it can

take four values: in C1, in C2, in T1 and in T2. The corresponding DTG is shown

in Figure 2.1(a). All directed edges are associated with a valid action. We mark ”at

C2” graph since it is our goal. We define a DTG as a goal DTG if its corresponding

variable is goal variable.

DTG denotes the transition between variable values. It, however, does not reflect the

relationships between variables. Causal Graph (CG) bridges this gap. It is defined

as follows:

Definition 8 Given a SAS+ planning task Π with state variable set X, its Causal

Graph (CG) is a directed graph CG(Π) = (X, E) with X as the vertex set. There

is an edge (x, x′) ∈ E if and only if x 6= x′ and there exists an action o such that

x ∈ trans(o) and x′ ∈ dep(o), or, x ∈ eff(o) and x′ ∈ trans(o).

To illustrate the above definitions, we again take the Truck problem as an example.

In the Truck example, we have four variables, namely, position of T1 and T2 and

position of P1 and P2. We denote them by variable Ti and Pi where i ∈ {0, 1}. Both

T1 and T2 take two values: at C1 and at C2. We use 0 and 1 to represent them.

16

To the contrary, both P1 and P2 take four values: at C1, at C2, in T1 and in T2.

We denote them by integer value 0, 1, 2 and 3, respectively. The DTGs of P1 and P2

are the same, as shown in Figure 2.1(a). Now, for action LOAD P1 to T1 at C1 that

changes the value of P1 from 0 to 2, its precondition contains T1 = 0. Therefore,

there is a directed edge in the causal graph from P1 to T1. Figure 2.1(b) shows the

final causal graph of the Truck problem where gray nodes mark goal DTGs.

Intuitively, the nodes in the CG are state variables and the arrows in the CG describe

the dependency relationships between variables. If the CG contains an arc from xi

to xj, then a value change of xj will possibly affect the applicability of some action o

that involves a transition of xi.

After construction DTGs and the causal graph for a SAS+ planning task, the FD

heuristics will prune some directed edges in the causal graph to make this directed

graph acyclic, and thus relaxes the original problem. Theoretical results show that if

the causal graph of a planning problem is acyclic, it is solvable in polynomial time [12].

FD solves this relaxed problem and uses the length of the goal path from current state

s in the relaxed problem as the heuristic value for state s.

Landmark Heuristic

The Landmark (LAMA) Heuristic is proposed by Richter and Helmert in 2008 [18].

The LAMA planner that utilizes the LAMA heuristic was the winner of IPC 2008

planning competition. The LAMA heuristic also uses SAS+ formalism.

To show how LAMA works, we first introduce the definition of landmarks for a

planning problem.

Definition 9 For a SAS+ planning task Π, a variable assignment xi = vi is a land-

mark if and only if for any goal paths, xi = vi is true at some states in that path.

Intuitively, landmarks are the partial assignments of variables that any goal paths

must visit.

The LAMA heuristic works in the following way. First, it uses a landmark discovery

and verification module to extract n landmarks from Π. Then, partial orders between

17

these landmarks will be decided based on some deductions and heuristic guesses.

Based on these discovered landmarks and their partial orders, a landmark graph

is constructed with landmarks as vertices and partial orders between landmarks as

directed edges.

For any given state s, LAMA evaluates its heuristic functions as follows. It first

decides the number of landmarks that have been visited by the path from the initial

state to s as m, and the number of landmarks that are required again from s as k,

based on the orders in the landmark graph. Then, the heuristic value h(s) is defined

as n − m + k. Here the heuristic value h(s) not only depends on state s, but also

the path from the initial state to s. Thus, strictly speaking, it is not a heuristic

but a pseudo-heuristic. Nevertheless, LAMA planner uses this value as heuristic in

best-first search.

In summary, these aforementioned heuristics stand for the state of the art of heuristics

in automated planning. They are all very accurate. However, none of them is signifi-

cantly better than the other two across all planning domains. Thus, in practice, these

heuristics are usually combined to achieve a better performance. For instance, the

FD planner uses both FF and FD heuristics. The LAMA planner uses both LAMA

and FF heuristics.

2.3.4 Existing Search Methods in Planning

In this subsection, we briefly review several search strategies that appear in the state-

of-the-art automated planners.

A∗ Search

Recall that in Algorithm 1, fringe is a user-defined data structure. A∗ uses a priority

queue as fringe. For a state s in fringe, its priority value f of s is the sum of its

heuristic value h(s) and the path cost g(s) measured as the distance from the initial

state I to s. Thus, nodes in fringe are retrieved according to its f value.

The well-known advantage of using A∗ is that if the heuristic function is admissible,

it is guaranteed to find an optimal solution (if any) in the sense of goal path length.

18

However, as we discussed in the last subsection, because all state-of-the-art heuristics

are not admissible, A∗ loses its advantages. Thus, in practice, A∗ is only used when

the optimal solution is required.

Best-First Search

Similar to A∗, best-first search implements fringe as a priority queue. The priority

value of nodes in fringe is their heuristic values. Therefore, Remove-First will

also pick the node in the fringe with the smallest heuristic value.

Unlike A∗ search, the solution found by best-first search is not guaranteed to be

optimal even if the heuristic is admissible. However, best-first search is widely used

in practice due to the fact that all state-of-the-art heuristics are usually accurate

but not admissible. Both FD and LAMA use best-first search as their basic search

methods.

Hill Climbing

Hill Climbing can be treated as a special kind of best-first search except that after

the Remove-First operation, it clears out the entire fringe. In other words, at any

state s, it only picks the best successor and ignores all other successors.

Hill climbing is generally considered greedy and it is essentially an incomplete algo-

rithm. Possible goal paths might be dropped out during hill climbing. In practice,

FF planner uses hill climbing search and ff heuristics, and will restart a best-first

search if hill climbing hits a dead end. According to the search space topology anal-

ysis [15, 16], for problems where search space has no dead end or local minimal, hill

climbing performs surprisingly well.

Deferred Heuristic Evaluation

Deferred heuristic evaluation is a technique to boost the speed of best-first search.

Recall that when best-first search is used, states in fringe are ordered by their heuris-

tic values. That is to say, heuristic evaluation for all states must happen before being

inserted into fringe. Deferred heuristic evaluation delays the evaluation of heuristic

value to the expansion step. Instead of evaluating the heuristic value of a state s

before inserting it to fringe, it copies the heuristic value of s’s precedence as the

19

heuristic value of s. Later on when s is retrieved from fringe, its heuristic value will

be evaluated before the expansion phase.

The motivation of this method is straightforward. As we discussed in the previous

section, state-of-the-art heuristics are generally very accurate. However, evaluating

the heuristic value still requires solving a relaxed problem in polynomial time. Thus,

heuristic evaluations should happen as little as possible. In practice, deferred heuristic

evaluation can reduce the number of evaluations by about one order of magnitude [19].

Because heuristic evaluation takes most of the computation time in the search pro-

cedure, reducing the number of heuristic evaluations also significantly reduces the

overall search time.

In summary, we discussed the state space search procedure for solving automated

planning problems in this section. We also reviewed three state-of-the-art heuristics

and four search techniques for solving planning problems. In the next section, we

will introduce the search space reduction methods that are independent from the de-

velopment of heuristics and search techniques and can therefore be combined with

techniques discussed in this section to further improve the state space search proce-

dure for solving planning problems.

2.4 Search Space Reduction in Planning

Heuristic search also has some fundamental limitations. Both experimental and the-

oretical results show that even the almost perfect heuristic function will result in

exponential explored space. Also, modern heuristics usually rely on solving relaxed

planning problems, thus heuristic evaluation is often computationally expensive. In

practice, planners like LAMA and FD running on a modern computer can only ex-

pand approximately 1000 nodes per second. Thus, for a problem with more than 90

million nodes in the explored space, no planner can finish exploring it within a day.

Recall that in Chapter 1 we made the observation that not all nodes are worth

considering. Thus, finding states in the explored space that can be reduced is vital for

solving problems faster. We briefly review three existing space reduction techniques

in this section.

20

Subgoal Partitioning

Subgoal partitioning was proposed by Chen et al. [4]. The planner that uses this

technique, SGPlan, won the second place on the suboptimal propositional track in

International Planning Competition, 2004.

SGPlan reduces the search space by partitioning a planning task into several sub-

problems, each of them having initial states and goals. A modifier planner based on

FF is then employed to solve these subproblems. Conflicts between subproblems will

then be resolved by increase the penalty of these conflicts.

Instead of having a search space consisting of all states in the state space graph, which

is the Cartesian product of the search space of each subproblems. Ideally, SGPlan’s

explored space is propositional to the union of the search spaces of these subproblems,

instead of the Cartesian product.

Preferred Operators

As we introduced earlier, state-of-the-art heuristic functions usually solve a relaxed

planning problem to get the heuristic evaluation. The main idea of the preferred

operator approach is that the solutions to the relaxed problems can also be useful to

guide the search. When the relaxed problem is solved, a set of actions that is involved

in the solution to the relaxed problem is considered ‘preferred’ among all applicable

actions (operators).

The disadvantage of using preferred operators during the search is that the search

space becomes incomplete. It is possible that by selecting preferred operators only,

all possible goal paths are eliminated during the search. This motivates us to develop

a state space reduction method that can not only reduce the search space but also

preserves the completeness of the algorithm.

2.4.1 Partial Order Reduction

Partial order reduction (POR) is a family of methods that reduce the explored space

by imposing partial orders to the otherwise unrestricted actions on a search path. It

21

was proposed first in model checking to combat state explosion by only exploring a

representative subset of all possible goal paths. Like automated planning problems,

problems in model checking are often solved using state space search.

POR is vital for solving model checking problems. For example, to verify the correct-

ness of a parallel program, it is necessary to verify all possible execution paths. Due

to the interleaving of executions in current systems, a set of different execution paths

can have exactly the same effect on the system and be only a permutation of the

same sequence. Thus, an efficient way is to only pick representative execution paths

and ignore all the other permutations that are equivalent to the chosen ones [10].

There are many ways to do partial order reduction. Without introducing too many

technical details, we make the following two fundamental statements on POR meth-

ods.

POR methods can reduce explored space. Previous works in model checking

show that by applying POR methods to several program verification reduces the

number of states by one or two orders of magnitude. Our observation on the MAZE

problem also reflects the fact that POR methods can significantly reduce the number

of nodes in search space.

Partial order reduction will preserve completeness. We define a space reduc-

tion method R as “preserving completeness” if and only if when it is combined with

any general search procedure P , for any goal path g in the explored space of P , it

will be either in P + R, or some goal path g′ acquired by permuting actions in g, is

in P + R. Intuitively, a space reduction method is complete if it preserves the goal

path with respect to path equivalences.

In this thesis, we focus on the partial order reduction method since it can be com-

bined with any existing search methods in planning and can achieve the equal ability

of completeness of original search methods. One challenge is that all of these afore-

mentioned POR methods were proposed initially in the model checking community.

Although planning problems and model checking problems are very similar, they have

different properties that makes the partial order reduction methods different. So far,

there are only two space reduction works in planning, namely, Stratified Planning

and Expansion Core. However, neither of these two works mentioned partial order

22

reduction explicitly, despite the fact that they are all POR methods. In this thesis,

we will propose a general theory for doing partial order reduction in planning and

therefore unify these two works under the POR framework. We also proved a neces-

sary and sufficient condition for any POR methods based on swappable action pairs.

This condition is also be used to guide the design of efficient partial order reduction

algorithms.

2.5 Conclusion

In this chapter, we briefly introduced classic planning problems and techniques for

solving them. We introduced two ways of reducing explored search space: heuristic

search and search space reduction. We compared their advantages and disadvantages.

We also discussed the advantages of using partial order reduction to reduce the search

space. We develop in the next chapter our general theory for doing partial order

reduction in planning.

23

Chapter 3

General Theory for Partial Order

Reduction

In this chapter, we propose a complete theory to characterize the partial order reduc-

tion methods in planning. One of the basic element of partial order reduction is to

swap actions pairs to reduce action paths. Based on SAS+ formulation, our theory

offers a necessary and sufficient condition for swapping action pairs during search.

We then use category theory to prove that our semi-commutative path pair ensures

a completeness and optimality preserving reduction of the search.

We then apply this theory to two existing space reduction methods and show that

those two methods based on planning structure analysis are essentially partial order

reduction methods. Finally, we summarize the insights derived from the about two

approaches and provide two new POR algorithms for planning.

3.1 A Unifying Theory

3.1.1 Semi-commutative Conditions

In this section, we propose our necessary and sufficient condition for action pairs to be

semi-commutative. These conditions are the generalization of action commutativity.

First we define commutative action pairs.

24

Definition 10 Actions a and b comprise an commutative action pair if and only

if for any given state s where a and b are both applicable, apply(b, apply(a, s)) =

apply(a, (apply(b, s)).

If two actions are commutative, then if they are adjacent in any path, we can construct

an equivalent path simply by swapping the order to those two actions. It is easy to

prove that following lemma for commutative action pairs.

Lemma 1 In SAS+ formalism, If two action o1 and o2, if pre(o1)∩ pre(o2) = ∅ and

the effect sets eff(o1) ∩ eff(o2) = ∅, then they are commutative.

This lemma gives us a practical standard to find interchangeable actions. In practice,

we found the above condition very strong and lead to less reductions. Thus, a weaker

condition is demanded. Note that the interchangeable condition is too strong if we

only want to reduce the path enumeration. For instance, if we know that path p1

can be served as a representative of p2, we can save the enumeration of p2. It is,

however, unnecessary to let p2 be also the representative of p1. That is to say, the

relation between two paths can be asymmetric. Since asymmetric conditions are

weaker and therefore more general than the symmetric ones, we propose a theory on

the asymmetric relationship between action pairs.

The theory we develop is for STRIPS tasks Σ = (F, O, I, G). This theory can easily be

translated to SAS+ tasks, since there is correspondence between SAS+ and STRIPS

formalisms of a planning task. For an action o, Po, Ao, and Do correspond to the

variables assignments in pre(o), eff(o) \ pre(o), and pre(o) \ eff(o), respectively.

To state our theory, we first define some notations as follows:

• The union of two sets A and B is written as A + B.

• The intersection of A and B is written as AB.

• A state s is a subset of the fact set F , and we define s = F \ s to be the

complementarity.

25

In our deduction, we also use the following rules.

• A(B + C) = AB + AC (distributive law)

• AB = A + B and A + B = A B (De Morgan’s laws)

3.1.2 Semi-Commutative Action and Path Pairs

The basic structure used in our theory is the concept of semi-commutative action

pairs. Intuitively, if for any path, an action sequence (a, b) can be replaced by (b, a),

then a and b are semi-commutative.

Definition 11 (Valid Path) For a STRIPS task Σ and a state s0, a sequence of

actions p = (o1, . . . , on) is a valid path if, let si = apply(si−1, oi), i = 1, . . . , n, oi is

applicable at si−1 for i = 1, . . . , n. We also say that applying p to s results in the

state sn.

Definition 12 An ordered action pair (a, b), a, b ∈ O is a state-dependent semi-

commutative action pair at state s0 if when (a, b) is a valid path at s0, (b, a) is also a

valid path that results in the same state. We denote such a relationship by s0 : b⇒ a.

Definition 13 An ordered action pair (a, b), a, b ∈ O is a state-independent semi-

commutative action pair (or semi-commutative action pair for short) if (a, b)

semi-commutative at any state s ⊆ F . We denote this relationship by b⇒ a.

Note the following. 1) Semi-commutativity is not a symmetric relationship. b ⇒ a

does not imply a ⇒ b. 2) The order in b ⇒ a suggests that we should always try

(b, a) only during the search instead of trying both (a, b) and (b, a).

Now we state our necessary and sufficient condition for semi-commutative action pair.

Theorem 1 (Necessary and sufficient conditions for semi-commutative action pair)

An ordered action pair (a, b), a, b ∈ O is a state-dependent semi-commutative action

pair at a state s0 if and only if PaDb = PbDa = Pbs0Aa = AbDa = AaDb = ∅.
26

Proof. First we prove the direction from left to right. Suppose s0 : a ⇒ b, we have

Pbs0 = ∅ since b is applicable at s0. Hence, Pbs0Aa = ∅. Since a is applicable at s0,

and (a, b) is a valid path, we have

∅ = Pb − (s0 −Da + Aa) = Pb(s0Da + Aa)

= Pb(s0 + Da)Aa = Pbs0 Aa + PbDaAa,

which implies PbDaAa = ∅. Note that DaAa = Da, thus we have PbDa = ∅. Similarly,

since (b, a) is also a valid path at s0, we have Pa− (s0−Db + Ab) = ∅, from which we

can derive PaDb = ∅.

Finally, we consider the two states s1 and s2, resulted from applying (a, b) and (b, a)

to s0, respectively:

s1 = (s0 −Da + Aa)−Db + Ab

s2 = (s0 −Db + Ab)−Da + Aa.

Using A−B = AB, we get:

s1 = (s0 + Aa + Ab)(Da + Aa + Ab)(Ab + Db)

s2 = (s0 + Aa + Ab)(Db + Aa + Ab)(Aa + Da)

Let T = (s0 + Aa + Ab), we can simplify s1 to:

s1 = T (DaAb + Da Db + AaAb + AaDb + Ab + AbDb)

= TDa Db + TAaDb + TAb

= s0Da Db + AaDb + Ab

Similarly, s2 = s0Db Da + AbDa + Aa. We know that s1 is identical to s2 if and only

if s1 − s2 = ∅ and s2 − s1 = ∅. We denote s0Db Da by K and have:

s1 − s2 = (K + AaDb + Ab)(K + AbDa + Aa)

= AbKDa = (s0 + Da + Db)AbDa

= s0AbDa + AbDa + DbAbDa = AbDa

27

Therefore, we can see that the necessary and sufficient condition for s1 − s2 = ∅ is

that AbDa = ∅. Symmetrically, s2 − s1 = ∅ if and only if AaDb = ∅.

Now we prove the second part. Suppose we have PaDb = PbDa = Pbs0Aa = AbDa =

AaDb = ∅, assume (a, b) is a valid path at s0, we prove that (b, a) is a valid path and

leads to the same state.

Since (a, b) is a valid path at s0, we have Pbs0 Aa = ∅. Also, we have assumed

that Pbs0Aa = ∅. Hence we have Pbs0 = Pbs0Aa + Pbs0Aa = ∅ and b is applicable

at s0. Further, we know that a is applicable after the execution of b since we have

Pa− (s0−Db + Ab) = Pas0 Ab + PaDb = ∅+ ∅ = ∅. Thus, (b, a) is a valid path at s0.

Last, since s1 − s2 = AbDa = ∅ and s2 − s1 = AaDb = ∅, (a, b) and (b, a) lead to the

same state. �

Corollary 1 An ordered action pair (a, b), a, b ∈ O is a semi-commutative action

pair if and only if PaDb = PbDa = PbAa = AbDa = AaDb = ∅.

Definition 14 For a path p = (a1, · · · , an), another path q = (b1, · · · , bn) is 1-swap

away from p if there exists i, 2 ≤ i ≤ n such that bi = ai−1, bi−1 = ai, and aj = bj

for any j, j /∈ {i− 1, i}, 1 ≤ j ≤ n.

Definition 15 (1-Swap Semi-Commutative Path Pair) For a STRIPS planning

task Σ = (F, O, I, G), for two paths p and q that are 1-swap away, consider the action

pair (a, b) that is swapped, p and q are 1-swap semi-commutative if b⇒ a.

Definition 16 (Semi-Commutative Path Pair) Two paths p and q are semi-commutative

if p = q or if there exists a sequence of paths p1 = p, p2, · · · , pk = q such that pj−1 is

1-swap semi-commutative with pj for j = 2, · · · , k. We denote the relation as q ⇒ p.

Definition 17 (Commutative Path Pair) Two paths p and q are commutative if

p⇒ q and q ⇒ p. We denote this relation by p⇔ q.

A path p is swappable from a path q if p can be converted to q through a number

of 1-swaps.

28

Intuitively, if q ⇒ p, then q leads to the same state as p does and contains the same

set of actions. Hence, a search can explore q only instead of both q and p without

sacrificing completeness or optimality. Here, we assume the optimality metric is to

minimize the total action cost, where each action has a positive cost.

3.1.3 Categories of search and reduction

In the following, we use category theory to describe partial order based reduction.

See for example [1] for introduction to category theory. Category is a relatively new

alternative to set as the foundational notion of mathematics, a representation upon

which logical constructions can be codified.

A category is a directed graph whose vertices (called objects) and arrows (called

morphisms) satisfy certain additional requirement. In a category, each object A has

an identity morphism 1A : A → A, and each pair of morphisms f : A → B and

g : B → C is assigned another morphism g ◦ f : A → C as the composition of

morphisms. All the morphisms should satisfy the identity laws (for g : A → B,

g ◦ 1A = g, 1B ◦ g = g) and associative laws (f ◦ (g ◦ h) = (f ◦ g) ◦ h).

Definition 18 (Category of Paths) For a STRIPS planning task Σ = (F, O, I, G),

the category of paths pthΣ defines the following data:

• The objects include all finite-length paths whose elements are in O;

• There is a morphism from a path p to a path q if and only if q ⇒ p.

We see that pthΣ is indeed a category since it satisfies the identity laws and associative

laws.

A subcategory of a category C is a category S whose objects are objects in C and

whose morphisms are morphisms in C with the same identities and composition of

morphisms.

29

Definition 19 (Representative Subcategory) For a category C, a subcategory

S of C is representative if for each C-object B there exists a S-object AB and a

C-morphism rB : B → AB.

Definition 20 (Category of Searches) For a STRIPS planning task Σ = (F, O, I, G),

the category of searches schΣ defines the following data:

• The objects include all subcategories of pthΣ;

• There is a morphism between A → B if and only if B is a representative

subcategory of A.

We can verify that schΣ is a category since each object has an identity morphism and

the morphisms satisfy the identity and associative laws.

Definition 21 (Search) For a STRIPS task Σ, a search is an object in schΣ. A

search A is a goal search if every path in A leads to a goal state from I. The

optimal paths in a goal search form an optimal search.

The above abstract definition defines a search on a planning task as a set of paths

with structures within the set, represented by the morphisms between paths.

Definition 22 (Action-Preserving Reduction) For a search A of a STRIPS plan-

ning task Σ = (F, O, I, G), an action preserving reduction is another search B such

that there exists a morphism A→ B in schΣ.

Intuitively, a search B is a category of paths. If there is a morphism B → S in schΣ,

then S is a representative subcategory of B. That is, for each object (path) p in

B, there exists a path q in S, such that there is a B-morphism p → q. However, a

B-morphism p → q implies that p and q form a semi-commutative path pair, which

means that q is a valid path if p is and they lead to the same state. Hence, a

representative subcategory of a search B represents a completeness and optimality

preserving reduction of the search.

30

In summary, we have proposed our central result in Theorem 1 and Corollary 1. They

give necessary and sufficient conditions for both action dependent and independent

semi-commutative action pairs. Using category theory, we have also proved that our

condition ensures a completeness and optimality preserving reduction of the search.

3.2 Interpretations of POR Algorithms

In this section, we interpreted two previous POR algorithms, stratified planning (SP)

and expansion core in the above theoretical framework. Even these two algorithms

look different from the surface, we reveal that semi-commutativity of action pair is

the central property in both algorithms.

3.2.1 Stratified planning (SP)

We summarize the key idea of the SP algorithm. A more formal treatment of SP can

be found in [5]. SP is based on the SAS+ formalism. For a SAS+ planning task, for

an action o ∈ O, define:

• the dependent variable set dep(o) is the set of state variables that appear in

the assignments in pre(o).

• the transition variable set trans(o) is the set of state variables that appear

in both pre(o) and eff(o).

• the affected variable set aff(o) is the set of state variables that appear in the

assignments in eff(o).

Definition 23 Given a SAS+ planning task Π with state variable set X, its causal

graph (CG) is a directed graph CG(Π) = (X, E) with X as the vertex set. There

is an edge (x, x′) ∈ E if and only if x 6= x′ and there exists an action o such that

x ∈ trans(o) and x′ ∈ dep(o), or, x ∈ aff(o) and x′ ∈ trans(o).

31

a) Causal graph (CG)

b) A stratification of the CG

Figure 3.1: The causal graph and a stratification of Truck-02.

SP uses a stratification of the CG. A stratification of CG(Π) = (X, E) is a partition

of the set X: X = (X1, · · · , Xk) in such a way that there exists no edge e = (x, y)

where x ∈ Xi, y ∈ Xj and i > j.

By stratification, each state variable is assigned a level L(x), where L(x) = i if

x ∈ Xi, 1 ≤ i ≤ k. Subsequently, each action o is assigned a level L(o), 1 ≤ L(o) ≤ k.

L(o) is the level of the state variable(s) in trans(o). Note that all state variables in

a same trans(o) must be in the same level. We show an example of stratification in

Figure 3.1 where the right part is the causal graph and the left part is the stratification.

Definition 24 (Follow-up Action) For a SAS+ task Π, an action b is a follow-up

action of a (denoted as a B b) if aff(a) ∩ dep(b) 6= ∅ or aff(a) ∩ aff(b) 6= ∅.

The SP algorithm can be combined with standard search algorithms, such as breadth-

first search, depth first search, and best first search (including A∗). During the search,

for each state s that is going to be expanded, the SP algorithm examines the action a

32

Figure 3.2: Stratified Planning Strategy

that leads to s. Then, for each applicable action b at state S, SP makes the following

decision:

• If L(b) < L(a) and b is not a follow-up action of a, then do not expand b (we

say that b is not SP expandable after a). Otherwise, expand b.

Figure 3.2 illustrates the strategy of stratified planning algorithm.

Now we interpret SP in our framework. For a SAS+ task Π, consider its equivalent

STRIPS task Σ. Each search algorithm corresponds to a set of paths it explores, which

corresponds to an object A in schΣ. Consider the set of paths that will be examined

when the search is combined with SP. Let the SP-reduced path set correspond to an

object ASP in schΣ.

Lemma 2 If an action b is not SP-expandable after a, then b⇒ a.

Proof. If b is not SP-expandable after a, then L(a) > L(b) and b is not a follow-up

action of a. Since b is not a follow-up action of a, we know that aff(a) ∩ dep(b) =

aff(a) ∩ aff(b) = ∅. Therefore, PbAa = ∅ and DbAa = ∅. Also, we see that PbDa = ∅
because b is applicable immediately after a is executed. Moreover, since L(a) > L(b)

implies that there is no edge from a state variable associated with a to a state variable

associated with b, from Definition 23, we can show that PaDb = DaAb = ∅. Thus, we

proved that PaDb = PbDa = PbAa = AbDa = AaDb = ∅. According to Corollary 1,

we have b⇒ a. �

Theorem 2 For any search A in schΣ, its SP-reduced search ASP is a representative

subcategory of A.

33

Proof. We need to show that ASP is a representative subcategory of A. That is,

for each path p in A, we show that there is a path pSP in ASP such that there is a

morphism p→ pSP in pthΣ. We prove this by induction on n, the length of p.

The case is true when n = 1 since any action is a follow-up action of no-op. Now we

assume for any path p with length no more than k in p, the proposition is true. We

prove the case where n = k + 1.

For a path p0 = (a1, . . . , ak+1), consider the prefix p1 = (a1, . . . , ak). By the induction

hypothesis, there is a path p2 = (a1
1, . . . , a

1
k) such that p1 → p2 is a morphism in

pthΣ.

Now we consider a new path p1 = (a1
1, . . . , a

1
k, ak+1). If ak+1 is SP-expandable after

a1
k, then p0 → p1 is a morphism in pthΣ.

If ak+1 is not SP-expandable after a1
k, consider a new path p2 = (a1

1, . . . , a
1
k−1, ak+1, a

1
k).

From Lemma 1, we know that ak+1 ⇒ a1
k, which implies that p2 is a valid path leading

to the same state as p1 does.

Let p3 = (a1
1, . . . , a

1
k−1, ak+1), we know that there is a path p4 = (a2

1, . . . , a
2
k) such that

p3 → p4 is a morphism in pthΣ. Define p3 = (a2
1, . . . , a

2
k, a

1
k).

Comparing p2 and p3, we know that L(ak+1) > L(a1
k), namely, the level of the last

action in p2 is strictly larger than that in p3. We can repeat the above process to

generate p4, p5, · · · , as long as p0 → pj is not a morphism in pthΣ.

Since we know that the level of the last action in pj is monotonically decreasing as j

increases, such a process must stop in a finite number of iterations and yield a path

pj such that p0 → pj is a morphism in pthΣ. �

The above proof explains SP as a reduction that reduces each search in schΣ to a

representative subcategory. Hence, SP preserves completeness and optimality since

any path explored by a search can be mapped to an equivalent path explored under

SP-reduction.

34

3.2.2 Expansion core (EC) algorithm

We give a short outline of EC first. For detailed description of the EC algorithm,

refer to [3].

For a SAS+ task, each state variable Xi, i = 1, · · · , N is associated with a domain

transition graph (DTG) Gi, a directed graph with vertex set V (Gi) = Dom(xi)

and edge set E(Gi). An edge (vi, v
′
i) belongs to E(Gi) if there is an action o with

vi ∈ pre(o) and v′i ∈ eff(o) in which case we say that o is associated with the edge

ei = (vi, v
′
i) (denoted as o ` ei).

Definition 25 An action o is associated with a DTG Gi (denoted as o ` Gi) if o

is associated with any edge in Gi.

Definition 26 For a SAS+ task, for each DTG Gi, i = 1, . . . , N , for a vertex v ∈
V (Gi), an edge e ∈ E(Gi) is a potential descendant edge of v (denoted as v � e)

if 1) Gi is goal-related and there exists a path from v to the goal state in Gi that

contains e; or 2) Gi is not goal-related and e is reachable from v. A vertex w ∈ V (Gi)

is a potential descendant vertex of v (denoted as v � w) if 1) Gi is goal-related

and there exists a path from v to the goal state in Gi that contains w; or 2) Gi is not

goal-related and w is reachable from v.

Definition 27 For a SAS+ task, given a state s = (s1, · · · , sN), for any 1 ≤ i, j ≤
N, i 6= j, si is a potential precondition of the DTG Gj if there exist o ∈ O and

ej ∈ E(Gj) such that

sj � ej, o ` ej, and si ∈ pre(o) (3.1)

Definition 28 Given a SAS+ state s = (s1, . . . , sN), for any 1 ≤ i 6= j ≤ N , si is a

potential dependent of the DTG Gj if there exist o ∈ O, ei = (si, s
′
i) ∈ E(Gi) and

wj ∈ V (Gj) such that

sj � wj, o ` ej, wi ∈ pre(o)

35

Definition 29 For a state s, the potential dependency graph PDG(s) is the directed

graph with DTGs as vertices and there is an edge from Gi to Gj if and only if si is a

potential precondition or potential dependent of Gj.

Definition 30 For a directed graph H, a subset C of V (H) is a dependency clo-

sure if there do not exist v ∈ C and w ∈ V (H)− C such that (v, w) ∈ E(H).

At a state s, EC method only expands actions in those DTGs within such a depen-

dency closure of the PDG(s) that contains at least one DTG with an unarchived

goal.

For any state s, an action a is goal-relevant if there exists a path from s to a goal

state that contains a.

Lemma 3 For a state s and a dependency closure C of PDG(s), for any goal-relevant

action a associated with a DTG in PDG(s) \ C, and any action b associated with a

DTG in C that is applicable at s, we have b⇒ a.

Proof. Since b is applicable at s, we know Pb ⊆ s. Since b is associated with a DTG

within C, no fact in Pb is a potential precondition of a and we have PbPa = ∅, which

leads to PbDa = ∅ since Da ⊆ Pa. On the other hand, since DTGs in C are not a

potential dependent of those not in C, a precondition of b is not affected by a and

we have PbDa = ∅ and PbAa = ∅. Finally, since a and b do not associate with a same

DTG, we have AbDa = AaDb = ∅. All the five conditions in Corollary 1 are met. �

To ensure action-preserving reduction, we give a list of conditions that is similar to

the idea in stubborn set [21], a well-known technique for search space reduction in

model checking.

Definition 31 (Stubborn Set) For a planning task, a set of actions T (s) is a stub-

born set at a state s if

A1 For any action b ∈ T (s) and actions b1, · · · , bk /∈ T (s), if (b1, · · · , bk, b) is a

prefix of a path from s to a goal state, then (b, b1, · · · , bk) is a valid path from s

and leads to the same state as (b1, · · · , bk, b) does.

36

A2 Any valid path from s to a goal state contains at least one action in T (s).

A valid path (a1, · · · , an) is stubborn-set conforming at a state s1 if ai ∈ T (si)

for i = 1, · · ·n where si+1 = apply(si, ai). For any search A in schΣ, the stubborn-set

reduced search of A, ASS, is the subset of A that includes all stubborn-set conforming

paths.

Theorem 3 For any goal search A in schΣ, there is a morphism A→ ASS in schΣ.

Proof. We sketch the main idea. The proof is essentially the same as the proof

to the stubborn set method in model checking [21], which is based on an induction

on the length of paths. For any state s, for each path p = (a1, · · · , an) from s to

goal, according to A2 in Definition 31, we know that there must exist an action

ai, 1 ≤ i ≤ n such that ai ∈ T (s). Then, according to A1, we can permute p into a

path q = (ai, a1, · · · , ai−1, ai+1, · · · , an) that also reaches the goal. Using induction,

we can prove that any path p can be permuted to a path q such that q ⇒ p and ASS

is a representative subcategory of A. �

Lemma 4 The actions that the EC algorithm expands at any state s form a stubborn

set T (s).

Proof. For a state s, let the dependency closure chosen by EC be C ∈ PDG(s).

For any action b expanded by EC, and actions b1, · · · , bk that do not associate with

a DTG in C, if (b1, · · · , bk, b) is a prefix of a path to goal, then we know b ⇒ bi for

i = 1, · · · , k from Lemma 3. Therefore, (b, b1, · · · , bk) is also a valid path and A1 in

Definition 31 is proved. Moreover, since C includes at least one DTG G that with an

unarchived goal, some action in G must be used in any path to goal. Since G is in

the closure, all actions in G are expanded and A2 in Definition 31 is shown. �

From Theorem 3 and Lemma 4, we can prove that EC is an action-preserving reduc-

tion.

Theorem 4 For any goal search A in schΣ, its EC-reduced search AEC is a repre-

sentative subcategory of A.

37

We see that EC is stronger than SP in the sense that it is an action preserving

reduction for goal searches only, not any search. By restricting the reduction to

goal searches only, EC does not guarantee that a non-goal path will be mapped to a

EC-conforming path, which is a good thing that helps avoid exploring useless paths.

3.3 New POR Algorithms for Planning

From the last section, we see that, in essence, both SP and EC detect and exploit the

semi-commutativity of actions. We have the following insights.

• Both SP and EC are based on the SAS+ formalism, and utilize the notion of

DTGs (state variables). However, the use of DTGs is not essential for POR

reduction. They are used only to ensure certain conditions in Theorem 1. Fur-

ther, both SP and EC give sufficient but not necessary conditions for finding

semi-commutative action pairs. For example, for domains such as pipesworld

where the CG has only one strongly-connected component, SP and EC can

give no reduction, although semi-commutative action pairs still exist in these

domains.

• Both SP and EC have certain advantages. For a state s and applicable actions

a1, · · · , an, SP will expand each of ai, i = 1, · · · , n and for each ai may prune

some actions bi if bi ⇒ ai. EC has the advantage of not having to expand all ai.

Instead, it divides actions into those in T (s) and those not in T (s). As a cost,

it needs to ensure that any action in T (s) must be semi-commutative with any

action not in T (s) (i.e. a closure), which may miss certain semi-commutativity

and chance of reduction.

Based on the above two observations, we propose our new algorithm, action closure

(AC) reduction. Unlike SP and EC, the AC algorithm does not analyze the CG

and use DTG as the basic unit of decision (whether to be expanded or not). Instead,

it treats each action as the basic unit of decision.

38

Definition 32 (Action Dependency Graph) For a STRIPS planning task, its

action dependency graph (ADG) is defined as a directed graph in which each ver-

tex is an action, and there is an edge from action a to b if and only if PaDb 6= ∅ or

PbDa 6= ∅ or PbAa 6= ∅ or AbDa 6= ∅ or AaDb 6= ∅.

Definition 33 (Contracted ADG) Given an ADG, its contracted ADG (CADG)

is a graph where each vertex is a maximum strongly connected component (SCC) of

the ADG and there is an edge between two SCCs if there is an edge in the ADG from

a vertex in one SCC to a vertex in another SCC.

A topological sort on the CADG generates an ordered sequence of its vertices: (SCC1,

· · · , SCCN), where SCC1 is the SCC with zero in-degree in the CADG. The topological

sort is not unique and we currently choose one randomly. Given a topological sort of

the CADG, each action a is assigned a layer l(a), which is the index of the SCC the

action belongs to, i.e. a ∈ SCCl(a).

Definition 34 An action b is supported by an action a if and only if PbAa 6= ∅.

The AC algorithm works as follows. For each state s, let the action that leads to s

be a,

B1 If Aa includes a goal fact, it expands all applicable actions;

B2 Otherwise, it finds the minimum index M, M ≤ N , such that SCC1 ∪ · · · ∪
SCCM include all the applicable actions that are supported by a.

Lemma 5 For any two actions a and b such that l(b) < l(a), we have b⇒ a.

Proof. If l(b) < l(a), there is no edge from a to b in the ADG. Thus, PaDb = PbDa =

PbAa = AbDa = AaDb = ∅. The conditions in Corollary 1 are met. �

A path is AC-conforming if it can be possibly generated by a search with the AC

algorithm. For any search A, the AC-reduced search is the subcategory of A that

includes all AC-conforming paths as objects.

39

Definition 35 (Optimality Stubborn Set) For a planning task, a set of actions

T (s) is an optimality stubborn set at a state s if

O1 For any action b ∈ T (s), and actions b1, · · · , bk /∈ T (s), if (b1, · · · , bk, b) is a

prefix of a path to goal, then (b, b1, · · · , bk) is a valid path from s that leads to

the same state as (b1, · · · , bk, b).

O2 Any optimal path from s to a goal contains at least one action in T (s).

Theorem 5 For any optimal search A in schΣ, there is a morphism A → AOSS in

schΣ, where AOSS is the subcategory of A that conforms to optimality stubborn sets.

Theorem 5 can be proved using a proof parallel to that of Theorem 3.

Lemma 6 The actions that the AC algorithm expands at any state s form an opti-

mality stubborn set T (s).

Proof. For a state s, assume AC expands applicable actions in T = {SCC1 ∪ · · · ∪
SCCM}. Consider any actions b1, · · · , bk that are not in T . If (b1, · · · , bk, b) is the

prefix of an optimal path, then we know b ⇒ bi for i = 1, · · · , k from Lemma 5.

Therefore, (b, b1, · · · , bk) is also a valid path and O1 is proved. Moreover, if no action

is used in T , since T includes all the actions supported by a, we can delete a to

obtain a better plan (unless a adds a goal which is covered by condition B1 in the

AC algorithm). Hence, any optimal path must include at least one action in T and

O2 is satisfied. �

From Theorem 5 and Lemma 6, we have shown that AC is an action preserving

reduction.

Theorem 6 For any optimal search A in schΣ, its AC-reduced search AAC is a

representative subcategory of A.

The AC algorithm is a stubborn set method. Last, we propose an enhanced version

of the AC algorithm that adds the idea of stratified planning. For each state s with

40

a leading action a, the AC+ algorithm applies the same conditions B1 and B2 as

used by AC, while imposing one more restriction.

B3 For each applicable action b, if b⇒ a, then it does not expand b.

This condition B3 can be viewed as a SP style reduction, added to the stubborn set

reduction in the AC algorithm. The correctness of AC+ is obvious as it simply checks

the semi-commutativity of two adjacent actions. For any path p there is a path q

that conforms to B3. Hence, any optimal search A can be reduced to a search AAC

and then to AAC+ , all action-preserving.

Theorem 7 For any optimal search A in schΣ, its AC+-reduced search AAC+ is a

representative subcategory of A.

3.4 Conclusion

In this chapter, we have proposed our necessary and sufficient conditions for semi-

commutative action pairs. The asymmetric relationship between actions is essential

for a better partial order reduction. Based on our theory, we have also successfully

explained the Stratified Planning and the Expansion Core algorithm under this unified

framework. Finally, inspired by Stratified Planning and based on our theory, we

have also proposed two new partial order reduction algorithms. We will test the

performance of both algorithms in the next section.

41

Chapter 4

Experimental results

We test on STRIPS problems in the recent International Planning Competitions

(IPCs): IPC3, IPC4, and IPC5. We implemented our algorithm in the Fast Downward

(FD) planner [12]. We only modified the state expansion part.

Table 4.1 shows the results of FD, SP, AC, and AC+ on the testing domains except

for pipesworld and freecell domains, whose results are shown in Table 4.2. All algo-

rithms give the same solution quality. We see that the performance of the original

SP is consistently better than the original FD. AC+ can significantly improve SP in

driverlog and tpp domains in terms of the numbers of generated and expanded nodes.

AC is generally better than FD in terms of both generated and expanded nodes.

Comparing AC against SP, we see that typically AC generates more states but ex-

pands less, since AC is a stubborn set style reduction which tends to expand less

nodes. Due to a deferred heuristic evaluation scheme in FD, the number of heuristic

evaluations is determined by the number of expanded nodes. As a result, the CPU

time of AC often is less than that of SP, even if AC generates more nodes. The trucks,

storage, and tpp domains best illustrate this point. AC+ has a similar comparison

against SP and is faster than SP in most instances except for the trucks domain.

Comparing AC+ against AC, we see that AC+ is better in driverslog, depot, storage,

and tpp=. AC+ is orders of magnitude better than AC for some instances from

driverslog and depot. AC+ is faster than the original FD in most instances except

for the trucks domain.

42

Now we turn to the surprising results on the pipesworld and freecell domains in

Table 4.2. These two domains are deemed very difficult since their CG is densely

connected and cannot be decomposed into multiple strongly connected components.

Therefore, SP, EC and AC all fail to give any reduction. Surprisingly, AC+ can give

significant reduction. In Table 4.1, we compare FD and AC+. We did not report SP

and AC since they cannot give any reduction and their state expansions are the same

as FD. We see that AC+ can reduce the number of expanded and generated nodes by

orders of magnitude for many instances such as freecell-15 and pipesworld-12. It is

encouraging that POR algorithms can work not only for those largely decomposable

domains but also those domains whose state variables are highly inter-depended.

43

Domains Fast Downward Stratified Planning AC AC+

Expanded Generated Time Expanded Generated Time Expanded Generated Time Expanded Generated Time
driverlog11 280 2858 0.07 215 998 0.04 254 4240 0.07 173 1842 0.06
driverlog12 1810 21582 0.11 2380 8719 0.26 1150 18808 0.22 326 3484 0.13
driverlog13 599 7155 0.18 402 2126 0.09 635 11634 0.2 324 3984 0.15
driverlog14 527 6173 0.18 370 1723 0.1 555 12568 0.21 271 3136 0.11
driverlog15 1288 18823 0.45 972 6202 0.35 2393 74680 1.23 383 5928 0.19
driverlog16 439226 8831575 105.71 192324 1400388 70.93 379769 12644130 72.91 - - -
driverlog17 9211 303992 5.44 5438 63710 4.48 3765 190376 2.57 - - -
driverlog18 13524 353873 17.2 21620 163436 24.94 38682 1704738 37.2 2867 41254 2.96

truck6 339 5071 0.07 339 2506 0.09 256 6414 0.08 296 5454 0.23
truck7 38532 165934 2.23 38532 81317 2.43 39782 180080 1.13 220179 1194652 7.28
truck8 1966 11558 0.37 1970 5749 0.2 537 7578 0.25 123793 770216 6.01
truck9 236058 2023106 17.29 236058 1002496 28.34 19809 102328 1.9 2584060 15899640 241.84
truck10 325002 3064955 29.82 325002 1519147 47.03 215737 1039650 16.58 468971 2091052 33.98
truck11 99902 1542311 10.45 99902 766989 16.85 77034 449580 6.5 422792 2518740 35.2
depot1 23 91 0.01 18 28 0 44 392 0 - - -
depot2 65 485 0.02 84 173 0.01 85 1022 0.05 - - -
depot3 6121 48336 1.19 819 2097 0.17 7277 75322 1.62 1762 11454 0.19
depot4 9291 78046 2.64 10366 25840 2.92 8004 87924 1.94 4786 30894 0.76
depot5 343364 2884118 103.36 30538 72874 13.98 22871 241254 6.29 14401 93618 4.07
depot7 28204 261112 3.83 40997 109669 8.45 18740 217698 2.83 8000 55848 0.85
depot8 162784 1674483 55.54 108157 349662 45.67 569532 8150860 137.4 33672 290238 7.9
depot9 - - - 165286 572968 226.26 192483 2877660 138.3 28454 216286 19.7
depot10 51542 726134 14.06 35314 121058 13.78 31735 552866 6.79 482 5162 0.18
depot11 215106 3316774 198.47 119489 456139 135.1 205746 3677638 122.57 1577 18828 1.23
depot13 257 4045 0.14 179 730 0.17 265 5480 0.46 5943 62406 2.23
depot14 - - - - - - 274978 2832700 217.26 - - -
depot15 - - - - - - 46357 478958 106.83 - - -
depot16 - - - 393419 2176390 257.24 653345 15021200 249.81 65774 667106 21.28
storage1 4 7 0 - - - 4 14 0 4 14 0
storage2 4 9 0 4 3 0 4 18 0 4 18 0
storage3 4 11 0 4 5 0 4 22 0.01 4 22 0.02
storage4 32 85 0.02 35 34 0 32 170 0.02 32 170 0.02
storage5 20 94 0.01 21 43 0.02 20 188 0.03 19 130 0.02
storage6 31 176 0.04 30 75 0.02 31 352 0.04 31 260 0.05
storage7 235 634 0.02 240 248 0.04 233 1250 0.05 227 1216 0.05
storage8 95 480 0.07 90 200 0.04 109 1064 0.08 189 1108 0.09
storage9 93 744 0.04 91 355 0.04 93 1488 0.1 159 1342 0.12
storage10 1521 4364 0.23 1372 1479 0.2 1494 8620 0.18 1516 8700 0.18
storage11 297 1774 0.18 326 893 0.1 293 3566 0.1 2066 11398 0.68
storage12 1496 11550 0.77 357 1511 0.15 1323 20094 0.55 1752 10583 0.31
storage13 4930 17046 1.31 5697 7565 1.01 5414 37662 0.71 8160 55656 1.33
storage14 2668 18730 1.11 2459 8029 0.71 2837 39492 0.86 1263 8164 0.55
storage15 325 2673 0.36 355 1267 0.2 308 5048 0.38 2583 20806 0.52
storage16 276 3385 0.64 273 1591 0.27 289 1542 0.23 259 2974 0.34

tpp1 6 8 0 6 3 0 6 16 0 6 16 0
tpp2 9 17 0 9 6 0 11 34 0 11 34 0
tpp3 12 29 0 12 12 0 16 54 0 16 54 0
tpp4 15 44 0 15 18 0 19 72 0 22 78 0
tpp5 22 92 0 22 33 0 88 452 0 122 454 0.01
tpp6 664 3641 0.06 617 1229 0.04 261 1882 0.03 94 444 0.02
tpp7 1591 9403 0.17 2199 5840 0.14 1250 8394 0.03 431 2410 0.04
tpp8 4685 37683 0.29 4181 13904 0.31 932 6670 0.07 486 2642 0.05
tpp9 3630 25924 0.59 4044 9734 0.39 1675 13262 0.18 1177 7460 0.04
tpp10 12242 110251 1.66 9634 32313 1.07 6685 63868 0.22 2339 14382 0.27
tpp11 13148 126912 2.08 24193 95847 3.82 5973 51660 1.11 1621 9614 0.26
tpp12 36690 364082 4.48 23754 71293 3.51 18366 154012 1.41 5195 47802 0.87
tpp13 24066 295068 4.35 32150 156888 8.34 26175 412436 3.44 16375 292526 2.07
tpp14 68494 894865 14.74 52963 209880 19.1 42991 643584 6.61 16982 175226 2.23
tpp15 37145 477808 8.71 54522 252323 20.85 28275 403406 4.54 16506 171188 2.23

Table 4.1: Comparison of several algorithms. We give number of generated nodes, number
of expanded nodes, and CPU time in seconds. ”-” means timeout after 300 seconds.

44

Domains Fast Downward AC+

ExpandedGenerated Time ExpandedGenerated Time
free1 32 190 0.07 30 322 0.16
free2 42 262 0.06 56 108 0.58
free3 53 397 0.28 72 693 0.36
free4 116 533 0.24 108 542 0.16
free5 796 4191 1.67 1808 14858 3.44
free6 390 2825 1.68 475 4608 3.1
free7 535 3281 2.42 534 4246 3.34
free8 2379 10110 10.72 532 6818 2.79
free9 5754 53638 23.83 428 4218 2.23
free10 2052 14510 15.69 902 11410 12.88
free11 2406 9001 16.7 721 6961 11.83
free12 1362 8013 9.52 634 6396 4.21
free13 12083 77311 138.41 12849 125532 111.94
free14 4431 40529 46.83 605 7558 6.13
free15 35329 307397 463.72 2841 32298 48.39
free16 - - - 11757 146286 171.75
free17 657 4870 12.3 330 3104 7.06
pipe1 23 115 0.01 18 138 0.04
pipe2 158 709 0.02 139 870 0.06
pipe3 184 2666 0.31 70 1026 0.3
pipe4 202 2712 0.1 139 2420 0.34
pipe5 47 701 0.23 40 906 0.36
pipe6 64 930 0.13 68 1290 0.14
pipe7 358 15371 1.69 522 24219 1.38
pipe8 1781 70706 3.33 760 25576 1.64
pipe9 1373 43171 4.23 1478 64516 3.51
pipe10 476729 13794006 1499.7 646 25811 2.95
pipe11 303622 1493750 235.9 1706 9042 1.13
pipe12 228593 1783627 350.94 680 22778 3.01
pipe13 62797 555162 117.6 474 6265 2.19
pipe14 177670 972962 193.52 93385 452848 80.24
pipe15 260672 1306367 254.71 27651 130042 20.17
pipe18 7807 98160 46.31 6547 96915 31.16
pipe19 218224 2290321 396.64 5344 44078 34.35

Table 4.2: Comparison of FD and AC+ on freecell (free) and pipesworld (pipe) domains.
We show numbers of expanded and generated nodes. ”-” means timeout after 1800s.

45

Chapter 5

Conclusion and Future Work

In this thesis, we have proposed a theory to unify various POR algorithms and ex-

plained their completeness and optimality preserving properties.

Based on the new theory, we have proposed two new reduction algorithms and eval-

uated their performance.

There are still many open problems in this direction. For example, the use of cat-

egorical notions can be further studied. The category theory provides a foundation

for describing abstract algebraic structures. For example, an important goal of POR

reduction is to find the minimum action preserving set of paths in a search, which

can be represented by the notion of the terminal object in schΣ.

46

References

[1] M. Barr and C. Wells. Category Theory for Computer Science. Prentice-Hall,
1995.

[2] Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph
analysis. Artificial Intelligence, 90:1636–1642, 1995.

[3] Y. Chen and Y. Guo. Completeness and optimality preserving reduction for
planning. In Proc. IJCAI, 2009.

[4] Y. Chen, B. Wah, and C-W. Hsu. Temporal planning using subgoal partitioning
and resolution in sgplan. J. Artif. Int. Res., 26(1):323–369, 2006.

[5] Y. Chen, Y. Xu, and Y. Guo. Stratified planning. In Proc. IJCAI, 2009.

[6] Yixin Chen, Ruoyun Huang, Zhao Xing, and Weixiong Zhang. Long-distance
mutual exclusion for planning. Artif. Intell., 173(2):365–391, 2009.

[7] A. Cimatti, E. Giunchiglia, F. Giunchiglia1, and P. Traverso. Planning via model
checking: A decision procedure for ar. In Recent Advances in AI Planning, 1997.

[8] S. Edelkamp and M. Helmert. On the implementation of mips. In In Proceedings
of AIPS-00 Workshop on Model Theoretic Approaches to Planning, pages 18–25.
AAAI press, 2000.

[9] Kutluhan Erol, James Hendler, and Dana S. Nau. Htn planning: Complexity and
expressivity. In In Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94, pages 1123–1128. AAAI Press.

[10] Sami Evangelista and Christophe Pajault. Some solutions to the ignoring prob-
lem. In SPIN, pages 76–94, 2007.

[11] F. Giunchiglia and P. Traverso. Planning as model checking. In ECP, pages
1–20, 1999.

[12] M. Helmert. The Fast Downward planning system. Journal of Artificial Intelli-
gence Research, 26:191–246, 2006.

[13] Malte Helmert and Gabriele Röger. How good is almost perfect? In AAAI’08:
Proceedings of the 23rd national conference on Artificial intelligence, pages 944–
949. AAAI Press, 2008.

47

[14] Jörg Hoffmann. Ff: The fast-forward planning system. AI magazine, 22:57–62,
2001.

[15] Jörg Hoffmann. Local search topology in planning benchmarks: An empirical
analysis. In IJCAI, pages 453–458, 2001.

[16] Jörg Hoffmann. Local search topology in planning benchmarks: A theoretical
analysis. In AIPS, pages 92–100, 2002.

[17] Henry A. Kautz, Bart Selman, and Jörg Hoffmann. SatPlan: Planning as satis-
fiability. In Abstracts of the 5th International Planning Competition, 2006.

[18] S. Richter, M. Helmert, and M. Westphal. Landmarks revisited. In AAAI, pages
975–982, 2008.

[19] Silvia Richter and Malte Helmert. Preferred operators and deferred evaluation
in satisficing planning. In ICAPS, 2009.

[20] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[21] A. Valmari. Stubborn sets for reduced state space generation. In Proceedings
of the 10th International Conference on Applications and Theory of Petri Nets,
1989.

48

Vita

You Xu

Date of Birth January 8, 1984

Place of Birth Yangzhou, China

Degrees B.S. Mathematics, May 2006

Professional

Societies

Association for Computing Machines

The Free Software Foundation

Dec 2009

49

Partial Order Reduction for Planning, Xu, M.S. 2009

	Partial Order Reduction for Planning
	Recommended Citation

	tmp.1337960891.pdf.DNHx_

