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Research Advisor:  Professor Chenyang Lu 

 
 
The health of civil structures is very important and sometimes life-critical. While there are different ways to 

monitor their health, wireless sensor network (WSN) has the advantage of easy deployment and low cost, 

which make it feasible for most structures. We designed and implemented a system to localize damages on 

structures with a WSN by detecting the change in structure flexibility. This method has been validated to work 

well on bridges like a cantilever beam and a truss. It is also possible to be extended to other type of structures. 

Different from other systems, in network data processing was applied to lower the bandwidth requirement of 

large amount of raw sensing data. Only the intermediate computation results, that capture the flexibility related 

information, were transmitted back to the base station. We also divide the detection and localization into 

multiple levels. Lower level acts as the sentinel to detect the existence of damage; and higher levels, which 

consume more energy, are then triggered when necessary to get a higher resolution of localization. This design 

helps to further extend the lifetime of the system. 
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Chapter 1 
 
Introduction 
 

Wireless sensors provide a natural connection between computational and physical 

elements, which enables people to be more aware of the environment and make quick 

responses to changes around them. Wireless sensor networks can continuously working 

in many harsh environments where humans will not or cannot stay all the time or at 

least not economic to do so. Such environments can be some wild habitats that might 

better be avoided of disturbances from human activities but attract much research 

interest from scientists. They also can be some industry facilities critical to the operation 

of business, such as computer servers in data centers, or civil structures that thousands 

of people rely on every day. It is really nice to have some “sentinels” out there watching 

for us, keep an eye on the temperature, humidity, light, vibration, sound, infrared signal, 

and geographical location measurements and acknowledge us when attention should be 

paid to. In reality, many of such WSN based systems have been designed and deployed 

to carry out such environment monitoring tasks, such as the Great Duck Island project 

by Berkley [1], the Redwood forest monitoring [2], the industrial infrastructure 

monitoring [3], the volcano monitoring [4], environmental monitoring [5] and the 

structure health monitoring [6]. 

 

Most of current civil structures are not monitored at this time due to the high cost of 

system deployment especially wired sensor systems. The collapse of the I-35W highway 

bridge over the Mississippi River in Minneapolis (Minnesota, US, August 2007) further 

underscores the need for reliable and robust structural health monitoring (SHM). With 

low installation and maintenance expenses, structural health monitoring and damage 

detection based on wireless sensor networks (WSNs) has attracted wide attention. Using 

a WSN, a dense deployment of measurement points on a structure is possible, which 
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facilitates accurate and fault tolerant damage detection techniques [7]. There are several 

deployments for civil structure monitoring using WSNs. [8] used Damage Localization 

Assurance Criterion (DLAC) algorithm to analyze and locate damage; [9] used strain 

and acceleration readings to monitor Torre Aquila, a medieval tower in Trento (Italy); 

and in [10] a sensor network was deployed and tested on the Golden Gate Bridge to 

monitoring its health using ambient vibration data. 

 

However, most current WSNs don’t have much computation on the sensor nodes in 

the network based on the limitation of computational capability of sensor platforms. 

Table 1.1 gives the CPU and memory parameters of 3 commonly used sensor platforms. 

Many sensors were designed to use cheap microcontrollers so as to lower the cost of 

each sensor, and thus left little computation power with the nodes. The choosing of 

microcontroller and the memory limits the complexity of tasks can be carried out on 

sensor nodes. One platform, Imote2, is an exceptional among them in that it has a 

powerful XScale processor and larger memory space, which allows decent computation 

requirement.  

 
Table 1.1 Three Sensor Platforms' Parameters 

 
platform MicaZ Telosb/Moteiv Imote2 

CPU  Microcontroller ATmega128L TI MSP430 PXA271 

frequency 8MHz 8MHz 13-416MHz

Memory ROM 128KB 48KB 256KB 

RAM 4KB 10KB 32MB 

Flash 512KB 1M 32MB 

 

Many WSNs are based on a centralized design, where a base station collects raw data 

from all other sensors and acts as a gateway between WSN and PC or the Internet, since 
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most of the time the objects or the places being monitored are far away from urban life 

and analysis are carried out on remote locations. In these cases, WSNs are mainly the 

data source of the environment and care more about data collection, transmission, and 

providing availability to the remote places. There are not many feedbacks in such 

systems.  

 

While with the development of microcontroller techniques, the motes are getting more 

and more powerful and cheaper. Using the motes in the traditional way, doing nothing 

on data from the network is a waste of such computation capability on the devices. In 

network data processing (computation) can also be served to make WSNs more 

intelligent and save energy sometime for high data rate applications by filtering out 

trivial data and parameterize only the important features to the monitoring.  

 

Another problem with the traditional centralized method without in network data 

processing is that it might require high bandwidth on the base station. For WSN, this 

could be a problem. In wired network, the bandwidth of a node can be improved by 

reserving high quality physical links, like optical fibers, or by providing some QoS with 

preserved resources, or using expensive hardware like 1G/s or 10G/s network interface 

cards. While in wireless network, especially in sensor network, this is not the case. The 

bandwidth of the base station cannot easily be improved with similar strategies. More 

commonly the base station uses the same kind of device as the sensor nodes. 

Furthermore, the bandwidth on the base station is also limited by the nodes that will 

communicate with it. Although the base station can send message to other nodes with 

higher power level and using antennas, the reverse direction is not improved this way. 

To make it worse, most data transmissions in traditional WSNs are from sensor nodes 

to the base station.  

 

So a hierarchical system design is a better choice in handling these problems. The 

network can be divided into several clusters, each cluster with a cluster head or manager 

to act as the central controller for that cluster, and communicate with higher level nodes 

like the base station. When having a large network, more sensor nodes can be supported 
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by having more clusters and more intermediate levels. By separating the WSN spatially 

into clusters and controlling the scheduling within the cluster temporally, the whole 

network can afford more data transmission and concurrency. 

 

In our work, we proposed a flexibility based damage detection and localization method 

for civil structure health monitoring. The approach is based on the observation that for 

most metal structures, damages will change the flexibility of the structure. And the 

change in flexibility can be captured with frequency domain analysis. To simplify, when 

damage happened, the natural frequencies of the structure usually shift a little and this 

shift can be used to calculate the change in flexibility. 

 

We then designed and implemented this method on a system to monitor the health of 

civil structures, mainly but not limited to bridges. In the system, sampled vibration 

responses are collected, frequency domain analysis was carried out, and damage 

localization algorithm was used to decide where the damages come from. All these 

computations are distributed among the sensor nodes in the network. The system is 

able to detect, locate and evaluate the degree of the damage in the structure so that 

necessary measurements can be taken to repair the damages and maintain the 

healthiness of the structure to avoid accidents caused by structural failure. 

 

In order to extend the lifetime of the wireless sensor network, we took advantage of the 

computational power of the Imote2 platform and make motes do different 

computations on them. Then only the results related to the flexibility calculation is 

transmitted in the network. This strategy is a tradeoff between energy consumed by 

transmitting large amount of data and energy for computing. 

 

We also make the system to work in multiple levels style. Since most of the time, the 

structure is normal and we just want to have a scan now and then, sampling and doing 

analysis in a long interval period. The assumption that damages only showed up 

infrequently drives us to use fewer motes on this lower level detection. On the other 

hand, whenever some suspected event does show up, we are able to trigger higher levels 
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by activating more sensor nodes in the system to make a better damage detection and 

localization. This multi-level design helps to extend the lifetime of the whole network, 

since energy-saving lower level damage detection is used most of the time and the 

energy-consuming higher level damage detection is triggered only when necessary. 
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Chapter 2 
  
Method of  Damage Detection 
 

There are two categories of damage detection algorithms, one focus on time domain, 

and another uses frequency domain. Our method used frequency domain analysis to 

detecting shifts in natural frequencies of the structure, and then calculated the change in 

flexibility to detect and locate damages. The major techniques used are: modal 

identification using FDD, flexibility-based damage detection, and distributed 

computation strategy. 

 

2.1 Modal Identification Using FDD  
 
When monitoring in service civil engineering structures, one effective method for 

output-only modal identification is the Frequency Domain Decomposition (FDD) 

method [11].  

 

In the FDD method, the cross spectral density (CSD) matrix of responses at each 

discrete frequency is first estimated. To minimize the impact of measurement noise, the 

averaged CSD matrix is obtained by performing an averaging operation on the CSD 

matrices estimated from multiple frames of data. Then a singular value decomposition 

(SVD) is performed on the averaged CSD matrix at each discrete frequency. The 

maximum singular value in each singular value matrix is collected to form a vector. 

From the peaks of this vector, structural natural frequencies are identified. The first 
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column of the left singular decomposition matrix corresponding to a particular natural 

frequency is an estimate of the corresponding mode shape.  

 

2.2 Flexibility-Based Damage Detection  
 
Techniques for damage detection based on structural flexibility have been gaining 

attention. A good estimate of the flexibility matrix can be obtained with easily identified 

low-frequency modes, making them attractive for civil engineering applications.  

 

Based on the assumption that the presence of damage in structures reduces structural 

stiffness, and thus increases structural flexibility, the change in structural flexibility 

between the pre- and post-damaged states can be used to detect damage, which is the 

fundamental basis of the classical flexibility difference method [15]. Because the damage 

detection results using classical flexibilities are embodied as nodal or DOF’s (degree of 

freedom) characterization, the classical flexibility difference method cannot directly 

localize damage to exact elements. Consequently, the ASH flexibility-based method [16] 

was proposed for localizing damage in beam-like structures. This method determines 

the change in Angles-between-String-and-Horizon (ASHs) of beam elements caused by 

damage, and thus it can localize damage to exact elements.  

 

Thus, the components in the ASH flexibility are associated with beam-elements of the 

beam's finite element model rather than nodes. 
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The maximum absolute values of the components in each column or the diagonals in 

the difference of ASH flexibility matrices between the pre- and post-damaged structures 

are extracted as damage indicators. By observing a “step and jump” in the plot of 

damage indicators vs. element numbers, the damage locations are determined. 

 

To perform damage localization at the member-level in truss or frame structures, the 

Axial Strain (AS) flexibility-based method was used. The basic idea is that if members in 

a structure are dominated by axial forces, as in truss structures, the axial strain will be a 

better index than deflection for damage detection. 
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Figure 2.1 Truss structure
 

The percent change in diagonal elements of the AS flexibility matrices before and after 

damage is taken as the damage indicators for each element. The elements associated 

with large values of damage indicators are identified as damaged.  

 

2.3 Distributed Computation Strategy  
 
In this section, the FDD method is modified to reduce computational efforts, and the 

way in which the modified FDD method and flexibility-based damage detection 
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methods are distributed throughout a WSN is designed to reduce the wireless 

communication amount to make effective use of energy in each sensor node. 

 

Figure 2.2 Distributions of system identification and damage detection across the WSN 
 

A variation on the traditional FDD method is proposed here. Rather than performing a 

SVD on each of the CSD matrices at all discrete frequencies, a method with minimal 

computational efforts, peak-picking, is used first to identify the natural frequencies. 

Then, noting that only the left singular decomposition matrices associated with the 

identified natural frequencies are used for obtaining mode shapes, we perform a SVD 

on each of the CSD matrices associated with those natural frequencies. And 

accordingly, we will just construct the CSD matrices associated with natural frequencies. 



 

  10 
 

In this way, the computational cost of identifying modal parameters is reduced 

considerably. 

 

Once natural frequencies and mode shapes are obtained at the cluster head, they are 

transmitted to the gateway mote. First, the identified natural frequencies and mode 

shapes are applied to construct a flexibility matrix. Then, damage indicators are 

extracted from the difference between the flexibility matrix in the current state and the 

flexibility matrix constructed from the baseline data stored on the gateway mote. 

 

The distribution of the modified FDD method and damage detection methods across 

the WSN and the data flow between stages are shown in the flowchart in Figure 2.2. 

Herein, it is assumed that the number of modes to be identified is F, and each data 

frame has D sampling points, and the number of points in the FFT is D. The amount of 

data transmitted from each leaf node to the cluster head is 2F floating, and the amount 

of data transmitted from the cluster head to the gateway mote is (n+1)F floating. Both 

are much smaller than D. 

 

In summary, in this modified FDD method, the SVD is performed on only a few 

matrices (the number is equal to the number of the identified natural frequencies), 

therefore the computing efforts at the cluster head are reduced significantly as 

compared with the original FDD method without sacrificing accuracy in the identified 

mode shapes. In addition, using the distributed computation strategy, only small amount 
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of data is transmitted wirelessly, which subsequently alleviates the problem of limited 

power supply of WSNs.  
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Chapter 3 
 
Design and Implementation 
 

The system was implemented on the Imote2 (IPR2400) sensor devices. The ISHM 

services toolsuite developed by Illinois Structural Health Monitoring Project (ISHMP) 

at the University of Illinois at Urbana-Champaign provides many useful components for 

structural health monitoring projects based on the Imote2 platform. In our 

implementation, we utilized this toolsuite in our implementation of system, which 

accelerated the process of the developing cycle of the system and promised a better 

reliability based on the high quality of the ISHM toolsuite. 

 

3.1 Hardware Devices 
 
Imote2 is an advanced wireless sensor node platform. It is built around the low-power 

PXA271 XScale processor and integrates an 802.15.4 radio (CC2420) with a built-in 

2.4GHz antenna. The Imote2 is a modular stackable platform and can be expanded 

with extension boards to customize the system to a specific application. Through the 

extension board connectors sensor boards can provide specific analog or digital 

interfaces. A battery-board is provided to supply system power, or it can be powered via 

the integrated USB interface.  
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a) Imote2 b) ITS400 sensor board 

Figure 3.1 Hardware Devices Used 
 

3.2 Software Package 
 
Illinois Structural Health Monitoring Project (ISHMP) is developing hardware and 

software systems for the continuous and reliable monitoring of civil infrastructure using 

a dense network of smart sensors. The project has released an open source toolsuite 

containing a library of services for, and examples of, SHM applications. This toolsuite 

has been validated on laboratory-scale bridge structures; full-scale validation is currently 

underway. 

 

ISHMP is collaboration between the Smart Structures Technology Laboratory, directed 

by Prof. Bill F. Spencer, Jr., from the Civil and Environmental Engineering Department 

and the Open Systems Laboratory, directed by Prof. Gul Agha, from the Computer 

Science Department at the University of Illinois at Urbana-Champaign. 

 

Several major components we used in this software toolsuite were the ReliableComm, 

for reliable communication between sensor motes, the Synchronization components for 
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time synchronize between sensors, the DistributedDataAcquireApp for the base frame 

work of driving sensors and collecting data in the network. 

 

Based on the toolsuite, we extended the DistributedDataAcquireApp to calculate the 

FFT and peak frequencies picking on all the leaf motes, and on the managers CSD, 

PSD and mode shape were computed and then sent to the base station, which will then 

calculate the flexibility and damage indicators to identify and locate the damages. 

 

Except for the basic function of the network, we implemented a node management 

scheme to carry out the multilevel damage detection process. Nodes of different roles in 

the network end their round at different time based on the hierarchical design. The leaf 

nodes first finish their computation of FDD, and after data was delivered to managers, 

they are put into deep sleep mode to save energy. Similarly, after the managers finish the 

computation of mode shape of the leaf nodes and send the data back to the base 

station, the managers are put into deep sleep mode. Then the base station calculates and 

localizes the damage and based on the decision to start another round of damage 

detection. If in the first level, damage was detected, the second level of damage 

detection will immediately be triggered. Otherwise, the system will wait until the next 

period come to start another level 1 routine damage detection.  

 

The civil structure may extend in a large geology span. To save energy, we divide the 

sensors into clusters, each cluster can work as a unit and has a cluster head to 
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coordinate nodes within the group and communicate with nodes in other groups and 

the base station.   

 

Many algorithms for structure damage detection require the sampled data to be 

synchronized. The synchronization of the sensor motes was achieved with the SynC 

component in the ISHM toolsuite. Our system also takes advantage of the mote 

synchronization into node management and scheduling. 

 

3.3 In Network Data Processing 
 
Although collecting and storing raw sampling data may be the major tasks for some 

wireless sensor network applications, such as [1, 2, 3, 4]), for them firsthand data from 

those environments are very precious for scientific research, there are also other 

applications that are more targeted and well studied and modeled, they care more about 

the related things in the environment to help make decisions, interested in capturing 

some event or change in the environment monitored by a WSN. Take the structure 

monitoring for example, most of the time we don’t care about the vibration data when 

the structure is in good condition, since those data are most often stable or predictable 

for a long time. It doesn’t make too much sense to keep record of a large amount of 

data with repeating pattern and model. On the contrary, people care more about those 

events that might reflect the changed in health condition of the structure, like when 

some damage showed up on somewhere, so as to analyze the reason and dynamic of the 

environment and take actions. Therefore, it is beneficial to let the sensor nodes 
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preprocess the raw data to 1) decrease the data size so as to save energy, and also as a 

filter for the event, and drop those data that we are not interested in. Considering this 

we designed our system to processing data in the network, instead of sending the raw 

data back, we capture the major features of the condition and send them back for 

analyzing.  

 

Another motivation for in network data processing is that it saves energy for the WSN 

and extends the lifetime of the whole system, which is always a concern for WSNs since 

they always have to rely on just several batteries to work for more than one year. 

Sometimes, it is very expensive for the deployment and maintenance of the WSN, some 

of them are deployed to very harsh natural environments [5, 6]. It takes a large amount 

of energy to transmit these raw data to the base station. 

 

Moreover, for systems with high data rate and large amount of data, transmitting the 

raw data might just not be possible due to the bandwidth limitations that wireless 

sensors can achieve as we discussed about centralized WSNs. Although it is promising 

to use energy procure techniques, like solar power and environmental vibration power, 

these kinds of technique are still not matured at this time and it also increase the total 

cost of the system, and moreover not suitable for all the environments, for example 

solar power has requirements for sunshine. 
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More detailed of the distribution of the in network data processing is described in 

Figure 2.2, where the computations on the different network nodes was listed according 

to their roles in the system. 

 

3.3.1 Roles in the System 
 
There are three different roles in our wireless sensor network: base station, cluster head, 

and cluster member. The roles are divided by what data they are handling and in what 

level of the hierarchy the nodes are working. Cluster members are the end sensors that 

collecting the raw samples of responses like vibration. These data was then not directly 

transmitted to nodes of higher hierarchy, cluster heads. Instead a FFT is first carry out 

to transform the response into frequency domain, and a peak picking algorithm is run to 

extract the FFT value near those peak frequencies, which usually shift a little comparing 

to the natural frequency of the structure. Then the peak frequencies and the 

corresponding FFT values of the cluster members are aggregated to the cluster head, 

where a SVD is carried out to extract the mode shape vectors of the current state. 

Finally, all the mode shapes from the different clusters are aggregated by the base 

station to calculate the flexibility of the structure and to decide with our ASH approach 

whether some damage appeared and where the damage are.  



 

  18 
 

 

 

3.3.2 Dynamic Configuration of the Network 
 
Since the nodes in the network have different roles and we do not want to fix the roles 

of the nodes to one scheme. Instead we want to be able to schedule the roles according 

to their power levels, so as to balance the whole energy consumption on all the nodes. 

Notice that different roles consume different amount of energy in one round. Cluster 

head consumes the most since it has to carry out the most expensive SVD to get the 

mode shape, and work as an intermediate node for leaf nodes and the base station. 

 

The idea of dynamic configuration of the network is that every node has all the codes 

for the different roles, in each round the base station will send a message to him to 

configure this topology of the network and the hierarchies. 

 

We can even have two or more base stations although at one time, maybe only one base 

station is selected, so that we can get more concurrency from the network. For example, 

according to the finite state machine, the cluster members finish all its task the earliest 

Base Station 

Cluster Head 

leaf 

Cluster Head Cluster Head 

leaf leaf leaf leaf leaf leaf leaf leaf

Figure 3.2 Sensor Roles in the System
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in one damage detection cycle, and the cluster heads finish a little later, after it collected 

all the FFT data, it have to do mode shape and sending those data to base station and 

then done, and the base station is the last one to finish after it get the mode shape from 

the cluster heads, it has to compute flexibility and carry out a damage localization 

algorithm to identify the damages. During this time period, we actually can activate 

another base station to carry out another round of run, of act only as a backup when 

one base station breaks.  

 

Figure 3.3 show an example of the initializing and configuration of the network. At first 

the nodes in the network don’t know what roles they will be played in the system. Then 

a configuration parameter was disseminated from the gateway node to all the other 

nodes in the network, the parameters include information on the cluster division and 

the leaf nodes in the cluster. Each node gets the configuration information and set up 

their function accordingly. Thus the whole network is initialized. 

 

 

 

 

 

 

 

3.3.3 Finite State Machine 
 

init 

init 

init 

init 
init 

init 

init

init

init

init

init

init

Configuration parameters 

BS 

Mgr Mgr 

leaf leafleaf 

Figure 3.3 Network Configuration Process



 

  20 
 

The coordination of the different sensor motes with different roles is maintained by 

finite state machine. The base station, cluster heads and cluster members changing 

message to move the network forward. The three major phases of the network are 

network initialization, synchronization and sampling, FFT, mode shape, and calculate 

flexibility and damage localization. It can be looked at that these functions are carried 

out sequentially, but maybe on different nodes in the wireless sensor network. And the 

nodes acknowledge each other and exchange state information through a finite state 

machine mechanism. During each state, the node will have some model in handling 

incoming message and processing, after it finished with the state and received the 

reference signal from its controllers it will move on to the next state and acting in a 

different pattern.  

 

 

 

The base station has the several major states as described in Figure 3.4. First it will get 

the proper configuration for the network and use that configuration to initialize other 

nodes in the network. After the configuration of the network is finished, it starts a 

synchronization process to synchronize the time on the sensor motes. Then data 

sampling and retrieval is triggered. The leaf nodes sampled the vibration responses and 

do a FDD to get the FFT value at the peak frequencies and send the results to the 

managers of its cluster. The managers then can calculate the mode shape within its 

cluster and send the results to the base station. Receiving the mode shape data from the 

managers, the base station transfer to the Flex_B state to calculate the flexibility values, 

Init_B Sync_B Data_B ModeShape_B Flex_B DamageLocate_B 

Figure 3.4 Base Station Major States
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and then in DamageLocate_B state a damage localization algorithm was executed to 

determine whether there is damage or not. If there is damage, it will also evaluate the 

coarse grained possible damaged area and trigger level-2 damage localization by 

activating more sensor nodes. If no damage was detected, the system will wait until the 

next period to start another round of level-1 damage detection. 

 

 

The coordination between the sensor nodes is very important for the system. This 

coordination was maintained by the exchange of messages and the propagation of the 

state information. In principle, the base station is the control center, it send commands 

to the managers and get results back. When received a command from the base station, 

the manger nodes will send corresponding task commands to its leaf nodes and retrieve 

Mode Shape Results 
FDD_L 

ModeShape_M 

FDD Results 

Start Sensing time 

 Cluster Info 
Init_B 

Init_M 

Init_L 

Sync_B 
Sync_M 

 Init Data Recvd      Network Configured 

Data_B 

Flex_B 

     Synchronize 

Start Sensing time 

Sync_L 

Sens_M 

Sens_L 

Finished and go to sleep       ModeShape_B 

Finished and go to sleep 

DamageLocate_B 

Activate Level 2 or  
wait for next period 

BS Mgr Leaf 

Figure 3.5 Distributed Finite State Machine
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the results. So it is a network based on hierarchical control flow. Figure 3.5 shows the 

major states of the different nodes and the message exchanged between them.  

3.4 Multi-level Damage Localization 
 
For civil structures, most of the time their statuses won’t change dramatically unless 

some accidental event like earthquake happened. So we can use fewer sensors during 

normal period and only activate more sensor nodes when some event happened that 

indicates that there might be some damage in the structure. Since we are using sparse 

sensors for low levels, it can only get a coarse evaluation of the suspected areas. Then 

the system can activate more sensor nodes in that area to get much higher resolution 

detection. This concept was implemented in our system by a multi-level damage 

detection and localization design. Take two levels as an example, during level-1, we only 

use 10 percent of all the sensors in the network as sentinels. When in level-1, some 

abnormal event was detected, we will go on to activate more sensors to take level-2 

damage localization, in this level most of the sensors around the suspected area is 

activated to get a finer grained damage localization report. These model can be extends 

to more levels with more percentage of sensors used for each higher level. So when we 

find some false positive detection report from the lower level, we can stop as earlier as 

possible before it activates too many sensors for that. On the contrary, when some 

damage really happened, we’ll accelerate the process by skipping some intermediate 

levels in a binary search way. 
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Corresponding to multi-level, we can also design the system to be heterogeneous by 

having different sensor platforms in different levels. For example, we can have Telosb, 

Mica motes which consume less energy than Imote2 for data collecting to work in lower 

level detections and only activate more energy consuming devices such as Imote2 

sensors, to handle complex computations when necessary, such as some event was 

detected. 

 

3.5 Energy Saving Techniques 
 
As we have mentioned, in network data processing helped to decrease the wireless 

communication cost, and the multi-level damage localization strategy further extends 

the system lifetime. There are other techniques that are also designed to better tune the 

energy consumption. In level-1, we also try to balance the energy consumption of all the 

nodes in the network in a round robin approach. Since only some percent of the sensor 

nodes should be activated, we chose different nodes in the cluster as the manager of 

that cluster and choose to activate different sentinels in different rounds. This strategy 

in selecting sensors also helps to cover damage showed up in different places. It is like 

that we deployed several patrol guards; each round different sections of the structure is 

examined. 

 

Another technique for saving more energy is to coordinate the transmission of data 

within clusters. By let the higher level nodes control the lower level nodes, and schedule 

their data transmission so that no collision was formed in a TDMA way, we save more 
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energy for node to handle transmission failure and do retransmission. Geographically 

dividing the whole structure area into clusters also help to lower the communication 

cost within the cluster. Since now they are geographically close to each other, we can 

lower the power level in sending message within the cluster. 

 

 

3.6 Mapping of Structure Location  

 

For the localization to workout, the knowledge of the structure and the deployment is 

very important for finding the relationship between data collected and the location it 

corresponds to. In our system, the structure model is maintained by data structures that 

store the deployment information and information related to the structure such as 

elements, length, the available motes, the active motes etc. so that the base station can 

use these information to localize the physical place the damage indicators show. 

 

For beam, the data structure is simply an array which stores the node IDs in order and 

the distance information. When ASH was used, each damage indicator was 

corresponding to the beam range between two nodes on the beam. So maximal or 

minimal damage indicator reflects the corresponding area might have some damage if it 

exceeds some threshold based on the knowledge and model simulation to the beam. 

 

For truss structure, the data structure is a little more complex. Since now we have a 3-

Dimension structure, and the AS method use elements as damage localization units. In 
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order to separate the sensor node deployment to the damage detection algorithm, we 

established a mapping from sensor nodes to its physical position on the structure, so 

that damage detection algorithm only care about the data related to the physical position 

and it doesn’t matter which specifically sensor node was deployed there. This also 

simplified the deployment of the system, since we only have to input the mapping 

relation into the right place. We also build the structural model so as to retrieve the 

element information and which two nodes the element connects. This information was 

used by the AS damage localization algorithm. Furthermore, for our multi-level damage 

localization method, we implemented two data structures, the active nodes, the available 

nodes. So in different levels rounds, the AS algorithm will find the exact elements that 

are active, both its end nodes are activated, for damage detection. 
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Chapter 4 
 

Experimental Validation 
 
To experimentally validate the proposed strategy, we implement and deploy it on the 

Intel Imote2 wireless sensor network platform and associated sensor boards. 

Procedures executed in the proposed system at the leaf nodes, cluster heads and the 

gateway mote of the base station are listed in the respective blocks in Figure 4.1.  

 

 

Figure 4.1 Network architecture for multi-level damage localization strategy with distributive 
computation 

 

Experimental validation tests are conducted using a steel cantilever beam at the 

Structural Control and Earthquake Engineering Lab at Washington University. The 

beam is 108 inch long, 3 inch wide and 0.25 inch thick, as shown in Figure 4.2. The 

sensor numbers are shown in the circles in each figure. The beam is fixed to the shake 
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table. Damage in the beam is simulated by adding a pair of thin, symmetric steel plates 

in element 4. These plates are 9 inch long, 3.625 inch wide and 0.0625 inch thick.  

 

 

    

a) baseline 
test 

b) level-1 detection c) level 2 
localization 

   Figure 4.2 The cantilever beam and sensor placements in the experiment 
tests 

  

 
In these tests, the SHM system includes a PC base station, eight Intel Imote2 motes 

(IPR2400) with sensor boards (ITS400C), and a "gateway" Imote2 tethered to the base 

station with a PC interface board (IIB2400). Sensors are deployed along the beam, as 

shown in Figure 4.2. In this experiment, all sensors are within a single hop from the 

base station. All modal identification and damage detection procedures are automated 

on the sensors. The damage indicators are extracted at the gateway mote connected to 

the base station. 

 

The beam is excited along the weak axis of bending using an impact. The acceleration 

response in this direction is collected at each node. For data collection, the sampling 
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frequency of acceleration response is 280 Hz, the length of record is 7168 points, and 

the number of points in the FFT is 2048.  

 

First, we run the developed WSN-based SHM system on the intact beam to obtain 

baseline modal parameters. These values are saved on the gateway mote connected to 

the base station. For purposes of code validation, we write a file containing the obtained 

baseline data, the identified natural frequencies (Table 4.1) and mode shapes (Figure 

4.3). 

 

(a) 1st mode of intact beam (b) 2nd mode of intact 
beam 

(a) 3rd mode of intact beam

Figure 4.3 Identified mode shapes of the intact beam 
 

Table 4.1 Identified natural frequencies of the cantilever beam before and after damage 

Order Intact (Hz) Damaged (Hz) Percentage Change (%) 
1 
2 
3 

0.5469 
3.9648 
11.1454 

0.5469 
3.9648 
11.2109 

0 
0 

0.59 
 

Then, we deploy the WSN-based SHM system on the damaged beam. The gateway 

mote extracts the damage indicators automatically, and identifies if the beam is damaged 

and when to initiate the level-2 damage localization. For level-1 damage localization, 

only six sensor nodes (nodes 1, 2, 5 through 8) are activated. The extracted damage 
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indicators at the gateway mote are plotted in Figure 4.4(a). The damage indicator 

associated with element 3 exhibits a peak, which means the damage is localized to 

element 3 (corresponding to the current network architecture). Then, the system 

automatically activates two more sensors within element 3 and performs level-2 

detection. The damage indicators extracted by the system are plotted in Figure 4.4(b). 

From the peak among the damage indicators, we can localize damage to a smaller region 

(element 4 in the new network architecture) which is consistent with the position of the 

two steel plates.  

 

a) damage indicators 
when six sensors are activated 

b) damage indicators 
when eight sensors are activated 

Figure 4.4 Damage localization results using the developed WSN-based SHM system
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Chapter 5 
 
Discussion and Future Work 
 
After the validation of our method and implementation on two different categories of 

bridges: steel cantilever beam and truss, we have more confidence in the effectiveness 

of our method. The experiments have shown the ability of the approach in identifying 

multi-damages, although at this time, we only implemented the reporting of the major 

damage, since it is the most critical.  

 

One problem with multiple damages identification is how to evaluate the influence of 

concurrent damages. It is possible when multi-point damages coexist, they interference 

with each other and make it hard to detect the exact location of the damages. In this 

case, we have to improve our approach to take the influence of multiple damages, and 

try to eliminate the damages we have already detected before so as to detect new 

damages. 

 

Another possible direct improvement to our system is to evaluate the degree of the 

damage. At this time, we use a threshold based on experimental data to differentiate 

between damage or non-damage using the damage indicators. While in reality, this 

threshold should be based on the specific structure and some theoretical analysis. 
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Giving that analysis, we can further use the damage indicator to not only locate the 

damage but also to evaluate the degree of the damage. 

 

Better energy conservative schemes can be designed to save even more energy and 

configure the network based on the power level of the nodes in the network, and how 

the computation should be distributed among the network. Moreover, for large 

structures, multihop routing protocols can be designed to better decide the network 

configuration; we should dynamically activate, and take advantage of the hierarchical 

system design when picking routings. 



 

  32 
 

 
Chapter 6 
 
Conclusion 
 

We proposed a frequency domain damage detection and localization method, which use 

the shifts in natural frequencies and the change in flexibility to identify damages. We 

designed and implemented the system in a hierarchical way so that damages were 

detected in a multi-level approach, which helped to extend the lifetime of the whole 

WSN. Many techniques helped to make the system to better balance the power 

consumption on all the nodes. The distribution of computation and the dynamic 

configuration of the network made nodes to take turn to act as different levels of roles 

in the system instead of rely on fixed nodes. The experiments on a cantilever beam and 

truss structure validated our damage detection method and the system design for saving 

energy.  
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Appendix A 
 
Computation of  FDD and Flexibility 
 
 

FDD is combined with peak-picking to identify the modal parameters. First, on the 

microprocessor of each leaf node, a fast Fourier transform (FFT) is performed on the 

data collected by this sensor node as 

[ ]( ) ( )i iX x tω = F                                (5) 

where [ ]�F  represents the FFT operation. ( )iX ω  is the FFT coefficient of the 

response ( )ix t  at the ith node. Second, the auto-spectrum of each response is calculated 

as 

*( ) ( ) ( )i j i j i jP X Xω ω ω=                         (6) 

where ( )i jP ω  denotes the power spectral density (PSD) function at the jth discrete 

frequency of ( )ix t . The peaks of the PSD of ( )ix t  are identified for determining the 

natural frequencies using that the assumption that the external excitations considered 

here are broadband ambient vibrations. Here we use pω  to represent the discrete 

frequencies associated with the identified pth peak. This step is also performed 

independently at each leaf node. However, not all peaks are necessarily related to natural 
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frequencies of the system. A discussion of some practical issues associated with this step 

is provided in the sequel.  

 

From each leaf node, only the discrete frequencies pω  and the FFT coefficients 

( )i pX ω  corresponding to the peaks are transmitted to a cluster head. Obviously, this 

significantly reduces the amount of data to be transmitted compared with transmitting 

the entire time history.  

 

The remaining steps involved in modal identification are performed at the cluster head. 

After the cluster head receives a set of intermediate results obtained from one frame of 

data from each leaf node, the CSD between each response and a reference response (the 

response at the cluster head is taken as the reference response here) is calculated to 

determine if each discrete frequency pω  is a structural frequency. To judge this, the 

phase of the CSD is examined. For a discrete frequency pω , if the phase of the 

corresponding CSD at pω ω=  is close to 0 or π , the discrete frequency pω  is a natural 

frequency of the structure (designated nω ). Using this criterion, the natural frequencies 

can be identified with the intermediate results.  

 

Then, for this frame of data, the CSD matrix corresponding to each natural frequency is 

estimated from the FFT coefficients associated with the identified natural frequencies 
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nω  (instead of pω ). The estimated CSD matrix corresponding to the kth natural 

frequency 
k
nω  is expressed as 

* * *
1 1 1 1

* * *
1

* * *
1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

k k k k k k
n n n i n n n n

k k k k k k k
n i n n i n i n i n n n

k k k k k k
n n n n n i n n n n n

X X X X X X

X X X X X X

X X X X X X

ω ω ω ω ω ω

ω ω ω ω ω ω ω

ω ω ω ω ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L L

M M M

L L

M M M

L L

G

     (7) 

 

After the intermediate results obtained from various frames of data are transmitted to 

the cluster head, the average value of identified natural frequencies from all leaf nodes 

and from all various frames of data is calculated to obtain the final identified natural 

frequency for each mode. The averaged CSD matrix associated with each natural 

frequency (designated ( )k
nωG ) is obtained by performing an average on ( )k

nωG  

estimated from various frames of data. Next, a SVD is performed on each of the 

averaged CSD matrices corresponding to each natural frequency to identify the 

associated mode shapes 

( )( )k
mV SVD ω=TUΣ G

                      (8) 

where Σ , U  and V  denote the singular value matrix, the left singular decomposition 

matrix and the right singular decomposition matrix.  

 

The first column of U  is an estimate of the kth mode shape and is designated 1U . By 

dividing all of the components of 1U  by the component of 1U  chosen as a reference, 
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the normalized mode shape is obtained with one component having a value of one. Its 

components are, in general, complex values. The phase associated with each complex 

value represents the phase difference between that response location and the reference 

sensor location in the kth mode. To obtain the real-valued components of the mode 

shape, which are typically used for damage detection, the magnitude of each component 

of the normalized 1U  is calculated. The corresponding sign for each component is 

determined by its respective phase. The phases of the components in the normalized 

mode shape are ideally equal to 0 or π  for proportionally damped systems with no 

measurement error. In practice, due to measurement and numerical errors, the phases 

are not exactly 0 or π . The signs of the components are determined as follows (as in 

the original FDD method): if the phase is in the range of 2 2
π π⎡ ⎤−⎢ ⎥⎣ ⎦ , the corresponding 

sign is positive; otherwise, if the phase is in the range of 

3
2 2
π π⎡ ⎤
⎢ ⎥⎣ ⎦ , the corresponding 

sign is negative. 

 

The ASH flexibility matrix can be constructed as 

2
1

1n
T

r r
r r

θ ω=

=∑F R R
                         (1) 

where rR  is called the rth ASH mode shape, which can be expressed in terms of the rth 

translational mode shape as 

T

1, 2, 1, , 1, , 1,
1 2

1 1 1 1( ) ( ) ( )r r r r i r i r n r n r
i nl l l l

ϕ ϕ ϕ ϕ ϕ ϕ ϕ− −

⎡ ⎤
= − − −⎢ ⎥
⎣ ⎦

R L L

    (2) 
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where ,i rϕ  denotes the ith component of the rth mode shape, and il  denotes the length 

of the ith beam element. The components in the rth column of this flexibility matrix 

represent the ASHs of all beam elements of the structure resulting from a unit moment 

applied at two nodes of element r, with no force or moment on the other elements. 
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