
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

McKelvey School of Engineering Theses & 
Dissertations McKelvey School of Engineering 

Spring 5-15-2023 

Deep Learning for Tomographic Image Reconstruction Guided by Deep Learning for Tomographic Image Reconstruction Guided by 

Generative Models and Image Science Generative Models and Image Science 

Sayantan Bhadra 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds 

Recommended Citation Recommended Citation 
Bhadra, Sayantan, "Deep Learning for Tomographic Image Reconstruction Guided by Generative Models 
and Image Science" (2023). McKelvey School of Engineering Theses & Dissertations. 861. 
https://openscholarship.wustl.edu/eng_etds/861 

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington 
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses & 
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, 
please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/861?utm_source=openscholarship.wustl.edu%2Feng_etds%2F861&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS

McKelvey School of Engineering
Department of Computer Science & Engineering

Dissertation Examination Committee:
Ulugbek S. Kamilov, Chair

Mark A. Anastasio, Co-Chair
Abhinav K. Jha
Brendan Juba

Fan Lam
Alvitta Ottley

Deep Learning for Tomographic Image Reconstruction Guided by
Generative Models and Image Science

by
Sayantan Bhadra

A dissertation presented to
the McKelvey School of Engineering

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

May 2023
St. Louis, Missouri



© 2023, Sayantan Bhadra



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Background on Image Reconstruction . . . . . . . . . . . . . . . 7
2.1 The Image Reconstruction Problem . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Description of Measurement and Null Subspaces . . . . . . . . . . . . . . . . 8
2.3 Regularization in Tomographic Image Reconstruction . . . . . . . . . . . . . 11

Chapter 3: Tomographic Image Reconstruction with Image-adaptive Priors
Learned by use of Generative Adversarial Networks . . . . . . . . . . . . 13
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Generative Adversarial Networks (GANs) . . . . . . . . . . . . . . . . . . . . 14
3.3 Progressive Growing of GANs (ProGANs) . . . . . . . . . . . . . . . . . . . 15
3.4 Image-Adaptive GAN-Based Reconstruction (IAGAN) for Tomographic Imag-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.1 Datasets and Imaging System . . . . . . . . . . . . . . . . . . . . . . 19
3.5.2 Network Architecture and Training . . . . . . . . . . . . . . . . . . . 21
3.5.3 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6.1 Simulation Study: Reconstruction from Undersampled Measurements

with 20 dB Measurement SNR . . . . . . . . . . . . . . . . . . . . . . 22
3.6.2 Impact of Additional TV Regularization in IAGAN . . . . . . . . . . 28
3.6.3 Emulated Experimental Study . . . . . . . . . . . . . . . . . . . . . . 29

ii



3.6.4 Root Mean Square Error and Structural Similarity . . . . . . . . . . 31
3.6.5 Bias-Variance Tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 4: On Hallucinations in Tomographic Image Reconstruction . . 36
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Definition of Hallucination Maps . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Hallucination Map in the Generalized Measurement Space . . . . . . 38
4.2.2 Hallucination Map in the Generalized Null Space . . . . . . . . . . . 40
4.2.3 Specific Hallucination Maps . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 Stylized Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Reconstruction Methods . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Training, Validation and Test Data . . . . . . . . . . . . . . . . . . . 47
4.3.4 Computation of Hallucination Maps . . . . . . . . . . . . . . . . . . . 48

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Differences Between Error and Hallucination Maps . . . . . . . . . . 49
4.4.2 Investigation of Structured Hallucinations . . . . . . . . . . . . . . . 53
4.4.3 Bias Maps and Hallucinations . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 5: Mining the Manifolds of StyleGANs for Multiple Data-Consistent
Solutions of Ill-Posed Tomographic Imaging Problems . . . . . . . . . . 58
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Salient Features of the StyleGAN Latent Space . . . . . . . . . . . . . . . . 61
5.3 Empirical Sampling with PULSE . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Statistical Validation of the Gaussianized Latent Space in StyleGAN . . . . . 64
5.5 Generating Multiple Data-Consistent Solutions using PULSE++ . . . . . . . 67

5.5.1 Imposing Accurate Priors on Style and Noise Latent Vectors in Style-
GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.2 Two-stage Optimization Approach to Improve Stability and Data Con-
sistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5.3 Solution of the CSGM Optimization Problem . . . . . . . . . . . . . 70
5.5.4 Establishing Rules for Accepting Data-Consistent Alternate Solutions 72

5.6 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.1 Stylized Imager that Acquires Incomplete Fourier Space Measurements 73
5.6.2 CT Imaging System with Limited Angular Range . . . . . . . . . . . 74
5.6.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.4 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7.1 Empirical Sampling from Fourier Space Measurements . . . . . . . . 79
5.7.2 Empirical Sampling from Limited-Angle CT Measurements . . . . . . 85

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

iii



Chapter 6: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Appendix A Examples of measurement space hallucination maps . . . . 106

Appendix B Invertible transformation between style latent spaces in Style-
GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

iv



List of Figures

Figure 3.1: ProGAN: Training starts with generator G and discriminator D corre-
sponding to low spatial resolution of 4x4 pixels. As training progresses,
layers are added to G and D to gradually increase the spatial resolution
of the generated images towards the final resolution, which for our study
is 256× 256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.2: Samples from the training dataset and images generated by the ProGAN
and INN. All images are displayed in the grayscale range of [0, 1]. . . . . 20

Figure 3.3: 8-fold (left) and 20-fold (right) undersampling masks . . . . . . . . . . . 21

Figure 3.4: Ground truth, difference plots and reconstruction results for a coronal PD
weighted knee image without fat suppression, with 8-fold undersampling
and 20 dB measurement SNR. The RMSE and SSIM values are displayed
in Table 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.5: Ground truth, difference plots and reconstruction results for a coronal PD
weighted knee image without fat suppression, with 20-fold undersampling
and 20 dB measurement SNR. The RMSE and SSIM values are displayed
in Table 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.6: Ground truth, difference plots and reconstruction results for an axial T1
weighted brain image, with 8-fold undersampling and 20 dB measurement
SNR. The RMSE and SSIM values are displayed in Table 3.2. . . . . . . 25

Figure 3.7: Ground truth, difference plots and reconstruction results for an axial T1
weighted brain image, with 20-fold undersampling and 20 dB measure-
ment SNR. The RMSE and SSIM values are displayed in Table 3.2. . . . 26

v



Figure 3.8: Ground truth, difference plots and reconstruction results for an axial T1
weighted pediatric brain image with anomaly, with 8-fold undersampling
and 20 dB measurement SNR. The CSGM-GAN method is unable to
adapt to the domain shift and produces large errors, while the IAGAN-
TV method demonstrates good generalization performance and produces
much lower errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.9: Reconstructed images at different iterations with TV penalty parameter
λ = 0 in the IAGAN-TV method. The images progressively become
noisy as the number of iterations increases. The RMSE and SSIM values
decrease beyond iteration 5000. . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.10: Reconstructed images at different iterations with TV penalty parameter
λ = 300 in the IAGAN-TV method. The images do not progressively
become noisy and semi-convergence behavior is not observed. The RMSE
and SSIM values remain unchanged beyond iteration 5000. . . . . . . . . 29

Figure 3.11: Plots of (a) the cost function, (b) RMSE and (c) SSIM vs. iterations with
TV regularization parameter λ = 0, 10, 300, 5000. The optimal values of
RMSE and SSIM are achieved with λ = 300. Semi-convergence behavior
is observed with λ = 0 and λ = 300, and the convergence behavior
improves with increase in λ. . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.12: The absolute value of coronal PD weighted knee images reconstructed
from emulated single-coil measurements with Cartesian four-fold retro-
spective undersampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.13: Bias-variance tradeoff analysis for (a) 8-fold and (b) 20-fold undersam-
pling comparing PLS-TV, IAGAN-TV and INN Proj. TV, while sweeping
the TV regularization parameter for each method. . . . . . . . . . . . . 33

Figure 4.1: From left-to-right are examples of a true object, a reconstructed estimate
of the object produced by use of a U-Net from tomographic measure-
ments, the total error map, the error in the null component of the re-
constructed object, and the error in the measurement component of the
reconstructed object. The two rows correspond to different objects. In
each case, the true object is outside the respective training data distribu-
tion of the U-Net and phase noise was added to the measurements prior
to image reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.2: Sampling mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



Figure 4.3: Example of a true object and reconstructed images along with error maps
and hallucination maps (null space) for IND data with different recon-
struction methods – U-Net (top), PLS-TV (middle) and DIP (bottom).
Expanded regions are shown to the right of the reconstructed images.
The specific error map (blue) and specific null space hallucinations map
(red) are overlaid on the reconstructed images for each method. The im-
age estimated by the U-Net method has visibly lower hallucinations in
the null space compared to PLS-TV and DIP. The region within the red
bounding box is one of the locations that contains hallucinations for all
the reconstruction methods. In this region, the U-Net method shows mild
hallucinations compared to PLS-TV and DIP. Fine structures in this re-
gion appear to be oversmoothed in the image estimates obtained by use of
PLS-TV and DIP. A false structure is also shown (within the blue bound-
ing box region) that appears for all the reconstruction methods due to
the phase noise and not due to the imposed prior, and hence cannot be
classified as a hallucination. . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.4: Scatter plots for centroids of localized regions in specific error maps and
specific null space hallucination maps with different reconstruction meth-
ods for IND (top) and OOD (bottom) data. Note that for each type of
data distribution and for all the reconstruction methods, the centroids of
the regions detected from the error map have a higher variance compared
to the hallucination map as well as some degree of non-overlap. . . . . . 51

Figure 4.5: Example of true object and reconstructed images along with error map
and hallucination maps (null space) for OOD data with different recon-
struction methods – U-Net (top), PLS-TV (middle) and DIP (bottom).
Expanded regions are shown to the right of the reconstructed images. The
specific error map (blue) and specific null space hallucinations map (red)
are overlaid on the reconstructed images for each method. The image
estimated by the U-Net method has some distinct false structures (region
within red bounding box) that do not exist in the reconstructed images
obtained by using PLS-TV and DIP. This region is also highlighted in
the specific null space hallucination map for the U-Net method which
suggests that the false structure is a hallucination. . . . . . . . . . . . . 52

Figure 4.6: (a) Empirical PDF of SSIM values in the structured hallucination regions
(support of f̂SHM

null ) and the regions spanned by the remaining pixels in the
support of the image (background), respectively, for the U-Net method
with OOD data. Empirical PDFs of SSIM values in the structured hal-
lucination regions for all three reconstruction methods with (b) IND and
(c) OOD data respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



Figure 4.7: An error map, a null space hallucination map and a bias map for IND and
OOD images estimated by use of the U-Net method. The corresponding
true objects are shown in Figures 4.3 and 4.1b respectively. The bias map
was computed over a dataset of 100 images estimated from a single set of
simulated measurements with fixed phase noise and different realizations
of the iid Gaussian noise. The bias map contains contributions from both
the model error, as well as inaccuracies in the prior. . . . . . . . . . . . 55

Figure 5.1: Comparison of π(∥v∥22) with the PDF of χ2(k) for the MRI, CT and Face
StyleGAN models (k = 512). The estimated PDF π(∥v∥22) has heavier
tails and differs significantly from the PDF of χ2(k) for all three models,
and thus invalidates the soap bubble effect argument exploited in PULSE. 66

Figure 5.2: The objects Knee 1 and Knee 2 with size 256×256 from which noisy and
incomplete k-space measurements were generated. Both the objects are
displayed in the grayscale range of [0, 1]. . . . . . . . . . . . . . . . . . . 75

Figure 5.3: The objects Lung 1 and Lung 2 with size 512×512 from which noisy and
incomplete X-ray projection data were generated. Both the objects are
displayed in the grayscale range of [0, 1]. . . . . . . . . . . . . . . . . . . 76

Figure 5.4: Samples of alternate solutions obtained from the same k-space data pro-
duced from Knee 1 for R = 3 and σ = 0.03. Zoomed-in images are shown
below each alternate solution that demonstrate distinct structures. How-
ever, the alternate solutions produced by PULSE have significantly higher
data fidelity compared to PULSE++ and DPS methods, which produced
data-consistent solutions. All the alternate solutions are displayed in the
grayscale range [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.5: Alternate data-consistent solutions obtained using PULSE++ from k-
space data produced by Knee 1 for different sampling conditions {R = 3,
σ = 0.05} (top) and {R = 4, σ = 0.03} (bottom) using the same MRI-
StyleGAN model as in Fig. 5.4. Zoomed-in images are shown below each
alternate solution that demonstrate distinct structures. The alternate
solutions are displayed in the grayscale range [0, 1]. . . . . . . . . . . . . 81

Figure 5.6: PULSE++ can produce alternate data-consistent solutions for k-space
data from different objects within the same distribution on which the
StyleGAN is trained, as shown here for Knee 2. Zoomed-in images are
shown below each alternate solution that demonstrate distinct structures.
All the alternate solutions are displayed in the grayscale range [0, 1]. . . 82

viii



Figure 5.7: A box plot of data fidelity values of alternate solutions obtained with
different methods from the k-space corresponding to Knee 1 with R = 3
and σ = 0.03. For each method, data fidelity values of 100 alternate so-
lutions were plotted. The methods include PULSE, the different variants
of PULSE as described in Sec. 5.6.3 that represent each enhancement and
PULSE++. The plot demonstrates the improvement in data consistency
and stability achieved with the modifications introduced in regularization
and optimization space in PULSE to produce the PULSE++ method. . 83

Figure 5.8: A box plot of data fidelity values of alternate solutions obtained using
PULSE, PULSE++ and DPS methods from the k-space corresponding
to Knee 1 with R = 3 and σ = 0.03. The plot demonstrates the ability
of PULSE++ to achieve data-consistent solutions as opposed to PULSE,
and validates the modifications introduced in regularization and opti-
mization space in PULSE++. Alternate solutions obtained using the
DPS method are also data-consistent. . . . . . . . . . . . . . . . . . . . 84

Figure 5.9: Uncertainty maps (a) f̂UM
meas, (b) f̂UM

null and (c) f̂UM from the same k-space
data produced by Knee 1 with R = 3 and σ = 0.03. The grayscale range
of each type of uncertainty map is [0,0.12]. The PULSE++ method has
significantly lower uncertainty in the measurable component compared to
the PULSE method, indicating enhanced data consistency in alternate
solutions produced by PULSE++. . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.10: Alternate data-consistent solutions obtained using the PULSE++ method
using the CT-StyleGAN model under different settings, for projection
data from Lung 1 (I0 = 105, I0 = 103) and Lung 2 (I0 = 105). Zoomed-in
images from the alternate solutions demonstrate diversity in a number of
fine-scale structures. The grayscale range of the alternate solutions is [0,1]. 87

Figure 5.11: Uncertainty maps (a) f̂UM
meas, (b) f̂UM

null and (c) f̂UM obtained with PULSE++
from CT measurements corresponding to Lung 1 for I0 = 105 and I0 =
103. The grayscale range of each type of uncertainty map is [0,0.31]. It is
evident that in both cases, the uncertainty is primarily in the null space
component. The variability in the measurable component is higher for
I0 = 103 due to a lower SNR in the projection data. . . . . . . . . . . . 88

Figure A.1: Measurement space hallucination maps for reconstructed images using
the U-Net method corresponding to an IND (above) and an OOD (be-
low) object. Note that the measurement component error map and the
measurement space hallucination map are appreciably different. The red
arrows point towards a region in each type of object where such differences
can be clearly seen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

ix



List of Tables

Table 3.1: FID scores of the generative models. A lower FID is correlated with
improved visual quality of generated images [57]. . . . . . . . . . . . . . 21

Table 3.2: Comparison of RMSE and SSIM for different algorithms for undersampled
data with 20 dB measurement SNR, for the simulation study, computed
on an ensemble of 50 images. The values outside the parentheses denote
the ensemble mean values of the metric, where as the values inside the
parentheses denote the standard deviation (SD) of the metric. . . . . . . 32

Table 4.1: Median of SSIM values from ensembles of images reconstructed by use of
the U-Net, PLS-TV and DIP methods that were computed in the support
region of specific null space hallucination maps. In these regions, the U-
Net method has the highest median SSIM for IND data, while for OOD
data the DIP method has the highest median SSIM. . . . . . . . . . . . 54

Table 5.1: Summary of uncertainty FOMs of alternate solutions from the same k-
space data for different values of R and σ . . . . . . . . . . . . . . . . . 86

Table 5.2: Summary of uncertainty FOMs of alternate solutions obtained with PULSE++
from the same projection data using different values of I0 . . . . . . . . 88

x



List of Abbreviations

CSGM Compressed Sensing using Generative Models

CT Computed Tomography

DGM Deep Generative Model

DIP Deep Image Prior

DPS Diffusion Posterior Sampling
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ABSTRACT OF THE DISSERTATION

Deep Learning for Tomographic Image Reconstruction Guided by

Generative Models and Image Science

by

Sayantan Bhadra

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2023

Professor Ulugbek S. Kamilov, Chair

Professor Mark A. Anastasio, Co-Chair

Tomographic image reconstruction is generally an ill-posed inverse problem. Such inverse

problems are typically regularized using prior knowledge of the sought-after object prop-

erty. Recently, deep neural networks have been actively investigated for regularizing image

reconstruction problems by learning a prior for the object properties from training images.

Deep generative models such as generative adversarial networks (GANs) have demonstrated

the ability to learn object distributions comprehensively and synthesize high-quality images.

This dissertation explores novel generative model-constrained reconstruction methods that

employ state-of-the-art GANs in the context of ill-posed tomographic imaging problems.

The symbiotic relationship between image science and deep learning to enable responsible

artificial intelligence (AI) applications in medical imaging is also demonstrated. In the first

part of the dissertation, an image reconstruction method is proposed (IAGAN-TV), which

extends the IAGAN method introduced in ill-posed image restoration problems with an im-

proved regularization strategy and employs a progressively growing GAN architecture in an

image-adaptive framework. We demonstrate the ability of the IAGAN-TV method to re-

cover fine structures in ill-posed image reconstruction problems, which cannot be achieved

using sparsity-promoting penalties alone. The stability and generalization properties of the

xiv



proposed method are established. In the second part, a formal definition of “hallucinations”

is introduced in the context of image reconstruction using fundamental image science prin-

ciples derived from linear operator theory. We demonstrate how the ability to define image

hallucinations allows the quantification of false structures in reconstructed images, enabling

preliminary assessments of deep learning-based reconstruction methods via virtual imaging

trials. In the final part of the dissertation, a method to produce multiple data-consistent

solutions to image reconstruction problems is proposed (PULSE++) that employs a style-

based GAN architecture (StyleGAN). The PULSE++ method extends the PULSE method

introduced in single-image super-resolution tasks to general ill-posed inverse problems. The

proposed method improves the performance of PULSE by stabilizing the core optimization

method and utilizing more accurate statistical knowledge of the StyleGAN latent space. The

scalability of the PULSE++ method and its effectiveness with different practical measure-

ment noise distributions is demonstrated. We illustrate how the ability to produce multiple

data-consistent solutions using the PULSE++ method enabled new assessments of imaging

systems, such as uncertainty quantification in image reconstruction.

xv



Chapter 1

Introduction

Inverse problems are ubiquitous in scientific computing, with wide-ranging applications in

computer science, medicine, astronomy, geophysics, and many other fields. In such problems,

algorithms are designed to utilize a set of observations or measurements in order to estimate

the parameters characterizing the source which produced them. Because of this common

underlying principle, in recent years advancements in algorithms for inverse problems in

computer science, such as various applications in computer vision and machine learning,

have been translated into other practical areas of scientific computing, and vice-versa. This

dissertation focuses on one such interplay, where we explore how state-of-the-art machine

learning methods in computer vision, in particular deep neural networks and generative mod-

els, can advance tomographic image reconstruction, while themselves being evolved guided

by imaging science principles.

1.1 Overview and Motivation

Modern imaging systems are computed in nature and require an appropriate image re-

construction method for estimating an object from a collection of tomographic measure-

ments [70]. In practice, the acquired measurement data are noisy, and at times incomplete,

in which case the associated inverse problem will be ill-posed. For example, to acceler-

ate the data-acquisition in magnetic resonance imaging (MRI), undersampled measurement

data can be purposely acquired [146]. In such cases, image reconstruction methods that

seek to estimate approximate but potentially useful estimates of the object property re-

quire regularization. Regularization strategies incorporate appropriate prior knowledge of

the object, known as object priors in the Bayesian parlance, into the reconstruction process.

For example, sparsity-promoting regularization strategies have found great success in recent

years [33, 121, 113]. More recently, a variety of data-driven methods have been proposed
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whereby a more accurate object prior is learned from large databases of existing imaging

data. Many data-driven methods employ deep neural networks, otherwise known as deep

learning (DL) [84, 100, 113].

A majority of the early development of DL-based algorithms for image reconstruction had

been focused on supervised learning methods [47, 113]. While they have shown great promise,

supervised learning methods need to be retrained or fine-tuned when the measurement pro-

cess changes due to a change in imaging system parameters, a common occurrence in practical

clinical settings. This is often impractical due to the long training time of such methods

and the wide variety of imaging system parameters that are adjusted to optimize imaging

system performance [19]. In order to circumvent these issues, more recently unsupervised

learning methods have been promoted that employ deep generative models (DGMs) [47]

as priors for regularizing the image reconstruction problem [28]. DGMs such as generative

adversarial networks (GANs) [48], normalizing flows [43] and diffusion models [123, 60] have

recently shown great promise in modeling distributions of high-dimensional images, that

includes modern medical imaging applications [122, 79]. Inspired by image-adaptive GANs

(IAGANs) [5], in Chapter 3, a GAN-based reconstruction method is proposed which incor-

porated the prior learned by a state-of-the-art model (ProGAN) [72] within an optimization

framework that also employed sparsity-promoting regularization. As a result of imposing a

more accurate prior, fine structures could be recovered from highly undersampled and noisy

measurements that are relevant for medical diagnosis but may be oversmoothed in images

reconstructed with traditional sparsity-promoting penalties alone. This was the first appli-

cation of generative model-constrained optimization [28] in ill-posed tomographic imaging

applications.

While both supervised and unsupervised DL-based methods have continued to evolve and

demonstrated encouraging results in ill-posed inverse problems [108], an analysis of the prior

information learned by these deep networks and their ability to generalize to data that may

lie outside the training distribution is still being explored. For example, an inaccurate prior

might lead to false structures being hallucinated in the reconstructed image and that is

a cause for serious concern in medical imaging [64, 49, 11, 90]. However, a mathematical

definition for such false structures did not exist previously, which prevented the detection

and quantification of hallucinations produced by DL-based methods [107]. In Chapter 4, a

formal definition of hallucinations is proposed for general ill-posed inverse problems using

linear operator theory for image formation [19, 17]. The proposed formalism can be employed
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to separate sources of systemic error, like measurement error or noise, from errors that arise

due to inaccurate priors imposed during image reconstruction.

So far, our discussion on regularization of ill-posed tomographic imaging problems has been

restricted to recovering single image estimates, which is the norm. However, by definition, ill-

posed inverse problems admit an infinite number of solutions, and there may be multiple ob-

jects that are all consistent with the same measurement data. The ability to generate such al-

ternate solutions is important because it may enable new assessments of imaging systems. In

principle, this can be achieved by means of posterior sampling methods [133, 104]. In recent

years, deep neural networks have been employed for posterior sampling using approximate

Markov Chain Monte Carlo (MCMC) techniques with promising results [126, 120, 106, 68].

However, such methods are not yet for use with practical tomographic imaging applications.

On the other hand, empirical sampling methods [126, 9, 16] may be computationally feasible

for large-scale imaging systems and enable uncertainty quantification for practical applica-

tions. Empirical sampling involves solving a regularized inverse problem within a stochastic

optimization framework to obtain alternate data-consistent solutions [16]. In Chapter 5, a

new empirical sampling method is proposed that computes multiple solutions of a tomo-

graphic inverse problem that are application-relevant and consistent with the same acquired

measurement data. The method operates by repeatedly solving an optimization problem

in the latent space of a style-based generative adversarial network (StyleGAN), and was

inspired by the Photo Upsampling via Latent Space Exploration (PULSE) method [102]

that was developed for super-resolution tasks. The proposed method, termed as PULSE++,

extends the PULSE method to general ill-posed inverse problems such as tomographic im-

age reconstruction, and improves the quality of data-consistent solutions by employing more

accurate statistical knowledge of the StyleGAN latent space and stabilizing the stochastic

optimization method involved.

1.2 Outline and Contributions

The outline of the dissertation and our contributions in each topic are described as follows.

In Chapter 2, we formally state the image reconstruction problem. Salient aspects

of linear operator theory and regularization in image reconstruction are reviewed.
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In Chapter 3, we introduce the IAGAN-TV algorithm as the first application of a

generative model-constrained iterative optimization method for highly ill-posed

tomographic imaging problems. This work was proposed and described previously [26,

81, 82]. The contributions of our work in computer science and medical imaging fields

respectively are summarized below.

Contributions to the computer science field: The IAGAN method had been intro-

duced for ill-posed image restoration problems in computer vision with promising results.

We demonstrate that additional regularization in the form of a sparsity-promoting penalty,

such as the total variation (TV) penalty [35], can improve reconstruction quality. The pro-

posed method was termed as IAGAN-TV. The stability and generalization properties of the

IAGAN-TV method were established using bias-variance analysis and performing image re-

construction from out-of-distribution measurements. A preliminary study was performed

comparing the performance of IAGAN-TV, which employs an explicit generative model

(GAN) with representation error [28], against generative model-constrained reconstruction

using an explicit generative model (normalizing flows) without representation error.

Contributions to the medical imaging field: Our work generalized the IAGAN frame-

work to tomographic imaging applications and demonstrated the effectiveness of genera-

tive model-constrained reconstruction with imaging operators relevant for modern medical

imaging modalities, such as multi-coil MRI. Due to imposing a stronger prior, the IAGAN-

TV algorithm enabled image reconstruction that could recover fine structures in highly ill-

posed settings, such as accelerated MRI, which may be infeasible using traditional sparsity-

promoting penalties alone. Furthermore, due to its stability and generalization properties,

the IAGAN-TV algorithm can be reliably applied in clinical applications while being a data-

driven method. Since the IAGAN-TV algorithm does not require knowledge of the mea-

surement process during training of the GAN, there is no need for retraining when imaging

system parameters are varied, which provides a practical advantage when compared with

emerging supervised learning-based methods.

In Chapter 4, we mathematically formalize the concept of hallucinations for gen-

eral linear inverse problems such as image reconstruction. This work was proposed

and described previously [22, 23]. The contributions of our work in computer science and

medical imaging fields respectively are summarized below.
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Contributions to the computer science field: Image hallucinations have previously

been studied in the context of image super-resolution [14, 93, 139, 45]. However, a formal

definition of hallucinations did not exist, due to which false structures that may be incor-

rectly introduced by the imposed prior in image restoration tasks could not be quantitatively

analyzed. We proposed the concept of hallucination maps using linear operator theory,

which enabled detection and assessment of image hallucinations, that cannot be achieved

using traditional error maps. Additionally, we presented preliminary comparison studies on

generalization properties of image restoration methods using the same neural network archi-

tecture (U-Net) [116] but different algorithms – a data-driven and image domain-learning

method [69] versus a non-data-driven and iterative optimization method (DIP) [134, 92]. It

was observed that the data-driven method in [69] may produce more hallucinations that can

negatively impact the downstream task as compared to the non-data-driven method DIP

with out-of-distribution data at test time. This highlighted the importance of using hallu-

cination maps in simulation studies to assess generalization properties of emerging image

restoration algorithms that employ deep learning.

Contributions to the medical imaging field: While DL-based methods have recently

shown promise in tomographic image reconstruction, evidence suggests that they may be

unstable and produce false structures [11, 49]. The resulting artifacts can possibly lead to

an incorrect medical diagnosis, thus limiting the application of DL-based methods in clinical

settings. Our work addressed the urgent need to quantitatively analyze false structures that

arise due to the imposed prior, i.e. hallucinations, and enabled new assessments of instability

and generalization properties of DL-based reconstruction methods via virtual imaging trials.

The effectiveness of hallucination maps in isolating errors due to data-driven and non-data-

driven priors was demonstrated using a stylized MRI system and datasets consisting of adult

and pediatric brain MRI images. Additionally, the proposed formalism of hallucinations is

general and can be applied across imaging modalities.

In Chapter 5, we propose the PULSE++ method to obtain multiple data-

consistent and application-relevant solutions of ill-posed tomographic imaging

problems. This work was proposed and described previously [24]. The contributions of our

work in computer science and medical imaging fields respectively are summarized below.
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Contributions to the computer science field: We generalized and extended the PULSE

algorithm [102], originally introduced in single image super-resolution tasks to obtain multi-

ple high-resolution images consistent with the same low-resolution image, to general inverse

problems such as image reconstruction. The PULSE method operates by repeatedly solving

an optimization problem in the latent space of a style-based generative adversarial network

(StyleGAN) [76], and constraining the solution to lie near the manifold of the StyleGAN

generator. However, deviation from the manifold of the StyleGAN generator may lead to

artifacts and produce images that are not relevant to the application. Furthermore, the

PULSE method employs inaccurate statistics of the StyleGAN latent space and performs

optimization over a limited search space to prevent instability, which leads to lack of data

consistency. Our proposed method, PULSE++, ensures that each solution lies strictly on

the manifold of the StyleGAN generator, and the optimization method is redesigned for

increased stability such that the entire StyleGAN latent space is included in the domain of

the objective function. Additionally, PULSE++ employs accurate statistical knowledge of

the StyleGAN latent space. These modifications allowed PULSE++ to achieve the required

data consistency while producing solutions that are more relevant to the application since

they are constrained to lie on the manifold of StyleGAN generator. The proposed method

also outperformed a recent diffusion model-based posterior sampling method (DPS) [124, 68]

in terms of maintaining data consistency of alternate solutions. The ability of PULSE++

to produce multiple data-consistent solutions in the presence of exact Poisson noise was

demonstrated, which is infeasible with current DPS methods [38].

Contributions to the medical imaging field: The PULSE++ method was employed

to produce multiple data-consistent and application-relevant solutions at scale using two

different stylized tomographic imaging modalities – MRI and X-ray computed tomography

(CT). The ability of PULSE++ to produce diverse data-consistent solutions of ill-posed to-

mographic imaging problems will enable new types of assessment and refinement of imaging

systems. These include computation of uncertainty maps [128, 119] to reveal reconstruction

risk, estimating figures-of-merit (FOMs) that describe the likelihood of hallucinated false

structures and analyzing the impact of the null space of a linear imaging operator [19] in

new, problem-specific ways. Additionally, ensembles of data-consistent solutions obtained

using PULSE++ will enable the design of numerical experiments to reveal image reconstruc-

tion instabilities [49] and advance task-informed adaptive imaging procedures [39, 18]. The

proposed method is general and can be employed for any imaging modality and measurement

noise distribution.
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Chapter 2

Background on Image Reconstruction

2.1 The Image Reconstruction Problem

A digital imaging system can be described as a continuous-to-discrete (CD) mapping [19, 10]:

g = Hf(r) + n, (2.1)

where f(r) ∈ L2(Rd) is a function of continuous variables that represents the object being

imaged, the vector g ∈ EM denotes the measured data samples and n ∈ EM is the measure-

ment noise. The CD operator H : L2(Rd)→ EM describes the action of the imaging system.

In practice, discrete-to-discrete (DD) imaging models are often employed as approximations

to the true CD imaging model. In a DD model, an N -dimensional approximation of f(r) is

utilized [19, 10]:

fa(r) =
N∑

n=1

[f ]nψn(r), (2.2)

where the subscript a stands for approximate, [f ]n is the n-th element of the coefficient

vector f ∈ EN and ψn(r) is the n-th expansion function. When H is linear, the DD imaging

system can be expressed as

g ≈Hfa(r) + n =
N∑

n=1

[f ]nHψn(r) + n ≡ Hf + n, (2.3)

where H : EN → EM is the system matrix constructed using H and {ψn(r)}Nn=1. Image

reconstruction methods based on Eq. (2.3) seek to estimate f from g, after which the ap-

proximate object function fa(r) can be determined by use of Eq. (2.2). Since the coefficient

vector f is the sought-after representation of the object function f(r), f is also referred to

as the object vector. A well-known expansion function is the pixel expansion function. For
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two-dimensional objects f(r) with r = (x, y), the pixel expansion function can be expressed

as [10]:

ψn(r) =

1, if |x− xn| and |y − yn| ≤ β
2

0, otherwise
(2.4)

where rn = (xn, yn) represents the coordinates of the n-th grid point of a uniform Carte-

sian lattice and β denotes the spacing between the lattice points. When a pixel expansion

function is employed, the corresponding coefficient vector f directly provides a digital image

representation of the continuous object function fa(r).

2.2 Description of Measurement and Null Subspaces

For the DD imaging model described by Eq. (2.3), the properties of H affect the ability to

estimate f uniquely and stably. In the absence of measurement noise, f can be determined

uniquely from measurements Hf when H is injective or if f is known to lie in a subset S of

EN and the restriction H |S is injective. The ability to stably reconstruct an estimate of f is

also of fundamental importance. Stability is a way of quantifying how “close” two estimates

f̂1, f̂2 of f will be, if they are estimated from two “close” measurement vectors g1 and g2

respectively. For instance, g1 and g2 may correspond to the same object but differ due to

them having two different measurement noise realizations. A popular notion of stability is

based on how the ℓ2-distance between f̂1 and f̂2 relates to that between g1 and g2 [15]:

∥f̂1 − f̂2∥2 ≤ α∥g1 − g2∥2, (2.5)

where α is a constant that is additionally required to be smaller than a tolerance value ϵ.

The ability to estimate f stably can be analyzed through the lens of the singular value

decomposition (SVD) of H [19]:

H =
R∑

n=1

√
µnvnu

†
n. (2.6)
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Here, un and vn are the singular vectors of H and
√
µn are the singular values. The vector u†

n

is the adjoint of un and the integer R > 0 denotes the rank of H, where H is not necessarily

full-rank. The singular values
√
µn are ordered such that µ1 ≥ µ2 ≥ · · · ≥ µR > 0.

A pseudoinverse-based estimate of f can be computed as f̂pinv ≡ H+g, where the linear

operator H+ denotes the Moore-Penrose pseudoinverse of H that can be expressed as

H+ =
R∑

n=1

1√
µn

unv
†
n. (2.7)

From Eq. (2.3), due to the linearity of H+, f̂pinv can be represented as

f̂pinv = H+g ≈ H+(Hf + n) = H+Hf + H+n. (2.8)

Due to the presence of the term H+n in Eq. (2.8), when the trailing singular values of H are

small, α in Eq. (2.5) is large, leading to unstable estimates of f . In this scenario, a truncated

pseudoinverse can be defined as

H+
P =

P∑
n=1

1√
µn

unv
†
n, (2.9)

where the integer P ≤ R is chosen such that, for a given tolerance ϵ, H+
Pg is a stable, linear

estimate of f according to Eq. (2.5) with µP > 1/ϵ2 ≥ µP+1. The truncated pseudoinverse

can be used to form projection operators that project f ∈ EN onto orthogonal subspaces –

the ‘generalized’ null and measurement spaces [40]. The generalized null space of H, denoted

by NP (H), is spanned by the singular vectors {un}Nn=P+1 that correspond to singular values

satisfying
√
µn ≤ 1/ϵ. The orthogonal complement of the generalized null space is the

generalized measurement space N⊥
P (H).

Definition 2.2.1 (Generalized measurement and null components). Let H and H+
P denote

the forward and truncated pseudoinverse operators, described in Equations (2.3) and (2.9)

respectively. Let HP denote the truncated forward operator, defined as

HP =
P∑

n=1

√
µnvnu

†
n. (2.10)
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Note that H+
P = (HP )+. The coefficient vector f can be uniquely decomposed as f =

fmeas + fnull, where fmeas ∈ N⊥
P (H) and fnull ∈ NP (H) are specified as

fmeas = Pmeasf = H+
PHf = H+

PHP f , (2.11)

and

fnull = Pnullf = [IN −H+
PH]f = [IN −H+

PHP ]f . (2.12)

Here, the projection operators Pmeas and Pnull project f to N⊥
P (H) and NP (H) [19], and IN

is the identity operator in EN .

In special cases where the singular values
√
µn and the tolerance ϵ are such that P = R,

the generalized null space is spanned by the singular vectors {un}Nn=R+1 with singular values
√
µn = 0. In such cases, the generalized null space reduces to the true null space

NP (H) = N (H) ≡ {f ∈ EN |Hf = 0}, (2.13)

where 0 is the zero vector in EM . Correspondingly, the true measurement space is the

orthogonal complement of the true null space. By definition, the true null space contains

those object vectors that are mapped to the zero measurement data vector and hence are

‘invisible’ to the imaging system.

Having obtained the generalized measurement and null components of f , the approximate

object function fa(r) can also be decomposed into generalized measurement and null com-

ponents:

fa(r) =
N∑

n=1

[f ]nψn(r)

=
N∑

n=1

[fmeas]nψn(r) +
N∑

n=1

[fnull]nψn(r)

= fa,meas(r) + fa,null(r). (2.14)

Note that for all g1,g2 ∈ EM , ∥H+
Pg1 −H+

Pg2∥ ≤ (1/
√
µP )∥g1 − g2∥, whereas for all η ∈

NP (H), ∥η∥ ≥ ∥Hη∥/√µP+1. Hence, for a given f ∈ EN , fmeas is the component of f that can

be stably estimated via the truncated pseudoinverse from the measurement data. Contrarily,
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fnull cannot be stably estimated from the measurement data alone; additional information

provided through priors and regularization is needed to estimate this component.

2.3 Regularization in Tomographic Image Reconstruc-

tion

As discussed above, in order to obtain a stable estimate of f from incomplete and/or noisy

measurements, imposition of prior knowledge about the object is generally needed. A flexible

method of incorporating priors in the estimation of f is through the Bayesian formalism,

where f , g and n are treated as instances of random vectors with distributions pf , pg and pn

respectively [15]. It is assumed that pf , i.e. the distribution over all objects is known, and is

called the prior. By Bayes’ theorem, the posterior distribution pf |g, given by

pf|g(f |g) =
pg|f(g|f)pf(f)

pg(g)
, (2.15)

characterizes the probability density over all possible values of the object given the prior and

the noise model. Estimates such as the maximum a posteriori (MAP) estimate argmaxf pf|g(f |g)

can then be obtained from the posterior.

Regularization via penalization is an alternative formalism to incorporate prior knowledge.

Here, the image reconstruction task can be formulated as an optimization problem such

as [10]

f̂ = argmin
f
J (g,Hf) + λR(f), (2.16)

where the data fidelity term J (g,Hf) enforces the estimate f̂ when acted upon by H to

agree with the observed measurement data g and the penalty term R(f) encourages the

solution to be consistent with the assumed prior. The hyper-parameter λ controls the trade-

off between data fidelity and regularization. Often, the penalty term R(f) is hand-crafted

to encode priors such as the smoothness of natural images or sparsity of natural images

in some transform domain [113]. The solution obtained through this formalism can be

interpreted as the MAP estimate obtained from the Bayesian formalism in Eq. (2.15), with

pf (f) = exp(−λR(f)) and pg|f (g|f) = exp(−J (g,Hf)). A formulation of Eq. (2.16) which
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is commonly solved is the penalized least-squares optimization problem with the sparsity-

promoting total variation (TV) semi-norm penalty (PLS-TV) [35]:

f̂ = argmin
f
∥g −Hf∥22 + λ∥f∥TV . (2.17)

Proximal-gradient methods are employed to solve the PLS-TV optimization problem [35,

21]. While sparsity-promoting regularization is effective for many ill-posed tomographic

imaging problems [33, 121, 113], such hand-crafted penalties do not comprehensively describe

complex properties of the sought-after object and may not produce useful images when the

measurements are extremely sparse, such as highly accelerated MRI applications [146].

Regularization can also be interpreted as restricting the possible solutions to a subset

Sµ ⊂ EN , with Sµ being a member of a family of subsets parameterized by µ. The recon-

struction procedure can then be represented by a possibly nonlinear mapping Bµ : EM → Sµ,

with the image estimate given by f̂ = Bµ(g). Ideally, it is desirable that Bµ satisfies the sta-

bility criterion described in Eq. (2.5). Recently, methods that implicitly or explicitly learn

a regularizer from existing data have been proposed. Methods based on dictionary learning

and learning sparsifying transforms were some of the earliest applications of such data-driven

regularization [111, 130, 112, 117]. However, the most actively investigated data-driven reg-

ularization methods involve learning from training data by use of deep neural networks,

popularly known as deep learning [47, 137]. Deep learning has been employed in differ-

ent ways to explicitly or implicitly impose priors in image reconstruction problems. For

example, within the context of an end-to-end learned reconstruction mapping, a prior is

imposed that is implicitly specified by the distribution of training data and network topol-

ogy. Such methods, referred to as supervised learning [47], were the earliest proposed deep

learning-based methods for highly ill-posed image reconstruction problems with promising

results [69, 53]. However, since they are learned end-to-end, such supervised learning meth-

ods involve knowledge of the measurement process during training, and need to be re-trained

or fine-tuned when image acquisition parameters are altered. Additionally, some supervised

learning methods may be unstable and/or may not generalize well to out-of-distribution

measurements [11, 49]. Recently, unsupervised learning [47] methods have been proposed

for ill-posed inverse problems, which may circumvent these issues and operate by learning

the manifold of the object distribution using deep generative models (DGMs) [47, 28]. A

comprehensive survey of the current state of deep learning-based methods in tomographic

image reconstruction can be found in recent reviews [113, 101, 54].
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Chapter 3

Tomographic Image Reconstruction

with Image-adaptive Priors Learned

by use of Generative Adversarial

Networks

3.1 Overview

Deep generative models such as generative adversarial networks (GANs) [48] have shown

great promise in estimating the prior distributions for images. Bora et al. [28] developed an

unsupervised learning method called Compressed Sensing using Generative Models (CSGM)

for incorporating such learned priors in ill-posed inverse problems, where instead of sparsity-

promoting penalties as in the PLS-TV formulation in Eq. (2.17), the regularization is per-

formed by enforcing the image to lie in the range of a pre-trained generative model. However,

in practice, it is difficult for a GAN to span all possible images that may arise from the true

distribution. Hence, by constraining the reconstructed image to lie in the range of the gen-

erator, a potential lack of fidelity may be introduced between the reconstructed image and

the observed measurements in the measurement space of the imaging operator H [19]. In

order to mitigate the problem of limited representation capabilities of a GAN, Hussein et

al. [5] proposed an image-adaptive GAN-based (IAGAN) framework, where the trained gen-

erative model parameters are also tuned to be consistent with the observed measurement

data. This results in a higher fidelity with the observed measurements while still maintaining

the learned prior over the imaging object obtained by pre-training the GAN. However, the

IAGAN method had been applied only to image restoration problems in computer vision. It

was necessary for the IAGAN method to be validated using tomographic imaging operators
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in order to be applicable for medical imaging. Additionally, the IAGAN method relied on

early stopping in a stochastic gradient descent (SGD) framework to prevent overfitting to

noise. Alternative regularization techniques that could mitigate the need for early stopping

needed to be explored.

In this study, we extend the IAGAN method to general ill-posed inverse problems such as

image reconstruction, and demonstrate the performance of the method using both simulated

and experimental measurements. A state-of-the-art GAN called Progressive Growing of

GANs (ProGAN) [72] was trained on the publicly available NYU fastMRI dataset [146]

containing knee MRI images and raw measurements. It was observed that the trained

generator could produce knee images similar to ground truth images in the training dataset.

The learned generative model was employed in the IAGAN framework to reconstruct images

from highly subsampled k-space data belonging to a previously unseen validation dataset.

It is demonstrated that by using an image-adaptive GAN-based reconstruction method on

incomplete measurement data, we can obtain high-fidelity images and recover fine structures

relevant for medical diagnosis that may be oversmoothed by sparsity-promoting penalties.

The stability and generalization properties of the IAGAN method are analyzed.

3.2 Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) [48] are deep generative models that have recently

shown encouraging results in learning distributions of images and demonstrated high-quality

image synthesis performance, including medical applications [122]. In GANs, a generator

network and a discriminator network are trained through an adversarial process [48]. Here,

we consider a true object image f ∈ RN sampled from a data distribution pf . The generator

maps a random vector z ∈ Rk to a synthetic object image f̂ = G(z; θG), where G : Rk → RN

is the mapping represented by a neural network with parameters θG. The discriminator is an

inference network, parameterized by θD, that represents a mapping D : RN → R of the input

image (f or f̂) to a real-valued scalar. In the adversarial process, D is trained to maximally

differentiate the synthetic image f from the true image f̂ , and G is trained to maximally

fool D such that the generated synthetic image f̂ is wrongly classified as a true image. This

adversarial process can be represented by a two-player minimax game with value function
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V (D,G):

min
θG

max
θD

V (D,G) = Ef∼pf [l (D(f ; θD))] + Ez∼pz [l(1−D (G(z; θG)))], (3.1)

where l(.) represents a suitable objective function. Let θ∗G and θ∗D denote the optimal pa-

rameters for G and D respectively after stable convergence has been reached in the above

minimax game. When the global optimum of this minimax game is achieved as G and D are

given sufficient capacity, i.e., in the non-parametric limit, the synthetic images generated by

the generator G can not be differentiated from the true images by using any observer, and

the synthetic image distribution pf̂ equals the true image distribution pf : pf̂ = pf .

3.3 Progressive Growing of GANs (ProGANs)

In practice, however, stabilization of GAN training has been known to be difficult due to the

adversarial learning process [47], which has served as a bottleneck in using GANs to reliably

generate high-resolution images. Recently, Karras et al. [72] proposed a training strategy

for GANs that has mitigated the stabilization problem of GAN training to great effect and

resulted in GANs being able to generate realistic natural images at resolutions as high as

1024 × 1024 pixels. In this novel learning strategy called Progressive Growing of GANs

(ProGAN), the training starts from low-resolution images and layers are added progressively

to both the generator and the discriminator networks to increase the resolution (Fig. 3.1).

Such a progressive training strategy, along with a novel value function V (G,D) based on

the Wasserstein metric [88, 12, 51] resulted in higher stability in the training process and

significantly improved the synthesis quality of GANs for high-resolution images.
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Figure 3.1: ProGAN: Training starts with generator G and discriminator D corresponding
to low spatial resolution of 4x4 pixels. As training progresses, layers are added to G and D to
gradually increase the spatial resolution of the generated images towards the final resolution,
which for our study is 256× 256.

3.4 Image-Adaptive GAN-Based Reconstruction (IA-

GAN) for Tomographic Imaging

Once a GAN has been stably trained and can generate images similar to samples from the

true data distribution, the learned generator network can be used as a prior for solving linear

inverse problems such as Eq. (2.1). In the context of tomographic imaging, the learned prior

can be employed for reconstructing images from incomplete and/or corrupted measurement

data. Bora et al. [28] proposed the reconstructed image to be the one that is constrained

to lie in the range of the pre-trained generator and agrees with the measurement data in a

least squares sense through the imaging operator H (CSGM):

ẑ = argmin
z
∥g−HG(z; θ∗G)∥22, (3.2)
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and the reconstructed image f̂ := G(ẑ, θ∗G). However, achieving a perfect generator is prac-

tically difficult, and thus it is not feasible for the range of a GAN’s generator to span all

possible images that may arise from the distribution. As a result, the reconstructed image

obtained using the formulation in Eq. (3.2) inherently contains representation error, defined

as [28]

ρG(f) := min
z
∥G(z)− f∥22. (3.3)

The presence of representation error may lead to a lack of fidelity with respect to the observed

measurements, and produce realistic but false structures in the reconstructed image. In

order to mitigate this problem, Hussein et al. [5] proposed an image-adaptive GAN-based

(IAGAN) reconstruction framework where the image is constrained to lie in the range of

G while at the same time the trained generator’s parameter weights are further tuned to

enforce consistency with the observed measurement data. With the parameters of G now

denoted by θ and initialized as θ∗G, z and θ are jointly minimized:

ẑ, θ̂ = argmin
z,θ

∥g−HG(z; θ)∥22, (3.4)

with the reconstructed image as f̂ := G(ẑ; θ̂). The authors also proposed to initialize the

latent vector z with the optimal solution obtained from approximately solving Eq. (3.2) to

improve the stability of the optimization problem. Since the generator network is differ-

entiable, any suitable stochastic gradient-based method may be applied to solve Eq. (3.4).

Additionally, regularization on the generative model in the form of a sparsity-promoting

penalty may be added to the IAGAN framework to mitigate artifacts resulting from se-

vere data incompleteness and/or when the measurements contain a high level of noise. The

optimization problem in Eq. (3.4) may be modified as follows:

ẑ, θ̂ = argmin
z,θ

∥g−HG(z; θ)∥22 + λR(G(z; θ)), (3.5)

with θ initialized as θ∗G, where R(.) is a suitable sparsity-promoting penalty function and λ

is a hyperparameter that controls the strength of regularization. The reconstructed image

is f̂ := G(ẑ; θ̂). Inspired by [92], we propose R(.) to be the TV penalty, and we define the

method represented by Eq. (3.5) as IAGAN-TV.

Recently, deep generative models have been designed which theoretically possess zero repre-

sentation error, such as invertible neural networks (INNs) using normalizing flows [43, 87].
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While the synthesis quality of INNs is inferior to state-of-the-art GANs such as ProGANs

and training of INNs does not computationally scale well, they may be employed in a CSGM

framework without adaptation of parameters due to the absence of representation error.

Kelkar et al. [81] proposed an INN-based CSGM reconstruction method using latent space

projection and TV regularization (INN Proj. TV), with the optimization problem stated as

ẑ = argmin
z
∥g−HG(z; θ)∥22 + λ∥G(z; θ)∥TV

s.t. z1:N−k = 0, (3.6)

where the latent vector z ∈ RN and k is a hyperparameter which determines the sparsity of

z. The reconstructed image is f̂ := G(ẑ; θ).

In [81], we compared the performance of the IAGAN-TV and INN Proj. TV methods in

ill-posed image reconstruction problems which highlighted the trade-offs offered by each

method.

3.5 Numerical Studies

Numerical studies were conducted to assess the effectiveness of the proposed method, espe-

cially in terms of recovering fine object features. The reduction in the appearance of realistic

but false features and oversmoothing artifacts was studied. The impact of early stopping

and the addition of a TV penalty term in the IAGAN method were compared in terms of

their regularization abilities. Our studies were divided into two parts - (1) reconstruction

from stylized, simulated undersampled single-coil MRI measurements (henceforth referred to

as the simulation study), and (2) reconstruction from emulated experimental undersampled

single-coil MRI measurements (henceforth referred to as the emulated experimental study).

For the simulation study, in-distribution images, i.e. the images that come from the same

distribution as the training dataset, as well as out-of-distribution images were considered.

The proposed method was compared to traditional sparsity-based, as well as the INN-based

reconstruction method. For the comparisons, traditional image quality metrics such as the

root mean squared error (RMSE) defined as the discrete error norm ∥f̂−f∥2, as well as struc-

tural similarity (SSIM) index [140] were utilized. Where applicable, bias-variance tradeoff

calculations were carried out to assess the robustness of the algorithms.
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3.5.1 Datasets and Imaging System

Simulation Study

The generative models were trained on single channel 2D MRI images of size 256 × 256.

The following two datasets were employed for training, as well as evaluation in the case of

in-distribution images:

• fastMRI knee dataset : 15000 non-fat suppressed, proton density (PD) weighted coronal

knee images from the NYU fastMRI dataset.

• fastMRI brain dataset : 12000 T1-weighted axial adult brain images from the NYU

fastMRI dataset.

Randomly-selected samples of images from the training dataset as well as images generated

by the ProGAN and INN are shown in Fig. 3.2. The Fréchet Inception Distance (FID)

scores [57, 94] for the INN and the ProGAN were computed for an initial assessment of

the image synthesis performance of each generative model. A lower FID score generally

indicates superior image synthesis quality. The official Python implementation [59] was

employed to compute the FID scores shown in Table 3.1. It can be observed that the FID

score for the ProGAN is significantly lower compared to the INN for both knee and brain

datasets, which validates the superior image synthesis performance of ProGAN compared

to the invertible generative model. For evaluation of reconstruction performance on out-

of-distribution images, images from a pediatric epilepsy resection MRI dataset containing

anomalies [97, 96] were used, along with generative models trained on the fastMRI brain

dataset. Evaluating the robustness of a reconstruction method on out-of-distribution images

is relevant because (i) in practice, test images may not exactly correspond to the training

data distribution and a practitioner might be oblivious to these small differences, and (ii)

it is of interest to examine the scenario of transfer compressed sensing, where learned priors

from one dataset are employed to recover images from a closely related but different test

distribution, due to the unavailability of sufficient data to learn the priors (for example, data

including rare anomalies.)

Simulated undersampled single-coil MR measurements were employed as a proxy for experi-

mental MRI k-space measurements. Variable density Poisson disc sampling patterns shown
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Figure 3.2: Samples from the training dataset and images generated by the ProGAN and
INN. All images are displayed in the grayscale range of [0, 1].

in Fig. 3.3 corresponding to R = 8 and R = 20 undersampling ratios were utilized, which re-

tain low frequencies and randomly sample higher frequencies with a variable density [127, 95].

Emulated Experimental Study

Data for training the generative models were prepared in the following way. The fastMRI

initiative database provides emulated single-coil k-space measurements, each of which is a

complex-valued linear combination of responses from multiple coils of raw multi-coil k-space

data [131]. These fully sampled k-space measurements were used to generate complex-valued

images via the inverse fast Fourier transform (IFFT). They were divided into a training

dataset for training the generative models, and a test dataset. The complex-valued im-

ages were converted to two-channel real images for training, and generative models with

two-channel output were trained. Image reconstruction was performed directly from retro-

spectively undersampled emulated single-coil measurements, and the image estimates were

compared with the reconstructions from the corresponding fully sampled k-space measure-

ments in the test dataset. A Cartesian random undersampling mask with R = 4 was used

for the retrospective undersampling.

For evaluating the reconstruction performance on the above-described image types, a valida-

tion image and a test dataset was used for each of the image types. These images were kept

unseen during training. The regularization parameters for all the reconstruction methods
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were tuned on the respective validation image for each image type, and the parameter set-

ting showing the best RMSE performance was chosen. The tuned parameters were used in

the reconstruction of images from the unseen test datasets. Performance metrics and their

statistical significance were reported on these test datasets for all the image types.

3.5.2 Network Architecture and Training

The progressive GANs (ProGANs) were trained using the original implementation provided

by Karras et al. [73]. The default settings for the training parameters were employed in

this study, and the default latent space dimensionality of 512 was maintained. The training

was performed on a system with an Intel Xeon E5-2620v4 CPU @ 2.1 GHz and 4 NVIDIA

TITAN X GPUs. The algorithms are implemented in Python 3.6/Tensorflow 1.14. The

employed INN architecture was adapted from Kingma and Dhariwal [87] and utilized the

same settings for the training parameters as in the official implementation by Kingma and

Dhariwal [1]. The INN was trained on a system with a 2x 20-core IBM POWER9 Central

Processing Unit (CPU) @ 2.4GHz, and 4 16 GB NVIDIA V100 Graphical Processing units

(GPUs) for a period of about 2.5 days [85].

Dataset ProGAN INN

Knee 22.72 75.06

Brain 10.67 82.41

Table 3.1: FID scores of the generative
models. A lower FID is correlated with

improved visual quality of generated
images [57].

Figure 3.3: 8-fold (left) and 20-fold (right) un-
dersampling masks

3.5.3 Image Reconstruction

Next, the performances of the following reconstruction methods were qualitatively and quan-

titatively compared - (i) penalized least squares with TV regularization (PLS-TV) solved

with the fast iterative shrinkage and thresholding algorithm (FISTA) [20], (ii) the method

proposed by Bora et al. [29], i.e. the problem stated in Eq. (3.2), with a ProGAN [71] trained
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as described in Sec. 3.4 as the generative model (henceforth referred to as CSGM-GAN),

(iii) Image-adaptive GAN-based reconstruction with TV regularization described in Eq. (3.5)

(IAGAN-TV), and (iv) INN-based reconstruction using latent space projection and TV reg-

ularization, described in Eq. (3.6) (INN Proj. TV). For the simulation study, coronal knee

and axial brain images were reconstructed from simulated measurements corresponding to

the R = 8 and R = 20 undersampling ratios for this comparison. This was done with noise-

less measurements, as well as measurements with i.i.d Gaussian noise with 20 dB per-pixel

SNR.

Next, the approaches described above were employed to reconstruct anomalous pediatric

brain images from 8-fold simulated undersampled measurements with 20 dB SNR [96]. The

generative models used to reconstruct the pediatric brain image were trained on axial adult

brain images from the previously described NYU fastMRI dataset.

Finally, for the emulated experimental study, image reconstruction was performed from four-

fold retrospectively undersampled emulated single-coil measurements. The image estimates

were compared to IFFT-based reconstructions from fully sampled measurements.

3.6 Results

3.6.1 Simulation Study: Reconstruction from Undersampled Mea-

surements with 20 dB Measurement SNR

Figures 3.4 and 3.5 display reconstructed images of a coronal knee test image from 8-fold

and 20-fold noisy undersampled measurements respectively. One key observation is that for

8-fold subsampling, all algorithms except for CSGM-GAN performed well, in terms of RMSE

and SSIM. This was because the 8-fold variable density Poisson disc undersampling mask is

designed in order to keep the low frequency information intact, and randomly sample only

the high frequency information with a variable density. It should be noted that due to the

representation error, the CSGM-GAN reconstruction retained highly realistic features, some

of which, were false. Further, it should be noted that the IAGAN-TV and the INN-based

method seem to have performed the best in terms of recovering the finer features of the
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Figure 3.4: Ground truth, difference plots and reconstruction results for a coronal PD
weighted knee image without fat suppression, with 8-fold undersampling and 20 dB mea-
surement SNR. The RMSE and SSIM values are displayed in Table 3.2.
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Figure 3.5: Ground truth, difference plots and reconstruction results for a coronal PD
weighted knee image without fat suppression, with 20-fold undersampling and 20 dB mea-
surement SNR. The RMSE and SSIM values are displayed in Table 3.2.
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Figure 3.6: Ground truth, difference plots and reconstruction results for an axial T1 weighted
brain image, with 8-fold undersampling and 20 dB measurement SNR. The RMSE and SSIM
values are displayed in Table 3.2.
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Figure 3.7: Ground truth, difference plots and reconstruction results for an axial T1 weighted
brain image, with 20-fold undersampling and 20 dB measurement SNR. The RMSE and SSIM
values are displayed in Table 3.2.
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Figure 3.8: Ground truth, difference plots and reconstruction results for an axial T1 weighted
pediatric brain image with anomaly, with 8-fold undersampling and 20 dB measurement SNR.
The CSGM-GAN method is unable to adapt to the domain shift and produces large errors,
while the IAGAN-TV method demonstrates good generalization performance and produces
much lower errors.
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image. As shown in Fig. 3.5, for 20-fold undersampling, the PLS-TV reconstruction has

characteristic smoothing artifacts due to its reliance on only TV regularization.

Similar observations can be made for the results of reconstruction of an axial brain image

from 8-fold and 20-fold undersampled measurements, as shown in Fig. 3.6 and Fig. 3.7, re-

spectively. In addition, it should be noted that for the 8-fold undersampling case, some of

the finer features, such as the folds in the brain, are difficult to recover using PLS-TV, but

were successfully recovered with both IAGAN-TV and the INN-based reconstruction. For

the 20-fold undersampling case, all the methods face challenges in recovering finer features

such as the folds of the brain, and may produce oversmoothened features or even realistic hal-

lucinations. Finally, the results for the reconstruction of the pediatric brain image are shown

in Fig. 3.8. Here, the out-of-distribution image was accurately recovered by INN Proj. TV

and the proposed method, but not in the case of CSGM-GAN. Here, the poor performance

of CSGM-GAN could also be due to domain shifts unrelated to anatomical features.

3.6.2 Impact of Additional TV Regularization in IAGAN

In the IAGAN method, early stopping was employed as a means to prevent overfitting to

measurement noise. However, determining the early stopping iteration is often a difficult task

due to semi-convergence in overparameterized optimization problems [6]. We demonstrate

this phenomenon using the simulation study with 8-fold undersampled measurements from

the knee object in Fig. 3.5 with a noise level of SNR = 20 dB. With the TV regularization

parameter λ = 0 in Eq. (3.5), the reconstructed images at different iterations are visualized

in Fig. 3.9. It can be observed that the images progressively become noisy, and the RMSE

and SSIM values decrease beyond iteration 5000. With TV penalty parameter λ = 300,

however, the images do not become progressively noisy and the RMSE and SSIM metrics

remain the same beyond iteration 5000, as shown in Fig. 3.10. The convergence properties

of the IAGAN method were investigated with and without TV penalty. The cost function

and the RMSE and SSIM metrics across iterations were plotted with different values of the

TV regularization parameter λ. With λ = 0, the cost function decreases with iterations,

but the RMSE and SSIM metrics reach their optimal values around iteration 2000 and then

start to decrease, demonstrating semi-convergence behavior. As λ is increased to 10, the

semi-convergence behavior still exists but is less pronounced. For higher values of λ such

as λ = 300 and λ = 5000, the convergence behavior improves significantly, demonstrating
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Figure 3.9: Reconstructed images at different iterations with TV penalty parameter λ = 0 in
the IAGAN-TV method. The images progressively become noisy as the number of iterations
increases. The RMSE and SSIM values decrease beyond iteration 5000.

Figure 3.10: Reconstructed images at different iterations with TV penalty parameter λ = 300
in the IAGAN-TV method. The images do not progressively become noisy and semi-
convergence behavior is not observed. The RMSE and SSIM values remain unchanged
beyond iteration 5000.

that inclusion of the TV penalty leads to more stable behavior of the IAGAN method.

Additionally, improved image quality can be achieved in terms of RMSE and SSIM metrics

using TV regularization without early stopping as compared to early stopping with λ = 0.

The optimal value of λ is chosen in our studies by performing grid search over a held-out

validation dataset.

3.6.3 Emulated Experimental Study

The absolute value of the image reconstructed by use of the IAGAN-TV method from four-

fold retrospectively undersampled emulated single-coil measurements is shown in Fig. 3.12,

along with the IFFT-based reconstruction from fully sampled data and difference plots. Here,

we see that the proposed method demonstrates superior performance compared to PLS-TV,

which oversmooths the image, and CSGM-GAN, which introduces distinct false structures.
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(a) Loss curve

(b) RMSE curve (c) SSIM curve

Figure 3.11: Plots of (a) the cost function, (b) RMSE and (c) SSIM vs. iterations with TV
regularization parameter λ = 0, 10, 300, 5000. The optimal values of RMSE and SSIM are
achieved with λ = 300. Semi-convergence behavior is observed with λ = 0 and λ = 300, and
the convergence behavior improves with increase in λ.
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Figure 3.12: The absolute value of coronal PD weighted knee images reconstructed from
emulated single-coil measurements with Cartesian four-fold retrospective undersampling.

3.6.4 Root Mean Square Error and Structural Similarity

Root mean-squared error (RMSE) and structural similarity (SSIM) index values over an

ensemble of 50 test images from the in-distribution study were calculated. Ensemble mean

and standard deviation of these values are displayed in Tables 3.2. It can be noted that,
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Table 3.2: Comparison of RMSE and SSIM for different algorithms for undersampled data
with 20 dB measurement SNR, for the simulation study, computed on an ensemble of 50
images. The values outside the parentheses denote the ensemble mean values of the metric,
where as the values inside the parentheses denote the standard deviation (SD) of the metric.

Algorithm Knee (in dist.) 8x Knee (in dist.) 20x Brain (in dist.) 8x Brain (in dist.) 20x
RMSE mean SSIM mean RMSE mean SSIM mean RMSE mean SSIM mean RMSE mean SSIM mean
(RMSE SD) (SSIM SD) (RMSE SD) (SSIM SD) (RMSE SD) (SSIM SD) (RMSE SD) (SSIM SD)

PLS-TV
0.0122 0.9736 0.0178 0.9556 0.0228 0.9609 0.0473 0.8798

(0.0033) (0.0108) (0.0050) (0.0172) (0.0033) (0.0093) (0.0098) (0.0337)

CSGM-GAN
0.0381 0.8808 0.0389 0.8753 0.0721 0.8174 0.0725 0.8153

(0.0157) (0.0485) (0.0154) (0.0470) (0.0318) (0.0633) (0.0249) (0.0598)

IAGAN-TV
0.0099 0.9844 0.0140 0.9705 0.0148 0.9794 0.0246 0.9483
(0.0026) (0.0064) (0.0041) (0.0135) (0.0024) (0.0061) (0.0043) (0.0146)

INN Proj. TV
0.0102 0.9829 0.0147 0.9678 0.0163 0.9723 0.0262 0.9414

(0.0027) (0.0070) (0.0042) (0.0137) (0.0028) (0.0086) (0.0049) (0.0177)

across several categories, the performance of the INN Proj. TV and the proposed method was

comparable and the best among all the methods compared, although the proposed method

outperformed INN Proj. TV for some of the image categories by a small margin.

The statistical significance of the differences between the reconstruction methods was tested

using the one way repeated measures ANOVA test, followed by post-hoc paired samples t-

tests between pairs of algorithms, with the Bonferroni correction. Since the metrics obtained

from CSGM-GAN violated some of the assumptions of the ANOVA test, it was left out of the

statistical significance study. It was observed that INN Proj. TV and the proposed approach

are both statistically significantly better than PLS-TV (with p-value < 10−17 for the in-

distribution images, p-value < 10−12 for the out-of-distribution images, and p-value < 10−6

for the emulated experimental study). For the in-distribution images in the simulation study,

there is a small but statistically significant difference between the performance of IAGAN-TV

and INN Proj. TV, with the proposed approach performing better (with p-value < 10−5).

3.6.5 Bias-Variance Tradeoff

Although the evaluation of perceptual quality and quantitative evaluation in terms of RMSE

and SSIM indicate the superiority of the IAGAN-based reconstruction method as compared

to more traditional approaches, a task-based assessment of reconstruction algorithms is neces-

sary to determine the superiority of one reconstruction algorithm to the other [19]. However,

such a detailed task-based assessment of generative model-based reconstruction algorithms

is a substantial task in itself, and remains a topic for future study. Here, an analysis of the
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Figure 3.13: Bias-variance tradeoff analysis for (a) 8-fold and (b) 20-fold undersampling
comparing PLS-TV, IAGAN-TV and INN Proj. TV, while sweeping the TV regularization
parameter for each method.

bias-variance trade-off is provided for the PLS-TV, IAGAN-TV and INN Proj. TV methods

by performing a sweep over the TV regularization parameter for each case.

Bias-variance analysis was performed on images reconstructed from simulated measurements

corresponding to both 8-fold and 20-fold undersampling patterns, with 20 dB measurement

SNR. The ground truth used for this study was an image from the fastMRI knee dataset.

Stylized, simulated undersampled single-coil MRI measurements were used. A dataset of re-

constructed images {f̂ (i)}qi=1 from measurements with q = 100 independent noise realizations

was considered for every regularization setting. The bias b and the variance σi of a pixel i

were calculated as:

b =
1

q

q∑
i=1

f̂ (i) − f (3.7)

σ2
j =

1

q − 1

(
f̂
(i)
j −

1

q

q∑
i=1

f̂
(i)
j

)2

, (3.8)

where f is the ground truth image. As a summary measure, the average squared bias 1
N
∥b∥22

versus the average variance 1
N

∑N
j=1 σ

2
j was plotted. Figures 3.13a and 3.13b show the bias-

variance curves for 8 and 20-fold undersampling, respectively.
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As can be seen, the bias and variance curves for the IAGAN-TV method lie below the

curves for PLS-TV, which is indicative of superior performance over a range of regularization

values. This also indicates that, while the transition from an over-smoothed image to a noisy

image is such that intermediate images could be both noisy and oversmoothed, this trade-

off is better for the proposed reconstruction approach. It should be noted that for the

8-fold undersampling case in Fig. 3.13a, the bias-variance curve for the proposed method

consistently remains below PLS-TV, while the curve for INN-based method may lie above

PLS-TV in certain ranges of the corresponding TV regularization parameter.

3.7 Summary

This study demonstrated the use of an image-adaptive GAN-based algorithm (IAGAN-TV)

that employed a state-of-the-art GAN to regularize ill-posed image reconstruction problems.

Reconstructed images from undersampled Fourier measurements illustrate that using learned

GAN-based priors in an image-adaptive framework can mitigate the impact of representa-

tion error in GANs and recover fine features in the image which may be oversmoothed by

traditional sparsity-based reconstruction methods. It was observed that the image-adaptive

framework can successfully recover fine image structures with experimental data. It was

demonstrated how image quality could be enhanced and the need for early stopping could

be mitigated by adding the sparsity-promoting TV penalty in the IAGAN framework. The

stability and generalization properties of the IAGAN-TV method were established using

bias-variance analysis and validation studies with out-of-distribution data. Additionally, the

performance of the IAGAN-TV method was compared with a generative model-constrained

method that employed an invertible neural network (INN) with no representation error. It

was observed that the IAGAN-TV method and the INN-based reconstruction method had

similar performance, with the former having the additional advantage that state-of-the-art

GANs such as ProGANs possess superior image synthesis quality and are scalable.

There remain important topics for future investigation. In our studies, the ProGAN was

employed to learn the object distribution by training on reconstructed images from fully-

sampled measurements. However, if measurement noise is high, the reconstructed images

are also noisy, leading to poor image synthesis performance by ProGANs [150]. In such

cases, if the imaging operator and measurement noise distribution are known approximately,
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progressively-growing AmbientGANs [30, 149] can be utilized to learn object distributions

directly from the measurements with high image synthesis performance.

It will be important to investigate the performance of the IAGAN-TV method with evolving

GAN architectures such as BigGAN [32] and StyleGAN [76, 78] that promote lower repre-

sentation error. The implementation of the IAGAN-TV method can also be extended to

three-dimensional imaging systems by using GANs trained to synthesize three-dimensional

images [61]. Furthermore, since the image-adaptive framework is general, it can be extended

to ill-posed inverse problems in other tomographic imaging modalities, such as X-ray CT

and photoacoustic tomography (PACT) [138]. Finally, for a comprehensive evaluation of the

IAGAN-TV method, task-based assessments need to be performed that take into account

all physical and statistical factors.
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Chapter 4

On Hallucinations in Tomographic

Image Reconstruction

4.1 Overview

As described in Chapter 2 and demonstrated using the IAGAN-TV algorithm in Chapter 3,

deep learning-based methods have inspired a new wave of reconstruction methods that im-

plicitly or explicitly learn the prior distribution from a set of training images in order to

regularize the reconstruction problem. However, certain supervised learning-based methods

have also raised concerns regarding their robustness [64, 49, 11, 90] and their ability to gener-

alize to measurements that may lie outside the distribution of the training data [11, 13, 81].

This is particularly relevant in the field of medical imaging where novel abnormalities can

be present in the observed measurement data that may not be encountered even with a

large training dataset. Moreover, simulation studies have shown that deep learning-based

reconstruction methods are inherently unstable, i.e. small perturbations in the measurement

may produce large differences in the reconstructed image [49, 11].

The potential lack of generalization of deep learning-based reconstruction methods as well

as their innate unstable nature may cause false structures to appear in the reconstructed

image that are absent in the object being imaged. These false structures may arise due

to the reconstruction method incorrectly estimating parts of the object that either did not

contribute to the observed measurement data or cannot be recovered in a stable manner,

a phenomenon that can be termed as hallucination. The presence of such false structures

in reconstructed images can possibly lead to an incorrect medical diagnosis. Hence, there

is an urgent need to investigate the nature and impact of false structures arising out of

hallucinations from deep learning-based reconstruction methods for tomographic imaging.
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The topic of image hallucinations has previously been studied within the context of image

super-resolution [14, 93, 139, 45]. In image super-resolution, the term hallucination generally

refers to high-frequency features that are introduced into the high-resolution image but do

not exist in the measured low-resolution image. Hallucinations can also be realized in more

general inverse problems such as image reconstruction. In such cases, the structure of the

imaging operator null space is generally more complicated and the hallucinations may not

be confined to high-frequency structures [19]. However, a formal definition of hallucinations

within the context of such inverse problems has not been reported.

This study proposes a way to mathematically formalize the concept of hallucinations for

general linear imaging systems that is consistent with both the mathematical notion of a

hallucination in image super-resolution and the intuitive notion of hallucinations as “arti-

facts or incorrect features that occur due to the prior that cannot be produced from the

measurements”. In addition, the notion of a task-informed or specific hallucination map is

introduced. Through preliminary numerical studies, the behavior of different reconstruction

methods under the proposed formalism is illustrated. It is shown that, in certain cases,

traditional error maps are insufficient for visualizing and detecting specific hallucinations.

4.2 Definition of Hallucination Maps

When comparing or evaluating image reconstruction methods, it may be useful to visualize

and quantify false structures that cannot be stably reconstructed from the measurements.

Such structures have been colloquially referred to as being ‘hallucinated’ and are attributable

to use of an imperfect reconstruction prior. Error maps that display the difference between

the reconstructed image estimate and the true object are commonly employed to assess

reconstruction errors. Artifacts revealed by error maps encompass a broad range of deviations

that can appear in a reconstructed image with respect to its depiction of the object function

being imaged. For example, incorrect modeling of the system matrix H or measurement

noise can lead to artifacts. Consequently, as demonstrated in Fig. 4.1, it may not be possible

to isolate and label the artifacts attributable to the reconstruction prior from the error

map alone. A possible way to circumvent this is to compute separate error maps for the

null and measurement components of the reconstructed image estimate. However, precise

definitions for hallucinations in these sub-spaces have been lacking. Instead, such artifacts
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that are attributable to the prior are better seen and can be labeled as such once the true

object and its reconstructed estimate have been decomposed into the measurement and null

components. This can be better understood when the error map f̂EM is expressed as

f̂EM = f̂ − f

= (f̂meas − fmeas) + (f̂null − fnull)

= (f̂meas − f̂tp) + (f̂null − fnull) + (f̂tp − fmeas).

(4.1)

The first term in Eq. (4.1) indicates the difference introduced due to the imposed prior in

the reconstruction method between f̂meas and f̂tp, which is the stable estimate of f that lies

in N⊥
P (H). The second term in Eq. (4.1) refers to the error that arises due to an inaccurate

estimation of the generalized null component of f due to the imposed prior. On the other

hand, the term (f̂tp − fmeas) in Eq. (4.1) does not involve any priors and describes the error

that arises due to model mismatch and measurement noise. Thus, it can be observed that the

error map contains different types of errors in the generalized measurement and null space

of H, and that may or may not be affected by the prior imposed in a reconstruction method.

Consequently, in order to comprehensively describe false structures that arise only due to an

incorrect prior, it is essential to decompose f̂ and f into their generalized measurement and

null components and define error measures accordingly. There are no established methods

for defining such false structures from the perspective of the generalized measurement space

and null space of the imaging operator.

In order to visualize and quantify hallucinations in tomographic images, measurement and

null space hallucination maps are formally defined below. The proposed definitions are

general and can be applied to analyze hallucinations produced by any reconstruction method

that seeks to invert a linear imaging model. The defined hallucination maps will permit

isolation of image artifacts that cannot be stably reconstructed from the measurement data

and are attributable to the implicit or explicit reconstruction prior.

4.2.1 Hallucination Map in the Generalized Measurement Space

Let f̂ denote the estimate of the coefficient vector f obtained from g by use of an image recon-

struction method. It is desirable that the projection of f̂ onto the generalized measurement

space N⊥
P (H), i.e. f̂meas, should be near the truncated pseudoinverse solution f̂tp ≡ H+

Pg.
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True Object Reconstructed image Error map Null Component Error Meas. component error

[0,0.6]

[0,0.6]

[0,0.15] [0,0.12] [0,0.07]

[0,1] [0,1] [0,0.36] [0,0.25] [0,0.18]

(a)

(b)

[0,0.6]

Figure 4.1: From left-to-right are examples of a true object, a reconstructed estimate of the
object produced by use of a U-Net from tomographic measurements, the total error map, the
error in the null component of the reconstructed object, and the error in the measurement
component of the reconstructed object. The two rows correspond to different objects. In
each case, the true object is outside the respective training data distribution of the U-Net
and phase noise was added to the measurements prior to image reconstruction.

This would ensure that f̂meas is consistent with the estimate of f that can be stably recov-

ered from g. However, due to the imposed regularization in a reconstruction method, there

may be discrepancies in f̂meas with respect to the stable estimate f̂tp in the generalized mea-

surement space N⊥
P (H). In order to quantify such differences, a hallucination map in the

generalized measurement space is defined as follows.

Definition 4.2.1 (Generalized measurement space hallucination map). As previously de-

fined, let f̂ be an image estimate obtained by use of a reconstruction method and let f̂tp be

the truncated pseudoinverse solution. The hallucination map in the measurement space is

defined as,

f̂HM
meas ≡ f̂meas − f̂tp. (4.2)

It should be noted that the computation of the hallucination map in the generalized mea-

surement space requires no knowledge of the true object and simply reveals errors in the

measurement component of f̂ with respect to the stably computed estimate f̂tp.

For use in cases where pixel expansion functions are not employed, it is useful to translate

the definition of hallucination maps to the subspace of the object space L2(Rd) spanned by
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a generic basis {ψn(r)}Ni=1. By use of Eq. (2.2), the estimate of fa(r) can be represented as

f̂a(r) =
N∑

n=1

[f̂ ]nψn(r). (4.3)

The hallucination map f̂HM
a,meas(r) can be defined in the space L2(Rd) as

f̂HM
a,meas(r) ≡

N∑
n=1

[f̂HM
meas]nψn(r). (4.4)

4.2.2 Hallucination Map in the Generalized Null Space

As reviewed in Sec. 2.2, to estimate the generalized null vector fnull from g, reconstruction

methods that impose appropriate priors are required. Hence, to accurately capture the

effect of the prior on the reconstructed image, a definition of hallucinations must satisfy the

following two desiderata:

• The definition must involve the assessment of how accurate the estimate f̂null = Pnullf̂

is as compared to the true generalized null vector fnull.

• Since no prior is used in obtaining f̂tp, the definition must ensure that f̂tp does not have

any null space hallucinations.

With these in mind, a hallucination map f̂HM
null in the generalized null space NP (H) is defined

as follows.

Definition 4.2.2 (Generalized null space hallucination map). Consider a pixel-wise indicator

function 1 : RN → RN such that for any ϑ ∈ RN ,

[1(ϑ)]n =

1, if [ϑ]n ̸= 0

0, if [ϑ]n = 0.
(4.5)

Then, the hallucination map fHM
null ∈ EN can be defined as

f̂HM
null ≡ 1(f̂null)⊙ (f̂null − fnull), (4.6)
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where ⊙ denotes the Hadamard product or element-wise multiplication. Note that the indi-

cator function in the definition ensures that f̂tp does not possess any null space hallucinations,

since no prior was imposed.

It is important to highlight that, for the computation of the hallucination map in the gener-

alized null space, one must have full knowledge of the generalized null component of the true

object. This is in contrast to the hallucinations in the generalized measurement space, where

the knowledge of the generalized measurement component of the true object is not required.

This simply reflects that, according to the provided definitions, the generalized null space

hallucination maps depict errors in the reconstructed null component of the object, while

the generalized measurement space hallucination maps depict errors in the component of

the object that can be stably reconstructed via a truncated pseudoinverse operator from the

observed measurement data.

This difference in the two definitions is associated with the fact that f̂tp is close to H+
PHf if

the measurement noise is small in the sense of Eq. (2.5), and/or the model error is negligible.

Hence, the proposed definition of f̂HM
meas is able to reveal the effect of the prior on the recon-

structed generalized measurement space component, without requiring the true object. In

this sense, there is no analog of a stably reconstructed component like f̂tp in the null space;

hence invoking the true null component is necessary for defining f̂HM
null . Note that due to

our definition, f̂HM
meas may also be influenced by the different noise propagation characteristics

of the methods employed to form f̂tp and f̂ and therefore may not solely quantify errors

associated with the prior.

It should also be noted that the errors introduced by the prior in the measurement space can

be remedied by adopting a reconstruction method that penalizes measurement space halluci-

nations without any prior knowledge of the object, e.g., via a data consistency constraint [11]

or null space shuttle procedure [40]. Accordingly, for such constrained image reconstruction

methods, analyzing hallucinations in the null space is critical towards understanding the

effect of the prior on the image estimate.

Similar to the hallucination map in the generalized measurement space, the hallucination

map f̂HM
a,null(r) can be defined as

f̂HM
a,null(r) ≡

N∑
n=1

[f̂HM
null ]nψn(r). (4.7)
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According to the proposed definitions, the truncated pseudoinverse solution f̂tp has zero

hallucination in both the generalized measurement space and null space. However, that

does not necessarily imply that f̂tp is without artifacts, since f̂tp ignores fnull completely.

The computation of f̂tp leads to the recovery of only fmeas that can be estimated stably.

When other regularized reconstruction methods attempt to reduce artifacts by imposing

priors to estimate fnull, a trade-off is made between the estimation of fmeas and fnull that can

potentially lead to hallucinations in the generalized measurement space and null space.

4.2.3 Specific Hallucination Maps

The use of objective, or task-based, measures of image quality for evaluating imaging systems

has been widely advocated [19]. However, the hallucination maps as defined in Section 4.2

do not incorporate any task-specific information. In particular, f̂HM
null may contain an abun-

dance of structures or textures, some of which may not confound an observer on a specified

diagnostic task. Hence, it may be useful to identify those structures or textures in the hal-

lucination maps that are task-relevant. One possible way to accomplish this is to process

the hallucination map via an image processing transformation T , such that potentially task-

relevant features or textures are localized while others are suppressed [34, 37]. Formally, this

can be described as:

f̂SHM
null = T f̂HM

null , (4.8)

where the processed pixel map f̂SHM
null that preserves task-specific information is referred to

as a specific hallucination map. Note that the design of the transformation T is application-

dependent, as it should localize those structures or textures from the hallucination map that

are relevant to a specified task. Moreover, the specification of the observer (which could

be a human or computational procedure) who will perform the task should also influence

the design of T , as the extent to which hallucinations impact observer performance will

vary. While requiring significant effort to formulate, specific hallucination maps open up

the possibility of comparing reconstruction methods based on their propensities for creating

hallucinations that influence task performance.

The complete procedure for computing measurement and null space hallucination maps, as

well as the specific hallucination map, is presented in Algorithm 1.
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Algorithm 1: Procedure for computation of measurement and null space hallucination
maps from measurement data g, system matrix H, true object f and reconstructed image
f̂

1 Compute the truncated pseudoinverse solution:

f̂tp = H+
Pg

2 Compute the generalized measurement component of f̂ :

f̂meas = Pmeasf̂ = H+
PHf̂

3 Compute the generalized null components of f and f̂ :

fnull = Pnullf = [IN −H+
PH]f ,

f̂null = Pnullf̂ = [IN −H+
PH]f̂ .

4 Measurement space hallucination map:

f̂HM
meas = f̂meas − f̂tp

5 Null space hallucination map:

f̂HM
null = 1(f̂null)⊙ (f̂null − fnull)

6 Apply image processing transformation T on fHM
null to obtain the specific halucination

map:
f̂SHM
null = T f̂HM

null

4.3 Numerical Studies

Numerical studies were conducted to demonstrate the utility of the proposed hallucination

maps. Although the focus of these preliminary studies is on null space hallucination maps,

the presented analyses could readily be repeated by use of measurement space hallucination

maps. Hallucination maps were employed to compare the behavior of data-driven and model-

based image reconstruction methods under different conditions.
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Figure 4.2: Sampling mask

4.3.1 Stylized Imaging System

A stylized two-dimensional (2D) single-coil magnetic resonance (MR) imaging system was

considered. It should be noted that the assumed imaging operator was not intended to ac-

curately model a real-world MR imager. Instead, the purpose of the presented simulation

studies is only to demonstrate the potential utility of hallucination maps. Hence physical fac-

tors such as coil sensitivity and bias field inhomogeneity were not considered. Fully-sampled

k-space data were emulated by applying the 2D Fast Fourier Transform (FFT) on the digital

objects described below. Independent and identically distributed (i.i.d.) Gaussian noise was

added to the real and imaginary components of the complex-valued k-space data [8] in the

training dataset for the U-Net as well as in the test data during evaluation with different

reconstruction methods. Additionally, in the test dataset, zero-mean random uniform phase

noise [144] was introduced into the k-space measurements to emulate modeling errors [19].

A uniform Cartesian undersampling mask with an undersampling factor of 3 was applied on

the fully-sampled k-space data to obtain undersampled measurements, as shown in Fig. 4.2.

The k-space lines that were not sampled were subsequently zero-filled. The Moore-Penrose

pseudoinverse H+ was applied by performing the inverse 2D Fast Fourier Transform (IFFT)

on the zero-filled k-space data. Since the true pseudoinverse was considered without any

truncation of singular values, the hallucination map in the generalized null space in our

studies corresponds to the hallucination map in the true null space.

44



4.3.2 Reconstruction Methods

Both data-driven and non-data-driven image reconstruction methods were investigated as

described below. The data-driven method considered was a U-Net based method [69, 55, 65],

while the non-data-driven methods were PLS-TV and Deep Image Prior with TV penalty

(DIP-TV). These reconstruction methods and their implementations are discussed below.

U-Net Reconstruction

The U-Net based reconstruction method employs image-domain learning, where a mapping

is learned from an initial image estimate that contains artifacts due to undersampling to

an accurate estimate of the true object. In our studies, the initial image estimate that was

input to the U-Net was obtained by applying the pseudoinverse on the k-space data. Such

initial estimates obtained from multiple measurement data were then employed as inputs to

a convolutional neural network (CNN), which was trained in order to produce artifact-free

images, similar to images from the ground truth distribution. As is common practice, the

CNN architecture used in this study is the U-Net [116]. A U-Net consists of two CNNs

that represent a downsampling path followed by an upsampling path respectively, and skip

connections [44] between similar levels in the downsampling and upsampling paths. Let the

initial estimate from the measurement data be denoted as f ′ and the function computed

by the U-Net be represented as B(f ′; θ) where B : EN → EN and θ denotes the weight

parameters of the U-Net. Given a training data set of initial estimate-ground truth pairs{
f ′i , fi

}D
i=1

where D is the size of the training data set, the optimal weight parameters θ∗ are

learned by approximately solving the following optimization problem:

θ∗ = argmin
θ

D∑
i=1

L
(
B(f ′i , θ), fi

)
, (4.9)

where L(·, ·) is a suitable loss function. In this work, mean absolute error was used as the

loss function [148]. The model for the U-Net was based on the single-coil baseline U-Net

architecture provided in [146]. A stochastic gradient-based method known as RMSProp [129]

was employed to solve the optimization problem in Eq. (4.9). After this iterative scheme

for training the U-Net reached convergence, the trained U-Net was used to reconstruct

images from a previously unseen test measurement dataset, where an initial estimate f ′test
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computed from a test measurement data was employed to obtain the reconstructed image

f̂test = B(f ′test, θ
∗). The training and testing of the U-Net based reconstruction was performed

using PyTorch [110] code available at https://github.com/facebookresearch/fastMRI.

PLS-TV

As described previously, in the PLS-TV method Eq. (2.17) is solved using proximal-gradient

methods. In this study, PLS-TV reconstruction was performed for a dataset of measurements

using the Berkeley Advanced Reconstruction Toolbox (BART) [132]. BART performs PLS-

TV reconstruction using the augmented Lagrangian based optimization method proposed

in [7]. The regularization parameter λ in Eq. (2.16) was chosen by first performing image

reconstruction on a subset of the dataset, with different values of λ. The value of λ which

provided the lowest mean of the root mean squared error (RMSE) metric over the subset

was chosen, and used for image reconstruction of all the images in the dataset.

DIP

Recently, Ulyanov et al. [134] showed that a CNN G : Rk → EN with randomly initialized

weights θ and random input z ∈ Rk can be an effective regularizer for image restoration

problems such as denoising, super-resolution and inpainting. This method of regularization,

known as deep image prior (DIP), utilizes the observation that the structure of deep convo-

lutional networks captures several low-level image statistics and is biased towards smooth,

natural images. Van Veen et al. [135] extended the DIP framework to applications in to-

mographic imaging from incomplete measurements with encouraging results. Essentially,

image reconstruction using the DIP method can be formulated in terms of the following

optimization problem:

θ∗ = argmin
θ
∥g −HG(z; θ)∥22,

f̂ := G(z; θ∗) (4.10)

where z and θ are randomly initialized.
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It has been shown in [134, 135] that the DIP method overfits the measurement noise upon

convergence. Hence, further regularization may be required, either in the form of early stop-

ping or with the addition of penalties in the optimization problem in Eq. (4.10). Inspired

by [92], in our experiments, image reconstruction using the DIP method with TV regulariza-

tion (DIP-TV) was performed by approximately solving the following optimization problem:

θ∗ = argmin
θ
∥g −HG(z, θ)∥22 + λ∥G(z, θ)∥TV ,

f̂ := G(z; θ∗) (4.11)

where z and θ were randomly initialized, and λ is the regularization parameter. The same

U-Net architecture employed for the U-Net based reconstruction was employed for DIP-TV,

and was implemented in TensorFlow [2]. Similar to the implementation of the PLS-TV

method as outlined in Sec. 4.3.2, the regularization parameter λ for the TV penalty in

Eq. (4.11) was chosen by first performing image reconstruction on a subset of the dataset,

with different values of λ. Subsequently, the value which provided the lowest mean RMSE

over the subset was chosen to perform image reconstruction from all the measurements. The

optimization problem in Eq. (4.11) was approximately solved using a stochastic gradient

algorithm called Adam [86].

4.3.3 Training, Validation and Test Data

For the U-Net based reconstruction method, training was performed on 2D axial adult brain

MRI images from the NYU fastMRI Initiative database [146]. These will be referred to

as the in-distribution (IND) images. The training and validation datasets contained 2500

and 500 images, respectively. For testing, both IND and out-of-distribution (OOD) images

were considered. The OOD images were obtained from a pediatric epilepsy resection MRI

dataset [98]. Both the IND and OOD testing datasets contained 69 images. It should be

noted that the OOD images differed from the IND images in several aspects, such as the

nature of the objects (adult for IND and pediatric for OOD) as well as the use of different

MR systems used to obtain the true object images in each case. All images were of dimension

320× 320.

After creating the training, validation and test datasets, neural network training was per-

formed with the IND training and validation datasets for the U-Net method. At test time,

47



images were reconstructed from both IND and OOD test datasets using the U-Net, PLS-TV

and DIP methods.

4.3.4 Computation of Hallucination Maps

After images were reconstructed from the testing data, null space hallucination maps f̂HM
null

were computed. The quantities f̂null and fnull, as required by Eq. (4.6), were computed

according to Eq. (2.12). Subsequently, specific null space hallucination maps f̂SHM
null were also

computed. In this preliminary study, these maps were designed for the purpose of localizing

regions where coherent structures, as opposed to random errors, were present in f̂HM
null . Such

structured hallucinations could be relevant to certain signal detection tasks. To accomplish

this, the transformation T in Eq. (4.8) was implemented as follows.

First, the region of support of each object was identified using Otsu’s method [66] and binary

support masks were formed for each object. The support masks were applied on the f̂HM
null

such that errors in the reconstructed image that lie outside the region of support could be

ignored. Subsequently, histogram equalization was performed. A 2D Gaussian filter with

kernel width of 7 was applied on the histogram-equalized map in order to obtain a smooth

distribution of intensities across the hallucination map. The width of the Gaussian filter

was chosen heuristically in this study. Finally, a binary threshold was applied where the

cut-off value was set to the 95-th percentile of intensity values in the processed map, such

that intensities below the threshold were set to zero and intensities above the threshold were

set to 1. From the thresholded maps, connected components that had a size of less than 100

pixels (≈ 0.1% of total number of pixels in each image) were eliminated to remove localized

regions with negligible dimensions, resulting in the specific hallucination maps f̂SHM
null for our

studies. This procedure for computing the action of T was repeated for all f̂HM
null computed

from both the IND and OOD test datasets for each reconstruction method. It should be

noted that this procedure serves only as a simplistic example of the computation of a specific

hallucination map, and there is no suggestion that it is optimal in any sense.

Finally, conventional error maps were computed as the difference between the reconstructed

estimate f̂ and the true object f . In order to demonstrate the potential utility of the specific

hallucination maps over processed versions of conventional error maps, specific error maps
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were formed by acting T on the error maps. The codes employed in our numerical studies

are available at https://github.com/comp-imaging-sci/hallucinations-tomo-recon.

4.4 Results

The numerical results are organized as follows. First, an illustration of null space halluci-

nation maps is provided for different reconstruction methods, in order to demonstrate their

utility in highlighting false structures that may be introduced due to the imposed prior. Dif-

ferences in the null space hallucination maps corresponding to the data-driven U-Net method

when applied to IND and OOD data are examined. This is followed by a demonstration of

the difference in the quantitative performance of the U-Net method on IND and OOD data.

The performance of the U-Net is compared with the non-data-driven methods in our studies

– PLS-TV and DIP – in terms of metrics derived by use of null space hallucination maps.

While the results below focus on null space hallucination maps, similar analysis can also

be performed on measurement space hallucination maps. Examples of measurement space

hallucination maps are provided in Appendix A.

4.4.1 Differences Between Error and Hallucination Maps

Reconstructed images and corresponding error maps and null space hallucination maps from

an IND measurement are shown in Fig. 4.3. It can be observed that, for all the reconstruction

methods, the error map and the null space hallucination map have different characteristics

in some regions of the image. This is because the error map contains false structures due

to hallucinations as well as all other factors, whereas the null space hallucination map only

contains errors due to the imposed prior. These differences can also be observed from the

computed specific error maps and specific null space hallucination maps. As expected,

the U-Net method performs well, leading to mostly low-intensity regions in the null space

hallucination map. In one of the regions that is featured in the specific hallucination map

for all the reconstruction methods, it can be seen that the U-Net has lower hallucinations

since it is able to faithfully recover fine structures in the region. Such fine structures were

oversmoothed in the reconstructed images that were obtained by use of the PLS-TV and

DIP methods, leading to higher hallucinations. On the other hand, all the reconstructed
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Figure 4.3: Example of a true object and reconstructed images along with error maps and
hallucination maps (null space) for IND data with different reconstruction methods – U-Net
(top), PLS-TV (middle) and DIP (bottom). Expanded regions are shown to the right of the
reconstructed images. The specific error map (blue) and specific null space hallucinations
map (red) are overlaid on the reconstructed images for each method. The image estimated
by the U-Net method has visibly lower hallucinations in the null space compared to PLS-
TV and DIP. The region within the red bounding box is one of the locations that contains
hallucinations for all the reconstruction methods. In this region, the U-Net method shows
mild hallucinations compared to PLS-TV and DIP. Fine structures in this region appear to be
oversmoothed in the image estimates obtained by use of PLS-TV and DIP. A false structure
is also shown (within the blue bounding box region) that appears for all the reconstruction
methods due to the phase noise and not due to the imposed prior, and hence cannot be
classified as a hallucination.

images also contain a distinct false structure that is revealed in the specific error map but

not the specific hallucination map. This is an example of a false structure that can exist in

reconstructed images, but may not necessarily be classified as a hallucination.

To further demonstrate the different characteristics of error maps and null space hallucination

maps for this IND study, scatter plots of the centroids of the detected regions in each type of

map corresponding to the ensemble of IND reconstructed images from all three reconstruction

methods are shown in Fig. 4.4 (top row). From these scatter plots, it can be observed that

there is a high amount of variance in the locations of the detected regions in the specific

error maps as compared to the detected regions in the specific hallucination maps. The
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Figure 4.4: Scatter plots for centroids of localized regions in specific error maps and specific
null space hallucination maps with different reconstruction methods for IND (top) and OOD
(bottom) data. Note that for each type of data distribution and for all the reconstruction
methods, the centroids of the regions detected from the error map have a higher variance
compared to the hallucination map as well as some degree of non-overlap.

latter typically appear in similar regions across the ensemble of reconstructed images for all

the methods. Furthermore, the concentrations of centroids for the detected regions in both

types of maps have some degree of non-overlap. These observations reflect the fact that,

due to additional sources of error such as measurement noise and model error that are also

typically random in nature, the regions in the reconstructed images that are revealed by the

error map can sometimes be different from those revealed by the null space hallucination

map that considers error only due to an inaccurate prior.

As the distribution shifts to OOD, as shown in Fig. 4.5, the null space hallucination map

for the U-Net method appears comparable to the hallucination maps obtained by use of

PLS-TV and DIP. False structures that can be identified as hallucinations appear in the

image reconstructed by the U-Net method. The higher error for the U-Net method is a

result of the change of distribution and the method’s inability to generalize well to data

that are significantly out of distribution with respect to the training data. The change of

distribution results in significant inaccuracies in the null component of the reconstructed
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Figure 4.5: Example of true object and reconstructed images along with error map and
hallucination maps (null space) for OOD data with different reconstruction methods – U-
Net (top), PLS-TV (middle) and DIP (bottom). Expanded regions are shown to the right of
the reconstructed images. The specific error map (blue) and specific null space hallucinations
map (red) are overlaid on the reconstructed images for each method. The image estimated
by the U-Net method has some distinct false structures (region within red bounding box)
that do not exist in the reconstructed images obtained by using PLS-TV and DIP. This
region is also highlighted in the specific null space hallucination map for the U-Net method
which suggests that the false structure is a hallucination.

estimate produced by the U-Net. Under such circumstances, it can be useful to identify and

localize hallucinations due to inaccuracies in the imposed data-driven regularization through

the null space hallucinations.

As shown in Fig. 4.5 and consistent with the IND results discussed above, the localized

regions detected in the specific error map and specific hallucination map for the OOD cases

are generally different. Scatter plots of the centroids of the detected regions in the specific

error maps and specific hallucination maps confirm this and are displayed in Fig. 4.4 (bottom

row). For all the reconstruction methods, the error map centroids again have a higher

variance and are located away from clusters of hallucination map centroids in some regions.

In other words, under such circumstances, one cannot rely on only the error maps without

considering the corresponding hallucination maps in order to estimate where hallucinations

due to the imposed prior are likely to be localized in a reconstructed image.
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Although hallucination maps can reveal false structures, the impact of the false structures on

specific applications requires further analysis. For example, a false structure may be classified

as a false positive structure or a false negative structure [63, 36]. A false positive structure

is one which is absent in the true object but present in the reconstructed image, whereas a

false negative structure denotes the opposite. While an important topic, the classification of

hallucinations is beyond the scope of this dissertation.

4.4.2 Investigation of Structured Hallucinations

Additional studies were conducted to validate that the specific hallucination maps actually

revealed regions in the image that contain significant errors. To accomplish this, two empiri-

cal probability distribution functions (PDFs) were estimated that describe the average SSIM

values computed over two non-overlapping regions in the reconstructed images for the OOD

case. One region corresponded to the support of the specific hallucination maps described

above and the second region was spanned by all other pixels in the image. The two empirical

PDFs are shown in Fig. 4.6a and reveal that the mode of the distribution corresponding to

the SSIM averaged over the structured hallucination regions is demonstrably lower than that

describing the average SSIM values over the background regions.

The empirical PDFs that described the SSIM value averaged over the structured hallucina-

tion regions were also compared for each of the three reconstruction methods. As shown

in Fig. 4.6b, for the IND case, the images reconstructed by use of the U-Net had signifi-

cantly higher SSIM values, on average, in the structured hallucination regions as compared

to both the PLS-TV and DIP methods. This can be attributed to network training with

a sufficiently large amount of IND data. However, for the OOD case in Fig. 4.6c, because

null space hallucinations increased for the U-Net method, the corresponding reconstructed

images had lower SSIM values on average as compared with DIP in the support of the null

space hallucination maps. The medians of ensemble SSIM values in these support regions

for all the reconstruction methods with IND and OOD data are shown in Table 4.1. It

should be noted that, for both the IND and OOD cases, the DIP method was implemented

with the same network architecture as the U-Net-based method. Thus, when there is a shift

in the testing data distribution, some data-driven methods such as the U-Net method may

not provide any significant improvement in the estimate of the null component compared
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to model-based methods that do not employ training data. However, the data-driven meth-

ods involve the additional risk of hallucinating false structures. These observations gained

through hallucination maps provide insight into the impact of the data-driven nature of the

prior imposed by pre-trained neural networks.

(a) (b) (c)

Figure 4.6: (a) Empirical PDF of SSIM values in the structured hallucination regions (sup-
port of f̂SHM

null ) and the regions spanned by the remaining pixels in the support of the image
(background), respectively, for the U-Net method with OOD data. Empirical PDFs of SSIM
values in the structured hallucination regions for all three reconstruction methods with (b)
IND and (c) OOD data respectively.

Data distribution U-Net PLS-TV DIP

IND 0.84 0.71 0.73
OOD 0.75 0.73 0.76

Table 4.1: Median of SSIM values from ensembles of images reconstructed by use of the
U-Net, PLS-TV and DIP methods that were computed in the support region of specific null
space hallucination maps. In these regions, the U-Net method has the highest median SSIM
for IND data, while for OOD data the DIP method has the highest median SSIM.

4.4.3 Bias Maps and Hallucinations

A bias map, defined as

b := Ef̂ − f , (4.12)
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determines the expected deviation of an image estimate from the true object, and as such,

may include contributions from an incorrect prior, as well as those from incorrect measure-

ment and noise models. Hence, the bias map may be correlated with the hallucination

maps, but may display significant differences from it based on the average behavior of the

inaccuracies in the measurement and noise models. For example, Fig. 4.7 shows the bias

map computed using a dataset of images estimated from simulated undersampled MRI mea-

surements with fixed phase noise and iid Gaussian additive noise, along with the error map

and the null space hallucination map for an IND and an OOD image. The corresponding

true objects are shown in Figures 4.3 and 4.1b respectively. Figure 4.7 shows that the bias

map retains clusters of artifacts from the error map that are due to the phase noise. Hence,

although the bias maps are correlated with both the hallucination maps and the error map,

each provides a different kind of information.

IN
D

Error map
Null space

hallucination map Bias map

O
O

D

Figure 4.7: An error map, a null space hallucination map and a bias map for IND and OOD
images estimated by use of the U-Net method. The corresponding true objects are shown in
Figures 4.3 and 4.1b respectively. The bias map was computed over a dataset of 100 images
estimated from a single set of simulated measurements with fixed phase noise and different
realizations of the iid Gaussian noise. The bias map contains contributions from both the
model error, as well as inaccuracies in the prior.
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4.5 Summary

While regularization via sparsity-promoting penalties in an optimization-based reconstruc-

tion framework is commonly employed, emerging learning-based methods that employ deep

neural networks have shown the potential to improve reconstructed image quality further by

learning priors from existing data. However, an analysis of the prior information learned by

deep networks and their ability to generalize to data that may lie outside the training dis-

tribution is still being explored. Additionally, there are open questions and concerns about

the stability of such networks when applied for image reconstruction. While it has been

understood that use of an inaccurate prior might lead to false structures, or hallucinations,

being introduced in the reconstructed image, formal definitions for hallucinations within the

context of tomographic image reconstruction have not been reported.

In this work, by use of concepts from linear operator theory, formal definitions for hallu-

cination maps in linear tomographic imaging problems are introduced. These provide the

opportunity to isolate and visualize image hallucinations that are contained within the mea-

surement or null spaces of a linear imaging operator. The measurement space hallucination

map permits the analysis of errors in the measurement space component of a reconstructed

object estimate with respect to the component of the object that can be stably computed

from a given set of measurement data. Alternatively, the null space hallucination map per-

mits analysis of errors in the null space component of a reconstructed object estimate with

respect to the true object null space component. These errors are caused solely by the re-

construction prior. Both maps can be employed to systematically investigate the impact of

different priors utilized in image reconstruction methods. Finally, the notion of a specific

hallucination map was also introduced, which can be formulated to reveal hallucinations

that are relevant to a specified image-based inference.

Numerical studies were performed with simulated undersampled measurements from a styl-

ized single-coil MRI system. Both data-driven and non-data-driven methods were investi-

gated to demonstrate the utility of the proposed hallucination maps. It was observed that null

space hallucination maps can be particularly useful as compared to traditional error maps

when assessing the effect of data-driven regularization strategies with out-of-distribution

data. Furthermore, it was shown that structured hallucinations with data-driven methods

that are caused due to a shift in the data distribution may ultimately lead to significant

artifacts in the reconstructed image.
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The computation of the projection operations as described in Eq. (2.11) and Eq. (2.12) via

the SVD may be infeasible for large-scale problems. Wilson and Barrett [141] proposed an

iterative method to compute fmeas and fnull without explicit computation of the SVD of H.

Alternatively, randomized SVD [52] is a relatively computationally efficient algorithm that

can be employed to estimate these quantities. Kuo et al. [89] recently proposed a method

to learn null space projection operations that can significantly reduce the computational

burden. It may also be expected that the importance of analyzing hallucinations in image

reconstruction can further stimulate the development of efficient methods for implementing

projection operators. The development of such computationally efficient methods for large-

scale problems remains an active area of research.

It should be noted that the proposed definition of hallucination maps is general and can

be applied to any linear imaging system and reconstruction method, provided that the

computation of the projection operators Pmeas and Pnull is feasible. Depending on the

sampling pattern involved in the data acquisition process, different system matrices H will

have different null space characteristics. This, in turn, may lead to different properties in the

corresponding hallucination maps that would allow a comparison of reconstruction methods

under a variety of data acquisition strategies.

The proposed framework is most useful in situations where the generalized null component

of the true object is significant and hence strong priors need to be incorporated in the re-

construction method via regularization. If the generalized null component is relatively small

compared to the generalized measurement component, the need for strong regularization dur-

ing reconstruction is diminished. This, in turn, would imply that hallucinations are likely

to be minimal or non-existent due to the imposed weak regularization and hence computing

hallucination maps may not be necessary. In such situations, computing only the error map

may be sufficient to assess the reconstruction method.

There remain important topics for future investigation. Beyond the framework presented, it

will be important to derive objective figures-of-merit (FOMs) from ensembles of hallucina-

tion maps. Furthermore, the probability of occurrence of hallucinations can be potentially

quantified from ensembles of hallucination maps. While understanding the interplay be-

tween hallucinations and image reconstruction priors is important in preliminary studies,

ultimately, image reconstruction methods should be objectively evaluated with considera-

tion of all physical and statistical factors.
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Chapter 5

Mining the Manifolds of StyleGANs

for Multiple Data-Consistent

Solutions of Ill-Posed Tomographic

Imaging Problems

5.1 Overview

Most medical image reconstruction methods available today are designed to produce a single

estimate of the object, which is known as the maximum a posteriori (MAP) point estimate

when interpreted in a statistical framework. However, in the presence of data noise or

incompleteness, multiple objects can exist that are consistent with a given set of measurement

data. Moreover, there is generally no guarantee that the produced object estimate will be the

most accurate or useful (with respect to a specific clinical task) among the multiple possible

objects that are consistent with the measured data. This is especially true for many deep

learning-based image reconstruction methods, which are often based on heuristic designs

and can have an enhanced propensity for producing hallucinated structures [23]. These

hallucinated structures are of particular concern for medical imaging applications because

such structures may not always be readily identifiable as artifacts and therefore the images

can appear plausible but are, in fact, incorrect.

The ability to identify multiple objects that are consistent with a given set of measure-

ment data is of significant importance to the assessment and refinement of data-acquisition

designs and image reconstruction procedures. For example, from a collection of distinct

data-consistent objects, uncertainty maps [128, 119] can be computed. Such maps can be
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employed to reveal the reliability of a reconstructed image corresponding to a given data-

acquisition design. The ability to identify multiple data-consistent objects could also permit

analysis of the impact of the null space of a linear imaging operator in new, problem-specific,

ways and enable the design of numerical experiments to reveal image reconstruction insta-

bilities [49]. Moreover, a new capability to generate ensembles of data-consistent objects is

needed to advance task-informed adaptive imaging procedures [39, 18].

The generation of multiple solutions to an inverse problem is consistent with the goal of

Bayesian inversion methods [133]. In imaging applications, this can be conceptually achieved

by sampling from the posterior distribution that describes the sought-after object conditioned

on a set of measurement data [104]. This is a holy grail of image reconstruction, but it re-

mains generally impractical in medical imaging applications due to their large scale [50].

In recent years, computational procedures for accomplishing approximate posterior sam-

pling in limited-scale problems have been proposed that employ deep neural networks com-

bined with Markov chain Monte Carlo (MCMC) sampling methods or Langevin dynam-

ics [126, 120, 106, 68]. While promising, the efficacy of such methods for use with large-scale

medical image reconstruction problems remains a topic of investigation. Furthermore, such

posterior sampling methods are limited to imaging systems with specific noise distributions,

typically Gaussian, and may not work directly when the noise distribution is different, e.g.

Poisson [38]. To circumvent the computational challenges of posterior sampling methods and

their lack of generalizability to different noise distributions, empirical sampling [126, 16, 9]

can be performed to obtain multiple distinct objects that are consistent with a given set of

measurement data. In an empirical sampling method, multiple data-consistent solutions are

obtained by solving a regularized inverse problem within a stochastic optimization frame-

work [125]. Empirical sampling methods, while not guaranteeing true posterior sampling,

can be computationally feasible for large-scale imaging systems. Moreover, in contrast to

MCMC-based posterior sampling methods in which the samples are generated sequentially,

alternate solutions obtained via empirical sampling are independent of one another and can

be obtained in parallel, thus providing reductions in computation times.

It may be possible that when multiple solutions are sought from a single acquisition of mea-

surement data, the data-consistent objects may contain unrecognizable structures that are

irrelevant to the medical imaging application at hand. Such situations may arise when there

is no constraint imposed on the objects to ensure that they are relevant to a specified imaging

application. One way to achieve empirical sampling that produces application-relevant and
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data-consistent objects is to constrain the process by use of a deep generative model [47] that

characterizes the distribution of to-be-imaged objects. For the single image super-resolution

problem (SISR), an optimization-based technique called Photo Upsampling via Latent Space

Exploration (PULSE) was proposed in [102] to generate diverse photorealistic high-resolution

images from a single low-resolution image. A state-of-the-art deep generative model known

as StyleGAN [76] was employed to characterize the distribution of high resolution images.

However, due to the complex nature of the latent space of the StyleGAN, the optimization

method in PULSE violates the constraint that the generated image resides in the range

of the StyleGAN. Consequently, the high-resolution images may contain artifacts that are

irrelevant to the imaging application. Furthermore, there remains an important need to

extend this method for general tomographic inverse problems and quantitatively investigate

the data-consistency of the generated samples.

In this work, the following problem is addressed: Assume a StyleGAN describing a distribu-

tion of to-be-imaged objects, a tomographic measurement model, and a single acquisition of

incomplete and noisy measurement data are provided. Find a collection of distinct objects

that are consistent with the same acquired measurement data (in a to-be-prescribed sense)

and reside in the range of the StyleGAN. A key motivation for formulating this problem

is to establish an application-relevant empirical sampling method that can be employed in

preliminary assessments and refinements of data-acquisition designs and tomographic imag-

ing technologies via virtual imaging trials. A method for solving this problem is proposed

that is referred to as the PULSE++ method. The PULSE++ method represents the first

extension of the PULSE methodology for use with tomographic imaging problems. The

optimization method used in PULSE is redesigned in the PULSE++ method to facilitate a

more effective search in the complex latent space of a StyleGAN and ensures the constraint

that the generated image resides in the range of the StyleGAN. Additionally, by utilizing

improved assumptions about the statistics of object embeddings in the latent space of the

StyleGAN, the ability of the PULSE++ method to produce diverse, application-relevant,

and data-consistent objects is enhanced as compared to the original PULSE method. It

should be noted that the PULSE++ method may be considered as an image reconstruction

method if a single estimate is sought from the multiple available solutions using statistical

methods, and more objectively based on the task involved. In this study, PULSE++ is not

utilized as an image reconstruction method, but rather as an efficient empirical sampling

technique that can be employed to assess and refine a given data acquisition design in new,
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problem-specific ways, e.g. by enabling computation of reliable uncertainty maps. Two dif-

ferent stylized tomographic imaging modalities are systematically studied that also involve

different measurement noise distributions. Uncertainty maps that quantify the degree of

variability of data-consistent alternate solutions are computed.

5.2 Salient Features of the StyleGAN Latent Space

State-of-the-art deep generative models such as the StyleGAN [76] hold the potential for

characterizing the distribution of finite-dimensional approximations of to-be-imaged ob-

jects [150, 61]. Let G : Rk → RN denote a parameterized deep generative model with

L layers, where k ≪ N . The generator network G(z) is trained such that it maps a k-

dimensional latent vector z ∈ Z sampled from a known distribution, such as a standard

Gaussian distribution, to an image that is representative of the distribution formed by the

training images. The generator network G in a StyleGAN is composed of two networks:

a mapping network Gm and a synthesis network Gs [76]. Gm is a fully connected neural

network (FCNN) [47] that maps the latent vector z to an intermediate style latent vector

w ∈ Rk. Subsequently, the style latent vector w is replicated L times, and each duplicate

style latent vector w is passed through a learned affine transformation [62] that encodes

semantic information and input to one of the L layers in the synthesis network Gs. Each

such vector that is input to Gs controls a specific style or semantic attribute in the generated

image. The collection of L copies of the vector w ∈ Rk is represented as the latent matrix

W ∈ Rk×L and the corresponding intermediate latent space is denoted as W . Additionally,

the StyleGAN contains a set of L noise latent vectors Φ ≡ {ϕi}Li=1 such that ϕi ∈ Rpi ,

where pi = 4(1+⌈ i
2
⌉) [76]. Each noise latent vector ϕl serves as an input to layer l in Gs.

These noise latent vectors are sampled from standard Gaussian distributions and multiplied

by learned scaling factors [76] that enable additional stochastic variability in the fine details

of the generated images.

In addition to a superior performance in image synthesis, the style-specific control that

is gained with a StyleGAN generator can be leveraged to perform meaningful semantic

transformations of objects in tomographic imaging applications [80, 46, 118]. To perform

such semantic transformations, an embedding for the given object must be obtained first in

the latent space of the StyleGAN. Abdal et al. [3] proposed an efficient embedding algorithm
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that involved solving an optimization problem in an extended latent spaceW+ ≡ Rk×L ⊃ W .

Penalty terms such as GEOCROSS [102] have been proposed that promote the embedding

in the extended latent spaceW+ to be close to the latent spaceW , which in turn encourages

the embedded object to be near the range of the generator network Gs with the latent space

W [143].

Recently, a number of studies posited that the problem of embedding via optimization may

be better conditioned by utilizing a modified StyleGAN latent space that possessed a more

well-defined structure. It was empirically observed that the application of a certain com-

putationally cheap and invertible transformation T : Rk×L → Rk×L produced a matrix

V = T (W), where the columns of V denoted as {vi}Li=1 approximately followed the stan-

dard Gaussian distribution N (0, Ik) [102, 143, 151]. In particular, T is the composition

of a leaky rectified linear unit (ReLU) [47] with an affine whitening transformation [151].

Additional details regarding the transformation operator T are described in Appendix B.

In what follows the spaces V ⊂ Rk×L and V+ ≡ Rk×L denote the images through T of the

spaces W and W+, respectively. Using this transformation, the synthesis network Gs can

be equivalently represented in terms of a generator network G̃(V,Φ) := Gs(T −1(V),Φ). It

was reported in [102, 143, 151] that performing optimization in the latent space V+ with

the generator network G̃ allowed for the use of simple regularizers and led to more accurate

embeddings.

It has been empirically observed that the embedding quality can be further improved by

optimizing over the noise latent vectors Φ in addition to V [4, 78]. While being effective,

the optimization of noise latent vectors Φ, which have a significantly higher number of

parameters compared to the object dimensions, may be unstable and lead to significant

artifacts in the embedded object [4]. Accordingly, it has been suggested that the optimization

over Φ should be performed by imposing appropriate regularization [78].

5.3 Empirical Sampling with PULSE

Menon et al. [102] employed such preferable embedding properties of the StyleGAN latent

space V+ in a SISR task, with the goal of mining the manifold of the generator network

G̃(V,Φ) to discover multiple photo-realistic high-resolution images that are consistent with

the same low-resolution image. The proposed framework was termed as Photo Upsampling
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via Latent Space Exploration (PULSE). The PULSE method belongs to a broader class of

generative model-constrained methods for ill-posed inverse problems in imaging, known as

compressed sensing using generative models (CSGM) [28, 26, 81]. The embedding problem

within the CSGM framework is highly non-convex. However, gradient-based methods have

been observed to find good local optima in a computationally feasible manner, thus providing

solutions to the inverse problem that are compatible with the measurement data [28].

In SISR, the measured data g ∈ EM is a low-resolution version of the sought-after image f ∈
EN , where M ≤ N . The imaging operator H : EN → EM in SISR is a degradation operator

that removes the higher spatial frequencies from f . The CSGM optimization problem in

PULSE was formulated to recover a high-resolution estimate f̂ ≡ G̃(V̂, Φ̂) from the low-

resolution image g, stated as

V̂, Φ̂ = argmin
V,Φ

{
J (g, G̃(V,Φ)) + λgGEOCROSS(V)

}
,

s.t. V ∈ V+,vi ∈ Sk−1(
√
k) ∀i ∈ {1 . . . L}, (5.1)

ϕi ∈ Spi−1(
√
pi) ∀i ∈ {1 . . . Lϕ},

ϕi = ϕi ∀i ∈ {Lϕ + 1 . . . L}.

Above λg > 0 is a regularization hyperparameter, Sd−1(r) ≡ {a ∈ Rd | ∥a∥2 = r} denotes the

spherical surface of radius r in d-dimensions, Lϕ denotes the number of levels for which the

noise latent vectors are optimized, and ϕi (i = Lϕ + 1, . . . , L) denote the higher-resolution

noise latent vectors that are randomly chosen and kept fix during the optimization. The

motivation for imposing the norm constraints on the style latent {vi} and noise {ϕi} vectors

was based on the “soap bubble effect” [102] observed for standard multivariate Gaussian

vectors in high-dimensional spaces, as discussed in Sec. 5.4. To mitigate instabilities due

to optimization over Φ, additional regularization was imposed by optimizing over only the

initial Lϕ = 5 low-resolution noise latent vectors in Φ, while keeping the high-resolution

noise latent vectors fixed. The data fidelity term J (g, G̃(V,Φ)) was chosen to be a suitable

ℓp-norm. The penalty term GEOCROSS(V) is defined as the sum of pairwise geodesic

distances among the L style latent vectors in V on Sk−1(
√
k) [102]. Equation (5.1) was

approximately solved by jointly optimizing over (V,Φ) and using projected gradient descent

with the Adam optimizer [86]. Multiple runs of the optimization problem were performed,

and for each run, V and Φ were randomly initialized by sampling from standard Gaussian

distributions. Due to the high degree of non-convexity in Eq. (5.1), varying the initialization
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on each run produced solutions corresponding to different local minima of the optimization

problem. Thus, after the completion of all the CSGM runs, a diverse set of photo-realistic

high-resolution images could be obtained that were significantly different from each other

while being qualitatively consistent with the same observed low-resolution image.

Despite results that were promising qualitatively, a quantitative validation of the method

was omitted. First, the choice of the data fidelity function J (g, G̃(V,Φ)) as an ℓp-norm was

not justified in terms of the statistics of the noise distribution in the low-resolution image.

Second, the tolerance level for data consistency to accept a high-resolution image estimate

was chosen in an arbitrary fashion irrespective of the measurement noise distribution. It

is therefore difficult to determine the degree to which data consistency is being preserved.

Third, by performing optimization in the latent space V+ instead of V , the PULSE method

allows the generated image to lie outside the range of the pre-trained StyleGAN, and utilizes

the GEOCROSS term to limit the extent to which the range of the StyleGAN is extended.

This is conflicting with our objective of finding data-consistent images that reside in the range

of the StyleGAN, and may result in images not being application-relevant and containing

artifacts [142]. Forth, while the PULSE method, as well as previous studies such as [143,

151, 80], employed the prior assumption that the style latent vectors {vi} follow a standard

multivariate Gaussian distribution, no rigorous quantitative evaluation was performed to

justify the accuracy of this ansatz. While the lack of such quantitative validation may still

be acceptable for a computer vision task where the objective is to obtain diverse photo-

realistic face images from a given low-resolution image, a quantitative assessment of the

method is critical for a proper assessment of tomographic imaging systems.

5.4 Statistical Validation of the Gaussianized Latent

Space in StyleGAN

In this section, a statistical study is described that demonstrates that the underlying as-

sumption of a Gaussian structure in the StyleGAN latent space V+ in the PULSE method

is inaccurate. The validation study was performed using two StyleGAN models trained on

medical image datasets (MRI-StyleGAN and CT-StyleGAN), as well as the open-sourced

StyleGAN model trained on human face images of size 1024 × 1024 [76] (Face-StyleGAN)

that was employed in the PULSE method for SISR [102]. The training of StyleGANs was
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performed by adapting an open-sourced TensorFlow-based code [75]. MRI-StyleGAN was

trained using 60,000 axial knee images of size 256 × 256 pixels extracted from the NYU

fastMRI dataset [146]. CT-StyleGAN was trained using 60,000 X-ray CT chest images of

size 512×512 pixels extracted from the NIH DeepLesion dataset [145]. For both the MRI and

CT StyleGAN models, each image was normalized to lie in the range [0,1] prior to training.

The default training hyperparameters of the open-sourced StyleGAN model were employed.

The MRI-StyleGAN model was trained using 2 NVIDIA TITAN X GPUs, while training

of the CT-StyleGAN model was performed using 4 NVIDIA V100 GPUs. Both the models

were trained for ∼1 day. The MRI-StyleGAN and CT-StyleGAN models along with their

pre-trained weights are provided in the code repository that accompanies this paper [25].

For a quantitative assessment of the trained StyleGAN models, the Fréchet Inception Dis-

tance (FID) [58] was computed. A lower value of the FID score for a GAN indicates better

generative performance. The FID score in each case was computed using 20,000 training

images and 20,000 StyleGAN-generated images. The FID scores for the MRI-StyleGAN and

the CT-StyleGAN were 9.71 and 38.65 respectively. These values fall within the range of

FID scores observed for GANs trained on standard MRI and CT datasets [122]. The FID

score for the Face-StyleGAN as reported in [76] was 4.40. It should be noted, however,

that a definitive metric for the quantitative evaluation of GANs remains an active area of

research [41, 31, 122, 83].

After training the StyleGAN models, the validity of the Gaussian prior assumption on the

latent space V—and thus of the norm constraint in the PULSE CSGM in Eq. (5.1)—was in-

vestigated. The validation study was based on the following well-known theorem on standard

Gaussian distributions [136]:

Theorem 5.4.1. Let a ∈ Rd be a standard Gaussian vector, i.e. a ∼ N (0, Id). Then

∥a∥22 ∼ χ2(d), where d is the degree of freedom of a χ2−distribution.

As a corollary to Theorem 5.4.1, a necessary condition for a style latent vector v to fol-

low a standard Gaussian distribution N (0, Ik) is that ∥v∥22 ∼ χ2(k). With higher values

of the degree of freedom k, the χ2(k) distribution concentrates around the mode given by

max(0, k − 2). To verify whether this condition holds true for the pre-trained MRI, CT

and Face StyleGAN models, 107 random realizations of a style latent vector v = T Gm(z)

were generated by sampling z ∼ N (0, Ik). The probability density function (PDF) of ∥v∥22,
denoted as π(∥v∥22), was then estimated from those realizations. Figure 5.1 shows a com-

parison between π(∥v∥22) and the PDF of the χ2(k) distribution for the MRI, CT and Face
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Figure 5.1: Comparison of π(∥v∥22) with the PDF of χ2(k) for the MRI, CT and Face
StyleGAN models (k = 512). The estimated PDF π(∥v∥22) has heavier tails and differs
significantly from the PDF of χ2(k) for all three models, and thus invalidates the soap
bubble effect argument exploited in PULSE.

StyleGAN models, for k = 512. As expected, the χ2(k) distribution is highly concentrated

around the mode k − 2, i.e. 510. On the contrary, the estimated PDF π(∥v∥22) has much

heavier tails and strongly differs from the PDF of χ2(k) for all three StyleGAN models and

hence it is evident that the soap bubble effect does not manifest in the V latent space.

In summary, this study invalidated the previously-held assumption that v ∈ Rk is a standard

Gaussian random vector, and presents a strong argument against constraining each v to lie

on the spherical surface Sk−1(
√
k). Based on this finding and the limitations of the PULSE

method described in Sec. 5.3, an enhanced version of the PULSE method is proposed for

empirical sampling, hereafter referred to as PULSE++.
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5.5 Generating Multiple Data-Consistent Solutions us-

ing PULSE++

The proposed PULSE++ method is designed to explore the manifold of the StyleGAN more

efficiently as compared to PULSE and produce diverse solutions that are application-relevant

while promoting higher data consistency. The applied modifications and the re-formulation

of the CSGM optimization problem in PULSE++ are detailed below.

5.5.1 Imposing Accurate Priors on Style and Noise Latent Vectors

in StyleGAN

In the PULSE++ method, the style latent vectors in Eq. (5.1) are constrained to lie in V in-

stead of the extended style latent space V+. This ensures that each alternate solution resides

in the range of the StyleGAN. Consequently, the GEOCROSS penalty term is no longer

required since the constraint v = v1 = v2 = · · · = vL is already imposed. Additionally,

regularization of the style latent and noise vectors in PULSE++ is imposed using accurate

statistical knowledge instead of the approximations employed in the PULSE method. To ac-

count for the heavy tails of the estimated PDF π(∥v∥22) in the CSGM optimization problem,

PULSE++ replaces the spherical constraint v ∈ Sk−1(
√
k) with a constraint in an annular

region A defined as

A := {v ∈ Rk|δmin ≤ ∥v∥2 ≤ δmax}. (5.2)

The inner and outer radii δmin <
√
k and δmax >

√
k are chosen such that the probability

of vi lying inside A is equal to a pre-determined parameter γ ∈ (0, 1). Specifically, δmin and

δmax are chosen such that

Πemp(δmin) = 1− Πemp(δmax) =
γ

2
, (5.3)

where Πemp is the empirical cumulative distribution function (ECDF) of ∥v∥2. The hyper-

parameter γ can be chosen based on the desired trade-off between data consistency and the

degree to which the alternate solutions are representative of the training distribution. A

projection operator PA : Rk 7→ A is defined to constrain v in the annular region A described
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in Eq. (5.2), stated as

PA(v) =


δmin

v

∥v∥2
, if ∥v∥2 < δmin,

v, if δmin ≤ ∥v∥2 ≤ δmax,

δmax
v

∥v∥2
, if ∥v∥2 > δmax.

(5.4)

In a conventional CSGM formulation [28], regularization of the latent vectors for which

the statistical distribution is known beforehand is performed by adding a penalty term

that represents the negative log-probability of the density function. In PULSE, however,

regularization on the Gaussian noise latent vectors in Φ was performed by employing the soap

bubble effect and imposing a strict norm constraint, resulting in an approximate Gaussian

prior. In order to use the full knowledge of the prior distribution of Φ, the strict norm

constraint on Φ in Eq. (5.1) was relaxed, and instead a penalty term was added in R(V,Φ)

in the form of a negative log-probability density function of the Gaussian noise latent vectors

in Φ.

Incorporating the modifications to Eq. (5.1) described above, the CSGM optimization prob-

lem in PULSE++ is stated as:

V̂, Φ̂ = argmin
V,Φ

L(V,Φ) := J (g, G̃(V,Φ)) +
1

2

L∑
i=1

∥ϕi∥22

s.t. V ∈ V and vi ∈ A ∀i ∈ {1, . . . , L}, (5.5)

where A is defined in Eq. (5.2).

5.5.2 Two-stage Optimization Approach to Improve Stability and

Data Consistency

Menon et al. [102] observed that jointly optimizing over the style latent vectors in V and

all noise latent vectors in Φ using stochastic gradient descent was unstable and produced

visually unrealistic images. To prevent such instabilities, the PULSE method optimizes only

over the noise latent vectors in Φ corresponding to the 5 lowest resolution levels and keeps
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the other noise latent vectors fixed. While this trick improves the synthesis quality, it sig-

nificantly limits the degree of data consistency that can be achieved. We hypothesize that

the unstable nature of the non-convex CSGM optimization problem when including high-

resolution noise latent vectors in the search space is due to overparameterization, which

allows potentially infinite global minima [109]. Under such circumstances, random initial-

ization may produce global minima solutions that contain artifacts. We propose that the

risk of encountering such artifacts can be mitigated with a better initialization in the style

latent space V before including Φ as optimization variables. There remained a scope for

investigating and mitigating instabilities when optimizing over all noise latent vectors in Φ

in the CSGM optimization problem. When all L vectors in {ϕi}Li=1 are included in the search

space, the CSGM optimization problem in Eq. (5.1) is overparameterized. For example, the

MRI-StyleGAN described in Sec. 5.4 generates images with size N = 2562 = 65536, while

Φ has a total of 109220 variables. Hence, if all the L noise latent vectors in Φ are included

in the search space of Eq. (5.1), the non-convex CSGM optimization problem is overparam-

eterized and may permit infinitely many global minima. Oymak and Soltanolkotabi [109]

demonstrated that in such cases, the iterates obtained using first-order stochastic gradient

methods may converge fast to global minima that are nearest to the initial point. In the

case of ill-posed inverse problems such as image-superresolution or image reconstruction,

these global minima may represent different data-consistent solutions. However, due to the

highly expressive and corrugated nature of the manifold of the StyleGAN [76], many of these

global minima solutions may contain significant artifacts [3]. Since a global minimum solu-

tion would lie close to the initial point, random initialization would increase the likelihood

of producing such undesirable global minima solutions. Instead, if the optimization problem

is initialized at a point lying close to the projection of the measured object on the style la-

tent space before optimization of Φ, the global minimum will be close to the projection and

reduce the risk of unknown artifacts while ensuring data consistency. Towards that end, a

two-stage optimization approach is proposed in PULSE++. In the first stage, optimization

was performed only on V to find a good initial vector in the style latent space V which agrees

well with the measurements, while the noise latent vectors were randomly sampled and kept

fixed. At the end of this stage, the intermediate estimate was denoted as f̂1 := G̃(V̂1,Φ),

where Φ were the randomly initialized noise latent vectors. If the data fidelity of f̂1 did not

satisfy the pre-set tolerance level ϵ1 (c.f. Section 5.5.4), the solution was rejected, otherwise

optimization progressed to the final stage where V and all noise latent vectors in Φ were

jointly optimized. Finally, the approximate solution f̂2 := G̃(V̂2, Φ̂2) was obtained when the
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maximum number of iterations was reached. The approximate solution f̂2 was considered

to be data-consistent if the data fidelity term J (g, f̂2) was less than a more strict tolerance

level ϵ2 (c.f. Section 5.5.4). The complete procedure for performing empirical sampling with

PULSE++ is detailed in Algorithm 2. The function Optimize() in Algorithm 2 which ap-

proximately solved the CSGM optimization problem in each stage is described in the next

section.

Algorithm 2: Empirical sampling with PULSE++

Input: Measurement data g, forward operator H(·), objective function L(V,Φ) from
Eq. (5.5); projection operator PA(V) from Eq. (5.4); annulus parameter γ,

learning rate lr of Adam optimizer, number of steps in first (n
(1)
steps) and second

(n
(2)
steps) optimization stages; number of alternate solutions T ; acceptance

tolerances ϵ1 and ϵ2
Output: Set F̂ of data consistent object estimates

1 F̂← {}
2 for t ∈ {1, . . . , T} do
3 Initialize V[0] and Φ[0] with i.i.d. entries ∼ N (0, 1)

// Optimization over {V} only

4 V̂1 ← Optimize(L(·,Φ[0]), {V}, n(1)
steps)

5 f̂t1 ← G̃(V̂1,Φ
[0])

6 if J (g, f̂t1) > ϵ1 then
7 break /* Reject solution */

8 end
// Joint optimization over {V,Φ}

9 {V̂2, Φ̂2} ← Optimize(L(·, ·), {V̂,Φ[0]}, n(2)
steps)

10 f̂t2 ← G̃(V̂2, Φ̂2)

11 if J (g, f̂t2) ≤ ϵ2 then

12 F̂← F̂ ∪ {f̂t2}
13 end

14 end

15 return F̂

5.5.3 Solution of the CSGM Optimization Problem

The CSGM optimization problem in Eq. (5.5) was approximately solved in a sequential

manner in accordance with the two-stage approach outlined in Sec. 5.5.2. Projected gradient

descent was employed using the Adam method to approximately solve the optimization
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problem. Initially, the optimization variables Θ included only the style latent matrix V,

and the noise latent vectors in Φ were subsequently added to Θ at the end of the first stage

of optimization. The values of the optimization variables Θ[j] at iteration j were first updated

using one step of the Adam algorithm. Denoting the gradient update of V[j] as V[j+ 1
2
], the

projection operator in Eq. (5.4) was then applied independently on each of the L latent

vectors that represented the columns of V[j+ 1
2
]. The projection operations were performed

in order to enforce the necessary constraint on the ℓ2-norm of each column of the style latent

matrix V[j+ 1
2
] that was defined by the annular region A. For notational convenience, these L

independent projection operations will be simply denoted as V[j+1] ← PA(V[j+ 1
2
]). Similarly,

with a slight abuse of notation, {V[j+1],Φ[j+1]} ← PA({V[j+ 1
2
],Φ[j+ 1

2
]}) will indicate the

projection of the latent style vectors V[j+ 1
2
] leaving the latent noise vectors Φ unalterated.

The Adam update followed by the projection operation PA({V[j+ 1
2
],Φ[j+ 1

2
]}) constituted a

single projected-gradient step of the optimization procedure that produced the next iterates

V[j+1] and Φ[j+1]. It should be noted that the objective function in Eq. (5.5) may not

decrease monotonically with each such projected-gradient step[115]. Thus, the current best

estimates V̂i and Φ̂i of Eq. (5.5) were updated with the iterates V[j+1] and Φ[j+1] only if

L(V[j+1],Φ[j+1]) < L(V̂i, Φ̂i), where the subscript i is 1 and 2 for the first stage and second

stage of optimization respectively. The function Optimize() for performing the projected

gradient descent steps as described above is outlined in Algorithm 3.

Algorithm 3: Projected gradient descent optimizer for PULSE++

1 Function Optimize(L(·), Θ, nsteps):

2 Initialize Θ̂← Θ, Θ[0] ← Θ
3 for j ∈ {0, . . . , nsteps} do
4 Θ[j+ 1

2
] ← Adam(L(Θ[j]))

5 Θ[j+1] ← PA(Θ[j+ 1
2
])

6 if L(Θ[j+1]) < L(Θ̂) then

7 Θ̂← Θ[j+1]

8 end

9 end

10 return Θ̂
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5.5.4 Establishing Rules for Accepting Data-Consistent Alternate

Solutions

The tolerances ϵ1 and ϵ2 used in Algorithm 2 are defined via a generalization of the Morozov

discrepancy principle [105] to account for the finite capacity of the generative model G̃ [28].

To this aim, given an object f ∈ RN , sampled from the object distributionD, two embeddings

f1, f2 ∈ RN are constructed as follows. The image f1 = G̃(V̂1,Φ) is the direct embedding of

f on the range of G̃ when the representation error ∥f − G̃(V,Φ)∥22 is minimized only with

respect to the latent style vector V for a randomly chosen (but fixed) Φ. Similarly, the image

f2 = G̃(V̂2, Φ̂2) is the direct embedding of f on the range of G̃ when the representation error

is jointly minimized with respect to both V and Φ. Then the tolerances ϵ1 and ϵ2 are defined

as

ϵi := Ef ,g

[
J (g, f)

]
+ Ef

[
J (Hf , fi)

]
, i = 1, 2. (5.6)

Above, the first term represents the expected value of the data fidelity J over the joint

distribution of objects f and corresponding noisy measurement data g. The second term

stems for the representation error of the GAN and it is given by the expected value over

the object distribution of the mismatch between the output of the imaging operator H ap-

plied to the object f and its embedding fi. For certain measurement noise distributions, the

term Ef ,g

[
J (g,Hf)

]
is analytically defined. For example, in the case of Gaussian additive

noise n ∼ N (0, σ2IN), Ef ,g

[
J (g, f)

]
= M

2
where M is the number of measurements. For

other measurement noise distribution and for the term stemming from representation error,

Eq. (5.6) is numerically evaluated by replacing expectations over the object and data dis-

tribution with a Monte Carlo estimate from samples of a held-out test dataset not included

during training of the StyleGAN.

5.6 Numerical Studies

Numerical studies were conducted to demonstrate the ability of the proposed PULSE++

method to produce multiple data-consistent solutions from the same tomographic measure-

ments. Two stylized tomographic imaging systems were considered: one acquiring incom-

plete Fourier space measurements (Sec. 5.6.1) and the other acquiring X-ray fan-beam CT

projection data (Sec. 5.6.2). The advantage of PULSE++ over PULSE with respect to
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preserving data consistency is established from these numerical studies. The PULSE and

PULSE++ methods were established by adapting an open-source implementation of PULSE

for SISR in PyTorch [103]. Since the training of a StyleGAN does not require any knowl-

edge of the measurement process, the same pre-trained StyleGAN was employed for different

sampling conditions in the PULSE and PULSE++ methods. The network architecture and

pre-trained weights of MRI-StyleGAN and CT-StyleGAN were transferred from TensorFlow

to PyTorch [27].

For purposes of comparison, alternate solutions were also computed from incomplete Fourier

space measurements by implementing a recently proposed approximate posterior sampling

method [68] that employs a score-based diffusion model and annealed Langevin dynam-

ics [123]. This approximate posterior sampling method will be referred to as diffusion poste-

rior sampling (DPS) in the studies below. The DPS method requires training a state-of-the-

art score-based generative model known as NCSNv2 [124], which was performed by adapting

an open-sourced implementation. The same training dataset of axial knee MRI images that

was used to train MRI-StyleGAN was also employed to train the NCSNv2 model. The DPS

method was performed by adapting a previous implementation [67]. Similar to StyleGAN,

the NCSNv2 model is also trained independent of the measurement process, and hence DPS

was implemented with the same pre-trained NCSNv2 for different sampling conditions. The

code repository for the numerical studies in our paper has been published [25].

5.6.1 Stylized Imager that Acquires Incomplete Fourier Space Mea-

surements

A stylized imaging system that acquires incomplete 2D Fourier space (or k-space) mea-

surements was considered. It should be noted that the goal of these preliminary studies

was only to demonstrate and compare the performance of the proposed PULSE++ method

against the original PULSE method and score-based posterior sampling, with respect to pro-

ducing multiple data-consistent solutions from the same measurement data acquired under

identical conditions. Hence, there is no attempt to model the real-world complexities of

data-acquisition in MRI. Two different axial knee images of size 256 × 256 that belong to

the NYU fastMRI dataset were considered to serve as objects f , as shown in Fig. 5.2. It

should be noted that the images representing these objects, denoted as Knee 1 and Knee 2,

were not included in the training dataset for the MRI-StyleGAN and the NCSNv2 models.
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Incomplete and noisy k-space data were simulated from these two objects for demonstrating

the numerical studies. The acceleration factor was defined as R = N/M > 1, where M

denotes the number of k-space samples measured and N is the dimension of the object.

The imaging operator was modeled as H = MF , where F denotes the 2D Fast Fourier

Transform (FFT) and the binary matrix M ∈ {0, 1}M×N represents a random Cartesian

k-space sampling mask. The measurement noise n ∈ EM was sampled from an i.i.d complex

Gaussian distribution CN (0, σ2IM) [8], i.e. the real and imaginary components of n are

Gaussian with zero mean and σ2

2
variance. In the numerical experiments, the size of the im-

age was set to N = 2562. Two different acceleration factors R = 3, 4 and two levels of noise

σ = 0.03, 0.05 were investigated. The random Cartesian sampling masks were generated us-

ing open-sourced codes [147]. The MRI-StyleGAN model described in Sec. 5.4 was employed

for performing empirical sampling with PULSE and PULSE++ using the same k-space data

for each combination of σ and R. Since the measurement noise was i.i.d. Gaussian, the data

fidelity term was specified as J (g, f̂) = 1
σ2∥g − Hf̂∥22, where g ∈ RM is the k-space data

and f̂ ∈ RN denotes the estimated object. The learning rate lr of the Adam optimizer in

the CSGM formulation for the PULSE and PULSE++ methods was set as 0.4, similar to

the original implementation of PULSE in [102]. The total number of iterations performed to

obtain each alternate solution was 5000, out of which the first n
(1)
steps = 4500 steps involved

optimization over only V, followed by joint optimization over V and Φ for the remaining

n
(2)
steps = 500 iterations. The initial step size η for annealed Langevin dynamics in DPS [123]

was 5 × 10−8. An alternate solution obtained using either PULSE or PULSE++ was com-

pleted in ∼5 minutes, while each alternate solution from the score-based posterior sampling

method using the NCSNv2 model was computed in ∼7 minutes, with all the experiments

performed using an NVIDIA 1080 Ti GPU.

5.6.2 CT Imaging System with Limited Angular Range

Numerical studies were also performed with incomplete and noisy X-ray CT measurements

from a stylized CT imaging system. The objective of these studies was to demonstrate the

ability of the PULSE++ method to perform empirical sampling in higher-dimensional spaces

(resolution 512 × 512 pixels) and imaging systems with non-Gaussian measurement noise

distribution, in a computationally feasible manner. The CT-StyleGAN model introduced

in Sec. 5.4 was employed for these studies to find alternate solutions from the same X-ray
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Knee 1 Knee 2

Figure 5.2: The objects Knee 1 and Knee 2 with size 256 × 256 from which noisy and
incomplete k-space measurements were generated. Both the objects are displayed in the
grayscale range of [0, 1].

photon projection data. Two separate CT lung images of size 512× 512 pixels were selected

from the NIH DeepLesion dataset to represent objects f from which measurement data were

simulated. It should be noted that these images were not included during training of the

StyleGAN. The objects, denoted as Lung 1 and Lung 2, are shown in Fig. 5.3. The maximum

linear attenuation coefficient values in Lung 1 and Lung 2 were 0.046 mm−1 and 0.063 mm−1,

respectively. The physical unit of each pixel (px) was 0.82 mm [145]. A fan-beam geometry

with a linear detector array and a monoenergetic source was assumed. Projection data were

simulated for 120 views spanning the limited angular range [0◦, 119◦]. The noiseless X-ray

measurements ḡ ∈ RM from an object f ∈ RN were modeled as [42]

ḡ = I0 exp(−Hf), (5.7)

where the system matrix H ∈ EM×N is the fan-beam projector and I0 is the intensity of

an unattenuated beam. The fan-beam projector H was implemented using the Air Tools II

library [56]. The noisy intensity measurements g ∈ RM were Poisson-distributed with a mean

of ḡ [91]. Higher values of I0 result in a higher signal-to-noise ratio (SNR) in the intensity

measurements. Since the aim of this simulation study was primarily to assess the ability

of the PULSE++ method to perform empirical sampling with high-dimensional objects,

additional physical factors required to accurately model a real-world CT imaging system
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Lung 1 Lung 2

Figure 5.3: The objects Lung 1 and Lung 2 with size 512 × 512 from which noisy and
incomplete X-ray projection data were generated. Both the objects are displayed in the
grayscale range of [0, 1].

such as beam spectrum, photon scattering and dark current effects were not considered.

Numerical studies were conducted using simulated projection data with values of I0 = 103

and I0 = 105, which correspond to measurement data that have different levels of photon

noise. The data fidelity term J (g, f̂) in Eq. (5.5) was defined as the Kullback-Leibler (KL)

divergence between the noisy measurement data g and the forward projection data ĝ =

I0 exp(−Hf̂) [70]. The number of gradient descent iterations was n
(1)
steps + n

(2)
steps = 1000, of

which the initial n
(1)
steps = 900 iterations were performed in the style latent space V only.

Each CSGM run of the PULSE++ method with the CT measurement data completed in

∼ 9 minutes on an NVIDIA 1080 Ti GPU.

5.6.3 Ablation Study

An ablation study was performed to critically assess the impact of each of the enhancements

introduced to develop the PULSE++ method from the baseline PULSE method. Interme-

diate methods that represent each of these enhancements were implemented as described

below:
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PULSE1

The inaccurate strict norm constraint vi ∈ Sk−1(
√
k) in Eq. (5.1) was replaced with the

constraint vi ∈ A, where A is an annulus as defined in Eq. (5.2). Additionally, the constraint

ϕi ∈ Spi−1(
√
pi) denoting an approximate Gaussian prior in PULSE was substituted with

the statistically consistent log-probability density function penalty:

V̂, Φ̂ = argmin
V,Φ

L(V,Φ) :=
{
J (g, G̃(V,Φ)) +R(V,Φ)

}
,

s.t.V ∈ V+ vi ∈ A ∀i ∈ {1, . . . , L}, (5.8)

where the regularization term was given by

R(V) = λcCROSS(V) +
1

2

L∑
i=1

∥ϕi∥22. (5.9)

Above, the pairwise Euclidean distance CROSS(V) ≡ ∑L−1
i=1

∑L
j=i+1 ∥vi − vj∥22 [102] was

used in place of the GEOCROSS term in the original PULSE formulation since latent

vectors in A may have different norms, and λc is the regularization hyperparameter.

PULSE2

The PULSE optimization problem in Eq. (5.1) is performed in the style latent space V
instead of V+ to ensure the solution lies exactly on the StyleGAN generator’s manifold and

the GEOCROSS penalty term was removed.

PULSE3

The PULSE1 optimization problem in Eq. (5.8) was performed in the style latent space V
instead of V+ to ensure the solution lies exactly on the StyleGAN generator’s manifold and

the CROSS penalty term was removed.
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PULSE4

The PULSE optimization problem in Eq. (5.8) was performed in the style latent space V and

all the noise latent vectors in Φ were included as optimization variables. The optimization

problem was approximately solved in two stages with Φ included as optimization variables

only in the second stage.

The combination of all the enhancements as described above represents the PULSE++

method.

5.6.4 Uncertainty Quantification

The uncertainty map f̂UM was computed as the pixel-wise standard deviation of the alternate

solutions {f̂t}Tt=1, where T is the number of alternate solutions. Additionally, uncertainty

maps were computed separately for the measurable and null space components [19] of the

alternate solutions. The measurable and null space component of an object f ∈ RN in the

domain of system matrix H ∈ EM×N are defined as fmeas = H+Hf and fnull = [IN −H+H]f

respectively, where H+ is the Moore-Penrose pseudoinverse of H. The null space component

fnull is “invisible” to H, and only fmeas contributes to the forward data Hf . The uncertainty

maps of the measurable and null space components of alternate solutions were denoted as

f̂UM
meas and f̂UM

null respectively. If multiple solutions are consistent with the same measurement

data, it is expected that the variability expressed by f̂UM
null will be higher than that expressed

by f̂UM
meas. Additionally, three figures-of-merit (FOMs) were computed from the uncertainty

maps to characterize the degree of variability associated with the alternate solutions obtained

via each method. The total uncertainty FOM ∥f̂UM∥22 is the total estimated variance from

all the pixels in an alternate solution. Similarly, the uncertainty FOMs associated with

the measurable and null space components of alternate solutions are ∥f̂UM
meas∥22 and ∥f̂UM

null ∥22
respectively. It should be noted that, in theory, ∥f̂UM∥22 = ∥f̂UM

meas∥22 +∥f̂UM
null ∥22 since f̂meas and

f̂null are orthogonal to each other. However, there may be small discrepancies between those

quantities due to floating point arithmetic and numerical approximations in the iterative

computation of f̂meas and f̂null [19].
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5.7 Results

5.7.1 Empirical Sampling from Fourier Space Measurements

Visual Assessment

Samples of alternate solutions generated by PULSE++ (γ = 0.1), PULSE (λg = 104) and

DPS (η = 5 × 10−8) from the same k-space data produced by Knee 1, corresponding to

R = 3 and σ = 0.03, are shown in Fig. 5.4. For each method, the alternate solutions exhibit

considerable diversity while being produced by use of the same measurement data. However,

among the three methods, only the alternate solutions produced by the PULSE++ method

satisfied the stipulated data consistency criterion based on Morozov’s discrepancy principle.

This establishes an advantage of the PULSE++ method over PULSE and DPS in preserving

the data consistency of alternate solutions.

Figure 5.5 shows samples of data-consistent alternate solutions obtained with PULSE++

{γ = 0.1} from k-space produced by Knee 1 when the sampling pattern or the noise level

is varied, e.g. with sampling conditions {R = 3, σ = 0.05} and {R = 4, σ = 0.03}. Ad-

ditionally, using the same pre-trained StyleGAN model, data-consistent alternate solutions

were obtained with PULSE++ {γ = 0.9} from k-space data with R = 3 and σ = 0.03

corresponding to Knee 2 (Fig. 5.2), as shown in Fig. 5.6.

Ablation Study

An ablation study was performed to comprehensively assess the improvement in data consis-

tency yielded by the PULSE++ method, as outlined in Sec. 5.6.3, using alternate solutions

from the k-space data corresponding to Knee 1 and parameters R = 3 and σ = 0.03. For

evaluation, 100 alternate solutions were computed using each of the methods PULSE (λg =

2 × 105), PULSE1(γ = 0.1, λc = 103), PULSE2, PULSE3(γ = 0.1), PULSE4(λg = 2 × 105)

and PULSE++ (γ = 0.1). A box plot of the data fidelity values obtained with each method

is shown in Fig. 5.7. It was observed that the improved statistical assumptions about the

style latent vectors V and noise latent vectors Φ produced significantly lower data fidelity

values with less variance, resulting in higher data consistency and stability. The combination
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Figure 5.4: Samples of alternate solutions obtained from the same k-space data produced
from Knee 1 for R = 3 and σ = 0.03. Zoomed-in images are shown below each alternate
solution that demonstrate distinct structures. However, the alternate solutions produced by
PULSE have significantly higher data fidelity compared to PULSE++ and DPS methods,
which produced data-consistent solutions. All the alternate solutions are displayed in the
grayscale range [0, 1].
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Figure 5.5: Alternate data-consistent solutions obtained using PULSE++ from k-space data
produced by Knee 1 for different sampling conditions {R = 3, σ = 0.05} (top) and {R = 4,
σ = 0.03} (bottom) using the same MRI-StyleGAN model as in Fig. 5.4. Zoomed-in images
are shown below each alternate solution that demonstrate distinct structures. The alternate
solutions are displayed in the grayscale range [0, 1].
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Knee 2, R=3, σ=0.03, ε =68547.82

Figure 5.6: PULSE++ can produce alternate data-consistent solutions for k-space data from
different objects within the same distribution on which the StyleGAN is trained, as shown
here for Knee 2. Zoomed-in images are shown below each alternate solution that demonstrate
distinct structures. All the alternate solutions are displayed in the grayscale range [0, 1].

of all the enhancements introduced in PULSE++ leads to more stable solutions that lie in

the range of the StyleGAN generator while being data-consistent.

Comparison of Data Consistency

The data fidelity from 100 samples obtained using the PULSE++, PULSE and DPS methods

corresponding to k-space from Knee 1 with parameters R = 3 and σ = 0.03 is shown

in the box plot in Fig. 5.8. It was observed that the PULSE++ method produced data-

consistent solutions, while the PULSE method produced significantly higher data fidelity

values and could not achieve the desired data consistency. This demonstrated the impact of

imposing more accurate statistical assumptions on the style and noise latent spaces of the

StyleGAN and introduction of the stable two-stage optimization procedure in PULSE++.

Along with PULSE++, the DPS method also achieved data-consistent solutions which are

visually plausible, as demonstrated in Fig. 5.4.
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Figure 5.7: A box plot of data fidelity values of alternate solutions obtained with different
methods from the k-space corresponding to Knee 1 with R = 3 and σ = 0.03. For each
method, data fidelity values of 100 alternate solutions were plotted. The methods include
PULSE, the different variants of PULSE as described in Sec. 5.6.3 that represent each en-
hancement and PULSE++. The plot demonstrates the improvement in data consistency
and stability achieved with the modifications introduced in regularization and optimization
space in PULSE to produce the PULSE++ method.

Uncertainty Quantification

From each set of k-space data, uncertainty maps were computed from T = 100 alternate

solutions obtained with each of the three methods – PULSE++, PULSE and DPS. The

uncertainty maps corresponding to Knee 1 and system parameters R = 3 and σ = 0.03 are

shown in Fig. 5.9. For the PULSE++ and DPS methods, it was observed that uncertainty

was primarily due to variations in the null space component, while uncertainty estimated

using PULSE is mainly due to variations in the measurable component. This demonstrates

that the canonical PULSE method is unsuitable for uncertainty estimation and confirms the

need for PULSE++ for more accurate uncertainty estimation.
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Figure 5.8: A box plot of data fidelity values of alternate solutions obtained using PULSE,
PULSE++ and DPS methods from the k-space corresponding to Knee 1 with R = 3 and σ =
0.03. The plot demonstrates the ability of PULSE++ to achieve data-consistent solutions
as opposed to PULSE, and validates the modifications introduced in regularization and
optimization space in PULSE++. Alternate solutions obtained using the DPS method are
also data-consistent.

Table 5.1 summarizes the uncertainty FOMs of the alternate solutions and their measurable

and null space components, corresponding to PULSE++, PULSE and DPS methods for

objects Knee 1 and Knee 2 with different system parameter settings. In both PULSE++

and DPS, the uncertainty FOM in the null space component was significantly higher than

compared to that in the measurable component, while it was the opposite for the PULSE

method. This is consistent with the uncertainty maps in Fig. 5.9. As expected, when the

acceleration factor R was increased, there was a decrease in the uncertainty FOM in the

measurable component while the uncertainty FOM in the null space component increased.

Predictably, in general, an increase in the noise level σ for the same value of R also increased

the uncertainty FOM in the measurable component of the alternate solutions. Furthermore,

for the same acceleration factor R and noise level σ, both PULSE and DPS methods pos-

sessed a consistently higher uncertainty FOM in the measurable component as compared to

PULSE++. This corroborates that the PULSE++ method significantly reduces the risk of

data inconsistency for generating alternate solutions.
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Figure 5.9: Uncertainty maps (a) f̂UM
meas, (b) f̂UM

null and (c) f̂UM from the same k-space data
produced by Knee 1 with R = 3 and σ = 0.03. The grayscale range of each type of
uncertainty map is [0,0.12]. The PULSE++ method has significantly lower uncertainty
in the measurable component compared to the PULSE method, indicating enhanced data
consistency in alternate solutions produced by PULSE++.

5.7.2 Empirical Sampling from Limited-Angle CT Measurements

Visual Assessment

Samples of data-consistent alternate solutions obtained with the PULSE++ method using

the same CT-StyleGAN model are shown in Fig. 5.10, corresponding to limited-angle projec-

tion data from Lung 1 (I0 = 105, I0 = 103) and Lung 2 (I0 = 105). The alternate solutions in
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Table 5.1: Summary of uncertainty FOMs of alternate solutions from the same k-space data
for different values of R and σ

Object Method R σ ∥f̂UM
meas∥22 ∥f̂UM

null ∥22 ∥f̂UM∥22

Knee 1

PULSE++ 3 0.03 2.31 11.89 14.20
PULSE 3 0.03 103.42 41.75 145.17
DPS 3 0.03 7.15 28.26 35.41

PULSE++ 3 0.05 3.56 11.53 15.09
PULSE 3 0.05 86.35 41.62 127.98
DPS 3 0.05 11.68 30.31 41.99

PULSE++ 4 0.03 1.41 19.60 21.01
PULSE 4 0.03 84.63 74.09 158.72
DPS 4 0.03 8.32 62.45 70.77

Knee 2

PULSE++ 3 0.03 1.54 11.94 13.48
PULSE 3 0.03 48.12 31.70 79.82
DPS 3 0.03 6.90 18.94 25.84

PULSE++ 3 0.05 2.73 10.48 13.21
PULSE 3 0.05 48.69 35.19 83.88
DPS 3 0.05 10.17 20.92 31.09

PULSE++ 4 0.03 1.21 16.33 17.54
PULSE 4 0.03 34.83 48.34 83.17
DPS 4 0.03 5.33 36.82 42.15

each case displayed considerable variability in fine-scale structures. This illustrates the abil-

ity of the proposed PULSE++ method to produce diverse data-consistent solutions from the

same measurement data for high-dimensional objects and containing Poisson noise, which is

computationally infeasible with currently available posterior sampling methods [38].

Uncertainty Quantification

Uncertainty maps were computed for T = 100 alternate solutions corresponding to projection

data from Lung 1 and Lung 2 with I0 = 105 and I0 = 103 obtained using PULSE++, along

with their measurable and null space components in the domain of the fan-beam projector

H. The uncertainty maps for Lung 1 are shown in Fig. 5.11. The total uncertainty for the

alternate solutions and their measurable and null space components for both Lung 1 and

Lung 2 are shown in Table 5.2. Again, it was observed that the uncertainty in the alternate
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Figure 5.10: Alternate data-consistent solutions obtained using the PULSE++ method using
the CT-StyleGAN model under different settings, for projection data from Lung 1 (I0 = 105,
I0 = 103) and Lung 2 (I0 = 105). Zoomed-in images from the alternate solutions demonstrate
diversity in a number of fine-scale structures. The grayscale range of the alternate solutions
is [0,1].
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Figure 5.11: Uncertainty maps (a) f̂UM
meas, (b) f̂UM

null and (c) f̂UM obtained with PULSE++ from
CT measurements corresponding to Lung 1 for I0 = 105 and I0 = 103. The grayscale range
of each type of uncertainty map is [0,0.31]. It is evident that in both cases, the uncertainty
is primarily in the null space component. The variability in the measurable component is
higher for I0 = 103 due to a lower SNR in the projection data.

solutions was primarily due to variations in their null space component. Since the projection

data for I0 = 105 had higher SNR, the uncertainty FOM in the measurable component was

expectedly lower as compared to that for I0 = 103.

Table 5.2: Summary of uncertainty FOMs of alternate solutions obtained with PULSE++
from the same projection data using different values of I0

Object I0 ∥f̂UM
meas∥22 ∥f̂UM

null ∥22 ∥f̂UM∥22

Lung 1
105 205.30 297.95 504.08
103 239.74 281.09 521.51

Lung 2
105 124.00 404.64 530.15
103 147.61 307.55 455.98
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5.8 Summary

In this work, an empirical sampling method, called PULSE++, was proposed that employed

generative model-constrained reconstruction with a StyleGAN to obtain multiple objects

that are consistent with the same acquired tomographic measurement data. The proposed

method represents an extension of the PULSE method that was originally developed for

single-image super-resolution applications, but employs improved statistical assumptions re-

garding the StyleGAN latent space and methods to improve the stability of the optimization

problem. It was demonstrated that the PULSE++ method was able to find data-consistent

objects, whereas the PULSE method could not. Uncertainty maps were computed, and it was

observed that the PULSE++ method consistently estimated lower uncertainty in the mea-

surable space component compared to PULSE and a state-of-the-art diffusion model-based

posterior sampling method (DPS), which suggests that PULSE++ is more suitable to per-

form reliable uncertainty quantification. Additionally, it was illustrated that the PULSE++

method is scalable and performs well with different measurement noise distributions.

The proposed PULSE++ method is general and, in principle, can be applied to any tomo-

graphic imaging system. While the studies in this paper concerned with two-dimensional

imaging systems, the PULSE++ method can be extended to three-dimensional imaging

systems by use of three-dimensional StyleGAN architectures [61]. Furthermore, the pro-

posed framework may be readily adapted for use with future style-based deep generative

models [78, 74].

The use of a StyleGAN in the PULSE++ method presents certain challenges. The StyleGAN

must be sufficiently well-trained and should accurately represent the to-be-imaged object dis-

tribution. This can be challenging in diagnostic imaging applications, where the objects can

contain varying pathologies that may not be fully represented in the StyleGAN training

data [122, 41]. As such, the representation error of the StyleGAN should be acknowledged

when employing PULSE++. However, because the PULSE++ method is intended to facil-

itate early-stage assessments of new imaging technologies, this representation error may be

more tolerable than it would be if it was intended as an approximate Bayesian reconstruction

method for clinical use.

There remain additional topics for future studies. In the presented studies, the true imaging

operator was assumed to be known. When the goal is to facilitate the assessment of imaging
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technologies in virtual imaging studies, this may not be a limitation. However, the impact

of modeling errors on the performance of the PULSE++ method when applied to experi-

mental measurements remains an important topic for investigation [113]. Additionally, it

will be important to explore the application of the PULSE++ method for analyzing image

reconstruction instabilities [49, 23] and enabling adaptive imaging procedures [18, 39].
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Chapter 6

Conclusion

In this dissertation, we developed and investigated machine learning and deep learning meth-

ods for advancing tomographic image reconstruction, guided by modern generative models

and fundamental principles of image science. We explored the symbiotic relationship be-

tween deep learning and image science which enables the development of more efficient

neural network-based methods for computer vision tasks and new assessments of medical

imaging systems.

In Chapter 3, we implemented generative model-constrained image reconstruction for ill-

posed tomographic imaging problems by use of generative adversarial networks (GANs). We

generalized the image-adaptive GAN-based reconstruction framework (IAGAN) for image

restoration tasks in computer vision to an image reconstruction task involving tomographic

imaging operators. The IAGAN method enabled imposition of stronger priors learned by

state-of-the-art GANs such as ProGANs as compared to employing sparsity-promoting penal-

ties only, while removing the possibility of plausible false structures that may be introduced

due to representation error in GANs. Furthermore, we proposed a novel regularization tech-

nique in which a total variation (TV) penalty is added to the IAGAN objective function in-

stead of performing early stopping to circumvent issues arising due to semi-convergence. The

proposed method, termed as IAGAN-TV, improved upon the canonical IAGAN method with

higher performance in terms of traditional image quality metrics such as root mean square

error (RMSE) and structural similarity (SSIM), and mitigated the need for early stopping

with improved convergence properties. Using numerical studies for accelerated MRI, the per-

formance of the IAGAN-TV method was compared with a traditional sparsity-based image

reconstruction method (PLS-TV) and a generative model-constrained reconstruction method

based on invertible neural networks (INNs) which theoretically possess zero representation

error but with lower image synthesis quality and scalability as compared with GANs. The

IAGAN-TV method demonstrated its ability to preserve fine structures in the image that
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are smoothed by PLS-TV, and maintained competitive performance in terms of traditional

image-quality metrics as compared to the INN-based method. The generalization of the

IAGAN-TV method was illustrated with experiments where a clear domain shift existed

(adult brain vs pediatric brain), and the stability of the IAGAN-TV method was established

using bias-variance analysis.

In Chapter 4, we presented a formal definition of hallucinations in ill-posed inverse problems

using linear operator theory to quantify false structures that arise due to inaccurate priors.

This definition was based on the mathematics of decomposition of objects into measurable

and null components, which is a fundamental principle of image science. Using numerical

studies with Fourier space measurements, it was demonstrated that traditional error maps

may be insufficient to isolate false structures that originate only due to the imposed prior,

while the proposed hallucination maps enabled identification and quantification of such false

structures. Additionally, the concept of specific hallucination maps to identify task-specific

hallucinations was demonstrated with a proof-of-concept study. Both data-driven and non-

data-driven reconstruction methods were investigated to analyze hallucinations produced by

them. It was observed that when the measurement data is out-of-distribution, end-to-end

reconstruction networks such as the U-Net may be prone to producing false structures as

quantified by hallucination maps. This illustrated how hallucination maps can be employed

in virtual imaging trials for assessing the stability and generalization performance of deep

learning-based reconstruction methods.

In Chapter 5, we proposed PULSE++, a method to produce multiple data-consistent so-

lutions of ill-posed tomographic image reconstruction problems by mining the manifold of

a StyleGAN generator. We extended the PULSE method (Photo Upsampling using Latent

Space Exploration) introduced in single-image super-resolution (SISR) tasks by improving

the accuracy of the imposed priors on the StyleGAN latent space and stabilizing the opti-

mization method, which significantly improved data consistency of the alternate solutions.

We illustrated how the PULSE++ method can produce multiple data-consistent solutions

by performing numerical studies with different stylized imaging systems at scale (MRI and

X-ray CT) and with different measurement noise distributions, such as Gaussian and Poisson

distributions. The ability of PULSE++ to produce multiple data-consistent solutions en-

abled new assessments of imaging systems, such as uncertainty quantification and computing

corresponding figures-of-merit (FOMs).
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Many topics remain for future investigation. It is critical to evaluate GANs and modern

deep generative models (DGMs) with respect to diagnostic tasks [83, 41] for objectively

assessing the accuracy of the prior imposed in generative model-constrained reconstruc-

tion methods. Since many practical imaging systems are three-dimensional, the viability of

generative model-constrained methods, such as by use of 3D-StyleGANs [61], needs to be

studied. Moreover, it will be crucial to investigate generative model-constrained reconstruc-

tion using evolved DGMs, such as advanced StyleGANs [76, 77], vector-quantized variational

autoencoders (VQ-VAEs) [114], denoising diffusion probabilistic models (DDPMs) [60, 38],

among others. The computation of more informative FOMs from hallucination maps, such

as probability of hallucination relevant to a particular task with a given imaging system

and reconstruction method, remains an important challenge. Finally, it will be important

to investigate the utility of multiple data-consistent solutions available using PULSE++ for

analyzing image hallucinations and enabling adaptive imaging [18].
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Appendix A

Examples of measurement space

hallucination maps

The measurement space hallucination map is denoted as

f̂HM
meas ≡ f̂meas − f̂tp, (A.1)

which describes the consistency between the measurement component of the reconstructed

image f̂meas with respect to the truncated pseudoinverse solution f̂tp that can be stably

obtained from the measurement data g. Furthermore, unlike the null space hallucination

map, the computation of f̂HM
meas does not require the knowledge of the true object f . On the

other hand, the error map between f̂meas and fmeas is a similar but different error quantity

that lies in the measurement space N⊥
P (H) and requires the knowledge of f :

f̂EM
meas ≡ f̂meas − fmeas. (A.2)

In some cases, f̂HM
meas and f̂EM

meas may not convey the same information due to the differences that

can exist between fmeas and f̂tp. These differences arise when there is significant measurement

noise in the imaging system or due to modeling error in H, or both. With the true imaging

operator denoted as H̃ and the assumed imaging operator as H, Eq. (2.3) can be re-written

as

g = H̃f + n. (A.3)

Accordingly, f̂tp can be expressed as

f̂tp = H+
Pg ≈ H+

P (H̃f + n) = H+
P H̃f + H+

Pn. (A.4)
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On the other hand, fmeas is represented as

fmeas ≡ H+
PHf . (A.5)

It can be observed from Eq. (A.4) and Eq. (A.5) that, when either or both of the quantities

||n||22 and ||H − H̃||22 is non-trivial, ||f̂tp − fmeas||22 is likely to be significant. In such cases,

f̂HM
meas and f̂EM

meas may represent different information.

Figure S.A.1 shows examples of measurement space hallucination maps for images recon-

structed by the U-Net method corresponding to an in-distribution (IND) object and an

out-of-distribution (OOD) object. It can be observed that the measurement component er-

ror map has appreciable differences compared to the measurement space hallucination map.

These differences can be attributed to the presence of non-trivial measurement noise as

well as additional phase noise disturbance during simulation of the k-space data resulting in

model error, since the phase noise is unknown and assumed to be zero during reconstruction.

The measurement space hallucination maps as shown here may provide an insight into how

well a given reconstruction method maintains data consistency and be compared with other

reconstruction methods.
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Figure A.1: Measurement space hallucination maps for reconstructed images using the U-
Net method corresponding to an IND (above) and an OOD (below) object. Note that
the measurement component error map and the measurement space hallucination map are
appreciably different. The red arrows point towards a region in each type of object where
such differences can be clearly seen.
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Appendix B

Invertible transformation between

style latent spaces in StyleGAN

The vector w ∈ Rk in the latent space W is produced by passing the initial latent vector

z ∈ Rk through the fully-connected mapping network Gm [76]. The final layer of the network

Gm consists of the point-wise non-linear LeakyReLU activation function [99] with parameter

0.2, i.e. LeakyReLU0.2(·). The inverse of the function LeakyReLU0.2(·) is the function

LeakyReLU5.0(·). Consequently, the output w′ ∈ Rk of the mapping network Gm that just

precedes the final non-linear activation layer LeakyReLU0.2(·), can be obtained as w′ ≡
LeakyReLU5.0(w). The mean vector µw′ and covariance matrix Σw′ were estimated by

computing the sample mean and sample covariance respectively from 107 random samples

of w′. These samples were generated by randomly sampling from z ∼ N (0, Ik), and then

passing them through the mapping network Gm followed by inverting the final LeakyReLU

activation function. Subsequently, a whitening transformation is applied on the vector w′ to

produce the resultant vector v ∈ Rk in latent space V as

v ≡ Σw′
− 1

2 (w′ − µw′). (B.1)

Thus, the invertible transform function T : Rk → Rk from the latent space W to the latent

space V is expressed as

v = Σw′
− 1

2 (LeakyReLU5.0(w)− µw′)

= T (w).
(B.2)
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