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1 Introduction

Life is full of optimization problems. We are constantly searching for ways
to minimize cost, time, energy, or some other valuable resource, or maximize
performance, profit, production, or some other desirable goal, while satisfying
the constraints that are imposed on us. Optimization problems are interesting
as there are frequently a very large number of feasible solutions that satisfy
the constraints; the challenge lies in searching through this vast solution space
and identifying an optimal solution. When the number of solutions is too large
to explicitly look at each one, two search strategies, branch-and-bound [4] and
branch-and-cut [23], have been found to be exceptionally useful.

Branch-and-bound uses a search tree to pinpoint an optimal solution. (Note
there may be more than one optimal solution.) If the entire tree were gener-
ated, every feasible solution would be represented by at least one leaf node.
The search tree is traversed and a relaxed variation of the original problem
is solved at each node. When a solution to the relaxed subproblem is also a
feasible solution to the original problem, it is made the incumbent solution. As
other solutions of this type are found, the incumbent is updated as needed so
as to always retain the best feasible solution found thus far. When the search
tree is exhausted, the current incumbent is returned as an optimal solution.

If the number of solutions is too large to allow explicitly looking at each one,
then the search tree is also too large to be completely explored. The power of
branch-and-bound comes from its pruning rules, which allow pruning of entire
subtrees while guaranteeing optimality. If the tree is pruned to an adequately
small size, the problem becomes soluble and can be solved to optimality.

Branch-and-cut improves on branch-and-bound by increasing the probability
of pruning. At some or all of the nodes, cutting planes [23] are added to tighten
the relaxed subproblem. These cutting planes remove a set of solutions for the
relaxed subproblem. However, in order to ensure optimality, these cutting
planes are designed to never exclude any feasible solutions to the current
unrelaxed subproblem.

While adding cutting planes can substantially increase the amount of time
spent at each node, these cuts can dramatically reduce the size of the search
tree and have been used to solve a great number of problems that were previ-
ously insoluble.

Branch-and-bound and branch-and-cut are typically implemented in depth-
first fashion due to its linear space requirement and other favorable features
[40]. However, depth-first search can suffer from the problem of exploring sub-
trees with no optimal solution, resulting in a large search cost. A wrong choice
of a subtree to explore in an early stage of a depth-first search is usually diffi-



cult to rectify without exploring the entire search space of the chosen subtree.
Much effort has been devoted to addressing this issue in depth-first search
in general. Branching techniques [4], heuristics investigations [37], and search
techniques such as limited discrepancy [19] and randomization and restarts
[16] have been developed in an effort to combat this persistent problem.

In this paper, we introduce a linear search strategy to overcome the problem
of making wrong choices in depth-first branch-and-bound for optimization
problems while keeping memory requirements nominal. We refer to this linear
search strategy as cut-and-solve and demonstrate it on linear programs. Being
linear, there is no search tree, only a search path that is directly traversed. In
other words, there is only one child for each node, so there is no need to choose
which child to traverse next. We search for a solution along a predetermined
path. At each node in the search path, two relatively easy subproblems are
solved. First, a relaxed solution is found. Then a sparse problem is solved. In-
stead of searching for an optimal solution in the vast solution space containing
every feasible solution, a very sparse solution space is searched. An incumbent
solution is found at the first node and modified as needed at subsequent nodes.
When the search terminates, the current incumbent solution is declared to be
an optimal solution. In this paper, we prove the optimality and completeness
of the cut-and-solve strategy.

The paper is organized as follows. In the next section, branch-and-bound and
branch-and-cut are discussed in greater detail. In the following section, the
cut-and-solve strategy is described and compared with these prevalent tech-
niques. Next, we illustrate this strategy by applying it to a simple linear pro-
gramming problem. Then we demonstrate how cut-and-solve can be utilized
by implementing an algorithm for the Asymmetric Traveling Salesman Prob-
lem (ATSP). (The ATSP is the NP-hard problem of finding a minimum-cost
Hamiltonian cycle for a set of cities in which the cost from city 7 to city j may
not necessarily be equal to the cost from city j to city i.) We have quickly pro-
duced an implementation of this algorithm and compare it with branch-and-
bound and branch-and-cut ATSP solvers. Our tests show that cut-and-solve is
competitive with these state-of-the-art solvers. This paper is concluded with
a discussion of this technique and related work. An early version of this paper
appeared in [9].

2 Background

In this section, we define several terms and describe branch-and-bound and
branch-and-cut in greater detail, using the Asymmetric Traveling Salesman
Problem (ATSP) as an example.



Branch-and-bound and branch-and-cut have been used to solve a variety of
optimization problems. The method we present in this paper can be applied
to any such problem. However, to make our discussion concrete, we will nar-
row our focus to Linear Programs (LPs). An LP is an optimization problem
that is subject to a set of linear constraints. LPs have been used to model a
wide variety of problems, including the Traveling Salesman Problem (TSP)
[18,31], Constraint Satisfaction Problem (CSP) [12], and minimum cost flow
problem [22]. Moreover, a wealth of problems can be cast as one of these more
general problems. The TSP has applications for a vast number of schedul-
ing, routing, and planning problems such as the no-wait flowshop, stacker
crane, tilted drilling machine, computer disk read head, robotic motion, and
pay phone coin collection problems [26]. Furthermore, the TSP can be used
to model surprisingly diverse problems, such as the shortest common super-
string problem, which is of interest in genetics research. The CSP is used to
model configuration, design, diagnosis, spatio-temporal reasoning, resource al-
location, graphical interfaces, network optimization, and scheduling problems
[12]. Finally, the minimum cost flow problem is a general problem that has the
shortest path, maximum flow, transportation, transshipment, and assignment
problems as special cases [22].

A general LP can be written in the following form:

Z = min (or mazx) Z Ci%; (1)

2

subject to: a set of linear constraints (2)

where the ¢; values are instance-specific constants, the set of x; represents the
decision variables, and the constraints are linear equalities or inequalities com-
posed of constants, decision variables, and possibly some auxiliary variables.
A feasible solution is one that satisfies all of the constraints. The set of all
feasible solutions is the solution space, SS, for the problem. Here, the solution
space is defined by the given problem. (In contrast, the search space is defined
by the algorithm used to solve the problem.) For minimization problems, an
optimal solution is a feasible solution with the least value, as defined by the
objective function (1).

For example, the ATSP can be defined as:

i€V jeV



subject to:
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for directed graph G = (V, A) with vertex set V = {1,...,n}, arc set A =
{(4,7) | 4, = 1,...,n}, and cost matrix ¢,x, such that ¢;; > 0 and ¢;; = oo
for all 7 and j in V. Each decision variable, z;;, corresponds to an arc (¢, j)
in the graph. Constraints (7) requires that either an arc (4, j) is traversed (x;;
is equal to 1) or is not traversed (z;; is equal to 0). Constraints (4) and (5)
require that each city is entered exactly once and departed from exactly once.
Constraints (6) are called subtour elimination constraints as they require that
no more than one cycle can exist in the solution. Finally, the objective function
(3) requires that the sum of the costs of the traversed arcs is minimized. In
this problem, the solution space is the set of all permutations of the cities and
contains (n — 1)! discrete solutions.

2.1 Using bounds

Without loss of generality, we only discuss minimization problems in the re-
mainder of this paper.

An LP can be relazed by relaxing one or more of the constraints. This relax-
ation is a lower-bounding modification as an optimal solution for the relaxation
cannot exceed the optimal solution of the original problem. Furthermore, the
solution space of the relaxed problem, SS,, contains the solution space of the
original problem, SS,, however, the converse is not necessarily true.

An LP can be tightened by tightening one or more of the constraints or adding
additional constraints. This tightening is an upper-bounding modification as
an optimal solution for the tightened problem cannot have a smaller value
than the optimal solution of the original problem. Furthermore, the solution
space of the original problem, SS,, contains the solution space of the tightened

problem, SS;, however, the converse is not necessarily true. In summary, SS; C
SS, C SS,.



For example, the ATSP can be relaxed by relaxing the integrality requirement
of constraints (7). This can be accomplished by replacing constraints (7) with
the following constraints:

0<zy <1,Vi,jeV (8)

This relaxation is referred to as the Held-Karp relaxation [20,21].

Another relaxation can be realized by completely omitting constraints (6).
This relaxation enforces integrality but allows any number of subtours to exist
in the solution. This relaxed problem is simply the Assignment Problem (AP)
[34]. The AP is the problem of finding a minimum-cost matching on a bipartite
graph constructed by including all of the arcs and two nodes for each city,
where one node is used for the tail of all its outgoing arcs and one is used for
the head of all its incoming arcs.

One way the ATSP can be tightened is by adding constraints that set the
values of selected decision variables. For example, adding z;; = 1 forces the
arc (7, ) to be included in all solutions.

2.2 Branch-and-bound search

The branch-and-bound concept was perhaps first used by Dantzig, Fulkerson,
and Johnson [10,11], and first approached in a systematic manner by Eastman
[13]. This method organizes the search space into a tree structure. At each
level of the tree, branching rules are used to generate and tighten each child
node. Every node inherits all of the tightening modifications of its ancestors.
These tightened problems represent subproblems of the parent problem and
the tightening may reduce the size of their individual solution spaces.

Since the original problem is too difficult to solve directly, at each node a
relaxation of the original problem is solved. This relaxation may enlarge the
size of the node’s solution space. Thus, at the root node, a relaxation of the
problem is solved. At every other (non-leaf) node, a doubly-modified problem
is solved; one that is simultaneously tightened and relaxed. The solution space
of these doubly-modified problems contains extra solutions that are not in the
solution space of the original problem and is missing solutions from the original
problem as illustrated by the following example.

Consider the Carpaneto, Dell’Amico, and Toth (CDT) implementation of
branch-and-bound search for the ATSP [5]. For this algorithm, the AP is used
for the relaxation. The branching rule dictates forced inclusions and exclusions
of arcs. Arcs that are not forced in this way are referred to as free arcs. The



branching rule selects the cycle in the AP solution that has the fewest free
arcs and each child node forces the exclusion of one of these free arcs. Further-
more, each child node after the first forces the inclusion of the arcs excluded
by their elder siblings. More formally, given a parent node, let E denote its
set of excluded arcs, I denote its set of included arcs, and {ay,...,a;} be the
free arcs in the selected cycle. In this case, ¢ children would be generated with
the kth child having Ey, = EU{ax} and I, = TU{a; ...ax_1}. Thus, child £ is
tightened by adding the constraints that the decision variables for the arcs in
E are equal to zero and those for the arcs in I are equal to one. When child &
is processed, the AP is solved with these additional constraints. The solution
space of this doubly-modified problem is missing all of the tours containing
an arc in Fj, and all of the tours in which any arc in I is absent. However, it
is enlarged by the addition of all the AP solutions that are not a single cycle,
do not contain an arc in Ej, and contain all of the arcs in Ij.

The CDT algorithm is experimentally compared with cut-and-solve in the
Results section of this paper.

2.3 Gomory culs

In the late fifties, Gomory proposed a linear search strategy in which cutting
planes were systematically derived and applied to a relaxed problem [17]. An
example of a cutting plane follows. Assume we are given three binary decision
variables, x1, zo, T3, a constraint 10z, 4+ 1624 + 1225 < 20, and the integrality
relaxation (0 < z; < 1 is substituted for the binary constraints). It is observed
that the following cut could be added to the problem: 1 +x2+x3 < 1 without
removing any of the solutions to the original problem. However, solutions
would be removed from the relaxed problem (such as z; = 0.5, zo = 0.25, and

Gomory cuts tighten the relaxed problem by removing part of its solution
space. These cuts do not tighten the unrelaxed problem, as none of the solu-
tions to the unrelaxed problem are removed. However, the removal of relaxed
solutions tends to increase the likelihood that the next relaxed solution found
is also a solution to the unrelaxed problem. Such solutions may be used to
establish or update the incumbent solution. Cuts are added and relaxations
are solved iteratively until the tightening on the relaxed problem becomes so
constrictive that its solution is greater than or equal to the current incumbent.
At this point, the search is terminated and the incumbent solution is declared
optimal.

Although Gomory’s algorithm only requires solving a series of relaxed prob-
lems, it was found to be inefficient in practice and fell into disuse [3].



2.4  Branch-and-cut search

Branch-and-cut search is essentially branch-and-bound search with the addi-
tion of the application of cutting planes at some or all of the nodes. These
cutting planes tighten the relaxed problem and increase the pruning potential
in two ways. First, the value of the solution to this subproblem may be in-
creased (and cannot be decreased) by this tightening. If such increase causes
the value to be greater than or equal to the incumbent solution value, then
the entire subtree can be pruned. Second, forcing out a set of the relaxed so-
lutions may increase the possibility that a feasible solution to the unrelaxed
problem is found. If this feasible solution has a value that is less than the
current incumbent solution, it will replace this incumbent and increase the
pruning potential.

The number of nodes at which cutting planes are applied is algorithm-specific.
Some algorithms only apply the cuts at the root node, while others apply cuts
at many or all of the nodes.

Concorde [1,2] is a branch-and-cut algorithm designed for solving the sym-
metric TSP (STSP). (The STSP is a special case of the ATSP, where the cost
from city i to city j is equal to the cost from city j to city i.) This code has
been used to solve STSP instances with as many as 15,112 cities [2]. This
success was made possible by the design of a number of clever cutting planes
custom tailored for this problem.

2.5 Branch-and-bound and branch-and-cut design considerations

When designing an algorithm using branch-and-bound or branch-and-cut, a
number of policies must be determined. These include determining a relaxation
of the original problem and an algorithm for solving this relaxation, branching
rules, and a search strategy, which determines the order in which the nodes
are explored.

Since a relaxed problem is solved at every node, it must be substantially easier
to solve than the original problem. However, it is desirable to use the tightest
relaxation possible in order to increase the potential for pruning.

Branching rules determine the structure of the search tree. They determine
the depth and breadth of the tree. Moreover, branching rules tighten the
subproblem. Thus, strong branching rules can increase pruning potential.

Finally, a search strategy must be selected. Best-first search selects the node
with the best heuristic value to be explored first. This strategy ensures that



the least number of nodes are explored for a given search tree and heuristic.
Unfortunately, identifying the best current node requires storing all active
nodes and even today’s vast memory capabilities can be quickly exhausted.
For this reason, depth-first search is commonly employed. While this strategy
solves the memory problem and is asymptotically optimal [40], it introduces a
substantial new problem. Heuristics used to guide the search can lead in the
wrong direction, resulting in large subtrees being fruitlessly explored.

Unfortunately, even when a combination of policies is fine-tuned to get the
best results, many problem instances remain insoluble. This is usually due
to inadequate pruning. On occasion, the difficulty is due to the complexity of
solving the relaxed problem or finding cutting planes. For instance, the simplex
method is commonly used for solving the relaxation for mixed-integer linear
programs, despite the fact that it has an exponential worst-case performance.

3 Cut-and-Solve Search Strategy

Unlike the cutting planes in branch-and-cut search, cut-and-solve uses piercing
cuts that intentionally cut out solutions from the original solution space. We
use the term piercing cut to refer to a cut that removes at least one feasible
solution from the original (unrelaxed) problem solution space. The cut-and-
solve algorithm is presented in Algorithm 1.

Algorithm 1 cut_and solve (LP)

1: lowerbound < —oo

2: upperbound <+ oo

3: while (lowerbound < upperbound) do
lowerbound < solve_relaxed(LP)
if (lowerbound > upperbound) then

break

cut < select_piercing_cut(LP)
new _solution <« find_optimal(cut)
if (new_solution < upperbound) then
10: upperbound < new_solution
11:  add_cut(LP, cut)
12: return upperbound

Each iteration of the while loop corresponds to one node in the search path.
First a relaxed problem is solved (solve_relaxed(LP)). Then a set of solutions
are selected (select_piercing cut(LP)). Let SSsp.se be this set of solutions.
SSsparse 15 selected in a way that it will contain the optimal solution of the
relaxed problem and at least one feasible solution from the original solution
space, SS,.



Next, a sparse problem (find optimal(cut)) is solved, finding the best solu-
tion from SS,perse that is also a feasible solution for the original problem. In
other words, the best solution in SS,perse N SS, is found. This problem tends
to be relatively easy to solve as a sparse solution space, as opposed to the vast
solution space of the original problem, is searched for the best solution. At
the root node, this solution is made the incumbent solution. If later iterations
find a solution that is better than the incumbent, this new solution becomes
the incumbent.

Finally, a piercing cut is added to the LP. This piercing cut excludes all of
the solutions in SSgparse from the LP. Thus, the piercing cut tightens the LP
and reduces the size of its solution space. Furthermore, since the solution
of the relaxed problem is in SSgparse, that solution cannot be returned by
solve_relaxed(LP) on any other iterations.

At subsequent nodes, the process is repeated. The call to solve_relaxed (LP)
is actually a doubly-modified problem. The LP has been tightened by the
piercing cuts and a relaxation of this tightened problem is solved. The in-
cumbent solution is updated as needed after the call to find_optimal(cut).
The piercing cuts accumulate with each iteration. When the tightening due to
these piercing cuts becomes constrictive enough, the solution to this doubly-
modified problem will become greater than or equal to the incumbent solution
value. When this occurs, the incumbent solution is returned as optimal.

Theorem 1 When the cut-and-solve algorithm terminates, the current in-
cumbent solution must be an optimal solution.

Proof The current incumbent is the optimal solution for all of the solutions
contained in the piercing cuts. The solution space of the final doubly-modified
problem contains all of the solutions for the original problem except those in
the piercing cuts solution space. If the relaxation of this problem has a value
that is greater than or equal to the incumbent value, then the solution space
of this doubly-modified problem cannot contain a solution that is better than
the incumbent. O

Termination of the algorithm is summarized in the following theorem:

Theorem 2 If the solution space for the original problem, SS,, is finite and
the relaxzation algorithm and the algorithm for selecting and solving the sparse
problem are complete, then the cut-and-solve algorithm is complete.

Proof The number of nodes in the search path must be finite as a non-zero
number of solutions are removed from SS, at each node. Therefore there are
a finite number of complete problems solved. O

The cut-and-solve algorithm is easily adapted to be an anytime algorithm.

10



Anytime algorithms allow the termination of an execution at any time and
return the best approximate solution that has been found thus far. If time
constraints allow the execution to run to completion, then the optimal solution
is returned. Since an incumbent solution is found at the first node, there is an
approximate solution available any time after the root node is solved, and this
solution improves until the optimum is found or the execution is terminated.

4 A Simple Example

In this section, we present a simple example problem and step through the
search process using cut-and-solve. Consider the following LP:

4
Z =min (y — 33:) 9)
subject to:
z>0 (10)
y<3 (11)
3 6
Tz 12
Y+ (12)
13
Y+ 5 <9 (13)
5 1
T e>s
TRV (14)
ze{..,—1,01,..} (15)
ye{ .., —1,01,...} (16)

This LP has only two decision variables, allowing representation as a 2D graph
as shown in Figure 1. Every x, y pair that is feasible must obey the constraints.
Each of the first five linear constraints (10) to (14) corresponds to an edge of
the polygon. All of the feasible solutions must lie inside or on the edge of the
polygon in Figure 1. The constraints (15) and (16) require that the decision
variables assume integral values. Therefore, the feasible solutions for this LP
are shown by the dots located inside and on the edge of the polygon.

The terms of the objective function (9) can be rearranged into the slope-
intercept form as follows: y = %x + Z. Therefore, the objective function of

11



(b)

X

Fig. 1. Graphical solution of the example LP. (a) The feasible solution space. Dots
within and on the polygon represent all of the feasible solutions. (b) One of the lines
representing the objective function. It intersects the feasible solution z = 0, y = 3.
(c) The optimal solution of z =2 and y = 1.

this LP represents an infinite number of parallel lines with the slope of %. In
this example, each value of Z is equal to its corresponding y-intercept. (For
general 2D LPs, the y-intercept is equal to a constant times Z.) Figure 1(b)
shows one of the lines in this family. The feasible solution at this point has
an x value of zero and a y value of 3, yielding a Z value of 3. Clearly, this is
not the optimal solution. By considering all of the lines with a slope of %, it is
apparent that the line with the smallest y-intercept value that also intersects
a feasible solution will identify the optimal Z value. This line can be found
by inspection, and is shown in Figure 1(c). The optimal solution is z = 2 and
y =1, ylelding Z = —0.6.

For this LP, the solution space of the original problem, SS,, contains the nine
points that lie within and on the polygon. To apply cut-and-solve, a relaxation
must be chosen. In this example, the relaxation ignores constraints (15) and
(16). The solution space for this relaxed problem, SS,, contains every point
of real values of x and y inside and on the polygon - an infinite number of
solutions.

Figure 2 shows the steps taken when solving this LP using cut-and-solve.
First, the relaxed solution is found. The solution to this relaxation is shown
in Figure 2(a). The value of = is 3.5, y is 1.4, and the solution value of this
relaxed subproblem is equal to —1.4. This is a lower bound on the optimal
solution value and lowerbound in Algorithm 3 is set to -1.4.
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(c) (d)

(9)

X

Fig. 2. Solving the example LP using cut-and-solve. (a) The relaxed solution of the
first iteration. (b) The first piercing cut. (c) The solution space of the LP with the
piercing cut added. (d) The relaxed solution of the second iteration. (e) The second
piercing cut. (f) The solution space of the LP with both piercing cuts added. (g)
The relaxed solution of the third iteration, resulting in a value that is worse than
the current incumbent.

Next, a piercing cut is selected as shown in Figure 2(b). The shaded region
contains the solution to the relaxed problem as well as a feasible solution to
the original problem. It also contains an infinite number of feasible solutions
to the relaxed problem. This sparse problem is solved to find the best integral
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solution. There is only one integral solution in this sparse problem, so it is the
best. Thus the incumbent solution is set to x = 3, y = 2, and the objective
function value of the incumbent is —0.4. upperbound in Algorithm 3 is set to
—0.4.

The line that cuts away the shaded region from the polygon in Figure 2(b)
can be represented by a linear constraint: y — %x > —14. This constraint is
added to the LP. Now the feasible region of the LP is reduced and its current
solution space contains eight points as shown in Figure 2(c). This completes
the first iteration of the while loop in Algorithm 3. Thus, the root node has
been solved and the next node in the search path is now explored.

This iteration begins by solving the relaxation of the current LP as shown
in Figure 2(d). lowerbound is set to the value of this relaxed solution, —1.1.
Notice that lowerbound is less than upperbound, so the search continues.

Next, we select a piercing cut as shown in Figure 2(e). The sparse problem
represented by the shaded area in Figure 2(e) is solved yielding a value of
—0.6. This value is less than the current incumbent, so this solution becomes
the new incumbent and upperbound is set to —0.6. Notice that upperbound
is still greater than lowerbound, so the search continues.

The linear constraint corresponding to the current piercing cut is added to
the LP, resulting in a reduced feasible solution space as shown in Figure 2(f).
This completes the second iteration.

The third node in the search path is now explored. The relaxed problem is
solved on the current LP as shown in Figure 2(g). lowerbound is set to the
value of this relaxed solution, which is —0.2. This value is greater than the
upperbound of —0.6, so the search is finished.

The current incumbent must be an optimal solution. The incumbent is the
best solution in the union of the solution spaces of all of the sparse problems
that have been solved. lowerbound is a lower bound on the best possible
solution that is in the remaining solution space. Since it is greater than the
incumbent, there cannot be a solution in this space that is better than the
incumbent. Therefore, optimality is ensured.

The method used to generate piercing cuts is problem specific. In general,
these cuts should attempt to cut away optimal solutions. Furthermore, care
should be taken to avoid cutting away solution spaces that are too large to be
solved relatively easily.

The example problem presented in this section is easily solved by inspection.
However, problems of interest may contain many thousands of decision vari-
ables and have solution spaces that are defined by convex polyhedrons in a
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correspondingly high-dimensional space. The next section demonstrates the
use of cut-and-solve on such a problem.

5 Cutting Traveling Salesmen Down to Size

We have implemented the cut-and-solve algorithm for solving real-world in-
stances of the ATSP. The ATSP can be used to model a host of planning,
routing, and scheduling problems in addition to a number of diverse appli-
cations as noted in Section 1. Many of these real-world applications are very
difficult to solve using conventional methods and as such are good candidates
for this alternative search strategy. Our code is available at [8].

We use the Held-Karp lower bound for our relaxation as it is quite tight for
these types of instances [26]. A parameter, «, is set to a preselected value. Then
arcs with reduced costs less than « are selected and a sparse graph composed
of these arcs is solved. (A reduced cost value is generated for each arc when
the Held-Karp relaxation is calculated. This value represents a lower bound
on the increase of the Held-Karp value if the arc were forced to be included in
the optimal Held-Karp solution.) The best tour in this sparse graph becomes
our first incumbent solution. The original problem is then tightened by adding
the constraint that the sum of the decision variables for the selected set of arcs
is less than or equal to n — 1, where n is equal to the number of cities. This is
our piercing cut. If all of the arcs needed for an optimal solution are present in
the selected set of arcs, this solution will be made the incumbent. Otherwise,
at least one arc that is not in this set is required for an optimal tour. This
constraint is represented by the piercing cut.

The process of solving the Held-Karp lower bound, solving a sparse problem,
and adding a piercing cut to the problem repeats until the Held-Karp value
of the deeply-cut problem is greater than or equal to the incumbent solution.
At this point, the incumbent must be an optimal tour.

The worst-case complexities of solving the Held-Karp lower bound (using the
simplex method) and solving the sparse problem are both exponential. How-
ever, in practice these problems are usually relatively easy to solve.

Selection of an appropriate value for o is dependent on the distribution of
reduced cost values. In our current implementation, we simply select a number
of arcs, mu, to be in the initial cut. At the root node, the arcs are sorted
by their reduced costs and the m,,; lowest arcs are selected. a is set equal
to the maximum reduced cost in this set. At subsequent nodes, « is used to
determine the selected arcs. The choice of the value for m,,; is dependent
on the problem type and the number of cities. We believe that determining «
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directly from the reduced costs would enhance this implementation as a prior:
knowledge of the problem type would not be necessary and « could be custom
tailored to suit variations of instances within a class of problems.

If a cut does not contain a single feasible solution, it can be enlarged to do
so. However, in our experiments this check was of no apparent benefit. The
problems were solved after traversing no more than three nodes in all cases,
so guaranteeing completeness was not of practical importance.

We use cplex [24] to solve both the relaxation and the sparse problem. All
of the parameters for this solver were set to their default modes. For some of
the larger instances, this generic solver becomes bogged down while solving
the sparse problem. Performance could be improved by the substitution of
an algorithm designed specifically for solving sparse ATSPs. We were unable
to find such code available. We are investigating three possible implementa-
tions for this task: (1) adapting a Hamiltonian circuit enumerative algorithm
to exploit ATSP properties, (2) using a dynamic programming approach to
the problem, or (3) enhancing the cplex implementation by adding effective
improvements such as the Padberg and Rinaldi shrinking procedures, exter-
nal pricing, cutting planes customized for sparse ATSPs, heuristics for node
selection, and heuristics for determining advanced bases. However, despite the
crudeness of our implementation, it suffices to demonstrate the potential of
the cut-and-solve method. We compare our solver with two branch-and-bound
and two branch-and-cut implementations in the next section.

6 Computational Results for the ATSP

In this section, we compare our cut-and-solve implementation (CZ-c&s) with
the four ATSP solvers that are compared in The Traveling Salesman Problem
and its Variations [18,14]. Our testbed consists of all of the 27 ATSP instances
in TSPLIB [38] and six instances of each of seven real-world problem classes as
introduced in [6] and used for comparisons in [14].

Our code was run using cplex version 8.1. We used Athlon 1.9 MHz dual
processors with two gigabytes shared memory for our tests. In order to identify
subtours in the relaxed problem, we use Matthew Levine’s implementation of
the Nagamochi and Ibaraki minimum cut code [32], which is available at [33].

In the experiments presented here, we found that the search path was quite
short. Typically only one or two sparse problems and two or three relaxed
problems were solved. This result indicates that the set of arcs with small
reduced costs is likely to contain an optimal solution and that the Held-Karp
relaxation is tight.
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We make comparisons with two branch-and-bound implementations - the
Carpaneto, Dell’Amico, and Toth (CDT) and the Fischetti and Toth additive
(FT-add) algorithms; and two branch-and-cut implementations - the Fischetti
and Toth branch-and-cut (FT-b&c) and concorde algorithms.

Concorde [1,2] is an award-winning code used for solving symmetric TSPs
(STSPs). ATSP instances can be transformed into STSP instances using a 2-
node transformation [29]. While the number of arcs after this transformation is
increased to 4n? — 2n, the number of arcs that have neither a zero nor infinite
cost is n? — m, as in the original problem. For consistency, we use the same
transformation parameters and set concorde’s random seed parameter and
chunk size as done in [14].

We did not run the CDT, FT-add, and FT-b&c codes on our machine as the
code was not available. The comparisons are made by normalizing both the re-
sults in [14] and our computation times according to David Johnson’s method
[27] (see also [25]). The times are normalized to approximate the results that
might be expected if the code were run on a Compaq ES40 with 500-MHz
Alpha processors and 2 Gigabytes of main memory. As described in [27], these
normalized time comparisons are subject to multiple sources of potential inac-
curacy. Furthermore, low-level machine-specific code tuning and other speedup
techniques can compound this error. For these reasons, it is suggested in [27]
that conclusions about relative performance with differences less than an order
of magnitude may be questionable.

A substantial normalization error appears in our comparisons. Tables 1 and 2
show the comparisons of normalized computation times for the four implemen-
tations compared in [14] and run on their machine along with the normalized
times for concorde and CZ-c&s run on our machine. Comparing the normal-
ized times for concorde for the two machines, we see that the normalization
error consistently works against us - in several cases there is an order of magni-
tude difference. Concorde requires the use of cplex [24], for its LP solver. We
used cplex version 8.1 while [14] used version 6.5.3. Assuming that cplex has
not gotten substantially slower with this newer version, we can speculate the
normalization error is strongly biased against us. We suspect this error may
be due to the significant differences in machine running times. For instance,
for 100-city instances the normalization factor for our machine is 5.0, while it
is 0.25 for the Fischetti, Lodi, and Toth machine.

The CDT implementation performs well for many of the TSPLIB instances
and for most of the computer disk read head (disk), no-wait flowshop (shop),
and shortest common super string (super) problems. Unfortunately, the code
is not robust and fails to solve 45% of the instances within the allotted time
(1,000 seconds on the Fischetti, Lodi, and Toth machine).
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The FT-add implementation behaves somewhat like the previous branch-and-
bound search. It performs fairly well for most of the same instances that CDT
performs well on and fails to solve almost all of the same instances that are
missed by CDT. (FT-add fails to solve 36% of the instances.)

Both FT-b&c and CZ-c&s behave more robustly than the branch-and-bound
algorithms. They solve all of the TSPLIB instances but fail to solve the 316-
city instances of the coin collection (coin), stacker crane (crane), and one of
the tilted drilling machine (stilt) instances. CZ-c&s also fails to solve the
other tilted drilling machine instance (rtilt).

Although FT-b&c consistently has better normalized running times than CZ-c&s,
the normalization error bias should be considered. One comparison that is not
machine dependent is the ratio of each algorithm’s time to their corresponding
time for concorde. We calculate these ratios by summing the run times for
all instances except the 316-city instances of coin, crane, rtilt, and stilt
as these instances are not run to completion for all of the algorithms. crane
runs to completion only for concorde and rtilt does not run to completion
for CZ-c&s. rtilt does run to completion for FT-b&c, using about 89% of the
allotted time. FT-b&c solves all of the other instances in 41.1% of the time
required by concorde on the same machine and CZ-c&s solves the instances
in 29.7% of the time required by concorde on the same machine. (Note that
cplex version 6.5.3 is used on the former machine, while version 8.1 is used on
the latter.) This comparison is not scientific. However, it gives a vague sense
of how these algorithms might compare without the normalization error bias.

Finally, we compare concorde, CZ-c&s, and our own implementation of CDT
for 100-city instances of the seven problem classes and average over 100 trials.
These comparisons were all run on our machine, so there is no normalization
error. We varied the degree of accuracy of the arc costs by varying the number
of digits used for the generator parameter. The relationship between the degree
of accuracy of arc costs and computation time to solve random ATSPs is
discussed in [39]. In general, a smaller generator parameter corresponds to a
greater number of optimal solutions.

There is no graph for the super class as it is not dependent upon the generator
parameter. The average normalized time to solve these instances using CDT is
0.073 seconds, while concorde required 8.15 seconds and CZ-c&s took 2.07
seconds.

The average normalized computation times and the 95% confidence intervals
for the other classes are shown in Figures 3 and 4. The confidence intervals

are large as might be expected due to the heavy-tailed characteristics of the
ATSP.

The CDT algorithm performed extremely well for the shop and super instances.
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However, it failed to complete any of the other tests. Although CDT performed
well for five of the six disk instances in the testbed (including the 316-city
instance), it failed to solve 100 of the disk instances for any of the parameter
settings. We allowed 20 days of normalized computation time for each param-
eter setting; indicating that the average time would be in excess of 17,000

The missing data points for the concorde code are due to the implementation
terminating with an error. Although CZ-c&s performed better than concorde
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ilt instances in the testbed, on average, it does not
perform as well as concorde for the rtilt class in this set of tests. However,
it outperforms concorde for all of the other problem classes.

In conclusion, our implementation of the cut-and-solve strategy for the ATSP
appears to be more viable than the two branch-and-bound solvers. It is difficult
to make decisive comparisons with FT-b&c due to normalization errors, how-
ever, our implementation appears to generally perform better than concorde
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for these asymmetric instances.

7 Discussion and Related Work

Many optimization problems of interest are difficult to solve to optimality, so
approximations are employed. Sacrificing optimality can be costly when the
solution is an expensive procedure (such as routing a spacecraft), the solution
is reused a number of times (as in manufacturing applications), or the approx-
imation is poor. Cut-and-solve offers an alternative to branch-and-bound and
branch-and-cut when attempting to optimally solve these important problems.

Search tree methods such as branch-and-bound and branch-and-cut must
choose between memory problems or the problem of fruitlessly searching sub-
trees containing no optimal solutions. Cut-and-solve is free from these diffi-
culties. Memory requirements are insignificant as only the current incumbent
solution and the current doubly-modified problem need to be saved as the
search path is traversed. Furthermore, being a linear search, there are no sub-
trees in which to get lost.

When designing a cut-and-solve algorithm, the selections of a relaxation algo-
rithm and a method for selecting piercing cuts are subject to trade-offs and
should be chosen carefully. The relaxation algorithm should be tight and the
cuts should try to capture optimal solutions. Yet, to be efficient, both problems
need to be relatively easy to solve.

One concern about the viability of cut-and-solve might be that adding ex-
tra constraints might tend to make the problem more difficult to solve. On
the contrary, we may expect the opposite to be true in general. Consider
branch-and-bound search. At the root node, the problem is subdivided into
subproblems, one for each child node. Presumably each of these subproblems
are easier to solve than the original problem. The difference between the chil-
dren and the root is that the child nodes each has one or more additional
constraints. For instance, the value of a variable may be set to a particular
number. As the search proceeds down the tree, the children accumulate more
and more constraints. If no pruning occurs along a path, the leaf node is
so highly constrained that there exists only a single feasible solution. Since
adding constraints reduces the size of the solution space, they tend to make
the problem easier to solve.

Another concern about cut-and-solve might be that choosing a poor cut may
be similar to choosing the wrong path in a depth-first search tree. These
two actions are very different. When choosing the wrong child in depth-first
search, the decision is permanent for all of the descendants in the subtree. For
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example, if a variable appears in every optimal solution (a backbone variable
[35]), then setting its value to not be included is calamitous. Conversely, forcing
the inclusion of a variable that doesn’t appear in any feasible solution (a fat
variable [7]) results in a similar dire situation. Every node in the subtree
is doomed. On the other hand, when a poor cut is chosen in cut-and-solve,
the only consequence is that the time spent exploring that single node was
relatively ineffective. It wasn’t completely wasted as even a poor cut helps to
tighten the problem to some degree and once it is made, this cut cannot be
repeated in future iterations. Moreover, subsequent nodes are not “locked in”
by the choice made for the current cut.

7.1 Related work

When compared to depth-first branch-and-bound search, the main advantage
of cut-and-solve is that it cannot get lost in subtrees void of any optimal so-
lutions. A great number of techniques have been devised in an effort to over-
come this problem for depth-first branch-and-bound. Among these are itera-
tive deepening [30], limited discrepancy [19], and randomization and restarts
[16].

Iterative deepening search performs a number of depth-first searches, each
with a limit on the depth of the search. After each iteration, the depth is
increased until an optimal solution is reached. Limited discrepancy search
allows a limited number of discrepancies away from the heuristic choice in a
traversal of the tree. At each iteration, the number of discrepancies is increased
until an optimal solution is found. The randomization and restarts technique
has two prominent components. The next node to explore is randomly chosen
from the nodes with high heuristic values and the search is restarted from the
root after a specified number of backtracks have been taken. Completeness is
ensured by the use of linear-space bookkeeping and the allowable number of
backtracks is gradually increased as the search is conducted.

We now discuss several algorithms that are similar to cut-and-solve.

Cut-and-solve is similar to Gomory’s algorithm in that cuts are used to con-
strain the problem and a linear path is searched. Gomory’s algorithm is some-
times referred to as “solving the problem at the root node” as this is essentially
its behavior when comparing it to branch-and-cut. However, cutting planes are
applied and relaxed problems are solved in an iterative manner until the search
is terminated, suggesting a linear progression of the search.

The major difference between the two methods is that Gomory’s cuts are not
piercing cuts as they do not cut away any feasible solutions to the original
problem.
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Cut-and-solve can be thought of as an extension of Gomory’s method. Like
Gomory’s technique, cuts are applied, one at a time, until an optimal solu-
tion is found. For each cut, a relaxation of the current tightened problem is
solved. This value is used to determine when the search can be terminated.
Cut-and-solve cuts are deeper than Gomory cuts as they are not required
to trim around feasible solutions for the unrelaxed problem. Cutting deeply
yields two benefits. First, it provides a set of solutions from which the best
one is chosen for a potential incumbent. Second, these piercing cuts tighten
the relaxed problem in an aggressive manner, and consequently tend to in-
crease the solution of the doubly-modified problem. Once this solution meets
or exceeds the incumbent value, the search is finished.

Cut-and-solve is also similar to an algorithm for solving the Orienteering Prob-
lem (OP) as presented in [15]. In this work, conditional cuts remove feasible
solutions to the original problem. These cuts are used in conjunction with
more traditional cuts and are used to tighten the problem. When a condi-
tional cut is applied, an enumeration of all of the feasible solutions within the
cut is attempted. If the enumeration is not solved within a short time limit,
the cut is referred to as a branch cover cut and the sparse graph associated
with it is stored. This algorithm attempts to solve the OP in a linear fash-
ion, however, due to tailing-off phenomena, branching occurs after every five
branch cover cuts have been applied. After this branch-and-cut tree is solved,
a second branch-and-cut tree is solved over the union of all of the graphs
stored for the branch cover cuts.

Cut-and-solve differs from this OP algorithm in several ways. First, incum-
bent solutions are forced to be found early in the cut-and-solve search. These
incumbents provide useful upper bounds as well as improve the anytime per-
formance. Second, the approach used in [15] stores sparse problems and com-
bines and solves them as a single, larger problem after the initial cut-and-solve
tree is explored. Finally, this OP algorithm is not truly linear as branching is
allowed.

In a more broad sense, cut-and-solve shares similarities with divide-and-conquer
[36] and a binary tree search with highly disproportionate children. We discuss
each of these in turn.

Cut-and-solve is similar to divide-and-conquer in that both techniques iden-
tify small subproblems of the original problem and solve them. While divide-
and-conquer solves all of these subproblems, cut-and-solve solves a very small
percentage of them. If solving all of the subproblems is feasible, then divide-
and-conquer would probably be the method of preference. However, when
divide-and-conquer proves to be insoluble, cut-and-solve may be a potential
alternative. When comparing these two techniques, cut-and-solve might be
thought of as divide-and-conquer with powerful pruning rules.
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Finally, cut-and-solve is similar to binary tree search with highly dispropor-
tionate children. At each node, a relaxation is solved and a cut is chosen. This
cut is used for the branching rule. The left child has a huge subtree and the
right has a very small subtree. The right child’s subtree is easily explored and
produces potential incumbent solutions. It is immediately solved and the left
child is subdivided into another set of disproportionate children. When the
relaxed solution is greater than or equal to the current incumbent, the huge
subtree is pruned and the search is finished. Thus, the final configuration of
the search tree is a single path at the far left side with a single, small subtree
branching to the right at each level. This search strategy is essentially linear:
consistently solving the easy problems immediately and then redividing.

7.2 Is cut-and-solve truly “linear”?

This is a debatable question. We use the term “linear search” as this is the
structure of the search space when viewed at a high level. In general, the algo-
rithms used for solving subproblems within a search algorithm are not relevant
in identifying the search strategy. For example, branch-and-bound search is
not defined by the algorithms used for solving the relaxed problem, identifying
potential incumbent solutions, or guiding the search, as these algorithms are
of a number of varieties and could themselves be solved by branch-and-bound
or some other technique such as divide-and-conquer.

However, as pointed out by Matteo Fischetti, one could write a paper with
a “Null search” strategy, in which a single subproblem is solved by calling a
black-box ATSP solver. It appears that the pertinent question here is whether
the “subproblems” that are solved in cut-and-solve are truly subproblems.

Let us consider the subproblems that are solved in the FT-b&c algorithm. At
each node, a number of cutting planes are derived and applied, the relaxation
is iteratively solved, and a sparse problem is solved every time the subtour
elimination constraints are not in violation. The sparse problem is solved by
enumerating the Hamiltonian circuits. This procedure is terminated if the
number of backtracking steps exceeds 100 + 10n. The number of iterations
performed at each node is also limited by terminating when the lower bound
does not increase for five consecutive iterations. The relaxations are solved
using the simplex method, despite the fact that it has an exponential worst-
case running time. The ellipsoid method could be used to solve the relaxation
with a polynomial worst-case time, however, this method tends to run quite
slow [28]. In fact, the simplex method is commonly used for solving the Held-
Karp relaxation as, in practice, it is expected to run efficiently.

Two subproblems, a relaxation and a sparse problem, are solved at each node
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in the CZ-c&s algorithm. Like the FT-b&c algorithm, the relaxation is solved
using simplex. The sparse problem is solved using cplex and we cannot assert
that it is a substantially easier problem to solve than the original. However, for
“difficult” problems in which a considerable amount of the solution space is
explored, in practice we might expect that finding the best solution in a small
chunk of the solution space is substantially easier than finding the optimal
solution in the entire space. (Furthermore, after the first sparse problem is
solved, subsequent sparse problems have the advantage of having an upper
bound provided by the incumbent solution.) In our experiments, solving the
first sparse problem tended to be the bottleneck. However, as indicated by the
performance of other algorithms, the time spent solving the sparse problem
tends to be substantially less than the time required to solve the entire problem
outright. For these reasons, we (cautiously) refer to cut-and-solve as a “linear”
search.

7.8 Is this method applicable to other problems?

It appears that cut-and-solve might be applicable to other optimization prob-
lems, including Integer Linear Programs. Hypothetically speaking, the method
may be applied to virtually any optimization problem. However, there are four
requirements that are apparently necessary for any hope of this method be-
ing useful. First, there must be an efficient algorithm available for finding a
tight relaxation of the problem. Second, an efficient algorithm is also needed
for solving the sparse problem. Third, a strategy must be devised for easily
identifying succinct cuts that tend to capture optimal solutions. Finally, it
appears that this method works best for problems that are otherwise difficult
to solve. In these cases, solving sparse problems can be considerably easier
than tackling the entire problem at once.

8 Conclusions

In this paper, we present a search strategy which we refer to as cut-and-solve.
We show that optimality and completeness are guaranteed despite the fact
that no branching is used. Being a linear strategy, this technique is immune
to some of the pitfalls that plague search tree methods such as branch-and-
bound and branch-and-cut. Memory requirements are nominal, as only the
incumbent solution and the current tightened problem need be saved as the
search path is traversed. Furthermore, there is no need to use techniques to
reduce the risks of fruitlessly searching subtrees void of any optimal solution.

We demonstrate cut-and-solve for linear programs and have implemented
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this strategy for solving the ATSP. Comparisons with ATSP solvers in [14]
have been thwarted by a substantial normalization error. However, by using
concorde as a baseline, we are able to sense that our simple implementation
is competitive with state-of-the-art solvers.

In the future, we plan to improve our implementation by designing a custom
solver for sparse ATSPs.

Life is full of optimization problems and a number of search strategies have
emerged to tackle them. Yet, many of these problems stubbornly defy reso-
lution by current methods. It is our hope that the unique characteristics of
cut-and-solve may prove to be useful when addressing some of these interesting
problems.
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Fischetti, Lodi, & Toth machine Climer & Zhang machine
Name CDT | FT-add concorde | FT-b&c concorde CZ-c&s
brl7 0.6 0.0 0.0 0.0 0.7 0.0
ft53 - 0.0 0.1 0.0 1.1 0.4
ft70 0.1 0.1 0.7 0.0 4.7 0.5
ftv33 0.0 0.0 0.1 0.0 0.5 0.0
ftv35 0.0 0.0 1.8 0.1 5.3 0.5
ftv38 0.0 0.1 2.9 0.1 14.2 0.5
ftv44 0.0 0.0 1.9 0.1 10.0 0.6
ftv47 0.0 0.1 4.9 0.1 35.7 1.0
ftvh5 0.2 0.3 2.0 0.3 12.3 0.9
ftv64 0.2 0.3 4.6 0.6 49.8 1.5
ftv70 0.8 0.9 4.1 0.3 15.8 1.9
ftv90 0.2 0.6 3.7 0.1 18.9 1.4
ftv100 4.2 7.4 3.2 0.6 30.1 2.8
ftv110 1.3 10.0 6.7 1.9 18.2 4.9
ftv120 | 13.5 26.8 14.7 3.5 61.5 6.8
ftv130 1.7 4.6 4.6 0.4 36.4 4.6
ftv140 4.0 11.3 7.4 0.6 23.0 5.6
ftv150 0.9 5.1 8.1 0.8 21.3 5.9
ftvli60 | 29.1 98.0 17.3 1.2 38.6 11.9
ftv170 - - 13.0 1.3 31.7 20.0
krol124p - 33.9 2.5 0.3 12.4 5.0
p43 - - 4.8 2.0 23.2 6.1
rbg323 0.0 0.1 10.3 0.2 55.4 48.5
rbg358 0.0 0.2 13.2 0.2 23.8 72.8
rbg403 0.0 0.5 22.7 0.6 31.0 194.9
rbg443 0.0 0.6 16.6 0.7 33.9 155.3
ry48p - 4.3 4.8 0.2 44.0 2.1
Table 1
Normalized CPU times (in seconds) for TSPLIB instances. Instances not solved
in the allotted time are labeled by “-”. The normalization error is strongly biased

against the Climer & Zhang machine, so a machine-independent comparison is made
using concorde as a baseline.
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Table 2

Fischetti, Lodi, & Toth machine Climer & Zhang machine

Name CDT FT-add concorde FT-b&c concorde CZ-c&s
co0in100.0 - - 26.5 2.2 118.0 14.2
coin100.1 - - 12.3 1.5 75.4 17.4
coin100.2 - - 10.1 2.3 65.7 28.0
coinl00.3 - - 5.3 0.7 50.6 21.2
coinl100.4 - - 16.0 1.2 138.5 76.4
cranel00.0 - - 1.6 0.4 8.4 8.1
cranel00.1 - - 4.0 0.4 23.8 6.6
cranel00.2 - - 88.9 51.2 411.9 51.1
cranel00.3 - 10.2 0.9 0.1 6.0 5.3
cranel00.4 - - 69.4 29.4 267.9 46.4
disk100.0 0.2 0.2 1.8 0.3 16.9 1.7
disk100.1 - 7.4 10.1 0.7 41.3 4.0
disk100.2 0.0 0.2 1.4 0.1 6.9 2.3
disk100.3 0.2 0.4 0.6 0.0 3.4 1.9
disk100.4 0.0 0.1 2.3 0.1 15.2 1.9
disk316.10 0.9 18.7 13.4 2.4 36.2 51.0
rtilt100.0 - - 32.3 56.9 208.5 202.9
rtilt100.1 - - 6.7 1.7 57.9 27.9
rtilt100.2 - - 2.0 0.1 14.6 4.3
rtilt100.3 - - 4.8 1.1 23.4 8.5
rtilt100.4 - - 6.7 1.2 49.2 20.6
shop100.0 0.0 0.1 7.2 0.2 39.8 2.5
shop100.1 0.3 0.7 9.9 0.4 40.1 4.0
shop100.2 0.1 1.3 4.4 0.3 24.8 4.9
shop100.3 0.1 0.7 6.1 0.4 33.0 4.0
shop100.4 0.0 0.3 4.2 0.1 18.2 5.1
shop316.10 1.3 39.3 52.7 6.2 164.5 69.8
stilt100.0 - - 131.1 12.3 741.6 84.2
stilt100.1 - - 55.4 14.3 387.2 61.2
stilt100.2 - - 14.2 1.5 59.0 39.8
stilt100.3 - - 165.6 35.3 1147.4 535.0
stilt100.4 - 423.8 324.9 2454.3 200.2
super100.0 0.0 0.0 1.5 0.1 2.7 0.5
super100.1 0.0 0.1 2.1 0.1 6.4 1.0
super100.2 0.0 0.1 0.4 0.0 14.4 1.0
super100.3 0.0 0.1 0.9 0.1 10.7 1.5
super100.4 0.0 0.0 1.5 0.0 14.6 2.2
super316.10 - 102.0 6.4 1.7 42.2 53.1
coin316.10 - - - - - -
crane316.10 - - 1847.8 - - -
rtilt316.10 - - 255.8 3830.3 80.7 -
stilt316.10 - - - - - -

Normalized CPU times (in seconds) for real-world problem class instances. Instances
not solved in the allotted time are labeled by “-”
biased against the Climer & Zhang machine, so a machine-independent comparison
is made using concorde as a baseline.

. The normalization error is strongly
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