
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCS-2007-45

2007-08-01

Exploration of Dynamic Memory Exploration of Dynamic Memory

Delvin Curvin Defoe

Since the advent of the Java programming language and the development of real-time garbage

collection, Java has become an option for implementing real-time applications. The memory

management choices provided by real-time garbage collection allow for real-time eJava

developers to spend more of their time implementing real-time solutions. Unfortunately, the real-

time community is not convinced that real-time garbage collection works in managing memory

for Java applications deployed in a real-time context. Consequently, the Real-Time for Java

Expert Group formulated the Real-Time Specification for Java (RTSJ) standards to make Java a

real-time programming language. In lieu of garbage collection, the RTSJ... Read complete Read complete

abstract on page 2. abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Defoe, Delvin Curvin, "Exploration of Dynamic Memory" Report Number: WUCS-2007-45 (2007). All
Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/920

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/920?utm_source=openscholarship.wustl.edu%2Fcse_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/920

Exploration of Dynamic Memory Exploration of Dynamic Memory

Delvin Curvin Defoe

Complete Abstract: Complete Abstract:

Since the advent of the Java programming language and the development of real-time garbage collection,
Java has become an option for implementing real-time applications. The memory management choices
provided by real-time garbage collection allow for real-time eJava developers to spend more of their time
implementing real-time solutions. Unfortunately, the real-time community is not convinced that real-time
garbage collection works in managing memory for Java applications deployed in a real-time context.
Consequently, the Real-Time for Java Expert Group formulated the Real-Time Specification for Java
(RTSJ) standards to make Java a real-time programming language. In lieu of garbage collection, the RTSJ
proposed a new memory model called scopes, and a new type of thread called NoHeapRealTimeThread
(NHRT), which takes advantage of scopes. While scopes and NHRTs promise predictable allocation and
deallocation behaviors, no asymptotic studies have been conducted to investigate the costs associated
with these technologies. To understand the costs associated with using these technologies to manage
memory, computations and analyses of time and space overheads associated with scopes and NHRTs
are presented. These results provide a framework for comparing the RTSJ’s memory management model
with real-time garbage collection. Another facet of this research concerns the optimization of novel
approaches to garbage collection on multiprocessor systems. Such approaches yield features that are
suitable for real-time systems. Although multiprocessor, concurrent garbage collection is not the same as
real-time garbage collection, advancements in multiprocessor concurrent garbage collection have
demonstrated the feasibility of building low latency multiprocessor real-time garbage collectors. In the
nineteen-sixties, only three garbage collection schemes were available, namely reference counting
garbage collection, mark-sweep garbage collection, and copying garbage collection. These classical
approaches gave new insight into the discipline of memory management and inspired researchers to
develop new, more elaborate memory-management techniques. Those insights resulted in a plethora of
automatic memory management algorithms and techniques, and a lack of uniformity in the language
used to reason about garbage collection. To bring a sense of uniformity to the language used to reason
about garbage collection technologies, a taxonomy for comparing garbage collection technologies is
presented.

https://openscholarship.wustl.edu/cse_research/920?utm_source=openscholarship.wustl.edu%2Fcse_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/920?utm_source=openscholarship.wustl.edu%2Fcse_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2007-45

Exploration of Dynamic Memory, Doctoral Dissertation

Authors: Delvin C. Defoe

Corresponding Author: dcd2@cse.wustl.edu

Abstract: Since the advent of the Java programming language and the development of real-time
garbage collection, Java has become an option for implementing real-time applications. The
memory management choices provided by real-time garbage collection allow for real-time
Java developers to spend more of their time implementing real-time solutions.

Unfortunately, the real-time community is not convinced that real-time garbage collection works in managing
memory for Java applications deployed in a real-time context.
Consequently, the Real-Time for Java Expert Group formulated the Real-Time Specification
for Java (RTSJ) standards to make Java a real-time programming language. In lieu of
garbage collection, the RTSJ proposed a new memory model called scopes, and a new
type of thread called NoHeapRealTimeThread (NHRT), which takes advantage of scopes.
While scopes and NHRTs promise predictable allocation and deallocation behaviors, no
asymptotic studies have been conducted to investigate the costs associated with these
technologies. To understand the costs associated with using these technologies to manage memory,

Type of Report: PhD Dissertation

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY

Sever Institute
School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:
Ron K. Cytron, Chair

Guy M. Genin
Christopher D. Gill
William D. Smart

Aaron Stump

EXPLORATION OF DYNAMIC MEMORY MANAGEMENT SYSTEMS

by

Delvin Curvin Defoe

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

August 2007

Saint Louis, Missouri

copyright by

Delvin Curvin Defoe

2007

Acknowledgments

would like to express my gratitude to my advisor Dr. Ron Cytron for his guid-I ance, his support, his patience, his wisdom, his tutelage, and his supervision of this
research, this dissertation, and my graduate education at Washington University.

Dr. Cytron also supported my research financially during my last academic year, took
us (the DOC Group) out to lunch on several occasions, and was just resourceful in many
dimensions. Thanks much Ron for bearing with me for the last several years.

I would like to especially thank all five members of my dissertation committee, Dr. Ron
Cytron (committee chair), Dr. Guy M. Genin, Dr. Christopher D. Gill, Dr. William D.
Smart, and Dr. Aaron Stump, for providing me valuable feedback as I pursued this research.

Thanks go out to colleagues like Morgan Deters and Rob LeGrand for collaborations over
the years and for their insightful discussions and valuable feedback; to Shakir James for
reviewing drafts of this dissertation; to Reynold Bailey and the Bailey family for their sup-
port and friendship; to Justin Thiel, Richard Hough, and other members of the Distributed
Object Computing Laboratory (DOC Group) at Washington University who assisted in
one way or another with this dissertation and contributed meaningfully to my educational
experience at Washington University.

Special thanks are in order for Dr. Randy Glean for exposing me to Washington University
and the Chancellor’s Graduate Fellowship Program. Dr. Glean took a deep interest in my
educational career and in my advancement as a scholar and as an individual. Thanks much
Dr Glean for the role you played in my development.

I need at this time to acknowledge Dean Robert Thach, Dean Sheri Notaro, Amy Gassel
and the Chancellor’s Graduate Fellowship Program at Washington University for creating a
friendly, welcoming, relaxing environment conducive to excelling. I appreciate the financial
support and the way the program accepted me with open arms and made me feel that I
belonged. The open house socials, the games nights, the shows at the Fox, the bowling
nights, and many other events and activities truly refreshed me and helped much with my
stress relief.

To my mom Molly Williams, my granny Aldith Joseph, my dad Morrel Defoe, my sister
Marilese Mellow, my brothers Derrickson, Cedrick, Ian, José, and Josiah, I say thank you.
Thank you for believing in me and for giving me an opportunity to succeed. Your love and

ii

support is noted. Thanks to Annette, Valantine, Delson, and the rest of my family. I am
just so thankful for your patience, love, and high expectations. Special thanks to Brother
Bob and the rest of the Miligan family. Thanks for taking me in and treating me as your
son. Thanks to Anita Phillips, Willie Mae Walker, Alvin T Walker, and the rest of the
Walker family for welcoming me and for extending your love and support to me and my
family. Thanks to my friends including but not limited to Hon. Vince Henderson, Neehall
Philogene, Dr. Munaba Nasiiro, and Nigel Thomas.

Thanks to Dr. Thomas Jackson and my family at the Ferguson Heights Church of Christ.
I truly appreciate the spiritual nourishment I receive at the heights. Thanks also to my
family at the Massacre Church of Christ. You gave me a great start in my spiritual walk.

I am indebted to my wife Donna for her love, support, prayers, and understanding as I
undertook this venture. Her prayers and support have been and continue to be my source
of strength. Thanks to Jade for her smile and for becoming part of my life.

Last and by no means least, I thank my God for taking me to this and for taking me through
this process. I am forever grateful.

Delvin Curvin Defoe

Washington University in Saint Louis

August 2007

iii

To my beloved wife and family

iv

Contents

Acknowledgments . ii

List of Figures . x

Abstract . xiv

1 Introduction . 1

1.1 The RTSJ Scoped-memory Areas . 5

1.2 Incremental and Concurrent Collection . 6

1.3 Classifying Garbage Collectors . 8

1.4 Contributions . 9

1.5 Road Map . 9

2 Background . 11

2.1 Classical Garbage Collection Techniques . 11

2.1.1 Mark-Sweep Garbage Collection . 12

2.1.2 Reference Counting Garbage Collection 12

2.1.3 Copying Garbage Collection . 13

2.2 Modern Garbage Collection techniques . 14

2.2.1 Generational Garbage Collection . 14

2.2.2 On-the-Fly Garbage Collection . 15

2.3 Real-Time Garbage Collection Techniques 17

2.3.1 Metronome . 17

v

2.3.2 PERC . 18

2.4 The RTSJ’s Influence on Memory Management 19

3 Asymptotic Analysis of the RTSJ scoped memory areas 22

3.1 Chapter road map . 22

3.2 Background and Motivation . 23

3.3 Scoped-memory Analysis . 24

3.3.1 Empirical analysis of scoped memory 24

3.3.2 Asymptotic analysis of scoped memory 25

3.4 Stack analysis . 26

3.4.1 Typical implementation of stack . 27

3.4.2 Scoped-memory implementation of stack 30

3.4.3 Cumulative analysis for stack . 33

3.4.4 Discussion . 34

3.5 Queue analysis . 35

3.5.1 Typical implementation of queue . 36

3.5.2 Scoped-memory implementation of queue 38

3.5.3 Cumulative analysis for queue . 43

3.5.4 Discussion . 45

3.5.5 Improved scoped-memory implementation of queue 46

3.5.6 Cumulative analysis for queue revisited 47

3.6 Functional programming parallel . 49

3.7 List analysis . 55

3.7.1 Typical implementation of list . 55

3.7.2 Scoped-memory implementation of list 56

3.7.3 Cumulative analysis for list . 56

3.8 Heap analysis . 56

3.8.1 Typical implementation of heap . 58

3.8.2 Scoped-memory implementation of heap 58

vi

3.8.3 Cumulative analysis for heap . 58

4 An Improved on-the-fly reference counting garbage collector 60

4.1 Chapter road map . 61

4.2 The problem addressed by LPC and DDC collectors 61

4.3 Mutators in garbage collection . 62

4.4 Defoe-Deters Collector . 64

4.4.1 Initiating a collection . 64

4.4.2 Resetting dirty flags . 65

4.4.3 Restore dirty flags . 66

4.4.4 Consolidation . 67

4.4.5 Adjust reference-count fields . 68

4.4.6 Reclaim garbage objects . 70

4.5 Defoe-Deters Collector Version 2 . 71

4.6 The Levanoni-Petrank Collector . 74

4.7 Validating the DDC family of collectors . 76

4.7.1 Definition of concepts . 76

4.7.2 The Defoe-Deters Collector is correct 77

4.7.3 Defoe-Deters Collector Version 2 is correct 81

4.8 Implementation issues . 82

4.8.1 Reference counting field . 82

4.8.2 Buffer representation . 83

4.8.3 Maintaining dirty flags . 84

4.8.4 Pointer modifications in log entries 87

4.8.5 Non-blocking write barrier and handshaking mechanism 88

4.8.6 Root scanning . 89

4.9 Experimentation . 91

4.9.1 Configuration and compilation . 91

4.9.2 Collector Overhead . 93

vii

4.9.3 Investigation of Overhead . 94

4.9.4 Comparing DDC with LPC . 98

4.10 Related work . 100

4.10.1 Deferred Reference Counting . 100

4.10.2 Limited-field Reference Counting . 101

4.10.3 Multi-threaded Multiprocessor Reference Counting 101

5 Taxonomy of Garbage Collectors . 103

5.1 Introduction . 103

5.1.1 Curspace . 104

5.2 Taxonomy category list . 105

5.2.1 Incrementality . 105

5.2.2 Immediacy . 106

5.2.3 Pause time . 108

5.2.4 Completeness . 108

5.2.5 Overhead . 110

5.2.6 Concurrency . 111

5.2.7 Throughput . 111

5.3 Comparing extant collectors with GC-Tax 113

5.3.1 Comparing collectors with incrementality 114

5.3.2 Comparing collectors with immediacy 114

5.3.3 Comparing collectors with pause time 115

5.3.4 Comparing collectors with completeness 115

5.3.5 Comparing collectors with overhead 116

5.3.6 Comparing collectors with concurrency 116

5.3.7 Comparing collectors with throughput 117

6 Conclusions and future work . 118

6.1 Research summary . 118

6.2 Future work . 119

viii

Appendix A Data from Experimentation . 121

References . 123

Curriculum Vitae . 130

ix

List of Figures

1.1 C++ source code that contains dangling pointers. 3

2.1 The Levanoni and Petrank write barrier [57] where i is the mutator index. 16

2.2 Scoped-memory single-parent rule. A is the parent of both B and C. 20

2.3 References between storage areas [15]. * If an object is in the same scope or the outer scope. 21

3.1 Procedure to determine whether the stack is empty—linked list implementation. 28

3.2 Procedure to push an element on the stack—linked list implementation. 29

3.3 Procedure to pop the topmost element off the stack—linked list implementation. 29

3.4 Procedure to determine whether the stack is empty—scoped-memory implementation. . . 31

3.5 Procedure to push an element on the stack—scoped-memory implementation. m ≥ |x| +

|TOS|. 31

3.6 Procedure to pop the topmost element off the stack—scoped-memory implementation. . . 32

3.7 Linked list representation of a queue. 36

3.8 Procedure to determine whether the queue is empty—singly linked list implementation. . 36

3.9 Procedure to add an element to the rear of the queue—singly linked list implementation. 37

3.10 Procedure to remove an element from the front of the queue—singly linked list implementation. 38

3.11 Representation of a queue instance in an RTSJ scoped-memory environment. Rounded

rectangles represent scoped-memory instances and ovals represent element instances. T0 is

the application thread and T1 services the stack. The arrows pointing downward represent

legal scope references. The sync field is a synchronization point for T0 and T1. E1 denotes

element i. 39

x

3.12 Procedure to determine whether the queue is empty—scoped-memory implementation. . 39

3.13 Procedure to remove an element from the front of the queue—scoped-memory implementation. 40

3.14 Procedure to add an element to the rear of the queue—scoped memory implementation.

Each ci is a constant and n = |Q|+ |S|. Initially stack S is empty. 40

3.15 Storing queue elements on stack to facilitate enqueue of Ei. 41

3.16 Ei is enqueued. 42

3.17 Private helper method that puts an element at the front of the queue in the same manner

that an element is pushed onto a stack—scoped-memory implementation. m ≥ |x|+ |front|. 42

3.18 Procedure to add an element to the rear of the queue—scoped memory implementation. . 47

3.19 Statistics for procedure in Figure 3.18. Each ci is a constant and n = |Q| + |S|. Initially

stack S is empty and so n = |Q|. 48

4.1 Instantiation of new object. Similar to procedure New in LPC [57, 58]. 62

4.2 Reproduced write barrier of LPC [57, 58]. 63

4.3 Write barrier to be executed by threads released from handshake one. Execution of proce-

dure Update by all threads resumes when handshake one completes. 63

4.4 Procedure to begin a collection and implement handshake one. This procedure is executed

by the collector and similar to procedure Initiate-Collection-Cycle of LPC [57, 58]. . . 65

4.5 Procedure to reset dirty flags of pointers in Histk. This procedure is executed by the

collector and is identical to procedure Clear-Dirty-Marks of LPC [57, 58]. 66

4.6 Procedure retrieves each mutator’s temporary buffer TB i, raises necessary dirty flags and

updates Histk+1. 66

4.7 Procedure consolidates all the per-thread local information into per-collection buffers. This

procedure is similar to handshake four of LPC [57]. 67

4.8 Procedure adjusts rc fields of heap objects identified by pointers in Histk. This is func-

tionally the same as Figure 9 in LPC [57]. 68

4.9 Procedure reads mutator local buffers without clearing them. This is the same as procedure

Read-Buffers in LPC [57, 58]. 69

xi

4.10 Procedure reads history buffer of next collection and adds it to Peekk. This is the same as

procedure Merge-Fix-Sets in LPC [57, 58]. 69

4.11 Procedure increments rc fields of objects identified by unresolved pointers. This is the same

as procedure Fix-Undetermined-Slots in LPC [57, 58]. 70

4.12 Procedure determines which objects are garbage and collects them with procedure Collect.

This is the same as procedure Reclaim-Garbage in LPC [57, 58]. 70

4.13 Procedure collects garbage objects. This is the same as procedure Collect in LPC [57]. . 71

4.14 InitiateCollection modified to use dual dirty flags for each pointer in an object. i is the

thread index and k is the collection number. 72

4.15 Write barrier modified to use dual dirty flags. i is the thread index and di ∈ {0, 1} is the

dirty flag to raise in this collection. 72

4.16 Procedure ResetDirtyFlags modified to use dual dirty flags. k is the collection number. 73

4.17 Procedure embraces handshakes two and three LPC [57, 58]. 74

4.18 Procedure consolidates all the mutator local buffers into per-collection buffers. * This

procedure is the same as handshake four of LPC [57, 58]. 75

4.19 Placement of dirty words above object pointer. Layout of an object of type B is shown

(which derives from type A). The A-part of the object is laid out first, with positive offsets

for fields and negative offsets for dirty words. Then the B-part of the object is laid out. . 86

4.20 Placement of dirty words among the fields of an object. Layout of an object of type B is

shown (which derives from type A). Each part of the object is laid out in turn, with a dirty

word injected for every 16 or 32 fields of pointer type. 87

4.21 Overhead for executing SortNumbers 100 times with and without our collector. 93

4.22 Overhead distribution for DDC when executing SortNumbers 100 times with the collector

enabled. The figure gives total time for each operation for the 100 runs of the application. 94

4.23 Average time cost for an operation, observed for the 100,000 runs of the application when

the collector is enabled and the operation is executed. 95

4.24 Standard deviation of the time cost for an operation, observed for the 100,000 runs of the

application when the collector is enabled and the operation is executed. 97

xii

4.25 Total count of the number of times each operation executed, observed for the 100,000 runs

of the application when the collector is enabled and the operation is executed. 98

4.26 Comparison of LPC’s average handshake time (per handshake) with DDC’s average hand-

shake time, observed for the 100,000 runs of the application when the collector is enabled

and the handshake mechanism is used. 99

5.1 Using GC-Tax to compare extant garbage collectors. 113

A.1 Average time cost for an operation, observed for the 100,000 runs of the application when

the collector is enabled and the operation is executed. 121

A.2 Standard deviation of the time cost for an operation, observed for the 100,000 runs of the

application when the collector is enabled and the operation is executed. 121

A.3 Count of the number of times each operation is executed, observed for the 100,000 runs of

the application when the collector is enabled and the operation is executed. 122

A.4 Total time cost for total number of executions of an operation, observed for the 100,000

runs of the application when the collector is enabled and the operation is executed. . . . 122

A.5 Minimum time cost for an operation, observed for the 100,000 runs of the application when

the collector is enabled and the operation is executed. 122

xiii

ABSTRACT OF THE DISSERTATION

Exploration of Dynamic Memory Management Systems

by

Delvin Curvin Defoe

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2007

Ron K. Cytron, Chairperson

Since the advent of the Java programming language and the development of real-time

garbage collection, Java has become an option for implementing real-time applications. The

memory management choices provided by real-time garbage collection allow for real-time

Java developers to spend more of their time implementing real-time solutions.

Unfortunately, the real-time community is not convinced that real-time garbage

collection works in managing memory for Java applications deployed in a real-time context.

Consequently, the Real-Time for Java Expert Group formulated the Real-Time Specification

for Java (RTSJ) standards to make Java a real-time programming language. In lieu of

garbage collection, the RTSJ proposed a new memory model called scopes, and a new

type of thread called NoHeapRealTimeThread (NHRT), which takes advantage of scopes.

While scopes and NHRTs promise predictable allocation and deallocation behaviors, no

asymptotic studies have been conducted to investigate the costs associated with these

technologies. To understand the costs associated with using these technologies to manage

xiv

memory, computations and analyses of time and space overheads associated with scopes

and NHRTs are presented. These results provide a framework for comparing the RTSJ’s

memory management model with real-time garbage collection.

Another facet of this research concerns the optimization of novel approaches to

garbage collection on multiprocessor systems. Such approaches yield features that are

suitable for real-time systems. Although multiprocessor, concurrent garbage collection is

not the same as real-time garbage collection, advancements in multiprocessor concurrent

garbage collection have demonstrated the feasibility of building low latency multiprocessor

real-time garbage collectors.

In the nineteen-sixties, only three garbage collection schemes were available, namely

reference counting garbage collection, mark-sweep garbage collection, and copying garbage

collection. These classical approaches gave new insight into the discipline of memory

management and inspired researchers to develop new, more elaborate memory-management

techniques. Those insights resulted in a plethora of automatic memory management algo-

rithms and techniques, and a lack of uniformity in the language used to reason about

garbage collection. To bring a sense of uniformity to the language used to reason about

garbage collection technologies, a taxonomy for comparing garbage collection technologies

is presented.

xv

Chapter 1

Introduction

irth [51], a Swiss computer scientist (born 1934), developed an im-W perative programming language suitable for structured program-

ming in 1970. The resulting language, Pascal [51, 21], was named

after Blaise Pascal [79], a French mathematician who was a pioneer in computer develop-

ment history. According to the Pascal Standard ISO 7185 [38], Wirth designed Pascal to

satisfy two original goals, namely:

a) “to make available a language suitable for teaching programming as a sys-

tematic discipline based on certain fundamental concepts clearly and nat-

urally reflected by the language;

b) to define a language whose implementation could be both reliable and ef-

ficient on available computers.”

But Pascal went far beyond its original design goals to satisfy academic interests. Commer-

cial use of the language often exceeded academic interests.

In 1972 another programming language evolved. The C [55] programming language,

designed by Dennis Ritchie [77] at Bell Telephone Laboratory, is a general purpose, pro-

cedural, imperative programming language that was developed for the Unix [74] operating

system. It has since gained popularity and has been used with many other operating sys-

tems. C has also become one of the primary languages for implementing system software.

1

Some of the design goals for C were that it could be compiled with a simple compiler,

provide low-level access to memory, and require little run-time support. As such, C became

a versatile language usable for both low-level and high-level implementations. A low-level

language like C is easier to read and write than assembly language [78]. This explains its

popularity with system software. However, when used for high-level implementations, C

is not as easy to understand as other languages. C also suffers from its limited ability to

perform automatic checks, e.g., type checking and array bounds checking.

In an attempt to enhance C by addressing the above and other shortcomings, Bjarne

Stroustrup [83, 84] of AT&T Bell Laboratories developed the C++ [83, 34, 77] programming

language in 1983. C++ is a high-level language with low-level facilities. Some of the

features C++ possesses beyond C include classes, virtual functions, operator overloading,

single inheritance, multiple inheritance, templates, and exception handling. Some of these

features make C++ an object-oriented programming [54] language.

Although the programming languages highlighted above differ and were designed

with different goals in mind, they show similarities in memory management. While C offers

programmers the malloc() construct to allocate storage dynamically in the heap, both

C++ and Pascal offer the new() construct. These constructs allocate a contiguous block of

memory in the heap. In addition to using similar constructs to allocate heap storage, these

languages offer programmers manual storage reclamation as the only option to reclaim heap

storage. Every time C’s malloc() construct allocate storage, the associated free() construct

reclaims the storage. Similarly, C++’s new() construct is paired with delete() and Pascal’s

new() construct is coupled with dispose(). Otherwise, the storage persists for the duration

of the application, whether or not it can be accessed. Another issue associated with manual

storage reclamation is the extreme care that must be taken to ensure that objects are

reclaimed only when they are no longer needed by the application. The term object is used

loosely to refer to any dynamic storage that is allocated in the heap.

2

Improper reclamation of objects can lead to dangling pointers [2, 35]. Dangling

pointers are references to objects that are already deleted. Such pointers surface when

objects are reclaimed too early, i.e., objects are deleted while there are still references to

them. Programs that create dangling pointers may not necessarily experience problems

with small inputs; however, with large or complex inputs such programs tend to crash.

Crashes usually occur long after dangling pointers are created, thus making it difficult to

trace such pointers. Figure 1.1 depicts code that contains dangling pointers.

Foo* p = new Foo();
Foo* q = p;
delete p;
p->DoSomething(); // p is now a dangling pointer!
p = NULL; // p is no longer dangling
q->ProcessFoo(); // q is also a dangling pointer since q == p!

Figure 1.1: C++ source code that contains dangling pointers.

Improper reclamation of objects can also result in memory leaks [48], i.e., a kind

of memory consumption that occurs when a program fails to free up memory that it no

longer needs. A direct consequence of such memory consumption is diminished system

performance, which occurs because of a reduction in the amount of available memory. Such

diminished performance can be manifested in the form of fragmentation, memory page

faults, and cache misses. A program that leaks memory usually requests more and more

memory of the allocator until it eventually crashes due to the allocator’s inability to satisfy

further requests for memory.

To avert dangling pointer and memory leak problems, library code and packages that

offer automatic memory management facilities can be instrumented in the runtime system

of the aforementioned programming languages. Alternatively, garbage collected languages

can be used for application development.

3

The discussion above highlights some of the issues that have confronted researchers

and programming language developers from as early as the nineteen-fifties. Those issues

led to the evolution of automatic memory management. Automatic memory management,

including garbage collection [3, 25, 56], became an option for programmers who used the

programming language LISP [61] to write their applications. LISP used garbage collec-

tion to reclaim lists automatically. Garbage collection (GC) refers to a system’s method

of automatically reclaiming storage that an application no longer uses. Since its inception,

GC has become ubiquitous. Many functional, logical, and object-oriented programming lan-

guages use GC techniques to automatically manage their heaps [53]. Some examples include

Scheme [33], Dylan [80], ML [75], Haskell [50], Miranda [88], Prolog [91], Smalltalk [76],

Eiffel [63], Oberon [73], and Java [5]. Modula-3 [20] offers its programmers the choice of

either manual storage reclamation of the heap or the use of GC.

Another memory management option offered by programming languages like the

Standard ML Core Language [45] is denoted region-based memory management [87]. Re-

gion-based memory management is a memory management scheme that serves as a com-

promise between the two extremes described above, namely manual memory management

and automatic memory management. The notion of region-based memory management is

that objects are allocated and deallocated without the presence of a garbage collector. At

runtime, all objects are put in regions [87], which are pushed onto a stack and popped off the

stack when they are no longer needed. The stack of regions, which grows and shrinks, sits in

memory and allows memory to be managed using a stack discipline. This memory manage-

ment scheme is used by the Real-Time Specification for Java (RTSJ) to transform Java into

a programming language suitable for real-time application development. In particular, the

RTSJ allows Java programmers to instantiate regions of memory, denoted scoped-memory

areas [15], where dynamic memory allocation occurs. Objects allocated in a scoped-memory

area are not collected individually; rather, the entire scoped-memory area is collected at

4

once when no application threads execute in that region. While subsequent sections elab-

orate more on the use of the RTSJ scoped-memory areas, it is important to note that

scoped-memory areas are designed to follow a stack discipline. A scoped-memory area is

always collected before its parent scope. This stack discipline restricts the referencing rela-

tion among objects. More specifically, it prohibits objects in scoped-memory areas deeper

in the stack from referencing objects in scoped-memory areas closer to the top of the stack.

The necessity for this restriction will become obvious in subsequent sections.

The rest of this chapter is organized as follows. Section 1.1 supplies details on the

RTSJ’s region-based memory management scheme; Section 1.2 provides intuition on multi-

threaded multiprocessor garbage collection; Section 1.3 discusses the state of the art in

classifying garbage collectors; Section 1.4 lists the contributions offered by this dissertation

to the memory management community, and Section 1.5 gives a road map for the rest of

this dissertation.

1.1 The RTSJ Scoped-memory Areas

Real-time systems require bounded-time memory-management performance. Many real-

time applications are written in languages that do not offer garbage-collection capabilities

by default; as such, these applications do not suffer from the overhead associated with

garbage collection. Since the advent of Java in 1995 [5, 41], however, programmers have

been exploring ways to use Java for real-time programming. Java has become attractive

because of its automated memory-management capabilities and the ease with which it can

be used to write programs.

Java has become ubiquitous in many programming environments but not in real-

time and embedded environments. To advance the use of Java for real-time programming,

the Real-Time for Java Expert Group (RTJEG) issued the Real-Time Specification for

Java [15] (RTSJ) standard. The RTSJ provides extensions to Java that support real-time

programming [29] without changing the basic structure of the language. It adds new class

5

libraries and Java Virtual Machine (JVM) extensions to the language, so compilers not

optimized for those extensions are not affected by their addition. Although the RTSJ

revises many areas of the Java programming language, this dissertation focuses on storage

management.

In addition to the heap, where dynamic storage allocation occurs, the RTSJ spec-

ifies other memory areas for dynamic storage allocation. Those memory areas are called

immortal memory and scoped-memory areas [15]. Objects allocated in those memory areas

are never subjected to garbage collection although the garbage collector may scan immortal

memory. Objects in immortal memory are not collected until execution of the program

completes. They are never collected earlier, whether or not there are references to them.

Objects in a scoped-memory area, on the other hand, are collected en masse when every

thread that executes in that area exits it. Scoped-memory areas are best used with No-

HeapRealtimeThreads (NHRTs) [15]. NHRTs are real-time threads that can immediately

preempt any garbage collection logic triggered from within the run() methods of threads

(all other threads have lower priority than NHRTs). They may be allocated in immortal

memory, however, they work best with scoped-memory areas.

The use of scoped-memory areas is not without additional cost or burden, as il-

lustrated in this dissertation. Much work has been done with scoped-memory areas and

NHRTs; however, to the best of our knowledge, there is no record in the literature of

system-independent cost analysis for scoped-memory regions and NHRTs. This disserta-

tion provides a framework for comparing programming with the RTSJ scoped-memory to

programming with other memory models, e.g., the heap. While there are several approaches

that can be used to do this comparison, we utilize a model that employs asymptotic analysis.

1.2 Incremental and Concurrent Collection

During the past few decades, garbage collection technology has experienced tremendous

growth. The state-of-the-art collector is no longer a simple stop-the-world collector that

6

executes in a single thread when all mutators are suspended. Instead, incremental collectors

like Metronome [8, 9, 10] and PERC [68] have evolved. Incremental collectors are collectors

that interleave their execution with mutators, thus sharing the central processing unit(s)

and other system resources. We use “mutator” interchangeably with “thread” to refer to an

application thread, i.e., a thread that does work on behalf of the application. It is possible

for a mutator to do work on behalf of the collector, but, in general, the job of a mutator is to

perform work on behalf of the application. From the collector’s perspective, a mutator is a

nuisance, a thread that mutates (modifies) the heap and increases the work of the collector.

Beyond incrementality, garbage collection technology has experienced growth in the

area of concurrency. Concurrent collectors [81, 4, 30, 32, 71] are collectors that execute

in parallel with mutators. Concurrent collectors require a multiprocessor environment.

Typically, they suspend mutators at the same time at the beginning or end of a collection

to compute a unified view of the heap. With such a view they are able to correctly collect

objects that become garbage. Although concurrent collection is a significant improvement

over the previous collection techniques, it is not without drawbacks. One limitation is

scalability, which becomes an issue as the number of mutators increases. Mutators can

only be suspended at “safe points” [7, 8, 9, 10, 57]; thus, the duration of suspensions grows

linearly with the number of mutators.

An added contribution to garbage collection technology is on-the-fly collection. On-

the-fly collection is collection in which the collector does not suspend all mutators at the

same time, as concurrent collection does. Instead, the collector interacts with mutators

on an individual basis. There is never a time when more than one mutator is suspended.

While this approach presents an inconsistent view of the heap, the information gathered by

the collector during pairs of successive collections is sufficient for the collector to accurately

collect garbage objects.

7

Bacon [7] and Levanoni and Petrank [57] presented on-the-fly collectors. We are

particularly interested in the collector presented by Levanoni and Petrank (LPC) [57] be-

cause it is a high performance reference counting garbage collector which offers short pause

times and low synchronization. LPC denotes Levanoni and Petrank’s collector, an on-the-fly

reference counting garbage collector for Java. Details on LPC are presented in Chapter 2.

Although LPC is a high performance collector, one of its shortcomings is overhead.

LPC suspends all mutators 4 times during a collection to perform transactions with them.

The duration of a transaction is not fixed, but varies by mutator and collection. After

each transaction the collector resumes the suspended mutator so it can proceed with its

computation. The process of suspending a mutator, transacting with it, and resuming it

is called a handshake. Each mutator experiences 4 handshakes during a collection. Sub-

jecting mutators to that many handshakes can slow down the application and have other

adverse effects outlined in Chapter 2. We address these issues by redesigning the collector

to minimize the number of handshakes to reduce overhead.

1.3 Classifying Garbage Collectors

The literature on garbage collection is extensive [52, 93, 94]. What is noteworthy, however,

is that most of the contributions offered by the garbage collection community involve the

presentation of a new collector, the evaluation of an existing collector, the comparison of at

least two extant collectors, or the summarization of existing collectors. Very little contri-

bution has been made toward taxonomizing garbage collection technology. We address this

limitation by developing a garbage collection taxonomy called GC-Tax. GC-Tax identifies

and formalizes a list of relevant garbage collection features that address specific issues con-

cerning the creation of enabling environments for application execution. We utilize GC-Tax

to classify a cross-section of extant garbage collection techniques to gain insight into how

different technologies compare. The idea is that GC-Tax will enable application developers

to select the most appropriate collectors for their applications. In order to take advantage

8

of GC-Tax, developers need to determine the most important characteristics of their ap-

plications. Using that information, they can select the most suitable collectors to manage

memory on behalf of their applications.

1.4 Contributions

The contributions that this dissertation offers to the memory management community be-

gin in Chapter 3. Before the Real-Time Specification for Java scoped-memory model can

be compared with other memory models, in the RTSJ’s attempt to present Java as a pro-

gramming language suitable for real-time, quantitative analysis needs to be done on the

RTSJ scoped-memory model. We provide a method for determining asymptotic bounds for

the RTSJ scoped memory model.

This dissertation also contributes to the aforementioned community by presenting

a high performance, multiprocessor, reference counting garbage collector that offers high

throughput, negligible pause times, and low synchronization in its write barrier. This

collector is based on previous work by Levanoni and Petrank [57, 58].

Further, in an effort to unify garbage collection technology this dissertation provides

a taxonomy of garbage collectors. The goal is that this taxonomy does not only classify

garbage collection technology, but that it also offers developers a tool to determine which

garbage collectors are best suited for their applications.

1.5 Road Map

The rest of this dissertation is organized as follows. Chapter 2 provides essential background

on the evolution of garbage collection techniques and highlights the RTSJ’s influence on

memory management. Chapter 3 provides a model to determine asymptotic bounds for the

RTSJ scoped-memory model. Chapter 4 presents an improved on-the-fly reference counting

garbage collector for Java. Chapter 5 summarizes the contributions made in the field of

9

garbage collection, motivates the need for a taxonomy that classifies garbage collectors, and

presents a taxonomy of garbage collectors. Chapter 6 summarizes the contributions of this

dissertation to the memory management community and lists ideas for future consideration.

10

Chapter 2

Background

e provide background on the evolution of garbage collection in thisW chapter by visiting its history and highlighting the contributions

of a few pioneers in the garbage collection community. We then

discuss a handful of modern approaches to emphasize the growth and impact of the garbage

collection community on memory management systems. Finally, we highlight the influence

of the Real-Time Specification for Java on memory management. These discussions motivate

the subject of this dissertation.

2.1 Classical Garbage Collection Techniques

At a high level, this dissertation concerns exploration of automatic memory management

systems. The study of automatic memory management systems is not new, but dates back

to the nineteen-sixties when pioneers like McCarthy [61], Collins [26], and Minsky [64]

designed garbage collectors to address the automatic erasure of lists in LISP. McCarthy

designed the mark-sweep or mark-scan collector; Collins designed the reference counting

collector, and Minsky designed the copying collector. We give a brief overview of these

collectors without necessarily listing their advantages or disadvantages since we are more

concerned with giving intuition into their functionality.

11

2.1.1 Mark-Sweep Garbage Collection

In the late nineteen-fifties, when LISP was the prevailing programming language, program-

mers were required to handle erasure of lists explicitly using a built-in operator called

eralis [62]. A method for automatic erasure of lists was needed, so the mark-sweep garbage

collector was developed in 1960. That effort was pioneered by McCarthy who published it

in April of that year [61].

Under the mark-sweep garbage collection scheme, objects or cells are not reclaimed

as soon as they become garbage, but remain dead until the storage pool is exhausted. If

a new cell is requested and the storage pool is exhausted, the mutator’s computation is

suspended until all dead cells in the heap are swept and returned to the pool of free cells.

The garbage collection routine reclaims garbage by traversing (tracing) the graph of all

live objects and returning to the pool of free cells all cells that are not live. This forward

trace begins from the root set and marks every object reachable as live. Every other object

is dead and is returned to the pool of free cells. If the collection routine is successful in

reclaiming sufficient storage, the mutator’s request is satisfied and computation resumes.

Otherwise, an error condition is reported by the collector.

McCarthy’s mark-sweep collector is a typical example of a tracing collector since

it traverses or traces live data in the heap. Another example of tracing collectors is the

copying collector of Fenichel and Yochelson [36] described in Section 2.1.3.

2.1.2 Reference Counting Garbage Collection

The classical reference counting garbage collector was originally developed for LISP by

George Collins [26, 53]. Collin’s collector is a simple, direct method for reclaiming garbage.

It uses the count of references to heap objects from the root set and from all live objects.

Each object keeps count of the number of references to it in a special field called its reference

count. The reference count of each object is equal to the number of references that point

12

to it from the root set and from all live objects. Objects are collected when they have a

reference count of zero.

When a new object Obj, for example, is allocated from the pool of free memory, it

has an initial reference count of zero. However, before it is returned to the application, its

reference count is set to one. Each time thereafter a pointer references Obj, its reference

count is incremented. Each time a pointer to Obj is deleted, its reference count is decre-

mented. If that causes Obj’s reference count to drop to zero, no object or field points to

it; as such, Obj cannot be reached by the mutator. Obj is thus garbage and should be

returned to the pool of free storage. Before Obj is returned to that pool, however, the

reference count of every object to which it points must be decremented. This decrement is

necessary because an object’s liveness is determined only by reference count contributions

from live objects. Reclaiming one object can potentially lead to reclaiming multiple objects,

a process known as recursive freeing [53].

2.1.3 Copying Garbage Collection

In 1963 Minsky published the first copying garbage collector for LISP 1.5 [64]. Jones and

Lins [53] give a brief overview of Minsky’s collector. The copying collector presented here

however, was devised by Fenichel and Yochelson in 1969 [36]. Fenichel and Yochelson’s

collector divides the heap equally into semi-spaces; at any time one is called the FromSpace

and the other is called the ToSpace. A collection is initiated when there is not enough free

storage in ToSpace for the mutator to allocate an object. The mutator is thus suspended.

A collection begins with the collector flipping the role of the semi-spaces; FromSpace

becomes ToSpace and ToSpace becomes FromSpace. The collector then traverses the live

data in FromSpace, starting with references from the roots, and copies each object to

ToSpace when it is first visited. After all the live objects in FromSpace have been copied

to ToSpace, the data in ToSpace is a compacted replica of the data from FromSpace.

FromSpace becomes garbage and is recycled. The mutator resumes execution if enough free

13

storage is recovered in ToSpace to satisfy the allocation request that initiated the collection.

Subsequent allocation requests are satisfied in ToSpace.

2.2 Modern Garbage Collection techniques

The classical garbage collection strategies serve as the basis for the design of modern garbage

collection techniques. A plethora of modern garbage collection techniques exists in the liter-

ature; however, we give a brief overview of the generational garbage collection technique [44]

and Levanoni and Petrank’s on-the-fly referencing counting garbage collection scheme [57].

2.2.1 Generational Garbage Collection

Generational garbage collection is based on the weak generational hypothesis“most objects

die young” [89, 44]. This hypothesis led to the generational strategy, which separates objects

by age into a minimum of two regions of the heap called generations [59]. Newly allocated

objects are placed in one generation of the heap and are promoted to other generations

if they survive collection of their allocated generation. Since the allocated region contains

newly created objects, it is generally referred to as the new generation or the youngest

generation. Objects in the new generation are expected to have short lifetimes; thus, the

new generation is collected relatively frequently.

Objects that survive collection of the new generation are promoted to other regions

of the heap referred to as older generations. Older generations are not collected as regularly

as the new generation due to the strong generational hypothesis [47], which suggests that

the longer an object lives the less likely it is to die. Note: the youngest generation can

be collected independently of the older generations but not vice versa since most inter-

generational pointers are from younger generations to older generations. This mandates

that younger generations be collected when an older generation is collected.

The techniques used to collect the different generations may vary. Thus, copying,

mark-sweep, reference counting, or a combination of these techniques can be used to collect

14

the various generations. Collection of the youngest generation is generally called a minor

collection while collection of the older generations is usually referred to as a major collec-

tion. The number of generations also varies, but the use of two generations is popular in

the literature. Jones’s garbage collection book [53] provides more details on generational

garbage collectors.

2.2.2 On-the-Fly Garbage Collection

The on-the-fly collector (see Section 1.2) described in this section was designed by Levanoni

and Petrank [57] and for convenience, it is referred to here as LPC. LPC is an on-the-

fly reference counting garbage collector for Java1 with low synchronization in its write

barrier. The ideal target for LPC is a multi-thread multiprocessor system that runs N

mutators on N + 1 processors. Each mutator executes on a dedicated processor. The

extra processor is reserved for the collector. The collector executes a series of collections

in cycles. Each collection consists of four lightweight synchronization points called soft

handshakes or handshakes for short. A handshake is a synchronization point between the

collector and all mutators where the collector transacts with each mutator on an individual

basis. A transaction entails the suspension of a mutator by the collector, the retrieval of

the mutator’s buffered information, and the resumption of the mutator. There is never an

occasion when the collector suspends more than one mutators at the same time. This is an

overhead reduction improvement over previous collectors that suspend all mutators at the

same time.

For the correctness of LPC, there are two instances in a mutator’s life when it cannot

be suspended by the collector: when it is executing in the write barrier (updating a reference

field in an object) and when it is instantiating a new object. We refer to the code segments

that perform these functionalities as collector-proof code or CP-code. CP-code is code the
1They designed their collector for Java but their approach is suitable for any language where pointers

can be distinguished.

15

collector is not allowed to preempt. The collector can preempt a mutator only when it is

not executing CP-code.

LPC requires four handshakes per collection denoted HSm (handshake m) where

1 ≤ m ≤ 4. LPC also requires a sequentially consistent memory model since reads and

writes in the write barrier must be executed in the order they appear. See Figure 2.1 for

the LPC write barrier. In Chapter 4 we present a similar collector; however, our collector

minimizes the number of handshakes and reduces the effect of each handshake on mutator

execution.

Procedure Update(s: Slot, new: Object)
begin
1. Object old := read(s)
2. if ¬Dirty(s) then
3. Buf i[CurrPosi] := 〈s, old〉
4. CurrPosi := CurrPosi + 1
5. Dirty(s) := true
6. write(s, new)
7. if Snoopi then
8. Localsi := Localsi ∪ {new}
end

Figure 2.1: The Levanoni and Petrank write barrier [57] where i is the mutator index.

When using the write barrier in Figure 2.1, each pointer s in an object can reference

any object. Further, each pointer s is associated with a dirty flag that is set when s is first

written to during a collection. Each mutator Ti is equipped with a local buffer in which it

stores 〈s, old〉 tuples for the collector’s use. In the 〈s, old〉 tuple s denotes a pointer that

receives an assignment and old represents the address of the last object that s referenced

during the previous collection. Ti buffers 〈s, old〉 only if it is the first mutator to assign

to s during a collection. Each mutator Ti is also equipped with a snoop flag Snoopi that

indicates whether Ti is involved in the computation of a sliding view [57, 58]. A sliding view

is an inconsistent or inexact view of the heap computed during a collection by the collector

when it transacts with the mutators on an individual basis. During the computation of a

sliding view, objects pointed to are stored in a mutator’s local state to ensure that they are

16

not prematurely collected at the end of the collection. Further discussion on sliding view

computation and on the operation of the collector is provided in Chapter 4.

2.3 Real-Time Garbage Collection Techniques

Baker [12] began his seminal paper on real-time garbage collection with the following defi-

nition:

A real-time list processing system is one in which the time required by the

elementary list operations . . . is bounded by a (small) constant.

A list processing system, according to Baker, is a system that collects garbage. Hence, a

real-time garbage collector is a collector that performs garbage collection work in bounded

time. Many real-time garbage collectors exist [4, 13, 17, 22, 97] in the literature; however,

here we give an overview of Metronome [9] and PERC [68], for the sake of discussion.

2.3.1 Metronome

Metronome [8, 9, 10] is an incremental, but non-parallel garbage collector that targets a

uniprocessor, embedded environment. Since Metronome is not parallel, it must be inter-

leaved with the mutator(s), instead of running on a separate processor. The interleaving in

Metronome is controlled explicitly.

Many hybrid collectors exist in the literature and Metronome is one of them. As

long as usable storage is available Metronome executes as a non-copying, incremental mark-

sweep collector, but when storage becomes scarce, it defragments the heap with a limited,

incremental copying collector. Metronome can thus be characterized as an incremental,

mark-sweep collector that utilizes a limited, incremental copying collector to defragment

the heap.

Metronome uses a “snapshot-at-the-beginning” [97] algorithm that allocates objects

marked. Metronome also uses segregated free lists so that memory is divided into fixed

17

sized pages (e.g., 16 KB). Each page is further divided into blocks of a particular size class,

usually a power of 2. Objects are allocated from the smallest size class that is able to satisfy

their allocation requests of say s bytes. The next size block is s(1+ρ) where ρ is most likely

the fraction 1/8, which yields a worst case fragmentation of 12.5%.

If a page becomes fragmented because of garbage collection, its objects are moved to

a mostly full page using the incremental copying collector. Relocation of objects is achieved

by using a forwarding pointer located in the header of each object. A read barrier is used to

maintain the ToSpace invariant: mutators always see objects in ToSpace. While the above is

true for the incremental copying collector, collection is dominated by the incremental mark-

sweep collector, which is similar to Yuasa’s [97] “snapshot-at-the-beginning” algorithm.

One additional feature of Metronome that should be noted is that Metronome breaks

large arrays into fixed size pieces, called arraylets, to bound the work of scanning or copying

an array. This feature was also added to limit external fragmentation caused by large

objects. Further, Metronome exhibits the following features when it performs at its best.

1. Mutator interval = 6ms

2. Collector interval = 6ms

3. Pause time = 6ms

4. Minimum mutator utilization of the CPU = 50 %

2.3.2 PERC

PERC [68] is an incremental garbage collector that divides its work into thousands of

small uninterruptible increments of work. Depending on the choice of CPU, in practice the

maximum time required to execute an increment of work can be approximated to about 100

microseconds. Mutators with priorities higher than the collector may preempt the collector.

However, when the collector resumes following preemption, it continues to execute where it

left off.

18

Garbage collection consists of dividing memory into a number of equal-sized regions

and selecting one region to serve as FromSpace and another to serve as ToSpace. These

regions are defragmented using an incremental copying collector. The other regions are

subsequently reclaimed using an incremental mark-sweep collector that does not relocate

live objects.

During the incremental copying stage of garbage collection, access to an object, obj,

is to the single valid copy of obj, whether it is located in FromSpace or ToSpace. Should

there exist an invalid copy of obj in ToSpace or FromSpace, it will contain a pointer to the

valid copy. Each object waiting to be relocated has a forwarding pointer to the memory

that is reserved for the eventual copy. At the conclusion of the incremental copying stage of

garbage collection the free space in FromSpace is coalesced and ToSpace is compacted. This

is accomplished by incrementally reserving space in ToSpace and subsequently relocating

live objects from FromSpace to ToSpace. Incremental copying guarantees 50% memory

utilization.

When the copying stage of garbage collection completes, the mark-sweep stage be-

gins. If a mutator preempts the collector during the mark phase of incremental mark-sweep

collection, it may rearrange the relationship between objects before relinquishing to the

collector. To remedy that situation, the mutator uses a write barrier to mark the refer-

enced object every time a pointer is overwritten. One of the downsides of the incremental

mark-sweep collector is that its memory utilization is inconsistent–it varies from high to

low.

2.4 The RTSJ’s Influence on Memory Management

One of the most prominent features of the RTSJ is its new memory management model

based on scoped memory areas (or scopes for short) [72]. This new memory model assures

programmers of timely reclamation of memory and predictable performance. This comes at

the cost of an unfamiliar programming model—a restrictive model that relies on the use of

19

scopes. These new scopes were designed to meet two very important requirements [72]: to

provide predictable allocation and deallocation performance, and to ensure that real-time

threads do not block when memory is reclaimed by the Java Virtual Machine (JVM).

Figure 2.2: Scoped-memory single-parent rule. A is the parent of both B and C.

To meet these requirements, the RTSJ ensures that objects in a scope are not deal-

located individually. Instead, the entire scope is collected en masse when all threads within

the scope exit it. A scope is a pool of memory from which objects are allocated. Each scope

can be entered by multiple threads. These threads can allocate objects in the memory pool

and communicate with each other by shared variables. A new scope can also be instantiated

by a thread executing within its current scope. This is known as the nesting of scopes. Such

nesting, however, is controlled by the order of threads entering the scopes—see Figure 2.2.

A scope can become the parent of multiple scopes but no scope is allowed to have multiple

parents. This restriction is called the single-parent rule. To take advantage of scopes, the

RTSJ defined a new type of thread called NoHeapRealtimeThread (NHRT). NHRTs cannot

allocate objects in the garbage-collected heap and they cannot reference objects in the heap.

These constraints were added to prevent NHRTs from experiencing unbounded delay due to

the locking of heap objects during garbage collection [29]. NHRTs have the highest priority

among all threads and can preempt even the garbage collector.

20

Reference to Heap Reference to Immortal Reference to Scoped
Heap Yes Yes No

Immortal Yes Yes No
Scoped Yes Yes Yes*

Figure 2.3: References between storage areas [15]. * If an object is in the same scope or the outer scope.

Figure 2.3 details which objects in certain memory areas are allowed to reference

objects in other memory areas. These constraints do not apply to objects only, but also to

threads so that real-time threads do not block when the JVM reclaims objects.

21

Chapter 3

Asymptotic Analysis of the RTSJ

scoped memory areas

he Real-time Specification for JavaTM (RTSJ) covers many issuesT related to real-time programming. However, in this dissertation we are

only concerned with storage, threads, and their relationships to mem-

ory management. In particular, we are concerned with computing bounds for the costs

associated with using the RTSJ scoped-memory areas, and the RTSJ’s NoHeapReal-

timeThread (NHRT).

3.1 Chapter road map

The rest of this chapter is organized as follows. Section 3.2 provides background and

motivation for our work. Sections 3.3 and 3.6 describe our approaches for performing

scoped-memory analysis. Sections 3.4, 3.5, 3.7, and 3.8 present scoped-memory analysis for

selected abstract data types.

22

3.2 Background and Motivation

Chapters 1 and 2 gave an overview of the RTSJ scoped-memory areas and NHRTs. Those

chapters also motivated the research on scoped-memory areas presented in this chapter.

Additionally, they noted the limitations of garbage collection and described the improve-

ments offered by the RTSJ scoped-memory areas and NHRTs. This section recaps some of

these highlights.

Garbage collection occurs at unpredictable times with unbounded latency. Conse-

quently, the time required to allocate a new object in the heap is unbounded. Researchers

have proposed real-time garbage collection [65, 23] as a way to bound object allocation;

however, it is still questionable [66] whether a collector and allocator can always provide

storage in bounded time [29]. Consider the case, for example, where an object needs to be

allocated and the heap is exhausted, except for a few dead objects. To reclaim storage to

satisfy the allocation, a garbage collector needs to run. An exact collector, like mark-sweep,

would require a marking phase to discover all live objects. Such a phase is unbounded.

Other collectors can limit the extent of a marking phase, but at the cost of potentially

skipping over garbage objects. The result is that the cost of allocating a new object cannot

be reasonably bounded if a garbage collector needs to run to free storage to satisfy the

allocation request.

To overcome these shortcomings, the Real-Time for Java Expert Group (RTJEG)

proposed the Real-Time Specification for Java [15] (RTSJ) standard, which provides exten-

sions to Java in support of real-time programming [29]. These extensions include scoped-

memory areas and NHRTs. Recall from Section 2.4 that scoped-memory areas were designed

to meet two very important requirements [72], namely:

1. to provide predictable allocation and deallocation performance, and

2. to ensure that real-time threads do not block when memory is reclaimed by the virtual

machine.

23

These requirements are met by ensuring that objects in a scoped-memory area are not

collected individually. Instead, the entire scoped-memory area is collected en masse when

no threads execute in it.

3.3 Scoped-memory Analysis

While there are several open problems associated with the RTSJ scoped-memory areas,

this dissertation focuses on computing bounds for the RTSJ scoped-memory model when

NHRTs are used. These bounds give an idea of how expensive it is to execute applications

in a scoped-memory environment. They also facilitate comparison of execution in scoped-

memory environments with execution in other memory environments (e.g., the heap).

3.3.1 Empirical analysis of scoped memory

One approach to performing the comparisons described above employs empirical methods.

These methods measure the execution time for an application with a given input size in

a scoped-memory environment. They also measure the execution time for an equivalent

application with the same input size in a different memory environment. The execution

times are then compared to determine which memory environment is more appropriate

for the application. Although this approach produces results that are important for cer-

tain problems, one observation is that the results are both implementation-dependent and

system-dependent. Should the same applications be implemented using different program-

ming paradigms (e.g., imperative programming, procedural programming, object-oriented

programming, or functional programming), the results may differ. Should the same appli-

cations be executed on systems with different resource allocations (e.g., a faster processor,

faster memory, more memory, multiple processors, etc.), the results could also differ.

24

3.3.2 Asymptotic analysis of scoped memory

To address the limitations of the empirical methods, asymptotic methods are used to com-

pute the cost of using the RTSJ scoped-memory model with NHRTs. This approach gives

bounds that are both implementation-independent and system-independent. To the best of

our knowledge, there is no record in the literature of system-independent cost analysis for

scoped-memory regions and NHRTs that preceded our paper [28].

We present a model for computing asymptotic bounds for the RTSJ scoped-memory

regions and NHRTs that follows the steps listed below.

1. Select an abstract data type (ADT) that can hold an arbitrary number of elements.

2. Define the fundamental operations of the ADT and provide an interface.

3. Propose at least one implementation for each operation.

4. Adopt methods from Cormen et al. [27] to compute the worst-case running time for

each operation.

5. Perform step 4 for an intermixed sequence of n operations.

6. Repeat from step 1.

We define an abstract data type or ADT as a set of legal data values and a number

of primitive operations that can be performed on these values [18]. Such a data type is

abstract in the sense that the focus is not on its implementation since implementation is

subject to change. The actual implementation is not defined and does not affect the use

of the ADT. Instead, an ADT is represented by an interface that hides the underlying

implementation. Users of an ADT are very concerned about its interface. The reader is

referred to Weiss’s book on data structures [92] for more information on ADTs.

For the ADTs we consider, the input size n for each operation is characterized by

the number of elements in the data set immediately before the operation is run. Should

there be a need to use a different characterization for the input size of an operation, one

25

will be provided. The pseudocode provided for selected operations follows conventions from

Cormen et al. [27].

We utilize this model to solve the problem at hand. This study is vital to both the

real-time community and the software engineering community. It empowers these commu-

nities by presenting to them a means of deciding which memory model is most appropriate

for their applications. Moreover, it allows us to reason more completely about different

memory models. We use this model with the stack ADT and the queue ADT in Section 3.4

and Section 3.5 respectively.

3.4 Stack analysis

We present a scoped-memory implementation of the stack abstract data type and analyze its

running time. The stack is an ADT that operates on the Last-In-First-Out (LIFO) principle.

The idea is that the last element pushed on a stack is the first element popped off the stack.

A common use of a stack is found at a buffet restaurant. When a family goes to the serving

line, plates are usually stacked one on top of another. Before the second plate atop the

stack can be retrieved, the topmost plate must first be retrieved. In Computer Science, the

notion of a stack is also used in expression evaluation, syntax parsing, and in solving search

problems. The end of the stack where an item is added to or retrieved from the stack is

called the top of the stack. The stack is also associated with a size component that keeps

count of the number of items or elements on the stack. The fundamental operations of the

stack ADT are as follows:

1. IS-EMPTY(S) - an operation that returns the binary value TRUE if stack S is empty,

and FALSE otherwise.

2. PUSH(S, x) - an operation that puts element x onto the top of stack S.

26

3. POP(S) - an operation that removes the element at the top of stack S and returns it.

If the stack is empty the special pointer value NULL1 is returned.

The POP operation does not take an element as a parameter because the element

popped off the stack is always the topmost element of the stack. The top of a stack is

the end where its fundamental operations are performed. Whereas the PUSH operation

increases the stack size by one element, the POP operation decreases the stack size by one

element. The empty stack has a size of zero elements. We now provide analysis for the

stack ADT.

We are most concerned about implementing and analyzing stacks in scoped memory.

However, we first present an implementation with analysis in heap memory for the sake of

comparison.

3.4.1 Typical implementation of stack

Several data structures, including the array and the singly linked list, can be used to im-

plement a stack in the heap. We discuss these implementations in the subsections below.

Array implementation

The array data structure is sometimes used to implement a stack in the heap; however, the

resulting stack is a bounded stack, which does not conform to the definition of the stack

ADT for the following reasons. A size n must be specified for the stack at creation time

since an array by definition has a maximum size. If an element is to be pushed on a stack

with n elements, the PUSH operation will fail. This conflicts with the definition of stack.

To overcome these constraints, the array must be allowed to grow in size. The resulting

data structure would no longer be an array, but an arraylist. For these reasons we do not

consider an array data structure to be suitable for implementing a stack, or any of the other

ADTs we consider in our studies.
1NULL is used to signify that a pointer has no target.

27

Singly linked list implementation

A data structure commonly used to implement the stack ADT in the heap is the singly

linked list. With such implementation the PUSH and POP operations in Figure 3.2 and

Figure 3.3, respectively, are done at the front of the list. The IS-EMPTY operation in

Figure 3.1 is also performed at the front of the list. Consequently, the front of the list

represents the top of the stack it implements. Pseudocode and computation of the worst-

case running times for the fundamental operations of the stack ADT are presented. Let

T (n) denote the worst-case running time for a problem of size n. Recall the definition of n

given in Section 3.3.2.

The IS-EMPTY operation—singly linked list implementation

IS-EMTY(S)
1 return S[top] = NULL

line cost times
1 c1 1

Figure 3.1: Procedure to determine whether the stack is empty—linked list implementation.

The line numbers of IS-EMPTY, the cost of executing each line, and the number of

times each line executes are given above. The worst-case running time for IS-EMPTY T (n)

is thus given as:

T (n) = c1 ∗ 1

= c1

= O(1)

The PUSH operation—singly linked list implementation

The matrix in Figure 3.2 gives the line numbers of the PUSH operation, the cost of exe-

cuting each line, and the number of times each line executes. This matrix provides enough

information to compute the worst-case running time for the PUSH operation. Notice that

28

PUSH(S, x)
1 x[Next]← S[top]
2 S[top]← x

line cost times
1 c1 1
2 c2 1

Figure 3.2: Procedure to push an element on the stack—linked list implementation.

like the IS-EMPTY operation, the PUSH operation is also a constant time operation.

T (n) = c1 ∗ 1 + c2 ∗ 1

= c1 + c2

= O(1)

The POP operation—singly linked list implementation

POP(S)
1 x← S[top]
2 if !IS-EMPTY(S)
3 then S[top]← S[top[Next]]
4 return x

line cost times
1 c1 1
2 c2 1
3 c3 1
4 c4 1

Figure 3.3: Procedure to pop the topmost element off the stack—linked list implementation.

The POP operation assigns local variable x the value S[top] then checks for empti-

ness. If the stack is not empty then its top is set to the next element (from the top) in the

stack. Either the special value NULL (if the stack was empty) or the previous topmost

element of the stack is then returned. From the matrix in Figure 3.3 the worst-case running

29

time for the POP operation reduces to T (n) = max(T1(n), T2(n)) where

T1(n) = c1 ∗ 1 + c2 ∗ 1 + c4 ∗ 1

= c1 + c2 + c4

= O(1)

T2(n) = c1 ∗ 1 + c2 ∗ 1 + c3 ∗ 1 + c4 ∗ 1

= c1 + c2 + c3 + c4

= O(1)

Although T1(n) ≤ T2(n), T1(n) and T2(n) are both O(1) running times; thus, T (n) reduces

to T2(n) = O(1). Notice that a constant time value is used as the cost for checking emptiness

(line 2). This is because the worst-case running time for IS-EMPTY is O(1). This and the

previous analyses lead to the conclusion that for a singly linked list implementation of the

stack ADT, each operation executes in constant time.

3.4.2 Scoped-memory implementation of stack

For a scoped-memory implementation of a stack we make the following assumptions:

1. Each application A that manages a stack S is fully compliant with the RTSJ.

2. A has a single thread Ta, which is an instance of the RTSJ’s NHRT. The RTSJ allows

multiple threads to share data structures as long as all threads enter scopes in the

same order. This simplifying assumption of a single thread is made only for easy

exposition and analysis.

3. A executes on an RTSJ-compliant JVM.

4. Ta can legally access S and the elements managed by S.

5. Before an element x is pushed on stack S, a new scope s must first be instantiated to

store x, and Ta must enter s.

30

Assumption 5 is relevant for the purpose of complexity analysis. Although we do not

suggest one scope per-element in practice, here we are concerned about worst-case analysis.

Thus, it is essential that we consider the worst possible scenario for stack operations that

utilize the RTSJ scoped-memory model.

The IS-EMPTY operation—scoped-memory implementation

IS-EMPTY(S)
1 return TOS = S

line time cost frequency
1 c1 1

Figure 3.4: Procedure to determine whether the stack is empty—scoped-memory implementation.

We assume there is a TOS field in the current scope that points to the top-of-stack

element, which is either in the current scope or is accessible from the current scope. If

TOS points to the stack object S (a sentinel used for indicating the empty stack), then the

application thread Ta is executing in the scope containing S. Thus, S contains no elements,

so the stack is empty. If c1 is the time required to execute line 1 of IS-EMPTY, then the

worst-case running time for IS-EMPTY is T (n) = O(1).

The PUSH operation—scoped-memory implementation

PUSH(S, x)
1 sm← new ScopedMemory(m)
2 enter(sm, Ta)
3 TOS ← x

line time cost frequency
1 c1 1
2 c2 1
3 c3 1

Figure 3.5: Procedure to push an element on the stack—scoped-memory implementation.
m ≥ |x|+ |TOS|.

The PUSH operation depicted in Figure 3.5 is equivalent to the following sequence

of basic operations performed by the application thread Ta. From the current scope Ta

instantiates a new scope sm of size m bytes. Ta enters sm then sets the TOS field in sm to

point to element x. Assuming each line i in PUSH requires ci time for execution, the worst

31

case execution time for PUSH is

T (n) = c1 ∗ 1 + c2 ∗ 1 + c3 ∗ 1

= c1 + c2 + c3

= O(1)

The correctness of this result is based on the fact that each line is executed once per

invocation. Because a scope has limited lifetime dictated by the reference count of threads

that execute in it, Ta is not allowed to exit sm. To ensure that Ta keeps sm alive Ta does not

return from the enter() method of line 2 of Figure 3.5. Should Ta return from the enter()

method, the thread reference-count of sm would drop to zero, sm would be collected, and

the PUSH operation would fail.

The POP operation—scoped-memory implementation

POP(S)
1 if IS-EMPTY(S)
2 then x← NULL
3 else x← TOS
4 return x

line time cost frequency
1 c1 1
2 c2 1
3 c3 1
4 c4 1

Figure 3.6: Procedure to pop the topmost element off the stack—scoped-memory implementation.

The POP operation is one of the simplest operations for a scoped-memory imple-

mentation of stack. POP simply returns the TOS element if one exists, NULL otherwise.

Assuming each line i of the POP operation (Figure 3.6) requires ci time to execute, the

worst-case execution time for the POP operation is given as T (n) = max(T1(n), T2(n))

32

where

T1(n) = c1 ∗ 1 + c2 ∗ 1 + c4 ∗ 1

= c1 + c2 + c4

= O(1)

T2(n) = c1 ∗ 1 + c3 ∗ 1 + c4 ∗ 1

= c1 + c3 + c4

= O(1)

Since T1(n) and T2(n) are both O(1) worst-case running times, it follows that T (n) = O(1).

After popping the stack, Ta must return from the enter() method of line 2 of Figure 3.5.

We assume for all practical purposes that returning from the enter() method takes constant

time so the worst-case execution time of the POP operation remains O(1). The new top-

of-stack becomes the TOS element of the parent scope2.

3.4.3 Cumulative analysis for stack

Here we consider an intermixed sequence of n PUSH and POP operations on a stack in-

stance. We analyze this sequence of operations for a singly linked list implementation and

a scoped-memory implementation of stack. We let n denote the total number of operations

and let m denote the number of PUSH operations. The number of POP operations is thus

given by n − m where n − m ≤ m ≤ n. The worst-case running time for the singly linked
2The parent of the scope that contained the popped element becomes the new current scope for Ta.

33

list implementation of the intermixed sequence of operations is computed as

T (n) = Tpush(m) + Tpop(n−m)

= m ∗ c1 + (n−m) ∗ c2

= mc1 + nc2 −mc2

= nc2 + m(c1 − c2)n

= O(n)

For a scoped-memory implementation the running time for PUSH is O(1) and the running

time for POP is also O(1). Thus, the running time for the intermixed sequence of operations

in the context of a scoped-memory implementation is given as T (n) = O(n).

3.4.4 Discussion

The singly linked list implementation presented above has a T (n) = O(1) worst-case

execution time for each stack operation. The scoped-memory implementation also has

T (n) = O(1) as its worst-case execution time for each operation. The problem of running

an intermixed sequence of n PUSH and POP operations has a running time of T (n) = O(n)

in each context, as expected. Given a particular program that uses a stack, the programmer

can thus choose among stack implementations. However, the following are some concerns

to bear in mind.

Although a singly linked list implementation works well in the heap, pointer ma-

nipulation can affect the proportionality constants of the running time for each operation.

Garbage collection can also interfere with the running times of stack operations if the ap-

plication executes in a heap that is subject to garbage collection.

A scoped-memory implementation, while ideal for real-time environments, comes at

the cost of learning a new, more restrictive programming model. Real-time programmers,

34

however, can benefit from the timing guarantees offered by the RTSJ. Recall that garbage

collection cannot interrupt a NHRT since NHRTs possess higher priorities than the collector.

3.5 Queue analysis

Our scoped-memory implementation of the queue abstract data type uses an approach

similar to Okasaki’s [69] functional-language implementation in that a queue is simulated

as a pair of stacks. The queue ADT operates on the First-In-First-Out (FIFO) principle,

i.e., the first element added to the queue is the first element removed from the queue.

This is equivalent to the requirement that whenever an element is added to the queue, all

elements that were already in the queue must first be removed before the new element can

be removed. A common application of queue is seen at most banks or financial institutions.

Whenever customers go to a banking location to receive service, they join the back of the

queue before they can be served. The customer at the front of the queue is the first to

receive service. The queue is also used in Computer Science for scheduling and buffering

problems. The fundamental operations of the queue ADT are the following.

1. ISQ-EMPTY(Q) - an operation that returns the binary value TRUE if queue Q is

empty, and FALSE otherwise.

2. ENQUEUE(Q, x) - an operation that adds element x to the rear of queue Q, and

3. DEQUEUE(Q) - an operation that removes the element at the front of queue Q and

returns it. If the queue is empty, NULL is returned.

One theoretical characteristic of a queue worth noting is that it does not have a specific

size or capacity. Regardless of the number of elements already in a queue, a new element

can always be added to it. An empty queue cannot be dequeued because there is no

element to remove from it. The rear of a queue is the end where an element is inserted

into the queue or where the ENQUEUE operation is performed. The front, on the other

hand, is the end where an element is removed from the queue or where the DEQUEUE

35

operation is performed. We now provide analysis for the queue ADT. First, we present an

implementation and analysis of a queue in heap memory.

Figure 3.7: Linked list representation of a queue.

3.5.1 Typical implementation of queue

One typical implementation of the queue ADT in the heap uses a singly linked list data

structure with two special pointers, front and rear. See Figure 3.7 for a depiction of the

singly linked list representation of a queue. The ISQ-EMPTY operation checks whether

front points to NULL. The ENQUEUE operation adds a new element to the rear end of

the linked list and updates the rear pointer. The DEQUEUE operation updates the front

pointer and returns the element that was at the front of the linked list.

The ISQ-EMPTY operation—singly linked list implementation

ISQ-EMPTY(Q)
1 return Q[front] = NULL

line time cost frequency
1 c1 1

Figure 3.8: Procedure to determine whether the queue is empty—singly linked list implementation.

Assume the running time of line 1 of the ISQ-EMPTY operation of Figure 3.8 is c1.

Line 1 is executed only once per invocation of ISQ-EMPTY. Thus, the worst-case running

36

time of ISQ-EMPTY is given as

T (n) = c1 ∗ 1

= c1

= O(1)

The ENQUEUE operation—singly linked list implementation

ENQUEUE(Q, x)
1 x[Next]← NULL
2 if ISQ-EMPTY(Q)
3 then Q[front]← x
4 Q[rear]← x
5 else Q[rear[Next]]← x
6 Q[rear]← x

line time cost frequency
1 c1 1
2 c2 1
3 c3 1
4 c4 1
5 c5 1
6 c6 1

Figure 3.9: Procedure to add an element to the rear of the queue—singly linked list implementation.

As depicted in Figure 3.7 and Figure 3.9, an element is added to the rear of the

queue. The matrix in Figure 3.9 gives the running time and frequency of executing each

line of the ENQUEUE operation. The worst-case running time for ENQUEUE is thus given

as T (n) = max(T1(n), T2(n)) where

T1(n) = c1 ∗ 1 + c2 ∗ 1 + c3 ∗ 1 + c4 ∗ 1

= c1 + c2 + c3 + c4

= O(1)

T2(n) = c1 ∗ 1 + c2 ∗ 1 + c5 ∗ 1 + c6 ∗ 1

= c1 + c2 + c5 + c6

= O(1)

But T1(n) and T2(n) are both O(1) running times. Thus, the worst-case running time for

ENQUEUE is T (n) = O(1).

37

The DEQUEUE operation—singly linked list implementation

DEQUEUE(Q)
1 x← Q[front]
2 if !ISQ-EMPTY(Q)
3 then Q[front]← Q[front[Next]]
4 return x

line time cost frequency
1 c1 1
2 c2 1
3 c3 1
4 c4 1

Figure 3.10: Procedure to remove an element from the front of the queue—singly linked list
implementation.

The DEQUEUE operation in Figure 3.10 removes the element at the front of the

queue and returns it. The front of the queue is adjusted to point to the element immediately

following the dequeued element. The worst-case running time for the DEQUEUE operation

is thus computed as

T (n) = c1 ∗ 1 + c2 ∗ 1 + c3 ∗ 1 + c4 ∗ 1

= c1 + c2 + c3 + c4

= O(1)

ENQUEUE and ISQ-EMPTY each runs in O(1) time. Thus, the worst-case running time

for each operation of the queue ADT implemented using singly linked list is T (n) = O(1).

3.5.2 Scoped-memory implementation of queue

Consider execution of an application A that manages a queue instance in an RTSJ scoped-

memory environment. Efficient execution of A depends on proper management of memory,

which is a limited resource. Assume A uses a stack of scoped-memory instances to manage

the queue. Assume also, for the purpose of worst-case analysis, that a queue element resides

in its own scope when enqueued. A service stack with its own NHRT T1 is used to facilitate

the ENQUEUE operation. Figure 3.11 shows a representation of a queue instance. If T0

is the application thread, then T0 is a NHRT. Detailed analysis of the fundamental queue

operations follows.

38

Figure 3.11: Representation of a queue instance in an RTSJ scoped-memory environment. Rounded
rectangles represent scoped-memory instances and ovals represent element instances. T0 is the application

thread and T1 services the stack. The arrows pointing downward represent legal scope references. The
sync field is a synchronization point for T0 and T1. E1 denotes element i.

The ISQ-EMPTY operation—scoped-memory implementation

ISQ-EMPTY(Q)
1 return front = Q

line time cost frequency
1 c1 1

Figure 3.12: Procedure to determine whether the queue is empty—scoped-memory implementation.

The current scope contains a front field that points to the front of the queue. An

empty queue is a queue with no elements. Emptiness, in Figure 3.12, is illustrated by

the front field of the current scope pointing to the queue object itself. Assuming that

the running time of the only line of ISQ-EMPTY is c1, the worst-case running time of

39

ISQ-EMPTY is given as

T (n) = c1 ∗ 1

= c1

= O(1)

The DEQUEUE operation—scoped-memory implementation

DEQUEUE(Q)
1 if ISQ-EMPTY(Q)
2 then x← NULL
3 else x← front
4 return x

line time cost frequency
1 c1 1
2 c2 1
3 c3 1
4 c4 1

Figure 3.13: Procedure to remove an element from the front of the queue—scoped-memory
implementation.

The DEQUEUE operation removes the element at the front of the queue and returns

it if one exists. Otherwise, it returns NULL. A close examination of the DEQUEUE

operation in Figure 3.13 reveals that it is very similar to the POP operation in Figure 3.6.

Hence, the worst-case running time for DEQUEUE is T (n) = O(1) time.

The ENQUEUE operation—scoped-memory implementation

ENQUEUE(Q, x)
1 while !ISQ-EMPTY(Q)
2 do sync← DEQUEUE(Q)
3 PUSH(S, sync)
4 Sc ← new ScopedMemory(m)
5 enter(Sc, T0)
6 front← x
7 while !IS-EMPTY(S)
8 do sync← POP(S)
9 PUSH-Q(Q, sync)

time cost frequency
c1 n + 1
c2 n
c3 n
c4 1
c5 1
c6 1
c7 n + 1
c8 n
c9 n

Figure 3.14: Procedure to add an element to the rear of the queue—scoped memory implementation.
Each ci is a constant and n = |Q|+ |S|. Initially stack S is empty.

40

Figure 3.15: Storing queue elements on stack to facilitate enqueue of Ei.

The ENQUEUE operation depicted in Figure 3.14 is a complex operation because

of the referencing constraints imposed by the RTSJ: objects in an ancestor scope cannot

reference objects in a descendant scope because the descendant scope is reclaimed before the

ancestor scope. Consequently, the elements in a queue must first be stored somewhere before

a new element can be enqueued. After the element is enqueued, all the stored elements are

put back on the queue in the correct order. A stack is an ideal structure to store the queue

elements because it preserves the order of the elements for the queue; see Figure 3.15. As

illustrated in figures 3.11, 3.15, and 3.16 two threads are needed to facilitate the ENQUEUE

operation: one for the queue and one to service the stack. The thread that services the

queue is the application thread and is referred to as T0 in Figure 3.15. T1 is the service

thread for the stack. These two threads are synchronized by a parameter sync, which they

use to share data between them—see Figure 3.14.

The PUSH-Q method in Figure 3.17 is a private method that puts a stored element

back on the queue in the way that the PUSH operation works for a stack. The worst-case

41

Figure 3.16: Ei is enqueued.

running time for this method is T (n) = O(1) time. This is the same running time for the

PUSH operation in Figure 3.5.

PUSH-Q(S, x)
1 scope← new ScopedMemory(m)
2 enter(scope, Ta)
3 front← x

line time cost frequency
1 c1 1
2 c2 1
3 c3 1

Figure 3.17: Private helper method that puts an element at the front of the queue in the same manner
that an element is pushed onto a stack—scoped-memory implementation. m ≥ |x|+ |front|.

42

Given the matrix in Figure 3.14 the worst-case running time for ENQUEUE is com-

puted as follows.

T (n) = (n + 1)c1 + nc2 + nc3 + c4 + c5 + c6 +

(n + 1)c7 + nc8 + nc9

= (c1 + c2 + c3 + c7 + c8 + c9)n + c1 + c4 +

c5 + c6 + c7

= cb ∗ n + ca

= O(n)

Thus, the worst-case running time for the ENQUEUE operation is T (n) = O(n).

3.5.3 Cumulative analysis for queue

We compute the theoretical running time for an intermixed sequence of n ENQUEUE and

DEQUEUE operations on a queue instance by analyzing the worst-case running time of

the sequence. Since we suggested two implementation contexts for the queue ADT we

compute the running time for each implementation. Suppose that starting with an empty

queue n denotes the number of operations in the sequence and m denotes the number of

ENQUEUE operations. Then the number of DEQUEUE operations is given as n−m where

n−m ≤ m ≤ n. The worst-case running time for the heap implementation is thus given as:

T (n) = Tenq(m) + Tdeq(n−m)

= m ∗ c1 + (n−m) ∗ c2

= nc2 + m(c1 − c2)

= O(n)

43

This is identical to the linked-list analysis of an intermixed sequence of PUSH and POP op-

erations on a stack because the insertion operation and the deletion operation each executes

in constant time.

The scoped-memory implementation for the ENQUEUE operation is complex. Thus,

the running time for the sequence of operations in that context is also complex and more

costly than the heap implementation. We compute the worst-case running time for the

scoped-memory implementation of the intermixed sequence of operations as follows:

T (n) = Tenq(m,~s) + Tdeq(n−m)

= Tenq(m,~s) + (n−m) ∗ c2

~s = 〈s1, s2, . . . , sm〉 is included as input to the computation of the running time for the

ENQUEUE operation because the running time of each invocation of the ENQUEUE oper-

ation depends on the number of elements in the queue; si denotes the number of elements

on the queue before the ith operation. Given fixed values for n and m, the worst-case

running time for the sequence of operations occurs when no DEQUEUE operations precede

an ENQUEUE operation. In this case the values in ~s are monotonically increasing from 0

to m−1; so for the computation of T (n) given below, si = i−1. ca and cb are derived from

44

the ENQUEUE analysis above and cd is the time for the constant DEQUEUE operation.

T (n) = Tenq(m,~s) + Tdeq(n−m)

=
m∑

i=1

(ca + sicb) + Tdeq(n−m)

=
m∑

i=1

(ca + (i− 1)cb) + Tdeq(n−m)

= mca +

(
m∑

i=1

cbi

)
−mcb + Tdeq(n−m)

= mca −mcb + cb

(
m∑

i=1

i

)
+ Tdeq(n−m)

= m(ca − cb) + cb
m(m + 1)

2
+ Tdeq(n−m)

= m(ca − cb) +
m2cb

2
+

mcb

2
+ Tdeq(n−m)

=
cb

2
m2 +

2ca − cb

2
m + (n−m)cd

=
cb

2
m2 +

2ca − cb − 2cd

2
m + cdn

Since m ≤ n it follows that T (n) = O(n2). Thus, for a scoped-memory queue imple-

mentation the worst-case running time for an intermixed sequence of n ENQUEUE and

DEQUEUE operations is T (n) = O(n2).

3.5.4 Discussion

Two possible implementations for the queue ADT were presented: a singly-linked-list im-

plementation and an RTSJ scoped-memory implementation. The singly-linked-list imple-

mentation gives T (n) = O(1) worst-case execution time for each queue operation. The

scoped-memory implementation gives T (n) = O(1) worst-case execution time for the ISQ-

EMPTY and DEQUEUE operations. The ENQUEUE operation requires but T (n) = O(n)

time. The referencing constraints imposed by the RTSJ’s scoping rules are the reasons for

the linear worst-case execution time. Scopes are instantiated in a stack-like fashion. Thus,

45

to enqueue an element the scope stack must first be popped and the element in each scope

must be stored on a stack or another data structure. A new scope to enqueue the element

must then be instantiated from the base of the scope stack and be placed on the queue. The

elements stored away for the ENQUEUE operation must then be restored on the queue in

a LIFO manner.

In addition to performing analysis for each operation, we performed analysis for

a sequence of n consecutive queue operations on a queue instance. The singly-linked-list

implementation gives a worst-case running time of O(n) and the scoped-memory implemen-

tation gives a worst-case running time of O(n2), i.e., an order of magnitude worse than the

running time for the singly-linked-list implementation. This is expensive for an environment

that governs its own memory and gives NHRTs higher priorities than any garbage collector.

3.5.5 Improved scoped-memory implementation of queue

We presented thus far an implementation for queue in an RTSJ scoped-memory environment

with a worst-case running time of O(n2) for n consecutive ENQUEUE operations. Here,

we present a modified queue implementation that has better worst-case time performance

on a sequence of queue operations, see Figure 3.18.

As with the previous implementation, we use a service stack with its own NHRT

T1 to manage the queue. We also limit each scope to holding at most one queue element.

The ISQ-EMPTY and DEQUEUE operations remain the same as those presented above.

Whereas before we copied the entire queue over to the service stack for each ENQUEUE

operation, now we do so only for the ith ENQUEUE operation when i is a power of 2. After

the queue elements are stored on the service stack, but before they are placed back in the

queue in their previous order, we create not one but i new scopes at the rear of the queue.

The new element is enqueued in the deepest, new scope—the one closest to the front of

the queue. The other scopes remain empty until they are filled by subsequent ENQUEUE

operations.

46

ENQUEUE(Q, x)
1 nenq ← nenq + 1
2 if nenq is some power of 2
3 then while !ISQ-EMPTY(Q)
4 do sync← DEQUEUE(Q)
5 PUSH(S, sync)
6 for i = 1 to nenq

7 do Sc ← new ScopedMemory(m)
8 enter(Sc, T0)
9 front← getOuterScope()
10 thread[next]← front
11 front← x
12 while !IS-EMPTY(S)
13 do sync← POP(S)
14 PUSH-Q(Q, sync)
15 else temp← thread[next][front]
16 thread[next][front]← x
17 thread[next]← temp

Figure 3.18: Procedure to add an element to the rear of the queue—scoped memory implementation.

Suppose we start with an empty queue and perform 15 consecutive ENQUEUE

operations. The queue now has 15 elements, each in its own scope. Suppose another

ENQUEUE operation is to be performed. First, the elements already in the queue are

moved over to the service stack. Then, not one but 16 nested scopes, each capable of

holding one queue element, are instantiated. The element being enqueued is placed in the

most deeply nested scope, i.e., the one closest to the front of the queue. The 15 elements

on the service stack are then placed back in the queue in their correct order. The next 15

ENQUEUE operations will fill the empty scopes without having to use the service stack or

to instantiate new scoped. A field nenq in the synchronized shared memory in Figure 3.18

(in the scope containing both the queue and service stack) will keep track of the number of

times ENQUEUE has been called.

3.5.6 Cumulative analysis for queue revisited

The worst-case running time for a single call of the ENQUEUE operation is O(n), where n is

the number of elements already on the queue. The worst-case running time for n consecutive

ENQUEUE calls, starting with an empty queue, might reasonably be expected to be O(n2).

47

line time cost freq. when nenq = 2x freq. otherwise
1 c1 1 1
2 c2 1 1
3 c3 n + 1 0
4 c4 n 0
5 c5 n 0
6 c6 nenq + 1 0
7 c7 nenq 0
8 c8 nenq 0
9 c9 nenq 0
10 c10 1 0
11 c11 1 0
12 c12 n + 1 0
13 c13 n 0
14 c14 n 0
15 c15 0 1
16 c16 0 1
17 c17 0 1

Figure 3.19: Statistics for procedure in Figure 3.18. Each ci is a constant and n = |Q|+ |S|. Initially
stack S is empty and so n = |Q|.

Fortunately, that turns out not to be the case. Consider beginning with an empty queue and

performing a series of n ENQUEUE operations with no intervening DEQUEUE operations.

During the ith ENQUEUE call, n = i− 1 (since n is the number of elements already on the

queue) and nenq = i (after the shared-memory field nenq is incremented as the first step of

the ENQUEUE algorithm). It can be seen from Figure 3.19 that the ith ENQUEUE call

takes ca + cbi time if i = 2x for some integer x, where

ca = c1 + c2 − c4 − c5 + c6 + c10 + c11 − c13 − c14

cb = c3 + c4 + c5 + c6 + c7 + c8 + c9 + c12 + c13 + c14

and cc time otherwise, where

cc = c1 + c2 + c15 + c16 + c17

Assuming n = 2x for some integer x (which is a worst case, since the last ENQUEUE

will be a linear-time and not a constant-time operation), the total running time for all n

48

ENQUEUEs is given as

T (n) =
x∑

j=0

(ca + cb2x) + (2x − x− 1)cc

= (x + 1)ca +

 x∑
j=0

2x

 cb + (2x − x− 1)cc

= (x + 1)ca + (2x+1 − 1)cb + (2x − x− 1)cc

= (2cb + cc)2x + (ca − cc)x + ca − cb − cc

= (2cb + cc)n + (ca − cc) log2 n + ca − cb − cc

= O(n)

Thus, the improved ENQUEUE operation has a worst-case running time of T (n) = O(n) on

the sequence of operations. However, because it overallocates when resizing, it relies at some

point on having twice the number of scopes allocated as are actually in use. Interestingly,

a space-time trade-off of this nature is also endemic to real-time collectors [9]. Still, the

memory required is bounded and proportional to the maximum number of elements in the

queue at any given time.

3.6 Functional programming parallel

In Section 3.3.2 we introduced a model to compute asymptotic bounds for scoped-memory

areas and NHRTs. We used the model to analyze the runtime behavior of the stack and

queue abstract data types. In this section, we articulate a new and interesting relation-

ship between RTSJ programs and functional programs. The result of our findings offers

RTSJ developers some relief in migrating extant functional implementations of popular data

structures and analyses of their runtime behaviors to the RTSJ.

We say an RTSJ program P is scope-safe if no execution of P can issue an Illegal-

AssignmentError exception. Such exceptions are issued if the program fails to follow the

scope-access rules discussed in Section 2.4.

49

Theorem 3.6.1 Static determination of the scope-safety of an RTSJ program is undecid-

able.

Proof: By reduction from the halting problem: Given an encoding of a Turing machine T

and its input w, we construct an RTSJ program P as follows:

• P simulates T on w by interpreting T in standard Java: no RTSJ features are used.

• If T should halt on w, then P instantiates two scoped-memory areas, A and B, where

A is the parent of B. P next issues a reference from A to B.

Clearly, P generates an IllegalAssignmentError if and only if T halts on w. Thus,

deciding (statically) that P halts also decides that T halts on input w, which contradicts

the undecidability of the halting problem.

Theorem 3.6.1 implies that a compiler cannot generally detect programs that would

execute without error in Java but fail due to scope errors in the RTSJ. Extant responses to

this problem can be summarized as follows:

• A program can be written in a subset of the RTSJ that provably avoids scope er-

rors [67], or annotations can be attached to RTSJ programs so that a compiler can

reason about scope-safety [16].

While this approach can be successful, an application must essentially be rewritten

to conform with restrictions or to supply annotations. Moreover, a developer must

understand the application at a depth sufficient to modify the application correctly.

Java’s extensive libraries offer significant functionality for developers, but they are

inherently unsuitable for use in the RTSJ’s scoped-memory areas. Rewriting the

libraries for the RTSJ is a daunting task, with no real guarantee of correctness or

efficiency.

• Scopes can be avoided by using ordinary Java with a real-time garbage collector [9].

50

While this approach avoids having to rewrite an application, certain program prop-

erties must be asserted or analyzed [60] to configure the automatic garbage collector

so that it sufficiently paces the application’s storage needs. Some time efficiency will

be lost, as a predictable share of the CPU must be given to the garbage collector.

Some space efficiency is also lost, as the heap must be sufficiently over-provisioned to

mitigate the collector’s share of the CPU.

Even at its best, this approach has its skeptics, and there are (hard real-time) appli-

cations for which developers believe they must avoid garbage collection.

As an alternative to modifying Java programs to be RTSJ-safe, we consider an apparently

different programming paradigm and show that programs written in that paradigm can be

easily moved to the RTSJ and enjoy scope-safety.

Functional programming languages have emerged as an alternative to the more preva-

lent style of programming languages (including Java and the RTSJ) in which state, and

mutation of state, dominate the design and construction of programs. Lisp [61] is per-

haps the earliest example of a practical functional programming language still in use today,

and Backus’s Turing lecture [6] inspired generations of research on functional programming

languages.

The property of a pure Lisp program most relevant to our work concerns its math-

ematical transparency: Lisp expressions can be manipulated mathematically, because the

symbols of a symbolic expression cannot change value unexpectedly. Languages like pure

Lisp achieve this property by allowing names to be associated with expressions at most

once. This “single assignment” rule allows mathematical substitution of a program’s names

but also implies the following property: in terms of the order of assignment of expressions

to names, the expression assigned to a given name can reference only those names that are

strictly older than the assigned name. We leverage that property to build scope-safe RTSJ

functions.

51

We use Lisp as an example, but extensions to other pure functional programming

languages are straightforward. Memory is allocated in Lisp programs by a cons operator,

which creates a memory cell containing at most two references to extant storage. We realize

a Lisp program’s storage allocation in the RTSJ as follows:

• The RTSJ program prepares to simulate the Lisp program by creating a NHRT in the

usual manner. The details need not be provided here, except to say that the program

is subsequently able to create scoped-memory areas.

• Each cons operator in the Lisp program is simulated by creating and entering a new

scoped-memory area with sufficient storage for two references (which we assume could

also accommodate non-reference data such as constants). The references for a cons

cell must be known in the Lisp program when the cons cell is instantiated; we populate

the RTSJ scope with precisely those references.

While a scoped-memory area per cons cell is inefficient in practice, this approach

allows us to reason about the nature of storage allocated in the corresponding RTSJ pro-

gram:

• No scoped-memory area will overflow. This follows from the construction of the

scoped-memory areas. Each is populated once and for always by the single cons cell

that prompted creation of the scope.

• All references created in this manner are scope-safe, as proved by the following theo-

rem.

Theorem 3.6.2 The RTSJ realization of a Lisp program is scope-safe.

Proof: By contradiction: If a scope-referencing error occurs, one of the following must be

its cause:

• A reference is made to scoped memory from an unsuitable memory area (the generic

heap). If so, then the program did not launch the NHRT as described above.

52

• An inappropriate reference is made between scoped-memory areas. There are two

cases:

– The areas are not in an ancestor-descendant relationship. This is a contradiction,

since all scopes are created with linear ancestry.

– The reference is made from an ancestor scope to a descendant scope. This is a

contradiction, since the functional program can only have newer cells reference

older cells.

An important consequence of Theorem 3.6.2 is that an RTSJ developer can consider

migration of extant code written in a pure functional language for deployment under the

RTSJ, without fear of scoped-memory referencing errors at runtime. As described in Sec-

tions 3.7–3.8, data structures such as lists and heaps can be implemented in scopes based

on their realization in a functional programming language.

Code migrated as described above creates a linear chain of scopes—one for each cons

cell. However, the mutator entering those scopes never retreats, so the resulting program

never deallocates storage. At any moment, the RTSJ application could suspend its primary

activity and enter a phase in which it traces program references through the scope chain,

copying the resulting objects into a new chain of nested scopes. Any objects not referenced

by the program would not be copied. Such a phase essentially emulates a copying garbage

collector, but the intent of using the RTSJ with scoped-memory areas is to avoid garbage

collection.

Thus, the pure-functional implementations can serve as a basis for code migration;

however, more work is necessary to obtain space-efficient RTSJ implementations. In Sec-

tions 3.4 and 3.5 we considered liveness issues for each data structure and each was mindful

of reclaiming storage where possible. Generally, liveness of a given data structure, in the

53

context of a real application that uses multiple data structures, must be considered to deter-

mine a more sophisticated scope structure and to determine when scopes should be exited

so that storage can be reclaimed.

In addition to the storage-reclamation problem, a data structure migrated without

due consideration may be unsuitable for a real-time application. The rest of this chapter

provides examples that illustrate the advantages and pitfalls of code migration for real-time

applications.

As an example of migrating functional language implementations and runtime analy-

ses to the RTSJ, we consider some of the data structure implementations due to Okasaki [69,

70]. Because they were developed for general use, and without regard to real-time require-

ments, the primary consideration of merit was the normative average running time, analyzed

over a typical usage pattern. Real-time applications must budget for worst-case conditions.

As such, it is important to analyze a data structure’s migration from the functional program-

ming paradigm to the RTSJ with an understanding of the resulting asymptotic worst-case

behavior.

In Sections 3.4 and 3.5 we suggested particular RTSJ implementations for the stack

and queue abstract data types, respectively, and analyzed their time-complexities. The

RTSJ scopes (and functional programming languages) behave in a stack-like fashion. As

such, an RTSJ implementation for stack follows naturally. Our RTSJ queue implementation

is similar to Okasaki’s [69] functional language implementation and yields similar time-

complexity analysis. Both have been carefully crafted to have properties desirable for real-

time applications.

In Sections 3.7 and 3.8 we use the transformation described in Section 3.6 to mi-

grate functional programming implementations of data structures and their time-complexity

analyses to the RTSJ.

54

3.7 List analysis

The list ADT is an ADT that formalizes the notion of an ordered collection of entities or

items. The fundamental operations of list are:

1. ISLIST-EMPTY(L) - an operation that returns the binary value TRUE if list L is

empty, and FALSE otherwise.

2. SIZE(L) - an operation that returns the number of elements in list L.

3. CREATE(L) - an operation that creates an empty list L.

4. INSERT(L, x) - an operation that inserts item x at the front of list L.

5. HEAD(L) - an operation that returns the item at the front of list L.

6. DELETE-ITEM(L) - an operation that removes the item located at the front of list

L and returns a list containing one fewer item. If L is empty, an error condition is

reported.

7. LOOKUP(L, i) - an operation that returns the item located at index i of list L. If L

contains fewer than i items, an error condition is reported.

8. UPDATE(L, i, x) - an operation that replaces the item at index i of list L with item

x. If L contains fewer than i items, an error condition is reported.

3.7.1 Typical implementation of list

In the heap, the singly-linked list or the doubly-linked list data structure is typically used to

implement the list ADT. For these implementations the ISLIST-EMPTY, SIZE, CREATE,

HEAD, and DELETE-ITEM operations each executes in O(1) time. The LOOKUP and

UPDATE operations each requires O(n) time since the list has to be searched to find the

requested index.

55

3.7.2 Scoped-memory implementation of list

We do not suggest a particular scoped-memory implementation as we did in Sections 3.4

and 3.5. Instead, we migrate a functional language implementation of list [69, 70] to the

RTSJ using the method described in Section 3.6. The runtime cost analysis also migrates

since the transformation described in Section 3.6 is constant for each cons operation and

linear in the number of such operations. Moreover, the resulting RTSJ implementation is

functionally equivalent to the functional programming language implementation.

In his dissertation, Okasaki [70] implemented the list ADT in Standard ML, a func-

tional programming language. The declaration of each operation is similar to those given

above. He analyzed the running time for each list operation; we use his analysis and the

results from Section 3.6 to give the time complexity for each list operation implemented

with the RTSJ scoped-memory areas. The ISLIST-EMPTY, SIZE, CREATE, HEAD, and

DELETE-ITEM operations each executes in O(1) time while the LOOKUP and UPDATE

operations each requires O(log n) time.

3.7.3 Cumulative analysis for list

Suppose there exists a list L with n items. We consider computing the running time

of executing an intermixed sequence of m LOOKUP and UPDATE operations (the most

expensive operations) on list L. In a heap implementation, the running time for this se-

quence of operations is O(mn). In a scoped-memory implementation, the running time

is O(m log n). While it appears that a scoped-memory implementation is more efficient

than a heap implementation, the scoped-memory implementation can leak an unbounded

amount of memory.

3.8 Heap analysis

The heap or priority queue is an ADT that, at a minimum, allows the following operations:

INSERT, which inserts an element in the heap; and DELETE-MIN, which finds, returns,

56

and deletes the minimum element from the heap. The heap is generally implemented as a

tree-based data structure that satisfies the structure property and the heap order property.

The structure property says that a heap is implemented as a binary tree that is completely

filled, with the possible exception being the leaves level, which is filled from left to right [92].

The heap order property requires that data in the heap be an ordered set. Since the

minimum element needs to be found quickly, the heap order property requires that the

smallest element be at the root of the heap. If it is required that every subtree be a heap,

then any node in the heap should be smaller than its descendants. The implementation of

the heap ADT that honors these properties is called the binary heap.

Another implementation of the heap ADT is the binomial heap. A binomial heap is

similar to a binary heap except that the operation that merges two heaps runs faster. Thus,

we consider the binomial heap in our analysis. We define the fundamental operations for

the heap ADT as follows:

1. CREATE(H) - an operation that creates an empty heap H.

2. ISHEAP-EMPTY(H) - an operation that returns the binary value TRUE if heap H

is empty, and FALSE otherwise.

3. INSERT(H,x) - an operation that inserts an item in heap H.

4. FIND-MIN(H) - an operation that finds and returns the minimum item in heap H.

5. DELETE-MIN(H) - an operation that removes the minimum item from heap H and

returns a new heap with one fewer item. If H is empty, an error condition is reported.

6. MERGE(H1,H2) - an operation that merges heap H1 with heap H2 to form a new

heap containing as many items as the sum of the number of items in H1 and H2

combined.

57

3.8.1 Typical implementation of heap

In the heap where dynamic memory management occurs, several options are available for

implementing the heap ADT. An array can be used to store the heap; a binary tree can

be used to implement the heap; a binomial tree can also be used to implement the heap.

We consider the binomial tree implementation, more specifically the binomial heap data

structure, in our analysis for the reasons given above. Consequently, the cost associated

with each operation is given as follows. The CREATE and ISHEAP-EMPTY operations

each takes O(1) time to execute. The other operations each requires O(log n) time. This is

not surprising since the height of the tree used to store the heap is O(log n), where n is the

number of nodes (items) in the tree.

3.8.2 Scoped-memory implementation of heap

As we did for the list ADT, we do not suggest a specific way to implement the heap

ADT using the RTSJ scoped-memory areas. Instead, we migrate to this section imple-

mentations and cost analyses of the running time of heap operations from the functional

programming language community. In particular, we migrate implementations and analy-

ses from Okasaki [70]. Okasaki used a binomial heap implementation for the heap ADT,

which he developed in Standard ML. He analyzed the running time of each operation

and obtained a complexity of O(log n) for each operation, except CREATE and ISHEAP-

EMPTY, which each executes in O(1) time. Adopting Okasaki’s results, we conclude that

for an RTSJ scoped-memory implementation of the heap ADT, the operations CREATE

and ISHEAP-EMPTY execute in O(1) time. Every other operation, namely INSERT,

FIND-MIN, DELETE-MIN, and MERGE, requites O(log n) time.

3.8.3 Cumulative analysis for heap

Here we consider executing an intermixed sequence of m INSERT, FIND-MIN, DELETE-

MIN, and MERGE operations. Interestingly, these operations have the same running time

58

for both a heap implementation and a scoped-memory implementation. Since each operation

has a running time of O(log n) and there are m operations in the sequence, the running

time for the sequence of operations is O(m log n).

Although the results are the same for both implementations, the heap implemen-

tation is simple and exists in most data structure texts. Further, scoped-memory imple-

mentation of heap is not commonplace. Theorem 3.6.2 allows us to migrate a functional

programming language implementation of heap to the RTSJ; however, such implementation

can consume an unnecessary amount of memory.

59

Chapter 4

An Improved on-the-fly reference

counting garbage collector

ection 2.2.2 gave an overview of LPC [57, 58], “An On-the-Fly ReferencingS Counting Garbage Collector for Java”, designed for multi-threaded, multi-

processor environments. LPC possesses many features of a modern collector,

namely incrementality, concurrency, short pause time, low synchronization, and reasonable

time overhead. However, improvements can be made to reduce the pause time, to lower the

synchronization, to minimize the time cost, and to improve the minimum mutator utilization

(MMU) of processors.

LPC executes a series of collections in cycles. During a collection, LPC suspends

each mutator 4 times to engage it in a transaction. After each transaction, LPC resumes the

mutator. LPC suspends at most one mutator at a time and resumes it before suspending

another mutator. A mutator cannot be suspended by LPC if it is executing in the write

barrier because the write barrier must be treated with extreme care. The write barrier serves

as a synchronization point between mutators and the collector. It is the write barrier the

collector uses to force mutators to buffer state information relevant to garbage collection.

The notion of suspending mutators, performing transactions with them, and resuming them

60

is known as a handshake. Thus, LPC uses four handshakes per collection. These handshakes

are also synchronization points since LPC utilizes them to synchronize its view of the heap

with the mutators. Hence, the larger the number of handshakes a collector possesses the

higher the synchronization cost. A large number of handshakes does not only increase

synchronization cost, but also reduces MMU. A mutator cannot do any work while it is

suspended.

We present the Defoe-Deters Collector, an improved on-the-fly collector that reduces

pause time, lowers synchronization cost (fewer handshakes), and shortens time overhead.

For convenience, we shall hereafter refer to the Defoe-Deters Collector as DDC. DDC is

similar to LPC in many respects; however, DDC addresses some of the limitations of LPC.

4.1 Chapter road map

The rest of this chapter is organized as follows. Section 4.2 describes the problem that

the LPC and the DDC family of collectors is attempting to resolve. Section 4.3 highlights

the mutators’ involvement in garbage collection. Sections 4.4 to 4.6 detail the functional-

ity of various versions of the collector. Section 4.7 validates the DDC family of collectors.

Section 4.8 discusses implementation issues and Section 4.9 summarizes our results. Sec-

tion 4.10 describes related work.

4.2 The problem addressed by LPC and DDC collectors

The LPC and the DDC family of collectors use state information buffered by mutators to

maintain reference counts of heap objects and to collect such objects when their reference

counts become zero. The state information is exchanged between the mutators and col-

lector during the first and/or last handshake of each collection. Since mutators respond

to handshakes with the collector on an individual basis, it is possible for the same state

information to be concurrently buffered by a mutator that has already had a handshake

61

with the collector and one that has not. This poses a problem since objects can be collected

prematurely.

The LPC collector addresses this problem by using two addition handshakes [57, 58]

(see Sections 4.3 and 4.6) for a total of four handshakes. Insteading of using additional

handshakes, we use a duality approach in the DDC family of collectors. In Sections 4.3

and 4.4 we use a dual buffer approach and in Section 4.5 we use a dual dirty-flags approach.

4.3 Mutators in garbage collection

Mutators affect garbage collection by instantiating new objects and storing references to

heap objects in pointer fields. When a mutator instantiates a new object, the object is

assigned a default zero heap-reference-count. An object is collected when its reference

count is zero; as such, a new object is a candidate for garbage collection. Each mutator

Ti is equipped with a local zero-count-table ZCTi in which it logs objects whose reference

counts are zero. Thus, the new object is logged in the current mutator’s zero-count-table

(ZCT). Figure 4.1 details the instantiation routine.

Procedure Instantiate(size: Integer): Object
begin

// new object obtained from allocator
1. obj = allocate(size)
2. ZCTi = ZCTi ∪ {obj}
3. return obj
end

Figure 4.1: Instantiation of new object. Similar to procedure New in LPC [57, 58].

Each Ti is also equipped with two local buffers, namely Buf i and TB i, in which it

logs information on pointer fields in objects (pointers for short) that have been updated for

the first time since the last collection. Each buffer entry consists of a tuple of addresses:

the address of the updated pointer and the address of the object to which it last pointed

before it was updated. It is important to note that during a collection, only pointers that

62

are updated for the first time are logged. Other pointers are not logged. There are two

paths through the write barrier—a path in which a mutator logs data in its local buffer

and a path in which the mutator does not log data in its local buffer. Every pointer has

associated with it a dirty flag that indicates whether it has been updated during the current

collection or not. If the flag is raised then the pointer has already been updated. Otherwise,

the pointer may not yet have been updated. The write barriers represented in Figure 4.2

and Figure 4.3 log the information mentioned above in mutator local buffers. They are

only executed for pointer assignments. Notice that the write barriers are identical except

they use different buffers. The reasons for the different buffers will become clear when the

collector’s role is discussed in detail.

Procedure Update(s: Pointer, new: Object)
begin
1. Object old := read(s)
2. if ¬Dirty(s) then
3. Buf i := Buf i ∪ 〈s, old〉
4. Dirty(s) := true
5. write(s, new)
6. if Snoopi then
7. Localsi := Localsi ∪ {new}
end

Figure 4.2: Reproduced write barrier of LPC [57, 58].

Procedure UpdateTwo(s: Pointer, new: Object)
begin
1. Object old := read(s)
2. if ¬Dirty(s) then
3. TB i := TB i ∪ 〈s, old〉
4. Dirty(s) := true
5. write(s, new)
6. if Snoopi then
7. Localsi := Localsi ∪ {new}
end

Figure 4.3: Write barrier to be executed by threads released from handshake one. Execution of
procedure Update by all threads resumes when handshake one completes.

63

The procedures in Figure 4.1, Figure 4.2, and Figure 4.3 cannot be interrupted by

the collector while they are being executed. If they are interrupted, the log entries could

be corrupted and garbage collection could fail. These procedures are not necessarily atomic

since they can be concurrently executed by multiple mutators; however, they are executed as

collector-proof code (called CP-code), i.e., code that cannot be suspended by the collector.

Notice also that the write barriers are involved in a snooping mechanism—a feature

of LPC [57, 58] described as follows. A sliding view of the heap is computed during a

collection over the interval [t1, t2]. This view can be perceived as a view of the heap that

slides in time. While that view is being computed, pointers are updated. Snooping is a

mechanism used to ensure that objects that become targets of pointer updates during the

current sliding view computation are not reclaimed at the end of the current collection.

Instead, such objects become roots for the current collection and are logged in mutator

local buffers denoted Locals i.

4.4 Defoe-Deters Collector

This section describes the main functions of DDC. Pseudocode for each routine is provided.

4.4.1 Initiating a collection

DDC begins a collection by enabling the snooping mechanism described above in Section 4.3.

DDC then executes the first handshake, HS 1, during which it performs transactions with

each mutator in turn. A transaction consists of the following steps where n is the number of

mutators in the system, 1 ≤ i ≤ n is the mutator index, and k > 0 identifies the collection.

1. The collector suspends mutator Ti if it is not executing CP-code.

2. The collector retrieves the local buffer, Buf i, of Ti and consolidates it in a history

buffer, Histk, for the current collection.

3. The collector gives Ti a new buffer Buf i then resumes Ti.

64

At the end of the collection, the data in Histk is used to adjust the reference counts of

heap objects. The procedure for initiating a collection is depicted in Figure 4.4. Before

Procedure InitiateCollection
begin
1. for each thread Ti do
2. Snoopi := true
3. for each thread Ti do
4. suspend Ti

5. // retrieve Ti’s local buffer ignoring
// duplicate pointer information
Histk := Histk ∪ Buf i

6. // give Ti an empty local buffer
Buf i := ∅

7. resume Ti

end

Figure 4.4: Procedure to begin a collection and implement handshake one. This procedure is executed
by the collector and similar to procedure Initiate-Collection-Cycle of LPC [57, 58].

a mutator is affected by HS 1 it uses the write barrier in Figure 4.2 to update pointers.

After encountering HS 1 it uses the write barrier in Figure 4.3 to update pointers until

HS 1 completes. When HS 1 completes all threads return to using the write barrier in

Figure 4.2. Notice that different local buffers are used in the write barriers. The data in

Buf i is consolidated in Histk when HS 1 executes, but the data in TB i is data collected

by mutators since they responded to HS 1. Such data is not consolidated in Histk but is

eventually added to the history buffer for the next collection, i.e., in Histk+1. Having a

write barrier that can be used to collect such data keeps the number of handshakes low.

4.4.2 Resetting dirty flags

The data consolidated in Histk was buffered during the previous collection. The pointers

listed in Histk are exactly the pointers that were updated at least once during the previous

collection. To buffer accurately the pointers that are modified the first time during the cur-

rent collection, the dirty flags of pointers in Histk must be reset. This action is necessary to

summarize reference-count updates. Only objects affected by pointer updates in successive

collections have their reference counts adjusted. Moreover, the write barriers can only be

65

used to buffer pointers with clear dirty flags. The resetting routine is detailed in Figure 4.5.

Procedure ResetDirtyFlags
begin
1. for each 〈s, old〉 ∈ Histk do
2. Dirty(s) := false
end

Figure 4.5: Procedure to reset dirty flags of pointers in Histk. This procedure is executed by the
collector and is identical to procedure Clear-Dirty-Marks of LPC [57, 58].

4.4.3 Restore dirty flags

DDC targets a multi-thread, multiprocessor environment. This makes it possible for multi-

ple mutators to use the write barriers concurrently to update pointers. After HS 1 completes,

one potential consequence is for data on the same pointer(s) to be present in both TB i and

Histk. This means that the dirty flags of pointers in TB i may be reset by procedure Reset-

DirtyFlags in Figure 4.5. But these pointers are a subset of the pointers that were updated

at least once for the current collection. Their dirty flags should not be reset. Since their

dirty flags are potentially reset, they must be restored. Procedure RestoreDirtyFlags in

Figure 4.6 restores the dirty flags of affected pointers.

Procedure RestoreDirtyFlags
begin
1. Histk+1 := ∅
2. Handled := ∅
3. local Temp := ∅
4. for each thread Ti do
5. Temp := Temp ∪ TB i

6. for each 〈s, old〉 ∈ Temp do
7. if s /∈ Handled then
8. Dirty(s) := true
9. Handled := Handled ∪ {s}
10. Histk+1 := Histk+1 ∪ {〈s, old〉}
end

Figure 4.6: Procedure retrieves each mutator’s temporary buffer TB i, raises necessary dirty flags and
updates Histk+1.

66

Not only are the dirty flags of the affected pointers restored by procedure Re-

storeDirtyFlags, but the data in the TB is are also added to Histk+1 - the history buffer

for the next collection. The addition is done without duplication. The data could be added

to Buf i instead, but it is more convenient and more efficient to add it to Histk+1. Adding

the data to Histk+1 lowers the synchronization cost between the collector and the mutators

and also reduces overhead—see Figure 4.4.

4.4.4 Consolidation

Procedure Consolidate
begin
1. local Temp := ∅
2. Localsk := ∅
3. for each thread Ti do
4. suspend Ti

5. Snoopi := false
6. // retrieve snooped objects

Localsk := Localsk ∪ Localsi

7. // give Ti an empty Localsi buffer
Localsi := ∅

8. // copy thread local state and ZCT
Localsk := Localsk ∪ Statei

9. ZCTk := ZCTk ∪ ZCTi

10. ZCTi := ∅
11. Temp := Temp ∪ Buf i

12. resume Ti

13. // consolidate Temp into Histk+1

for each 〈s, old〉 ∈ Temp do
14. if s /∈ Handled then
15. Handled := Handled ∪ {s}
16. Histk+1 := Histk+1 ∪ {〈s, old〉}
end

Figure 4.7: Procedure consolidates all the per-thread local information into per-collection buffers. This
procedure is similar to handshake four of LPC [57].

The collector engages mutators in a second handshake, HS 2. During HS 2 the snoop-

ing mechanism is disabled; mutator local roots are consolidated into a per-collection root

buffer; new objects are consolidated into a per-collection ZCT, and mutator local buffers

are consolidated, without duplicates, in the history buffer for the next collection. The latter

consists of pointers updated since the first handshake.

67

Consolidation amounts to retrieving the aforementioned mutator buffers, storing

them in per-collection buffers, and returning to mutators new buffers to log more data.

Consolidation is performed by procedure Consolidate in Figure 4.7.

The local state of a mutator in this context, denoted by Statei, refers to the collection

of pointers to heap objects immediately available to the mutator. The collection includes

pointers from the stack, registers, and global variables. Only the mutator and the collector

have access to Statei. The same is true for Locals i (defined in Section 4.3). While procedure

Consolidate serves as HS 2 for DDC, it serves as HS 4 for LPC. Consolidate runs faster

for DDC than it does for LPC because some of the work of Consolidate is done by

RestoreDirtyFlags.

4.4.5 Adjust reference-count fields

Procedure AdjustRC
begin
1. Unresolvedk := ∅
2. for each 〈s, old〉 ∈ Histk do
3. curr := read(s)
4. if ¬Dirty(s) then
5. curr.rc := curr.rc + 1
6. else
7. Unresolvedk :=

Unresolvedk ∪ {s}
8. old.rc := old.rc− 1
9. if old.rc = 0 ∧ old /∈ Localsk then
10. ZCTk := ZCTk ∪ {old}
end

Figure 4.8: Procedure adjusts rc fields of heap objects identified by pointers in Histk. This is
functionally the same as Figure 9 in LPC [57].

After procedure Consolidate completes, DDC has enough information to adjust the

reference-counts (rc) of heap objects identified by the pointers in Histk. Objects logged as

the ‘old values’ of pointers (last object referenced during the previous collection) in Histk

have their rc fields decremented. Objects referenced by pointers in Histk have their rc

fields incremented. Refer to Figure 4.8 for details. By reading the contents of Histk it

68

is not always feasible to identify objects whose reference-counts need to be incremented.

Consider, for example, a pointer p ∈ Histk whose dirty flag is raised. The address of object

obj, which is the ‘old value’ of p, is not in Histk because p was logged by a mutator after

it completed HS 1. The address of obj is thus logged in either a mutator local buffer or

Histk+1. In order to identify objects such as obj and correctly adjust their reference counts,

additional processing of pointers such as p is required.

Procedure ReadBuffers
begin
1. Peekk := ∅
2. for each Ti do
3. // copy buffers without duplicates

Peekk := Peekk ∪ Buf i

end

Figure 4.9: Procedure reads mutator local buffers without clearing them. This is the same as procedure
Read-Buffers in LPC [57, 58].

Procedure ReadHistory
begin
1. // copy Histk+1 without duplicates

Peekk := Peekk ∪Histk+1

end

Figure 4.10: Procedure reads history buffer of next collection and adds it to Peekk. This is the same as
procedure Merge-Fix-Sets in LPC [57, 58].

Pointers such as are p are referred to as undetermined slots [57, 58]. We prefer

to term such pointers unresolved pointers because the collector has not yet resolved the

objects they reference. Unresolved pointers are logged in buffer Unresolvedk so they can

be processed further when the mutator buffers and Histk+1 are accessed. The mutator

buffers are read asynchronously by procedure ReadBuffers in Figure 4.9. The collector

does not clear the buffers, instead it combines the content of the buffers into a per-collection

buffer called Peekk. Histk+1 is then read by procedure ReadHistory, in Figure 4.10, and

added to Peekk so that Peekk can be used to determine which objects need to have their

69

rc fields incremented. Procedure IncRC in Figure 4.11 is used to increment the rc fields

of those objects.

Procedure IncRC
begin
1. for each 〈s, old〉 ∈ Peekk do
2. if s ∈ Unresolvedk then
3. old.rc := old.rc + 1
end

Figure 4.11: Procedure increments rc fields of objects identified by unresolved pointers. This is the same
as procedure Fix-Undetermined-Slots in LPC [57, 58].

4.4.6 Reclaim garbage objects

Procedure ReclaimGarbage
begin
1. ZCTk+1 := ∅
2. for each object obj ∈ ZCTk do
3. if obj.rc > 0 then
4. ZCTk := ZCTk − {obj}
5. else if obj.rc = 0 ∧ obj ∈ Localsk then
6. ZCTk := ZCTk − {obj}
7. ZCTk+1 := ZCTk+1 ∪ {obj}
8. for each object obj ∈ ZCTk do
9. Collect(obj)
end

Figure 4.12: Procedure determines which objects are garbage and collects them with procedure Collect.
This is the same as procedure Reclaim-Garbage in LPC [57, 58].

After the reference counts of heap objects are adjusted, DDC reclaims garbage ob-

jects. Garbage objects are heap objects with zero reference counts that are not marked as

roots. An object is marked as a root if it is in Localsk. Objects with pointers in Histk+1

that become garbage are not collected at this time. They are deferred to the next collection

since their pointers were last updated during the current collection. Furthermore, they

may have become garbage after the current collection started. The procedures responsi-

ble for reclaiming garbage objects are ReclaimGarbage in Figure 4.12 and Collect in

Figure 4.13.

70

Procedure Collect(obj: Object)
begin
1. local DeferCollection := false
2. for each pointer s ∈ obj do
3. if Dirty(s) then
4. DeferCollection := true
5. else
6. val := read(s)
7. val.rc := val.rc− 1
8. write(s, null)
9. if val.rc = 0 then
10. if val /∈ Localsk then
11. Collect(val)
12. else
13. ZCTk+1 := ZCTk+1 ∪ {val}
14. if ¬DeferCollection then
15. return obj to general purpose allocator
16. else
17. ZCTk+1 := ZCTk+1 ∪ {obj}
end

Figure 4.13: Procedure collects garbage objects. This is the same as procedure Collect in LPC [57].

4.5 Defoe-Deters Collector Version 2

In Section 4.3 and Section 4.4 we described DDC in detail. DDC uses two write barriers

and two sets of mutator buffers. In this section, we present DDC version 2—a version that

uses one write barrier and dual dirty flags for each pointer. We call this approach DDC-2.

DDC-2 uses one set of dirty flags for even-numbered collections and one set of dirty flags for

odd-numbered collections. The dirty flags are indexed {0, 1}. Each mutator Ti is equipped

with a field di ∈ {0, 1} that indexes the dirty flags. When Ti uses the write barrier to raise

a dirty flag for pointer s such that s is used to adjust reference counts during an even-

numbered collection, it raises dirty flag di (Dirtydi
(s)) where di = 0. When the collection

is an odd-numbered collection, Ti raises Dirtydi
(s) where di = 1. For every mutator Ti,

1 ≤ i ≤ n, di is initialized to k0(mod 2), where k0 is the number of the first collection. di

is subsequently updated as part of the first handshake as illustrated in Figure 4.14.

Figure 4.14 is the same as Figure 4.4 except for line 7 that updates di for each

Ti. It is important to note that di is assigned the value (k + 1)(mod 2) and not k(mod

71

Procedure DualMode-InitiateCollection
begin
1. for each thread Ti do
2. Snoopi := true
3. for each thread Ti do
4. suspend Ti

5. // retrieve Ti’s local buffer ignoring
// duplicate pointer information
Histk := Histk ∪ Buf i

6. // give Ti an empty local buffer
Buf i := ∅

7. // set the dual dirty flag index
di := (k + 1)(mod 2)

8. resume Ti

end

Figure 4.14: InitiateCollection modified to use dual dirty flags for each pointer in an object. i is the
thread index and k is the collection number.

2) because during collection k mutators buffer data to adjust reference counts of objects

during collection k + 1. DDC-2 also utilizes a single write barrier, depicted in Figure 4.15,

to summarize the behaviors of the write barriers in Section 4.3 and averts the procedure in

Figure 4.6. Figure 4.15 raises the right dirty flags and eliminates the need to restore dirty

flags that inadvertently get reset.

Procedure UpdateDM(s: Pointer,
new: Object)

begin
1. Object old := read(s)
2. if ¬Dirty0(s) ∧ ¬Dirty1(s) then
3. Buf i := Buf i ∪ 〈s, old〉
5. // dual dirty flags

Dirtydi
(s) := true

6. write(s, new)
7. if Snoopi then
8. Localsi := Localsi ∪ {new}
end

Figure 4.15: Write barrier modified to use dual dirty flags. i is the thread index and di ∈ {0, 1} is the
dirty flag to raise in this collection.

Resetting of dirty flags in DDC-2—see Figure 4.16—is very specific. Only one set

of dirty flags gets reset, i.e., the flags raised before handshake one of the current collection.

72

The set of flags modified since handshake one are not inadvertently reset, so they do not

need to be restored. This explains why the procedure in Figure 4.6 is not needed.

Procedure DualMode-ResetDirtyFlags
begin
1. for each 〈s, old〉 ∈ Histk do
2. Dirtyk (mod 2)(s) := false

end

Figure 4.16: Procedure ResetDirtyFlags modified to use dual dirty flags. k is the collection number.

The key idea in this approach is the following: when raising and resetting dirty flags,

the collector and mutators only operate on one set of dirty flags, the dirty flags relevant for

the current collection. When checking the dirty status of a pointer, as in the write barrier of

Figure 4.15, both dirty flags are checked. Checking both flags is necessary to know whether

the pointer is dirty, from the current collection or from the previous collection. Besides,

raising and resetting only one set of flags ensures that there is no interference between

collections that can invalidate reference count updates.

Prior to resetting dirty flags of pointers in collection k, for each pointer s in the

system, if

Dirtyk (mod 2)(s) = true

then s ∈ Histk. After resetting dirty flags of pointers in collection k, for all pointer s ∈ Histk,

Dirtyk (mod 2)(s) = false.

Thus, after resetting dirty flags of pointers in collection k, for all pointer s in the system,

Dirtyk (mod 2)(s) = false.

This observation helps us realize that in order to complete DDC-2 we only need to make

small changes to the rest of DDC. In particular, we only need to modify the procedures in

73

Figure 4.8 and Figure 4.13. Both line 4 in Figure 4.8 and line 3 in Figure 4.13 become

. . . if ¬Dirtyk+1 (mod 2)(s) then . . .

These changes are adequate since the collector knows that for all pointer s in the system,

Dirtyk (mod 2)(s) = false.

4.6 The Levanoni-Petrank Collector

Consider DDC as presented in Section 4.3 and Section 4.4. Although it is not our goal to

transform DDC into a four-handshake collector, the Levanoni-Petrank Collector [57, 58],

LPC, uses four handshakes. Before explaining the necessity for the additional handshakes,

we describe the differences between LPC and DDC.

Procedure RestoreConflicts
begin
1. ConflictSetk := ∅
2. // handshake 2 of ILPC-4

for each thread Ti do
3. suspend Ti

4. ConflictSetk := ConflictSetk ∪ Buf i

5. resume Ti

6. for each s ∈ ConflictSetk do
7. Dirty(s) := true
8. // handshake 3 of ILPC-4

for each thread Ti do
9. suspend Ti

10. nop
11. resume Ti

end

Figure 4.17: Procedure embraces handshakes two and three LPC [57, 58].

1. We chose different names for some of the procedures in LPC.

2. LPC uses the procedure in Figure 4.2 as its single write barrier.

74

3. LPC replaces Figure 4.7 with 4.18.

4. LPC does not use procedure RestoreDirtyFlags of Figure 4.6.

5. LPC uses DDC’s handshake two as its handshake four.

6. LPC requires two additional handshakes, handshake two and handshake three, which

are included in Figure 4.17.

Procedure Consolidate*
begin
1. local Temp := ∅
2. Localsk := ∅
3. // handshake 4 of ILPC-4

for each thread Ti do
4. suspend Ti

5. Snoopi := false
6. // retrieve snooped objects

Localsk := Localsk ∪ Localsi

7. // give Ti an empty Localsi buffer
Localsi := ∅

8. // copy thread local state and ZCT
Localsk := Localsk ∪ Statei

9. ZCTk := ZCTk ∪ ZCTi

10. ZCTi := ∅
11. Temp := Temp ∪ Buf i

12. resume Ti

13. Histk+1 := ∅
14. local Handled := ∅
15. // consolidate Temp into Histk+1

for each 〈s, old〉 ∈ Temp do
16. if s /∈ Handled then
17. Handled := Handled ∪ {s}
18. Histk+1 := Histk+1 ∪ {〈s, old〉}
end

Figure 4.18: Procedure consolidates all the mutator local buffers into per-collection buffers. * This
procedure is the same as handshake four of LPC [57, 58].

LPC targets a multi-threaded, multiprocessor environment. As such, it is possible

for multiple mutators to execute the write barrier concurrently. No restriction is placed

on which mutator may use the write barrier at a particular time. Consequently, it is

possible for mutators affected by handshake one to execute the write barrier concurrently

with mutators that have not yet been affected by the same handshake. Should that be the

75

case, the potential problem is that both sets of mutators log pointers in their local buffers.

Since each pointer is associated with a single dirty flag, when the dirty flags of pointers are

reset by procedure ResetDirtyFlags in Figure 4.5 some pointers in thread local buffers

will have their dirty flags reset. Since this result is undesirable for fear that it can foil the

collection, handshake two of Figure 4.17 is used to restore the dirty flags of the affected

pointers. Handshake three ensures that the restoration is visible to all application mutators.

4.7 Validating the DDC family of collectors

We have presented several variations of an on-the-fly referencing counting garbage collector

for Java. We now show that the DDC family of collectors is correct.

Levanoni and Petrank [58] have proved that LPC is correct. We use their results

to show that the DDC collectors are correct. Our approach involves demonstrating that

it is safe to replace handshakes two and three of LPC with the components of the DDC

collectors that make them different from LPC.

We make two assumptions that are essential for the correctness of the algorithms.

1. The reads and writes of the dirty flags in the write barriers are not reordered, i.e.,

they are executed in the order they appear.

2. The raising of the snoop flag for each mutator is visible to the associated mutator

before it actually begins handshake one.

4.7.1 Definition of concepts

Collections Let Colk denote collection k, the current collection. The previous collection

is thus denoted by Colk−1 and the next collection by Colk+1.

Buffer writing Mutator Ti writes to Buf i,k if Ti logs 〈s, oldvalue〉 in Buf i during collection

k. However, if Ti logged 〈s, oldvalue〉 in Buf i during Colk−1, we say Ti wrote to

Buf i,k−1.

76

Dirty flag Every pointer s is associated with at least one dirty flag denoted by Dirty(s).

Handshakes HSm(k) denotes handshake m of collection k, where 1 ≤ m ≤ 4.

4.7.2 The Defoe-Deters Collector is correct

We prove that DDC is correct by first establishing some characteristics of LPC. We then

show that it is safe to replace handshakes two and three of LPC with the components of

DDC that make DDC different from LPC. In particular, we have added a second write

barrier to DDC and a procedure to restore dirty flags. See Figure 4.3 and Figure 4.6,

respectively. We have also replaced handshake four (Figure 4.18) of LPC with a shorter

handshake namely, the one in Figure 4.7. We show that these modifications are sufficient

to eliminate handshakes two and three of LPC and do not break the collector.

Axiom 4.7.1 Procedure Update in Figure 4.2 and procedure Instantiate in Figure 4.1

are executed as collector-proof code, i.e., code that cannot be suspended by the collector.

Axiom 4.7.2 If mutator Ti and mutator Tj concurrently log 〈s, vi〉 and 〈s, vj〉 in local

buffers Bufi,k and Bufj,k respectively, then vi = vj.

Axiom 4.7.1 is fundamental to all three members of the family of on-the-fly collectors.

It ensures that logging completes and that dirty flags are properly updated. Axiom 4.7.2

is also fundamental since it allows the collector to pick as its Histk entry for pointer s any

log entry from any mutator whose local buffer contain s. Histk is the buffer in which the

collector keeps the consolidated history of mutator local buffers for collection k.

Lemma 4.7.3 The Pointers in Histk, the consolidated history for collection k, are unique,

i.e., for every pointer s ∈ slots(Histk), s appears once. More formally:

s ∈ slots(Histk) −→∣∣∣{〈sl, v〉 ∈ Histk
∣∣∣ sl = s

}∣∣∣ = 1 .

77

Proof: The only thread that updates Histk is the collector, Tc. Tc updates Histk by adding

〈s, oldvalue〉 tuples from Buf i for all mutators Ti, 1 ≤ i ≤ n, to Histk. These updates occur

in the last handshake of Colk−1 and in the first handshake of Colk.

Notice from Axiom 4.7.2 that when multiple mutators concurrently log a 〈s, oldvalue〉

tuple in their local buffers, they all log the same oldvalue. Notice also that the collector

does not add duplicate buffer entries to Histk. Further, the abstract data structure used to

model Histk is the set, which does not allow for multiple occurrence of an element. Hence,

it follows that pointers in Histk are unique.

Lemma 4.7.4 Let P be the point in the collector code that corresponds to the end of exe-

cution of HS1(k). At P , ∀s ∈ slots(Histk) ,Dirty(s) = true.

Proof: When a mutator executes the write barrier, it raises the dirty flag of every pointer it

adds to its local buffer(s). This follows directly from the write barrier code and Axiom 4.7.1.

During Colk−1, dirty flags of pointers are reset after HS 1 with procedure ResetDirtyFlags

of Figure 4.5. It is possible for dirty flags of buffered pointers to be reset for the reasons

given in Section 4.6. However, those dirty flags are restored by HS 2(k− 1). By HS 3(k− 1)

the dirty flags of all the pointers in the buffers are raised. Thus, when those pointers are

added to Histk, in HS 4(k − 1), the dirty flags of all pointers in Histk are raised.

It is also possible for other pointers to be added to Buf i for each mutator Ti after

Ti interacts with the collector in HS 4(k − 1). Such pointers are added to Histk in HS 1(k).

Observe that the dirty flags of those pointers are all raised in the write barrier. Thus, by

the end of handshake one of collection k, it follows that ∀s ∈ slots(Histk) , Dirty(s) = true.

Lemma 4.7.5 No pointer with a clear dirty flag has its dirty flag reset.

Proof: We know from Lemma 4.7.4 that prior to the execution of ResetDirtyFlags, the

dirty flags of all pointers in Histk are raised. We also know that ResetDirtyFlags executes

after HS 1(k) and, when it does, it resets only the dirty flags of all pointers in Histk. Since

78

ResetDirtyFlags is executed once per collection, is the only procedure used to reset dirty

flags, and the pointers of Histk are unique, it follows that only pointers with raised dirty

flags have their dirty flags reset. Thus, no pointer with a clear dirty flag has its dirty flag

reset.

Lemma 4.7.6 The dirty flag of every pointer s ∈ slots(Histk) is reset exactly once during

collection k.

Proof: Lemma 4.7.6 follows directly from Lemma 4.7.3 and the fact that procedure Re-

setDirtyFlags of Figure 4.5 is executed once per collection.

Lemma 4.7.7 Pointer s has its dirty flag reset after handshake one of collection k only if

s ∈ slots(Histk).

Proof: By the end of HS 1(k) the updating of Histk is complete, i.e., no more

〈pointer, oldvalue〉 tuples are added to Histk. The collector then resets the dirty flags of all

the pointers in Histk by executing procedure ResetDirtyFlags of Figure 4.5. This is the

only time in Colk in which the collector resets dirty flags. Since the collector only resets

dirty flags with procedure ResetDirtyFlags, if s ∈ slots(Histk) then the dirty flag of s is

reset.

Lemma 4.7.8 If pointer s whose dirty flag Dirty(s) is reset after HS1(k) has Dirty(s) raised

thereafter, then Dirty(s) remains raised until after HS1(k + 1) when ResetDirtyFlags is

executed by the collector.

Proof: The only place in the code where dirty flags are reset is in procedure Reset-

DirtyFlags which is executed once, after HS 1, of each collection. Thus, if Dirty(s) is

raised after being reset in Colk, it remains raised until ResetDirtyFlags executes again,

in Colk+1.

We have validated important characteristics that are shared by the DDC collectors

and LPC. However, we have not yet shown that it is safe to eliminate handshakes two and

79

three. To show that we can safely eliminate these handshakes, we only need to show that

our modifications to LPC do not violate the characteristics presented above. We do so with

the following theorem:

Theorem 4.7.9 Handshakes two and three of LPC can safely be eliminated by incorporating

the approach presented in Section 4.7.2.

Proof: Denying every mutator Ti that has already responded to HS 1(k) access to procedure

Update by the approach presented in Section 4.4 ensures that no pointers reset during

Colk reside in Buf i. This means that no pointer s in Buf i needs to have Dirty(s) restored.

Pointers that potentially need to have their dirty flags restored are logged in TB i for each

Ti instead with procedure UpdateTwo. Procedure UpdateTwo is executed only by

mutators released from handshake one from the time of their release until handshake one

completes for all mutators. Since no mutator Ti is allowed to use TB i after handshake one

completes for all mutators, no more pointers are added to TB i. The collector restores the

dirty flags of the pointers in TB i for each mutator Ti. It does so without a handshake

using procedure RestoreDirtyFlags. Procedure RestoreDirtyFlags thus replaces HS 2

of LPC.

Since HS 2 can be eliminated safely, so can HS 3. HS 3 is predicated by the presence of

HS 2. We only need to show that our modifications to LPC do not violate the characteristics

presented above.

Axioms 4.7.1 and 4.7.2 are not violated because LPC’s write barrier is not modified.

Procedure UpdateTwo is very similar to procedure Update and is executed as CP-code.

Lemma 4.7.3 is honored by our approach since pointers are added to Histk in the

same fashion, i.e., during Colk−1 and Colk. The only modification we make in this regard is

adding pointers to Histk a bit earlier—before the last handshake of Colk−1. Notice that the

dirty flags of those pointers are raised before they are added to Histk. If a pointer already

exists in Histk, it is not added to Histk a second time.

80

Lemma 4.7.4 is not violated for the simple fact that our approach only allows pointers

with raised dirty flags to be added to mutator local buffers. Since Histk consists of pointers

that were in mutator local buffers and pointers that were added before the last handshake

of Colk−1, all pointers in Histk at the point described in Lemma 4.7.4 have their dirty flags

raised.

Lemmas 4.7.7, 4.7.5, 4.7.6, and 4.7.8 are also not violated because our approach

does not alter the behavior of procedure ResetDirtyFlags, neither does our approach

affect when ResetDirtyFlags executes. ResetDirtyFlags continues to be executed once

per collection, after HS 1.

Our approach as presented in Section 4.4 violates none of the characteristics of LPC.

Thus, the Defoe-Deters collector is correct.

4.7.3 Defoe-Deters Collector Version 2 is correct

In Section 4.7.2 we showed that DDC is a correct collector. We now prove that DDC-2 is

also correct.

Theorem 4.7.10 By using dual dirty flags as an alternative approach to that described in

Section 4.4, handshakes two and three of LPC can be eliminated.

Proof: LPC [57, 58] uses a single dirty flag per pointer. These flags are raised only

by mutators executing the write barrier when they modify associated pointers. They are

reset only by the collector in procedure ResetDirtyFlags, which is executed after HS 1.

The key invariant maintained by LPC after HS 2 and HS 3 (and, in fact, the purpose for

their existence) is that pointers marked dirty must have been modified after HS 1 (and are

therefore logged in a mutator local buffer), and, more importantly, all pointers modified

since HS 1 are marked dirty.

DDC-2 maintains two separate sets of dirty flags—one for even-numbered collections

and one for odd-numbered collections. Each pointer has two dirty flags, one from each set.

When checking pointer dirty flags, DDC-2 observes both flags and considers the pointer

81

dirty if either flag is raised (and non-dirty only if they are both not raised). When raising

a dirty flag, mutators raise the dirty flag appropriate for the relevant collection, Colk if the

mutator has not yet responded to HS 1, Colk+1 otherwise. Similarly, when resetting dirty

flags, DDC-2 only resets dirty flags for the relevant collection, Colk.

The key invariant of LPC after HS 3 is satisfied by the DDC-2 design before HS 2 is

performed. If a mutator, after responding to HS 1, modifies a pointer and marks it dirty,

DDC-2 will never reset that dirty flag during the current collection: DDC-2 resets only dirty

flags for Colk, while mutators (after HS 1) raise dirty flags for Colk+1. Therefore, dirty flags

need never be restored (as in handshake two) since modifications after HS 1 are not reset

by DDC-2. This invariant is satisfied without performing handshakes two and three; hence,

they are unnecessary.

4.8 Implementation issues

A number of implementation design decisions need to be made in implementing a Levanoni-

Petrank style collector. Here, we explore the space of possible high-performance imple-

mentations and discuss our implementation in the GNU Compiler for the JavaTM

Programming Language (GCJ) [40] version 4.1.0, which is bundled with the GNU

Compiler Collection (GCC) [39].

4.8.1 Reference counting field

In any reference-counting garbage collector, every object is equipped with a reference-

counting field, which the collector uses to store a count of references to the object. Although

we are only concerned with references from the garbage collected heap, every object still

needs to be augmented to include such a field.

We can elect to search for a contiguous collection of spare, unused bits in each

object header and use them to store the reference count of the object. However, there is

no guarantee that we are able to find enough bits for that purpose. Moreover, even though

82

we may be able to find enough bits in the object layout of a particular implementation

of a language to store the object’s reference count, different implementations of the same

language may lay out objects differently making it difficult to find the same set of bits at

the same location in every layout.

We decide to extend the object layout by installing a reference-counting field at the

same offset in the object header. This approach increases the storage overhead of an object

by the size of the reference-counting field. This is not terrible since we are only using four

bits to store the reference count. Additionally, the fact that the reference count is at a fixed

offset in the object header makes it very accessible. In Java every object is derived from

java.lang.Object. Thus, installing the reference counting field in the java.lang.Object

class fixes its position in every Java object and makes it uniformly accessible to the collector.

4.8.2 Buffer representation

There are many possibilities for buffer representation in implementing LPC-style collectors.

The pseudocode in the original papers [57, 58] suggest a set data structure. The performance

of the write barrier is affected by the selection of a buffer representation, as is the method

with which the collector swaps buffers with mutators.

We choose to represent buffers as per-thread arrays of log entries. We maintain

two such arrays for each mutator, used alternately in collections: while the mutator logs

entries in one array, the collector operates on the other. During the first handshake of

a collection, the mutator is instructed to switch to the other array and the collector is

guaranteed exclusive access to the previous. In this way, buffer-swapping is a constant-time

operation, just a few pointer manipulations. The avoidance of mutator blocking is discussed

in Section 4.8.5.

83

4.8.3 Maintaining dirty flags

We consider two possible ways to store dirty flags for pointers in objects. As discussed in

earlier sections, implementations of DDC must reserve one bit to store the dirty flag for

each pointer (in an object); implementations of DDC-2 must reserve two bits.

Store dirty bits in pointers

Pointers to Java objects are typically word-aligned, so on 32-bit systems the lower two

bits of a pointer are effectively unused (they are always zero). These two bits can be

used for storing two dirty bits for a DDC-2 implementation or one dirty bit for a DDC

implementation.

This approach has several advantages. There is no object size overhead for dirty

flags, and the dirty flags for a given pointer are easy to find. Their placement does not

depend on the pointer to the top of the containing object or the containing object’s type.

However, where hardware support does not exist, the compiler must arrange to mask out

these bits on every pointer dereference and every pointer comparison. This is a constant-

time operation, but it increases code size and degrades performance due to the large number

of such operations. In systems with specialized memory addressing hardware that automat-

ically masks out some parts of dereferenced pointers, this is an ideal approach to storing

dirty flags.

Store dirty words in objects

Dirty flags could be placed in an associated data structure and objects could point to them.

This correspondence would necessarily be one-to-one, and would require the overhead of at

least one additional pointer per object. We find this unsatisfactory, though we admit that

such an implementation might be simpler than the one we present. We do not consider that

approach further in this dissertation.

84

The approach we used in our implementation stores dirty flags elsewhere in the

object. We pack 32 bits of dirty flags into a dirty word and distribute such words through-

out objects as necessary. For DDC implementations, each dirty word stores dirty flags

for 32 pointers while for DDC-2 implementations, each dirty word stores dirty flags for

16 pointers.

There are severe constraints on the placement of dirty words. Type substitution in

object-oriented languages (using a pointer-to-B as if it were a pointer-to-A, where B is a

subclass of A) requires that the runtime memory layout of a subclass contains, as a prefix,

a valid object of superclass type. Strictly speaking, this object “prefixing” is not necessary

for type substitution; indeed, in the presence of multiple inheritance (in languages that

support it), another approach is necessary, involving adjustment of the this pointer by a

statically-known offset. However, in Java implementations, and for the first inherited type

in languages supporting multiple-inheritance, the method of object prefixing described is

generally used. Therefore, once a dirty word is allocated for a class, that word must exist

at the same offset in all subclasses.

If we limit ourselves to solutions with as few extraneous, unused bits of dirty-field

information as possible (“leftovers” from the final dirty word), this can be achieved in one of

two reasonable ways. First, we could place dirty words above the object pointer as depicted

in Figure 4.19: object fields are laid out as usual, with superclass fields appearing first;

dirty words are laid out at negative offsets from the object base pointer, with superclass

dirty words appearing closer to the base and subclass fields appearing at lower addresses.

This is an attractive solution. It is simple, and maintains compatibility with traditional

object layout schemes.

But the approach has two drawbacks. First, a pointer is separated by some distance

from its associated dirty word. They almost certainly sit on a different cache line, and may

even reside on different pages (if the allocator carelessly allocates such objects). Further,

such a layout complicates some implementations of object-oriented languages (especially

85

Figure 4.19: Placement of dirty words above object pointer. Layout of an object of type B is shown
(which derives from type A). The A-part of the object is laid out first, with positive offsets for fields and

negative offsets for dirty words. Then the B-part of the object is laid out.

implementations of multiple-inheritance languages like C++) in which information of vary-

ing length is already laid out above the object pointer, depending on the type of the object

or the kind of type inheritance employed.

Another approach is to sprinkle dirty words among the fields of the object as depicted

in Figure 4.20. In this approach, dirty flags are placed in a dirty word that appears before

all fields for which it contains dirty flags. Whereas for a DDC implementation a dirty word

has dirty flags for the next 32 fields of pointer type, for a DDC-2 implementation a dirty

word contains dirty flags for the next 16 fields of pointer type. Unused portions of dirty

words in superclass layouts are used for subclass fields of pointer type before new dirty

words are allocated. The first dirty word of each object is actually only partially used for

storing dirty flags. The 4 right most bits accommodate the object’s reference counting field.

Thus, the first (partial) dirty word holds dirty flags for the next 28 fields of pointer type in

DDC implementations, or 14 fields in the case of DDC-2.

Sprinkling dirty words, as needed, among the fields of an object is an excellent

approach for storing dirty flags in objects. However, this approach is not ideal for arrays.

86

Figure 4.20: Placement of dirty words among the fields of an object. Layout of an object of type B is
shown (which derives from type A). Each part of the object is laid out in turn, with a dirty word injected

for every 16 or 32 fields of pointer type.

In an array, the fields or elements are laid out and indexed in a natural way such that the

next element appears at the next entry or slot (and index) of the array. Sprinkling dirty

words among the elements of the array interferes with this natural layout and complicates

the easy access of array elements.

What we do instead is store dirty words at negative offsets, above the top of the array,

as described above for objects. Although this approach has some drawbacks, as identified

above, it seems to be a more natural way to lay out the dirty words in arrays. Accessing

dirty flags would involve computing the (negative) offset of the dirty word associated with

an element and accessing the relevant dirty bit(s) in that dirty word.

4.8.4 Pointer modifications in log entries

The LPC algorithm represents each buffer entry produced by the write barrier as a pair

〈ptr , oldvalue〉. However, indicating the pointer of interest requires extra information when

its dirty flag is not contained in the pointer itself (or at a fixed offset for all pointers). In par-

ticular, buffer entries in our implementation are given as a 4-tuple 〈ptr , dirty word , dirty bit ,

oldvalue〉. The dirty word associated with a pointer must be indicated. The relevant dirty

bit(s) for the pointer in that dirty word must also be indicated.

87

This approach has the effect of doubling the size of each buffer entry. Although this

buffer overhead seems a bit much for a pointer update, it is not too costly as buffer space

is recycled between collections. One way to keep buffer overhead low is to use the pair

〈ptr , oldvalue〉 as Levanoni and Petrank [58, 57] did. But doing so would require storing

dirty flags in the unused bits in the pointers themselves, an approach that is potentially

more expensive for architectures without specialized hardware support for masking out dirty

bits, as noted in Section 4.8.3.

4.8.5 Non-blocking write barrier and handshaking mechanism

Much care must be taken in data structure selection and development of the write barrier.

The write barrier must be safe, yet non-blocking.

In our implementation, the write barrier does not perform any locking, and the

collector may perform operations in parallel. Some of these operations, during handshakes,

are unsafe and may lead to the collector having an incorrect view of the mutator’s state.

This unsafety, however, is rare, and more pertinently, it is detectable in the collector. When

detected, the collector is able to undo and repeat the handshake until a safe handshake is

performed. Mutators never loop in our write barrier implementation, and such collector

performance degradation will generally be invisible to the mutators. They may in certain

circumstances observe a longer collection phase and thus, a longer time before they are

provided a clean buffer.

Such unsafety is not addressed in LPC, as generally a mutator is not permitted to

execute the write barrier while the collector is performing a handshake with it. In fact, the

mutator’s execution is suspended entirely. The write barrier in LPC is CP-code, so the mu-

tator suspension is prohibited from occurring in the write barrier. This causes the collector

to block; the mutator then blocks when it exits the write barrier. Our design eliminates

mutator blocking, but effectively causes the collector to block until a safe handshake can

88

be performed. In our implementation, we have removed the overhead of scheduling deci-

sions, and even that of unnecessary system calls. What we provide is a primitive try-retry

mechanism that effectively takes the place of a heavier lock.

4.8.6 Root scanning

When the reference count of an object gets to zero, that object becomes a candidate for

collection. If such an object is not a root object, as described in Section 4.3, before it is

actually collected the mutator stacks and data segment (including registers) must first be

scanned for references to it. Such an object is only collected when there are no references

to it.

Scanning data segment

The data segment contains global variables, register information, and other information

global to the application. The collector determines (once) the start and end of the data

segment and conservatively scans that segment (once per collection) for pointers to Java

objects. We use the concept “conservative” in the sense that the runtime system conserva-

tively determines pointer. The compiler is privy to type information and is easily able to

differentiate pointers from non-pointers; however, the runtime system is ignorant of such

information. Consequently, the runtime system treats any entry in the data segment that

looks like a pointer as a pointer. More specifically, if the least significant two bits of a data

segment entry are zero and the entry either falls within the heap address range or looks like

the address of a large object, then it is treated as a pointer to a Java object.

Most Java objects are typically allocated in the garbage collected heap although very

large objects, including large arrays, are treated differently. Such objects are stored in a

large object space, separate from the heap.

89

Scanning mutator stack

Each mutator is equipped with a local stack in which it stores local variables for methods

or functions it executes. Each function’s local data are stored in the stack frame associated

with that function. Frames on mutator stacks may contain references to heap objects or

objects allocated in the large object space. Consequently, each mutator’s stack must be

scanned once per collection for such references. Several approaches can be used to scan

these stacks.

One approach to stack scanning involves suspending each mutator in turn, as in a

handshake, and having the collector scan the stack of the suspended mutator. This ap-

proach would require making scheduling decisions on when to suspend and resume each

mutator, issuing system calls to actually suspend and resume each mutator, preserving pro-

cessor affinity for each mutator, and potentially swapping out mutators from their preferred

processors so the collector can steal cycles from them to scan their stack. Mutators would

have to be swapped back in, of course, when the collector is through scanning their stacks.

Alternatively, the collector could run on its own processor while it scans mutator stacks;

however, mutators would be idle while their stacks are being scanned.

Another approach is to allow each mutator to incrementally scan its stack each time

it executes a function and to keep track of the stack frame associated with each function

call. That method, which at face value appears to have good real-time characteristics,

would incur unnecessary overhead since the stack grows and shrinks as mutators execute

and return from functions. Procedures would take longer to execute and a lot of unnecessary

scanning would be done.

The approach we use in our implementation is to allow mutators to execute as usual

and to allow the collector to signal them to scan their own stack exactly at the point where

stack scanning is needed. Although the collector effectively steals cycles from each mutator,

no mutator is ever suspended and the mutator is shielded from what is actually happening.

The approach seems complicated but it is easily implemented using signals.

90

4.9 Experimentation

In this section we report measurements we collected from running an instrumented collector

that generates statistics for measurable features of interest. Our primary instrumentation

goal was to study the behavior of the write barrier and the handshaking mechanism. To

achieve realistic results, we compiled the collector with its internal debugging turned off

(not to be confused with the debugging done by GCC) and various flags that tell the

collector to generate statistics turned on. That way, executions are realistic and desired

statistics are still generated. We used two Java programs, namely SortNumbers [37], and

SimpleThreads [86] to benchmark the collector.

SortNumbers This single threaded application demonstrates how to sort numbers using

selection sort.

SimpleThreads This application illustrates the interactions between two threads. The

main thread is common to every Java application. It creates and starts a new thread

(the child thread) then waits for it to complete its assigned task (in this case the child

thread prints an array of strings to the screen, one at a time). If the child thread

takes too long to complete its task, the main thread interrupts it.

4.9.1 Configuration and compilation

The experiments were performed on a Dell Precision 530 workstation with the following

system specification:

• Processor: Two physical Xeon 2.4 GHz CPUs with Intel’s hyper-threading that sup-

ports two threads per CPU.

• Memory: 512MB physical memory and 2GB of swap space.

• Operating System: Debian distribution with Linux kernel 2.6.

• Heap: The heap size specified for each run of the benchmarks is 32MB.

91

• Clock: The exact clock tick as reported in /proc/cpuinfo) is 2392.791 MHz. This is

equivalent to 0.418 ms (milliseconds) per tick.

We configured GCC (and GCJ version 4.1.0) for compilation with the following

options.

> home/gcc-repo/configure --prefix=home/gcc-prefix

--enable-languages=c,c++,java

This tells the build process to build compilers for the C, C++ and Java programming

languages and to store the binaries in home/gcc-prefix. To build the binaries we run the

following two commands.

> make BOOT_FLAGS=’-g -O0’ CFLAGS_FOR_TARGET=’-g -O0’

CXXFLAGS_FOR_TARGET=’-g -O0’ GCJFLAGS=’-g -O0’

> make BOOT_FLAGS=’-g -O0’ CFLAGS_FOR_TARGET=’-g -O0’

CXXFLAGS_FOR_TARGET=’-g -O0’ GCJFLAGS=’-g -O0’ install

The ’-g -O0’ options are to build with debugging turned on and with optimization turned

off. This is important since enabling various optimizations can make it difficult to follow

exactly how the collector is working.

To compile and execute programs with a version of GCJ that uses our collector as

the sole garbage collector, we run the following commands.

> setenv LD_LIBRARY_PATH home/gcc-prefix/lib/

> home/gcc-prefix/bin/gcj --main=SimpleThreads -o SimpleThreads

SimpleThreads.java

> ./SimpleThreads 4 -ms=32MB

The first command sets the LD LIBRARY PATH environment variable to the directory where

the dynamic linker can find the standard Java libraries. This command needs to be executed

92

once. The second command compiles the SimpleThreads program and the third command

executes it. For our experiments we run each program more than once with different

parameters.

4.9.2 Collector Overhead

We used our implementation of DDC to investigate the overhead associated with our col-

lector. To estimate such overhead, we ran the SortNumbers application on the Dell system

100 times with and 100 times without our collector. For each run of SortNumbers, 1000

randomly generated doubles were sorted and the results were printed on the screen. We

used the UNIX command /usr/bin/time to time the executions. The results from this

experiment are given in Figure 4.21.

Without DDC collector With DDC collector overhead % overhead
Time (s) 15.91 16.91 1 6.29

Figure 4.21: Overhead for executing SortNumbers 100 times with and without our collector.

The overhead associated with the DDC collector seems small. From the experiments

described above it is only 6.29 %. This is low considering the amount of work performed

during garbage collection. This low overhead may be atributed to the observation that the

Dell computer’s configuration is ideal for the number of threads present in the SortNum-

bers application and the collector—the Dell system has two physical processors and the

application and the collector together have a total two of threads.

To gain insight into the overhead distribution in the DDC collector, we used the x86

assembly language instruction rdtsc to count the number of clock ticks for each collector

operation we desired to measure, namely the write barrier and the handshaking mecha-

nism. Each clock tick measures 0.418 ms. Figure 4.22 records the measurement for DDC’s

overhead distribution.

93

clock tick count Time (µs) Time (s) % overhead
Handshake Time 205332 85.813 8.581 * 10−5 0.009 %
Write Barrier Time (logging) 1082804796 452527.946 0.453 45.253 %
Write Barrier Time (no logging) 403531284 168644.601 0169 16.865 %

Figure 4.22: Overhead distribution for DDC when executing SortNumbers 100 times with the collector
enabled. The figure gives total time for each operation for the 100 runs of the application.

As illustrated in Figure 4.22, there is a significant difference between the handshake

overhead and the write barrier overhead. Even between the two paths through the write

barrier (see Section 4.3) there is much difference between overhead values. To better un-

derstand why the difference between these overheads is so significant, we performed further

experiments and analyzed their results below, in Section 4.9.3.

Notice also from Figure 4.22 that 37.873 % of overhead is not accounted for. This

overhead is distributed among the other operations of the collector. We do not explore the

exact distribution of this 37.873 % overhead further because the other operations of the

collector are not the main contribution of this research. The main contributions of this

research are the non-blocking write barrier and handshaking mechanism.

4.9.3 Investigation of Overhead

To better understand the distribution of the overhead associated with the DDC collector,

we performed further experiments. In particular, we ran the SortNumbers application (as

described above) 100,000 times and for each run we timed and counted the number of

handshakes and write barrier executions for each path through the write barrier. We also

ran the same experiments with the SimpleThreads application to help us determine whether

the overhead distribution differs when multiple threads are involved. Here, we report and

analyze the results of these experiments. Additional results are provided in Appendix A.

We compare the mean time per handshake with the mean time per write barrier

execution for each path through the write barrier to determine whether such comparison

accounts for the difference in overhead distribution. We compute the time per operation

94

by counting the number of executions of each operation, measuring the total time spent

in each operation, and dividing the total time by the count. Figure 4.23 summarizes our

results.

Figure 4.23: Average time cost for an operation, observed for the 100,000 runs of the application when
the collector is enabled and the operation is executed.

In both Figure 4.23 and Figure A.1 we observe that for each application, the average

time for the non-logging path through the write barrier is smaller than the same for the

logging path, as expected. We also observed that the number of mutators (one for Sort-

Numbers and two for SimpleThreads) does not affect the time spent in a write barrier path.

Minimum write barrier times depicted in Figure A.5, in Appendix A seem to support these

results.

95

The non-blocking write barrier and handshaking mechanism described in Section

4.8.5 pay dividends, as evidenced by Figure 4.23 and Figure A.1. The handshake runs

as fast as the write barrier and neither the collector nor the mutators block. The fast

handshakes can be attributed to two reasons. First, mutators are never suspended or

blocked when executing in the write barrier. Such blocking can be expensive if system calls

are made to suspend and resume mutators. Blocked mutators also fail to make progress and

throughput suffers. The other reason that the handshake is fast is that the collector does

not use any heavy locks or other heavy synchronization mechanism to perform a handshake.

Instead, the collector uses a try-retry mechanism that effectively takes the place of a heavier

lock. Although the collector may momentarily block on a handshake, we did not observe

such blocking in our experiments. Levanoni and Petrank [58, 57] noted that the write

barrier execution is fast. Experimental results from our implementation suggest that the

handshaking mechanism can be just as fast.

Since the average (and minimum) time overhead for a handshake is comparable to the

average (and minimum) time overhead for a path through the write barrier, we calculated

the standard deviation of the time overhead for each operation to determine how spread out

these overhead values are. Figure 4.24 and Figure A.2 summarize this statistic. These figures

illustrate that for each application, the non-logging path through write barrier is the most

variable1 path through the garbage collector while the handshake is the least variable path,

as expected. Although we expected the handshaking path through the garbage collector

to be the least variable (since the collector never blocked in the experiments), we were

surprised that the logging path through the write barrier was less variable than the non-

logging path. The logging path incurs more memory traffic than the non-logging path

since data is buffered on behalf of the garbage collector. Memory reads and writes can

be expensive, especially in the presence of page faults and cache inconsistency. Further

investigation is required to determine why the non-logging path through the write barrier

is more variable than the logging path.
1By variable we mean the overhead values are spread out.

96

Figure 4.24: Standard deviation of the time cost for an operation, observed for the 100,000 runs of the
application when the collector is enabled and the operation is executed.

In Section 4.9.2 we noted that there was a noticeable difference between the overhead

distribution among the two write barrier paths and the handshake, but we did not know

why. We conducted more experiments to help us appreciate the overhead distribution. We

compared per-handshake overhead with per-write-barrier overhead and concluded that the

per-handshake overhead is comparable to the per-write-barrier overhead. The non-logging

path through the write barrier is faster than the logging path, as expected. So the question

remains: why the difference in overhead distribution so significant? To answer this question,

we counted the number of times each operation was executed during the 100,000 runs of

each application. The results are summarized in Figure 4.25 and Figure A.3. These figures

illustrate that there are about four orders of magnitude more write barrier executions when

97

Figure 4.25: Total count of the number of times each operation executed, observed for the 100,000 runs
of the application when the collector is enabled and the operation is executed.

the logging path is taken compared to handshake executions and at least three orders of

magnitude more write barrier executions when the non-logging path is taken compared to

handshake executions. The number of write barrier executions when the logging path is

taken is also larger than the number of write barrier executions when the non-logging path

is taken. These numbers account for the disparity between write barrier and handshake

overhead presented in Section 4.9.2.

4.9.4 Comparing DDC with LPC

The write barrier of DDC and the write barrier of LPC are very similar. The only difference

between these write barriers concerns dirty flag updating. In DDC one of two dirty flags is

98

updated, whereas in LPC only one dirty flag is ever updated. Consequently, the overhead

associated with the write barrier execution in DDC is comparable with the same in LPC.

To compare the handshaking mechanism of the two collectors, we need to estimate

the cost of executing a handshake in LPC. During a handshake in LPC e.g., handshake

one, the collector suspends each mutator in turn, copies its buffered entries to a global

consolidated history buffer, and resumes the mutator. During a handshake in DDC the

collector swaps out each mutator’s buffer and swaps in a new buffer without suspending the

mutator. In order to use DDC’s handshakes to estimate LPC’s average handshake overhead

we multiply DDC’s minimum handshake overhead by the number of write barrier executions

when the logging path is taken and divide that product by the number of handshakes.

This works out to be 711.27 µs for the SortNumbers application and 714.36 µs for the

SimpleThreads application — three orders of magnitude difference between the collectors

in each case. Figure 4.26 gives more details.

Clock Tick Count
DDC’s Handshake LPC’s Handshake

AVG Time - SortNumbers 786.9382466 1701920.629
AVG Time - SimpleThreads 764.2954444 1709303.41

Wall Clock Time (µs)
AVG Time - SortNumbers 0.328878806 711.27
AVG Time - SimpleThreads 0.319415881 714.36

Figure 4.26: Comparison of LPC’s average handshake time (per handshake) with DDC’s average
handshake time, observed for the 100,000 runs of the application when the collector is enabled and the

handshake mechanism is used.

Figure 4.26 illustrates that the handshaking mechanism in LPC is at least three

orders of magnitude more costly than the similar mechanism in DDC although these costs

do not factor in overhead associated with mutator suspension and resumption (mutator

blocking). DDC uses two handshakes while LPC uses four. This, combined with the

observation that the write barrier cost for the collectors is comparable results in a shorter

per-collection time for DDC relative to LPC. Moreover, the short handshakes, the non-

mutator-blocking write barrier and handshaking mechanism, and the fewer handshakes push

99

DDC in the direction of designing, implementing, and deploying multiprocessor real-time

garbage collectors.

4.10 Related work

The notion of reference-counting garbage collection dates back to the early nineteen-sixties

when Collins [26] developed a method for the erasure of lists in LISP programs. Since its

inception, reference counting has been adopted by several systems: examples include early

versions of Smalltalk [42] and InterLisp; Modula 2+ [30]; SISAL [19]; and the Unix utilities

awk [1] and perl [90].

4.10.1 Deferred Reference Counting

The overhead incurred in adjusting reference counts is high, even though the cost of ref-

erence counting may be amortized over the entire computation [53]. This makes reference

counting a less attractive option for memory management than a tracing collection [46]. To

reduce reference-counting overhead and make reference counting a more attractive memory

management option, Deferred Reference Counting (DRC) was introduced [31]. The

idea behind DRC is based on the observation that most reference count adjustments are

due to stores in local pointers (in stacks and registers). Keeping account of such pointers

is very expensive and is not necessary for the correctness of the reference counting algo-

rithm. Instead of keeping account of all such pointers, DRC was invented to keep account

of pointers only in the heap. The resulting reference count is denoted heap reference count.

Prior to the introduction of DRC, objects were collected as soon as their reference

counts dropped to zero. In DRC, objects are not collected in such fashion. Instead, objects

with zero reference counts are placed in a Zero Count Table (ZCT) that is recycled

periodically. Typically, objects in a ZCT are collected at the end of a collection if there are

no local pointers to them. If an object in a ZCT receives a reference from a heap object, its

100

reference count is incremented and it is removed from the ZCT. The collectors we discussed

in this chapter employ DRC.

4.10.2 Limited-field Reference Counting

Another notable contribution to the reference-counting algorithm is the notion of limited-

field reference counting. The idea is based on the observation that reference counting grows

every object by a field large enough to hold the maximum number of potential references

to it. In theory that field can be as large as a pointer. Thus, the space overhead can be

significant for small objects. To minimize this overhead, limited-field reference counting is

employed. This technique suggests the use of a few bits (one or more) in the object header

to store its reference counting field. If the reference counting field overflows, a tracing

collector or some other algorithm is used to restore it.

More radically, researchers have suggested restricting the reference-counting field to a

single bit [96, 82, 24, 95]. The reference-counting bit simply determines whether an object

is shared or unique [53]. The goals of One-bit Reference Counting are to delay garbage

collection as long as possible and to reduce the storage overhead of reference-counting

garbage collection to that of the mark-sweep algorithm.

The collectors described in this chapter are not One-bit Reference Counting Collec-

tors, but limited-field reference counting collectors. Four bits are used to hold reference

counts in the family of DDC collectors.

4.10.3 Multi-threaded Multiprocessor Reference Counting

When Collins [26] designed the classical reference-counting collector, he designed it to work

on systems that were available at the time, i.e., uniprocessor systems. In the last few

decades multiprocessor systems have proliferated. As such, garbage collection techniques

including reference-counting techniques have been developed to leverage such systems.

101

Concurrent Collection

Once class of garbage collection techniques that comes to mind is the class of concurrent

garbage collectors (see Section 1.2). Since the list of such collectors is long we refer the

reader to a few [81, 4, 30, 32, 71]. These collectors execute in parallel with mutators, for

the most part, and perform best in multi-threaded environments. One shortcoming of such

collectors, though, is that there is a period (usually at the beginning or end of a collection)

during which they suspend all mutators at roughly the same time to compute a snapshot

of the heap. Even though in most cases a snapshot of just the interesting portions of the

heap is computed, scalability becomes an issue as the number of mutators increases.

On-the-fly Collection

To overcome the drawbacks of concurrent collectors, on-the-fly collection [7, 11, 58, 57] was

proposed. Section 1.2 provides a description of on-the-fly collectors. The class of DDC

collectors discussed in this chapter is based on LPC [58], which uses the notion of a sliding

view (see Section 2.2.2) instead of a snapshot. The improvements offered by the DDC

collectors were noted in previous sections and are reflected in the conclusions.

102

Chapter 5

Taxonomy of Garbage Collectors

hapters 1 and 2 gave an overview of the contributions made by the garbageC collection community to the field of memory management, especially dy-

namic memory management. The proliferation of dynamic memory man-

agement was also highlighted. Moreover, mention was made of the current and future trend

in dynamic memory management—a trend toward concurrency. A brief history of garbage

collection exposes the motivation of our predecessors and puts our work in context; we now

present a taxonomy of garbage collectors.

5.1 Introduction

Researchers have performed tremendous work on designing, implementing, and evaluating

garbage collection algorithms. Their work is essential since it produces tools that automate

the reclamation of objects when they are no longer reachable in a program. Those tools

save developers time and effort in addressing memory management issues explicitly. Memory

management is a complex and delicate process that requires expertise and careful attention.

In addition to designing, implementing, and evaluating garbage collection algorithms,

researchers produce bibliographies, comparisons, surveys, and reviews of garbage collec-

tors [93, 94, 53, 52]. While these contributions are noteworthy, little or no work has gone

103

into producing a taxonomy of garbage collectors. Producing such a taxonomy can serve as

a tool to help developers determine the most appropriate collectors for their applications.

They only need to be aware of certain features of their applications in order to decide which

collectors are most appropriate for those applications. Examples of such features include

allocation behavior, degree of computation, presence of cyclic data structures, longevity of

objects’ liveness (or object mortality rate), and curspace. Each of these application features

plays a role in determining the most appropriate garbage collector for managing the mem-

ory of an application. The idea of curspace is not prevalent in the literature; thus, we first

give a formal definition for curspace.

5.1.1 Curspace

Curspace refers to the number of bytes occupied by live objects at a point in time t,

starttime ≤ t < endtime, where starttime is the time the program starts executing and

endtime is the time the program stops executing. Curspace increases over time with object

allocation and decreases with object mortality. Some collectors are not adversely affected

by curspace, but certain collectors experience degraded performance as curspace increases.

That effect can be costly for embedded systems since their memory footprint is limited.

Curspace is by definition a number of bytes; as such, curspace at time t, curt, can

be measured by

curt =
nt∑
i=1

sizeof(objt,i)

where nt is the number of live objects in the system at time t and objt,i represents the ith

such object.

Although a collector cannot explicitly control the curspace in an application, a small

curspace facilitates garbage collection. Unless an application allocates an excessive number

of large objects (which is unlikely) a large value of curspace implies a large number of live

objects. Tracing collectors, or collectors with complexities proportional to the number of

104

live objects are seriously impacted by a large curspace. Such collectors incur increased time

overhead and reduced throughput since tracing a large number of live objects can be costly.

5.2 Taxonomy category list

We present a taxonomy of garbage collectors, GC-Tax, with the following categories. Al-

though this list is not exhaustive, it captures many of the concerns shared by the garbage

collection and software development communities.

5.2.1 Incrementality

A garbage collector displays incrementality if it performs garbage collection in small incre-

ments of time, between which it is suspended so the mutator can progress. Incrementality

calls for an interleaving between mutator and collector executions. Each is expected to

make progress during the time quantum in which it executes.

Another perspective on incrementality is the idea that the mutator does work on

behalf of the collector when it executes. After some prescribed condition is met the collector

takes over and completes the collection work in small increments of time.

Yet another perspective on incrementality is the notion that collection work is de-

ferred until some time t when the collector performs collection in small increments of time.

Prior to t the collector may negotiate with the mutator to have the mutator do work on its

behalf. While these perspectives appear different to a certain extent, the common theme

that ties them together is that collection work is done in small increments of time between

which the mutator experiences progress. This theme is what makes a collector incremental.

Incrementality may be good for real-time systems if garbage collection increments can be

bounded and a real-time system can budget for garbage collection. However, if the incre-

ments are too short, they may need to be very frequent to keep up with storage demands.

To measure the incrementality of a collection or the average incrementality of n

collections for a given run of an application when the collector is managing its memory, we

105

provide the metrics

inci =
ci

ti

inc =

∑n
i=1

ci
ti

n

where ci is the number of garbage collection increments in collection i, and ti is the time to

complete collection i. ti includes mutator time when the mutator and collector interleave

their execution. However, when the mutator monopolizes the CPU for an extended amount

of time, such mutator time is not included in the computation of ti. In the metrics above, we

have illustrated how to compute absolute and average values of incrementality. Minimum

or maximum values of incrementality can also be computed by sorting the values of inci,

where 1 ≤ i ≤ n, and the collector is used to manage memory for a complete run of an

application.

Observation of the incrementality metrics reveals that they are biased toward col-

lectors that execute a number of collections in cycles (like LPC and the DDC family of

collectors). Careful examination suggests that they can easily be adapted to suit other

collectors. For example, consider the metrics

Inc =
c

t

Inc =
∑N

i=1
c
t

N

In this case Inc, c and t are not per-collection parameters but parameters for the entire run

of the collector. N denotes the number of such executions of the collector. High measures

of incrementality are desirable for incremental collectors.

5.2.2 Immediacy

If storage is reclaimed immediately as a heap object becomes garbage, the underlying

garbage collector exhibits excellent immediacy of garbage collection. Not all collectors

106

reclaim storage immediately; instead, some collectors postpone garbage collection until

some preset condition is met. Such collectors trigger garbage collection in either a work-

based fashion, a time-based fashion, or an exception-based fashion. Work-based triggering

of garbage collection refers to postponing collection until a preset fraction of the heap

is consumed. Time-based triggering of garbage collection, on the other hand, refers to

postponing collection until the mutator has been running for a certain amount of time.

Exception-based triggering of garbage collection allows the collector to wait until a par-

ticular exception occurs, e.g., out of memory exception, before the collector attempts to

reclaim storage. Applications that take advantage of recycled storage benefit significantly

from garbage collectors that collect garbage immediately. Embedded systems also benefit

from immediacy of garbage reclamation—they use small memory footprints.

In his master’s thesis, Hampton [43] defined Rot-Time as “the amount of time that

passes between the point in the program at which an object is no longer reachable and

the point at which the garbage collector is able to collect the object”. Although he uses

the concept of Rot-Time in his thesis, Hampton is actually defining immediacy of garbage

collection. We adopt his definition of Rot-Time as the standard definition of immediacy.

Immediacy can be measured in wall clock time or processor clock cycles. If Immj denotes

the measure of immediacy for object j then the measure of the average immediacy for m

objects is given as

Imm =

∑m
j=1 Immj

m

where m is the total number of objects collected by the collector. Maximum or minimum

values for the measure of immediacy can be computed by considering the values of Immj

where 1 ≤ j ≤ m and the collector is used to manage memory for a complete run of

an application. Applications in which objects must be finalized before they are actually

reclaimed may benefit from small measures of immediacy. Such objects hold on to system

resources until they are finalized. If they are known to be garbage soon after they become

such, they can run their finalizer methods and release system resources.

107

5.2.3 Pause time

On a uniprocessor system, only one mutator executes at a time. The collector cannot

execute while the mutator is executing, and vice versa. The pause time on such systems is a

measure of the interval during which the mutator is suspended so the collector can execute.

This notion of pause time also extends to multi-threaded, multiprocessor environments

where an entire application may be suspended if the collector needs to compute a snapshot

of the heap.

For on-the-fly or concurrent collectors, the notion of pause time is a per-mutator

pause time. Such pause time corresponds to the interval during which the collector suspends

a mutator to perform some transaction with it. Regardless of processor architecture, short

pause times benefit interactive systems, distributed systems, and real-time systems. The

exact benefits vary by application domain.

Like immediacy (Section 5.2.2) pause time can be measured in either wall clock

time or processor clock cycles. Given that pti denotes the measure of pause time i, where

1 ≤ i ≤ n and n represents the total number of pause times, the mean pause time is given

as

pt =
∑n

i=1 pti
n

The minimum pause time is given as the minimum pti while the maximum pause time is

given as the maximum pti. Real-time systems are concerned with budgeting for worst-case

execution. Consequently, the pause time of interest to such systems is the maximum pause

time in a given run of the system. Real-time systems require small, provably bounded,

maximum pause times.

5.2.4 Completeness

All dead storage is collected eventually by any complete collector. A complete collector may

reclaim all garbage during a single collection or it may require multiple collections. Objects

that die or become garbage after a collection starts are usually not detected until the next

108

collection. Such objects require at least one more collection for them to be detected so they

can eventually be collected. These objects become floating garbage and remain in the system

until they are collected. The number of collections needed to guarantee reclamation of an

object depends on the collector. While that observation is noteworthy, not all collectors

are complete. Incomplete collectors are unable to reclaim some objects regardless of the

number of collections they execute. Such collectors are sometimes bundled with a complete

collector that executes occasionally to reclaim floating garbage. In environments where

pointer determination is conservative, e.g., the Boehm collector [14] managing memory for

a C program, the garbage collector is incomplete.

To measure a collector’s completeness we need to be able to measure the amount of

garbage gs (in bytes) in the system and the amount of garbage gc detected and eventually

collected by the collector. Immediacy is not included in the measure of completeness. The

ratio

comp =
gc

gs
∗ 100%

gives the completeness of the collector. This ratio allows us to reason more thoroughly about

the completeness of collectors. To compute the mean, maximum, or minimum completeness

of a collector, an application that uses the collector to manage its memory must be run n

times; for each run the completeness of the collector is computed. These values should then

be used to determine the mean, maximum, or minumum completeness of the collector. A

high degree of completeness is good for the collector.

Systems that benefit most from high completeness are systems with small memory

footprint, like embedded systems. Real-time systems may also benefit from high complete-

ness since fulfilling real-time guarantees require careful management of limited resources,

including memory.

109

5.2.5 Overhead

While garbage collection alleviates software engineering concerns, it is not free. There are

time and storage costs associated with garbage collection. Some collectors are optimized

for time while others are optimized for storage. The most cost-effective collector is opti-

mized for both time and storage. A collector optimized for time may incur unnecessary

storage overhead and vice versa, but a collector optimized for both time and storage tries

to minimize both types of overhead.

To measure the time overhead oht of a collector we use the expression

oht =
totwc − totnc

totnc

where totnc denotes the total time it takes an application (with a given input) to execute

without the garbage collector and totwc denotes the total time it takes the application

to execute (with the same input) with the garbage collector. To measure totnc garbage

collection must be turned off and the application must run with a heap large enough to

not require garbage collection. To measure totwc garbage collection must be turned on and

the heap must be large enough to accommodate maxlive1 and any other storage required

during collection. Storage overhead ohs is computed as

oht =
toswc − tosa

tosa

where toswc is the summation of all storage used during a run of the application when

garbage collection is enabled and tosa is the total number of bytes allocated by the applica-

tion. Real-time systems, distributed systems, and interactive systems benefit significantly

from low time overhead while embedded systems benefit most from low storage overhead.

Other systems may also benefit from low overhead; however, it is not always practical to

minimize both time and storage overhead at the same time.
1maxlive is the maximum live storage in a program at any instant during its execution.

110

5.2.6 Concurrency

A collector is concurrent if it executes in parallel with mutators. Concurrency is different

from incrementality in that concurrency requires multiple processors. Concurrent execution

does not suggest an interleaving of collector and mutator on a shared processor, but the

execution of the two at the same time on separate processors. Whereas some concurrent

collectors suspend all mutators at the same time to compute a snapshot of the heap, others

suspend mutators on an individual basis to perform transactions with them. Perfectly

concurrent collectors would never suspend mutators for any reason. At the time of this

writing we did not know of the existence of any perfectly concurrent collector. Concurrency

in garbage collection, however, is beneficial to multi-threaded, multiprocessor applications.

Appel defined concurrency as the extent to which a collector can do its work in

parallel with the mutator [4]. We extend this definition by defining concurrency as the

extent to which the collector does its work in parallel with any mutator. This definition

gives insight into a metric suitable for measuring concurrency. Concurrency con can be

measured as

con =
totp
totc

where totc is the total time for which the collector executes and totp is the total time for

which the collector runs in parallel with any mutator. The quality of concurrency, which

is the fraction of the total number of mutators the collector executes in parallel with, can

also be measured. Here, we are only concerned with measuring the extent to which the

collector runs in parallel with any mutator. Computing average, maximum, or minimum

concurrency requires multiple runs of the collector for the same application with the same

input. A desirable collector is one with a high measure of concurrency.

5.2.7 Throughput

Howe [49] defined throughput as “The rate at which a processor can work expressed in

instructions per second or jobs per hour or some other unit of performance.” The implication

111

is that for a given application, collectors that achieve high throughput do not slow down

computation. Said otherwise, if the same application is executed on the same system

twice with the only variable being the garbage collector, the collector that achieves the

higher throughput is the one that lowers the total execution time of the application. In

this dissertation we define throughput as the fraction of total execution time consumed

by the application. If the total execution time is consumed by the application then the

throughput is 1 or 100%. If the collector runs for some time and extends the running time

of the application, the fraction of the time during which the collector does not interfere

with the application constitutes the throughput achieved with the collector. Having the

capability to achieve high throughput is usually a desirable feature of a garbage collector.

High throughput means low time overhead and vice versa. As a matter of fact, throughput

and time overhead have an inverse relation to each other. However,

tp =
tota
totwc

serves as a good metric for measuring throughput where tota represents the execution time

consumed by the application when garbage collection is turned on and totwc is defined in

Section 5.2.5. Furthermore,

tota = totwc − (totc − totp)

= totwc − totc + totp

= totwc + totp − totc

Thus, tp can also be rewritten as

tp =
totwc − (totc − totp)

totwc

= 1− totc − totp
totwc

112

As is the case with concurrency, calculating the average, maximum, and minimum through-

put require multiple runs of the collector. High throughput is usually a desirable feature of

a collector.

5.3 Comparing extant collectors with GC-Tax

Each category or garbage collection feature in GC-Tax is measured empirically with the met-

ric defined for that category. Using a uniform hardware and software platform to measure

these metrics for each collector where the same benchmarks and workloads are deployed

would be the most appropriate way to use GC-Tax to compare extant collectors. Unfortu-

nately, we do not have an implementation for most of the collectors we are interested in

comparing. As such, we are not able to instrument the collectors to measure these metrics.

Consequently, our best option is to use a subset of the categories in GC-Tax to do qualitative

comparisons of a few extant collectors including the DDC family of collectors.

We use the lattice Excellent, Very good, Good, Fair, Poor with each garbage collec-

tion feature to compare Collins’s [26] reference counting garbage collection algorithm, Mc-

Carthy’s [61] mark-sweep garbage collection algorithm, the Levanoni and Petrank [58, 57]

on-the-fly reference counting garbage collector, and our family of collectors. Our results are

summarized in Figure 5.1. The following subsections elaborate on the results presented in

Figure 5.1.

Features Reference counting Mark-sweep LPC DDC collectors
Incrementality Very good Poor Fair Fair
Immediacy Very good Poor Good Good
Pause Time Good Poor Very good Very good
Completeness Fair Excellent Fair Fair
Time Overhead Bad Excellent Good Very good
Concurrency Poor Poor Very good Excellent
Throughput Fair Excellent Good Very good

Figure 5.1: Using GC-Tax to compare extant garbage collectors.

113

5.3.1 Comparing collectors with incrementality

When incrementality is high, pause time is usually low. Such is the typical case with the

reference counting collector (RCC). However, when RCC frees large objects or recursively re-

claims objects, both its incrementality and pause time suffer. Several approaches, including

a work-list approach can be used to incrementalize object collection. But incrementalizing

object collection was not a design goal for the original reference counting algorithm.

The mark-sweep collector (MS) is not an incremental collector. MS runs when

memory is not available to satisfy the next allocation request. When MS runs, it suspends

the entire application thereby pausing the application for the duration of its run. MS

touches all live data as it runs. Thus, the application pause can be very long.

LPC and the DDC family of collectors are not incremental collectors in the common

case since they were designed with a multiprocessor environment in mind. However, they

can function as incremental collectors in a uniprocessor environment.

While high incrementality generally means low pause time, high incrementality can

adversely affect time overhead. For every pointer assignment in RCC, two reference count

updates must be done. This can increase memory traffic if updates are done frequently,

thus unnecessarily adding to overhead.

5.3.2 Comparing collectors with immediacy

RCC generally does a very good job at reclaiming objects as soon as they become garbage.

It is a direct approach to garbage collection in the sense that it knows exactly when an

object becomes garbage, as soon as its reference count drops to zero. However, when

objects reference each other such that they form a cycle, RCC cannot reclaim such objects

(because the reference counts for objects in a cycle never get to zero) and its immediacy

suffers.

MS does poorly at immediacy because it does not perform garbage collection unless

there is not enough memory to satisfy the next allocation request. Objects that become

114

garbage before the collector runs remain as garbage in the system for potentially a long

time, thereby consuming memory and increasing storage overhead.

LPC and the DDC family of collectors do reasonably well with immediacy in the

absence of cycles. Since they are reference counting collectors, they suffer the same plight

as RCC. But in the typical case they do almost as well as RCC in the area of immediacy.

The only reason RCC performs slightly better than these collectors is that they reclaim

objects at the end of collections, after they update reference counts in objects.

5.3.3 Comparing collectors with pause time

RCC generally has a short pause time except when collecting large objects or when recur-

sively reclaiming objects. In this and previous sections we noted that RCC can suffer in

certain areas when recursively reclaiming objects, but we have not yet described what it

means to do so. We now elaborate on this phenomenon. When the reference count of an

object gets to zero, before it is collected all its pointers are scanned so the objects to which

they point can have their reference counts decremented. Such reference count updates can

potentially lead to other objects being collected before the initial object is actually collected.

The pause time for MS can be very long. When MS suspends an application for

garbage collection, the application remains paused for the duration of the collection. Since

the duration of garbage collection is unbounded, such pauses are not acceptable in real-time

environments.

In LPC and the DDC collectors pause times are short and relatively infrequent.

They occur a constant number of times during a collection and do not invade application

time.

5.3.4 Comparing collectors with completeness

MS is the only complete collector among the collectors we are comparing. Whenever it

runs it collects every object that becomes garbage before it starts. The other collectors are

115

incomplete collectors because they cannot collect cycles. In applications where cycles are

not prevalent those collectors reclaim most of the garbage.

When benchmarking a collector many researchers use MS as the base collector with

which they compare throughput and completeness. MS is noted as a collector that gives

high throughput and low time overhead. There may be a correlation between completeness

and these other features, though investigation of that issue is left as future work.

5.3.5 Comparing collectors with overhead

Overhead, especially time overhead, has a direct relation to throughput. The greater the

overhead, the longer it takes an application to complete execution; hence, the smaller the

throughput. Garbage collectors that incur a lot of overhead take longer to perform collection

work. As such, they prolong execution time and reduce throughput.

RCC incurs considerable overhead during pointer assignments. Every time a pointer

is updated two reference count updates must be performed. MS incurs little overhead since

it rarely runs and reclaims all objects that become dead before it starts running. The multi-

thread multiprocessor collectors LPC and DDC incur some overhead but pointer updates

are summarized. If a pointer references several objects during the course of a collection,

only reference count updates for the initial object the pointer pointed from and the last

object it points to are required. DDC by design incurs less time overhead than LPC because

it has fewer handshakes.

5.3.6 Comparing collectors with concurrency

High concurrency is a desirable feature of a garbage collector. As a matter of fact, the

current trend in garbage collection technology is toward concurrency. High concurrency

improves mutator utilization of the CPU, decreases pause times, and increases throughput.

These are all desirable features of a modern garbage collector.

116

Among the collectors listed in Figure 5.1 RCC and MS are not concurrent. These

collectors were targeted for uniprocessor environments. LPC and DDC were designed for

multi-thread, multiprocessor targets. As such their level of concurrency is high. Both col-

lectors do well with concurrency; however DDC does better by design for two reasons: DDC

has fewer handshakes and DDC uses a non-mutator-blocking write barrier and handshaking

mechanism.

5.3.7 Comparing collectors with throughput

RCC does not have high throughput because of the time it spends updating reference counts

during pointer assignments. Frequent pointer updates increase memory traffic, consume

time, and reduce overhead. MS incurs less overhead than the other collectors since it runs

infrequently. Moreover, it runs only when it needs to so memory can be reclaimed for the

next allocation.

Both LPC and DDC have high throughput. However, DDC does better than LPC

by design because DDC has fewer handshakes, which are comparable in speed to the write

barrier.

Given an application with certain characteristics, application developers should be

able to use GC-Tax to help them determine which of these collectors would be most suitable

to manage memory for their applications.

117

Chapter 6

Conclusions and future work

his chapter summarizes the research contributions of this dissertation toT the field of memory management. This chapter also suggests ideas for

future research in memory management.

6.1 Research summary

This dissertation presents asymptotic time-complexity analysis for RTSJ scoped-memory

areas and NHRTs. One approach to complexity analysis suggests implementations in RTSJ

for abstract data types like stack and queue and determines asymptotic bounds for their

execution. These results allow us to compare scoped memory with other memory models

and to reason more thoroughly about the differences among those models.

One assumption for this approach considers one element per scope. While we do not

recommend this restriction in practice for efficiency reasons, the analysis holds even when

we allow multiple elements per scope. Consider, for example, a maximum of 4k elements

per scope. Suppose 4k elements are already stored on a queue and another element needs

to be enqueued. Since the current scope has no more available storage to accommodate

the new element a new scope needs to be instantiated. That enqueue operation suffers cost

linear in the number of elements already on the queue.

118

Another approach to providing asymptotic time-complexity analysis for RTSJ scopes

and NHRTs is to migrate extant functional programming language implementations of data

structures to RTSJ. This code migration also allows us to migrate time-complexity analysis

for data structures implemented in a functional programming language to RTSJ. Using this

approach allows us to discover that for certain data structures, runtime complexity analysis

for RTSJ is comparable to runtime complexity analysis for the heap. Moreover, using RTSJ

forces the developer to think more carefully about memory management since RTSJ scopes

can leak an unbounded amount of memory. Our work is the first work to point this out.

Another contribution of this research is the design of a high performance, on-the-fly

referencing garbage collector for Java. Like its predecessor [58], this garbage collector targets

a multi-threaded, multiprocessor environment. It offers low synchronization with mutators,

minimal handshaking, low runtime overhead, high throughput, and high concurrency. To

evaluate our collector we implemented it in the GNU C compiler and used it to manage

memory for selected Java benchmarks. The results support our claims.

The third contribution of this dissertation is the development of a taxonomy of

garbage collectors, called GC-Tax. Prior to this work, garbage collection research has fo-

cused mainly on designing, implementing, and evaluating garbage collectors. Bibliographies,

comparisons, surveys, and reviews of garbage collectors were also done. However, little or

no work was done on producing a taxonomy that unifies the theory of garbage collection.

This dissertation presents a taxonomy that helps to unify the theory of garbage collection

and provides software developers a tool to decide which garbage collectors are most suitable

for their applications.

6.2 Future work

As part of our future work we would like to implement and supply the RTSJ community

with data structure packages that reflect the runtime complexities presented in Chapter 3.

For RTSJ data structure implementations with runtime complexities that are worse than

119

heap implementations, we would like to explore ways to reduce their complexities. To

accomplish this goal, we need to address the memory management issues associated with

data structure implementations. In particular, we need to determine when scopes should be

exited so their storage can be reclaimed. To do this determination, further analysis must be

performed to determine when data are no longer needed. Ideas from the garbage collection

community may be helpful.

In the not-to-distant future we would like to transform our high-performance, on-the-

fly reference counting garbage collector into a real-time garbage collector. To accomplish

this goal we need to bound the number of objects that get collected at the end of each

collection. We would also need to bound or incrementalize mutator stack scanning, global

data segment scanning, and reference count updates. Although most of these operations

(except stack scanning) are performed concurrently with mutator execution, bounding them

or making them incremental would improve minimum mutator utilization of the processors.

Moreover, the collector might be just as efficient stealing cycles from mutators as it is

executing on a dedicated processor. Of course, there are potentially other unforeseen issues

that could make the transformation difficult.

Finally, we would like to extend our taxonomy of garbage collectors to include other

memory management efforts. In particular, we would like to be able to use the taxonomy

to compare memory management efforts like manual memory management, RTSJ scoped

memory, and hybrid approaches. Further, since each feature in the feature set of GC-Tax

is associated with some metric that can be measured, we would like to implement GC-Tax

so that developers can use it to perform empirical analysis for garbage collectors that in-

terest them. The Java Virtual MachineTM Tools Interface (JVMTI) [85] might be a

reasonable platform to target for the implementation of GC-Tax.

120

Appendix A

Data from Experimentation

his appendix provides data obtained from experiments described in Sec-T tion 4.9.3 of the dissertation. Appropriate captions are used to describe

the data contained in each figure presented below.

Clock Tick Count
WB: no logging WB: logging Handshake

Avg Time - SortNumbers 833.0985301 948.2355453 786.9382466
Avg Time - SimpleThreads 648.7342234 973.0214094 764.2954444

Wall Clock Time (µs)
Avg Time - SortNumbers 0.348170204 0.396288495 0.328878806
Avg Time - SimpleThreads 0.271120304 0.406647053 0.319415881

Figure A.1: Average time cost for an operation, observed for the 100,000 runs of the application when
the collector is enabled and the operation is executed.

Clock Tick Count
WB: no logging WB: logging Handshake

STDEV Time - SortNumbers 904.0913347 174.453802 155.5590813
STDEV Time - SimpleThreads 645.3218328 515.85487 163.0090096

Wall Clock Time (µs)
STDEV Time - SortNumbers 0.377839659 0.072908082 0.065011562
STDEV Time - SimpleThreads 0.269694191 0.215587099 0.068125051

Figure A.2: Standard deviation of the time cost for an operation, observed for the 100,000 runs of the
application when the collector is enabled and the operation is executed.

121

WB: no logging WB: logging Handshake
Total Count - SortNumbers 510184324 1149215676 179974
Total Count - SimpleThreads 310411583 1154935030 180000

Figure A.3: Count of the number of times each operation is executed, observed for the 100,000 runs of
the application when the collector is enabled and the operation is executed.

Clock Tick Count
WB: no logging WB: logging Handshake

Total Time - SortNumbers 425034000000 1089730000000 141628424
Total Time - SimpleThreads 201375000000 1123780000000 137573180

Wall Clock Time (s)
Total Time - SortNumbers 177.63 455.42 0.06
Total Time - SimpleThreads 84.16 469.65 0.06

Figure A.4: Total time cost for total number of executions of an operation, observed for the 100,000 runs
of the application when the collector is enabled and the operation is executed.

Clock Tick Count
WB: no logging WB: logging Handshake

MIN Time - SortNumbers 516 740 296
MIN Time - SimpleThreads 520 744 296

Wall Clock Time (µs)
MIN Time - SortNumbers 0.215647752 0.30926228 0.123704912
MIN Time - SimpleThreads 0.21731944 0.310933968 0.123704912

Figure A.5: Minimum time cost for an operation, observed for the 100,000 runs of the application when
the collector is enabled and the operation is executed.

122

References

[1] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Programming
Language. 1988.

[2] Zakarya Alzamil. Application of Computational Redundancy in Dangling Pointers
Detection. In Proceedings of the International Conference on Software Engineering
Advances (ICSEA’06), page 30. IEEE Computer Society, 2006.

[3] Andrew W. Appel. Garbage Collection. In Peter Lee, editor, Topics in Advanced
Language Implementation, pages 89–100. The MIT Press, Cambridge, MA, 1991.

[4] Andrew W. Appel, John R. Ellis, and Kai Li. Real-Time Concurrent Collection on
Stock Multiprocessors. SIGPLAN, 23(7):11–20, 1988.

[5] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language.
Addison-Wesley, Boston, MA, 2000.

[6] John Backus. Can programming be liberated from the Von Neumann style?: a func-
tional style and its algebra of programs. Communications of the ACM, 21(8):613–641,
1978.

[7] David F. Bacon, C. Richard Attanasio, Han Lee, V. T. Rajan, and Stephen Smith.
Java without the Coffee Breaks: A Nonintrusive Multiprocessor Garbage Collector. In
SIGPLAN Conference on Programming Language Design and Implementation, pages
92–103, 2001.

[8] David F. Bacon, Perry Cheng, and V. T. Rajan. Controlling Fragmentation and Space
Consumption in the Metronome, a Real-time Garbage Collector for Java. In Proceedings
of the Conference on Languages, Compilers, and Tools for Embedded Systems, pages
81–92, San Diego, California, June 2003.

[9] David F. Bacon, Perry Cheng, and V. T. Rajan. The Metronome: A Simpler Approach
to Garbage Collection in Real-time Systems. In R. Meersman and Z. Tari, editors,
Proceedings of the OTM Workshops: Workshop on Java Technologies for Real-time
and Embedded Systems, volume 2889 of Lecture Notes in Computer Science, pages
466–478, Catania, Sicily, November 2003. Springer-Verlag.

[10] David F. Bacon, Perry Cheng, and V. T. Rajan. A Real-time Garbage Collector with
Low Overhead and Consistent Utilization. In Proceedings of the 30th Annual ACM

123

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 285–
298, New Orleans, Louisiana, January 2003.

[11] David F. Bacon and V. T. Rajan. Concurrent Cycle Collection in Reference Counted
Systems. Lecture Notes in Computer Science, 2072:207–235, 2001.

[12] Henry G. Baker. List Processing in Real-time on a Serial Computer. Communications
of the ACM, 21(4):280–94, 1978.

[13] Henry G. Baker. The Treadmill: real-time garbage collection without motion sickness.
SIGPLAN Notices, 27(3):66–70, 1992.

[14] Hans-Juergen Boehm. Space Efficient Conservative Garbage Collection. In PLDI ’93:
Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design
and Implementation, pages 197–206, New York, NY, USA, 1993. ACM Press.

[15] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull. The Real-Time Speci-
fication for Java. Addison-Wesley, 2000.

[16] Chandrasekhar Boyapati, Alexandru Salcianu, Jr. William Beebee, and Martin Rinard.
Ownership types for safe region-based memory management in real-time Java. In PLDI
’03: Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation, pages 324–337, New York, NY, USA, 2003. ACM Press.

[17] Rodney A. Brooks. Trading data space for reduced time and code space in real-time
garbage collection on stock hardware. In LFP ’84: Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, pages 256–262, New York, NY,
USA, 1984. ACM Press.

[18] Timothy Budd. An Introduction to Object-Oriented Programming. Addison Wesley,
April 1991.

[19] D. C. Cann, J. T. Feo, A. D. W. Bohoem, and Rod R. Oldehoeft. SISAL Reference
Manual: Language Version 2.0, 1992.

[20] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg
Nelson. Modula-3 language definition. SIGPLAN Notices, 27(8):15–42, 1992.

[21] Bill Catambay. The Pascal Programming Language. http://pascal-central.com/
ppl/index.html, 2001.

[22] A. M. Cheadle, A. J. Field, S. Marlow, S. L. Peyton Jones, and R. L. While. Non-
stop Haskell. In ICFP ’00: Proceedings of the fifth ACM SIGPLAN International
Conference on Functional Programming, pages 257–267, New York, NY, USA, 2000.
ACM Press.

[23] Perry Cheng and Guy E. Blelloch. A Parallel, Real-time Garbage Collector. In PLDI
’01: Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation, pages 125–136, New York, NY, USA, 2001. ACM Press.

124

[24] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC. In 4th
International Conference on Logic Programming, pages 276–293, 1987.

[25] Jacques Cohen. Garbage Collection of Linked Data Structures. Computing Surveys,
13(3):341–367, September 1981.

[26] George E. Collins. A Method for Overlapping and Erasure of Lists. Communications
of the ACM, 3(12):655–657, December 1960.

[27] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press, second edition, 2001.

[28] Delvin C Defoe, Rob LeGrand, and Ron K Cytron. Asymptotic Analysis for Real-time
Java Scoped-memory Areas. In CCCT 2006: The 4th International Conference on
Computing, Communications and Control Technologies, volume II, pages 131 – 138,
Orlando, FL, July 2006. International Institute of Informatics and Systemics.

[29] Morgan Deters and Ron K. Cytron. Automated Discovery of Scoped Memory Regions
for Real-time Java. In ISMM ’02: Proceedings of the 3rd International Symposium on
Memory Management, pages 25–35, New York, NY, USA, 2002. ACM Press.

[30] John DeTreville. Experience with Concurrent Garbage Collectors for Modula-2+. Tech-
nical Report 64, Digital, Systems Research Center, August 1990.

[31] L. Peter Deutsch and Daniel G. Bobrow. An Efficient Incremental Automatic Garbage
Collector. Communications of the ACM, 19(9):522–526, September 1976.

[32] Damien Doligez and Xavier Leroy. A Concurrent Generational Garbage Collector for
a Multi-threaded Implementation of ML. In Principles of Programming Languages
(POPL’93), pages 113–123, January 1993.

[33] Michael Eisenberg. Programming in Scheme. MIT Press, June 1988.

[34] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley Professional, January 1990.

[35] Richard A. Eyre-Todd. The Detection of Dangling References in C++ Programs. ACM
Letters on Programming Languages and Systems (LOPLAS), 2(1-4):127–134, 1993.

[36] Robert R. Fenichel and Jerome C. Yochelson. A Lisp Garbage Collector for Virtual
Memory Computer Systems. Communications of the ACM, 12(11):611–612, November
1969.

[37] David Flanagan. Java Examples in a Nutshell, 2nd Edition. O’Reilly Media, Inc., 2000.

[38] International Organization for Standardization. ISO 7185:1990: Information technol-
ogy — Programming languages — Pascal. pub-ISO.

[39] Free Software Foundation. GCC, the GNU Compiler Collection - GNU Project - Free
Software Foundation (FSF). http://gcc.gnu.org/, 2007.

125

[40] Free Software Foundation. GCJ: The GNU Compiler for Java - GNU Project - Free
Software Foundation (FSF). http://gcc.gnu.org/java/, 2007.

[41] Max Goff. Celebrating 10 years of Java and our technological productivity: A look
back on the last 10 years of the network age. http://www.javaworld.com, May 2005.

[42] Adele Goldberg and David Robson. Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

[43] Matthew P. Hampton. Using contaminated garbage collection and reference count-
ing garbage collection to provide automatic storage reclamation for real-time systems.
Master’s thesis, Washington University in St. Louis, 2003. Available as Washington
University Technical Report WUCSE-2003-31.

[44] David R. Hanson. Storage management for an implementation of SNOBOL4. Software:
Practice and Experience, 7(2):179–192, 1977.

[45] Robert Harper and John C. Mitchell. On the type structure of standard ML. ACM
Transaction on Programming Languages and Systems, 15(2):211–252, 1993.

[46] Pieter H. Hartel. Performance Analysis of Storage Management in Combinator Graph
Reduction. PhD thesis, Department of Computer Systems, University of Amsterdam,
Amsterdam, 1988.

[47] Barry Hayes. Using key object opportunism to collect old objects. In OOPSLA ’91:
Conference Proceedings on Object-oriented Programming Systems, Languages, and Ap-
plications, pages 33–46, New York, NY, USA, 1991. ACM Press.

[48] David L. Heine and Monica S. Lam. A practical flow-sensitive and context-sensitive
C and C++ memory leak detector. In PLDI ’03: Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation, pages 168–
181, New York, NY, USA, 2003. ACM Press.

[49] Denis Howe. Free On-Line Dictionary Of Computing. http://foldoc.doc.ic.ac.
uk/foldoc/index.html, 1993.

[50] Paul Hudak and Joseph H. Fasel. A gentle introduction to Haskell. ACM SIGPLAN
Notices, 27(5):1–52, 1992.

[51] Kathleen Jensen and Niklaus Wirth. Pascal - User Manual and Report (Lecture Notes
in Computer Science). Springer, October 1974.

[52] Richard Jones. The Garbage Collection Bibliography. http://liinwww.ira.uka.de/
bibliography/Compiler/gc.html, 1996.

[53] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management. John Wiley & Sons, Ltd, 1996.

126

[54] Alan C. Kay. The Early History of Smalltalk. In HOPL-II: The Second ACM SIGPLAN
Conference on History of Programming Languages, pages 69–95, New York, NY, USA,
1993. ACM Press.

[55] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice
Hall, February 1978.

[56] Donald E. Knuth. The Art of Computer Programming, volume I: Fundamental Algo-
rithms. Addison Wesley, Reading, Massachusetts, 1963.

[57] Yossi Levanoni and Erez Petrank. An on-the-fly reference counting garbage collector
for Java. In Proceedings of the 16th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 367–380. ACM
Press, 2001.

[58] Yossi Levanoni and Erez Petrank. An on-the-fly reference-counting garbage collector
for java. ACM Transaction on Programming Languages and Systems, 28(1):1–69, 2006.

[59] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the lifetimes
of objects. Communications of the ACM, 26(6):419–429, 1983.

[60] Tobias Mann, Morgan Deters, Rob LeGrand, and Ron K. Cytron. Static determination
of allocation rates to support real-time garbage collection. In LCTES’05: Proceedings
of the 2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems, pages 193–202, New York, NY, USA, 2005. ACM Press.

[61] John McCarthy. Recursive Functions of Symbolic Expressions and their Computation
by Machine. Communications of the ACM, 3:184–195, April 1960.

[62] John McCarthy. History of LISP. In Richard L. Wexelblat, editor, History of Pro-
gramming Languages, chapter IV, pages 173–197. ACM Monograph, 1981.

[63] B Meyer. Eiffel: programming for reusability and extendibility. SIGPLAN Notices,
22(2):85–94, 1987.

[64] Marvin L. Minsky. A LISP garbage collector algorithm using serial secondary storage.
Technical Report Memo 58 (rev.), Project MAC, MIT, Cambridge, MA, December
1963.

[65] Scott Nettles and James O’Toole. Real-time replication garbage collection. In PLDI
’93: Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language
Design and Implementation, pages 217–226, New York, NY, USA, 1993. ACM Press.

[66] Kelvin Nilsen. Issues in the design and implementation of real-time Java. Java Devel-
oper’s Journal, 1(1):44, 1996.

[67] Kelvin Nilsen. A type system to assure scope safety within safety-critical Java modules.
In JTRES ’06: Proceedings of the 4th International Workshop on Java Technologies
for Real-time and Embedded Systems, pages 97–106, New York, NY, USA, 2006. ACM
Press.

127

[68] Kelvin D. Nilsen. Doing firm-real-time with J2SE APIs. In OTM Workshops, pages
371–384, 2003.

[69] Chris Okasaki. Functional Data Structures. In Advanced Functional Programming,
LNCS 1129, pages 131–158. Springer, August 1996.

[70] Chris Okasaki. Purely Functional Data Structures. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213, September 1996. This
research was sponsored by the Advanced Research Projects Agency (ARPA) under
Contract No. F19628-95-C-0050.

[71] James W. O’Toole and Scott M. Nettles. Concurrent replicating garbage collection.
Technical Report MIT–LCS–TR–570 and CMU–CS–93–138, MIT and CMU., 1993.
Also LFP94 and OOPSLA93 Workshop on Memory Management and Garbage Collec-
tion.

[72] F. Pizlo, J. M. Fox, D. Holmes, and J. Vitek. Real-time Java Scoped Memory: De-
sign Patterns and Semantics. In IEEE International Symposium on Object-oriented
Real-time Distributed Computing, pages 101–110, Vienna, Austria, May 2004. IEEE
Computer Society.

[73] Atanas Radenski. A voyage to Oberon. SIGCSE Bulletin, 25(3):13–18, 1993.

[74] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing system. Communica-
tions of the ACM, 17(7):365–375, 1974.

[75] Robert Harper David MacQueen Robin Milner, Mads Tofte. The Definition of Standard
ML (Revised). MIT Press, May 1997.

[76] David Robson. Smalltalk. In ACM 83: Proceedings of the 1983 Annual Conference on
Computers : Extending the Human Resource, page 133, New York, NY, USA, 1983.
ACM Press.

[77] Walter Savitch. Problem Solving with C++. Addison Wesley, 2nd edition, 1999.

[78] James A Saxon and William S Plette. Programming the IBM 1401, a self-instructional
programmed manual. Prentice-Hall, 1962.

[79] Michigan Historical Reprint Series. A short account of the history of Mathematics,
by W. W. Rouse Ball. Scholarly Publishing Office, University of Michigan Library,
December 2005.

[80] Andrew Shalit. The Dylan reference manual : the definitive guide to the new object-
oriented dynamic language. Apple Computer, Inc., April 1998.

[81] Guy L. Steele. Multiprocessing compactifying garbage collection. Communications of
the ACM, 18(9):495–508, September 1975.

[82] Will R. Stoye, T. J. W. Clarke, and Arthur C. Norman. Some practical methods for
rapid combinator reduction. pages 159–166.

128

[83] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, January 1986.

[84] Bjarne Stroustrup. Bjarne Stroustrup’s FAQ. http://public.research.att.com/
∼bs/bs faq.html, 2006.

[85] Inc. Sun Microsystems. JVMTM Tool Interface: Version 1.0. http://java.sun.com/
j2se/1.5.0/docs/guide/jvmti/, 2004.

[86] Inc Sun Microsystems. The SimpleThreads Example The JavaTM Tutorials > Essential
Classes > Concurrency. http://java.sun.com/docs/books/tutorial/essential/
concurrency/simple.html, 2007.

[87] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information
and Computation, 132(2):109–176, 1997.

[88] D Turner. An overview of Miranda. SIGPLAN Notices, 21(12):158–166, 1986.

[89] David Ungar. Generation Scavenging: A non-disruptive high performance storage
reclamation algorithm. In SDE 1: Proceedings of the First ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environments,
pages 157–167, New York, NY, USA, 1984. ACM Press.

[90] Larry Wall and Randal L. Schwartz. Programming Perl. O’Reilly and Associates, Inc.,
1991.

[91] David H D Warren, Luis M. Pereira, and Fernando Pereira. Prolog - the language
and its implementation compared with Lisp. In Proceedings of the 1977 Symposium
on Artificial Intelligence and Programming Languages, pages 109–115, New York, NY,
USA, 1977. ACM Press.

[92] Mark A. Weiss. Data Structures and Algorithm Analysis in C. Addison-Wesley Long-
man, Inc., Menlo Park, CA, second edition, 1997.

[93] Paul R. Wilson. Uniprocessor garbage collection techniques (Long Version). Submitted
to ACM Computing Surveys, 1994.

[94] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic Storage
Allocation: A Survey and Critical Review. In International Workshop on Memory
Management, Kinross, Scotland, UK, September 1995.

[95] David S. Wise. Stop and one-bit reference counting. Technical Report 360, Indiana
University, Computer Science Department, March 1993.

[96] David S. Wise and Daniel P. Friedman. The one-bit reference count. BIT, 17(3):351–9,
1977.

[97] Taichi Yuasa. Real-time garbage collection on general-purpose machines. Journal of
Software and Systems, 11(3):181–198, 1990.

129

Curriculum Vitae

Delvin Curvin Defoe

Date of Birth November 28, 1973

Place of Birth La Plaine, Dominica

Degrees B.S. Magna Cum Laude, Mathematics and Computer Science,
May 2001, Midwestern State University, Wichita Falls, Texas.

M.S. Computer Science, December 2003, Washington University,
Saint Louis, Missouri.

Professional
Societies

Association for Computing Machinery

Publications Delvin C Defoe, Rob LeGrand, and Ron K Cytron. Asymptotic
Analysis for Real-time Java Scoped-memory Areas. In CCCT
2006: Proceedings of the 4th International Conference on Com-
puting, Communications and Control Technologies, pages 131-138,
Orlando, FL, July 2006.

Delvin C. Defoe, Sharath R. Cholleti, and Ron K. Cytron. Upper
bound for defragmenting buddy heaps. In LCTES05: Proceedings
of the 2005 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, pages 222–229, New
York, NY, USA, 2005. ACM Press.

Delvin C. Defoe. Effects of Coalescing on the Performance of Seg-
regated Size Storage Allocators. Masters thesis, Washington Uni-
versity in St. Louis, 2003. Available as Washington University
Technical Report WUCSE-2003-69.

Delvin Defoe, Ranette Halverson, Nelson Passos, Richard Simp-
son, and Reynold Bailey. “A Study of Software Pipelining for
Multi-dimensional Problems”, in Proceedings of the AeroSense-
Aerospace/Defense Sensing, Simulation and Controls, Orlando,
FL, April 2001.

130

Delvin Defoe, Ranette Halverson, Nelson Passos, Richard Simp-
son, and Reynold Bailey. “Theoretical Constraints on Multi-Di-
mensional Retiming Design Techniques”, in Proceedings of the 13th
International Conference on Parallel and Distributed Computing
Systems, Las Vegas, NV, August 2000.

August 2007

Short Title: Exploration of Dynamic Memory Defoe, Ph.D. 2007

	Exploration of Dynamic Memory
	Recommended Citation
	Exploration of Dynamic Memory

	tmp.1468963809.pdf.VX2Hf

