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ABSTRACT OF THE THESIS

Mirror Position Detection in a Catoptric Surface

by

Run Zhang

Master of Science in Engineering Data Analytics and Statistics

Washington University in St. Louis, 2023

Professor Roger Chamberlain, Chair

The Catoptric Surface research project is a pioneering exploration of controlling daylight

effects within built environments. In this thesis, we focus on the mirror position detection

problem, which plays a vital role in achieving dynamic control over the direction of reflected

light within a space. To address the challenge of mirror position detection, we employ

computer vision techniques, specifically edge detection and the RANdom SAmple Consensus

(RANSAC) algorithm. Edge detection is utilized to identify significant changes in intensity

or color, corresponding to object boundaries, while RANSAC is applied for ellipse fitting.

By iteratively selecting minimal subsets of points and fitting ellipses that meet geometric

constraints, we attempt to accurately determine the position and geometry of mirrors in the

catoptric array.

We evaluate two different RANSAC libraries for ellipse fitting, and our findings show that

the skimage library in Python provides superior results compared to other alternatives. Ad-

ditionally, we leverage the multiprocessing package to enable parallel processing, improving

the efficiency of mirror detection.

We conclude that it is possible to detect single steps of mirror movement, however, reliable

operation is highly sensitive to parameter settings within the computational pipeline.
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Chapter 1

Introduction

1.1 Catoptric Surface Research

The Catoptric Surface research project [1, 2, 6] is an exploration of the control of daylight

effects within a built environment. The project seeks to investigate the use of reflected

daylight to create image-based patterns of light on interior surfaces, in order to amplify

or reduce spatial perception. Quoting from Ahrens et al. [2], this approach “challenges

the traditional idea of lighting levels being homogeneous throughout a space, and instead

advocates for variegated and heterogeneous conditions that can be specifically targeted for

desired lighting conditions, visual effects, and the perception of space.”

We are investigating a system of reflecting surfaces that can adjust to redirect light from

a source to a target location. The investigation was initially conducted through a digital

fabrication studio titled ”The Grid, the Cloud, and the Detail,” which investigated methods

to alter the targeted reflection of daylight as an environmental variable that informs the

reading of an existing space.

To test the concept, the research team designed, fabricated, and installed a full-scale proto-

type, shown in Figure 1.1. The surface was defined by a hyperbolic paraboloid geometry that

spanned between the existing columns and beams. The field of custom reflective surfaces

acted independently from the twisting surface, thus the system was adaptable to operate on

any guiding surface topology [2].

This initial prototype did not support dynamic movement on the part of the individual

mirrors. This motivated the design and construction of another prototype.

The installation shown in Figure 1.2 is located in the atrium of Steinberg Hall on the Danforth

Campus of Washington University in St. Louis. As with the initial prototype, it needs to
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Figure 1.1: Reflective surface prototype installed in the atrium of T-Rex building [2].
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Figure 1.2: (a) Image of the entire catoptric surface system. (b) A part of mirrors in the
system with a close-up image of an individual module [1].

respond to the existing columns and beams within the atrium space. It is constructed using

over 600 individual 3 in. mirrors under pan/tilt control.

1.2 Catoptric Surface Research Aims

The high-level aim of this research project is to explore the generation of visual effects from

daylight projected onto architectural surfaces, with the goal of amplifying or reducing the

spatial perception of a built environment. By mapping variable organizations of light onto

existing or new surfaces, this research project aims to create a condition where the perception

of space does not rely solely on form. The resulting effect is a formless atmosphere that can

significantly impact the way people use and interact with the space [2].

Again quoting Ahrens et al. [2]:

The main objective of this research is the production of a unique facade system
that is capable of dynamically redirecting daylight to key locations deep within a
building. Mirrors in a vertical array are individually adjusted via stepper motors
in order to reflect more or less intense daylight into the interior space according to
sun position and an image-based map. The image-based approach provides a way

3



to specifically target lighting conditions, atmospheric effects, and the perception
of space.

1.3 Mirror Position Detection in a Catoptric Surface

The Catoptric Surface research project uses computation and robotics to control reflected

daylight through a building envelope to form an image-based pattern of light on the building

interior’s surfaces. The project is an innovative approach to designing interactive architecture

that responds dynamically to environmental variables, such as light reflection, to create

unique and dynamic spatial experiences.

The pan/tilt mechanisms that make up the catoptric array use a pair of inexpensive stepper

motors to control the angle at which each mirror points. Keeping the cost of each module low

is important because deploying an array at scale requires many individual modules. This

requirement comes with limitations though; the inexpensive stepper motors used for the

modules lack any form of encoding. This makes knowing the exact position of the motors –

and therefore the angle of the mirrors – impractical. We are investigating several methods

for controlling the array with this limitation in mind. The crux of the current research is

using computer vision techniques to learn the position of the mirrors in the array and to

use that as feedback in a control algorithm. This concept is currently being investigated in

two ways: applying computer vision to the mirror position detection and applying computer

vision to the reflected surface.

In this thesis, we focus on the mirror position detection approach. We want to use computer

vision to detect the positions of the mirrors in the array, ultimately inferring the mirrors’

orientation from their positions, which can then be used as feedback in a control algorithm.

Image processing with mirrors in the scene is known to be a difficult problem [19, 30]. In

our approach, we first use edge detection [5] to recognize the edges in the photos, and then

use the RANSAC (RANdom SAmple Consensus) [11] algorithm to pick the ovals based on

edges. After that, we try to choose the correct ellipse based on the geometry and use this

ellipse to detect the mirror’s position. We also execute this program running in parallel, as

one approach to diminishing the execution time, because in the complete system there are

many mirrors that need to be detected.
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1.4 Background and Related Work

Natural light is a crucial aspect of building design [8], as it has a significant impact on the

comfort, well-being, and energy efficiency of indoor spaces [3, 7, 13, 23]. Controlling the

amount, direction, and distribution of natural light in buildings is a challenging task that re-

quires sophisticated techniques and technologies. The Catoptric Surface research project em-

ploys computation and robotics to precisely control the location of reflected daylight through

a building envelope, forming an image-based pattern of light on the building interior’s sur-

faces. By utilizing computer vision techniques, such as edge detection, RANSAC [26], and

Hough transform, we are able to detect the position and geometry of mirrors in the catop-

tric array, which is crucial for controlling the direction of reflected light. Additionally, the

multiprocessing [21] package in Python is employed to enable efficient parallel processing

of multiple figures, optimizing the processing time for a large number of mirrors. These

advancements [4, 9, 10, 12, 15] in the control of natural light in buildings have the potential

to significantly improve the visual comfort and energy performance of indoor spaces, leading

to more sustainable and user-friendly built environments.

Mirror detection and segmentation pose significant challenges for computer vision systems,

impacting various vision tasks. Recent research has introduced novel computational ap-

proaches to address these challenges. One approach, called MirrorNet [30], effectively seg-

ments mirrors by modeling semantic and color/texture discontinuities. Another method

focuses on content similarity and explicit mirror edge detection [19]. These advancements,

along with the construction of diverse benchmark datasets, outperform existing techniques.

These findings contribute to improving accuracy in differentiating mirror content from sur-

roundings and provide valuable resources for future research in this domain.

Edge detection is a fundamental step in many computer vision tasks, including object detec-

tion, image segmentation, and feature extraction. It involves identifying points in an image

where there is a significant change in intensity or color, which often correspond to object

boundaries or other important image features. Popular edge detection methods include the

Canny edge detector [5], Sobel operator [16], and the Roberts operator [24], which have been

widely used in computer vision research and applications.

The Random Sample Consensus (RANSAC) algorithm, proposed by Fischler and Bolles in

1981 [11], is a widely used robust estimation technique for fitting models to noisy data.
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RANSAC is particularly suitable for applications where the data may contain outliers or

noise, such as in the context of mirror position detection in the Catoptric Surface research

project. RANSAC iteratively selects random subsets of data points, fits a model to each

subset, and then evaluates the goodness-of-fit of the model. The process is repeated multiple

times, and the best-fitting model is selected as the final result. There is another important

concept called connected components [25]. Connected components are groups of pixels or

image regions that are connected to each other based on certain criteria, such as having

the same intensity value or being adjacent to each other. It can be used in conjunction

with RANSAC to further refine the detection and localization of mirror positions in the

Catoptric Surface research project, by grouping nearby edge points or features into connected

components to identify coherent structures that correspond to the mirrors.

The Hough Transform, proposed by Paul Hough in 1962 [14] is a popular image processing

technique that is commonly used for detecting geometric shapes, such as lines and circles,

in images. The Hough Transform is particularly useful for detecting straight lines, which

can be relevant in the context of mirror position detection in the Catoptric Surface research

project. The Hough Transform works by representing image points in a parameter space,

where points that lie on the same line in the image domain will intersect at the same point

in the parameter space. This allows for the detection of lines even in the presence of noise

and partial occlusion.

We tried two RANSAC libraries to detect the ovals. One is from Emil Tam [27] the other is

from the skimage package in Python [29]. For the RANSAC library from Tam, some results

are shown in Figure 1.3. In this figure, we can easily see the results are not very good. Upon

investigation, we determined that we were not properly understanding the scoring function

used. So we them moved to the second RANSAC approach which is based on the skimage

package in Python. As this is the approach we ultimately chose, results will be illustrated

in subsequent chapters.

We also tried the Hough Transform method to detect the ellipses, but the algorithm did not

recognize the ovals as what we expected. These results are shown in Figure 1.4. In Figure 1.4,

the ellipses which are detected by Hough Transform algorithm are the ovals which are drawn

in red curves and are not what we want. We suspect that the Hough Transform algorithm

is more sensitive to the noise points which looks at the lines in the edge detection figures.

So we do not use Hough Transform to detect our mirror in this project.
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Figure 1.3: GitHub library RANSAC results.

This work is only a portion of the activity present in the catoptric research project. Other

recent results include the characterization of the physical properties of the mirror assem-

blies [28], application of computer vision techniques to the reflected surface [20], investiga-

tion of the effectiveness of the surface at changing light intensity [18], and the development

of a user-friendly interface [17].

1.5 Contributions and Outline

The contributions of the thesis include the following:

• Experimental setup to catch single and 10 step mirror movement images using a cam-

era. These images were then used to assess the ability to determine mirror position

from the imagery.

• Author Python code to invoke edge detection and calculate the connected components

in an image.

• Evaluate the effectiveness of 2 RANSAC functions [27, 29] and the Hough transform [22]

for the task of mirror position determination.

• Write Python code to determine the implied ellipse position within the image.

• Alter the Python program to execute in parallel.

7



Figure 1.4: Hough transform result.
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• Show the changes of ellipses’ center points based on mirror movement.

This thesis covers current types of computer vision techniques to learn the orientation of an

individual mirror in the array with the intent to use that as feedback in a control algorithm.

Chapter 1 discusses the Catoptric Surface research project, using computation and robotics

to control reflected daylight through a building envelope to form an image-based pattern of

light on the building interior’s surfaces. In Chapter 2, we describe the experiment we run

to obtain mirror figures in order to use image-based algorithms to detect mirror’s positions

in those figures. In Chapter 3, we show the results of the experiments, edge detections,

RANSAC based ellipses detection and mirror positions, etc. In Chapter 4 we discuss potential

future work and conclusions of the thesis.

9



Chapter 2

Methods

In this chapter, we describe our approach to determining the center positions (and therefore

orientations) of individual mirrors. While the system will eventually need to operate on

multiple mirrors, for the scope of this thesis, we constrain our focus to an individual mirror.

From Figure 1.2, we abstract a simple model which is shown in Figure 2.1. This 2 × 2

system is also constructed in the laboratory (see Figure 2.2) and has been used for previous

experimental work on the project [20, 28].

2.1 Experiment

Figure 2.1: A simple model representing the complete system.

In Figure 1.2, the entire catoptric surface system in Danforth Campus of Washington Uni-

versity in St. Louis Steinberg Hall has hundreds of mirrors. It is very hard to do our

10



Figure 2.2: 2× 2 system constructed in the laboratory [28].

experiment in this big catoptric surface system. So, we generate a prototype which is shown

in Figure 2.1 and Figure 2.2. The left image in Figure 2.1 is a concept figure which helps

people understand how can we abstract this 2×2 prototype from the whole catoptric surface

system. Figure 2.2 is the real prototype in our lab. Based on this prototype, we can choose

a single mirror to test our algorithms and tune parameters in the algorithms. When we get

the single mirror’s data and have tested our algorithms successfully, it will then be time to

employ the experiment’s algorithms to the whole system. For the lab experiments that have

been performed, we give some details below.

Firstly, we take some photos for the single mirror in different random angles. Based on these

images we get edge detection results which are shown in the next section and in Chapter 3.

Subsequently, we set up the simple model (Figure 2.1) which is abstracted from the whole

system. We let the motors move different steps each time in different pan and tilt angles.

Then, we use the following three steps to record the mirror’s moving routine.

Step 1. Command the motor to move 10 steps for each image. Part of the images are

shown in Figure 2.3. Initially, command the mirror to move all the way to the left (in pan)

and keep the mirror in the middle (in tilt). When the motor moves 10 steps in pan, command

the motor to keep the position for 5 seconds to get a picture. Continue the mirror’s motion

until the mirror stops at the far right.

11



Figure 2.3: 10 steps move samples.
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Step 2. Command the motor to move 10 steps for each image. Initially, command the

mirror move to the top (in tilt) the mirror in the middle (in pan). When the motor moves

10 steps in the tilt level, command the motor to keep the position for 5 seconds to get a

picture. Continue the mirror’s motion until the mirror stops at the bottom.

Step 3. Command the motor to move single step each time and repeat the step 1 and step

2 (with the motion in the middle of the range in pan and tilt), the results of which are shown

in Figure 2.4.

Due to our focus on on a single mirror, we crop the images manually, and as a result of that

the image sizes are a little bit different.

In Figure 2.3, we include all the 10 steps move experiment images. We can easily see

the difference between each angle of movement. So we anticipate the 10 steps movement

experiment will show the changes between each individual mirror orientation.

In Figure 2.4, we include all the single step move experiment figures. We can easily see there

are not very much difference between each angle of movement. So we anticipate the single

step movement experiment will have difficulty discerning the change between each individual

mirror orientation.

2.2 Edge Detection

Edge detection is a fundamental step in image processing, computer vision, and object

recognition. It is used to detect the boundaries of objects within an image and is a critical

pre-processing step in many computer vision applications. Edge detection is performed by

analyzing the intensity changes in an image to identify areas where the brightness changes

abruptly. These areas are referred to as edges.

There are several methods for edge detection in computer vision. One common approach is

the Canny edge detector, which was introduced by John F. Canny in 1986 [5]. The Canny

edge detector is a multi-stage algorithm that involves smoothing the image with a Gaussian

filter, calculating the gradient magnitude and direction, suppressing non-maximum edges,

13



Figure 2.4: Single steps move samples.

14



and finally, applying hysteresis thresholding. The result of the Canny edge detector is a

binary image where the edges are white and the non-edges are black.

Based on the randomly took photos for the single mirror in different angles, we get the edge

detection figures by using cv2 packages in Python.

For get these edges, we firstly convert the image to grayscale. Then, detect edges using edge

detector and set the lower and upper threshold of the edge detector. Some edge detection

figures are shown in Figure 2.5.

In Figure 2.5, the first row shows the original image used to test edge detection, and the

second row gives the edge detection results for a single mirror. Due to our focus on a single

mirror, we cropped the figures manually. It is apparent from these images that the ellipse

representing the mirror boundary is effectively present in the edge detection results.

Figure 2.5: Edge detection samples. Top row is a pair of initial images, bottom row is the
edge detection output.
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2.3 RANSAC (Random Sample Consensus)

RANSAC, which stands for RANdom SAmple Consensus, is a widely used robust method

for estimating parameters of a mathematical model from a set of observed data points that

may contain outliers. It is first introduced in the computer vision community by Fischler and

Bolles in 1981 [11] and has since been applied in various fields such as robotics, geomatics,

and computer graphics.

The basic idea behind RANSAC is to randomly sample a subset of data points, and then fit

a model to the selected points. Consider the mirror position detection problem, we assume

we want to detect the data points from the edge detection results that fit an ellipse. Let S

be a subset of k data points selected at random from a set of n data points. Let M be the

model that is fitted to the selected points. In line fitting, for example, M might be a line

that is parameterized by its slope and y-intercept. Let D be the set of data points that are

not in S. The goal of RANSAC is to determine which points in D are consistent with M . A

data point xi is said to be consistent with M if it lies within a certain distance ϵ of the model

M . Let C be the set of data points in D that are consistent with M . The goodness-of-fit of

M is measured by the size of C, which is called the consensus set.

The algorithm repeats the sampling and fitting process for a fixed number of iterations t.

At each iteration i, a new subset Si is selected at random from the data set, and a new

model Mi is fitted to Si. The size of the consensus set Ci is then computed by checking

which points in D are consistent with Mi. The algorithm returns the model M that has the

largest consensus set C, as well as the set C itself. The algorithm can be summarized in the

following steps:

1. Select a random subset S of k data points from the data set.

2. Fit a model M to the selected points.

3. Compute the set C of data points in D that are consistent with M .

4. If the size of C is greater than a certain threshold t, re-estimate M using all the points

in S and C, and compute the new consensus set C ′.

5. Repeat steps 1-4 for a fixed number of iterations, and return the model M that has

the largest consensus set C, as well as the set C itself.
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For our case, the model M is an ellipse. Some illustrative RANSAC results are shown in

Figure 2.6.

2.4 Ellipses Selection

Based on the RANSAC results illustrated in Figure 2.6 we can easily see there are many

ovals in the figure. We still need to decide which oval is the one of interest.

In order to select ovals based on their geometry, the eccentricity, e, of the ovals can be

calculated using Python. The eccentricity is a measure of how elongated or flattened an

oval shape is, with a value ranging from 0 (perfect circle) to 1 (a straight line). The cal-

culated eccentricity can then be compared with the eccentricity of the ovals detected using

RANSAC. By comparing the calculated eccentricity with the eccentricity of the RANSAC

detected ovals, ovals with similar eccentricity values can be chosen as potential matches. This

approach allows for the selection of ovals that exhibit similar geometric characteristics as

the real ovals of interest, which can aid in the accurate detection and localization of mirrors

in the catoptric surface.

In our project, we calculate the eccentricity plus the length of the X-axis and Y-axis (in

pixels). Based on the good oval detection results which from RANSAC algorithm, we cal-

culate the eccentricity and the length of X-axis and Y-axis which are shown in Figure 2.7

and make the Table 2.1 from Figure 2.7. In Table 2.1, the geometry of the oval tell us the

eccentricity is 0.7857. So, we set up a range for the eccentricity as (0.78, 0.8) which means

if the oval’s e ≥ 0.78 and e ≤ 0.8, we will let the RANSAC output the oval.

Table 2.1: X-axis and Y-axis lengths and eccentricity.

Ellipse parameters Value
X-axis length (pixels) 426.6
Y-axis length (pixels) 263.9
Eccentricity, e 0.7857
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Figure 2.6: A set of images showing the results of the ellipses detection process. The first
image is the original image. The second image is after the first iteration the first ellipses
detection result by using the RANSAC algorithm. The third image is another ellipse detected
by using the RANSAC algorithm. The fourth image is the best fitted result. The fifth image
is all the ellipses RANSAC detected. The last image is the ellipses showed in connected
component image.
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Figure 2.7: Eccentricity and X-axis, Y-axis lengths.

2.5 Position Calculation

Once the ovals with similar eccentricity values have been selected based on the comparison

between calculated eccentricity and the RANSAC detected ovals, the center point of the oval

can be calculated to represent its position in the images. The center point of an oval can

be computed based on its x-axis and y-axis values. In general, the x-axis and y-axis values

represent the major and minor axes of the oval, respectively. The center point of the oval

can be calculated as the midpoint between the endpoints of the major and minor axes. This

can be achieved using simple mathematical formulas to compute the average of the x-axis

and y-axis values, which gives the center point of the oval. This approach provides a way to

accurately determine the position of the selected ovals in the images, which can be utilized

for further analysis or visualization in the catoptric surface research project.

2.6 Program Multiprocessing

To efficiently process a large number of figures in the catoptric surface research project, the

multiprocessing [21] package in Python is utilized to enable parallel processing. With the

multiprocessing package, multiple figures can be processed simultaneously, leveraging the

available CPU cores for concurrent execution. This allows for significant speedup in the

overall processing time, as each figure can be processed independently and in parallel, with-

out waiting for the completion of previous figures. The multiprocessing package provides

functionalities for creating multiple processes, distributing the workload across the processes,

and managing communication and synchronization among them. By utilizing multiprocess-

ing, we are able to significantly reduce the computational time required for processing a large

number of figures, improving the efficiency and scalability of the research project. Although

19



multiprocessing can speed up the oval detection step, it is very hard to speed up the ellipse

selection step. Because the use of geometric constraints to restrict the target ovals frequently

makes the algorithm go back to the RANSAC step several times. This is a point we need to

improve.
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Chapter 3

Results

In this chapter, we first illustrate some images from the experiments, then proceed to show

results from edge detection, RANSAC, ellipse selection, and position calculation. This is

followed by a discussion of the experimental results.

3.1 Experiment

In Figure 3.1 we command the mirror to move once (10 steps) which resulted in these two

images. Given the differences in the two images, we anticipate that this level of movement

will be detectable by our algorithms.

Figure 3.1: 10 steps move experiment.

In Figure 3.2 we command the mirror to move in single steps and these images result. Based

on this, we want to see if the camera can catch the changes of the oval’s position. Based

on Figure 3.2, these three figures seem to not have any differences, it potentially cannot
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Figure 3.2: Single steps move experiment.

be detected by our algorithms. We address the answer to this question at the end of the

chapter.

3.2 Edge Detection

In Figure 3.3, we show one of the edge detection results based on a single mirror. We detect

edges using the Canny edge detector and set the threshold of the Canny edge detector be

lower threshold = 300 pixels and upper threshold = 400 pixels. As is clear in the figure,

in this case it does a very good job of detecting the edge of the mirror. Also, using two

thresholds with hysteresis allows more flexibility than single-threshold methods, but the

general problem with threshold methods remains. Setting the threshold too high may miss

important information. On the other hand, setting the threshold too low can falsely identify

irrelevant information (such as noise) as important information. It is difficult to give a

general threshold that works for all images. So, when we process different images, it may be

necessary to use different thresholds.

We next investigate the effectiveness of edge detection over a wider range of mirror positions.

Based on our 10-step experiment, edge detection results with lower threshold of 300 pixels

and upper threshold of 400 pixels are shown in Figure 3.4.
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Figure 3.3: Example edge detection output.

Figure 3.4: Edge detection output for 10-step experiment images.
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In Figure 3.4, we can easily see there are differences between each figure. The second figure

in the first row misses the oval area, with the mirror pointed up. For the third figure in the

second row, there are some edges in the middle of the oval, it probably be noise for RANSAC

to detect the correct oval.

Figure 3.5: RANSAC output for 10-step experiment images.

In Figure 3.5, we show the RANSAC results for these same images. Clearly, the RANSAC

results are not very good in part because the edge detection results are not very good. Some

mirror edges are not be shown very clear and some area have very big gap so that the

connected component area will be not accurate. In this situation, RANSAC will detect the

incorrect oval.

Based on our single-step experiment, some edge detection results with lower threshold of

300 pixels and upper threshold of 400 pixels are shown in Figure 3.6. Similarly, RANSAC

results are shown in Figure 3.7.

In Figure 3.6 and Figure 3.7, it is hard to catch the changes in each single figure. And this

threshold does not work very well on this set of images.
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Figure 3.6: Edge detection output for single-step experiment images.

Figure 3.7: RANSAC output for single-step experiment images.
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But there still be some problems for edge detection. Based on different figures, we should

choose different thresholds to do Canny edge detection. For many of our photos, let lower

threshold = 300 pixels and upper threshold = 400 pixels is a good choice. But in some

photos like Figure 3.6 and Figure 3.4, this threshold cannot detect all these edges, it has

more gaps between each connected component areas. This issue will let us detect some ovals

are not what we expected.

3.3 RANSAC (Random Sample Consensus)

Based on an image of the single mirror prototype, the progress of the processing is illustrated

in Figure 3.8. Based on the edge detection results, we calculate the connected component

areas and highlight them. After that, we try to fit the oval which will overlap as much

connected component areas as possible.

Figure 3.8: A set of images showing the results of ellipse detection. The first image is the
edge detection result from the original image. The second image is the connected component
result from the edge detection image. The third image is the ellipse detection result by using
the RANSAC algorithm on the connected component image.

The RANSAC results from several images in the 10-step experiment are shown in Figure 3.9.

While there are clearly differences in the mirror positions between the different images, the

ellipse chosen is far from ideal.

Based on both Figure 3.7 and Figure 3.5, what we firstly should change is the edge detection

threshold to make the edge detection result include as similar the connected component area

as the mirror area as possible, can let RANSAC get better oval detection results. Also, we

use the geometry information of the mirror to restrict the oval we detect which is shown

below.
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Figure 3.9: Ellipse selection for 10-step experiment images.
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3.4 Ellipses Selection

In an attempt to improve the inaccurate results, we use some geometric constraints to let

the program know what kind of ovals are what we want. So, based on the geometry of the

mirror, we set the eccentricity be in the range (0,78, 0.8) which shows in Table 2.1. Based on

this condition, we will spend more time to let the program to select the correct oval which

eccentricity is between 0.78 and 0.8. And get the results shown in Figures 3.9 and 3.10.

Compare Figure 3.10 and Figure 3.9 with Figure 3.5 and Figure 3.7, we can easily see if

we use the eccentricity to restrict the RANSAC algorithm to detect mirrors, it detects the

desired ovals more accurately.

Figure 3.10: Revised ellipse selection for single-step experiment images.
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3.5 Position Calculation

After the above improvements in the oval selection, the next issue we need to address is the

degree to which these selected ovals can identify the orientation of the mirrors themselves.

For example, when a mirror moves a small amount, can this be detected in the imagery.

To assess this, we calculate the center points of the detected ellipses, identify reference base

points (manually) and compute the distance from the center points the base points for each

output oval. The results of this exercise is shown in Figures 3.11 and 3.12.

Figure 3.11 shows the 10-step experiments results. We choose the same point which have

the same position on the real mirror as the base point. Then, we mark the positions of

the center points and base points in the figure and calculate the distance between these

two points which shows in red in the figures. Figure 3.12 shows the single-step experiment

results.

The coordinates of the center points and reference bases, plus the computed distance are

repeated in Tables 3.1 and 3.2 for easier viewing.

Table 3.1: Ellipses selection for 10 steps move figures center points table.

Figure 3.11 image Center points Base points Distance
(row, column) (pixels) (pixels) (pixels)
(1,1) (445.83, 426.05) (450, 762) 336.0
(1,2) (441.45, 321.13) (442, 742) 420.9
(2,1) (312.00, 322.42) (349, 727) 412.8
(2,2) (412.50, 424.91) (410, 744) 319.1

Table 3.2: Ellipses selection for single step move figures center points table.

Figure 3.12 image Center points Base point Distance
(row, column) (pixels) (pixels) (pixels)
(1,1) (498.77, 484.66) (641, 769) 317.9
(1,2) (526.40, 527.22) (666, 802) 308.2
(2,1) (530.55, 481.17) (650, 756) 299.7
(2,2) (537.91, 493.92) (657, 758) 289.7

Based on these center point positions, base point positions and distances between center

points and base points, we can easily see, the first figure of the second row in Figure 3.11

shows, when the mirror move to this angle, our algorithm will not find the mirror correctly
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Figure 3.11: In this figure, it shows single mirror move to different angles’ position. For the
first figure in the second row, it is easy to see that when the mirror moves at this angle, it
is hard to catch the correct oval and calculate the distance we expect.
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Figure 3.12: For the images in the first row, we show two not continue different single step
movement result and choose the same point which have the same position on the real mirror
as the base point. Then, we mark the positions of the center points and base points in
the image and calculate the distance between these two points which shows in red in the
figures. For the second row, it is the single move 2 single steps’ results. One of the distance
is 299.7 pixels, the other is 289.7 pixels. The difference between these two single steps are
10 pixels. So, one single steps’ distance change will be 5 pixels. Think about the pixels’
steps are too small to see, it is very hard to see the differences between these two figures in
eyes. And think about some random errors, it is also hard to see, this program can detect
the differences between the single steps movement.
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because this angel is very hard to detect. For the other figures (including Figure 3.11 and

Figure 3.12), our algorithm works very good to detect the oval and find the center points,

base points and distances from center points and base points in the figure.

3.6 Discussion

In a nutshell, this is a computer vision-based approach for accurately detecting a single

mirror’s position in the Catoptric Surface research project. The method combines edge de-

tection and the RANSAC algorithm, incorporating geometric restrictions to improve the

mirror position prediction accuracy. The use of multiprocessing enables more efficient pro-

cessing of large-scale mirror arrays. The findings contribute to advancements in controlling

natural light in buildings, enhancing visual comfort and energy performance. While we

are able to conclude that it is possible to resolve mirror position to within a single step

for the stepper-motors driving the mirror’s motion, reliable operation is highly sensitive to

parameter settings within the compute pipeline.

Not only focusing on a single mirror’s position, we also want to know the positions of all the

mirrors in the Catoptric Surface. So, future work will need to focus on ensuring this algorithm

can work in multi-mirror system. And optimize this algorithm to make the detection be more

accurate and faster.

Based on our whole Catoptric Surface systems, we should also pay more attention on the

camera’s position and whether should we zoom in or zoom out the photos. Also, calculate

the real position in geometry is also important for our whole Catoptric Surface systems.
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Chapter 4

Conclusions and Future Work

The approach of using edge detection and RANSAC, combined with the restriction of ge-

ometric properties, is a promising method for accurately detecting the position of mirrors

in the Catoptric Surface research project. By applying edge detection, the algorithm can

identify the edges of the ovals formed by the mirrors’ reflections, providing a reasonable

starting point for the RANSAC algorithm. The RANSAC algorithm can then estimate the

ellipse parameters by iteratively selecting a minimal subset of points and fitting an ellipse to

those points. The geometric restrictions further improve the accuracy of the ellipse fitting

by discarding ellipses that do not meet the desired geometric properties.

When selecting the correct oval using these methods, the algorithm can accurately determine

the position of the mirror within the array. Calculating the center points of these ovals allows

for a precise representation of the position of the mirrors within the building’s interior. By

comparing these calculated positions with the actual position of the mirrors, the accuracy

of the algorithm can be evaluated and further refined.

Moreover, the use of multiprocessing allows for the processing of multiple images in parallel,

increasing the speed and efficiency of the algorithm. This approach provides a promising

method for detecting the position of mirrors in the Catoptric Surface research project and

has potential applications in other fields that require the localization of objects based on

natural light reflections.

The major challenge that is still unresolved in this approach is that the reliable detection of

a mirror’s position is highly dependent on the parameter settings in the various steps in the

process. As a result, many images result in incorrect position information if the parameters

are not well tuned.
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In summary, the combination of edge detection, RANSAC, and geometric restrictions pro-

vides a method for accurately detecting the position of mirrors in the Catoptric Surface

research project. This approach, coupled with the calculation of center points and multipro-

cessing, enables a fast and efficient algorithm for precise mirror localization. With further

refinement and testing, this method has potential applications in other fields that require

accurate localization of objects based on natural light reflections.

Future work to be accomplished comes in several forms. First, methods need to be for-

mulated for reliably tuning the parameter settings within the algorithms. One approach to

consider here is further geometric constraints (e.g., maximum ellipse dimension, upper bound

on ellipse area, etc.). Second, this thesis only investigated approaches for a single mirror.

In practice, a set of mirrors will be within the field of view of the camera, and the resulting

images will need to be segmented and the algorithms applied to multiple sub-images concur-

rently. Also, for the photos we take in this project, the background of the 2 × 2 prototype

is a white wall. In addition, our mirror’s reflected light is always very bright, so that some

edges are bright enough that the algorithm cannot detect it clearly. We should also think

about how can we make the edges in the photos are easier to detect. Due to our project

being based on 2D pictures, we can also think about how can we imply our oval detection

in 3D space or make it as a real-time oval detection algorithm.
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