
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2016-002 

2016-7 

In-Network Retransmissions in Named Data Networking In-Network Retransmissions in Named Data Networking 

Hila Ben Abraham and Patrick Crowley 

The strategy layer is an important architectural component in both Content-Centric Networking 

(CCN) and Named Data Networking (NDN). This component introduces a new forwarding model 

that allows an application to configure its namespace with a forwarding strategy. A core 

mechanism in every forwarding strategy is the decision of whether to retransmit an unsatisfied 

Interest or to wait for an application retransmission. While some applications request control of 

all retransmissions, others rely on the assumption that the strategy will retransmit an Interest 

when it is not satisfied. Although an application can select the forwarding strategy used in the 

local host,... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Ben Abraham, Hila and Crowley, Patrick, "In-Network Retransmissions in Named Data Networking" Report 
Number: WUCSE-2016-002 (2016). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/910 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/910?utm_source=openscholarship.wustl.edu%2Fcse_research%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/910 

In-Network Retransmissions in Named Data Networking In-Network Retransmissions in Named Data Networking 

Hila Ben Abraham and Patrick Crowley 

Complete Abstract: Complete Abstract: 

The strategy layer is an important architectural component in both Content-Centric Networking (CCN) and 
Named Data Networking (NDN). This component introduces a new forwarding model that allows an 
application to configure its namespace with a forwarding strategy. A core mechanism in every forwarding 
strategy is the decision of whether to retransmit an unsatisfied Interest or to wait for an application 
retransmission. While some applications request control of all retransmissions, others rely on the 
assumption that the strategy will retransmit an Interest when it is not satisfied. Although an application 
can select the forwarding strategy used in the local host, it cannot guarantee the selection of the same 
strategy in other nodes in the network, especially in shared resource environments. In some scenarios, a 
developer must bind the implementation of the application to the details of the deployed forwarding 
strategy to guarantee the correctness of his application. In this paper we discuss the core mechanisms of 
a forwarding strategy in NDN, and we explore the importance and impact of in-network retransmissions 
on the application's performance and correctness. We propose and implement a simple forwarding 
strategy abstraction that allows the application to decide whether a network retransmission is required, 
and differentiate application retransmissions from network retransmissions. We show that in some 
scenarios, such as multiple producers application or multipath consumer-producer service, the proposed 
abstraction can significantly reduce the percentage of unsatisfied Interests. 

https://openscholarship.wustl.edu/cse_research/910?utm_source=openscholarship.wustl.edu%2Fcse_research%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/910?utm_source=openscholarship.wustl.edu%2Fcse_research%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages


In-Network Retransmissions in Named Data Networking

Hila Ben Abraham
Computer Science and Engineering

Washington University in st. louis
hila@wustl.edu

Patrick Crowley
Computer Science and Engineering

Washington University in st. louis
pcrowley@wustl.edu

ABSTRACT
The strategy layer is an important architectural component in
both Content-Centric Networking (CCN) and Named Data
Networking (NDN). This component introduces a new for-
warding model that allows an application to configure its
namespace with a forwarding strategy. A core mechanism
in every forwarding strategy is the decision of whether to re-
transmit an unsatisfied Interest or to wait for an application
retransmission. While some applications request control of
all retransmissions, others rely on the assumption that the
strategy will retransmit an Interest when it is not satisfied.
Although an application can select the forwarding strategy
used in the local host, it cannot guarantee the selection of
the same strategy in other nodes in the network, especially
in shared resource environments. In some scenarios, a de-
veloper must bind the implementation of the application to
the details of the deployed forwarding strategy to guarantee
the correctness of his application.

In this paper we discuss the core mechanisms of a for-
warding strategy in NDN, and we explore the importance
and impact of in-network retransmissions on the applica-
tion’s performance and correctness. We propose and imple-
ment a simple forwarding strategy abstraction that allows the
application to decide whether a network retransmission is
required, and differentiate application retransmissions from
network retransmissions. We show that in some scenarios,
such as multiple producers application or multipath consumer-
producer service, the proposed abstraction can significantly
reduce the percentage of unsatisfied Interests.

1. INTRODUCTION
In both Content-Centric Networking (CCN) and Named

Data Networking (NDN), the forwarding strategy, some-
times referred to as the ”strategy layer”, is the architec-
tural component that decides how to forward Interests
when multiple next hops exist. In the last few years,
as interest in future Information-centric network (ICN)
architectures has increased, we have witnessed continu-
ous growth in research on the design and development of
different NDN modules, including different forwarding
strategies. Recent research has also focused on imple-
menting NDN and related ICN architecture prototypes.

Two on-going projects are the NDN forwarder (NFD)
[1, 2], developed by the NDN research group, and the
CCNx project [3, 4], developed by PARC. Both projects
implement network forwarders and provide an API for
NDN or CCN applications.

The current design of these NDN and CCNx software
prototypes permits the application developer to pair a
forwarding strategy with its application namespace, and
therefore affects the way the application packets are for-
warded in the network. Thus, the application developer
can either choose an existing forwarding strategy or de-
velop a new one to satisfy application-specific needs.
While this might present new opportunities and advan-
tages for ICN in isolated environments, it poses new
challenges in shared resource environments.

When an application configures its namespaces to use
a specific forwarding strategy, it couples its implementa-
tion with the strategy mechanisms. Therefore a change
in the strategy mechanism could impact the application.
While a change can work well in isolated environments,
where the change is application specific, it can create
conflicts when multiple applications use the same strat-
egy. In addition, in shared resources environments such
as core networks it is unlikely that the application de-
veloper would have the freedom to select the strategies
used. In these environments, the network operator usu-
ally decides what strategies will be used, and therefore
can revisit and change the application and strategy pair-
ing. In other words, the application developer can pair
a strategy with its application namespace on its local
host, but has no control over the configured strategies
in the core network.

One core mechanism of a forwarding strategy chooses
what to do when an Interest is not satisfied. The router
maintains an entry for a forwarded Interest in the Pend-
ing Interest Table (PIT) as long as the Interest’s lifetime
has not expired. In such cases, the forwarding strategy
can decide to retransmit when the Interest packet was
not satisfied by a Data packet or when the strategy asks
to explore and probe additional faces [5, 6].

While some strategies retransmit unsatisfied Inter-
ests, other strategies leave the application with the de-

1



cisions of whether and when to retransmit. In addition,
some applications request control of all retransmissions,
but others assume that the strategy will retransmit an
Interest that it is not satisfied. Therefore, if the network
strategy chooses one retransmission policy when the ap-
plication expects a different one, the performance and
correctness of the application can be adversely affected
[7].

While the retransmission policy is only one charac-
teristic of a much more complex forwarding strategy,
it is crucial. Therefore, we propose a strategy abstrac-
tion in which each strategy is implemented to support
both applications that request to control all retrans-
missions, and applications that request the network to
do it for them. In the proposed abstraction, the appli-
cation determines whether a network retransmission is
required, and the strategy determines only how it will
be achieved. The contributions of this paper are as fol-
lows:

• We identify and discuss the main mechanisms of a
forwarding strategy in NDN.

• We evaluate the importance and impact of in-network
retransmissions in different use cases.

• We propose and evaluate a simple forwarding strat-
egy mechanism that allows applications to decide
whether a network retransmission is required, and
that can be adapted by different forwarding strate-
gies in shared resource environments.

• We propose a mechanism that helps forwarding
strategies to differentiate a network retransmission
from an application retransmission, and supports
face probing that avoids loop-detection NACKs in
NDN.

2. BACKGROUND AND RELATED WORK

2.1 Named Data Networking
NDN is a consumer driven architecture that uses In-

terest and Data packets to request and retrieve content.
To request a content item, a consumer expresses an In-
terest packet. The packet is forwarded in the network
until it arrives at a router that can satisfy the request ei-
ther by retrieving the data from its local Content Store
(CS), or by retrieving it from a local application that
serves as the content producer. Then the content is re-
turned to the consumer in a Data packet that follows
the reverse path of the Interest packet. When a router
determines that it cannot satisfy an incoming Interest
packet, it searches for the next hop in its Forwarding
Information Base (FIB) table. Before forwarding the
interest to the determined next hop, the router regis-
ters the Interest packet and its incoming face in the
Pending Interest Table (PIT). The PIT is used later

Figure 1: NDN Forwarding Information Base.

to identify retransmissions of the same interest and to
aggregate similar requests from additional consumers.
In addition, when returning a Data packet to the con-
sumer(s), the router uses the information in the PIT as
breadcrumbs to follow the reverse path of the Interest
packet(s).

To avoid loops, every Interest packet carries a nonce
generated by the application. When an incoming Inter-
est packet contains the same name and nonce as pre-
viously recorded in the PIT, the Interest is detected as
duplicated and dropped by the router. In recent imple-
mentation of the NDN forwarder, the router responds
with NACK when a duplicated Interest is detected.

The Interest and Data packets in NDN use type-
length-value (TLV) encoding to represent each exchanged
value. This provides an easy and dynamic platform for
adding new information to either the Interest or the
Data packet.

2.2 NDN Forwarding Plane
As in the IP architecture, the NDN router uses the

information in its FIB table to determine the packet’s
next hop. While a FIB entry in the IP architecture con-
sists of an IP address and one port, each entry in the
NDN FIB consists of a namespace and a list of possible
faces. Each face represents an interface to a possible
next hop, which can be a remote NDN entity or a lo-
cal application. When the faces list consists of only
one face, the Interest is forwarded on this face. How-
ever, when the faces list contains more than one face,
the forwarding plane needs to decide on which face(s)
to forward the interest. The forwarding decision is de-
termined by the selected forwarding strategy of the re-
quested namespace. Therefore, when forwarding an In-
terest, the NDN router performs two operations: 1) A
FIB lookup to find the longest prefix match of the re-
quested name. 2) A selection of one or more face(s) to
be the interest’s next hop(s).

Figure 1 shows a network and the FIB table in node
e. In this example, when e receives an interest for /Net-
flix/Frozen/part1, it can forward it only on face number
2 towards d. However, e can choose from a list of faces

2



when receiving an interest for /CNN/news/NYC/Today.
In this case, after finding the correct FIB entry, e fol-
lows the forwarding strategy paired with /CNN/news
namespace to decide on which face(s) the Interest should
be forwarded.

2.3 Forwarding Strategies in NDN
In this section we briefly describe the forwarding strate-

gies in related work, and in the implementation of NFD
0.4.

The first implemented forwarding strategy in ICN
was the default CCNx strategy, which is also known as
the ncc strategy as implemented in NFD. In this strat-
egy, the NDN router forwards a received Interest packet
on one face, and waits for a Data packet to be returned.
If the packet arrives within a specific prediction time
set by the strategy, then the face is remembered as the
”best” face, and it is used to forward future interests
of the same name. If the strategy timer expires before
the arrival of a Data packet, the strategy retransmits
the interest again to another available face. The CCNx
default strategy is unique in the way it adjusts the pre-
diction timer. Every time a Data packet is returned on
the selected best face, the wait time is adjusted down,
so the timer will expire faster the next time. When the
Interest is not satisfied within the predicted time, the
prediction timer is adjusted up. Thus the strategy tries
another available face whenever the prediction timer is
too short to allow a successful response from the previ-
ously working face. When that happens, the predicted
time is adjusted up again to allow the new face to re-
spond with data. Thanks to this mechanism, the strat-
egy timer approaches the actual round trip times after
an initial exploration phase. In addition this mechanism
guarantees that other faces will be eventually given a
chance to satisfy a namespace.

The best-route strategy, also used in NFD 0.4, is the
default strategy for new applications and the gateway
routers in the NDN testbed. In best-route, every Inter-
est packet is forwarded to the cheapest face, which is
determined according to the cost assigned by the rout-
ing protocol. Named-data link state routing protocol
(NLSR) [8] is currently the routing protocol configured
to work with the best-route strategy. When the face
fails to respond on time, the strategy drops the Interest
and the application can choose whether to retransmit
the Interest again. The strategy decides whether to
suppress or to forward the application retransmission
on a different face. This decision is made by a suppres-
sion timer set by the strategy. The suppression timer
algorithm has changed several times in the recent NFD
versions. The best-route strategy keeps sending future
Interests on the same face as long as that face has the
cheapest cost, regardless of its success in returning the
requested data. If the face is unresponsive, the routing

protocol might delete the face from the FIB table [9].
The multicast strategy, as implemented in NFD 0.4,

forwards the Interest packet to all the available faces
simultaneously. If there is no available face to forward
the packet on, the strategy replies with a NACK packet.

The GreenYellowRed strategy [5] is an adaptive for-
warding that ranks the faces according to different for-
warding policies, and chooses among the ranked groups
in a round-robin fashion. As of the today, this strategy
is not part of the official NFD distribution.

3. FORWARDING MECHANISMS
In this section, we identify the core mechanisms of a

forwarding strategy. First, when the FIB entry consists
of multiple faces, the forwarding strategy must decide
on what face or faces an Interest should be sent. The
strategy can choose the least expensive face according
to the face cost, determined by the routing protocol, or
the best performing face according to the face rank, de-
termined by previous measurements of the forwarding
strategy. In addition, the strategy may choose to send
the Interest on a single face, a subset of faces, or all
available faces. It may do that when there is no single
best-face to use, when the strategy asks to probe addi-
tional face, or when the strategy is designed to multicast
interests.

Second, the forwarding strategy must decide how to
react when the Interest is not satisfied within a specific
amount of time. The NDN router initiates a timer for
every forwarded Interest. When a Data packet is re-
ceived before the timer expires, the forwarding plane
sends the Data back to the consumer by following the
information kept in its PIT. However, there are three
possible outcomes when the timer expires prior to the
reception of a Data packet: 1) The strategy drops
the Interest packet. 2) The strategy retransmits the
packet on the same or a different face(s). 3) The strat-
egy replies with a special NACK packet to the previ-
ous hop [10].

We consider these two mechanisms, face selection and
retransmission policy, as the core mechanisms of any
forwarding strategy in NDN.

An important attribute of a forwarding strategy is
its adaptation to changes. In NDN, a data packet is
forwarded on the same but reverse path of the Interest
packet. Therefore an Adaptive Forwarding strategy
records the performance of each face to learn if it works
and how well it performs. Then it uses this knowledge to
improve future decisions. A Static Forwarding strat-
egy does not change its preferences, and can rely exclu-
sively on the decisions made by the routing protocol. In
this case, to stop using a face, a static forwarding strat-
egy requires the routing protocol to remove the face
from the FIB.

3



Figure 2: Static Strategy with Multiple Produc-
ers

4. IN-NETWORK RETRANSMISSIONS
In this section, we discuss a few scenarios in which

applications can benefit from the in-network retrans-
missions mechanism provided by the strategy.

Ad-hoc and dynamic environments can benefit from
in-network retransmissions that can quickly recover from
a change in the network topology or a link failure. Those
environments can rely exclusively on an adaptive for-
warding strategy to eliminate the overhead created by
a routing protocol. In such cases, strategy retransmis-
sions can be also used to probe the network and find a
better path to the application producer.

Even with the support of a routing protocol in a
relatively static topology, an in-network retransmission
mechanism that triggers Interest retries by the strat-
egy could recover from a link failure much faster than
a routing protocol, and therefore could better support
multipath consumer-producer services.

Another interesting use case consists of a multiple
producer service, in which each producer holds a dis-
joint part of the data provided by the service. Figure
2 presents an example of such an application, a dis-
tributed database in which the stored information is dis-
tributed among multiple producers. Here, in-network
retransmissions can immediately explore possible out-
puts, and guarantee that the correct output face will
be used for every Interest expressed by the application,
without having to differentiate the producer namespaces,
and without forcing application retransmissions. Here,
in-network retransmissions can be crucial to support
the application correctness since the forwarding strat-
egy cannot rely on either a routing decision or on previ-
ously collected forwarding measurements when selecting
the next hop output.

One could claim that a better namespace design, such
as one that differentiates producer namespaces to reflect
the content held by each producer, would be a better
approach. While we agree that the namespace design
is crucial, we believe that some applications would not
be able to follow such a namespace design, or would

not understand the importance of this requirement in
the designing phase of the application and namespaces.
Moreover, we believe that the NDN platform should be
able to support new types of applications, and therefore
should not enforce strict rules on the namespace design
due to strategy characteristics.

Another use case also consists of multiple produc-
ers, but simplifies the previous scenario by having a
complete replication of the content in all existing con-
sumers. In this case, when one producer is overloaded
with requests, and therefore fails to respond to new
Interests, in-network retransmissions can immediately
probe other faces and find another operating producer
to fetch the data from. Here, the link remains active
and responsive, and it is the producer who drops the
packets; therefore a routing plane may fail to detect the
problem, and would not inform the forwarding plane of
a face failure.

It may be that the use cases above could be resolved
by application retransmissions, without any retransmis-
sion mechanism in the strategy layer. However, this
approach could result in greater round-trip-times and
would impact the application’s performance, In addi-
tion, the application has to consider details of the sup-
pression mechanism used by the strategy, if such a mech-
anism exists. If the strategy does implement a suppres-
sion timer algorithm, as in the best-route strategy, the
application might face a big challenge. While the details
of the strategy may be well known in the application de-
velopment phase, there is no guarantee that the strategy
will maintain the same algorithm in following software
versions. For instance, if the suppression mechanism
of the strategy determines that, to avoid suppression,
an Interest must be retransmitted X ms after the first
attempt, then the application has to follow the require-
ment and implement its retransmission code blocks and
timers according to the X ms requirement. Any strat-
egy modification to this X ms suppression requirement
would require a modification in the application code as
well. Therefore, the application implementation must
be coupled with the strategy design.

It is important to note that, while some applications
require or could benefit from in-network retransmis-
sion, others request complete control of their traffic, and
avoid network retransmissions. For instance, a video
streaming application such as the one described in [11]
builds its own traffic control mechanism to support a
continuous and interruption-free communication. An
example for such a mechanism is relying on the net-
work RTT to determine the streaming rate at any point
in time. In this scenario, network retransmission could
negative impact the application’s measurements, and
therefore degrade the correctness and performance of
the application.

Therefore, we suggest that the decision to perform

4



in-network retransmission should be made by the appli-
cation, and only executed by the forwarding strategy.
We discuss our proposal in detail in the next section.

5. RETRANSMISSION ABSTRACTION
Our suggested retransmission mechanism performs

two independent yet complementary functions, appli-
cation abstraction and retransmission differentiation.

5.1 Application Abstraction
As described in previous sections, we strongly believe

that it is the application that needs to decide if an In-
terest should be retransmitted by the network or not.
Therefore, we suggest adding a new TLV to the Interest
packet to specify the application retransmission policy.
We name this TLV the ’Interest Retransmission Policy’
(IRP) flag.

By using IRP, the application can determine the pol-
icy for every expressed Interest. A forwarding strat-
egy supports this policy by providing two retransmis-
sion mechanisms as part of its implementation, one that
supports in-network retransmissions and another that
supports application retransmissions.

Algorithm 1 presents a simplified framework for a
forwarding strategy that supports both retransmissions
mechanisms by checking the IRP flag after receiving an
Interest.

Function ForwardInterst(interest):
face list = SelectNextHop(Interest)
IRP = GetIRP(Interest)
SendInterest(faces)
if IRP then

schedule retransmission at time x
else

set suppression timer for application
retransmission

end
return

Algorithm 1: Application Abstraction Frame-
work of a Forwarding Strategy

It is important to note that the IRP flag does not
determine the in-network retransmission algorithm, but
only requires that one exists. Therefore, the application
decides whether an Interest should be retransmitted
by the network, while the strategy determines the in-
network retransmission algorithm, that is, when to re-
transmit and which next hop(s) to choose. The retrans-
mission and suppression timers presented in algorithm 1
are only examples of possible retransmission algorithms
provided by a forwarding strategy. The strategy is free
to choose any algorithm to support the two options.
It may be that a core network strategy would choose

a retransmission algorithm that address congestion is-
sues and relies on collecting round-trip-times, while an
access strategy retransmission algorithm would simply
follow a list of given faces and retransmit an Interest
after a fixed time interval.

5.2 Retransmission Differentiation
We believe that the NDN forwarding plane should be

able to differentiate an Interest expressed by an appli-
cation from an Interest injected or retransmitted by the
network. Therefore we suggest adding a second TLV to
the Interest packet to differentiate application Interests
from network retransmissions. We name this TLV the
’Network Retransmission’ (NR) Field.

We describe two scenarios in which the NR field is
required. First, in dynamic networks, such as in a ve-
hicular network [12] or in access wireless networks[6],
where an adaptive forwarding strategy can probe faces
to explore additional next-hops. In such cases, it may
be useful for the strategy to differentiate the probing
Interest from others, and therefore to support different
strategy mechanisms for control and data traffic.

Another scenario is an existing problem in the cur-
rent ncc strategy and the NDN forwarding mechanism,
in which loop detection caused by nonces can prevent
better face exploration. As presented in figure 3, R1 has
a faster path to R4 through R3, but the ncc strategy
previously selected R1 as the best performing face. This
can happen if R3 was previously congested and there-
fore had longer RTT times to R4. As explained in the
Background section, R1 maintains prediction timer that
approaches the best-face actual RTT. When the predic-
tion timer is adjusted down to a value that causes an
Interest timeout on face 1, R1 retransmits the Interest
on face 2. Router R4, which previously received the In-
terest from R2, recognizes the Interest and its nonce as
a duplicate Interest, and therefore drops it and replies
with NACK. Here, ncc on node R1 does not receive a
Data packet on face 2, and therefore continues to use
face 1 as the best-performing face, although its RTT is
twice than face 2. The ncc strategy will switch to use
face 2 only if the retransmitted Interest arrives at R4
before the original Interest. In other words, the strategy
will change its bets-face selection only if the ’prediction’
plus the ’one way trip time through R3’ is less than the
’one way trip time through R2’.

Although the described problem is unique to the spe-
cific ncc implementation in the NDN architecture, this
problem can also occur in other adaptive forwarding
strategies that ask to explore potential faces.

This problem could be solved by adding the NR TLV
to the retransmitted Interest of ncc strategy in NFD
0.4. In the proposed solution, the ncc strategy differen-
tiates between the retransmitted Interest and the origi-
nal one, and does not detect the Interest as a duplicate

5



one, thus enabling better face exploration. By adding
NR TLV and processing Interests with the same nonce,
we interrupt the core mechanism of loop detection in
NDN. Therefore, another mechanism, such as the TTL
TLV in CCN, should be supported to avoid forever for-
warded Interests. In our implementation, we used a
non-negative-integer to represent NR TLV. We set the
initial value of the NR TLV to 0, and increased it by
one every time the Interest was retransmitted by the
strategy to an additional face. In our experiments, we
selected 10 as the maximum number of allowed retrans-
missions, and replied with NACK if the Interest’s nonce
was previously recorded and the NR TLV was equal to
10. In addition, we implemented the strategy mecha-
nism to reply with NACK when there were no unused
upstream faces to use. Although our implementation
provided us with the desired behavior, the NR mecha-
nism should be better explored as part of future work.
We present the implemented loop detection in algorithm
2.

Unlike NDN, CCN does not use nonces to detect
loops, and therefore the problem described in 3 might
not occur in CCN. However, we argue that the proposed
differentiation can be useful in the CCN architecture as
well to supports more intelligent forwarding strategies
that can differentiate an application Interest from an
Interest injected by the network.

Function DetectLoop(interest):
face list = GetUnusedFaces(Interest)
if face list is empty then

send NACK
else

if (nonce previously recorded) AND (NR is
equal to 10) then

send NACK
else

ForwardInterst(i) [algorithm 1]
end

end
return

Algorithm 2: Loop Detection using NR

We implemented the proposed retransmission mech-
anism in NFD 0.4 by adding the two suggested TLVs to
the Interest packet, and by modifying the loop-detection
mechanism that follows algorithm 2.

6. EMPIRICAL RESULTS
We tested the proposed in-network retransmission ab-

straction by running a set of experiments using the emu-
lated NDN testbed in the open Network Lab (ONL) [13,
14]. The emulated environment consists of 26 dual-core
machines, that represent the testbed gateways, 26 Vir-

Figure 3: Nack problem

tual Machines(VM) that represent end hosts, and four
software routes. All these machines run Ubuntu 12.04.5,
and our modified version of NFD 0.4. We configured
each gateway to publish the same set of namespaces
as used by the corresponding world-wide NDN testbed
[14] gateway, and ran NLSR 0.2.2 as the network rout-
ing protocol to distribute the gateways’ namespaces.
The emulated testbed also consists of 66 links that are
configured with costs that match the world-wide NDN
testbed costs. We connected one VM to each of the
gateway machines to emulate one end host connected
to each gateway. Figure 4 presents our emulated gate-
ways topology.

We modified the best-route and ncc strategies to check
the IRP flag in order to determine if in-network retrans-
mission is required by the application, and used NR
TLV to differentiate in-network retransmissions from
application Interests. We used algorithm 2 to prevent
infinite loops of retransmitted Interests. We named the
modified best-route and ncc strategies the ’best-route-r’
and ’ncc-r’ strategies.

We designed three experiments that demonstrate the
impact of in-network retransmissions on the application
correctness, and evaluated the cost of retransmissions in
each of the scenarios.

6.1 Multiple Producers Application with one
Congested Producer

In this experiment, we used modified versions of ndn-
traffic and ndn-traffic-server to generate Interests and
Data packets. We ran ndn-traffic consumer on the VM
connected to WU gateway, and two instances of ndn-
traffic-server as multiple producers on the VMS con-
nected to ORAMGE and KISTI gateways. We con-
figured both servers to respond to the Interests sent by
consumer, hence, both producers hold the same replica-
tion of content. To emulate a use case in which one pro-
ducer is congested and therefore fails to respond with
Data packet, we stopped one producer for 10 seconds

6



Figure 4: Emulated NDN testbed

Strategy Unsatisfied Interest Rate(%) Total Interest Sent by WU Gateway Std Sample

best-route 42.55 1700 0.09
best-route-r 0.621 3563 0.00048

ncc 0.95 5322 0.044
ncc-r 0.93 5490 0.00073

Table 1: Multiple Producers Results Summary

during the run of the experiment. According to the
testbed link costs, it is cheaper to get from WU to OR-
ANGE than it is to KISTI, and therefore we selected
ORANGE VM to be the congested producer. We set
the consumer’s Interests IRP flag to True, and therefore
required in-network retransmission from the strategy.
We did not provide any retransmission mechanism for
unsatisfied Interest in the application scope. The total
traffic sent over the network consisted of the traffic gen-
erated by our producer, as well as the traffic generated
by NLSR.

The details of the experiments can be summarized as
follows: At the beginning of the experiment we config-
ured the consumer to start expressing Interest packets
at the rate of 50 Interests per second, and the producers
to respond with Data packets for each received Interest.
We stopped the producer on ORANGE VM 10 seconds
after the start point, and brought it back up again 10
seconds later for additional five seconds.

We repeated the experiment five times with each of
the following strategies: best-route, best-route-r, ncc
and ncc-r. We collected the total number of Interests
sent by the consumer, the total number of Data packet
received from each producer, and the number of Interest
sent by WU gateway. The average results are presented
in table 1.

As shown in table 1, when using best-route as the
strategy paired with the application’s namespace, an
average of 42% of the expressed Interests remain unsat-

isfied. However, less than 1% of sent Interests remain
unsatisfied when the application’s namespace is config-
ured with bets-route-r, ncc or ncc-r. In addition, table
1 shows that the number of Interests sent by WU gate-
way when using bets-route-r was twice the number of
of Interests send by WU when using best-route. This
difference is explained by the specific implementation
of best-route-r, in which the strategy retransmits an
Interest after a fixed amount of time, that is shorter
than the actual round-trip time in the used topology.
This represents a detail in the in-network retransmis-
sion mechanism that should be better explored as part
of future work. However, this experiment demonstrates
that a simple change to the best-route strategy, such
as the support of IRP flag, can dramatically improve
unsatisfied Interest rate in the case of multiple produc-
ers with congested node, and therefore supports a wider
range of applications.

It is important to note that our statistical analysis
of the results did not point on any statistical difference
between ncc and ncc-r, Therefore, we can conclude and
report that the support of IRP flag does not change the
performance and correctness of strategies that already
support in-network retransmissions as part of their de-
fault implementation.

6.2 Multiple Producers with Congested Pro-
ducer and Congested Gateway

To emulate a congested gateway, we repeated the pre-
vious set of experiments and configured WU gateway
with a different drop rate each time. We used drop
rates of 5%, 20% and 50%. Figure 5 presents the un-
satisfied Interest rate of each of the explored strategies.
As shown by the figure, in the best-route strategy the
rate of unsatisfied Interests reaches to an average of 70%
when the congested gateway drops 50% of the packets.
However the unsatisfied Interests rate remains less than

7



Figure 5: Unsatisfied Interest Rate over Differ-
ent Loss Rate

1.5% when using best-route-r, ncc and ncc-r. This again
shows how a simple support of in-network retransmis-
sion in the best-route strategy can improve the perfor-
mance of a multiple producer application even when one
of the gateway node is congested and drops 50% of the
packets. As in the previous experiment, our results did
not point on any statistical difference between ncc and
ncc-r.

6.3 Multipath with Congested Link
In this experiment, we used a simple consumer-producer

service using ndn-traffic as the consumer running on
WU VM, and ndn-traffic-sever as the producer running
on KISTI VM. As before, we modified the consumer to
set IRP to True, and did not support any application re-
transmission mechanism. To emulate a congested link,
we set a drop rate of 100% on the link between WU and
UIUC, which is the least expensive next-hop to reach
the producer from WU gateway. We collected RX and
TX counters every 0.1 seconds on all participating links.

The details of the experiments can be summarized
as follows: As before, we started the experiment by
configuring the consumer to send 50 Interest packets per
second. 10 seconds later, we configured the link between
WU and UIUC to drop all application packets sent by
WU gateway. We recorded the traffic for 120 seconds
before removing the dropping filter. We continued to
record measurements for additional 120 seconds before
we stopped the consumer’s traffic.

Figure 6 shows the traffic as recorded on the producer
and consumer VMs when using the best-route strategy,
and figure 7 shows the traffic recorded using the best-
route-r strategy. From these two figures we learn that
all Interests sent during the dropping interval remained
unsatisfied when using best-route, while the consumer-
producer traffic remained unaffected when using best-
route-r.

To better explore the strategy behavior, we recorded
all the traffic transmitted on WU links. We report the
results received when using the best-route strategy in
figure 8, and the results received using the best-route-r

Figure 6: End Hosts Traffic Over Time with
best-route

Figure 7: End Hosts Traffic Over Time with
best-route-r

Figure 8: WU Traffic Over Time with best-route

8



Figure 9: WU Traffic Over Time with best-
route-r

strategy in figure 9.
As shown in figure 8, due to NLSR costs configured

on the emulated testbed, UIUC was selected as the best
next-hop by the best-route strategy. At t=10, when the
link towards UIUC became congested and dropped all
the Interest packets transmitted by the consumer, the
traffic on this link dropped to almost zero. It is im-
portant to note that due to our overlay network setup
on top of the ONL machines, the traffic reported in
these figures contains NLSR traffic, and therefore the
recorded TX counters on this link does not present an
absolute zero. At t=135, NLSR determined the link
to UM as the new least expensive nest-hop to the pro-
ducer, and therefore the best-route strategy rerouted
all the traffic to use this link. At t=210, 100 seconds
after we terminated dropping UIUC packets, NLSR de-
termined UIUC as the least expensive next hop again,
and rerouted the traffic towards that link.

Figure 9 presents the measurements of the same WU
links when using the best-route-r strategy. As before,
the link to UIUC was first selected as the best next-
hop towards the producer. At t=10, the best-route-r
strategy retransmitted all unsatisfied Interests towards
UM, without waiting for NLSR to declare this face as
the least expensive next-hop. This is achieved due to
the IRP flag set by the application, and executed by
the best-route-r strategy. The strategy continues to use
UM link until UIUC becomes available again.

It is important to clarify that our intention in this ex-
periment was not to compare forwarding recovery time
to routing convergence time [9], but to demonstrate how
multipath consumer-producer service can maintain a
continuous traffic flow even when the network is con-
gested, and without forcing the application to imple-
ment its own retransmission mechanism as required by
the existing best-route strategy. Moreover, as can be
seen in figure 9, the Interest rate sent by the best-route-
r strategy on WU gateway is on average twice the rate

sent on WU using best-route. As in the previous ex-
periments, this is a direct outcome of the fixed retrans-
mission intervals we implemented in best-route-r, and
should be better explored by strategy developers.

7. CONCLUSION AND FUTURE WORK
In this paper, we discuss one of the core mechanisms

of a forwarding strategy in NDN: the in-network re-
transmission mechanism when an Interest remains un-
satisfied. In many cases, the application has to be cou-
pled with the details of the paired forwarding strategy
to guarantee correctness of its retransmission policy.
We argue that this coupling can be easily interrupted
when the selection of the forwarding strategy is over-
written by the network operator. By adding the IRP
flag to the Interest packet, we propose an abstraction to
the in-network retransmissions mechanism in which the
application decides whether an in-network retransmis-
sion is required, and leaves the strategy to decide how.
By using this abstraction, an application can maintain
its correct traffic flow regardless of the underlying strat-
egy, and can eliminate its dependency on the strategy
in-network retransmission policy. In addition, we pro-
pose adding the NR TLV to differentiate retransmitted
Interests from others.

In this work, we focus on proposing the retransmis-
sion abstraction and differentiation, and made simple
modifications to existing strategies to support it. How-
ever, the details of the in-network retransmission mech-
anism, such as the waiting time before retransmitting
an unsatisfied Interest, should be further explored as
part of future work. We would also like to extend our
set of experiments to use real-world applications on top
of NDN to determine whether there is one in-network
retransmission mechanism that outperforms others for
a wide range of applications. Another important future
work is exploring the security aspects of the proposed
mechanism. If the Interest packet is signed, changing
the NR field may cause validation challenges. However,
we believe that a future solution to a changed nonce
in NDN Interest, or a changed TTL in CCN Interest,
could be applied here as well.

Acknowledgement
This work was supported by NSF grants CNS-1040643
and CNS-1345282. The authors would also like to thank
John DeHart and Jyoti Parwatikar for their assistance
with the Open Network Laboratory and the NDN testbed.

8. REFERENCES
[1] Alexander Afanasyev et al. Nfd developer’s guide.

Technical report, NDN-0021, NDN, 2014.
[2] NFD Named Data Networking Forwarding

Daemon.
http://named-data.net/doc/NFD/current/.

9



[3] Marc Mosko. Ccnx 1.0 protocol specification
roadmap. 2013.

[4] Project CCNx. http://www.ccnx.org/.
[5] Cheng Yi et al. A case for stateful forwarding

plane. Computer Communications, 2013.
[6] Klaus M Schneider and Udo R Krieger. Beyond

network selection: Exploiting access network
heterogeneity with named data networking. In
Proceedings of the 2nd International Conference
on Information-Centric Networking, pages
137–146. ACM, 2015.

[7] Hila Ben Abraham and Patrick Crowley.
Forwarding strategies for applications in named
data networking. In Proceedings of the 2016
Symposium on Architectures for Networking and
Communications Systems, pages 111–112. ACM,
2016.

[8] AKM Hoque et al. Nlsr: Named-data link state
routing protocol. In Proceedings of the 3rd ACM
SIGCOMM Workshop on Information-centric
Networking, pages 15–20. ACM, 2013.

[9] Cheng Yi et al. On the role of routing in named
data networking. In Proceedings of the 1st
international conference on Information-centric
networking, pages 27–36. ACM, 2014.

[10] Alberto Compagno et al. To nack or not to nack?
negative acknowledgments in information-centric
networking. arXiv preprint arXiv:1503.02123,
2015.

[11] Peter Gusev and Jeff Burke. Ndn-rtc: Real-time
videoconferencing over named data networking. In
Proceedings of the 2nd International Conference
on Information-Centric Networking, pages
117–126. ACM, 2015.

[12] Giulio Grassi, Davide Pesavento, Giovanni Pau,
Lixia Zhang, and Serge Fdida. Navigo: Interesa ct
forwarding by geolocations in vehicular named
data networking. In World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2015
IEEE 16th International Symposium on a, pages
1–10. IEEE, 2015.

[13] Ze’ev Lailari, Hila Ben Abraham, Ben Aronberg,
Jackie Hudepohl, Haowei Yuan, John DeHart,
Jyoti Parwatikar, and Patrick Crowley.
Experiments with the emulated ndn testbed in
onl. In Proceedings of the 2nd International
Conference on Information-Centric Networking,
pages 219–220. ACM, 2015.

[14] NDN Testbed. http://ndnmap.arl.wustl.edu/.

10


	In-Network Retransmissions in Named Data Networking
	Recommended Citation
	In-Network Retransmissions in Named Data Networking

	tmp.1468010667.pdf.MC7nK

