
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Spring 5-16-2023

Targeted Adversarial Attacks against Neural Network Trajectory Targeted Adversarial Attacks against Neural Network Trajectory

Predictors Predictors

Kaiyuan Tan

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Other Computer Engineering Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Tan, Kaiyuan, "Targeted Adversarial Attacks against Neural Network Trajectory Predictors" (2023).
McKelvey School of Engineering Theses & Dissertations. 842.
https://openscholarship.wustl.edu/eng_etds/842

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=openscholarship.wustl.edu%2Feng_etds%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=openscholarship.wustl.edu%2Feng_etds%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/842?utm_source=openscholarship.wustl.edu%2Feng_etds%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

McKelvey School of Engineering
Department of Electrical & Systems Engineering

Thesis Examination Committee:
Yiannis Kantaros, Chair

ShiNung Ching
Shen Zeng

Targeted Adversarial Attacks against Neural Network Trajectory Predictors
by

Kaiyuan Tan

A thesis presented to
the McKelvey School of Engineering

of Washington University in
partial fulfillment of the

requirements for the degree
of Master of Science

May 2023
St. Louis, Missouri

© 2023, Kaiyuan Tan

Table of Contents

List of Figures . iii

List of Tables . iv

Acknowledgments . v

Abstract . vi

Chapter 1: Introduction . 1

Chapter 2: Problem Formulation . 4
2.0.1 Trajectory Prediction via Deep Neural Networks 4
2.0.2 Targeted Adversarial Attack Formulation 5

Chapter 3: Proposed Targeted Adversarial Attack for Trajectory Prediction 7

Chapter 4: Experiments . 9
4.0.1 Experimental Setup . 9
4.0.2 Evaluation of TA4TP . 11

Chapter 5: Some future work attempts . 16

Chapter 6: Conclusion . 17

References . 18

ii

List of Figures

Figure 1.1: A graphical demonstration of the proposed targeted adversarial attack in
an autonomous driving (left) and pursuit evasion scenario (right). In the
left figure, the adversary (car A) designs a trajectory so that the DNN
model of car C predicts that car A will accelerate and move between
cars B and C. The latter may cause the nearby moving cars make unsafe
decisions (e.g., accelerate or even exit their road lanes). In the right
figure, the red marked drone plans to move towards a restricted area to
take pictures of factory facilities. The green marked drone collects past
trajectories of nearby moving agents and, using a DNN model, predicts
their future paths. If the predicted trajectories lead towards the restricted
area, an alarm is raised, and the green drone is tasked with pursuing the
intruders. One of the strategies that the red drone applies to remain
stealthy is to follow adversarially crafted trajectories that will make the
green drone specifically predict that the red drone is heading away from
the restricted area. 2

Figure 2.1: Graphical illustration of the problem formulation for P = F = 4. Our
goal is to design an adversarial input trajectory (red solid line) that looks
natural (i.e., close to nominal inputs - blue solid line) and fools the DNN
model into predicting a trajectory (red dashed line) that is as close as
possible to a desired/target trajectory (cyan dashed line). 5

Figure 4.1: Graphical illustration of TA4TP in three different scenarios. Observe
that in all cases the perturbed input (red solid line) is very close to the
nominal trajectory (blue solid line) while the predicted trajectory (red
dashed) almost overlaps with the target one (cyan dashed). 11

Figure 4.2: Performance of TA4TP given an aggressive target trajectory. The target trajectory

requires the car to move along the cyan direction with a velocity that is significantly

higher than the one associated with the input path. This difference in the velocity is

illustrated by the large distance between the waypoints in the target trajectory. . . 12

iii

List of Tables

Table 4.1: Summary of results for TA4TP with Kmax = 100 and τ = 0.02m. The
second, third, and fourth column show the nominal accuracy of the DNN
models, the average deviation between the target and the ground truth
trajectories, and the average deviation between the predicted and the
target trajectories, respectively. The last two columns show the average
runtime to design a single adversarial trajectory. 10

Table 4.2: Summary of results for TA4TP with Kmax = 10 and τ = 0.02m. 13

Table 4.3: DNN robustness analysis against random noise on clean inputs. 13

iv

Acknowledgments

The whole project was finished on a tight schedule. It was a challenge for me both physically

and mentally. I was eager to prove myself before the application season, so this project was

quite meaningful from my perspective. I will always treasure those late nights I’ve been

working. Not only because that work sharpens my coding skills, but it also reminds me of

the countless help my advisor and friend had given.

First and foremost, I want to say thank you to my dear advisor. He offered professional advice

as well as instructions during the whole project, making it an innovative work. Although

I might be the early-stage student working with him, he showed his patience and in-depth

vision during the process. I believe he would be a great professor in the future. Secondly,

I’m willing to acknowledge my senior Wang in this part. When he knew I didn’t have a

place to do research before my Ph.D. application, he referred me to his group where we had

lots of cooperation later. To some extent, this paper might not exist without him. Last but

not least, I would like to appreciate myself. Facing a bunch of codes was challenging, but I

made it.

At the time when I was writing this paragraph, I had already declined two offers this year.

And decided to serve as a RA for one year. This might be a tough decision that leads to

nowhere, but I made up my mind to give my dream a try. Hope I can get my dream offer in

the next year!

Kaiyuan Tan

Washington University in St. Louis

May 2023

v

ABSTRACT OF THE THESIS

Targeted Adversarial Attacks against Neural Network Trajectory Predictors

by

Kaiyuan Tan

Master of Science in Electrical Engineering

Washington University in St. Louis, 2023

Assistant Professor Yiannis Kantaros, Chair

Trajectory prediction is an integral component of modern autonomous systems as it allows

for envisioning future intentions of nearby moving agents. Due to the lack of other agents’

dynamics and control policies, deep neural network (DNN) models are often employed for

trajectory forecasting tasks. Although there exists an extensive literature on improving the

accuracy of these models, there is a very limited number of works studying their robustness

against adversarially crafted input trajectories. To bridge this gap, in this paper, we propose

a targeted adversarial attack against DNN models for trajectory forecasting tasks. We call

the proposed attack TA4TP for Targeted adversarial Attack for Trajectory Prediction. Our

approach generates adversarial input trajectories that are capable of fooling DNNmodels into

predicting user-specified target/desired trajectories. Our attack relies on solving a nonlinear

constrained optimization problem where the objective function captures the deviation of the

predicted trajectory from a target one while the constraints model physical requirements

that the adversarial input should satisfy. The latter ensures that the inputs look natural

and they are safe to execute (e.g., they are close to nominal inputs and away from obstacles).

We demonstrate the effectiveness of TA4TP on two state-of-the-art DNN models and two

datasets. To the best of our knowledge, we propose the first targeted adversarial attack

against DNN models used for trajectory forecasting.

vi

Chapter 1

Introduction

Trajectory prediction algorithms play a pivotal role in enabling autonomous systems to make

safe and efficient control decisions in highly dynamic environments as they can forecast future

behaviors of nearby moving agents [9,11,12,15,16,21,29,33,36,38,43,45]. To address the lack

of knowledge of other agents’ intentions and control policies, deep neural network (DNN)

models are often employed to address behavior forecasting tasks as e.g., in [6, 28, 35, 41].

These works typically assess the performance of the proposed DNN models by measuring

the deviation of the predicted trajectories from the ground truth ones. However, they neglect

to evaluate their robustness against adversarially crafted input trajectories. In fact, lack of

adversarial robustness can significantly compromise safety of autonomous systems; see e.g.,

the autonomous driving and pursuit-evasion scenarios shown in Fig. 1.1.

A first step towards evaluating robustness of trajectory prediction models is to provide

automated methods that compute adversarial inputs (i.e., corner cases in the input space)

where these models fail. To this end, in this paper, we propose a new white box targeted

adversarial attack against DNN models used for trajectory forecasting tasks. We call the

proposed attack TA4TP for Targeted adversarial Attack for Trajectory Prediction. The

goal of TA4TP is to perturb any nominal input trajectory so that the DNN prediction is

as close as possible to a user-specified target/desired trajectory. Throughout the paper,

trajectories are defined as finite sequences of system states (e.g., positions of a car). We

formulate the attack design process as a constrained non-linear optimization problem where

the objective function captures the deviation of the predicted trajectory from the desired one

and the constraints capture physical requirements that the perturbed input should satisfy.

Specifically, to define the objective function, we first assign weights to each state in the

target trajectory; the higher the weight is, the more important the corresponding desired

state is. This allows an adversary to assign priorities to the desired states. For instance,

in certain applications it may be significant for an adversary to make other agents wrongly

1

Figure 1.1: A graphical demonstration of the proposed targeted adversarial attack in an au-
tonomous driving (left) and pursuit evasion scenario (right). In the left figure, the adversary (car
A) designs a trajectory so that the DNN model of car C predicts that car A will accelerate and
move between cars B and C. The latter may cause the nearby moving cars make unsafe decisions
(e.g., accelerate or even exit their road lanes). In the right figure, the red marked drone plans to
move towards a restricted area to take pictures of factory facilities. The green marked drone collects
past trajectories of nearby moving agents and, using a DNN model, predicts their future paths. If
the predicted trajectories lead towards the restricted area, an alarm is raised, and the green drone
is tasked with pursuing the intruders. One of the strategies that the red drone applies to remain
stealthy is to follow adversarially crafted trajectories that will make the green drone specifically
predict that the red drone is heading away from the restricted area.

predict that its final state is within a certain region while the predicted trajectory towards

that region may be of secondary importance; this is the case e.g., in the autonomous driving

example shown in Fig. 1.1 and in the experiments provided in Section ??. Then, the objective

function is defined as the weighted average ℓ2 distance between the predicted and the desired

states. The constraints require the adversarially perturbed trajectory to satisfy certain

physical constraints. For instance, in Fig. 1.1, in the autonomous driving scenario, the

perturbed trajectory should stay within the lane and close enough to the nominal trajectory.

Similarly, in the pursuit-evasion scenario shown in Fig. 1.1, the perturbed trajectory should

be obstacle-free. Assuming that the structure of the target DNN model is fully known, we

solve this optimization problem by leveraging gradient-based methods, such as the Adam

optimizer [26]. Our experiments on state-of-the-art datasets and DNN models show that

the proposed attack can successfully force given (and known to the attacker) DNN models

to predict desired trajectories. We believe that the proposed attack will enable users to

evaluate as well as enhance the adversarial robustness of DNN-based trajectory forecasters.

2

Related Works: DNNs have seen renewed interest in the last decade due to the vast amount

of available data and recent advances in computing. In autonomous systems, DNNs are typi-

cally used either as feedback controllers and planners [1,8,13,39], perception modules [31,40],

or for trajectory prediction [6,28,41] that is also the case in this paper. Despite the impres-

sive experimental performance of DNNs, their brittleness has resulted in unreliable system

behaviors and public failures preventing their wide adoption in safety-critical applications.

This is also demonstrated by several adversarial attack algorithms that have been proposed

recently. These attacks, similar to the proposed one, aim to minimally manipulate inputs to

DNN models, so that they can cause incorrect outputs that would benefit an adversary. The

large majority of existing adversarial attacks against DNN models are focused on perceptual

tasks such as image classification or object detection as e.g., in [2, 5, 7, 10,14,27,32,37]. Re-

cently, adversarial attacks against DNNs used for planning and control have been proposed

in [17, 19, 42]. However, there is a very limited number of studies evaluating robustness of

DNN models for trajectory prediction against adversarial attacks. We believe that the clos-

est works to ours are the recent ones presented in [4,44]. Common in these works is that they

design untargeted attacks, i.e., they aim to maximize the prediction error or, in other words,

the difference between predicted and ground truth trajectories. To the contrary, in this work

we design targeted adversarial attacks to make DNN predictions be as close as possible to

any user-specified desired trajectories. We argue that the proposed targeted attack is more

expressive than un-targeted ones as the latter do not allow the adversary to freely pick any

desired predicted trajectory and, therefore, cause desired unsafe situations. For instance, us-

ing untargeted attacks, in the autonomous driving setup in Fig. 1.1, an adversarially crafted

trajectory for car A that maximizes the prediction error may point to the left or right lane

which may not necessarily compromise safety of other cars. To the contrary, the proposed

attack allows the adversary to select target trajectories, as shown in Fig. 1.1, that may force

other cars make unsafe decisions. To the best of our knowledge, we propose the first targeted

adversarial attack against trajectory forecasting DNN models.

3

Chapter 2

Problem Formulation

In this section, we first describe the trajectory prediction task (Section 2.0.1) and then we

formally define the targeted adversarial attack design problem as a nonlinear constrained

optimization problem (Section 2.0.2).

2.0.1 Trajectory Prediction via Deep Neural Networks

We consider trajectory prediction tasks accomplished by DNNs. The goal in these tasks

is to forecast the future trajectory of an agent given its past trajectories. Particularly, a

DNN model takes as an input a sequence of P past observed states of a moving agent

(e.g., locations of a pedestrian) every T time units, and outputs a sequence of predicted

future states of this agent; see Fig. 2.1. We denote the input sequence to the DNN model

by Xt−P :t = [Xt−P , ...,Xt−1,Xt], where Xn is the state of the agent at the past time step

n ∈ [t − P, . . . , t]. We also denote the ground truth future path of this agent in the next

F future steps as Gt+1:t+F = [Gt+1,Gt+2, ...,Gt+F], where Gn stands for the ground truth

state at the future time n ∈ [t + 1, . . . , t + F]. Similarly, we denote the prediction of the

DNN model for next F steps by Pt+1:t+F = [Pt+1,Pt+2, ...,Pt+F]. Denoting the DNN model

by f , we have that Pt+1:t+F = f(Xt−P :t).

4

Figure 2.1: Graphical illustration of the problem formulation for P = F = 4. Our goal is to design
an adversarial input trajectory (red solid line) that looks natural (i.e., close to nominal inputs -
blue solid line) and fools the DNN model into predicting a trajectory (red dashed line) that is as
close as possible to a desired/target trajectory (cyan dashed line).

2.0.2 Targeted Adversarial Attack Formulation

Consider a DNN trajectory prediction model f and any nominal trajectory Xt−P :t that

the system has designed to follow in the time interval [t − P, t]. We note that Xt−P :t

can be designed using any existing planning algorithm such as [20, 23, 24]. Our goal is

to design a perturbation ∆t−P :t = [∆t−P , . . . ,∆t−1,∆t], yielding a perturbed/adversarial

trajectory X̃t−P :t = [X̃t−P , . . . , X̃t−1, X̃t], defined as X̃t−P :t = Xt−P :t + ∆t−P :t = [Xt−P +

∆t−P , ...,Xt−1 + ∆t−1,Xt + ∆t], so that (i) if the adversarial agent follows the trajectory

X̃t−P :t, then the corresponding trajectory predicted by f , denoted by P̃t+1:t+F = f(X̃t−P :t),

will be the desired/target trajectory denoted by Yt+1:t+F = [Yt+1Yt+2, ...Yt+F] (that may

be completely different from the ground truth one), i.e., P̃t+1:t+F = Yt+1:t+F and (ii) X̃t−P :t

satisfies certain physical constraints; see Fig. 2.1. To design this attack (i.e., X̃t−P :t), we

assume that the attacker has full knowledge of the DNN model f . Formally, we formulate

the targeted adversarial attack design problem as a nonlinear optimization problem defined

5

as follows:

min
∆t−P :t

J(∆t−P :t) =
t+F∑

m=t+1

wm∥P̃m −Ym∥2 (2.1a)

X̃n ∈ Cn, ∀n ∈ [t− P, . . . , t] (2.1b)

where, P̃t+1:t+F = f(X̃t−P :t) = f(Xt−P :t+∆t−P :t). The objective function in (2.1a) captures

the weighted average distance, using the ℓ2 norm, between the predicted trajectory (i.e.,

P̃t+1:t+F) and the desired trajectory (i.e., Yt+1:t+F). Also, in (2.1a), wm is a weight modeling

the importance of the m-th state (i.e., Ym) in the desired trajectory Yt+1:t+F ; the higher

the wm is, the more important is for P̃m to be close to Ym. The weights are selected so

that wm ∈ [0, 1] and
∑t+F

m=t+1 wm = 1. The constraint X̃n ∈ Cn, for all n ∈ [t − P, . . . , t],

requires each state X̃n to belong to a set Cn collecting all permissible values. For instance,

in an autonomous driving scenario, if Xn captures the agent position, then X̃n ∈ Cn may

require the adversarially crafted trajectory to be fully within the lane (to ensure safety of

the adversary). Note that, in general, the sets Cn can be defined differently across the

states of the trajectories while their design is scenario-specific. We assume that all states in

the nominal trajectory satisfy the corresponding constraints and, therefore, (2.1) is feasible;

e.g., zero perturbation is a feasible solution. In summary, in this paper, we address the

following problem: Given (i) a fully known trajectory prediction DNNmodel f ; (ii) a nominal

trajectory Xt−P :t that the system will follow in the time interval [t − P : t]; (iii) a desired

predicted trajectory Yt+1:t+F ; (iv) weights wm for all m ∈ [t + 1, . . . , t + F] and a set of

permissible states Cn for all n ∈ [t − P, . . . , t], compute the perturbation ∆t−P :t that once

applied toXt−P :t it will minimize the average weighted deviation between the DNN prediction

(i.e., P̃t+1:t+F = f(Xt−P :t +∆t−P :t)) and the desired trajectory (i.e., Yt+1:t+F), as captured

by (2.1).

6

Chapter 3

Proposed Targeted Adversarial

Attack for Trajectory Prediction

In this section, we present our approach to address Problem 2.0.2. In the rest of this section,

for simplicity of notation, when it is clear from the context, we drop the dependence of

trajectories on time. For instance, we simply denote the nominal trajectory by X instead of

Xt−P :t. This extends to all sequences of states and perturbation (e.g., ∆, X̃, P, Y).

The proposed adversarial attack, called TA4TP, leverages iterative gradient-based algo-

rithms; see Algorithm 1. We denote by ∆k the perturbation generated by Algorithm 1

at iteration k. First, we randomly initialize the perturbation, denoted by ∆0. Then, at

every iteration k of the algorithm we update ∆k by moving along a descent direction that

minimizes the loss function J(∆). This can be achieved by simply applying a gradient

descent step i.e.,

∆k+1 = ∆k − ϵk∇J(∆k), (3.1)

where ϵk is a step-size. We note that any other optimization algorithm can be used to

compute ∆k so that J(∆k+1) ≤ J(∆k), such as the Adam optimizer; see Section ??. Then,

we compute the corresponding perturbed trajectory as X̃k+1 = X+∆k+1.

Next, we check if all states in X̃k+1 satisfy the constraints captured in (2.1b), i.e., if X̃k+1
n ∈

Cn, for all n. If so, then the iteration index k is updated, i.e., k = k + 1 and we repeat the

above process. Otherwise, we project X̃k+1 into the feasible space captured by the sets Cn.
Note that Cn may be high-dimensional and non-convex sets making the projection process

challenging. Inspired by [44], to address this issue, we apply a simple line search algorithm.

Particularly, first, we introduce parameters θn ∈ [0, 1], associated with each state X̃k+1
n .

Then, we aim to find the maximum values of θn, so that X̃k+1
n = Xn+θn∆

k+1
n belongs to the

7

Algorithm 1 TA4TP: Targeted adversarial Attack for Trajectory Prediction

Input: {Nominal trajectory X, DNN f , Target trajectory Y, Physical Constraints Cn}
Output: {Perturbed Trajectory X̃}
Initialize ϵ0 and ∆0, and set k = 0
while (k <= Kmax) OR (J(∆k) ≤ τ) do
Update ∆k+1 = ∆k − ϵk∇J(∆k)
if X+∆k+1 does not satisfy the constraints Cn then
Compute θ as per (3.2) (Projection)
Compute ∆k+1 = θ ◦ (∆k − ϵk∇J(∆k))

end if
Current perturbed trajectory X̃k+1 = X+∆k+1

k = k + 1
Update ϵk

end while
Output: X̃ = X̃k+1

set Cn. In math, to perform this projection, we solve the following optimization problem:

max
θt−P ,...,θt

t∑
n=t−P

θn (3.2a)

Xn + θn∆
k+1
n ∈ Cn,∀n ∈ {t− P, . . . , t}, (3.2b)

θn ∈ [0, 1],∀n ∈ {t− P, . . . , t}. (3.2c)

We solve (3.2) by simply applying a line search algorithm. Observe that since the nominal

trajectory X satisfies the constraint (2.1b), we have that (3.2) is always feasible (i.e., θn = 0

is always a feasible solution). We note that the above projection process may be sub-

optimal if the sets Cn are non-convex in the sense that there may be other points on the

boundary of Cn that are closer to Xn+∆k+1
n than the ones generated by solving (3.2). Once

θ = [θt−P , . . . , θt−1, θt] is computed, we update the perturbation as

∆k+1 = θ ◦ (∆k − ϵk∇J(∆k)), (3.3)

where ◦ denotes the Hadamard product (i.e., the element wise product between two vectors).

Next, the iteration index k is updated, i.e., k = k + 1, and the above iteration is repeated.

The algorithm terminates either after a user-specified maximum number Kmax of iterations

has been reached or when the loss function J(∆) is below a desired threshold τ .

8

Chapter 4

Experiments

In this section, we evaluate the efficiency of proposed attack. In particular, in Section 4.0.1,

we present the considered datasets and DNN models. In Section 4.0.2, we evaluate the

performance of the designed attack under various settings.

4.0.1 Experimental Setup

Models: We consider two state-of-the-art and open-source trajectory prediction models.

The first one is Grip++, proposed in [28], which achieves good performance over several

datasets. Grip++ uses a graph to represent the interactions of close objects and uses an

encoder-decoder long short-term memory (LSTM) model to make predictions. The second

model is Trajectron++ [41], a modular, graph-structured model that predicts the trajec-

tories of diverse agents while incorporating agent dynamics and heterogeneous data (e.g.,

semantic maps). The latter predicts multiple trajectories with probabilities and we select

the trajectory with the highest probability as the final result.

Datasets: In our implementation, we considered two datasets: Nuscenes [3] and Apolloscape

[18]. They both collect trajectories from autonomous driving scenarios in urban areas. Par-

ticularly, Nuscenes includes past trajectories with four states (i.e., P = 4 in Section 2.0.1),

future trajectories with twelve states (i.e., F = 12 in Section 2.0.1), and semantic maps.

Apolloscape includes past trajectories that have six states (i.e., P = 6) and future trajecto-

ries that also have six states (i.e., F = 6). To provide a fair comparison across datasets and

models, we neglect the semantic maps in the Nuscenes dataset.

Physical Constraints: We require the adversarially crafted input trajectory X̃ to satisfy a

set of physical constraints. Specifically, recall that each state X̃n in X̃ must belong to a set

Cn. Given the autonomous driving nature of the conducted experiments, we design the sets Cn

9

J̄nom
acc (m) J̄G−Y (m) J̄ (m) [Adam] T (secs) [grad] T (secs) [Adam]

Grip apolloscape 0.013 2.363 0.140 33.342 19.366
Grip nuscenes 0.246 1.527 0.111 44.173 12.553

Trajectron apolloscape 0.152 2.698 0.284 429.333 161.728
Trajectron nuscenes 0.450 0.937 0.031 582.667 144.648

Table 4.1: Summary of results for TA4TP with Kmax = 100 and τ = 0.02m. The second, third,
and fourth column show the nominal accuracy of the DNN models, the average deviation between
the target and the ground truth trajectories, and the average deviation between the predicted and
the target trajectories, respectively. The last two columns show the average runtime to design a
single adversarial trajectory.

so that they impose constraints on the position, velocity, and acceleration (all these features

are included in X̃n) of the adversarial vehicle, as in [44]. Specifically, first we require the

perturbed positions in X̃n to be within 1m from the corresponding nominal/normal positions

in Xn for all n. Given that the urban lane width is 3.7m and the average width of cars is

about 1.7m, this constraint requires a car not shifting to another lane if it is normally driving

in the center of the lane. Additionally, we traverse all trajectories in the testing dataset to

calculate the mean µ and standard deviation σ of (1) scalar velocity, (2) longitudinal/lateral

acceleration, and (3) derivative of longitudinal/lateral acceleration. For each µ and σ, we

also require the respective values of the perturbed trajectories not exceeding µ± 3σ. These

physical constraints essentially preclude careless driving of the adversarial agent and, as a

result, they have the potential to preserve stealthiness of the attack. Finally, we specify

the target trajectory Y by determining the desired positions for the adversarial vehicle. The

remaining features in the target states in Y (e.g., velocity and acceleration) can be computed

using the desired target positions.

Weight Assignment: As mentioned in (2.1a), weights wm need to be assigned to each

state Ym in the target trajectory capturing how important is the predicted states to match

with the target ones. In our setup, we define the weights so that 0 < wm < wm+1 for all

m ∈ {t+1, . . . , t+F−1} to give more importance to the final states in the desired trajectory.

Specifically, we define the weights so that the loss function in (2.1a) captures the exponential

moving average deviation between the predicted and the desired states. We emphasize that

any other definition of weights is possible.

10

Figure 4.1: Graphical illustration of TA4TP in three different scenarios. Observe that in all cases
the perturbed input (red solid line) is very close to the nominal trajectory (blue solid line) while
the predicted trajectory (red dashed) almost overlaps with the target one (cyan dashed).

4.0.2 Evaluation of TA4TP

In what follows, we evaluate the performance of TA4TP on the previously described datasets

and models. We randomly sample 100 scenarios as test cases from each dataset. These

trajectories are called, hereafter, test trajectories.

DNN Nominal Accuracy: First, we report the performance of the DNN models in the

nominal setting (i.e., without any attacks) by computing the average deviation of the pre-

dicted trajectory from the ground truth one, for every test trajectory. Specifically, we com-

pute Jnom
acc (G,P) =

∑t+F
m=t+1

∥Pm−Gm∥2
F

for each input test trajectoryX, where recall that P is

the DNN prediction given the input X. Then, we compute the average of Jnom
acc (G,Y) across

the test trajectories, denoted by J̄nom
acc . These results are reported in the second column of

Table 4.1. Note that J̄nom
acc is measured in meters (m) since for its computation only the posi-

tions of the car are considered (i.e., the remaining features such as velocity and acceleration

are neglected as they can be uniquely computed by the positions). The same applies to all

metrics discussed in the rest of this section.

Target Trajectory: Second, we specify the target trajectories Y. The third column in

Table 4.1 quantifies how different the target trajectories are from the ground truth one.

Formally, we compute the JG−Y (G,Y) =
∑t+F

m=t+1
∥Gm−Ym∥2

F
, for each trajectory in the test

set, using, again, only the car positions. Then, we compute the average of JG−Y (G,Y) across

the test trajectories, denoted by J̄G−Y . These results are reported in the third column of

11

Table 4.1. The larger the JG−Y (G,Y) is, the more the desired trajectory deviates from the

ground truth.

Evaluation of Attack Success: In the fourth column of Table 4.1, we report the perfor-

mance of TA4TP as captured by the objective function J in (2.1a). Specifically, we compute

(2.1a) for each test trajectory as an input and then we report the average across all trajec-

tories, denoted by J̄ . The lower the J̄ is, the more successful the attack is. In this setup,

we terminate the optimization algorithm when either the loss function J is less than 0.02

m or the maximum number of iterations Kmax = 100 has been reached. Also, we used the

Adam optimizer to compute ∆k+1 (as opposed to gradient descent mentioned in Alg. 1)

due to its fast convergence properties. Observe that good prediction accuracy on normal

trajectories does not necessarily lead to good adversarial robustness. For instance, Grip++

has a better nominal accuracy in the Apolloscape dataset than Trajectron++ does (see the

second column).

Figure 4.2: Performance of TA4TP given
an aggressive target trajectory. The target
trajectory requires the car to move along the
cyan direction with a velocity that is signifi-
cantly higher than the one associated with the
input path. This difference in the velocity is
illustrated by the large distance between the
waypoints in the target trajectory.

However, performance of Grip++ on this dataset

seems to be more vulnerable than Trajectron++ to

adversarial perturbations (see the fourth column).

Also, observe in the fourth column that J̄ is quite

small implying that the predicted trajectories are

sufficiently close to the target ones; see e.g., Figure

4.1.

We note that this may not always be the case de-

pending on the physical constraints and the target

trajectory. For example, if the physical constraints

are very tight and the target trajectory is rather ag-

gressive (i.e., too far from the nominal prediction),

then the optimal perturbed trajectory, as per (2.1),

may not achieve a low loss as per (2.1a). This is

demonstrated in Fig. 4.2; fooling the DNN model

into predicting such target trajectories requires re-

laxing the physical constraints.

12

J̄ (m) [Adam] T (secs) [Adam] J̄ (m) [grad] T (secs) [grad]

Grip apolloscape 0.331 4.699 0.635 4.089
Grip nuscenes 0.132 3.749 0.196 4.313

Trajectron apolloscape 0.364 35.790 0.495 35.978
Trajectron nuscenes 0.077 39.093 0.199 46.777

Table 4.2: Summary of results for TA4TP with Kmax = 10 and τ = 0.02m.

Attack Design Runtime: The last two columns

in Table 4.1 show the average time required to gen-

erate an adversarial trajectory using gradient descent (as in (3.1)) and Adam optimizer.

As expected, the Adam optimizer is significantly faster than the standard gradient descent

method.

Particularly, Adam reduces the computational time by at least 42%. Also, notice that

based on the runtimes shown in Table 1, execution of the proposed attack in real time may

be prohibitive. To mitigate this, a smaller maximum number of iterations Kmax can be

selected in Alg. 1 which, however, may compromise the accuracy of the attack (as measured

by (2.1a)). For instance, in Table 4.2, we run the same set of experiments as before but

with Kmax = 10. Observe that the runtimes are at least 10 times smaller than the ones

reported in Table 1 (where Kmax = 100). Also, observe in the second column of Table 4.2,

that the accuracy of TA4TP has decreased (compared to the one in Table 4.1), but it still

achieves a satisfactory performance. In the fourth column of Table 4.2, we also report the

corresponding deviation error J̄ for the standard gradient descent approach. As expected,

the Adam optimizer is faster and achieves a better performance within a fixed number of

iterations. We also note that potentially an adversary can design adversarial trajectories

offline, store them in a library, and select them online when needed.

DNN Robustness to Random Noise on Clean Inputs: Next, we investigate how/if

small random (i.e., non-adversarial) noise affects the performance of the considered DNNs

J̄nom
acc (m) J̄(m) [Adam]

Grip apolloscape 0.413 2.260
Grip nuscenes 1.365 1.219

Trajectron apolloscape 0.742 2.153
Trajectron nuscenes 3.710 1.040

Table 4.3: DNN robustness analysis against random noise on clean inputs.

13

in nominal settings. Particularly, we examine the performance of the DNN models when

random noise is embedded in clean (i.e., non-adversarial) inputs. To generate a small amount

of random noise, we apply the following process. Given a clean trajectory c, we compute

the average distance between consecutive waypoints denoted δ̄c. Then for each waypoint in

c, we sample a new waypoint within a ball centered at the original waypoint with radius

0.02δ̄c. These new waypoints constitute the ‘noisy clean’ inputs that are close enough to the

original ones. Then, given these noisy inputs, we compute the average nominal accuracy J̄nom
acc

and the average deviation J̄ from the target paths, as defined before; hereafter, we assume

Kmax = 100 and τ = 0.02 and we consider the same target paths as the ones considered

before. The results are reported in Table 4.3 and they should be compared against the ones

in the second and fourth column of Table 4.1. Observe that the nominal accuracy J̄nom
acc of

both models has dropped due to the random noise demonstrating their sensitivity; Grip++

seems to be more robust to random noise than Trajectron++ is. Notice also that J̄ is

significantly high for both models meaning that simply applying random noise cannot fool

them into predicting the desired trajectories.

DNN Robustness to Random Noise on Adversarial Inputs: We repeat the same

process as above but in adversarial settings. In other words, we examine how the DNN

models perform in the vicinity of adversarially crafted trajectories. Specifically, we compute

J̄ after adding a small amount of noise (exactly as discussed above) into the adversarial inputs

generated for Table 4.1. This metric for Grip++ on the Apolloscape and Nuscenes dataset

is 0.203 m and 0.253 m, respectively. Similarly, for Trajectron++, we get that the deviation

error J̄ on the Apolloscape and Nuscenes datasets is 0.507 m and 0.099 m, respectively.

This error is close to the corresponding one reported for the ‘noiseless’ adversarial inputs

on the fourth column of Table 4.1. This also implies robustness of TA4TP against random

noise that may occur naturally e.g., due to slippery roads or wind gusts. Additionally, by

comparing these values with the respective ones for the ‘noisy clean’ inputs (see the last

column in Table 4.3), we see that the DNN models seem to be more robust in the vicinity

of adversarial inputs than in the vicinity of clean inputs. We believe that this observation

may also be useful to detect adversarial inputs. Similar observations have been used to

detect adversarial inputs to image classifiers [22, 25, 30, 34]. Specifically, to detect whether

an input image is benign or not, these works investigate how the DNN output changes under

transformations (e.g., compression, rotation, or adding noise) applied to the inputs.

14

Effect of traffic density: Trajectory prediction models model the interaction among ob-

jects as a graph structure to enhance prediction performance. To study the factor of traffic

density, we perform the following experiment. First we randomly sample 20 test trajectories

from the Apolloscape dataset and we compute the average deviation J̄ , defined earlier, when

(i) all agents in the scene are considered versus (ii) all other agents besides the adversary and

a randomly selected agent are dropped from the scene. We denote by J̄all and J̄2 the average

deviation J̄ in the settings (i) and (ii), respectively. As for Grip++, we get that J̄all = 0.215

m and J̄2 = 0.331m while for Trajectron++, we get that J̄all = 0.034 m and J̄2 = 0.102 m.

Observe that the attack remains successful in both settings in the sense that the deviation

from the target trajectory is quite low. It is also worth noting that J̄all < J̄2, i.e., it seems to

be ‘easier’ to fool the DNN models in high traffic density scenarios. Nevertheless, this result

may be specific to this experimental setup.

15

Chapter 5

Some future work attempts

In this section, we decided to try the conformal prediction on detecting the adversarial

examples we generated To make the autonomous system safer.

Conformal prediction is a powerful technique for detecting out-of-distribution (OOD) data,

which can be leveraged to identify adversarial inputs in machine learning systems. The core

concept of conformal prediction is to generate confidence regions for predictions by cali-

brating them using nonconformity scores, which are computed as a measure of dissimilarity

between a new input and a training dataset. In the context of adversarial input detection,

the nonconformity scores can be used to identify instances that deviate significantly from

the expected data distribution. By setting a predefined significance level, conformal predic-

tion can produce prediction intervals for each input, which allows for the quantification of

uncertainty. If the prediction intervals for a particular input are wide or do not contain the

predicted class, it is indicative of potential OOD data or an adversarial attack. By carefully

selecting the nonconformity measure and significance level, the conformal prediction may

have the potential to effectively detect and mitigate the impact of adversarial inputs on the

model’s performance, thus enhancing the robustness of machine learning systems.

However, due to the length of the sequence of the dataset being too short, the conformal

prediction may not be able to make a reliable prediction this time. But we will still try new

ways to detect adversarial inputs.

16

Chapter 6

Conclusion

We proposed TA4TP, the first targeted adversarial attack for DNN models used for tra-

jectory forecasting tasks. We demonstrated experimentally that TA4TP can design input

trajectories that look natural and are capable of fooling DNN models into predicting desired

outputs. We believe that the proposed method will allow users to evaluate as well as enhance

robustness of trajectory prediction DNN models.

17

References

[1] S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin. Combining optimal control and
learning for visual navigation in novel environments. In Conference on Robot Learning,
pages 420–429. PMLR, 2020.

[2] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang. Attacking
vision-based perception in end-to-end autonomous driving models. Journal of Systems
Architecture, 110, 2020.

[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 11621–11631, 2020.

[4] Y. Cao, C. Xiao, A. Anandkumar, D. Xu, and M. Pavone. Advdo: Realistic adversarial
attacks for trajectory prediction. In European Conference on Computer Vision, pages
36–52. Springer, 2022.

[5] N. Carlini and D. Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, pages 3–14. ACM, 2017.

[6] H. Cheng, M. Liu, L. Chen, H. Broszio, M. Sester, and M. Y. Yang. Gatraj: A
graph-and attention-based multi-agent trajectory prediction model. arXiv preprint
arXiv:2209.07857, 2022.

[7] S.-H. Choi, J.-M. Shin, P. Liu, and Y.-H. Choi. Argan: Adversarially robust genera-
tive adversarial networks for deep neural networks against adversarial examples. IEEE
Access, 10:33602–33615, 2022.

[8] F. Djeumou and U. Topcu. Learning to reach, swim, walk and fly in one trial: Data-
driven control with scarce data and side information. In Learning for Dynamics and
Control Conference, pages 453–466. PMLR, 2022.

[9] J. L. V. Espinoza, A. Liniger, W. Schwarting, D. Rus, and L. Van Gool. Deep interactive
motion prediction and planning: Playing games with motion prediction models. In
Learning for Dynamics and Control Conference, pages 1006–1019. PMLR, 2022.

[10] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song. Robust physical-world attacks on deep learning visual clas-
sification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1625–1634, 2018.

18

[11] J. Fang, F. Wang, P. Shen, Z. Zheng, J. Xue, and T.-s. Chua. Behavioral intention
prediction in driving scenes: A survey. arXiv preprint arXiv:2211.00385, 2022.

[12] D. Fridovich-Keil, A. Bajcsy, J. F. Fisac, S. L. Herbert, S. Wang, A. D. Dragan, and
C. J. Tomlin. Confidence-aware motion prediction for real-time collision avoidance1.
The International Journal of Robotics Research, 39(2-3):250–265, 2020.

[13] Q. Gao, D. Hajinezhad, Y. Zhang, Y. Kantaros, and M. M. Zavlanos. Reduced variance
deep reinforcement learning with temporal logic specifications. In Proceedings of the
10th ACM/IEEE International Conference on Cyber-Physical Systems, pages 237–248,
2019.

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

[15] L. Hewing, E. Arcari, L. P. Fröhlich, and M. N. Zeilinger. On simulation and trajectory
prediction with gaussian process dynamics. In Learning for Dynamics and Control,
pages 424–434. PMLR, 2020.

[16] M. Hosseinzadeh, B. Sinopoli, and A. F. Bobick. Toward safe and efficient human-robot
interaction via behavior-driven danger signaling. arXiv preprint arXiv:2102.05144, 2021.

[17] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel. Adversarial attacks on
neural network policies. arXiv preprint arXiv:1702.02284, 2017.

[18] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and R. Yang. The
apolloscape dataset for autonomous driving. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages 954–960, 2018.

[19] I. Ilahi, M. Usama, J. Qadir, M. U. Janjua, A. Al-Fuqaha, D. T. Hoang, and D. Niyato.
Challenges and countermeasures for adversarial attacks on deep reinforcement learning.
IEEE Transactions on Artificial Intelligence, 3(2):90–109, 2021.

[20] L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast marching tree: A fast march-
ing sampling-based method for optimal motion planning in many dimensions. The
International journal of robotics research, 34(7):883–921, 2015.

[21] S. Kalluraya, G. J. Pappas, and Y. Kantaros. Multi-robot mission planning in dynamic
semantic environments. arXiv preprint arXiv:2209.06323, 2022.

[22] Y. Kantaros, T. Carpenter, K. Sridhar, Y. Yang, I. Lee, and J. Weimer. Real-time
detectors for digital and physical adversarial inputs to perception systems. In Proceed-
ings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems, pages
67–76, 2021.

19

[23] Y. Kantaros and M. M. Zavlanos. Stylus*: A temporal logic optimal control synthesis
algorithm for large-scale multi-robot systems. The International Journal of Robotics
Research, 39(7):812–836, 2020.

[24] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.
The international journal of robotics research, 30(7):846–894, 2011.

[25] R. Kaur, S. Jha, A. Roy, S. Park, E. Dobriban, O. Sokolsky, and I. Lee. idecode:
In-distribution equivariance for conformal out-of-distribution detection. In The Thirty-
Sixth AAAI Conference on Artificial Intelligence (AAAI-22), 2022.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[27] J. Li, F. Schmidt, and Z. Kolter. Adversarial camera stickers: A physical camera-based
attack on deep learning systems. In International Conference on Machine Learning,
pages 3896–3904. PMLR, 2019.

[28] X. Li, X. Ying, and M. C. Chuah. Grip++: Enhanced graph-based interaction-aware
trajectory prediction for autonomous driving. arXiv preprint arXiv:1907.07792, 2019.

[29] L. Lindemann, M. Cleaveland, G. Shim, and G. J. Pappas. Safe planning in dynamic
environments using conformal prediction. arXiv preprint arXiv:2210.10254, 2022.

[30] D. Meng and H. Chen. Magnet: a two-pronged defense against adversarial examples. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 135–147. ACM, 2017.

[31] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopou-
los. Image segmentation using deep learning: A survey. IEEE transactions on pattern
analysis and machine intelligence, 2021.

[32] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate
method to fool deep neural networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2574–2582, 2016.

[33] K. Nakamura and S. Bansal. Online update of safety assurances using confidence-based
predictions. arXiv preprint arXiv:2210.01199, 2022.

[34] F. Nesti, A. Biondi, and G. Buttazzo. Detecting adversarial examples by input trans-
formations, defense perturbations, and voting. arXiv preprint arXiv:2101.11466, 2021.

[35] N. Nikhil and B. Tran Morris. Convolutional neural network for trajectory prediction.
In Proceedings of the European Conference on Computer Vision (ECCV) Workshops,
pages 0–0, 2018.

20

[36] M. Omainska, J. Yamauchi, T. Beckers, T. Hatanaka, S. Hirche, and M. Fujita. Gaus-
sian process-based visual pursuit control with unknown target motion learning in three
dimensions. SICE Journal of Control, Measurement, and System Integration, 14(1):116–
127, 2021.

[37] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 372–387. IEEE, 2016.

[38] R. Peddi, C. Di Franco, S. Gao, and N. Bezzo. A data-driven framework for proactive
intention-aware motion planning of a robot in a human environment. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 5738–5744.
IEEE, 2020.

[39] S. Pfrommer, T. Gautam, A. Zhou, and S. Sojoudi. Safe reinforcement learning with
chance-constrained model predictive control. In Learning for Dynamics and Control
Conference, pages 291–303. PMLR, 2022.

[40] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 779–788, 2016.

[41] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Dynamically-
feasible trajectory forecasting with heterogeneous data. In European Conference on
Computer Vision, pages 683–700. Springer, 2020.

[42] A. Sarkar, J. Feng, Y. Vorobeychik, C. Gill, and N. Zhang. Reward delay attacks on
deep reinforcement learning. arXiv preprint arXiv:2209.03540, 2022.

[43] J. F. Schumann, J. Kober, and A. Zgonnikov. Benchmark for models predicting human
behavior in gap acceptance scenarios. arXiv preprint arXiv:2211.05455, 2022.

[44] Q. Zhang, S. Hu, J. Sun, Q. A. Chen, and Z. M. Mao. On adversarial robustness
of trajectory prediction for autonomous vehicles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15159–15168, 2022.

[45] H. Zhu, F. M. Claramunt, B. Brito, and J. Alonso-Mora. Learning interaction-aware
trajectory predictions for decentralized multi-robot motion planning in dynamic envi-
ronments. IEEE Robotics and Automation Letters, 6(2):2256–2263, 2021.

21

	Targeted Adversarial Attacks against Neural Network Trajectory Predictors
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter Introduction
	Chapter Problem Formulation
	Trajectory Prediction via Deep Neural Networks
	Targeted Adversarial Attack Formulation

	Chapter Proposed Targeted Adversarial Attack for Trajectory Prediction
	Chapter Experiments
	Experimental Setup
	Evaluation of TA4TP

	Chapter Some future work attempts
	Chapter Conclusion
	References

