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Abstract

Temporal concepts are critical in medical therapy-planning. If given early enough, specific
therapeutic choices may abort or suppress evolving undesired changes in a patient’s clinical status.
Effective medical decision making demands recognition and interpretation of complex temporal
changes that permeate the medical record.

This paper presents a methodology for representing and using medical knowledge about tempo-
ral relationships to infer the presence of clinically relevant events, and describes a program, called
TOPAZ, that uses this methodology to generate a narrative summary of such events. A unique
feature of TOPAZ is the use of numeric and symbolic modeling techniques to perform temporal

reasoning tasks that would be difficult to encode and perform using only one modeling methodology.

1 Introduction

Change is an essential feature of all medical decisions. For medical therapy-planning decisions,
the options and choices for good, patient-specific treatment strongly hinge on the patient’s past

clinical course, current clinical status, and predicted future course (prognosis). A computer-based
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therapy-planning system that creates a good patient-specific treatment plan must be capable of
representing and reasoning about a patient’s past, present, and potential future.

Clinical care generates a staggering volume of data. For the physician faced with finding salient
prognostic and therapeutic features within a patient’s medical record, interpreting and summarizing
this large body of information is a complex and demanding task. Computer-based medical-record
systems facilitate rapid access to more complete patient information [1,13,21,29,26]. However inte-
grating, interpreting, abstracting, and summarizing the clinical data is still left to the physician.

We report the design of a computer-based decision support system that interprets time-ordered
clinical data. A central tenet of this work is that intelligent interpretation of time-ordered data

requires several different formalisms. At least three types of temporal knowledge must be encoded:
1. Knowledge about the static and temporal relationships among observations
2. Knowledge about the changing clinical context
3. Knowledge about the expected evolution of observations over time

We describe our methodology for representing and reasoning with diverse temporal knowledge
and a program, called TOPAZ, that was implemented using this methodology. TOPAZ analyzes
the temporal sequence of white blood cell (WBC) counts and drug dosages from a patient receiving
cancer chemotherapy (Figure 1). The program produces a textual summary of the key temporal
features of the patient’s data (Figure 2). A physician or an expert planning system could use the

clinical features detected by TOPAZ to develop or modify patient-specific therapy plans [11].

2 The TOPAZ Methodology

General medical knowledge describes the expected clinical course of a hypothetical, average
patient. Because a patient has characteristics that distinguish him from the typical patient, each

patient’s clinical course will differ from the prototypical expected course. After following a patient
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[ Weight |907] | 89.5 | 882 | 874 |891| |873|885| |
[d-8)w 3-1u1]m 4-

[WBC X 1000 | 6.9 47 [ 5.3 | 5.0 |

POV 40 9 40 4 371 | 30.3 | 32.2 | 32 6 28 2 27.7 24 4 29 9
Hemoglobin [13.1] 128 [ 122 | 118 [ 10.6 | 10.5 | 9.4 8.8 9.4 9.2
Platelets 574 | 329 368 282 305 120 112 193 150 106
BSA (mz) 211

Chemo Name MOPP [ MOPP | MOPP | MOPP | MOPP | MOPP | MOPP | MOPP | MOPP
Cycle # 1 1 2 2 3 3 4 4 5
Subcycle A B A B A B A B A
Mustard 12 12 12 12 10 8 8 8 8
Vincristine 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0
Procarbazine 200 200 200 100 s} ] 70 19 k)
Prednisone

Day 19 20 4 30 6 28 4 ] 16 8
Month Oct| Oct | Nov | Nov | Dec | Dec | Jan Feb Feb | Mar
Year 83 83 83 83 33 33 84 B4 84 84

Figure 1: A portion of the medical record from a patient who has received MOPP chemotherapy.
Columns contain data collected during a clinic visit. Rows contain clinical observations, laboratory
values, and therapeutic drug dosages. WBC = white blood cell, PCV = packed cell volume, BSA
= body surface area. A full record includes demographic data and additional pages of clinical
measurements.




Patient Identifying Data:

This is a 25 y/o male who presented with clinical stage ITI-S-A, pathological stage III-S-A Hodgkins’ lym-
phoma. The patient’s medical record begins on 19 October 1983 and ends on 24 May 1984. He was assigned
to MOPP chemotherapy and received 7 treatment cycles.

Analysis of Clinical Course:

Based on our analysis of the entire clinical course, the best fit of our model to the data suggests the following
key patient-specific physiological parameter values:

1. A steady-state bone marrow mass that is approximately 0.6 times the population value. This is
considered a moderate reduction in steady-state bone marrow mass.

2. A duration of drug effect that is approximately 2.2 times the population value. This is considered a
moderate increase in the duration of drug effect.

3. A sensitivity to drug effect that is approximately 1.4 times the population value. This is considered a
mild increase in the sensitivity to drug effect.

Based on differences between population-based predictions (the expected clinical course) and the patient-
specific model predictions (the modeled clinical course), the patient had 2 remarkable clinical events. For
each event, we provide a description of the event, a probable cause for the event, and an analysis of the
ability of the patient-specific model to predict the actual observations during this event.

1. A series of 2 visits prior to receiving chemotherapy, starting on 19 October 1983 and ending on 26
October 1983, with predicted WBC counts that were systematically lower than expected for this
period. The predicted WBC count with the largest deviation from expected occurred on 26 Qctober
1983 (63% of the expected value).

The patient’s estimated steady-state marrow mass was lower than expected causing a lower than
expected pre-treatment WBC count. The model cannot explain the underlying eticlogy of a lower
than expected steady state marrow mass.

There were no periods of poor model fit during this remarkable clinical event.

2. A series of 13 visits after starting chemotherapy, starting on 30 November 1983 and ending on 24 May
1984, with predicted WBC counts that were systematically lower than expected for this period. The
predicted WBC count with the largest deviation from expected occurred on 28 December 1983 (64%
of the expected value).

After adjusting for the patient’s steady-state bone marrow mass, the two drug-related parameters,
duration of drug effect and drug sensitivity, jointly caused an increased drug effect which led to
increased myelosuppression and lower than expected WBC counts. The increased drug effect had a
peak myelosuppressive effect 13.1 times greater than expected on 19 April 1984. The accumulation of
drug due to the prolonged duration of drug effect was responsible for a 9.4 fold increase in drug effect.
The increased sensitivity to drug was responsible for a 1.4 fold increase in drug eflect.

Figure 2 TOPAZ-generated summary. This summary was constructed from the patient record
from which Figure 1 was abstracted.




for some time, an experienced clinician gradually forms an appreciation of the individual’s idiosyn-
cratic response to his illness and treatment. For decisions to be tailored to a specific individual,
unique patient features must modify general medical knowledge. A skilled summary of the patient’s
medical record should recognize the same patient-specific implications that clinicians derive when
they review a patient’s chart. To meet this requirement, we need a method that tailors general
medical knowledge based on an individual’s clinical observations.

The TOPAZ methodology that we have developed emphasizes three specific tasks (Figure 3) [9]:

1. Model-based data interpretation. An explicit causal-based physiological model of the tempo-
ral relationships among observations and underlying dinical concepts can be used to detect
significant temporal features in time-ordered data. This model encodes which temporal pat-
terns are expected (predicted) and which model features (parameters), if modified, bring the

model predictions closer to the actual observations.

2. Interval-based data abstraction. Abstraction is the process of combining a set of related
features into a single related concept that encompasses the more detailed features. In ab-
stracting time-ordered data, intervals can be used to for combining point observations and

for combining multiple smaller intervals.

3. Problem-based text generation. An effective summary highlights the important abstractions
and suppresses the irrelevant features. A summary also must include supporting and conflict-
ing evidence for each abstraction that is concluded. Problem-based text generation produces
textual descriptions of “interesting” abstractions and describes the support or conflict for the

abstraction in the data.

The TOPAZ methodology uses an explicit temporal model to encode general medical knowledge.
This model incorporates what is known about the underlying features, processes, and relationships

that can cause specific measurements to change over time. In medicine, an understanding of causal
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Problem-based
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l‘ Converts "interesting”
Summarization internal structures
into the domain language
This patient had increased drmg
effect which led 10 increased
myelosuppression and lower than
expected WBC counts.
There were 6 visits with WBC
counts lower than expected.

Figure 3: Architecture of model-based summarization. Summarization of time-ordered data is
decomposed to three steps: (1) model fitting, which estimates patient-specific model features from
time-ordered observations using an explicit representation of the temporal relationships among
inputs, outputs, and underlying features; (2) interval abstraction, which aggregates periods of time
during which model predictions and observations show significant deviations from expectations;
and (3) text generation, which selects “interesting” abstractions and presents them as text. Note

that the observed WBC and the predicted WBC are not identical. This difference is recognized in
the abstraction pass and is mentioned in the final summary text.




physiological processes is important for effective clinical problem solving. Therefore, the TOPAZ
temporal model encodes physiological knowledge.

When the patient has no previous medical history, anly general medical knowledge is avail-
able for making initial decisions. As data are obtained, patient-specific knowledge replaces general
knowledge, and patient-specific decisions replace general decision-making guidelines. Like the clin-
ician who revises his opinion as new patient features are observed, TOPAZ modifies an initial
temporal model as patient-specific measurements are observed (Figure 3, step 1). The transition
from the type of knowledge typically found in the medical literature (general medical knowledge)
to the type of knowledge needed to treat a specific individual (patient-specific knowledge) occurs
as new patient data generate a patient-specific physiological model.

We have defined the term contezrt to be a period of time during which a meaningful state or
situation exists. Because each domain determines what events and situations are meaningful, con-
texts are domain-specific. Contexts can occur once and then disappear, can appear intermittently
or regularly, or can persist indefinitely once started. In TOPAZ, an interval-based symbolic context
model detects periods of time when significant deviations from the expected clinical course were
seen (Figure 3, step 2). When an unusual event is detected, the context model encodes the knowl-
edge that attempts to explain the most plausible cause of the unusual events in terms of model
parameters and relationships found in the physiological process model. The context model maps
model predictions into clinical abstractions. It also serves as the bridge between number-based
methods and symbol-based methods. Because this model deals with both numeric and symbolic
elements, the knowledge encoded within this model includes both numeric and symbolic concepts.

Physicians describe patients to their colleagues using stereotypic presentation styles. There are
two key parts to a typical patient presentation: (1) a description of notable clinical events that
occurred during observation or treatment, and (2) a discussion of the implications of notable events
for the patient’s clinical status. The content of each part is both problem- and context-specific.

The text-generation system must be flexible enough to accommodate records of patients with vastly



different clinical courses, but structured enough to impose the typical stylistic features expected by
the clinical reader.

The interval abstractions created by the symbolic context model are used to construct a patient-
specific summary that is focused on only those problems actually encountered during the clinical
course (Figure 3, step 3). To construct text that embodies the expected form and content of a typical
clinical summary, we use a third model, called a presentation model [14]. The presentation model is
constructed from two generalized text schemas: (1) a schema of the general organizational structure
of a clinical summary (the organizational schema) and (2) a schema of the specific structure of a
dinical argument (the rhetorical schema). The organizational schema encodes the overall flow
of topics that typically appear in clinical summaries. The rhetorical schema encodes the details
of constructing a persuasive clinical argument that presents and supports clinical interpretations
and inferences. The organizational schema provides the global structure in the clinical summary,

whereas the rhetorical schema provides the logical structure of the summary contents.

3 The TOPAZ Program

In Section 2, a three-step methodology for analyzing and summarizing time-ordered medical
data was presented. Using actual observations and a generic model of the underlying system
structure, a patient-specific model is created. Differences between the predictions generated by
the patient-specific model and the predictions generated by the population-based model define
“unusual” clinical events. An interval-based model abstracts the patient’s clinical course by aggre-
gating intervals of unusual model predictions. The creation of an “unusual” event interval triggers
an examination of the structural features of the patient-specific model for plausible explanations
of the unusual findings. A presentation model represents the structural and logical features of a
clinical presentation so that each abstraction discussed in the summary is presented in the proper

clinical context (state). In this section, we present the implementation details of the three TOPAZ
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Figure 4: Graphical representation of the TOPAZ bone-marrow model. A compartment model is
constructed from hypothetical compartments and transfers between compartments. Baxes represent
compartments; lines represent transfers. This graph represents a non-linear system of differential
equations. The meanings of the model parameters are given in Table 1.

models.

3.1 The Mechanistic Bone-Marrow Model

Using standard techniques of compartment models, a parameterized numeric model of the phys-
iological processes in the production, maturation, and destruction of granulocytes was developed
(Figure 4, Table 1). This model is called the bone-marrow model.

The graphical representation of the TOPAZ bone-marrow model in Figure 4 contains only the

clinically meaningful features of granulocyte development. The bone-matrow compartment (mar-



Table 1: Parameters of the TOPAZ bone marrow model.

Parameter | Parameter | Initial | Physiological

name units value | interpretation

bm;, days—7T 0.20 fractional bone-marrow input rate
bm,, normalized | 2.0 bone-marrow steady-state level
diransit days 2.0 mean delay transit time

whe ey days™* 0.45 | fractional WBC decay rate

dout days—! 0.075 | fractional drug-effect decay rate
ecnsty unitless 0.25 drug sensitivity slope

row), representing immature granulocytes in the marrow, is replenished by an exogenous source
of replicating cells, which represents the omnipotent stem cells. Two losses occur from the bone-
marrow compartment. One loss enters a chain of compartments, called the delay chain, which rep-
resents the maturation phase of granulocytic development. The three compartments that constitute
the delay chain (boz1, boz2, and boz3) have no losses except into the next delay compartment. This
chain effectively delays and spreads out the effects of granulocytic production and MOPP toxicity
as they propagate from the bone-marrow compartment to the peripheral-granulocyte (WBC) com-
partment (wbc). The second loss from the bone-marrow compartment represents the destruction
of cells within the bone marrow from both ineffective hematopoesis and drug toxicity. Myelosup-
pression from chemotherapy is modeled as an additional increment to the second marrow-loss rate.
This increased loss rate is a function of the amount of drug effect remaining in the patient (drug)
and the sensitivity of this patient to the drug. The WBC compartment, representing the peripheral
granulocytes, is the compartment from which observations (WBC counts) are drawn. A loss that
is not sensitive to the presence of drug exits from the WBC compartment, which represents the
normal turnover of peripheral granulocytes. Additional destruction of peripheral granulocytes by
chemotherapeutic agents is not incorporated in this model.

The TOPAZ physiclogical model is implemented in FORTRAN using a fifth-order Runge-Kutta
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numerical integrator [20] to solve the non-linear differential equations. Prior distributions for the
model parameters (Table 1) represent general medical knowledge about typical patients. Patient-
specific observations (WBC counts and dosage information) are combined with this prior knowledge
using Bayes rule, assuming normally distributed parameters and observation errors, to estimate the
mode of the posterior distribution of the parameters [24,23]. These estimated parameters are taken

to be the patient-specific model parameters.

3.2 The Symbolic Context Model

The numeric techniques presented in the previous section provide an intuitive method for de-
tecting unusual observations. Model predictions with the prior distributions of model parameters
equal to the population values are the ezpected WBC counts for the typical patient. Measured
WBC counts and patient-specific model predictions that are significantly different from the ex-
pected WBC counts are unusual. In this section, we present a second modeling technique, based
on symbolic temporal pattern matching, designed to derive the abstract clinical concepts implied
by unexpected patient observations, abnormal patient-specific model parameter estimates, and
unusual model predictions.

Numeric process-based temporal models, such as the TOPAZ bone-marrow model encode time
as a continuous quantity. Given a set of initial conditions, parameter values, new inputs, and
constraints among variables, the bone-marrow model predicts model states at any time ¢. Missing
from this perspective of time is the meaning of the predicted states. A very low predicted or
observed WBC count has clinical importance that has no representation in a process-based model.
A drug sensitivity that is estimated to be higher than is usual alters the TOPAZ bone-marrow
model predictions, but nowhere does this model encode the clinical knowledge that a significant
change in drug sensitivity has important therapeutic ramifications. Process models do not represent
the implications of their predictions; context models encode the domain-specific knowledge required

to interpret the process-model predictions.
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The TOPAZ context model has two main tasks: (1) to abstract clinically meaningful intervals
of time from the medical record, and (2) to explain these events using information supplied by the
patient-specific bone-marrow model. The TOPAZ context model is encoded in a structure called
ETNET. ETNET is derived from and is an extension of TNET [10], a temporal structure that
supports context-sensitive temporal queries for time-ordered data in a cancer chemotherapy advising
expert system called ONCOCIN [27]. ETNET extends the capabilities of TNET by including
context-specific rules to conclude key features about an interval (such as maximum or minimum
values within the interval) and rules that determine if other context-sensitive intervals can be
created. In TOPAZ, ETNET is used to model changes in a patient’s hematologic status as a
set of abstraction intervals. Each interval represents the existence of a notable clinical event or
physiological state (Figure 5).

TOPAZ examines pair-wise differences among patient observations, population-based predic-
tions, and patient-based predictions to infer meaningful temporal abstractions. For example, if we
assume our patient is typical, then a large difference between his patient-specific predicted WBC
count and the population-based predicted WBC count is “surprising” (Table 2). TOPAZ creates an
ETNODE to denote any interval of time during which large deviations from the expected clinical
course were observed (Figure 5). The domain expert specifies how large a difference must be seen
for the difference to be considered surprising or atypical. Once this threshold is exceeded, TOPAZ
considers each episode to be notable, significant, and worthy of comment and explanation. Each
ETNODE generated at this step contains rules that then search for possible explanatory causes of

this significant deviation.

3.3 The Presentation Text Model

TOPAZ summary text is designed to mimic the style of a physician describing to a colleague
a patient whose course is complicated. When focused on the patient’s clinical measurements,

physicians discuss more than just the numbers; they also interpret what these numbers mean
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Figure 5: ETNODE intervals created by model prediction differences. Large differences between
patient-specific predictions and population-based predictions causes the creation of an ETNODE
with a Pred.v.Pop type-label. An ETNODE of this type represents an interval of time during which
the patient’s modeled clinical course differs from the expected (population-based) clinical course.
Rules associated with Pred.v.Pop ETNODEs attempt to find an explanation for this discrepancy.
Other rules attempt to critique the conclusion. In this figure, the dotted line plots the patient-
specific model predictions, the solid line plots the population-based model predictions, and the
intervals denote differences of sufficient magnitude to cause the creation of a Pred.v.Pop ETNODE.
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Table 2: Pair-wise comparisons for summarization and explanation.

Summarization concept | Comparison used to derive concept Notation

population-based model predictions vs
patient-specific model predictions
population-based model parameters vs
patient-specific parameter estimates
patient observations vs
patient-specific model predictions

surprising observations Pred.v.Pop

explanatory states PopP.v.PredP

model critique Obs.v.Pred

clinically. The purpose of the text-generation system is to convert abstractions represented as
ETNET intervals into an output format acceptable to clinicians.

TOPAZ uses two presentation schemas to produce a clinical summary from ETNET abstrac-
tions: (1) an organizational schema that determines the overall logical structure of the summary
text, and (2) a rhetorical schema that encodes the logical components of a clinical argument. The
main purpose of the organizational schema is to provide overall coherence and structure to the
summary text. The rhetorical schema is responsible for selecting features from the analysis that
support a summary statement. Because there may be conflicting evidence present in the medical
record, the rhetorical schema must be able to both support and critique each conclusion reached
by TOPAZ.

The TOPAZ presentation model is implemented as a hierarchy of augmented transition net-
works (ATNs; Figure 6). An ATN is a collection of nodes connected by directed arcs. Nodes
contain logical statements that determine which arc is to be traversed to reach the next node to
be processed. A node or arc can contain actions that are executed only if that node or arc is
traversed. ATNs have two features that are useful for prose generation: (1) nodes can be organized
into hierarchical units, and (2) intermedijate results can be shared among nodes and passed be-

tween network hierarchies. ATN hierarchies are useful for decomposing a task into logical subtasks,
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where the initial ATN networks encodes the overall structure of the task and the SUBATNs encode
specific details to perform a circumscribed component. For example, in text-generation, an ATN
responsible for a specific paragraph may use various SUBATNs to construct individual sentences.
These SUBATNGS, in turn, may use addition SUBATNSs to construct sentence fragments or phrases
used in the sentences.

Miller has developed a text-generation program, called PROSENET, that uses the traversal of
ATN nodes and arcs to control the production of text fragments (Figure 6) [15,16]. PROSENET
uses ATN hierarchies to organize the text generation into logical segments, such as sentences,
paragraphs, and main topics. This logical decomposition makes text generation with PROSENET
easy to adapt to the organizational and rhetorical schemas in TOPAZ. Rennels reimplemented
PROSENET using an object-oriented design [22,16]. The TOPAZ text-generation system is based

on a simplified version of Rennels’ system.

4 Limitations

TOPAZ uses both numeric and symbolic temporal models to interpret and abstract subtle
clinical features that evolve over time. By combining a processlike, real-valued temporal model with
an eventlike, interval temporal model, TOPAZ is able to represent and reason about clinical entities
with markedly differing temporal characteristics. The TOPAZ methodology and implementation

contain a number of design assumptions that can severely limit their use in certain tasks:

¢ The TOPAZ methodology assumes that an accurate structural model of the relationships
among observations and underlying processes can be elucidated from experts. Many processes
in medicine are not understood with sufficient precision to permit the expert to construct a
detailed structural model. Qualitative modeling techniques probably are not the answer
in this situation. In data-poor and error-prone settings, qualitative models do not provide

sufficient inferencing capabilities to draw conclusions about unobserved system states. In the
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Figure 6: The PROSENET methodology for text generation. PROSENET generates text using
hierarchies of augmented transition networks (ATNs). Nodes and arcs generate text fragments.
Each node contains logical statements that determines which node to traverse next. Hierarchies
of networks organize text generation into progressively larger units—for example, from sentences,

to paragraphs, to topics. Squares denote ATN nodes that call sub-ATNs to generate specific text
fragments.
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absence of an accurate structural model, observations of interest could be encoded as rules in
ETNODEs. This approach is the method used in VM and RX. It is equivalent to implicitly
encoding a model as rules. In an area where good predictive models can be constructed, we
believe encoding a structural model as rules is not the desired approach. In areas where no
such structural mode! exists, ETNODE rules would be the only method available in TOPAZ

to represent interesting temporal patterns.

The TOPAZ temporal models represent future temporal planning sequences poorly. For ex-
ample, there is no way to represent the phrase: “Patients with this cancer receive four cycles
of treatment X, followed by two cycles of treatment ¥, and, if they show improvement, con-
tinue to receive treatment X until all evidence of active tumor growth disappears.” ETNET
could represent the fact that a specific patient had received four cycles of treatment X fol-
lowed by two cycles of treatment Y followed by n cycles of treatment X, but this would
not capture the same temporal information as is contained in the quoted sentence. Musen
et al. [19,18] describe a graphical language and an ATN-based representation for specifying
procedural knowledge in cancer-chemotherapy protocols. Their techniques could encode the
sequence information in the above example. TOPAZ only notes whether, given the therapy
recorded in the medical record, the patient observations are unusual. Without an encoding
of the ezpected course of chemotherapy, TOPAZ cannot detect when the dosage or timing
of drugs was abnormal. Using the additional temporal sequencing knowledge contained in
Musen’s representation system, TOPAZ would be able to detect deviations from the expected

therapeutic course.

The TOPAZ temporal models represent temporal uncertainty poorly. The physiclogical model
requires that the times of observations and therapies be known accurately, The TOPAZ bone-
marrow model represents the presence of random error in patient observations, but it does not

represent random error in the input (therapy) or temporal uncertainty. Statistical techniques
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that incorporate these additional sources of uncertainty exist, but, in the data-poor TOPAZ
environment, they are unlikely to be helpful. The TOPAZ interval model (ETNET) has no
capability of representing temporal imprecision or uncertainty among events. Imprecision
in the starting and ending times for events could be added by extending the definition of
ETNET event-times to include a variance (or fuzz) term. We know of no simple extension

that would support uncertain temporal relationships among events.

5 Comparison to Previous Research

Although temporal relationships are prominent in medicine, only a few computer-based decision
support systems have focused on representing and reasoning with temporal concepts. VM was a
rule-based expert system designed to interpret on-line physiclogical data using IF-THEN rules to
derive clinical abstractions, such as hemodynamic stability, from patient data [6,7). VM introduced
the use of context-sensitive rules to convert primary observations into context-free symbolic ab-
stractions. This conversion step was a key contribution of VM because it enabled the rest of VM’s
reasoning, which used only the clinical abstractions to derive therapy-management conclusions, to
be context-free even though the underlying problem domain was clearly context-sensitive. TOPAZ
extends the notion of context-sensitive reasoning by embedding rules within temporal intervals
representing the dlinical context in which these rules make sense. At any moment in time, multiple
clinical contexts can be relevant, each with their own rules for reasoning about the current data.

RX combined symbolic and statistical methods to analyze sets of patient records for the presence
of previously unknown causal relationships [2,3]. Although RX was concerned with a collection of
patients, RX derived abstract interval events by examining data present in each patient visit, using
a hierarchically arranged set of features. RX introduced the notion of using observations from
one point in a patient’s record to support a conclusion of a clinical abstraction during another

one in time. For example, the presence of urinary protein at a visit 7 days ago could be used to
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Jjustify the clinical abstraction of nephrotic syndrome on the current visit, even if there was no
value for urinary protein recorded for the current visit, TOPAZ has no equivalent feature because
it uses an explicit physiological model to detect patterns among clinical features. Downs’ extended
the temporal abstraction capabilities of RX by incorporating the odds-ratio formulation of Bayes’
formula to determine whether sufficient evidence was found in the record to support the conclusion
of a clinical abstraction [4,5]. Each clinical abstraction had one or more predicates that represented
evidence for or against the presence of the concept. If the rule succeeded, a posterior odds ratio
updated the belief in the existence of the concept. With this extension, Downs’ system could
encode rules for both confirmatory and contradicting evidence. TOPAZ uses differences between
the expected clinical course and the observed or patient-specific predicted clinical course to trigger
abstractions. This technique is similar to Downs’ odd-ratio threshold that had to be exceeded
before an abstraction was concluded.

TOPAZ uses multiple temporal representations to encode differing views of time. Multiple sym-
bolic temporal representations were the hallmark of Kenneth Kahn's TIME SPECIALIST [8] and
Mittal’s PATREC [17]. Unlike TOPAZ, neither the TIME SPECIALIST nor PATREC represented
causal relationships between stored events. The combination of numeric causal models and sym-
bolic temporal models was used in the DIGITALIS THERAPY ADVISOR [25] and in the HEART
FAILURE PROJECT [12]. The DIGITALIS THERAPY ADVISOR combined a numeric model of
digitalis kinetics with a symbolic model of digitalis toxicity. The HEART FAILURE PROJECT,
which is an on-going research effort, combines a symbolic causal model of cardiovascular hemody-
namics and linear differential equations. Unlike these programs, TOPAZ uses statistical techniques
rather than heuristics to individualize the mechanistic model. In addition, neither program incor-
porates an interval-based view of time.

CASNET encoded physiological relationships in a symbolic causal network [28]. With this
network, CASNET reasoned about state changes that are seen in glaucoma. Unlike TOPAZ,
CASNET did not encode temporal relationships among state transitions. Thus, CASNET could
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reason about changes in a patient’s physiological status but could not discriminate between various

states due to temporal differences.

6 Summary

The TOPAZ methodology uses three models to view the temporal aspects of a patient’s record
in order to summarize it. A structural model takes a continuous, process-oriented view; an interval-
based model takes a discrete, event-oriented view; and a presentation model takes a state-based
view. No single formalism would be sufficiently flexible to encode the temporal perspective embod-
ied in the other models.

The explicit structural model is essential to the TOPAZ methodology. It is used to construct a
patient-specific model from time-ordered observations, to define the concept of “unusual” observa-
tions, and to provide a plausible explanation for them.

Context limits the size of symbolic reasoning. In TOPAZ, an unusual finding triggers the search
for a potential explanatory cause. Without the enabling abnormal context, the search for a cause
would not (and should not) occur. Not all model features can contribute to a specific abnormal
finding. Context-specific reasoning limits the search to only those model features that potentially
could explain the lower-than-usual predicted drug level.

TOPAZ is a computer program that constructs textual summaries of context-sensitive, time-
ordered data. The key themes of multiple temporal models, an explicit structural model, and

context-specific reasoning are the centerpieces of the TOPAZ program.
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