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This thesis work sought to develop a biomaterial to further the understanding of affinity-

based delivery and to serve as a potential treatment for peripheral nerve injury.  The use of an 

affinity-based delivery system (ABDS) with growth factors in a nerve guidance conduit (NGC) was 

hypothesized to promote nerve regeneration and functional recovery following a critical nerve defect.  

Evaluation of affinity-based delivery using peptides with varying binding affinity for heparin 

determined that peptide binding affinity for heparin affected the release rate and biological activity of 

nerve growth factor (NGF) in vitro.  The ABDS presented biologically active NGF, which promoted 

neurite extension regardless of peptide binding affinity for heparin.  The efficacy of the ABDS in 

vivo to promote nerve regeneration in a rat sciatic nerve critical defect was determined through 

histomorphometric outcomes.  The ABDS with any affinity peptide and NGF was similar to the 

isograft in aspects of nerve regeneration including: fiber density, nerve regeneration quality, fiber 

maturity, and the fiber organization of the regenerating nerve 6 weeks after treatment.  Alternatively, 
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the ABDS effectively sequestered and slowed the release of glial-derived growth factor (GDNF) and 

promoted neurite extension in vitro.  The efficacy of the ABDS and GDNF in vivo to promote nerve 

regeneration in a rat sciatic nerve critical defect was determined through histomorphometric 

outcomes.  Histomorphometric measures revealed that the ABDS and GDNF promoted nerve 

regeneration similar to the isograft 6 weeks after treatment in measures of fiber density, nerve 

regeneration quality, fiber maturity, and the fiber organization of the regenerating nerve.  Functional 

recovery and modality specific nerve regeneration were studied with the ABDS and growth factor in 

a rat sciatic nerve critical defect 12 weeks after treatment.  Behavioral outcomes and 

electrophysiological responses including evoked motor responses were similar to functional 

outcomes in the isograft with the delivery of NGF, but superior to the isograft with the delivery of 

GDNF.  Both GDNF and NGF delivery supported the regeneration of motor and sensory neurons 

equivalent to the isograft, as assessed by retrograde labeling.  Overall, this work indicates that 

affinity-based growth factor delivery from fibrin matrices enhances nerve regeneration. 

  



iv 

 

 

 

 

 

To my parents, who have always supported me in my endeavors 



v 

Acknowledgements 

 I would like to thank my friends and co-workers in the Sakiyama-Elbert Lab through 

the years.  To Philip Johnson, Mat MacEwan, Nicole Moore, Stephanie Willerth, Rich 

Seeger, Nithya Jesuraj, Amanda Walker and Dylan McCreedy, thank you for your advice and 

support, and most often times willingness to listen and distract me from my work over the 

years.  Additionally, thank you Alex French for your help in completing this thesis and for all 

that I learned as I mentored you; good luck in graduate school. 

 I would like to thank my advisor Shelly Sakiyama-Elbert who has provided 

exceptional guidance and mentoring over the past 4 years.  Thank you for your patience and 

constructive critiscism to successfully facilitate my completion of my degree and thesis work. 

 I would like to thank Susan Mackinnon and the Mackinnon lab who gave me access 

to lab equipment and supplies crucial to completing my thesis work.  To Christina, Dave, 

Janina, Liz, Andrew, Ying, Alice, and Zac, thank you for accepting and treating me as part of 

your lab and for all your advice.  I would especially like to thank Ayato Hayashi, Amy 

Moore, and Sami Tuffaha who taught me rat surgery and were infinitely patient with me as I 

learned the techniques.  Amy and Sami thank you again for your friendship and for making 

work more fun.  I cannot thank Daniel Hunter enough for his help with my thesis work.  I 

truly would not have been able to complete my work without you.  Dan also provided ample 

advice, guidance, and laughs for me over the years.  Dan please don’t change your quirky 

ways. 

I would like to thank my thesis committee members: Dennis Barbour, Philip Bayly, 

Gregory Borschel, Paul Bridgman, and Daniel Moran.  Thank you for your time and 



vi 

guidance with my research.  I would especially like to thank Greg who acted like a second 

advisor to me and provided wonderful encouragement. 

 I would like to thank all my friends in graduate school and undergraduate.  Without 

your support, I would be a stressed out mess.  I would also like to thank my undergraduate 

advisors, Gary Bledsoe and Rebecca Kuntz Willits who both encouraged and lead me into 

my graduate studies.  I would especially like to thank Becky who cemented and fostered my 

interest in research and mentored me with great patience so that I could understand what a 

research project entailed. 

I would like to thank my funding sources: The WF Coulter Foundation and the 

American Association of Plastic Surgeons.  I would also like to thank Rich and Chip who 

provided technical assistance either by access to equipment or taking care of animals. 

 I would like to thank my family for their support over the course of my life.  Thank 

you for always making sure I got the best out of life.  Finally, I would like to thank God who 

gave me all the gifts that I have in this world. 

 

 

Matthew D. Wood 
 

Washington University in St. Louis 

August 2009 



vii 

Contents 

Abstract ......................................................................................................................... ii 

Acknowledgements ........................................................................................................ v 

List of Tables ................................................................................................................. x 

List of Figures ............................................................................................................... xi 

 

Chapter 1 ........................................................................................................................ 1 

Introduction ...................................................................................................................................... 1 
1.1 Overview ......................................................................................................................... 1 
1.2 Peripheral Nerve Injury and Regeneration ................................................................ 4 

1.2.1 Characteristics of Injury and Regeneration ......................................................... 5 
1.2.2 Challenges in Peripheral Nerve Regeneration..................................................... 7 

1.3 Treatment Therapies ..................................................................................................... 9 
1.3.1 Biological Grafts .................................................................................................... 10 
1.3.2 Nerve Guidance Conduits (NGCs) .................................................................... 13 
1.3.3 Scaffolds for a Nerve Guidance Conduit .......................................................... 15 

1.4 Growth Factors ............................................................................................................ 19 
1.4.1 Nerve Growth Factor (NGF) ............................................................................. 20 
1.4.2 Glial Derived Neurotrophic Factor (GDNF) ................................................... 21 

1.5 Controlled Protein Delivery ....................................................................................... 22 
1.5.1 Affinity-based Delivery ........................................................................................ 24 

1.6 Concluding Remarks ................................................................................................... 26 

Chapter 2 ...................................................................................................................... 28 

Release rate controls biological activity of nerve growth factor released from fibrin 
matrices containing affinity-based delivery systems* ................................................................. 28 

2.1 Abstract ......................................................................................................................... 28 
2.2 Introduction ................................................................................................................. 29 
2.3 Materials and Methods ................................................................................................ 32 

2.3.1 Mathematical modeling ........................................................................................ 33 
2.3.2 Peptide synthesis ................................................................................................... 40 
2.3.3 Fibrin matrix preparation ..................................................................................... 41 
2.3.4 In vitro release assay ............................................................................................... 42 
2.3.5 In vitro biological activity assay ............................................................................ 43 
2.3.6 Statistical analysis .................................................................................................. 44 

2.4 Results ........................................................................................................................... 44 
2.4.1 Mathematical modeling ........................................................................................ 44 
2.4.2 In vitro release assay ............................................................................................... 48 
2.4.3 In vitro biological activity assay ............................................................................ 51 

2.5 Discussion ..................................................................................................................... 55 

Chapter 3 ...................................................................................................................... 59 



viii 

Heparin-binding affinity-based delivery systems releasing nerve growth factor enhance 
sciatic nerve regeneration * ............................................................................................................ 59 

3.1 Abstract ......................................................................................................................... 59 
3.2 Introduction ................................................................................................................. 60 
3.3 Materials and Methods ................................................................................................ 63 

3.3.1 Peptide synthesis ................................................................................................... 63 
3.3.2 Fibrin matrix preparation ..................................................................................... 64 
3.3.3 Experimental animals ........................................................................................... 65 
3.3.4 Experimental Design ............................................................................................ 65 
3.3.5 Operative Procedure ............................................................................................. 66 
3.3.6 Histomorphometric Evaluation .......................................................................... 69 
3.3.7 Statistical analysis .................................................................................................. 70 

3.4 Results ........................................................................................................................... 70 
3.4.1 Nerve guidance conduit harvest ......................................................................... 70 
3.4.2 Histology ................................................................................................................ 71 
3.4.3 Histomorphometry ............................................................................................... 74 

3.5 Discussion ..................................................................................................................... 77 
3.6 Conclusions .................................................................................................................. 81 

Chapter 4 ...................................................................................................................... 83 

Controlled release of glial-derived neurotrophic factor from fibrin matrices containing an 
affinity-based delivery system * ..................................................................................................... 83 

4.1 Abstract ......................................................................................................................... 83 
4.2 Introduction ................................................................................................................. 84 
4.3 Materials and Methods ................................................................................................ 87 

4.3.1 Fibrin matrix preparation ..................................................................................... 87 
4.3.2 In vitro release assay ............................................................................................... 88 
4.3.3 In vitro biological activity assay ............................................................................ 89 
4.3.4 Immunocytochemistry ......................................................................................... 91 
4.3.5 Statistical analysis .................................................................................................. 91 

4.4 Results ........................................................................................................................... 92 
4.4.1 In vitro release assay ............................................................................................... 92 
4.4.2 In vitro biological activity assay ............................................................................ 95 

4.5 Discussion .................................................................................................................. 100 

Chapter 5 .................................................................................................................... 106 

Affinity-based Release of Glial-Derived Neurotrophic Factor from Fibrin Matrices 
Enhances Sciatic Nerve Regeneration * .................................................................................... 106 

5.1 Abstract ...................................................................................................................... 106 
5.2 Introduction .............................................................................................................. 107 
5.3 Materials and Methods ............................................................................................. 110 

5.3.1 Experimental animals ........................................................................................ 110 
5.3.2 Experimental Design ......................................................................................... 110 
5.3.3 Preparation of fibrin matrices .......................................................................... 112 
5.3.4 Operative Procedure .......................................................................................... 113 
5.3.5 Histomorphometric and Electron Microscopic Evaluation ........................ 114 
5.3.6 Statistical analysis ............................................................................................... 115 

5.4 Results ........................................................................................................................ 116 



ix 

5.4.1 Nerve guidance conduit harvest ...................................................................... 116 
5.4.2 Histology ............................................................................................................. 117 
5.4.3 Histomorphometry ............................................................................................ 119 
5.4.4 Electron microscopy .......................................................................................... 121 

5.5 Discussion .................................................................................................................. 124 
5.6 Conclusions ............................................................................................................... 129 

Chapter 6 .................................................................................................................... 130 

Fibrin Matrices with Affinity-based Delivery Systems and Neurotrophic Factors Promote 
Functional Nerve Regeneration ................................................................................................ 130 

6.1 Abstract ...................................................................................................................... 130 
6.2 Introduction .............................................................................................................. 131 
6.3 Materials and Methods ............................................................................................. 134 

6.3.1 Experimental animals ........................................................................................ 134 
6.3.2 Experimental Design ......................................................................................... 135 
6.3.3 Preparation of fibrin matrices .......................................................................... 136 
6.3.4 Operative Procedure .......................................................................................... 137 
6.3.5 Behavioral Analysis ............................................................................................ 138 
6.3.6 Measurement of compound neural action potentials (CNAPs) and evoked 
motor responses ................................................................................................................. 139 
6.3.7 Retrograde labeling of spinal cord and DRG neurons ................................. 141 
6.3.8 Statistical analysis ............................................................................................... 142 

6.4 Results ........................................................................................................................ 143 
6.4.1 Nerve guidance conduit harvest ...................................................................... 143 
6.4.2 Behavioral testing ............................................................................................... 144 
6.4.3 Evoked Motor Response .................................................................................. 146 
6.4.4 Retrograde labeling ............................................................................................ 150 

6.5 Discussion .................................................................................................................. 152 
6.6 Conclusions ............................................................................................................... 158 

Chapter 7 .................................................................................................................... 159 

Summary and Future Directions ............................................................................................... 159 
7.1 Summary of Findings ............................................................................................... 159 
7.2 Recommendations for Future Direction ............................................................... 161 

7.2.1 Advanced material and delivery strategies for nerve regeneration ............. 162 
7.2.2 Alternative structure to contain the material for nerve regeneration ......... 164 
7.2.3 Cell transplantation for nerve regeneration .................................................... 166 

References .................................................................................................................. 169 

Vita ............................................................................................................................. 185 

 

  



x 

List of Tables 
Table 2.1: Constants employed in math model ............................................................................. 36 

Table 2.2: Heparin-binding peptides synthesized .......................................................................... 41 

Table 2.3: Mass retention of NGF in fibrin matrices with HBDS ............................................. 49 

Table 2.4: Similar mass retention of NGF at 24 h results in similar normalized neurite 
outgrowth regardless of peptide affinity ......................................................................................... 54 

Table 3.1: Heparin-binding peptides with equilibrium dissociation constants of peptide 
interaction with heparin ..................................................................................................................... 64 

Table 3.2: Experimental Design ....................................................................................................... 66 

Table 4.1: Concentrations of delivery system components employed for in vitro biological 
activity assay ........................................................................................................................................ 90 

Table 5.1: Experimental Design .................................................................................................... 111 

Table 6.1: Experimental Design .................................................................................................... 135 

 

  



xi 

List of Figures 
Figure 2.1. Effect of molar ratio of peptide to heparin on the fraction of NGF in the bound 
state. ...................................................................................................................................................... 46 

Figure 2.2. Fraction of NGF released at 24 h depends on the peptide affinity for heparin and 
the molar ratio of peptide to heparin in the delivery system. ...................................................... 47 

Figure 2.3. NGF release in vitro over 7 days depends on the peptide affinity for heparin and 
the ratio of peptide to heparin in the delivery system. .................................................................. 51 

Figure 2.4. Effect of peptide affinity and peptide to heparin molar ratio on DRG neurite 
extension in vitro. ................................................................................................................................. 52 

Figure 3.1. Schematic representation of surgical implantation of nerve guidance conduit 
containing the affinity-based delivery system. ................................................................................ 68 

Figure 3.2 Histological sections of regenerating nerves at the midline of the conduit (or 
graft). .................................................................................................................................................... 74 

Figure 3.3. Histomorphometric analysis of nerves at the midline of the conduit (or graft). .. 75 

Figure 3.4. Myelinated fiber width distribution of regenerating nerves at the midline of the 
conduit (or graft). ............................................................................................................................... 77 

Figure 4.1. GDNF retention in vitro at 48 h is enhanced by the delivery system. ..................... 93 

Figure 4.2. GDNF release in vitro over 7 days is controlled by the ratio of peptide to heparin 
in the delivery system. ........................................................................................................................ 94 

Figure 4.3. GDNF receptor α-1 is expressed by chick embryo DRGs. ..................................... 96 

Figure 4.4. Photomicrographs of DRG cultured containing different GDNF concentrations 
with and without the delivery system. ............................................................................................. 97 

Figure 4.5. Effect of GDNF concentration on DRG neurite extension in vitro. ...................... 98 

Figure 4.6. Delivery system components affect DRG neurite extension in vitro. .................. 100 

Figure 5.1. Schematic representation of surgical implantation of nerve guidance conduit 
containing the affinity-based delivery system. ............................................................................. 112 

Figure 5.2. Histological sections of regenerating nerves at the midline of the conduit (or 
graft). ................................................................................................................................................. 118 

Figure 5.3. Histomorphometric analysis of nerves at the midline of the conduit (or graft). 120 

Figure 5.4. Myelinated fiber size distribution of regenerating nerves at the midline of the 
conduit (or graft). ............................................................................................................................ 121 

Figure 5.5. Electron micrographs of regenerating nerves at the midline of the conduit (or 
graft). ................................................................................................................................................. 123 

Figure 5.6. Myelinated and unmyelinated fiber areas of regenerating nerves at the midline of 
the conduit (or graft). ...................................................................................................................... 124 

Figure 6.1. Walking track analysis for groups with nerve regeneration 12 weeks after injury.
 ............................................................................................................................................................ 145 



xii 

Figure 6.2. Successful grid-grip percentages for groups with nerve regeneration 12 weeks 
after injury. ....................................................................................................................................... 146 

Figure 6.3. Maximum CNAPs and current thresholds to elicit motor responses for groups 
with nerve regeneration 12 weeks after injury. ........................................................................... 147 

Figure 6.4. Specific force measurements of EDL for groups with nerve regeneration 12 
weeks after injury. ............................................................................................................................ 149 

Figure 6.5. Relative muscle mass of EDL for groups with nerve regeneration 12 weeks after 
injury. ................................................................................................................................................. 150 

Figure 6.6. Representative sections of retrograde labeled ventral horn SC and DRG neurons 
12 weeks after injury. ...................................................................................................................... 151 

Figure 6.7. Percentage of normalized ventral horn SC and DRG neurons retrograde labeled 
12 weeks after injury. ...................................................................................................................... 152 

 

 



1 

Chapter 1 

 

Introduction 

 
1.1 Overview 

This work seeks to develop a biomaterial to serve as a potential treatment for 

peripheral nerve injury.  This work also seeks to further the understanding of affinity-based 

delivery to treat peripheral nerve injury.  The overall objective of this research was to 

evaluate the effect of growth factor delivery from fibrin matrices containing an affinity-based 

delivery system (ABDS) on peripheral nerve injury.  Fibrin is a natural material and 

provisional extracellular matrix (ECM) involved in wound healing, is biocompatible, and is 

capable of promoting cell migration and axonal growth.  Sakiyama-Elbert and Hubbell 

previously designed an ABDS containing a bi-domain peptide capable of covalent 

incorporation during fibrin polymerization and interaction with heparin, which can interact 

with growth factors (Sakiyama-Elbert and Hubbell 2000a; Sakiyama-Elbert and Hubbell 

2000b).  Further research from Sakiyama-Elbert and colleagues developed bi-domain 

peptides that could be covalently incorporated during fibrin polymerization and could 

interact with heparin with varying affinity to modulate growth factor release rates.  The 

heparin-binding domain of these bi-domain peptides was identified from an increasing step 

gradient of sodium chloride concentration to modulate interaction with heparin (Maxwell, 

Hicks et al. 2005).  These peptides that vary in binding affinity for heparin were utilized for a 

portion of this thesis work to assess the role of peptide binding affinity for heparin and 

release rate on nerve regeneration.  Additionally, growth factors were used in the ABDS to 
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promote nerve regeneration and potentially target different neuronal populations during 

regeneration.  The choice of growth factor was based on its ability to target sensory and 

motor neuron populations. 

 The first study of this thesis work assessed the role of peptide binding affinity for 

heparin in modulating the release rate and biological activity of nerve growth factor (NGF).  

The ABDS incorporating a peptide with high binding affinity for heparin and NGF 

previously demonstrated enhanced biological activity (Sakiyama-Elbert and Hubbell 2000a).  

To explore the role of binding affinity, peptide sequences were previously identified that 

exhibited “high”, “medium”, and “low” affinity for heparin using an increasing step gradient 

of sodium chloride concentration (1.0 M, 1.5 M and 2.0 M NaCl were used to elute the low, 

medium and high affinity peptide display phage from a heparin affinity column, respectively) 

(Maxwell, Hicks et al. 2005).  These peptides were synthesized containing the identified 

heparin binding domains along with a transglutaminase substrate to allow crosslinking into 

fibrin matrices (Maxwell, Hicks et al. 2005).  The first study in this thesis work utilized these 

peptides to assess the role of peptide binding affinity for heparin with this ABDS and NGF.  

The ratio of peptide to heparin and the peptide binding affinity for heparin were varied to 

assess differences in NGF release rates through mathematical modeling and in vitro 

experiments.  The ratio of peptide to heparin and the peptide binding affinity for heparin 

were also modulated to assess differences in biological response.  Chick embryo dorsal root 

ganglia (DRG) were implanted into fibrin matrices with ABDS to assess the biological 

activity of delivered NGF through neurite extension. 

The second study extended the previous work of the first study to provide insight 

into the effect of peptide binding affinity for heparin on nerve regeneration in vivo.  To assess 
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how peripheral nerve regeneration in vivo was affected, a rat sciatic nerve critical defect (13 

mm) was bridged with a nerve guidance conduit (NGC) containing the ABDS with heparin 

binding peptides and NGF previously utilized in the first study.  To determine the effect of 

modulating peptide binding affinity for heparin on nerve regeneration, regenerated tissue 

was harvested after 6 weeks for histomorphometric analysis and compared to the clinical 

equivalent in a rat model (isograft). 

The third study characterized GDNF delivery from the ABDS in vitro utilizing the 

heparin binding peptide that maximized nerve extension in vitro and best promoted nerve 

regeneration in vivo based on the results of first and second studies.  Release rates were 

characterized for varying concentrations of delivery system components to determine which 

conditions resulted in sustained growth factor delivery.  Dose response studies were 

performed to determine the appropriate concentration of GDNF to maximize neurite 

extension from chick embryo DRG and determine if the ABDS can enhance neurite 

extension. 

The fourth study extended the results of the third study to assess the role of affinity-

based delivery of GDNF in vivo to promote nerve regeneration.  A rat sciatic nerve critical 

defect (13 mm) was bridged with a NGC containing the ABDS and GDNF to determine its 

efficacy in promoting peripheral nerve regeneration.  The effectiveness of nerve regeneration 

and histomorphometric measures were assessed on regenerating tissue harvested after 6 

weeks following treatment.  The results were compared to the clinical equivalent in a rat 

model (isograft). 

The final study assessed the role growth factors in an ABDS have on peripheral 

nerve regeneration modalities (sensory versus motor axonal regeneration) and functional 
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recovery.  A NGC containing the ABDS and growth factors were used to bridge a rat sciatic 

nerve critical defect (13 mm).  The growth factors included were known to target different 

neuronal populations.  Behavioral and electrophysiological measures of regenerating nerves 

and innervated muscle were measured.  The regenerating nerves were also retrograde labeled 

to assess sensory and motor nerve regeneration and compared with the functional recovery 

results. 

This introduction will discuss characteristics of peripheral nerve injury and factors 

known to influence nerve regeneration to better elucidate the reasoning for the studies 

described in this thesis work.  Additionally, current and past treatments for peripheral nerve 

injury including biological grafts, nerve guidance conduits, and growth factor delivery will be 

discussed to establish the state of the field. 

 

1.2 Peripheral Nerve Injury and Regeneration 

The peripheral nervous system (PNS) facilitates the extension of signals from the 

central nervous system (CNS) to limbs and other organs.  The PNS is susceptible to injury 

particularly due to the long axonal processes that extend throughout the body.  The most 

common cause of these injuries are motor vehicle accidents, stabbing and gun shot wounds, 

and stretch and compression related injuries due to falling and represent a large number of 

repair procedures performed annually (Kouyoumdjian 2006).  Damage to the nervous 

system is catastrophic and results in impaired motor and/or sensory function at denervated 

end-organs.  The PNS is capable of limited regeneration; however, axonal damage still 
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remains clinically challenging to treat.  This section will describe peripheral nerve injury and 

regeneration and issues involved in nerve regeneration. 

 

1.2.1 Characteristics of Injury and Regeneration 

Peripheral nerves consist of fascicles containing a mixture of sensory and motor 

axons, some myelinated by Schwann cells (SCs).  The nerve fascicle itself is made up of 

connective tissue layers: the inner endoneurium, the perineurium surrounding individual 

fascicles, and the epineurium that bundles the fascicles into a nerve.  Injuries to the 

peripheral nervous system can involve secondary damage to any one of these layers, or more 

severe injuries such as compression or lacerations resulting in nerve lesions or complete 

nerve transection (Burnett and Zager 2004). 

Following injury to the nerve, Waller determined that the nerve undergoes 

pathological changes due to the separation of the axon from the cell body.  The degeneration 

of the separated axonal portion and myelin (distal stump) has thus been named Wallerian 

degeneration (Waller 1850).  Initially, the loss of a significant portion of the axon can result 

in ionic imbalances and influx.  This imbalance and other pathological conditions result in 

chromatolysis or possibly cell death.  Cellular death after nerve transection can be as high as 

30 – 35% in dorsal root ganglia (Otto, Unsicker et al. 1987; McKay Hart, Brannstrom et al. 

2002).  However, neurons can survive nerve injury and cell death by upregulating genes 

responsible for growth and survival.  These genes are signaled through trophic support 

provided by neighboring regions to the cell body and within the cell itself due to the injury 

(Costigan, Befort et al. 2002). 
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Besides the resulting neuronal changes, the distal stump undergoes many significant 

changes that prepare it for regenerating axons from the proximal stump to enter.  The first 

of which is the invasion of glial cells to facilitate phagocytosis of myelin and axonal debris in 

the distal stump that are inhibitory to axonal regeneration.  These glial cells phagocytose the 

axonal and myelin debris in a process that takes approximately a week (Waller 1850; Bruck 

1997).  Experiments by Friede and colleagues determined that macrophages are the major 

cell involved in the phagocytosis of myelin and myelin debris, while SCs play a role in 

digesting myelin debris, but to a lesser extent (Beuche and Friede 1984; Scheidt and Friede 

1987). 

Closely following axonal debris clearance SCs proliferate in part due to signaling 

from axonal membrane and myelin debris (Salzer and Bunge 1980) but also due to 

stimulation by macrophages.  Macrophages in vitro produce a medium that is mitogenic for 

SCs (Baichwal, Bigbee et al. 1988), and in vivo macrophages accumulate in the distal stump 

prior to SC proliferation possibly indicating a role in signaling SC proliferation (Williams and 

Hall 1971).  These proliferating SC align themselves to the remaining basal lamina and 

endoneurial tubes in the distal stump.  These aligned SC tubes are known as the bands of 

Büngner  and act as natural support for sprouting axons during regeneration in order to 

facilitate guidance back to end-organ targets (Waller 1850; Burnett and Zager 2004).  Thus, 

the distal stump acts as a naturally beneficial scaffold to the regenerating axons. 

Following nerve transaction numerous sprouts from the original axon grow toward 

the distal stump along the basal lamina and SCs in the endoneurial tubes (Haftek and 

Thomas 1968).  These sprouts or neurites are guided by cell adhesion molecules and ECM, 

which neurites bind via cell-surface receptors.  SCs are responsible for the production and 
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replacement of basal lamina, which principally consists of laminin, type IV collagen and 

fibronectin (Rogers, Letourneau et al. 1983; Fawcett and Keynes 1990).  These neurites are 

also guided by diffusible trophic factors, primarily secreted by SCs and to an extent by their 

end-organ targets, which promote neurite survival, migration , and synapse formation at the 

end-organ (Reichardt and Tomaselli 1991).  Regenerating axons become myelinated shortly 

after migrating through the endoneurial tubes in the distal stump.  These axons can 

reestablish connections with end-organ targets; for example in the case of muscle, motor 

axons reform neuromuscular junctions at the motor endplates.  Axons reach maturity with 

increased myelination after reinnervation with their appropriate end-organ targets. 

 

1.2.2 Challenges in Peripheral Nerve Regeneration 

Although the PNS is capable of regeneration, axonal regeneration generally does not 

occur for large defects separating the proximal and distal nerve ends if not treated clinically.  

More importantly, axonal regeneration does not necessarily lead to restored function, and 

the degree of motor versus sensory regeneration varies based on nerve injury treatment 

(Fawcett and Keynes 1990).  Consequently axonal migration may follow endoneurial tubes 

that lead to incorrect end-organs or the correct end-organ such as muscle, but the incorrect 

particular muscle (Wigston and Donahue 1988; Kingham and Terenghi 2006).  Alternatively, 

axons may innervate muscle endplates that they did not previously innervate.  As already 

mentioned, numerous sprouts from each axon extend into the distal stump, and these 

branches typically are eliminated when improper connections with an end-organ target form 

(Aitken 1949); however, muscle endplates can be reinnervated by different motor fibers than 

originally found.  This improper innervation can result in loss of coordination or complete 
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improper functioning of the muscles associated due to insufficient muscle contraction 

(Kingham and Terenghi 2006).  Additionally, the original arrangement of fast and slow 

twitch muscle fibers is no longer preserved as it was before in normal muscle (Burnett and 

Zager 2004).  Furthermore, even with appropriate muscle reinnervation, full functional 

recovery outcomes are difficult due to the lack of proprioception provided by proper 

sensory reinnervation of the muscle (Burnett and Zager 2004). 

Several theories on motor versus sensory nerve regeneration and axonal guidance 

exist.  One hypothesis considered is that end-organs, such as muscle, provide primary 

support for appropriate axonal pathfinding through diffusible cues or tropic support 

(Madison, Robinson et al. 2007).  Another theory suggests that SCs and endoneurial tubes 

provide guidance cues to axons (Politis 1985; Brushart 1988; Wigston and Donahue 1988).  

Regenerating axons in general follow a chemotropism where they grow preferentially toward 

the distal nerve segment instead of other tissue (Fawcett and Keynes 1990).  Robinson, 

Madison and colleagues have extended the role of chemotropism to describe how axons 

migrate to their correct end-organ pathways.  They demonstrated that motor axons rely on 

guidance cues in the form of trophic support, primarily diffusible factors derived from their 

end-organ targets, to properly find their reinnervation targets.  These discoveries were 

demonstrated through a series of experiments in rat femoral nerve by modulating the 

distance axons travel to their end-organ after injury (Robinson and Madison 2004; Madison, 

Robinson et al. 2007; Uschold, Robinson et al. 2007).  This theory is also supported by the 

observation that motor and sensory axons contain different cell-surface receptors for these 

diffusible factors (Boyd and Gordon 2003).  Alternatively, the SCs or endoneurial tubes may 

be a guiding force for correct axonal pathfinding.  Some evidence for this is based on nerve 

crush injuries, which differ from complete or partial transection injuries as the axons that 
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regenerate typically remain in their parent endoneurial tubes and reestablish high levels of 

functional recovery following injury (Haftek and Thomas 1968).  Based on these results, it 

may be that the disruption of the endoneurial tubes in traumatic injury leads to inappropriate 

target reinnervation and incomplete regeneration following injury.  Additionally, research  in 

preferential motor reinnervation in the rat femoral nerve model led Brushart and colleagues 

to hypothesize that the endoneurial tubes themselves or the Schwann cells within the tubes 

may direct axons down their correct pathways (Brushart 1988).  Overall, axonal guidance is 

likely directed to a degree by all these theories.  Therefore, therapies to treat injuries should 

consider the inclusion of these components to lead to better functional recovery following 

injury. 

 

1.3 Treatment Therapies 

As previously mentioned, damage to peripheral nerve can result in a defect 

disconnecting the proximal and distal nerve stumps leading to loss of motor or sensory 

function.  The rate of axonal regeneration can vary but on average is around 1 mm/day 

making regeneration a slow process for injuries far from the innervation site (Evans 2001; 

Burnett and Zager 2004).  However, neural outgrowth cannot occur when a significant 

defect separates the proximal stump from the distal stump, and surgical intervention is often 

required (Lundborg 2000).  In order to promote nerve regeneration, clinical strategies for 

repair involve bringing the damaged nerve ends together in order to promote migration of 

glial cells and surviving axons to grow from the proximal stump to the distal stump.  The 

most common method of nerve repair is direct suture of the two severed nerve ends 

together; however, this is often not feasible if the defect between the two ends is too large, 
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as excessive tension produced by directly reconnecting the two ends would disrupt 

regeneration (de Medinaceli, Wyatt et al. 1983).  Therefore, a bridge or scaffold must serve to 

reconnect the proximal and distal stumps.  This section describes materials used to serve as 

the bridge between the nerve stumps. 

 

1.3.1 Biological Grafts 

Biological grafts using microsurgical techniques to bridge critical nerve defects were 

first performed in the 1960’s (Millesi 1973).  Despite significant advances in nerve 

reconstruction, the nerve autograft still remains the clinical standard of care for critical, long, 

peripheral nerve defect repair.  The autograft provides a scaffold and trophic support in the 

form of basal lamina, endoneurial tubes, and SCs for the regenerating axons guiding nerves 

to the distal stump (Belkas, Shoichet et al. 2004).  Donor nerves that are commonly used as 

autografts include the sural (sensory) nerve or other cutaneous nerves (Meek and Coert 

2002).  However, disadvantages of autografts include loss of feeling and possible pain or 

itching at the donor site due to scarring and morbidity, insufficient donor tissue availability, 

risk of disease spread, secondary deformities, and less than optimal dimensions (diameter 

and/or length) of the donor tissue to span the injury site (Evans 2001; Belkas, Shoichet et al. 

2004).  Additionally, functional recovery with autografts varies.  For example, less than 25% 

of patients who received autograft repair of the median nerve at the wrist level regained full 

motor function and only 1-3% recovered normal sensation after 5 years (Beazley, Milek et al. 

1984; Dellon and Mackinnon 1988).  Even with appropriate matching of fascicles during 

autograft surgery, axonal guidance to the original fascicles is not guaranteed, which can lead 

to incorrect innervation of muscles (Gordon, Sulaiman et al. 2003).  Although the autograft 
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needs improvements, the less than optimal results with autografts may be attributed in part 

to the donor nerve material.  For example, the repair of motor nerve defects with motor 

grafts was found to be superior to sensory grafts in measures of nerve density, percent nerve, 

and total fiber number, independent of graft cross-sectional area (Brenner, Hess et al. 2006).  

Also, the repair of a mixed nerve defect with a mixed or motor graft resulted in superior 

regeneration than compared to sensory grafts with respect to nerve fiber number, percent 

nerve, and nerve density (Nichols, Brenner et al. 2004).  However, donor motor nerves are 

difficult, if not impossible, to obtain due to their invaluable current function; therefore, 

alternative biological grafts have been considered. 

Nerve allografts have been considered as one such alternative; however, their use 

requires immunosuppression to avoid rejection and nerve regeneration failure due to their 

foreign nature (Evans, Midha et al. 1994).  The Mackinnon lab has given considerable study 

to the use of nerve allografts as alternatives to autografts.  They have tested antibodies to 

cell-adhesion molecules to induce antigen-specific tolerance, which allow the allografts to 

perform as well as isografts in nerve histomorphometry measures in mice (Nakao, 

Mackinnon et al. 1995) and rats (Nakao, MacKinnon et al. 1995).  They also utilized a 

systemic treatment of anti-CD40 ligand monoclonal antibody in mouse (Brenner, Tung et al. 

2004) and primate (Brenner, Jensen et al. 2004) models, which resulted in nerve regeneration 

in allografts that were similar to autografts during the drug treatment; however, after the 

drug treatment was stopped, the allografts were rejected by the body (Brenner, Jensen et al. 

2004; Brenner, Tung et al. 2004).  To avoid immune suppression, the company Axogen, Inc 

developed technology to decellularize allografts taken from human cadaver tissue.  The 

Mackinnon lab performed studies with the grafts compared to isografts to determine its 

potential effectiveness in peripheral nerve injury.  They demonstrated that decellularized 
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nerve allografts do not perform as well as isografts in nerve histology, electrophysiology, and 

effectiveness in bridging a 14 mm critical defect length.  The enhanced nerve regeneration in 

the isograft was attributed in part to SCs retained in isografts promoting nerve regeneration, 

which are lost in the decellularization process (Whitlock, Tuffaha et al. 2009).  Others 

researchers have also studied acellular nerve grafts as alternatives and similarly concluded 

that the lack of cellular support for long nerve defects resulted in nerve regeneration inferior 

to autografts (Gulati 1988). 

Other biological tissues to serve as grafts have been investigated due to their greater 

availability and dimensions (diameter and/or length).  Vein or artery has been used a 

biological substitute to nervous tissue due to its similarities to a conduit, which can 

encapsulate the regenerating nerves and naturally degrades over time (Foidart-Dessalle, 

Dubuisson et al. 1997).  Consequently, veins and arteries can present a major obstacle to 

regeneration because their mechanical properties are not ideal, where the thin walls can lead 

to collapse and excess pressure on regenerating nerves, and the tissue is mismatched 

potentially leading to scarring (Belkas, Shoichet et al. 2004).  Muscle tissue offers a better 

alternative to vein or artery due to basal lamina arrangement that mimics the endoneurial 

tubes contained in peripheral nerve and contains collagen and laminin to promote nerve 

outgrowth (Belkas, Shoichet et al. 2004).  Mechanical dissimilarities and scarring due to 

tissue mismatch have been observed when it is used as a graft (Meek and Coert 2002).  More 

promising results with both vein and muscle grafts have been demonstrated with isogenic 

SCs injected into either graft as treatment for nerve injury (Fansa, Keilhoff et al. 1999a; 

Fansa, Keilhoff et al. 1999b; Fansa and Keilhoff 2004).  Either donor tissue loaded with SCs 

performed as well as the isograft in histomorphometric measures of nerve density and g-

ratios while the tissues without cells were inferior in nerve regeneration (Fansa and Keilhoff 
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2004).  However, the donor tissue would still need to be harvested from the recipient in 

order to avoid adverse foreign tissue responses (Fansa, Schneider et al. 2002; Belkas, 

Shoichet et al. 2004).  Therefore, other materials, such as tubular repair using nerve guidance 

conduits (NGCs), have been considered. 

 

1.3.2 Nerve Guidance Conduits (NGCs) 

NGCs have been studied for many years as a potential “off the shelf” alternative to 

nerve grafts for the treatment of nerve gaps.  NGCs typically consist of a hollow conduit 

that can be filled with an ECM scaffold.  Efforts have been focused on the construction of 

biodegradable conduits, which may avoid biocompatibility issues present with permanent 

material placement in the body.  The main advantage of using conduits is that they isolate 

the environment where regeneration is occurring and allow controlled presentation of cues 

to examine their effects on nerve regeneration. 

Lundborg and colleagues considered using a tube or conduit to bridge a nerve defect; 

however, their motivation initially was to study peripheral nerve regeneration, not as 

alternative treatment for bridging the nerve defect.  They used a psuedosynovial neural 

sheath to bridge a nerve defect in the rat sciatic nerve (Lundborg and Hansson 1979; 

Lundborg and Hansson 1980), which was shortly followed by silicone conduits.  Both 

materials led to a convenient method to encapsulate trophic factors associated with nerve 

regeneration and to study the time course of nerve regeneration.  These experiments 

provided knowledge that a cellular scaffold of natural proteins and glial cell migration 

followed axonal nerve sprouting into an empty tube, indicating that even in the absence of a 

cellular scaffold peripheral nerves are capable of producing their own to support 
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regeneration (Lundborg and Hansson 1979; Lundborg and Hansson 1980; Lundborg, Dahlin 

et al. 1982a; Lundborg, Dahlin et al. 1982b). 

Clinically, silicone conduits have been used in the treatment of small nerve defects in 

humans (Lundborg, Dahlin et al. 1991; Lundborg, Rosen et al. 1997; Lundborg, Rosen et al. 

2004) due to their biocompatibility and mechanical stability, although there have been 

reports of associated morbidities.  Silicone conduits have been reported to cause chronic 

nerve compression and irritation at the implantation site requiring removal (Merle, Dellon et 

al. 1989; Danielsen, Dahlin et al. 1993; Dellon 1994; Battiston, Geuna et al. 2005).  The long-

term presence of a material surrounding nerve may have presented the pathology; therefore, 

alternatives have been suggested to alleviate the permanence of the material, such as a 

biodegradable conduit. 

To this end numerous groups have constructed and examined the properties of 

conduit materials such as poly-L-lactic acid (Hadlock, Elisseeff et al. 1998), poly(lactic-co-

glycolic acid) copolymer (Hadlock, Elisseeff et al. 1998), poly(L-lactide–co-6-caprolactone) 

(Nicoli Aldini, Perego et al. 1996) and vinylidenefluoride-trifluoroethylene copolymer (Fine, 

Valentini et al. 1991).  These polymer materials were selected due to their range of 

degradation, mechanical stability, and in the latter instance, its piezoelectric properties that 

may be beneficial to nerve regeneration.  Alternatively, natural materials can serve as 

biodegradable conduits substitutes to polymers, offer permeability to oxygen and nutrients 

and may have biocompatible advantages over polymers.  The repair of peripheral nerves 

with a conduit fabricated from collagen has demonstrated promise in terms of its ability to 

promote nerve regeneration and still provide structural support during the regeneration 

process.  In a rodent and primate short nerve defect model, these conduits demonstrated 
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effectiveness in promoting functional recovery in electrophysiology measures compared to 

direct suture repair and autologous nerve graft repair (Archibald, Krarup et al. 1991).  These 

collagen conduits also worked as effectively as nerve autografts in terms of physiological 

recovery of motor and sensory responses in primates in further follow-up studies (Li, 

Archibald et al. 1992).  Alternatively fibronectin has been oriented into mats in order to 

produce conduits that can promote nerve regeneration (Whitworth, Brown et al. 1995), and 

more recently, fibrin conduits were constructed that promoted nerve regeneration 

(Kalbermatten, Pettersson et al. 2009). 

Overall, NGCs provide valuable insight into the nerve regeneration process as well 

as potential to treat peripheral nerve defects.  Polymer and natural NGC materials generally 

support axonal regeneration for small defects, and in some cases large defects.  However, 

NGCs can be further improved by design of a cellular scaffold to encourage and promote 

SC and axonal growth into the conduit. 

 

1.3.3 Scaffolds for a Nerve Guidance Conduit 

Stimulation of regeneration through NGCs for large nerve defects (> 3 cm) has 

proven difficult, so a number of materials have been studied for use as luminal conduit fillers 

(Schmidt and Leach 2003).  Initial research with NGCs demonstrated that a scaffold for 

cellular migration proceeds glial cellular infiltration and axonal growth into a conduit; 

therefore, providing a scaffold for cellular migration could circumvent the need for the body 

to construct its own scaffold before nerve regeneration and accelerate the regeneration 

process.  The focus of this thesis work was directed toward a luminal component for NGCs. 
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The ideal scaffold would consist of proteins that naturally reside at the nerve defect 

site.  SCs’ major function is to produce extracellular matrix, where they provide the basal 

lamina for the cell (Bunge, Bunge et al. 1986), therefore besides providing a scaffold for 

axonal migration, the support of SC proliferation and migration would also be ideal.  In vitro 

studies comparing various ECM proteins in axonal development have not demonstrated 

dramatic differences due to the material protein used.  For example, laminin and type IV 

collagen substrates have both increased neurite outgrowth over uncoated surfaces (Sanes 

1989; Isahara and Yamamoto 1995; Venstrom and Reichardt 1995).  Therefore, in vivo 

studies have focused on various natural proteins that could encourage nerve regeneration. 

The nerve graft itself is primarily made up of basal lamina protein consisting of 

laminin, which is produced by SCs.  Laminin for this reason has been incorporated into 

conduits to test its capacity on nerve regeneration.  Madison et al. increased the rate of 

axonal growth in a short rat sciatic nerve defect within a silicone or degradable conduit by 

the inclusion of laminin gels (Madison, da Silva et al. 1987).  Furthermore, they later 

followed this work to determine that the inclusion of collagen or laminin gels enhanced 

nerve regeneration and the effectiveness in bridging long nerve defects (> 20 mm) (Madison, 

Da Silva et al. 1988). 

Fibrin is a provisional ECM and a natural material that has been considered for 

nerve regeneration.  Initial experiments using a 10 mm gap in the rat sciatic nerve contained 

within a silicone conduit revealed that at one week a fibrin matrix spanned the chamber.  At 

two weeks, SCs, fibroblasts, and endothelial cells had migrated into the matrix and into both 

stumps, and axons reached the distal stump by three weeks with a proximal gradient of 

myelin advancing (Williams, Longo et al. 1983).  Therefore, it was postulated that pre-filling 
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a conduit with fibrin could accelerate the regeneration process.  Indeed, filling a silicone 

conduit with plasma resulted in increased axonal regeneration and SC migration into the 

conduit for a rat critical defect (Williams 1987).  Besides being native to the injury site, fibrin 

also contains two RGD binding sites that can facilitate binding of cells via integrin receptors 

(Thiagarajan, Rippon et al. 1996).  SCs contain a specific integrin receptor for binding RGD 

on fibrin (αVβ8), which can facilitate their migration through fibrin (Chernousov and Carey 

2003). 

Other natural protein matrices have been investigated for use as a scaffold to fill the 

lumen of a NGC.  For example, the Bellamkonda lab demonstrated that agarose gels 

containing laminin and NGF were comparable to autografts in functional measures in a 10 

mm rat sciatic nerve defect (Yu and Bellamkonda 2003).  Collagen-glycosaminoglycan 

copolymers are an ECM analog and can encourage rat sciatic nerve regeneration across a 10 

mm defect (Chamberlain, Yannas et al. 1998).  Additionally, alginate can act as a scaffold to 

bridge a 2 – 4 cm gap in the rabbit peroneal nerve (Mohanna, Terenghi et al. 2005), which 

can also be covalently modified to incorporate heparin and growth factors for delivery to 

treat rat sciatic nerve injuries (Ohta, Suzuki et al. 2004). 

While luminal scaffolds have focused on natural and ECM materials, synthetic 

polymers have been considered as they offer more degrees of freedom for construction and 

chemistry.  In particular, much research in synthetic materials has involved the use of aligned 

or parallel fibers within a conduit to better represent the organized endoneurial tubes 

normally present.  Synthetic longitudinally arranged polymer filaments have included: 

polyamide (Dahlin and Lundborg 1999; Arai, Lundborg et al. 2000), catgut (Dahlin and 

Lundborg 1999; Arai, Lundborg et al. 2000), polydioxanone (Arai, Lundborg et al. 2000), 
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poly-glycolide (Lietz, Dreesmann et al. 2006) and polyglactin (Arai, Lundborg et al. 2000), 

which all supported nerve regeneration across a nerve gap of 15 mm better than an empty 

conduit alone.  However, the biocompatibility of such polymer filaments may present a 

problem as large numbers of macrophages were found on catgut and polyglactin filaments 

(Terada, Bjursten et al. 1997).  Furthermore, the biodegradability of polymers is an issue as 

polyamide is non-resorbable, while the others investigated are biodegradable but may still 

break down into acidic byproducts that may inhibit the nerve regeneration process and 

present safety issues, especially in long-term implantation situations (Terada, Bjursten et al. 

1997). 

An additional aspect of the design of all scaffolds is the dependence of the 

concentration of the natural or ECM proteins or polymer stiffness used.  Navarro and 

colleagues have examined agarose (Labrador, Buti et al. 1995), collagen and laminin gels 

(Labrador, Buti et al. 1998) to determine if their concentration, or density/stiffness, affected 

neural regeneration.  Labrador et al. implanted conduits filled with agarose gels of varying 

concentrations to bridge a short defect in the rat sciatic nerve.  They found that the gel 

concentration or stiffness affected functional recovery following nerve injury, where there 

was an optimal concentration that enhanced functional recovery compared to other 

concentrations (Labrador, Buti et al. 1995).  They also performed followed-up studies using 

collagen and laminin gels in both short defect and critical mouse sciatic nerve defects, and 

again found that there was an optimal concentration or stiffness for either gel solution that 

maximized axonal regeneration.  They also determined that there were differences in axonal 

regeneration between the two solutions based on the defect length; however, the mechanism 

and reason for the differences are not well understood (Labrador, Buti et al. 1998). 
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Overall, studies considering scaffolds for nerve regeneration have found that natural 

materials or proteins can effectively promote nerve regeneration beyond defect lengths that 

would normally be limited in empty NGCs.  Scaffolds for nerve regeneration also are not 

limited to their inclusion in NGCs and may be included in other materials in future work.  

This thesis work utilized a fibrin matrix to act as a luminal scaffold for nerve regeneration 

due to its regenerative properties and its ability to be chemically modified for drug delivery, 

as described later. 

 

1.4 Growth Factors 

Growth factors are known to influence neural regeneration.  After nerve injury 

growth factors, in particular neurotrophic factors, are upregulated due to a decrease in 

trophic support from the deinnervated end-organs (Costigan, Befort et al. 2002).  These 

factors typically exert their effects via binding to cell membrane surface receptors which lead 

to a diverse array of transcriptional effects.  Following activation, they regulate neurite 

growth, branching and synaptogenesis, as well as adult synaptic plasticity and maturation of 

neuronal phenotype.  Most importantly, neurotrophic factors promote the survival of 

neurons and counteract pathological neuronal cell death.  Neurotrophic factors currently are 

classified by three major families: the neurotrophins, including nerve growth factor (NGF); 

the neurokines; and the GDNF family of ligands (GFL) including, GDNF (Boyd and 

Gordon 2003).  Biological grafts contain neurotrophic factors naturally to a degree, and the 

delivery of neurotrophic factors with alternative therapies, such as NGCs, can enhance and 

promote nerve regeneration, as will be discussed later.  Two of these neurotrophic factors, 
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NGF and GDNF, will be described in detail in this section due to their involvement in this 

thesis work. 

 

1.4.1 Nerve Growth Factor (NGF) 

NGF was the first discovered neurotrophin (Levi-Montalcini and Hamburger 1951; 

Cohen, Levi-Montalcini et al. 1954) and was discovered in mouse sarcoma due to its effects 

on chick embryo ganglia (Cohen, Levi-Montalcini et al. 1954).  Processed and biologically 

active NGF (β-NGF) takes the form of a dimer with 3 disulfide chains to stabilize itself 

(Sofroniew, Howe et al. 2001a).  NGF’s receptors include p140 or, more commonly, tyrosine 

receptor kinase A (TrkA) and p75NTR (p75 or low affinity growth factor receptor).  Both are 

the two major known receptors for NGF in many neurons, and NGF binds to either 

receptor with moderate to low affinity.  The co-localization of the two receptors forms an 

oligomer leading to a high affinity NGF binding receptor stronger than either receptor alone 

(Sofroniew, Howe et al. 2001a).  TrkA homodimer and the combination of p75-TrkA 

heterdimer receptor signaling promote cell survival and differentiation, while p75 

homodimer, a tumor necrosis factor receptor family member (Esposito, Patel et al. 2001), 

mediates apoptosis upon binding and activation with NGF (Niederhauser, Mangold et al. 

2000). 

NGF has a specific role in neural development where it supports the survival and 

maturation of a number of neuronal cells.  It also is involved in nerve injury, where glial cells 

upregulate its expression in response to the injury in both the central nervous system and the 

peripheral nervous system (Sofroniew, Howe et al. 2001a).  Exogenous delivery of NGF has 

proven beneficial in numerous studies of sciatic nerve injury.  NGF delivered from a silicone 
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tube protected dorsal root ganglia from injury-induced death after sciatic nerve injury (Otto, 

Unsicker et al. 1987).  NGF delivered via a subcutaneous silicone reservoir for 12 weeks 

after nerve injury promoted improved nerve regeneration more than epineurial repair alone 

(Santos, Rodrigo et al. 1998).  However, NGF is limited in axonal targeting in the peripheral 

nervous system as sensory neurons express the receptors for NGF, mainly TrkA, while 

motor neurons do not express TrkA receptors (Boyd and Gordon 2003). 

 

1.4.2 Glial Derived Neurotrophic Factor (GDNF) 

GDNF was the first discovered of the GDNF family of ligands (Lin, Doherty et al. 

1993; Baloh, Enomoto et al. 2000).  GDNF was initially identified for its ability to promote 

the survival of dopaminergic neurons (Lin, Doherty et al. 1993).  Following peripheral nerve 

injury its expression is upregulated in SCs (Hoke, Gordon et al. 2002; Boyd and Gordon 

2003; Zhao, Veltri et al. 2004), while its receptors are upregulated in motor neurons (Boyd 

and Gordon 2003).  GDNF is also upregulated in skeletal muscle after injury (Nagano and 

Suzuki 2003; Zhao, Veltri et al. 2004) and regulates presynaptic differentiation and 

neuromuscular junction connections (Nagano and Suzuki 2003; Yang and Nelson 2004).  

GDNF binding is facilitated through a receptor unit, where the primary receptor subunit is 

GDNF receptor α-1, which elicits signaling through its linked partner subunit, c-Ret receptor 

tyrosine kinase (Baloh, Enomoto et al. 2000). 

Exogenous GDNF has promoted neurite outgrowth and neuronal survival in vitro 

(Trupp, Ryden et al. 1995; Matheson, Carnahan et al. 1997; Bennett, Michael et al. 1998; 

Gavazzi, Kumar et al. 1999; Tucker, Rahimtula et al. 2006; Leclere, Norman et al. 2007) and 

promotes survival of axotimized sciatic neurons in vivo (Matheson, Carnahan et al. 1997).  
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While GDNF is recognized to be beneficial to both sensory and motor neuron survival and 

regeneration, multiple studies have found GDNF to be a potent motor neuron trophic and 

survival factor in vitro and in vivo (Henderson, Phillips et al. 1994; Yan, Matheson et al. 1995; 

Oppenheim, Houenou et al. 2000).  Studies have also shown GDNF to have increased 

ability to promote motor nerve regeneration compared to other neurotrophic factors such as 

NT-3 or NGF (Barras, Pasche et al. 2002; Fine, Decosterd et al. 2002).  Furthermore, the 

effects of GDNF go beyond immediate nerve regeneration effects but also play a role in 

promoting maturation of the neuromuscular junction and functional connections.  Using 

nerve-muscle co-cultures Wang et al. demonstrated that GDNF not only increased the total 

length of neurites in the motor neurons, but also facilitated aggregation of synaptic vesicles 

in the presynaptic terminals, as well as increased acetylcholine receptors clustering in the 

postsynaptic terminal (Wang, Yang et al. 2002).  Nguyen et al. used transgenic mice that 

overexpress GDNF in muscle to show that increased exposure of GDNF not only 

decreased spinal motor neuron death, but also led to hyperinnervation of the neuromuscular 

junctions (Nguyen, Parsadanian et al. 1998).  Therefore, GDNF appears to play a significant 

role in motor nerve regeneration and the reestablishment of neuromuscular junctions in 

skeletal muscle at denervation. 

 

1.5 Controlled Protein Delivery 

Growth factors can promote nerve regeneration; however, injected and ingested 

drugs or proteins have associated problems such as low stability due to degradation, rapid 

clearance of the drug, which may affect its potency at the injury site, and more importantly, 

systemic effects, which may not be desirable due to adverse side effects in other tissues.  



23 

Osmotic pumps and other implantable reservoirs can effectively produce localized delivery 

but can have inflammatory problems due to their permanent nature (Schmidt and Leach 

2003).  An alternative degradable delivery system can be achieved with NGCs, which can 

delivery proteins and other soluble molecules using controlled release mechanisms.  The 

delivery using NGCs can occur from both the conduit walls and materials within the lumen 

of the conduit.  Different strategies have been considered for drug delivery where the most 

common mechanism is through diffusion-based release.  Diffusion-based systems release 

drug or protein by modulating the diffusion coefficient of the drug within the material.  The 

primary control of this modulation is through altering the pore size of the material (Langer 

and Folkman 1976; Saltzman and Langer 1989). 

Numerous NGCs have employed diffusion-based release systems.  Aebischer and 

colleagues have constructed ethylene vinyl acetate copolymer (EVA) conduits that prevent 

the diffusion of growth factors from the outer portion of the conduit while permitting 

release to the inner portion that contains the nerve stumps (Aebischer, Salessiotis et al. 

1989).  The release of growth factors has an initial drug burst but is followed by weeks of 

linear growth factor release (Aebischer, Salessiotis et al. 1989).  These conduits have been 

used to treat 15 mm defects in rat sciatic nerve with basic fibroblast growth factor (bFGF) 

(Aebischer, Salessiotis et al. 1989), GDNF, and NGF (Fine, Decosterd et al. 2002) and to 

treat 8 mm defects in rat facial nerve with neurotrophin-3 (NT-3) and GDNF (Barras, 

Pasche et al. 2002).  Alternatively, Terenghi and colleagues used a conduit constructed from 

a natural material, fibronectin, to delivery growth factors.  Fibronectin mats impregnated 

with NGF and NT-3 effectively delivered either growth factor to enhance nerve 

regeneration in a rat sciatic nerve defect (Whitworth, Brown et al. 1996; Sterne, Brown et al. 

1997). 
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Scaffolds for NGCs have included growth factors to promote nerve regeneration, 

but few have used controlled release mechanisms.  Commonly the drug is loaded into the 

scaffold and is therefore free to diffuse away from the conduit (Yu and Bellamkonda 2003).  

Affinity-based delivery offers an alternative to loading free drug or growth factor into a 

scaffold by non-covalently sequestering the drug within the scaffold or matrix.  Affinity-

based release systems control release by modulating the concentration of drug or protein 

available for release.  This thesis work utilized an ABDS to sequester and deliver growth 

factors to promote nerve regeneration. 

 

1.5.1 Affinity-based Delivery 

ABDSs differ from diffusion-based delivery systems in that the systems immobilize 

drugs within the matrix via non-covalent interactions.  These non-covalent interactions allow 

the release to be controlled by modulating the diffusible fraction of drug.  The fraction of 

drug available for release can be specifically modulated by degradation of the matrix that 

binds the drug, controlling the quantity of binding sites available for drug within the matrix, 

or tailoring the affinity of drug interaction with the matrix. 

Heparin is a polysaccharide that is commonly used to sequester growth factors in 

ABDSs.  Heparin protects growth factors from degradation and contains charged sulfate 

groups, which facilitate electrostatic interactions with a variety of growth factors via basic 

domains (Yamada 1983; Mach, Volkin et al. 1993; Mulloy 2005).  ABDSs utilizing heparin 

have been employed in a variety of systems.  Edelman and colleagues used heparin-

conjugated Sepharose beads encapsulated in alginate to immobilize bFGF and protect it 

from degradation.  They achieved controlled growth factor release which could be 
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modulated by enzyme degradation (Edelman, Mathiowitz et al. 1991).  This delivery system 

was effective enough in vivo to reach human clinical trials for the treatment of myocardium 

revascularization (Laham, Sellke et al. 1999).  Another system was developed using collagen 

matrices that immobilized heparin through crosslinking the collagen.  The immobilized 

heparin in turn sequestered bFGF within the matrices allowing enhanced endothelial cell 

proliferation and reducing the minimum cell seeding density needed for proliferation 

(Wissink, Beernink et al. 2000a; Wissink, Beernink et al. 2000b).  More recently, heparin was 

methacrylated and copolymerized with dimethacrylated poly(ethylene glycol) monomers to 

yield hydrogels that sequester bFGF (Benoit and Anseth 2005). 

Sakiyama-Elbert and Hubbell developed an ABDS that sequesters proteins in a fibrin 

matrix using non-covalent interactions (Sakiyama-Elbert and Hubbell 2000a; Sakiyama-

Elbert and Hubbell 2000b).  This system utilizes a bi-domain peptide that is uniquely able to 

incorporate into a fibrin matrix and still interact with molecules on its other domain.  

Fibrinogen is normally cleaved at acceptor sites by thrombin which permits interactions at 

the acceptor sites with other fibrinogen proteins resulting in a non-covalent fibrin mesh.  

This is further stabilized by the formation of covalent bonds within the mesh due to 

transglutaminase substrates contained on fibrinogen facilitated through the transglutaminase 

Factor XIIIa (Loewy, Dunathan et al. 1961).  In the ABDS, one domain of the bi-domain 

peptide consists of a transglutaminase substrate, based on α2-plasmin inhibitor (Ichinose, 

Tamaki et al. 1983; Kimura, Tamaki et al. 1985), which allows it to be crosslinked into fibrin 

matrices during polymerization.  The other domain consists of a modified version of the  

heparin-binding domain from antithrombin III (Tyler-Cross, Sobel et al. 1994; Tyler-Cross, 

Sobel et al. 1996; Sakiyama, Schense et al. 1999) allowing non-covalent interactions of 

heparin to peptide crosslinked within a fibrin matrix.  The heparin-binding domain has the 
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capability to sequester various neurotrophic factors due to their ability to interact with 

heparin to varying degrees. 

 

1.6 Concluding Remarks 

Previously, the aforementioned fibrin-based ABDS was applied to treat peripheral 

nerve injury using the delivery of NGF (Lee, Yu et al. 2003a).  This study demonstrated the 

efficacy of this ABDS to treat peripheral nerve injury; however, additional aspects of the 

delivery system were considered of interest: what role peptide binding affinity for heparin 

might perform in peripheral nerve injury treatment and whether other growth factors such as 

GDNF could be delivered to treat nerve injury, particularly due to the ability of GDNF to 

target motor axons which cannot be specifically targeted with NGF due to the lack of 

receptors.  Therefore, this thesis work first examined the role of each component in vitro and 

then applied each to a rat animal model of peripheral nerve injury to assess the role of each 

in nerve regeneration. 

The rat sciatic nerve has been classically used to study peripheral nerve injury due to 

its availability, cost, and nerve size.  The rat sciatic nerve has a fair degree of sensitivity to 

histological measures of nerve regeneration, as at mid-thigh level the sciatic nerve contains a 

mixture of sensory and motor axons (approximately 28,000 axons); of these axons, 8000 are 

myelinated and 4000 – 5000 of these myelinated axons are motor fibers (Schmalbruch 1986; 

Schmalbruch 1987a; Schmalbruch 1987b; Mackinnon and Dellon 1988).  Furthermore, rat 

nerve morphology bears similarities to human nerve morphology (Mackinnon and Dellon 

1988).  Additionally as already discussed, the placement of a silicone conduit between nerve 
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stumps results in nerve regeneration in a rat (Williams, Longo et al. 1983); however, the 

repair of the rat sciatic nerve with a silicone conduit resulted in nerve regeneration only 

when the gap length was 10 mm or less.  The use of a defect greater than 10 mm resulted in 

dramatically fewer instances of nerve regeneration (Lundborg, Dahlin et al. 1982a).  

Therefore, a silicone conduit filled with the ABDS can serve as useful injury model to 

observe improvements in nerve regeneration and was thus chosen as the in vivo injury model 

used in this thesis work. 

This thesis work utilized affinity-based delivery to delivery neurotrophic factors to 

promote peripheral nerve regeneration.  The first and second studies of this thesis work 

utilized peptides with varying binding affinity for heparin to determine whether peptide 

binding affinity for heparin or release rate affected peripheral nerve regeneration both in vitro 

and in vivo.  The third study investigated whether the growth factor GDNF could be 

sequestered by the ABDS and how the release rates could be modulated.  It also determined 

how the ABDS and GDNF might be directed to promote in vivo nerve regeneration by 

assessing in vitro neurite extension.  The fourth study considered the efficacy of the ABDS 

and GDNF in promoting peripheral nerve regeneration following injury in a short-term 

animal model through histology measures.  The final study utilized the ABDS with both 

NGF and GDNF to determine whether the ABDS could promote functional recovery 

following injury in a long-term animal model and whether there were differences in sensory 

versus motor nerve regeneration.  Overall, this thesis work represents an effort toward 

designing a material for the potential treatment of peripheral nerve injury. 
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Chapter 2 

 

Release rate controls biological activity of nerve growth 
factor released from fibrin matrices containing affinity-
based delivery systems* 

 

2.1 Abstract 

 Previously, combinatorial techniques were used to identify peptide sequences 

exhibiting high, medium, and low affinity for heparin.  Bi-domain peptides were synthesized 

containing a transglutaminase sequence for one domain and one of the heparin affinity 

sequences for the other domain.  A delivery system was made consisting of bi-domain 

peptides, heparin, and nerve growth factor (NGF), which binds to heparin with moderate 

affinity.  The goal of this research was to determine if peptide affinity for heparin and the 

molar ratio of peptide to heparin affected the release rate of NGF from the delivery system 

and the biological activity of NGF release.  This study also explored whether peptide affinity 

modulated biological activity independent of release rate.  Mathematically modeling the 

delivery system confirmed that release could be controlled by both peptide affinity and 

molar ratio of peptide to heparin.  Experimentally the rate of NGF release from the delivery 

system was found to be affected by the affinity and molar ratio.  The delivery system 

presented biologically active NGF as assayed by embryonic chick dorsal root ganglia (DRGs) 

neurite extension, where extension was similar to or increased for DRGs grown in fibrin 

matrices containing the delivery system compared to DRGs grown with NGF in the culture 

media.  Furthermore, by modulating the molar ratio of peptide to heparin in the delivery 

*Contents of this chapter were published in J Biomed Mater Res A. 84A (2), 300-312, 2008 and were 
reprinted with permission of the publisher 
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system, similar release rates of NGF were obtained for different affinity peptides and these 

conditions promoted similar levels of neurite extension, demonstrating that release rate 

appears to be the main mechanism controlling the biological activity of released NGF. 

 

2.2 Introduction 

The peripheral nervous system is capable of limited regeneration after injury, 

however in the case of large nerve gaps, surgical intervention is often required (Lundborg 

2000).  Nerve autografts are commonly used to repair these larger gaps but their limitations 

suggest that an alternative is needed (Staniforth and Fisher 1978; Lundborg 2000).  

Biomaterial matrices and neurotrophins, such as nerve growth factor (NGF), have been 

implicated as potential therapeutics for peripheral nerve injury (Schmidt and Leach 2003; 

Bellamkonda 2006), where NGF has been shown to promote neurite extension in vitro 

(Conti, Fischer et al. 1997; Macias, Battocletti et al. 2000; Sakiyama-Elbert and Hubbell 

2000a; Xu, Yu et al. 2002) and nerve regeneration in vivo when combined with a biomaterial 

scaffold (Xu, Yu et al. 2002; Lee, Yu et al. 2003b; Yu and Bellamkonda 2003).  A nerve 

guidance conduit filled with a biomaterial scaffold and NGF could be used as potential 

treatment for peripheral nerve injury, providing a physical bridge between the severed nerve 

ends and cues for neuronal survival.  In order to maximize their effect on regeneration, 

controlled release of the growth factors is needed. 

Diffusion-based release from biomaterial scaffolds is a common mechanism of drug 

delivery, where release of the drug is controlled by the diffusion coefficient of the drug 

within the material.  By modulating the pore size of the material, the diffusion coefficient of 
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the material can be altered (Langer and Folkman 1976; Saltzman and Langer 1989; Burdick, 

Ward et al. 2006).  Alternatively, affinity-based delivery systems have been studied, which 

differ in that the delivery systems immobilize drugs within the matrix via non-covalent 

interactions allowing the release to be controlled by the modulating the fraction of the drug 

in the diffusible form. 

Affinity-based delivery systems utilizing heparin have been used for a variety of 

applications and take advantage of the ability of the sulfated groups on heparin to interact 

with proteins, such as growth factors, via basic domains (Mach, Volkin et al. 1993; Mulloy 

2005).  One such system was developed by Edelman and coworkers and used heparin-

conjugated Sepharose beads encapsulated in alginate to immobilize basic fibroblast growth 

factor (bFGF).  This system allowed the growth factors to be released in a controlled process 

over time and protected them from degradation within the alginate matrix (Edelman, 

Mathiowitz et al. 1991; Laham, Sellke et al. 1999).  Another system was developed using 

heparinized collagen matrices, made by crosslinking collagen and covalently immobilizing 

heparin within the matrices.  This system was able to sequester bFGF within collagen 

matrices allowing enhanced endothelial cell proliferation and reducing the minimum cell 

seeding density required for proliferation (Wissink, Beernink et al. 2000a; Wissink, Beernink 

et al. 2000b).  More recently, heparin was copolymerized with poly(ethylene glycol) (PEG) 

dimethacrylate to yield hydrogels that sequestered bFGF (Benoit and Anseth 2005).  While 

another group used hyaluronan, gelatin, and heparin modified with thiol groups and 

crosslinked these components with PEG diacrylate to make hydrogels that sequestered 

vascular endothelial growth factor or bFGF (Pike, Cai et al. 2006). 
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 We have developed an affinity-based delivery system that sequesters proteins within 

a fibrin matrix using non-covalent interactions (Sakiyama-Elbert and Hubbell 2000a; 

Sakiyama-Elbert and Hubbell 2000b).  This system contains a bi-domain peptide, consisting 

of a transglutaminase substrate from α2-plasmin inhibitor (Ichinose, Tamaki et al. 1983; 

Kimura, Tamaki et al. 1985), and a heparin-binding domain.  Based on the transglutaminase 

substrate the peptide is crosslinked into fibrin matrices during polymerization by Factor 

XIIIa, leaving the other domain free to interact with heparin.  This work demonstrated that 

this delivery system is capable of delivering NGF through heparin interactions with NGF, 

which binds with modest affinity, creating a ternary complex (peptide, heparin, and NGF) 

within the fibrin matrix (Sakiyama-Elbert and Hubbell 2000a). 

To modulate the affinity of the heparin-binding domain for heparin, combinatorial 

techniques were used to identify peptides with varying affinity for heparin.  Peptide 

sequences were identified exhibiting “high”, “medium”, and “low” affinity for heparin using 

an increasing step gradient of sodium chloride concentration (1 M, 1.5 M and 2.0 M were 

used to elute the low, medium and high affinity peptide, respectively).  Peptides were 

synthesized containing the identified heparin binding domains along with a transglutaminase 

substrate to allow crosslinking into fibrin matrices and to bind to heparin (Maxwell, Hicks et 

al. 2005). 

This system allows the release rate of NGF to be modulated by changing the molar 

ratio of peptide to heparin in the delivery system (thus modulating the fraction of NGF in 

the diffusible form) or the peptide affinity for heparin.  This allows us to test whether 

peptide affinity affects NGF biological activity independent of release rate because molar 

ratios of peptide to heparin can be identified for two different affinity peptides that result in 
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similar release rate.  The notion of biological activity being independent of release rate may 

seem unconventional; however, in nature there are examples of growth factors with varying 

affinity for ECM or cell surface receptors that demonstrate different biological activity.  For 

example, the different isoforms of transforming growth factor-β demonstrate different 

affinity for heparin sulfate and exhibit different biological responses in wound healing (Lyon, 

Rushton et al. 1997).  Additionally, the neurotrophin NGF binds with different affinity to its 

receptors, TrkA and p75, where the ratio of each receptor activated can lead to different cell 

responses (survival vs. apoptosis) (Bothwell 1995; Sofroniew, Howe et al. 2001b; Kuruvilla, 

Zweifel et al. 2004).  Thus biological activity may be affected by affinity in controlled release 

systems as well. 

The focus of this study was to assess the release rate and biological activity of β-

NGF released from fibrin matrices containing a heparin-binding delivery system (HBDS) 

with peptides of varying affinity for heparin.  The release of NGF from matrices was 

modeled mathematically as a function of peptide affinity for heparin and the molar ratio of 

peptide to heparin to determine if similar release rates of NGF could be obtained for 

peptides with different heparin affinity.  Additionally, the release of NGF was measured 

experimentally over 7 days and the ability of the delivery system to present biologically active 

NGF was analyzed using chick embryonic DRGs. 

 

2.3 Materials and Methods 

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO) unless specified 

otherwise. 
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2.3.1 Mathematical modeling 

 A mathematical model was developed to understand how varying peptide affinity for 

heparin and the molar ratio of peptide to heparin affected the concentrations of species 

containing NGF bound within the fibrin matrix at equilibrium.  Additionally, the release of 

NGF from fibrin matrices to aqueous media was modeled over 24 h to determine the role of 

peptide affinity for heparin and molar ratio of peptide to heparin and to reveal if similar 

release rates of NGF could be obtained for peptides of different heparin affinity.  Therefore, 

the equilibrium and release of species containing NGF from fibrin matrices was modeled 

after situations similar to those described in the experimental methods below, where a closed 

system of reacting species were allowed to reach equilibrium followed by the passive release 

of species to aqueous media. 

The delivery system was modeled with nine species (five of which contained NGF) 

given by: peptide, either matrix bound (PB) or unbound (free, PU) to the fibrin matrix, 

heparin (H), NGF (G), peptide-heparin complex, either matrix bound (PHB) or unbound 

(PHU), heparin-NGF complex (free, HG), and peptide-heparin-NGF complex, again matrix 

bound (PHGB) or unbound (PHGU).  This model explored the effects of having both bound 

(cross-linked to the fibrin matrix) and unbound peptide present (and capable of binding to) 

heparin and in turn bind NGF.  These species reacted according to the following chemical 

equations governing the network, where all possible complexes between the species (P, H, 

and G) were considered: 

(2.1)    P H PHB B
f

r

κ
κ+ 


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(2.2)   P H PHU U
f

r

κ
κ+ 



 

(2.3)   H G HGf

r

k
k+ 



 

(2.4)   PH G PHGB B
f

r

k
k+ 



 

(2.5)   PH G PHGU U
f

r

k
k+ 



 

(2.6)   P HG PHGB B
f

r

κ
κ+ 



 

(2.7)   P HG PHGU U
f

r

κ
κ+ 



. 

It was assumed that the kinetic rates of heparin binding to NGF and peptide binding to 

heparin were independent of previous interactions with another species.  Additionally, 

peptide-containing and heparin-containing species were assumed to contain only one 

binding site for interaction with heparin-containing species and NGF-containing species, 

respectively.  Others have found that heparin can bind multiple sites on acidic fibroblast 

growth factor with high affinity interactions due to interactions of basic residues of the 

growth factor with the anionic regions of heparin (Mach, Volkin et al. 1993).  However, 

since a molar excess of heparin was present in all model calculations, it was assumed that 

NGF would primarily occupy only one binding site on heparin.  The kinetic rate constants 

for peptide interacting with heparin were κf for the association rate constant, κr for the 

dissociation rate constant, and KD, PH for the equilibrium dissociation constant.  The kinetic 
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rate constants for heparin interacting with NGF were kf for the association rate constant, kr 

for the dissociation rate constant, and KD, HG for the equilibrium dissociation constant. 

At the start of release experiments fibrin matrices were assumed to be at equilibrium 

in a closed system.  Nine equations governing the concentrations of the species at 

equilibrium (eqns. 2.8 – 2.12), found from considering the reactions of the species (eqns. 2.1 

– 2.7) and the concentrations due to the conservation of mass for a closed system (eqns. 2.13 

– 2.16), were evaluated to obtain the starting conditions for release.  The equations consisted 

of the following: 

(2.8)   B
D, PH

B

[P] [H]Κ
[PH]

=  

(2.9)   U
D, PH

U

[P] [H]Κ
[PH]

=  

(2.10)   D, HG
[H][G]Κ
[HG]

=  

(2.11)   B
D, PH

B

[P] [HG]Κ
[PHG]

=  

(2.12)   U
D, PH

U

[P] [HG]Κ
[PHG]

=  

(2.13)   EQ EQ EQ EQ
B, Total B B n B[P] [P]  [PH]  [PHG ]= + +  

(2.14)   EQ EQ EQ EQ
U, Total U U n U[P] [P]  [PH]  [PHG ]= + +  
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(2.15)  

 EQ EQ EQ EQ EQ EQ EQ
Total B U B U[H] [H]  [PH]  [PH]  [HG]  [PHG]  [PHG]= + + + + +  

(2.16)   EQ EQ EQ EQ EQ
Total B U[G] [G]  [HG]  [PHG]  [PHG]= + + +  

(2.17)   
EQ EQ EQ EQ

U B

EQ
Total

1 1 1[G] [HG] [PHG] [PHG]2 2 2α
[G]

+ + +
=  ,   

where the values for the total concentrations of P, H, and G at equilibrium were the same as 

those used for experiments (see below).  Equations 2.13 and 2.14 assume that not all the 

peptide was cross-linked into the fibrin matrix, and matrix bound peptide was estimated to 

be approximately 8 moles of peptide per mole of fibrinogen (Sakiyama, Schense et al. 1999; 

Schense and Hubbell 1999).  Equation 2.17 describes the results of the in vitro equilibrium 

study (see below), where α represents the fraction of [G] retained within the matrix.  

Equations 2.8 – 2.17 were entered into MATLAB (Mathworks, Inc., Novi, MI) and solved 

using a non-linear equation solver to obtain the dissociation constant (KD, HG) for the 

interaction of heparin with NGF (the average value for KD, HG is given in Table 2.1) and by 

omitting equation 2.17 (KD, HG was kept at the average shown in Table 2.1) to determine the 

fraction of bound growth factor as the heparin concentration varied. 

Table 2.1: Constants employed in math model 

Constant Value 

KD, HG 1.7 ± 2.6 x 10-6 M 

KD, PH (Low affinity peptide) 9.0 x 10-5 M (Maxwell, Hicks et al. 2005) 

KD, PH (Medium affinity peptide) 6.1 x 10-5 M (Maxwell, Hicks et al. 2005) 

KD, PH (High affinity peptide) 3.8 x 10-5 M (Maxwell, Hicks et al. 2005) 
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KD, PH (ATIII peptide) 8.78 x 10-8 M (Olson, Srinivasan et al. 1981; 

Kridel, Chan et al. 1996) 

DP, W (MW ~ 2200 Da.) 1.9 x 10-2 mm2/min 

DH, W 9.3 x 10-3 mm2/min 

DG, W 1.0 x 10-2 mm2/min 

DPH, W 8.9 x 10-3 mm2/min 

DHG, W 7.7 x 10-3 mm2/min 

DPHG, W 7.6 x 10-3 mm2/min 

DP, M 1.9 x 10-2 mm2/min 

DH, M 9.1 x 10-3 mm2/min 

DG, M 9.7 x 10-3 mm2/min 

DPH, M 8.6 x 10-3 mm2/min 

DHG, M 7.5 x 10-3 mm2/min 

DPHG, M   7.3 x 10-3 mm2/min 

 

The release of species from fibrin matrices was described by the mass balances for 

the species given by partial differential equations (PDEs) describing the kinetics of binding 

and dissociation and the diffusive transport of the species in the fibrin matrix and in the 

aqueous media with time.  The delivery system was considered with the following equations: 

(2.18) B
f B B r B B

[P] κ ([P] [H] [P] [HG]) κ ([PH] [PHG] )
t

∂
= − + + +

∂
 

(2.19) 2U
P,j U f U U r U U

[P] D [P]κ ([P] [H] [P] [HG]) κ ([PH] [PHG] )
t

∂
= ∇ − + + +

∂
 

(2.20) 2
H,j f B U r B U f r

[H] D [H]κ ([P] [H] [P] [H]) κ ([PH] [PH] ) k [H][G] k [H G]
t

∂
= ∇ − + + + − +

∂
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(2.21)

 

2
G,j f B U r B U

[G] D [G] k ([H][G] [PH] [G] [PH] [G]) k ([HG] [PHG] [PHG] )
t

∂
= ∇ − + + + + +

∂
 

(2.22)  B
f B r B f B r B

[PH] κ [P] [H] κ [PH] k [PH] [G] k [PHG]
t

∂
= − − +

∂
  

(2.23) 2U
PH,j U f U r U f U r U

[PH] D [PH]κ [P] [H] κ [PH] k [PH] [G] k [PHG]
t

∂
= ∇ + − − +

∂
 

(2.24) 
2

HG,j f r f B U

r B U

[HG] D [HG] k [H][G] k [HG]κ ([P] [HG] [P] [HG])

              κ ([PHG] [PHG] )
t

∂
= ∇ + − − +

∂
+ +

 

(2.25) B
f B r B f B r B

[PHG] k [PH] [G] k [PHG]κ [P] [HG] κ [PHG]
t

∂
= − + −

∂
 

(2.26) 2U
PHG,j U f U r U f U r U

[PHG] D [PHG] k [PH] [G] k [PHG]κ [P] [HG] κ [PHG]
t

∂
= ∇ + − + −

∂
, 

where [i] is the concentration of the species i given by PB, PU, H, G, PHB, PHU, HG, PHGB, 

and PHGU, j is the material in which the species is diffusing, and t represents time.  The mass 

balances for species not cross-linked to the fibrin matrix included a term for diffusive 

transport as well as kinetic terms, while the mass balances for matrix bound species included 

only kinetic terms because the peptide was assumed to be immobilized in the fibrin matrix.  

The equilibrium dissociation constants (used to estimate the kinetic rate constants) and 

diffusion coefficients (Di, j) are given in Table 2.1 where i is the species and j is the material in 

which the species is diffusing (matrix (M) or aqueous media (W)). 
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The diffusion coefficients for the species diffusing through the aqueous media 

(water) were found by the Stokes-Einstein Equation (Einstein 1906; Saltzman 2001) : 

(2.27)   B
A, W

k TD
6πμa

= , 

where kB is Boltzmann’s constant, T is the temperature, μ is the viscosity of water, and a is 

the hydrodynamic radius of the species A.  The diffusion coefficients for the species 

diffusing through the fibrin matrix were found by the Ogston Fiber Matrix Model (Ogston 

1958; Ogston, Preston et al. 1973; Saltzman 2001) : 

(2.28)   
1

2
A, M A, W

aD D exp
r

 = −Φ 
 

, 

where Φ is the volume fraction occupied by the fibers (~ 5% (Carr and Hermans 1978; 

Diamond 1999; Guthold, Liu et al. 2004)) and r is the radius of the fibrin fibers (~ 5 nm 

(Galanakis, Lane et al. 1987; Diamond 1999; Guthold, Liu et al. 2004)).  The delivery system 

was modeled in one-dimension as a 2 mm fibrin matrix in contact with 5 mm aqueous 

media.  The interface of the fibrin matrix and the aqueous media were coupled by two 

boundary conditions where it was assumed that the concentrations and fluxes of the species 

were equal.  Since the fibrin matrix was > 95% water, the partition coefficient between the 

two interfaces was assumed to be ~ 1, and the mass transfer area between the two interfaces 

was equal.  At the other end of the fibrin matrix, the flux of species was zero.  The other end 

of the aqueous media was assumed to have a constant concentration of zero for all species. 

The results of the equilibrium modeling for the fibrin matrices were used as the 

initial conditions (concentrations of the species in the fibrin matrix), and the concentration 

of all species in the aqueous media was assumed to be zero initially.  The equations (2.18 – 
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2.26), constants, and initial conditions for passive release of NGF were solved using 

FEMLAB (COMSOL, Inc., Burlington, MA), a numerical PDE solver.  The model was run 

replacing the aqueous medium with new aqueous medium, where the concentration of the 

species in the entire medium were initially zero, over the course of 24 h in a manner similar 

to that described in the experimental methods for the in vitro release assay.  While the 

aqueous medium were cleared of species at specific times, the concentration of species in the 

fibrin matrix remained the same as concentrations in the fibrin matrix before the aqueous 

medium species were cleared, similar to the in vitro release assay. 

 

2.3.2 Peptide synthesis 

 Peptides of varying heparin-binding affinity were synthesized by standard solid phase 

Fmoc chemistry (amino acids from Nova Biochem, San Diego, CA; peptide synthesis 

solvents from Applied Biosystems, Foster City, CA) using an ABI433A peptide synthesizer 

(Applied Biosystems) and were based on amino acid sequences identified previously (Table 

2.2) (Tyler-Cross, Sobel et al. 1994; Sakiyama, Schense et al. 1999; Maxwell, Hicks et al. 

2005).  The peptides denoted high, medium, and low affinity were based on previously 

identified 12-mer peptides found from screening a phage display library with heparin-

Sepharose chromatography (Maxwell, Hicks et al. 2005), and the peptide denoted ATIII was 

based on a modified version of the antithrombin III-heparin binding domain (Tyler-Cross, 

Sobel et al. 1994; Sakiyama, Schense et al. 1999).  After synthesis, the peptides were cleaved 

from the resin with 95% trifluoroacetic acid, 2.5% water, and 2.5% triisopropylsilane by 

volume for 2-3 h using 10 mL of cocktail per 1 g of resin.  The mixture was filtered through 

glass wool to remove the resin then precipitated in cold diethyl ether.  The crude peptide 
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filtrates were dried under vacuum and then purified by standard C18 reverse phase liquid 

chromatography (Shimadzu, Columbia, MD) and lyophilized.  The identity of purified 

peptides were verified by matrix-assisted laser desorption ionization (MALDI) mass 

spectrometry. 

Table 2.2: Heparin-binding peptides synthesized 

(Transglutaminase substrate is in Italics) 

Peptide Name Amino Acid Sequence 

Low affinity NQEQVSPGALPNSSKLAPSR (Maxwell, Hicks et al. 2005) 

Medium affinity NQEQVSPGSSANGKKPSTRR (Maxwell, Hicks et al. 2005) 

High affinity NQEQVSPGNSAHRTRGRQRS (Maxwell, Hicks et al. 2005) 

ATIII (AcG)NQEQVSPK(βA)FAKLAARLYRKA (Sakiyama, Schense et 

al. 1999) 

 

2.3.3 Fibrin matrix preparation 

 Fibrin matrices were prepared as previously described (Schense and Hubbell 1999) 

by mixing the following components (final concentrations given): human plasminogen-free 

fibrinogen containing Factor XIII (4.0 mg/mL), bovine thrombin (2 NIH units/mL), and 

CaCl2 (2.5 mM, Fisher Scientific, Pittsburgh, PA).  The delivery system was prepared by 

incorporating the following additional components: peptide (0.25 mM high, medium, low 

affinity, or ATIII, to obtain ~ 8 moles of peptide cross-linked per mole of fibrinogen 

(Sakiyama, Schense et al. 1999; Schense and Hubbell 1999)), heparin (sodium salt from 

porcine intestinal mucosa 18,000 average MW) added at 62.5, 6.25, and 1.25 μM to obtain 

4:1, 40:1, and 200:1 molar ratios of peptide to heparin, respectively, and human β–NGF (100 

ng/mL, Peprotech Inc., Rocky Hill, NJ and R&D systems, Minneapolis, MN for the in vitro 
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biological activity and release assay, respectively).  The components were polymerized in 24-

well tissue culture plates for 60 min at 37°C and 5% CO2 yielding 400 µL matrices. 

 

2.3.4 In vitro release assay 

 Fibrin matrices were prepared as described above then incubated with an aqueous 

wash consisting of Tris-buffered saline (TBS, 137 mM NaCl, 2.7 mM KCl, 33 mM Tris, pH 

7.4, Fisher Scientific) containing 1% bovine serum albumin (BSA) at 37°C.  Equilibrium 

studies were performed where 400 µL washes were added to the matrices and then collected 

after 48 h, which was previously determined to be sufficient time for the NGF concentration 

to reach equilibrium between the matrix and wash phases (Willerth, Johnson et al. 2007).  

Additionally, a 7-day release study was performed where 1 mL washes were added and 

collected 5 times in the first 24 h, followed by collection subsequently every 24 h for the 

next 6 days.  For both studies all washes were collected in siliconized tubes to reduce NGF 

loss due to adsorption on tube walls and stored at -20°C.  Upon completion of the release 

studies, the remaining NGF was extracted from the fibrin matrices by cutting them into 1 

mm cubes and placing them in phosphate-buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 

1.5 mM KH2PO4, 8.0 mM Na2HPO4, pH 7.4, Fisher Scientific) containing 0.56 mM heparin, 

an additional 2 M NaCl (Fisher Scientific), 0.01% Triton-X, and 1% BSA at 4 °C for 48 h, 

after which the mixture was stored at -20°C until analysis was performed. 

The amount of NGF released and remaining in the fibrin matrices was quantified by 

an enzyme-linked immunosorption assay (ELISA) for human β-NGF according to the 

manufacturer’s instructions (R&D systems).  The absorbance was read at 450 nm with an 

optical subtraction at 650 nm using a multi-well plate spectrophotometer (MultiSkan RC, 
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Labsystems), and sample concentrations were calculated from a standard curve of known β-

NGF concentrations.  Control matrices were made by omitting the peptide, heparin, and/or 

NGF from the fibrin matrices. 

 

2.3.5 In vitro biological activity assay 

 DRGs were dissected from day-10 white leghorn chick embryos (Specific Pathogen 

Free, Sunrise Farms, Catskill, NY).  Media consisted of modified neurobasal media (NBM, 

Invitrogen, Carlsbad, CA) containing the following: insulin (5 g/mL), transferrin (100 

g/mL), progesterone (6.4 ng/mL), putrescine (16.11 g/mL), selenite (5.2 ng/mL), and BSA 

(0.1%, Sigma-Aldrich).  A positive control for neurite extension consisted of an unmodified 

fibrin matrix (no peptide, heparin, or NGF) with NBM containing 20 ng/mL of NGF, 

previously found to be an optimal dose (Sakiyama-Elbert and Hubbell 2000a).  Fibrin 

matrices were prepared as described above then washed 5 times in the first 24 h with 1 mL 

of TBS for the first 4 washes and the last wash consisting of 1 mL of modified NBM media 

(20 ng/mL of NGF added for the positive control).  One DRG was implanted per matrix 

using dissection forceps and allowed to adhere to the fibrin matrix for 1 h at 37°C and 5% 

CO2.  One mL of modified NBM was added after 1 h and left on the fibrin matrices for the 

remainder of the experiment. 

DRGs were allowed to grow and extend neurites for 48 h upon which images were 

captured.  Brightfield images with a 2x objective using a CCD camera (Magnifire, Olympus) 

were collected and analyzed using Image-Pro Express software (MediaCybernetics, San 

Diego, CA) to determine the average neurite extension.  The average neurite extension was 

calculated as the radius of an annulus between the DRG body and the outer halo of 
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extending neurites, as described previously (Herbert, Bittner et al. 1996).  All average neurite 

extension was normalized to the average neurite extension of the positive control from each 

experiment.  Additional control matrices were made by omitting the peptide, heparin, 

and/or NGF from the fibrin matrices. 

 

2.3.6 Statistical analysis 

 Statistical analysis was performed using Statistica (Statsoft) with comparative analysis 

using Scheffe’s F post-hoc test by analysis of variance at a 95% confidence interval (α = 

0.05).  The release assays were performed with 3 matrices per replicate; the biological activity 

study was performed with 6 matrices per replicate.  All studies were performed in at least 

triplicate, and reported values are given as mean ± standard deviation (S.D.). 

 

2.4 Results 

2.4.1 Mathematical modeling 

 To explore the effect of varying the peptide affinity for heparin and the molar ratio 

of peptide to heparin, the equilibrium concentrations of matrix bound species containing 

NGF were calculated for the delivery system, consisting of nine interacting species in a fibrin 

matrix, at varying heparin concentrations (while holding peptide and NGF concentrations 

constant) (Figure 2.1).  At high molar ratios of peptide to heparin (e.g. above 100:1), the 

amount of bound NGF decreased because the ratio of heparin to NGF was reduced by the 

low heparin concentration required to obtain high peptide to heparin ratios.  The amount of 
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bound NGF in the delivery system increased to a maximum value as the molar ratio of 

peptide to heparin decreased to an optimal molar ratio of peptide to heparin (1:1 – 4:1).  As 

the molar ratio of peptide to heparin decreased past this optimal molar ratio (<1:1), the 

amount of NGF that was bound in the delivery system decreased rapidly.  The rapid 

decrease was due to an increase in unbound heparin, which resulted in more unbound 

heparin-NGF complex formation and the saturation of binding sites on the peptides for 

heparin.  Additionally, the affinity of the peptide for heparin affected the equilibrium 

concentration of bound species.  The maximum amount of bound NGF in the delivery 

system increased as peptide affinity for heparin increased.  Thus, at equilibrium a biphasic 

response of bound NGF was observed for all peptides, where an increase or decrease in the 

molar ratio of peptide to heparin from the optimal ratio resulted in a decrease of matrix 

bound NGF. 



46 

 

Figure 2.1. Effect of molar ratio of peptide to heparin on the fraction of NGF in the bound 
state.  At a state of equilibrium, mathematical modeling of the delivery system in the fibrin matrix 
demonstrated that the amount of bound NGF was dependent upon the affinity of the peptide for 
heparin and the molar ratio of peptide to heparin.  The curves displayed a biphasic nature where 
there was an optimal molar ratio of peptide to heparin to obtain the maximum amount of available 
bound NGF, regardless of affinity. 

  

 Using the equilibrium concentrations as the initial conditions within the fibrin 

matrix, the amount of NGF released to aqueous media over 24 h was simulated in a manner 

similar to the experimental in vitro release study.  The presence of the delivery system resulted 

in a decrease in NGF release regardless of peptide affinity for heparin or molar ratio of 

peptide to heparin (Figure 2.2).  At similar molar ratios of peptide to heparin, the total 

amount of NGF released decreased as peptide affinity for heparin increased.  By changing 

the molar ratio of peptide to heparin for the affinity peptides, NGF release was modulated 

resulting in increased NGF release as the molar ratio of peptide to heparin increased.  
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Additionally, this result demonstrated that peptides with different heparin affinity are 

capable of releasing NGF over 24 h at similar rates if the appropriate molar ratios of peptide 

to heparin are used.  Therefore, the modeling demonstrates the feasibility of using this 

delivery system to test whether delivery system affinity affects biological activity independent 

of release rate. 

 

Figure 2.2. Fraction of NGF released at 24 h depends on the peptide affinity for heparin and 
the molar ratio of peptide to heparin in the delivery system.  The amount of NGF released over 
24 h was modeled mathematically to mimic the experimental in vitro release study.  The presence of 
the delivery system resulted in reduced NGF release.  Unique release profiles were obtained by 
varying the peptide affinity for heparin and the molar ratio of peptide to heparin.  Additionally, 
different affinity peptides had the ability to retain similar levels of NGF after 24 h (at different 
peptide to heparin ratios) demonstrating the feasibility of the in vitro biological activity assay. 
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2.4.2 In vitro release assay 

 The ability of the delivery system to immobilize NGF within fibrin matrices was 

assessed in equilibrium release studies by measuring the amount of NGF present within the 

matrices after 48 h (previously found to be sufficient time for the NGF concentration to 

reach equilibrium) (Willerth, Johnson et al. 2007).  The retention of NGF within fibrin 

matrices at equilibrium was compared to the amount of NGF present in their corresponding 

aqueous washes (equal volumes).  The amount of NGF present in fibrin matrices and the 

washes without the complete delivery system (fibrin alone, NGF with peptide but no 

heparin, or NGF with heparin but no peptide) were equal at ~50-51% of the NGF initially 

added to the matrix, demonstrating equal partitioning of NGF in the absence of delivery 

system (Table 2.3).  However, the presence of the delivery system enhanced the amount of 

NGF retained within the fibrin matrices, where the level of enhancement depended upon 

the molar ratio of peptide to heparin and the peptide affinity for heparin.  The delivery 

system containing the low affinity peptide retained at most 55 ± 3% of the initial NGF at all 

molar ratios of peptide to heparin, similar to unmodified fibrin.  The presence of the delivery 

system employing the ATIII, high affinity, or medium affinity peptides increased retention 

of NGF in fibrin matrices compared to fibrin alone at peptide to heparin molar ratios of 4:1 

and 40:1.  The medium affinity peptide retained 64 ± 5% and 68 ± 1%, the high affinity 

peptide retained 73 ± 8% and 73 ± 1%, and the ATIII peptide retained 78 ± 3% and 76 ± 

1% of the initial NGF (4:1 and 40:1 molar ratios of peptide to heparin, respectively).  

However, at a peptide to heparin molar ratio of 200:1 only the delivery system employing the 

ATIII or the high affinity peptide retained more NGF than unmodified fibrin, where the 

high affinity peptide retained 63 ± 1% and the ATIII peptide retained 71 ± 3% of the initial 

NGF. 
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Table 2.3: Mass retention of NGF in fibrin matrices with HBDS 

* indicates statistical significance compared to fibrin matrices containing only NGF 

 

Peptide 

Molar ratio of peptide to heparin 

4:1 40:1 200:1 No heparin 

None 50 ± 4 51 ± 1 51 ± 1 50 ± 1 

Low 53 ± 1 55 ± 3 53 ± 1 51 ± 2 

Medium 64 ± 5 * 68 ± 1 * 56 ± 1 51 ± 1 

High 73 ± 8 * 73 ± 1 * 63 ± 1 * 51 ± 2 

ATIII 78 ± 3 * 76 ± 1 * 71 ± 3 * 51 ± 1 

 

The effect of varying the affinity of heparin-binding peptides for heparin and the 

molar ratio of peptide to heparin was investigated by measuring the cumulative release of 

NGF from fibrin matrices over 7 days.  The release of NGF from fibrin matrices (without 

peptide or heparin) was rapid with a large initial burst at 2 h (38 ± 3%) followed by the loss 

of 92 ± 3% of the NGF over 24 h (Figure 2.3).  By day 7, the delivery system retained only a 

fraction of the initial NGF (< 1%).  Fibrin matrix controls consisting of any of the peptides 

with NGF (but no heparin) were similar to unmodified fibrin matrices with NGF (Figure 

3D). 

The presence of the delivery system slowed the release of NGF and retained a 

greater fraction of NGF over 7 days depending on the peptide affinity for heparin and molar 

ratio of peptide to heparin.  The initial release (2 h) of NGF was statistically decreased for 

the delivery systems incorporating the medium affinity, high affinity, and ATIII peptides at a 

4:1 molar ratio of peptide to heparin compared to unmodified fibrin matrices (Figure 2.3A).  

A greater fraction of NGF was also retained at 24 h for the medium affinity (35 ± 3%), high 

affinity (44 ± 1%), and ATIII (50 ± 4%) peptides.  Release began to level off after 6 days 
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with < 2% loss per day, while still retaining more NGF than unmodified fibrin matrices or 

fibrin matrices containing an incomplete delivery system (heparin but no peptide) (12 ± 1% 

medium affinity, 23 ± 1% high affinity, and 33 ± 1% ATIII).  The delivery system 

incorporating the low affinity peptide did not show a difference versus unmodified fibrin 

matrices or a delivery system incorporating heparin (but no peptide) at 2 h, 24 h, or day 7 (2 

± 1% NGF retained). 

When the molar ratio of peptide to heparin was increased to 40:1, the initial release 

of NGF was decreased compared to unmodified fibrin matrices or a delivery system 

incorporating heparin (but no peptide) (Figure 2.3B).  Additionally, a higher fraction of  

NGF was retained after 24 h for all peptides (29 ± 3% low affinity, 45 ± 1% medium 

affinity, 49 ± 1% high affinity, and 55 ± 6% ATIII) compared to unmodified fibrin matrices 

or a delivery system incorporating heparin (but no peptide).  Release from delivery systems 

containing any peptides at the 40:1 molar ratio began to level off after 6 days with < 3% loss 

per day, however these systems still retained greater levels of NGF versus unmodified fibrin 

matrices or a delivery system incorporating heparin (but no peptide), even in the case of the 

low affinity peptide, (9 ± 1% low affinity, 14 ± 1% medium affinity, 20 ± 2% high affinity, 

and 32 ± 2% ATIII). 

Additionally, when the molar ratio of peptide to heparin was 200:1, an initial burst 

release of NGF was observed, similar to that observed for unmodified fibrin matrices that 

lacked the delivery system (Figure 2.3C).  However, at a 200:1 molar ratio of peptide to 

heparin all peptides had similar NGF retention levels at 24 h (27 ± 3% low affinity, 29 ± 2% 

medium affinity, 29 ± 1% high affinity, and 30 ± 2% ATIII), which was greater than the 

level retained in unmodified fibrin matrices.  At day 7, a greater fraction of NGF remained 
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for the ATIII (11 ± 1%) peptide compared to unmodified fibrin matrices or a delivery 

system incorporating heparin (but no peptide). 

 

Figure 2.3. NGF release in vitro over 7 days depends on the peptide affinity for heparin and 
the ratio of peptide to heparin in the delivery system.  NGF was released over 7 days from fibrin 
matrices with and without the delivery system at a various molar ratios of peptide to heparin 
containing varying affinity peptides for heparin.  At the 4:1 molar ratio (A), the delivery system 
incorporating the medium affinity, high affinity, and ATIII peptides retained higher levels of NGF 
after 2 h, 24 h, and 7 days.  At the 40:1 molar ratio (B), the delivery system incorporating any peptide 
retained higher levels of NGF after 2 h, 24 h, and 7 days. At the 200:1 molar ratio (C), only the ATIII 
peptide retained higher levels of NGF after 7 days.  The peptides alone were not able to affect the 
retention of NGF (D).  Data (n ≥ 3) represented by mean ± SD and statistical significance was 
considered p<0.05 compared to fibrin matrix alone or delivery system incorporating only heparin at a 
similar concentration. 
 

2.4.3 In vitro biological activity assay 

In order to assess the biological activity of NGF released by the delivery system, 

embryonic chick DRGs were implanted into fibrin matrices with and without the delivery 

system, and the average neurite extension was measured.  Neurite extension was normalized 
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to neurite extension from DRGs grown in unmodified fibrin matrices with NGF in the 

culture media at an optimal dose (20 ng/mL) (Sakiyama-Elbert and Hubbell 2000a).  Fibrin 

matrices containing the delivery system with any affinity peptide at all molar ratios of peptide 

to heparin tested exhibited neurite extension that was equivalent to or greater than that 

observed for fibrin matrices with NGF in the media (Figure 2.4A).  Varying the peptide 

affinity for heparin resulted in different biological responses, where a 4:1 molar ratio of 

peptide to heparin showed increased neurite extension for the medium affinity (23 ± 17%), 

high affinity (19 ± 14%), or ATIII (29 ± 20%) peptides versus NGF in the media, while the 

low affinity peptide was similar to NGF in the media. 

 

Figure 2.4. Effect of peptide affinity and peptide to heparin molar ratio on DRG neurite 
extension in vitro.  Normalized neurite extension from chick DRGs was affected by varying the 
peptide affinity or the molar ratio of peptide to heparin in the delivery system.  All DRG neurite 
extension was normalized to the average neurite extension for unmodified fibrin matrices with 20 
ng/mL of NGF added to the media for the same experiment.  The delivery system incorporating any 
peptide with 100 ng/mL of NGF caused increased or equivalent neurite extension compared to 
NGF in the media (A).  Additionally, the entire delivery system was required to increase normalized 
neurite extension (B).  Data (n ≥ 18) represents mean ± S.D. and an asterisk indicates statistical 
significance (p<0.05) compared to NGF in the media. 
 

Additionally, the effect of varying the molar ratio of peptide to heparin was explored.  

At a molar ratio of 40:1 peptide to heparin, all peptides exhibited increased neurite extension 

versus  NGF in the media (21 ± 21% low affinity, 15 ± 14% medium affinity, 19 ± 17% 
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high affinity, and 20 ± 18% ATIII).  In particular, greater neurite extension was observed for 

the low affinity peptide found at this molar ratio. Conversely, neurite extension was not 

enhanced at the 4:1 molar ratio.  However, at a molar ratio of 200:1 peptide to heparin, only 

the high affinity (18 ± 15%) and ATIII (19 ± 15%) peptides displayed increased neurite 

extension versus to NGF in media, while the medium and low affinity peptides were similar 

to NGF in the media. 

To assess the contribution of the other components in the delivery system, DRGs 

were implanted into fibrin matrices lacking the complete delivery system and the average 

neurite extension was measured.  The absence of NGF (with heparin at any concentration 

and/or any of the peptides) did not promote robust neurite extension and was statistically 

decreased from DRGs grown with NGF in the media by ~70% (Figure 2.4B).  When NGF 

was included, incorporating any of the peptides, heparin at any concentration (data not 

shown), or neither peptide nor heparin resulted in neurite extension that was similar to 

DRGs grown with NGF in the media. 

Additionally, the effect of similar release regimes for peptides of different heparin 

binding affinity on the biological activity of NGF was assessed.  The NGF release rates of 

the low, medium, and high affinity peptides at a 40:1 molar ratio of peptide to heparin were 

each compared to other peptides and molar ratios of peptide to heparin with similar NGF 

release over the first 24 h.  For each peptide at the 40:1 molar ratio of peptide to heparin, 

other peptides and molar ratios of peptide to heparin with similar NGF retention at 24 h are 

grouped and listed in Table 2.4, where the NGF retained after 24 h was presented as the 

average of the group members for each similar release group.  Since DRGs were implanted 

in fibrin matrices after 24 h of washing during the in vitro biological activity assay, neurite 
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extension was compared for all members within a similar release group to assess the effect of 

release on biological activity.  Neurite extension between members within the same release 

group demonstrated similar means, where the average increase in neurite extension (versus 

NGF in the media) for each release group is given: low affinity (16 ± 7%), medium affinity 

(21 ± 6%), and high affinity (20 ± 5%) peptide groups.  This result indicates that the ability 

of the delivery system to retain NGF affected biological activity, and there was no effect of 

peptide affinity independent of release rate. 

Table 2.4: Similar mass retention of NGF at 24 h results in similar normalized neurite 
outgrowth regardless of peptide affinity 

(Neurite outgrowth was normalized to its respective positive control) 

Peptide 

group 

Similar 

peptide 

groups 

Mass 

retention 

at 24 h 

Average 

mass 

retention 

Normalized 

neurite 

outgrowth 

Average normalized 

neurite outgrowth 

Low 40:1 Low 40:1 29 ± 3 % 30 ± 3 % 121 ± 21 116 ± 7 

Med 4:1 35 ± 3 %  123 ± 17  

ATIII 200:1 30 ± 2 %   119 ± 15  

High 200:1 29 ± 1 %  118 ± 15  

Med 200:1 29 ± 2 %  107 ± 16  

Low 200:1 27 ± 3 %  107 ± 16  

Med 40:1 Med 40:1 45 ± 1 % 47 ± 3 % 115 ± 14 121 ± 6 

High 4:1 44 ± 1 %  119 ± 14  

High 40:1 49 ± 1 %  119 ± 17  

ATIII 4:1 50 ± 4 %  129 ± 20  

High 40:1 High 40:1 49 ± 1 % 49 ± 5 % 119 ± 17 120 ± 5 

Med 40:1 45 ± 1 %  115 ± 14  

High 4:1 44 ± 1 %  119 ± 14  

ATIII 4:1 50 ± 4 %  129 ± 20  

ATIII 40:1 56 ± 2 %  119 ± 15  
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2.5 Discussion 

 The drug delivery system investigated in this study used a rational approach to 

delivery system design to develop a biomaterial scaffold to sequester and slow the release 

rate of NGF.  Other affinity-based drug delivery systems incorporating components that 

reversibly bind the drug of interest, such as heparin within fibrin (Jeon, Kang et al. 2005; 

Jeon, Ryu et al. 2005), collagen (Wissink, Beernink et al. 2000a), and polymer matrices 

(Benoit and Anseth 2005; Pike, Cai et al. 2006) can modulate the release of drug through the 

strength of affinity interactions.  The delivery system investigated in this study demonstrates 

two methods to modulate the rate of drug release, the peptide affinity for heparin and the 

molar ratio of peptide to heparin, as verified through mathematical modeling and 

experimental data. 

The mathematical modeling performed predicted that more NGF could be 

sequestered within fibrin matrices at equilibrium by increasing peptide affinity for heparin.  

Additionally, it predicted that the greatest amount of NGF could be sequestered by 

optimizing the molar ratio of peptide to heparin for each peptide.  The key component that 

emerged from the model results was the fraction of matrix bound heparin, which implied 

that the rate of NGF release could be modulated by varying the concentration of heparin (or 

the molar ratio of peptide to heparin).  To explore this implication, NGF release was 

modeled with the removal all species from the aqueous wash media (similar to the changing 

of the wash solutions in the experimental studies).  This approach allowed us to estimate 

what range of molar ratios of peptide to heparin could yield different release rates for each 

affinity peptides and similar release rates between different affinity peptides.  Based on these 

results, the experimental range of molar ratios of peptide to heparin was chosen. 
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Experimentally, peptide affinity for heparin and molar ratio of the peptide to heparin 

was found to modulate the release rates of NGF, resulting in different release rates for the 

delivery system, as predicted by the math model.  As the molar ratio of the peptide to 

heparin increased from 4:1 or 40:1 to 200:1, NGF release occurred more rapidly for all of 

the peptides.  Furthermore, as peptide affinity for heparin increased, NGF release was 

slowed for all molar ratios of peptide to heparin.  The ability of the delivery system to 

modulate the release rate through these two parameters provides two mechanisms for 

controlling release rate. 

NGF released from the delivery system induced neurite extension that was similar to 

or greater than that induced by NGF in the media, suggesting that the delivery system did 

not have a negative impact on the biological activity of the NGF.  Previously, others have 

found that localized delivery of neurotrophic factors can enhance neurite extension more 

than neurotrophic factors in the media (Sakiyama-Elbert and Hubbell 2000a; Sakiyama-

Elbert and Hubbell 2000b; Taylor, McDonald et al. 2004).  This enhancement could be due 

to the formation of concentration gradients within the fibrin matrices as extending neurite 

locally degrade the fibrin matrix and release the matrix bound growth factor.  NGF has been 

shown to guide and enhance neurite extension through concentration gradients, but only if 

the steepness of the gradient was above a critical value (Cao and Shoichet 2001; Cao and 

Shoichet 2003; Rosoff, Urbach et al. 2004).  In this study, enhanced neurite extension 

compared to NGF in the media was observed for the medium and high affinity and ATIII 

peptides at 4:1 and 40:1 molar ratios of peptide to heparin, where enhanced NGF retention 

was observed as well.  However, enhanced neurite extension compared to NGF in the media 

was only observed for the low affinity peptide at a molar ratio of 40:1 as opposed to the 4:1 

molar ratio.  This result could be due to the larger amount of NGF retained after 24 h for 
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the 40:1 molar ratio of peptide to heparin versus the 4:1, establishing the minimum retention 

level needed in the fibrin matrices to elicit enhanced neurite extension. 

As mentioned previously, the NGF remaining after 24 h for the low affinity peptide 

at a 4:1 molar ratio of peptide to heparin was comparable to unmodified fibrin matrices, 

while more NGF remained for all the other peptides (medium, high and ATIII), which 

resulted in increased neurite extension for the other peptides.  When the molar ratio of 

peptide to heparin was increased to 40:1, all of the peptides retained more NGF than 

unmodified fibrin, and neurite extension was increased for delivery systems containing any 

of the peptides (and heparin) indicating that NGF retention was critical for neurite 

extension.  To confirm that the delivery system components were all necessary to modulate 

the release rate of NGF (and thus to elicit neurite extension), one or more components of 

the delivery system were removed, which resulted in lower NGF retention and the loss of 

enhanced neurite extension. 

Apart from modulating neurite extension through altering the release rate of NGF, 

the delivery system allowed the ability to test whether the delivery system affinity could 

affect biological activity independent of release rate.  To test this hypothesis, different 

affinity peptides with similar release rates after 24 h (selected molar ratios of peptide to 

heparin) were compared.  It was found that the neurite extension was similar for all group 

members within a group of delivery system conditions that elicited similar rates of NGF 

release.  These results suggest that when two peptides of different heparin affinity were 

combined with heparin concentrations such that they exhibited similar release rate, the 

resulting neurite extension (biological activity) elicited by the released NGF was similar, thus 

there was no effect of affinity independent of release rate. 
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 The ability of the delivery system to present biologically active NGF in vitro suggests 

it may be useful for the treatment of nerve injury in vivo.  In particular, NGF has been 

delivered locally to treat peripheral nerve injury (Lee, Yu et al. 2003b), but not in a way that 

tests at what rate NGF should be administered.  Dinbergs and coworkers discovered that 

not all growth factors are best delivered slowly and locally.  They found bFGF enhanced 

endothelial and smooth muscle cell proliferation through sustained release compared to 

bolus administration while transforming growth factor-β1 inhibited endothelial cells more 

efficiently in bolus form compared to slow release (Dinbergs, Brown et al. 1996).  This 

delivery system has the unique ability to allow us to study the effects of how the rate of 

growth factor release affects nerve regeneration. 
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Chapter 3 

 

Heparin-binding affinity-based delivery systems 
releasing nerve growth factor enhance sciatic nerve 
regeneration * 

 

3.1 Abstract 

 The controlled delivery of nerve growth factor (NGF) to the peripheral nervous 

system has been shown to enhance nerve regeneration following injury, although the effect 

of release rate has not been previously studied with an affinity-based delivery system (DS).  

The goal of this research was to determine if the binding site affinity of the DS affected 

nerve regeneration in vivo using nerve guidance conduits (NGCs) in a 13 mm rat sciatic nerve 

defect.  These DSs consisted of bi-domain peptides that varied in heparin-binding affinity, 

heparin, and NGF, which binds to heparin with moderate affinity.  Eight experimental 

groups were evaluated consisting of NGF with DS, control groups excluding one or more 

components of the DS within silicone conduits, and nerve isografts.  Nerves were harvested 

6 weeks after treatment for analysis by histomorphometry.  These DSs with NGF resulted in 

a higher frequency of nerve regeneration compared to control groups and were similar to the 

nerve isograft group in measures of nerve fiber density and percent neural tissue, but not in 

total nerve fiber count.  In addition, these DSs with NGF contained a significantly greater 

percentage of larger diameter nerve fibers, suggesting more mature regenerating nerve 

content.  While there were no differences in nerve regeneration due to varying peptide 

*Contents of this chapter were accepted for publication in J Biomaterials Res Polymer Ed and were reprinted 
with permission of the publisher 
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affinity with these DSs, their use with NGF enhanced peripheral nerve regeneration through 

a NGC across a critical nerve gap. 

 

3.2 Introduction 

 Despite significant advances in nerve reconstruction, the autograft remains the 

clinical standard of care for long gaps in critical peripheral nerves; however, functional 

outcomes are still suboptimal and drawbacks exist including donor site morbidity (Lundborg 

2000; Schmidt and Leach 2003).  Because of these disadvantages, alternatives have been 

sought including NGCs (Lundborg 2000; Schmidt and Leach 2003; Bellamkonda 2006).  The 

use of a NGC offers the advantage of being able to control the microenvironment for 

regeneration by modulating the composition and luminal contents of the conduit, in 

particular through the inclusion of growth factors and extracellular matrix (ECM) molecules 

(Lundborg 2000; Schmidt and Leach 2003; Bellamkonda 2006). 

Much of the research has focused on the design of biodegradable conduits (Widmer, 

Gupta et al. 1998; Piquilloud, Christen et al. 2007; Pfister, Alther et al. 2008).  However, the 

ultimate design goal of NGCs may also include a drug delivery matrix within a biodegradable 

conduit.  Growth factor delivery from biomaterial matrices is often controlled by diffusion 

(Yu and Bellamkonda 2003; Mohanna, Terenghi et al. 2005), however, one shortcoming of 

this approach is that the release rate cannot be modulated or controlled by cells during 

regeneration.  One alternative is to use an affinity-based DS that allows the release of growth 

factors to be controlled by cell-based degradation of the DS.  This study is focused on the 

role of affinity-based drug delivery from the conduit lumen. 
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Previously, we developed an affinity-based DS incorporating heparin that sequesters 

proteins within a fibrin matrix based on non-covalent interactions (Sakiyama-Elbert and 

Hubbell 2000a; Sakiyama-Elbert and Hubbell 2000b).  Initially, this system consisted of a bi-

domain heparin-binding peptide (ATIII peptide) where one domain consisted of a 

transglutaminase substrate, based on α2-plasmin inhibitor (Ichinose, Tamaki et al. 1983; 

Kimura, Tamaki et al. 1985), allowing it to be crosslinked into fibrin matrices during 

polymerization by the transglutaminase Factor XIIIa. The other domain consisted of a 

modified version of the  heparin binding domain  from antithrombin III (Tyler-Cross, Sobel 

et al. 1994; Tyler-Cross, Sobel et al. 1996; Sakiyama, Schense et al. 1999) allowing non-

covalent binding of heparin to peptide crosslinked within a fibrin matrix.  With the inclusion 

of a protein that interacts with heparin, a ternary complex is formed consisting of peptide, 

heparin, and protein bound within the fibrin matrix that effectively sequesters the protein 

within the matrix, allowing release by cell-mediated processes. 

NGF is well known for its ability to promote neurite extension in vitro (Conti, Fischer 

et al. 1997; Macias, Battocletti et al. 2000; Sakiyama-Elbert and Hubbell 2000a; Xu, Yu et al. 

2002) and nerve regeneration in vivo (Xu, Yu et al. 2002; Lee, Yu et al. 2003a; Yu and 

Bellamkonda 2003).  Our lab has determined that the presentation of NGF, e.g. free NGF in 

a biomaterial matrix or NGF bound to a biomaterial matrix (such as our DS through a 

strong heparin-binding peptide) can affect the biological response to NGF.  We previously 

demonstrated that our affinity-based DS enhanced nerve regeneration when containing a 

strong heparin-binding peptide (ATIII peptide) compared to matrices loaded with NGF 

alone (Lee, Yu et al. 2003a).  Moreover, others recently have shown that collagen matrices 

that can sequester NGF by affinity interactions are more effective than diffusion-based 

delivery of NGF at promoting neural regeneration (Sun, Lin et al. 2007).  However, the 
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effect of binding affinity (the system’s ability to sequester drug) of an affinity-based delivery 

system on nerve regeneration in vivo has not been elucidated.  Specifically, if binding affinity 

and drug release rate for an affinity-based DS is modulated, how is the in vivo biological 

activity of the drug that is being released modulated. 

To explore the role of binding affinity, we used combinatorial techniques to tailor 

the affinity of non-covalent interactions between a heparin-binding peptide and heparin 

(Maxwell, Hicks et al. 2005).  Peptide sequences were identified that exhibited “high”, 

“medium”, and “low” affinity for heparin using an increasing step gradient of sodium 

chloride concentration (1.0 M, 1.5 M and 2.0 M NaCl were used to elute the low, medium 

and high affinity peptide display phage from a heparin affinity column, respectively) 

(Maxwell, Hicks et al. 2005).  Peptides were synthesized containing the identified heparin 

binding domains along with a transglutaminase substrate to allow crosslinking into fibrin 

matrices (Maxwell, Hicks et al. 2005).  By utilizing these peptide sequences exhibiting high, 

medium, and low affinity for heparin and the previously identified ATIII peptide, which has 

the strongest binding-affinity for heparin of the peptides in this study, our DS can release 

NGF at different rates.  Our previous work in vitro demonstrated that the ability of our DS 

to sequester NGF was the factor controlling the ability to enhance neurite extension (Wood 

and Sakiyama-Elbert 2008).  The current study extends the previous work and provides 

insight into the effect of binding affinity on nerve regeneration in vivo. 

The focus of this study was to assess whether peptide affinity for heparin affects 

nerve regeneration.  To test this premise, peptides that previously demonstrated the ability to 

modulate the release rate and in vitro biological activity of NGF were used in an affinity-

based DS.  Fibrin  matrices containing the DS were placed within a silicone NGC to 
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examine nerve regeneration across a 13-mm rat sciatic nerve defect, which exceeds the 

critical defect size for spontaneous regeneration (Lundborg, Dahlin et al. 1982a).  The effect 

of the DS on nerve regeneration was assessed through histomorphometric analysis of the 

nerve in the conduits after 6 weeks. 

 

3.3 Materials and Methods 

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO) unless specified 

otherwise. 

 

3.3.1 Peptide synthesis 

 Peptides of varying heparin-binding affinity were synthesized by standard solid phase 

Fmoc chemistry (amino acids from Nova Biochem, San Diego, CA; peptide synthesis 

solvents from Applied Biosystems, Foster City, CA) using an ABI433A peptide synthesizer 

(Applied Biosystems) and were based on amino acid sequences identified previously (Table 

3.1) (Tyler-Cross, Sobel et al. 1994; Sakiyama, Schense et al. 1999; Maxwell, Hicks et al. 

2005).  The peptides denoted high and medium affinity were based on previously identified 

12-mer peptides identified by screening a phage display library with heparin-Sepharose 

chromatography (Maxwell, Hicks et al. 2005), and the peptide denoted ATIII was based on a 

modified version of the antithrombin III-heparin binding domain and has the highest 

binding affinity for heparin of all the peptides used in the study (Tyler-Cross, Sobel et al. 

1994; Sakiyama, Schense et al. 1999).  After synthesis, the peptides were cleaved from the 

resin with 95% trifluoroacetic acid, 2.5% water, and 2.5% triisopropylsilane by volume for 2-
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3 h using 10 mL of cocktail per 1 g of resin.  The mixture was filtered through glass wool to 

remove the resin then precipitated in cold diethyl ether.  The crude peptide filtrates were 

dried under vacuum and then purified by standard C18 reverse phase liquid chromatography 

(Shimadzu, Columbia, MD) and lyophilized.  The identity of purified peptides were verified 

by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. 

Table 3.1: Heparin-binding peptides with equilibrium dissociation constants of peptide 
interaction with heparin 

(Transglutaminase substrate in italics) 

Peptide Name Amino Acid Sequence KD ( P H←→ ) 

Medium affinity NQEQVSPGSSANGKKPSTRR 

(Maxwell, Hicks et al. 2005) 

6.1 x 10-5 M (Maxwell, Hicks et 

al. 2005) 

High affinity NQEQVSPGNSAHRTRGRQRS 

(Maxwell, Hicks et al. 2005) 

3.8 x 10-5 M (Maxwell, Hicks et 

al. 2005) 

ATIII (AcG)NQEQVSPK(βA)FAKLAARLY

RKA (Sakiyama, Schense et al. 1999) 

8.78 x 10-8 M (Olson, 

Srinivasan et al. 1981; Kridel, 

Chan et al. 1996)  

 

3.3.2 Fibrin matrix preparation 

 Fibrin matrices were prepared as previously described (Lee, Yu et al. 2003a) by 

mixing the following components (final concentrations given): human plasminogen-free 

fibrinogen containing Factor XIII (4.0 mg/mL), bovine thrombin (2 NIH units/mL), and 

CaCl2 (2.5 mM, Fisher Scientific, Pittsburgh, PA).  Fibrin matrices including DS were 

prepared by incorporating the following additional components: peptide (0.25 mM of 

medium affinity, high affinity, or ATIII to obtain ~ 8 moles of peptide cross-linked per mole 

of fibrinogen (Sakiyama, Schense et al. 1999; Schense and Hubbell 1999)), heparin (Sigma-
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Aldrich product no. H9399, sodium salt from porcine intestinal mucosa 18,000 average MW) 

added at 62.5 μM to obtain a 4:1 molar ratio of peptide to heparin, and 50 ng/mL human β-

NGF (Peprotech Inc., Rocky Hill, NJ). 

Silicone tubing (SF Medical, Hudson, MA; 0.058 in. inside diameter x 0.009 in. wall 

thickness) was cut into 15-mm segments and autoclaved.  Prior to filling, the tubes were 

rinsed with sterile saline solution.  The fibrin solution was drawn into the silicone tube using 

a pipette (~22 μL/conduit).  The fibrin matrix was allowed to polymerize for 10 minutes 

prior to implantation of the conduit. 

 

3.3.3 Experimental animals 

Adult male Lewis rats (Harlan Sprague-Dawley, Indianopolis, IN), each weighing 

250-300g were used in this study.  All surgical procedures and peri-operative care measures 

were performed in strict accordance with the National Institutes of Health guidelines and 

were approved by the Washington University Animal Studies Committee.  All animals were 

housed in a central animal facility, given a rodent diet (PicoLab Rodent Diet 20 #5053, PMI 

Nutrition International) and water ad libitum. 

 

3.3.4 Experimental Design 

Ninety-six animals were randomized into eight groups (n = 12) as shown in Table 

3.2.  An additional six animals served as nerve graft donors.  Group I served as a negative 

control group and received an empty conduit.  Groups II – IV were additional controls 
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receiving conduits containing fibrin alone, fibrin with the ATIII peptide used in the DS (but 

no growth factor) or fibrin with the growth factor but no DS, respectively.  These groups 

examined the effects of the components of the DS.  Groups V – VII were implanted with 

conduits containing complete DS with one of three varying affinity peptides and 50 ng/mL 

β-NGF (dose selected based on a previous study (Lee, Yu et al. 2003a)).  Group VIII served 

as a positive control receiving reversed nerve isografts from syngeneic donor animals. 

Table 3.2: Experimental Design 

(n = 12 for all groups) 

Group Group 

Name 

Peptide used in 

delivery system 

(DS) 

Nerve Growth 

Factor (NGF) 

Dose (ng/mL) 

Fibrin  Rats with 

Regeneration 

(out of 12) 

I Empty None 0 No 3 

II Fibrin Alone None 0 Yes 5 

III ATIII DS 

(no NGF) 

ATIII 0 Yes 3 

IV NGF (no 

DS) 

None 50 Yes 4 

V Med DS Medium affinity 50 Yes 5 

VI High DS High affinity 50 Yes 6 

VII ATIII DS ATIII 50 Yes 7 

VIII Isograft None 0 No 12 

 

3.3.5 Operative Procedure 

Operative procedures were performed using aseptic technique and microsurgical 

dissection and repairs.  Using 4% isoflurane gas (Vedco Inc., St Josephs, MO) anesthesia, the 

hind leg of the rat was prepped and the sciatic nerve was exposed through a dorsolateral-
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gluteal muscle splitting incision.  A 5 mm nerve segment was excised proximal to the 

trifurcation of the sciatic nerve and a 15 mm silicone tube containing fibrin matrices, with or 

without DS and NGF, was sutured to the transected proximal and distal stumps, 

incorporating 1 mm of nerve on either end, creating a total regeneration gap of 13 mm 

(Figure 3.1).  Four 9-0 nylon interrupted microepineurial sutures were used to secure the 

conduit (two per side).  In animals receiving the isograft control, a 13 mm segment of sciatic 

nerve was harvested from a syngeneic donor animal and inserted into the recipient animal 

using no more than four 10-0 nylon microepineurial sutures per side to secure the graft.  

Wounds were irrigated with saline, dried with a q-tip, and closed with a running 5-0 vicryl 

suture in muscle fascia, and then interrupted 4-0 nylon skin sutures.  Animals were recovered 

in a warm aseptic environment and returned to the housing facility. 
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Figure 3.1. Schematic representation of surgical implantation of nerve guidance conduit 
containing the affinity-based delivery system.   A 13 mm nerve gap was repaired with a 15 mm 
silicone conduit containing fibrin matrices with or without DS and growth factor and sutured to the 
transected proximal and distal stumps, incorporating 1 mm of nerve on either end.  The DS 
consisted of a bi-domain peptide cross-linked into the fibrin matrix at one domain while the other 
binds heparin by electrostatic interactions.  The NGF can then bind to the bound heparin, creating a 
matrix-bound, non-diffusible complex, which can be retained for cell mediated degradation of the 
fibrin matrix (modified from Wood et al. (Wood, Moore et al. 2009)). 
 

 At the 6-week end point, all animals were re-anesthetized and nerve harvests were 

performed by reopening the prior muscle splitting incision.  The nerve conduit or graft and a 

5 mm portion of native nerve both proximally and distally were harvested.  The specimens 

were marked with a proximal suture and stored in 3% glutaraldehyde in phosphate buffer at 

4°C until histomorphometric analysis was performed. 
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3.3.6 Histomorphometric Evaluation 

Tissues, harvested and fixed as described above, were post-fixed with 1% osmium 

tetroxide, ethanol dehydrated and embedded in Araldite 502 (Polyscience Inc., Warrington, 

PA).  Thin (1-µm) sections were made from the tissue using a LKB II Ultramicrotome 

(LKB-Produckter A.B., Broma, Sweden) and then stained with 1% toluidine blue for 

examination under a light microscope. 

 Midline cross sections from the host nerve through the conduit or graft were 

evaluated using methods detailed previously (Hunter, Moradzadeh et al. 2007).   Briefly, at 

1000X magnification, six representative fields per nerve were evaluated with an automated 

digital image-analysis system linked to histomorphometry software. The system digitized and 

displayed the microscope image on a video monitor with a resolution of 0.125 µm/pixel.  

Total fascicular area, fiber diameter and density were measured using at least 80% of the 

nerve area contained within 4 – 6 intrafascicular field areas.  From these primary 

measurements the following morphometric indices were calculated: total number of nerve 

fibers (nerve fiber density x total fascicular area), nerve fiber density (fiber 

number/intrafascicular area), percent neural tissue (100 x neural area/intrafascicular area), 

and nerve fiber width.  For animals with nerve regeneration, the nerve fiber width was used 

to assess fiber maturity for the range of fiber widths.  Morphometric indices from 

experimental groups were compared to the isograft control. 
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3.3.7 Statistical analysis 

All conduits and grafts were included in histomorphometric analysis, except the fiber 

distribution analysis, even when no axons were found in the midline cross section.  All 

results are reported as mean ± standard error of the mean (S.E.M.).  Statistical analyses were 

performed using Statistica version 6 (Statsoft Inc., Tulsa, OK).  All data were evaluated for 

differences between groups using the Kruskal-Wallis analysis of variance (ANOVA) and 

median test.  Post hoc Mann-Whitney U-tests were used for determining which groups 

differed with significance set at α = 0.05.  Additionally, fiber width data was evaluated for 

differences between groups using ANOVA and post hoc LSD tests were used for 

determining which groups differed with a significance set at α = 0.05.  Groups with a p>0.05 

were considered statistically similar, while groups with a p<0.05 were considered statistically 

different.  All statements in the text considering whether groups were different or similar to 

one another utilize these statistics to support the statements. 

 

3.4 Results 

3.4.1 Nerve guidance conduit harvest 

The effectiveness of the DS and/or NGF in promoting nerve regeneration across a 

critical nerve gap was evaluated in vivo after sciatic nerve transection and NGC implantation.  

To assess whether heparin-binding peptide affinity affects nerve regeneration, peptides with 

varying affinity for heparin (ATIII (KD = 8.78 x 10-8 M), high (KD = 3.8 x 10-5 M), and 

medium peptides (KD = 6.1 x 10-5M), in order of highest to lowest affinity, respectively) were 

examined with the DS and NGF.  After 42 days, groups with the DS and NGF resulted in a 
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higher percentage of animals with a neural cable spanning the 13 mm gap.  Seven of 12 

conduits utilizing the ATIII peptide (ATIII DS, group VII), 6 of 12 conduits using the high 

affinity peptide (High DS, group VI), and 5 of 12 using the medium affinity peptide (Med 

DS, group V) contained regenerated nerve cables when used in the DS with NGF (Table 

3.2).  Five of 12 conduits from the group containing fibrin alone (group II), 4 of 12 conduits 

from the group with NGF with no DS (NGF (no DS), group IV), and 3 of 12 from the DS 

alone with no NGF (DS alone (no GF), group III) group and the empty group (group I) 

contained regenerated nerve cables.  All 12 animals in the isograft group demonstrated had 

nerve cables after 6 weeks.  The gross appearance of the regenerating nerve cables in the DS 

with NGF groups exhibited a larger, more robust nerve cable in comparison to the other 

groups (lacking DS and/or NGF).  The nerve cable was centered compactly in the conduit, 

away from the walls, in all conduit specimens. All conduit specimens had the proximal and 

distal sciatic nerve still sutured into the conduit at 6 weeks, regardless of the presence of a 

nerve cable spanning the conduit. 

 

3.4.2 Histology 

Qualitative examination of sections from the midline of the conduits or isografts by 

light microscopy revealed differences in nerve architecture as reflected by the arrangement of 

the regenerating axons (Figure 3.2).  In particular, the rat sciatic nerve normally contains 

myelinated fibers in a packed, semi-symmetrical, uniform arrangement with fibers that are 

relatively similar in shape to one another.  Overall, this arrangement can be described as 

“organized” architecture.  The isograft and groups with a DS and NGF reflect this organized 

appearance, while the fibrin alone group demonstrated more random spacing and had less 
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symmetrically shaped myelinated fibers.  In addition, groups incorporating DS and NGF 

appeared to have more tightly packed fibers than the isograft, which was likely due to the 

compact area for neural regeneration in the silicone tube.  No inflammatory response or 

residual fibrin was observed. 
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Figure 3.2 Histological sections of regenerating nerves at the midline of the conduit (or 
graft).  (A) Isograft; (B) DS incorporating the ATIII peptide and NGF; (C) DS incorporating the 
high affinity peptide and NGF; (D) DS incorporating the medium affinity peptide and NGF; (E) 
fibrin with NGF alone; (F) DS with the ATIII peptide and no NGF; (G) fibrin alone; (H) empty 
conduit.  Thin (1 µm) sections of sciatic nerve specimens were stained with 1% toluidine blue for 
qualitative examination of the midline of the conduits by light microscopy.  Groups with NGF 
demonstrated more organized neural architecture, closely approximating the isograft, in comparison 
to the fibrin alone or empty conduit groups.  Scale bar, 10 µm. 
 

3.4.3 Histomorphometry 

At six weeks, all sections from the midline of the conduits and isografts were 

assessed by histomorphometry, regardless of the extent of nerve regeneration.  The average 

total myelinated fiber number, a measure of the effectiveness of neural regeneration, was 

12,000 ± 600 fibers (n = 12) for the isograft, while groups receiving NGCs and NGF had 

~2000 fibers (n = 12 per group) and groups receiving NGCs without NGF had ~1700 

fibers (n = 12 per group).  The average number of fibers in a normal rat sciatic nerve is 

approximately 7100 ± 400 (Mackinnon, Dellon et al. 1991).  None of the conduit treated 

groups were able to match the isograft in total myelinated fiber numbers (Figure 3.3A) 

largely due to the smaller cable area (fascicular area) observed for these groups. 

Nerve fiber density is another measure of nerve regeneration, and percent neural 

tissue is a measure that provides insight into the quality of the regenerating nerve.  Neither 

of these measures is dependent on the area of the regenerating nerve cable.  The nerve fiber 

density at the midline of the graft was ~20,000 fibers/mm2 for the isograft, which was 

similar to groups with the DS and NGF (ATIII, High and Med DS, ~11,000-15,000 

fibers/mm2) at the midline of the conduit, but not to groups lacking the DS and/or NGF 

(Figure 3.3B).  For normal rat sciatic nerve, the fiber density is ~12,000 fibers/mm2 

(Mackinnon, Dellon et al. 1991).  The isograft also had ~19% neural tissue in the 
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regenerating nerve at the midline of the graft, which was similar to groups with the DS and 

NGF (ATIII, High and Med DS, ~12 – 16%) at the midline of the conduit, but greater than 

groups lacking the DS and/or NGF (Figure 3.3C).  These assessments suggest that one 

aspect of nerve regeneration (nerve fiber density) and the quality of nerve regeneration 

(percentage neural tissue) was equivalent to an isograft for groups with the DS incorporating 

any heparin-binding affinity peptide (ATIII, High or Med) and NGF. 

 

Figure 3.3. Histomorphometric analysis of nerves at the midline of the conduit (or graft).  
The total number of myelinated nerve fibers, density, and percent neural tissue were measured by 
quantitative histomorphometry.  No groups approximated the nerve regeneration of an isograft (A), 
but groups with the DS incorporating any affinity peptide and NGF were comparable in nerve fiber 
density (B) and percent neural tissue (C) to an isograft.  Data (n = 12) represents mean ± S.E.M. and 
* indicates statistical significance (p<0.05) compared to isograft. 
 

The myelinated nerve fiber width was assessed as a measure of maturity of the 

regenerating nerve fibers for animals with nerve regeneration, and groups that were most 
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efficient in promoting nerve regeneration (at least 5 conduits contained nerve cables) were 

assessed for their fiber width distribution.  All conduit groups contained fewer smaller nerve 

fibers (2 – 3 μm) compared to isograft controls (Figure 3.4A); furthermore, the High DS 

group also contained fewer nerve fibers than the isograft in the 3 – 4 μm distribution.  All 

conduit groups demonstrated a higher percentage of larger nerve fibers (4 – 5 μm) compared 

to the isograft, but only groups with a DS and NGF (ATIII, High or Med DS) promoted a 

higher percentage of nerve fibers in the 5 – 6 μm width range (p< 0.05) compared to the 

isograft, suggesting more mature regenerating fibers.  Overall, the average fiber width for 

conduit groups with nerve regeneration were greater than isografts (Figure 3.4B).  The 

normal median nerve fiber width of a rat is ~6.5 μm (Mackinnon, Dellon et al. 1991). No 

differences between groups were observered for the 1-2 μm or the 6-7 μm range, both of 

which contained a low percentage of fibers in all groups.  No functional gains were observed 

as assessed by Walking Track Analysis with Sciatic Functional Index scoring (data not 

shown). 
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Figure 3.4. Myelinated fiber width distribution of regenerating nerves at the midline of the 
conduit (or graft).  The nerve fiber width distributions (A) and averages (B) were measured by 
quantitative histomorphometry.  The percentage of large regenerating nerve fibers (4 – 5 µm) was 
larger in the conduit groups compared to the isograft group.  The DS with any affinity peptide and 
NGF promoted the greatest percentage of larger fibers (5 – 6 µm).  Overall, average fiber width for 
conduit groups were greater than isografts.  Data represents mean ± S.E.M. and * indicates statistical 
significance (p<0.05) compared to the isograft. 
 

3.5 Discussion 

Complete clinical recovery after peripheral nerve injury is rare suggesting that 

alternatives to the current standards of care are needed.  One alternative examined in this 

study was the use of a NGC filled with a biomaterial matrix capable of delivering growth 

factors with an affinity-based DS.  The affinity-based DS allows the release of growth factor 

by cells, which activate proteases allowing the degradation of the fibrin matrix and other DS 

components via the activation of plasminogen to plasmin (Kalderon 1984; Krystosek and 

Seeds 1984; Alvarez-Buylla and Valinsky 1985; Pittman and Buettner 1989; Pittman, Ivins et 

al. 1989; Herbert, Bittner et al. 1996). 

In this study, we found that drug delivery from a fibrin matrix improved the 

effectiveness of nerve regeneration (the number of conduits with a nerve cable spanning the 

defect).  A fibrin matrix naturally forms within an empty silicone conduit  over a one week 
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period when the severed nerve ends of rat sciatic nerve are connected to the conduit 

(Williams, Longo et al. 1983).  Therefore, we hypothesize that an exogenous fibrin matrix 

could facilitate bridging a critical nerve defect by eliminating the need to wait one week for 

the bridge to form.  Fibrin has been used previously as a scaffold to support nerve 

regeneration within a NGC (Lee, Yu et al. 2003a; Galla, Vedecnik et al. 2004; Marcol, 

Kotulska et al. 2005) and can promote cell adhesion because it contains binding sites for 

integrins (Thiagarajan, Rippon et al. 1996) and Schwann cells (Chernousov and Carey 2003).  

Additionally, NGF is known to facilitate and enhance nerve regeneration (Xu, Yu et al. 2002; 

Lee, Yu et al. 2003a; Yu and Bellamkonda 2003), therefore,  incorporation of NGF into 

fibrin matrices would likely have a synergistic effect.  The use of fibrin was needed to 

improve the effectiveness of sciatic nerve regeneration.  However, the addition of NGF and 

its method of delivery, whether free or bound in the affinity based DS, also affected its 

effectiveness in promoting nerve regeneration. 

Simple, polymer NGCs can bridge small nerve gaps with high effectiveness; 

however, nerve regeneration effectiveness decreases beyond a 10 mm defect size (critical 

defect length) without the addition of other components, such as extracellular matrix 

molecules, Schwann cells, plasma, or neurotrophic factors to the conduit.  Furthermore, 

these larger defects may require a luminal matrix that utilizes a different method of drug 

delivery than diffusion or loading free drug for enhanced nerve regeneration.  For example, 

Yu et al. found that agarose matrices incorporating laminin or freely-diffusible NGF 

promoted nerve regeneration across the conduit in only half the animals (Yu and 

Bellamkonda 2003).  When the gap length was increased past the critical defect length, 

Dodla et al. determined that agarose matrices with free or unbound ECM or growth factor 

were unable to effectively promote sciatic nerve regeneration across a 20 mm defect.  
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However, anisotropic matrices with concentration gradients of NGF and laminin, were more 

effective in bridging the gap and enhanced nerve regeneration compared to isotropic 

matrices (Dodla and Bellamkonda 2008). 

Similarly in our study, a critical nerve defect was bridged more effectively with the 

inclusion of an affinity-based DS sequestering NGF.  This result could be due to loss of 

NGF by diffusion from the conduit when there is no DS in the fibrin matrix, resulting in a 

limited supply of NGF available to promote nerve regeneration.  We previously 

demonstrated in vitro that an affinity-based DS sequestered NGF.   NGF release rates were 

observed to decrease as peptide affinity increased, which increased DRG neurite outgrowth 

compared to free NGF (Sakiyama-Elbert and Hubbell 2000a; Maxwell, Hicks et al. 2005; 

Wood and Sakiyama-Elbert 2008). 

The use of an affinity-based DS and NGF promoted enhanced regeneration as 

assessed by one aspect of nerve regeneration, nerve fiber density, and the quality of nerve 

regeneration, as assessed by percent neural tissue.  Both measures were found to be similar 

to nerve isograft.  The DS and NGF did not promote total nerve fiber counts that were 

similar to the isograft; however, a lower fiber count was likely due to the small cross-

sectional area of the regenerating nerve cables that were found in the silicone conduits.  This 

effect of silicone conduits has been noted by others (Williams, Longo et al. 1983; Lloyd, 

Luginbuhl et al. 2007).  Additionally, DS with NGF improved nerve fiber maturity, as 

assessed by the number of large diameter fibers.  Nerve fiber diameter is a commonly used 

measure of maturity (Aitken, Sharman et al. 1947; Young 1949; Williams and Wendell-Smith 

1971; Fraher and Dockery 1998; Lee, Yu et al. 2003a) and larger diameter fibers promote 

better conduction velocity and return of function (Williams and Wendell-Smith 1971; Fraher 
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and Dockery 1998).  Our findings suggest that although it did not promote an equivalent 

fiber number, the delivery of NGF from the DS produces more mature nerve fibers and a 

similar nerve fiber density and neural tissue percentage compared to an isograft. 

Other affinity-based drug DSs have incorporated components that reversibly bind 

the drug of interest, such as heparin within fibrin (Jeon, Kang et al. 2005; Jeon, Ryu et al. 

2005), collagen (Wissink, Beernink et al. 2000a), and polymer matrices (Benoit and Anseth 

2005; Pike, Cai et al. 2006), but have not specifically looked at how the cellular response is 

affected by difference in release rates in these DSs in vivo.  Diffusion-based DSs were found 

to promote differences in nerve regeneration due to varied release rates of growth factor, 

and therefore affinity-based DSs could have similar effects due to varied binding affinity 

leading to different release rates.  For example, when GDNF release kinetics are varied from 

a NGC used to treat a sciatic nerve defect, higher nerve fiber counts but lower functional 

recovery result with a higher GDNF release rate (Piquilloud, Christen et al. 2007).  We have 

previously examined NGF release from this DS and found that release of NGF from the DS 

increased myelinated nerve fiber sprouting and outgrowth compared to free NGF and fibrin 

matrices alone in vivo (Lee, Yu et al. 2003a).  Therefore, in this study, we focused on the role 

of heparin-binding peptide affinity on nerve regeneration by utilizing an affinity-based DS.   

This DS is designed to release growth factors (such as NGF) at different rates by using 

different peptide sequences to  modulate the affinity of the heparin-binding domain 

(Maxwell, Hicks et al. 2005; Wood and Sakiyama-Elbert 2008).  There were no statistical 

differences in measures of nerve regeneration when peptide affinity was varied, although we 

noticed a general trend toward increased nerve regeneration with increasing heparin-binding 

affinity.  Specifically, as heparin-binding affinity increased, the efficiency of regeneration and 

histomorphometric measures generally increased.  Previously, the DS demonstrated trends in 
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vitro where as heparin-binding affinity increased, neurite extension generally increased and 

the ability of the DS to retain NGF directly correlated with increased neurite extension 

(Wood and Sakiyama-Elbert 2008). 

In our study, we used the DS within a silicone NGC.  Silicone NGCs possess a 

degree of biocompatibility, a known critical defect length for the rat sciatic nerve injury 

model, and are mechanically stable.  Clinically, silicone conduits are not ideal and have 

associated morbidities (Merle, Dellon et al. 1989; Dellon 1994; Battiston, Geuna et al. 2005), 

therefore, the combination of a drug DS with a biodegradable conduit would be more 

desirable for clinical peripheral nerve repair.  Future studies directed toward this goal would 

be of benefit in translating our DS into clinical practice.  Additionally, future work with this 

DS will likely focus on the use of the ATIII peptide, since it was found in previous studies to 

be the most effective at sequestering NGF (Wood and Sakiyama-Elbert 2008) and 

demonstrated the strongest trends toward enhanced nerve regeneration within this study.  In 

nerve regeneration, the ability of an affinity-based DS to retain NGF appears to be key to 

enhancing regeneration (Wood and Sakiyama-Elbert 2008). However, other biomaterial 

applications may see a benefit in an affinity-based DS that is capable of more passive growth 

factor release with less growth factor sequestered, for example, to signal distant cells for 

recruitment to the implantation site. 

 

3.6 Conclusions 

In summary, the goal of this study was to evaluate the efficiency of our affinity-based 

DS in vivo and determine if the affinity of the heparin-binding peptide in the DS affected 
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nerve regeneration in a critical defect rat sciatic nerve model.  We examined the effect on 

histological outcomes of NGF delivery and compared it to controls for the DS and to the 

equivalent of the clinical standard of care, an isograft.  Our DS enhanced one aspect of 

nerve regeneration and the quality of nerve regeneration, as well as nerve fiber maturity and 

the organization of the regenerating nerve.  We did not observe differences in nerve 

regeneration due to heparin-binding affinity with this DS.  We hypothesize delivery of NGF 

from an affinity-based DS offers a potential future alternative for the treatment of peripheral 

nerve injuries. 
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Chapter 4 

 

Controlled release of glial-derived neurotrophic factor 
from fibrin matrices containing an affinity-based 
delivery system * 

 

4.1 Abstract 

 This research evaluated the controlled release of glial-derived neurotrophic factor 

(GDNF) from an affinity-based delivery system (ABDS) as potential treatment for 

peripheral nerve injury.  The ABDS consisted of a bi-domain peptide containing a 

transglutaminase substrate, allowing crosslinking into fibrin matrices, and a heparin-binding 

domain based on the antithrombin-III heparin-binding domain, heparin, and GDNF, which 

was sequestered based on its heparin-binding affinity.  The objective of this research was to 

determine the release rate and biological activity of GDNF released from the ABDS in vitro.  

The ratio of peptide to heparin was found to modulate the rate of GDNF release.  The 

biological activity of GDNF released from the ABDS was assayed using chick dorsal root 

ganglia (DRGs) neurite extension.  Neurite extension was equivalent for fibrin matrices 

containing the ABDS for all concentrations of GDNF tested versus DRGs grown with 

GDNF in the media.  Furthermore, neurite extension was enhanced in fibrin matrices 

containing 100 ng/mL of GDNF with the ABDS versus matrices with GDNF at a simliar 

dose but no ABDS.  These results suggest that GDNF can be retained and released in a 

biologically activity form from the ABDS, and thus this approach may prove useful for the 

treatment of peripheral nerve injury. 

*Contents of this chapter were published in J Biomed Mater Res A. 89A(4), 909-918, 2009 and were 
reprinted with permission of the publisher 
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4.2 Introduction 

Peripheral nerve injury due to a complete transection of the nerve fibers results in 

loss of function and neuropathic pain (Lundborg 2000).  The peripheral nervous system is 

capable of limited regeneration when the two ends of the severed nerve can be rejoined.  In 

the case of clean transections or small gaps, the ends are typically sutured back together.  In 

longer gaps, suturing would generate excess tension; therefore, the gap is typically bridged by 

a non-critical donor sensory nerve autograft.  Despite significant advances in nerve 

reconstruction, autografting remains the clinical standard of care for critical long nerve gap 

repair.  However, the functional recovery following autografting remains incomplete, and the 

resulting donor site morbidity has led investigators to seek alternative therapies (Lundborg 

2000; Schmidt and Leach 2003).  In particular, a conduit filled with a biomaterial matrix and 

neurotrophic growth factors has been studied as an alternative repair strategy that could 

serve to bridge the gap and enhance axonal regeneration (Schmidt and Leach 2003; 

Bellamkonda 2006). 

Drug delivery from biomaterial matrices often involves diffusion-based release, 

where release is controlled by diffusion of the drug within the pores of the material.  

Alternatively, affinity-based delivery systems immobilize drug within matrices via non-

covalent interactions, controlling release by limiting the fraction of drug in the diffusible 

form.  Of the affinity-based delivery systems studied, many of them utilize heparin, taking 

advantage of the ability of negatively-charged sulfated groups on heparin to interact with 

proteins, such as growth factors, typically via exposed basic domains (Mach, Volkin et al. 

1993; Mulloy 2005).  Some previous methods to incorporate heparin into biomaterial 

matrices have included heparin-conjugated Sepharose beads encapsulated in alginate 
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(Edelman, Mathiowitz et al. 1991; Laham, Sellke et al. 1999), heparinized collagen matrices 

(Wissink, Beernink et al. 2000a; Wissink, Beernink et al. 2000b), and use of poly(ethylene 

glycol) (PEG) linkers in various forms to covalently incorporate heparin into the system 

(Benoit and Anseth 2005; Pike, Cai et al. 2006; Tae, Scatena et al. 2006). 

Previously, we have developed an affinity-based delivery system incorporating 

heparin that sequesters proteins within a fibrin matrix using non-covalent interactions 

(Sakiyama-Elbert and Hubbell 2000a; Sakiyama-Elbert and Hubbell 2000b).  This system 

contains a bi-domain peptide with one domain consisting of a transglutaminase substrate, 

based on α2-plasmin inhibitor (Ichinose, Tamaki et al. 1983; Kimura, Tamaki et al. 1985), 

allowing it to be crosslinked into fibrin matrices during polymerization by the 

transglutaminase Factor XIIIa.  This process leaves the other peptide domain free to interact 

with heparin, via a modified version of the antithrombin III-heparin binding domain (Tyler-

Cross, Sobel et al. 1994; Tyler-Cross, Sobel et al. 1996; Sakiyama, Schense et al. 1999).  With 

the inclusion of a heparin-binding protein (e.g. heparin-binding growth factor), a bound 

ternary complex within the fibrin matrix is formed consisting of peptide, heparin, and 

protein, effectively sequestering the protein within the fibrin matrix leaving it available for 

cell-mediated processes. 

This delivery system has been employed using a variety of growth factors that 

interact non-covalently with heparin, such as platelet-derived growth factor-BB (PDGF-BB) 

(Gelberman, Thomopoulos et al. 2007), neurotrophin-3 (NT-3) (Taylor, McDonald et al. 

2004; Taylor and Sakiyama-Elbert 2006), and nerve growth factor (NGF) (Sakiyama-Elbert 

and Hubbell 2000a; Lee, Yu et al. 2003a; Wood and Sakiyama-Elbert 2008) for a variety of 

potential treatment applications, which include flexor tendon repair (Gelberman, 
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Thomopoulos et al. 2007), spinal cord injury (Taylor, McDonald et al. 2004; Taylor and 

Sakiyama-Elbert 2006), and peripheral nerve injury (Lee, Yu et al. 2003b).  In particular for 

the potential treatment of peripheral nerve injury, release of NGF has been characterized 

with this delivery system (Sakiyama-Elbert and Hubbell 2000a; Lee, Yu et al. 2003a; Wood 

and Sakiyama-Elbert 2008).  However, NGF has been found to promote sensory neuronal 

survival and recovery, and motor neurons do not express or upregulate NGF or its receptors 

after injury (Boyd and Gordon 2003).  Therefore, additional growth factors that target motor 

neurons are desired for use in this delivery system. 

Glial-derived neurotrophic factor (GDNF) has been implicated as a potential 

therapeutic agent for peripheral nerve regeneration.  GDNF was initially identified for its 

ability to promote the survival of dopaminergic neurons (Lin, Doherty et al. 1993), but 

following peripheral nerve injury its expression is upregulated in Schwann cells (Hoke, 

Gordon et al. 2002; Boyd and Gordon 2003; Zhao, Veltri et al. 2004), while its receptors are 

upregulated in motor neurons (Boyd and Gordon 2003).  Furthermore, GDNF promotes 

neurite outgrowth and neuronal survival in vitro (Trupp, Ryden et al. 1995; Matheson, 

Carnahan et al. 1997; Bennett, Michael et al. 1998; Gavazzi, Kumar et al. 1999; Tucker, 

Rahimtula et al. 2006; Leclere, Norman et al. 2007) and promotes survival of axotomized 

sciatic neurons in vivo (Matheson, Carnahan et al. 1997), making it a good candidate for 

promoting motor nerve recovery.  GDNF is also ideal for controlled delivery from our 

delivery system because it binds to heparin with moderately high affinity (Rickard, Mummery 

et al. 2003; Rider 2003; Rider 2006; Silvian, Jin et al. 2006; Alfano, Vora et al. 2007), 

specifically at a basic amino-acid-rich sequence near the N-terminal to the first cysteine of 

the transforming growth factor β domain of GDNF (Alfano, Vora et al. 2007). 
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The focus of this study was to assess the release rate and biological activity of 

GDNF released from fibrin matrices containing an affinity-based delivery system (ABDS).  

The release of GDNF was measured over 7 days, where the delivery system component 

ratios and the ratio of peptide to heparin were modulated to control release.  Additionally, 

neurite extension from chick embryonic dorsal root ganglia (DRGs) was measured to assess 

the presence of biologically active GDNF. 

 

4.3 Materials and Methods 

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO) unless specified 

otherwise. 

 

4.3.1 Fibrin matrix preparation 

 Fibrin matrices were prepared as previously described (Schense and Hubbell 1999) 

by mixing the following components (final concentrations given): human plasminogen-free 

fibrinogen containing Factor XIII (4.0 mg/mL), bovine thrombin (2 NIH units/mL), and 

CaCl2 (2.5 mM, Fisher Scientific, Pittsburgh, PA).  For the delivery system, a bi-domain 

peptide (ATIII) based on a modified version of the antithrombin III-heparin binding 

domain ((AcG)NQEQVSPK(βA)FAKLAAR-LYRKA, where AcG denotes N-acetyl-glycine 

and the tranglutaminase substrate is given in italics) (Tyler-Cross, Sobel et al. 1994; Sakiyama, 

Schense et al. 1999) was synthesized as described previously (Wood and Sakiyama-Elbert 

2008).  Briefly, the peptide was synthesized by standard solid phase Fmoc chemistry (amino 

acids from Nova Biochem, San Diego, CA; peptide synthesis solvents from Applied 
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Biosystems, Foster City, CA) using an ABI433A peptide synthesizer (Applied Biosystems).  

After synthesis, the peptide was cleaved from the resin with 95% trifluoroacetic acid, 2.5% 

water, and 2.5% triisopropylsilane by volume for 2-3 h, filtered through glass wool to 

remove the resin, and then precipitated in cold diethyl ether.  The crude peptide filtrates 

were dried under vacuum, purified by standard C18 reverse phase liquid chromatography 

(Shimadzu, Columbia, MD) and lyophilized.  The identity of the ATIII peptide was verified 

by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. 

Fibrin matrices including the delivery system were prepared by incorporating the 

following additional components: peptide (0.25 mM to obtain ~ 8 moles of peptide cross-

linked per mole of fibrinogen (Sakiyama, Schense et al. 1999; Schense and Hubbell 1999)), 

heparin (Sigma-Aldrich product no. H9399, sodium salt from porcine intestinal mucosa 

18,000 average MW) added at 62.5 and 6.25 μM to obtain 4:1 and 40:1 molar ratios of 

peptide to heparin, respectively, and human GDNF (Peprotech Inc., Rocky Hill, NJ and 

R&D systems, Minneapolis, MN for the in vitro biological activity and release assay, 

respectively).  Fibrin matrices with or without the delivery system were polymerized in 24-

well tissue culture plates for 1 h at 37°C and 5% CO2 yielding 400 µL matrices. 

 

4.3.2 In vitro release assay 

 To measure the release of GDNF, fibrin matrices were prepared as described above 

then incubated with an aqueous wash consisting of Tris-buffered saline (TBS, 137 mM NaCl, 

2.7 mM KCl, 33 mM Tris, pH 7.4, Fisher Scientific) containing 1% bovine serum albumin 

(BSA) at 37°C.  Equilibrium studies were performed where 400 µL washes were added to the 

matrices and then collected after 48 h, which was previously determined to be sufficient time 
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for NGF to reach equilibrium between the matrix and wash phases in a similar experiment 

(Willerth, Johnson et al. 2007).  Additionally, a 7-day release study was performed where 1 

mL washes were added and collected 5 times in the first 24 h, followed by collection 

subsequently every 24 h for the next 6 days.  For both studies all washes were collected in 

silconized tubes to reduce GDNF loss and stored at -20°C.  Upon completion of the release 

studies, the remaining GDNF was extracted from the fibrin matrices by cutting them into 1 

mm cubes and placing them in phosphate-buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 

1.5 mM KH2PO4, 8.0 mM Na2HPO4, pH 7.4, Fisher Scientific) containing 0.56 mM heparin, 

an additional 2 M NaCl (Fisher Scientific), 0.01% Triton-X, and 1% BSA at 4 °C for 48 h, 

after which the mixture was stored at -20°C until analysis was performed. 

The amount of GDNF released and remaining in the fibrin matrices was quantified 

by an enzyme-linked immunosorption assay (ELISA) for human GDNF according to the 

manufacturer’s instructions (R&D systems).  The absorbance was read at 450 nm with an 

optical subtraction at 650 nm using a multi-well plate spectrophotometer (MultiSkan RC, 

Labsystems), and sample concentrations were calculated from a standard curve of known 

GDNF concentrations.  Control matrices were made by omitting the peptide, heparin, 

and/or GDNF from the fibrin matrices. 

 

4.3.3 In vitro biological activity assay 

 Fibrin matrices were prepared as described above then washed 5 times in the first 24 

h with 1 mL of TBS for the first 4 washes and the last wash consisting of 1 mL of modified 

neurobasal media (10 ng/mL of GDNF added for the positive control, see below).  

Modified neurobasal media (NBM, Invitrogen, Carlsbad, CA) consisted of the following: 
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insulin (5 g/mL), transferrin (100 g/mL), progesterone (6.4 ng/mL), putrescine (16.11 

g/mL), selenite (5.2 ng/mL), and BSA (0.1%).  DRGs were dissected from day-10 white 

leghorn chick embryos (Specific Pathogen Free, Sunrise Farms, Catskill, NY).  One DRG 

was implanted per matrix using dissection forceps and allowed to adhere to the fibrin matrix 

for 1 h at 37°C and 5% CO2.  One mL of modified NBM was added after 1 h and left on the 

fibrin matrices for the remainder of the experiment.  The concentrations of peptide, heparin, 

and GDNF and their corresponding molar ratios used in the delivery system for experiments 

are contained in Table 4.1. 

Table 4.1: Concentrations of delivery system components employed for in vitro biological 
activity assay 

GDNF 

(ng/mL) 

Peptide 

(mM) 

Heparin 

(µM) 

Molar ratio of 

peptide : heparin 

Molar ratio of 

heparin : GDNF 

10 0.25 62.5 4 200000 

25 0.25 62.5 4 80000 

100 0.25 62.5 4 20000 

100 0.25 6.25 40 2000 

250 0.25 62.5 4 8000 

500 0.25 62.5 4 4000 

 

DRGs were allowed to grow and extend neurites for 48 h upon which images were 

captured.  Brightfield images with a 2x objective using a CCD camera (Magnifire, Olympus) 

were collected and analyzed using Image-Pro Express software (MediaCybernetics, San 

Diego, CA) to determine the average neurite extension.  The average neurite extension was 

calculated as the radius of an annulus between the DRG body and the outer halo of 

extending neurites, as described previously (Herbert, Bittner et al. 1996).  All average neurite 
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extension was normalized to the average neurite extension of a positive control consisting of 

DRGs grown in 10 ng/mL of GDNF in the media (dose resulting in largest neurite 

extension for soluble GDNF doses tested) from each experiment.  Additional control 

matrices were made by omitting the GDNF and/or peptide and heparin from the fibrin 

matrices. 

 

4.3.4 Immunocytochemistry 

 DRGs were mechanically dissociated, seeded to fibrinogen-coated 24 well plates (4.0 

mg/mL) and given neurobasal media supplemented with 10% fetal bovine serum 

(Invitrogen) and 10 ng/mL GDNF, and allowed to extend neurites for 24 h.  The cells were 

fixed in 2% formalin (pH 7.4) in PBS for 1 h at 37°C, permeabilized with 0.1% Triton X-100 

and blocked with 3% BSA in PBS.  These cultures were incubated with GDNF receptor α-1 

(GFRα-1) primary antibody (1 μg/mL, Neuromics, Edina, MN) at 4°C for 24 h, followed by 

Alexa Fluor 488 tagged secondary antibody (1 μg/mL, Invitrogen) detection for 2 h.  

Fluorescence light microscopy images were captured using a CCD camera, where DRGs 

with only the addition of the secondary antibody served as a threshold control to remove 

excess background staining. 

 

4.3.5 Statistical analysis 

 Statistical analysis was performed using Statistica (Statsoft, Tulsa, OK) with 

comparative analysis using Scheffe’s F post-hoc test by analysis of variance at a 95% 

confidence interval (α = 0.05).  The release assays were performed with 3 matrices per 
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replicate; the biological activity study was performed with 6 matrices per replicate.  All 

studies were performed in at least triplicate, and reported values are given as mean ± 

standard deviation (S.D.). 

 

4.4 Results 

4.4.1 In vitro release assay 

To understand how the delivery system would release GDNF over time, the system 

was analyzed for its potential to bind GDNF.  The ability of the delivery system to sequester 

GDNF was assessed by incubating fibrin matrices (with or without delivery system) 

containing GDNF with an equal volume of wash buffer and allowing the system to come to 

equilibrium for 48 h (previously found to be sufficient time for growth factor concentrations 

to reach equilibrium between the aqueous media and matrix (Willerth, Johnson et al. 2007)).  

The amount of GDNF present within the matrices and the aqueous wash media was 

measured to determine the concentration of free and matrix bound GDNF by assuming that 

the concentration of free GDNF was the same in both phases.   The amount of GDNF 

present in fibrin matrices and their aqueous media without the complete delivery system 

(fibrin alone, GDNF with peptide but no heparin, or GDNF with heparin but no peptide) 

was equal to ~50% of the GDNF initially added to the matrix, demonstrating equal 

partitioning of GDNF in the absence of delivery system (Figure 4.1).  However, fibrin 

matrices with the complete delivery system at both 4:1 and 40:1 molar ratios of peptide to 

heparin retained more GDNF compared to matrices with no delivery system (62 ± 5% and 

66 ± 1%, respectively versus ~50%). 
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Figure 4.1. GDNF retention in vitro at 48 h is enhanced by the delivery system.  GDNF was 
released from fibrin matrices with or without delivery system (DS) over 48 h to an equal volume of 
aqueous media to assess how much GDNF was retained in the fibrin matrices.  The delivery system 
at either molar ratio of peptide to heparin enhanced GDNF retention in the fibrin matrices, while the 
inclusion of GDNF with peptide or heparin alone did not affect the retention.  Data (n ≥ 3) 
represented by mean ± SD where the parentheses contains the peptide to heparin molar ratio.  
Statistical significance was considered p<0.05 compared to fibrin matrix alone or fibrin matrix with 
either peptide or heparin. 
 

The dynamic release of GDNF from fibrin matrices over 7 days was assessed by 

measuring the concentration in aqueous wash media collected 5 times in the first 24 h and 

once every 24 h for the following 6 days.  GDNF was released rapidly from matrices lacking 

the complete delivery system (matrices containing only GDNF, GDNF and heparin, or 

GDNF and peptide), with 27-30% released in the initial burst and 79-85% released after 24 

h (Figure 4.2).  By day 3 all groups lacking the complete delivery system had released 90% of 

their initial GDNF, and at the end of the study (day 7) these matrices retained little GDNF 

(< 3%). 
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Figure 4.2. GDNF release in vitro over 7 days is controlled by the ratio of peptide to heparin 
in the delivery system.  GDNF was released over 7 days from fibrin matrices with and without the 
delivery system (DS) at various molar ratios of peptide to heparin.  At the either molar ratio, the 
delivery system retained a greater fraction of GDNF over all 7 days compared to no delivery system.  
Additionally, at the 40:1 molar ratio, a greater fraction of GDNF was retained after the initial 24 h 
until the end of the release at 7 days.  GDNF with either peptide or heparin alone did not slow the 
release of GDNF.  Data (n ≥ 3) represented by mean ± SD where the parentheses contains the 
peptide to heparin molar ratio, and statistical significance was considered p<0.05. 
 

The presence of the complete delivery system slowed the release of GDNF and 

resulted in the retention of a greater fraction of GDNF over 7 days.  The initial burst of 

GDNF from matrices with the delivery system during the first 24 h was reduced compared 

to matrices lacking the complete delivery system, while 19 ± 2% and 14 ± 5% were released 

for 4:1 and 40:1 peptide to heparin molar ratios, respectively.  After 24 h, the matrices 

containing the complete delivery system retained more GDNF than controls again with only 

56 ± 5% and 51 ± 2% GDNF released (4:1 and 40:1 molar ratios respectively).  By day 4 

both ratios released less than 2% of the total GDNF per day demonstrating a relatively 

stable state of retention, and at day 7 matrices with the delivery system had retained 29 ± 3% 

for a 4:1 ratio and 37 ± 2% for a 40:1 ratio.  Additionally, the molar ratio of peptide to 
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heparin in the delivery system affected the fraction of GDNF retained.  The 40:1 ratio 

released less GDNF than the 4:1 ratio after 24 h, which was sustained for the remainder of 

the experiment. 

 

4.4.2 In vitro biological activity assay 

To assess the feasibility of DRGs for the biological activity assay, DRGs in fibrin 

matrices were stained for the primary ligand-binding subunit (GDNF receptor α-1), which 

elicits signaling through its linked partner subunit, c-Ret receptor tyrosine kinase (Baloh, 

Enomoto et al. 2000).  While DRGs contain a majority of sensory neurons, a population of 

the total neurons are responsive to GDNF (Trupp, Ryden et al. 1995; Matheson, Carnahan 

et al. 1997; Bennett, Michael et al. 1998; Tucker, Rahimtula et al. 2006), where DRG neurite 

extension can be measured from treatment with GDNF (Gavazzi, Kumar et al. 1999; Fine, 

Decosterd et al. 2002; Tucker, Rahimtula et al. 2006; Leclere, Norman et al. 2007).  

Dissociated DRGs demonstrated robust staining for GDNF receptor α-1 (Figure 4.3), 

validating their use and sensitivity for quantitative assessment of neurite extension in 

response to GDNF delivered from our delivery system. 
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Figure 4.3. GDNF receptor α-1 is expressed by chick embryo DRGs.  Dissociated DRGs plated 
on fibrinogen-coated wells demonstrated robust staining for GDNF receptor α-1.  While the 
biological activity assay utilized whole DRGs implanted into 3-D fibrin matrices, this staining 
validates their use for quantitative assessment of neurite extension in response to GDNF delivered 
from our delivery system. 
 

In order to assess the biological activity of GDNF released from the affinity-based 

delivery system, embryonic chick DRGs were implanted into fibrin matrices with and 

without the delivery system that had been previously washed 5 times over 24 h (analogous to 

the first day of the in vitro release assay).  The average neurite extension was measured after 

48 h and was normalized to neurite extension from DRGs grown in unmodified fibrin 

matrices with GDNF in the culture media at a dose of 10 ng/mL (Figure 4.4).  This dose 

promoted the greatest level of neurite extension (optimal dose) from comparison to other 

doses ranging from 1 – 100 ng/mL of GDNF.  Additionally, ranges of concentrations of 

GDNF were tested at a single peptide to heparin molar ratio (4:1) to identify an optimal 

dose (Figure 4.5).  At this optimal dose, multiple delivery system formulations were tested by 

varying the peptide to heparin molar ratio (through altering the heparin concentration) in the 

delivery system to determine if the delivery system component ratio modulated biological 

activity. 
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Figure 4.4. Photomicrographs of DRG cultured containing different GDNF concentrations 
with and without the delivery system.  A) 10 ng/mL GDNF in the culture media, B) 100 ng/mL 
GDNF with the delivery system at a 4:1 molar ratio of peptide to heparin, C) 100 ng/mL GDNF 
without the delivery system, D) 250 ng/mL GDNF without the delivery system, E) 10 ng/mL 
GDNF with the delivery system, F) fibrin matrix with no GDNF added.  These results represent 
sample images demonstrating DRG neurite extension resulting from the variations in the 
concentration of GDNF used in the assay. 
 

 In the absence of GDNF (with or without heparin and peptide) robust neurite 

extension was not observed, and neurite extension was significantly decreased from the 

positive control by ~75%.  Normalized neurite extension through fibrin matrices containing 

10 ng/mL of GDNF with the delivery system was similar to 10 ng/mL of GDNF in the 

media (positive control), while the 10 ng/mL of GDNF in fibrin matrices lacking the 

delivery system (GDNF and fibrin alone) resulted in decreased neurite extension versus the 

positive control (Figure 4.5).  At other doses tested (25, 100, 250, and 500 ng/mL in fibrin 

matrices) neurite extension was similar to the positive control for both matrices containing 

the delivery system and matrices lacking the delivery system.  However, at a GDNF dose of 

100 ng/mL, the presence of the delivery system resulted in enhanced normalized neurite 

extension compared to fibrin matrices without the delivery system at this same dose. 
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Figure 4.5. Effect of GDNF concentration on DRG neurite extension in vitro.  Neurite 
extension from chick DRGs was affected by the concentration of GDNF in fibrin matrices with (DS 
with GDNF 4:1) or without the delivery system (GDNF alone).  The delivery system at a peptide to 
heparin molar ratio of 4:1 at any concentration of GDNF promoted neurite extension similar to 
GDNF in the media at 10 ng/mL (optimal dose), while the lack of delivery system resulted in 
decreased neurite extension at the lowest GDNF concentration (10 ng/mL).  The delivery system 
with 100 ng/mL of GDNF promoted enhanced neurite extension compared to GDNF at the same 
dose with no delivery system.  Additionally, neurite extension was biphasic in response to the GDNF 
concentration both with and without the delivery system.  All DRG neurite extension was 
normalized to the average neurite extension for 10 ng/mL GDNF in the media for the same 
experiment.  Data (n ≥ 18) represents mean ± S.D., N.T. indicates a dose of GDNF in the media 
that was not tested, * indicates statistical significance (p<0.05) compared to 10 ng/mL GDNF in the 
media, # indicates statistical significance (p<0.05) compared to GDNF alone, and + indicates 
statistical significance (p<0.05) compared to 10 ng/mL GDNF under similar conditions 
(with/without the delivery system). 
 

A biphasic response was exhibited where neurite extension increased or decreased 

depending on the concentration of GDNF.  At doses of 100 and 250 ng/mL of GDNF, 

neurite extension increased compared to a dose of 10 ng/mL of GDNF with the delivery 

system present, while 25 and 500 ng/mL of GDNF resulted in neurite extension similar to 

10 ng/mL of GDNF.  Also, when the delivery system was not present, all doses but 250 

ng/mL of GDNF resulted in neurite extension comparable to a dose of 10 ng/mL of 

GDNF, where neurite extension was increased at 250 ng/mL of GDNF. 
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 Based on these results, it was determined that at 100 ng/mL the delivery system at a 

peptide to heparin molar ratio of 4:1 enhanced normalized neurite extension compared to 

the matrices containing a similar dose of GDNF without the delivery system.  Therefore, at 

this optimal dose the effect of the molar ratio of peptide to heparin was examined, and the 

effect of individual delivery system components was examined in a systematic manner to 

assess their contribution to the biological response.  The use of the delivery system at a 40:1 

peptide to heparin molar ratio resulted in enhanced normalized neurite extension compared 

to GDNF in the media at an optimal dose (10 ng/mL) by 32 ± 26% but was not different 

from the response of the delivery system at a ratio of 4:1 (Figure 4.6).  The elimination of 

components of the delivery system resulted in similar neurite extension as was found from 

fibrin matrices with GDNF alone, which were again decreased versus the complete the 

delivery system. 
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Figure 4.6. Delivery system components affect DRG neurite extension in vitro.  Neurite 
extension from chick DRGs was affected by the molar ratio of peptide to heparin at 100 ng/mL of 
GDNF.  The delivery system at a peptide to heparin molar ratio of 40:1 promoted enhanced neurite 
extension compared to 10 ng/mL GDNF in the media.  Additionally, the entire delivery system was 
required to increase normalized neurite extension.  All DRG neurite extension was normalized to the 
average neurite extension for unmodified fibrin matrices with 10 ng/mL of GDNF added to the 
media for the same experiment.  Data (n ≥ 18) represents mean ± S.D., # indicates statistical 
significance (p<0.05) compared to the GDNF with no delivery system or with an incomplete delivery 
system, and * indicates statistical significance (p<0.05) compared to 10 ng/mL GDNF in the media. 
 

4.5 Discussion 

 This study utilized an affinity-based delivery system to sequester GDNF and control 

its release from fibrin matrices.  Non-covalent interactions served to sequester the growth 

factor, limiting the fraction of GDNF in the diffusible form, thus slowing its diffusion from 

fibrin matrices.  In cases of slow diffusion-based release, cell-mediated processes, such as 

neurite outgrowth induced protease activation (e.g. plasmin), could potentially serve as 

alternative mechanisms for regulating growth factor release from fibrin matrices.  GDNF 

has been administered locally at the site of injury via passive diffusion (Yan, Matheson et al. 
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1995; Barras, Pasche et al. 2002; Fine, Decosterd et al. 2002) and systemically via 

subcutaneous injections (Yan, Matheson et al. 1995), both resulting in the rescue of motor 

neuron cell bodies from death.  Furthermore, when GDNF release kinetics from a nerve 

guidance conduit are varied, greater nerve fiber counts but slower functional recovery result 

for higher rates of delivery (Piquilloud, Christen et al. 2007); therefore, it is still unclear 

which route is the best method for delivery.  The affinity-based delivery system releases 

growth factor via a cell-mediated manner.  Specifically, as neurites from the neuron extend 

their processes within the fibrin, proteases are activated by the growth cone allowing the 

breakdown of fibrin and other delivery system components.  For example, the growth cone 

is known to facilitate the activation of plasminogen to plasmin, which can cleave fibrin into 

smaller fragments (Pittman and Buettner 1989; Pittman, Ivins et al. 1989; Herbert, Bittner et 

al. 1996), and cells releasing heparinase have been shown to liberate heparin-binding growth 

factors from extracellular matrix (ECM) (Vlodavsky, Fuks et al. 1991).  In order to retain 

growth factor in the matrix and available for cell-mediated release, the ratio of delivery 

system components can be modulated to slow the passive diffusion-based release of growth 

factor from the matrices, as evidenced by the increased fraction of GDNF found in the 

matrix at 7 days with the delivery system versus without delivery system. 

As the molar ratio of the peptide to heparin increased from 4:1 to 40:1, less GDNF 

was released over 7 days from fibrin matrices with the delivery system.  Previously, when this 

delivery system was utilized to delivery neurotrophin-3 (NT-3), a heparin to growth factor 

molar ratio of 800:1 was more effective in slowing the release of growth factor versus a ratio 

of 8000:1 (Taylor, McDonald et al. 2004).  These ratios correspond to approximate peptide 

to heparin ratios of 40:1 and 4:1 for the 800:1 and 8000:1 ratios, respectively (see Table 4.1).  

This previous result with NT-3 agrees well with release data from our present experiments 
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with a different growth factor, GDNF, used in the same delivery system.  While the heparin 

to growth factor ratios differ between this previous result and the present data (chosen based 

on the relative affinity of the growth factors for heparin), the concentrations of heparin and 

peptide used in both were similar and previous mathematical modeling (Wood and 

Sakiyama-Elbert 2008) predicts that heparin to growth factor ratios above 100:1 would 

contain a vast majority of heparin-growth factor binary complexes.  Therefore, the 

differences in the ratios of heparin to growth factor are not as important as the ratios of 

peptide to heparin, which were similar between both results.  Additionally, mathematical 

modeling of this delivery system at a state of binding equilibrium between peptide, heparin, 

and growth factor within the fibrin matrix utilizing the growth factors NT-3 (Taylor, 

McDonald et al. 2004) and NGF (Wood and Sakiyama-Elbert 2008) found a range of 

delivery system component ratios that maximized bound growth factor within the matrices.  

The molar ratios tested in this study for the growth factor GDNF predict a dissociation 

constant (KD) on the order of 1 – 3 x 10-7 M (Wood and Sakiyama-Elbert 2008), which is 

within the range predicted by others studying GDNF’s affinity for heparin (~1 x 10-7 M 

(Rickard, Mummery et al. 2003; Rider 2003; Rider 2006)).  This KD would place both peptide 

to heparin molar ratios used in this study within the range of delivery components that 

would maximize bound growth factor in a ternary complex within the fibrin matrix (Wood 

and Sakiyama-Elbert 2008).  However, a molar ratio of 4:1 is closer to the range of 

suboptimal equilibrium binding which could result in more release due to unbound heparin 

interacting with GDNF resulting in an unbound heparin-GDNF complex that would be 

washed away via passive diffusion. 

The delivery system did not have a negative effect on the biological activity of 

GDNF as evidenced by similar or enhanced neurite extension to GDNF in the cell culture 
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media.  Additionally, the delivery system’s ability to retain GDNF strongly influenced 

GDNF biological activity.  The presence of the delivery system provided the ability to retain 

more GDNF in the fibrin matrices after washing resulting in better neurite extension 

compared to GDNF loaded in the fibrin matrices without the delivery system for certain 

doses.  Moreover, when individual components of the delivery system were eliminated at a 

dose of 100 ng/mL of GDNF, less GDNF was retained and neurite extension was again 

decreased compared to the complete delivery system.  Furthermore, at this dose the delivery 

system was capable of enhancing the biological activity of GDNF over the positive control 

by modulating the number of binding sites for peptide and growth factor or concentration 

of delivery system components, represented by the molar ratio of peptide to heparin. 

Previously, others have found that localized delivery of neurotrophic factors can 

enhance neurite extension more than neurotrophic factors in the media (Sakiyama-Elbert 

and Hubbell 2000a; Sakiyama-Elbert and Hubbell 2000b; Taylor, McDonald et al. 2004).  In 

this study, enhanced neurite extension compared to GDNF in the media was observed for a 

peptide to heparin molar ratio of 40:1 but not for 4:1.  This increase could be due to a 

decrease in GDNF released from the system at a peptide to heparin molar ratio of 40:1 

compared to a ratio of 4:1.  Previously it was determined that the ability of this delivery 

system to retain mass was crucial in enhancing the biological activity of DRGs in response to 

the growth factor NGF (Wood and Sakiyama-Elbert 2008).  Our results agree with this since 

at 24 h both ratios retained similar mass, but after 24 h the 40:1 ratio retained more GDNF 

than the 4:1 ratio. 

Additionally, the results from the biological activity assay suggested a biphasic 

response of DRGs to GDNF, where at a low dose of GDNF (10 ng/mL) neurite extension 
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was decreased from higher doses of GDNF, both with and without the delivery system.  At 

doses higher than those doses that maximized neurite extension there was not an increase in 

neurite extension, but instead a decrease in neurite extension from these optimal doses 

resulting in neurite extension similar to a low dose of GDNF (10 ng/mL), indicative of a 

saturation response.  Biphasic behavior has been demonstrated in vitro for neurotrophic 

growth factors administered in the media alone (Conti, Fischer et al. 1997) and when it is 

sequestered in a biomaterial matrix (Sakiyama-Elbert and Hubbell 2000a; Maxwell, Hicks et 

al. 2005; Willerth, Johnson et al. 2007), similar to our results.  The response of DRGs to 

these doses is useful when considering potential doses for in vivo applications towards 

treatment of peripheral nerve injury, where an effective dose that encourages regeneration is 

desired. 

The ability of the delivery system to present biologically active GDNF in vitro 

suggests it may be useful for the treatment of nerve injury in vivo.  In peripheral nerve 

regeneration, when a guidance conduit is placed between the distal and proximal nerve 

stumps at the injury site, a fibrin bridge naturally forms between the separated nerve 

segments serving as a scaffold for the regeneration process (Williams, Longo et al. 1983).  

Therefore, a delivery system filling the lumen of a nerve guidance conduit incorporating 

both native ECM and beneficial neurotrophic factors could promote peripheral nerve 

regeneration.  In addition, this delivery system allows the exploration of factors affecting 

local delivery of growth factors that influence regeneration.  Sequestering NGF within this 

biomaterial matrix promoted better regeneration than free NGF in the matrix at a similar 

dose (Lee, Yu et al. 2003b).  As mentioned above, less is known about the optimal delivery 

method for GDNF, but others have seen promising results when it is delivered slowly 

during the regeneration process.  For example, transected sciatic nerves repaired with neural 
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conduits that slowly released GDNF supported better axonal regeneration, a greater number 

of myelinated axons and higher numbers of retrograde-labeled motorneurons than untreated 

or NGF-treated conduits (Fine, Decosterd et al. 2002).  Furthermore, when the release of 

GDNF from a nerve guidance conduit was varied, the resulting regeneration was dependent 

on the rate of delivery (Piquilloud, Christen et al. 2007).  Therefore, future studies will focus 

on the delivery of GDNF utilizing this heparin-based delivery system in vivo for the potential 

treatment of peripheral nerve injury to investigate the role of cell-mediated release in the 

regeneration process. 
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Chapter 5 

 

Affinity-based Release of Glial-Derived Neurotrophic 
Factor from Fibrin Matrices Enhances Sciatic Nerve 
Regeneration * 

 

5.1 Abstract 

 Glial-derived neurotrophic factor (GDNF) promotes both sensory and motor 

neuron survival.  The delivery of GDNF to the peripheral nervous system has been shown 

to enhance regeneration following injury.  In this study we evaluated the effect of affinity-

based delivery of GDNF from a fibrin matrix in a nerve guidance conduit on nerve 

regeneration in a 13 mm rat sciatic nerve defect.  Seven experimental groups were evaluated 

consisting of GDNF or nerve growth factor (NGF) with the delivery system within the 

conduit, control groups excluding one or more components of the delivery system, and 

nerve isografts.  Nerves were harvested 6 weeks after treatment for analysis by 

histomorphometry and electron microscopy.  The use of the delivery system (DS) with either 

GDNF or NGF resulted in a higher frequency of nerve regeneration versus control groups, 

as evidenced by a neural structure spanning the 13 mm gap.  The GDNF DS and NGF DS 

groups were also similar to the nerve isograft group in measures of nerve fiber density, 

percent neural tissue, and myelinated area measurements, but not in terms of total fiber 

counts.  In addition, both groups contained a significantly greater percentage of larger 

diameter fibers with GDNF DS having the largest in comparison to all groups, suggesting 

more mature neural content.  The delivery of GDNF via the affinity-based delivery system 

*Contents of this chapter were published in Acta Biomaterialia. 5(4), 959-968, 2009 and were reprinted with 
permission of the publisher 
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can enhance peripheral nerve regeneration through a silicone conduit across a critical nerve 

gap and offers insight into potential future alternatives to the treatment of peripheral nerve 

injuries. 

 

5.2 Introduction 

Despite recent advances in the understanding of peripheral nerve injury and 

regeneration, functional outcomes are still suboptimal.  In nerve transection injuries, the 

current standard of care is a primary end to end repair.  In nerve gap injuries, when tension 

precludes a primary repair, an autograft is used to provide a scaffold for the regenerating 

nerve.  This procedure, however, has limitations due to donor site availability and morbidity 

(Meek and Coert 2002; Chen, Zhang et al. 2006) .  One alternative to autografting is the use 

of a nerve guidance conduit (NGC).  NGCs facilitate bridging the gap between a proximal 

and distal nerve, protect regenerating axons from infiltrating scar tissue, and allow the 

microenvironment of the regenerating nerve to be manipulated by controlling biochemical 

and physical contents (Meek and Coert 2002; Battiston, Geuna et al. 2005). 

A variety of materials have been investigated for use as scaffolds to fill the lumen of 

a NGC, including the extracellular matrix proteins collagen (Chamberlain, Yannas et al. 

1998; Labrador, Buti et al. 1998), fibronectin (Chen, Hsieh et al. 2000), and laminin 

(Labrador, Buti et al. 1998)  as well as naturally-derived matrices such as agarose (Labrador, 

Buti et al. 1995; Yu and Bellamkonda 2003) and alginate (Ohta, Suzuki et al. 2004; Mohanna, 

Terenghi et al. 2005).  Fibrin also has been used as a biomaterial scaffold to support neural 

regeneration within a NGC (Lee, Yu et al. 2003a; Galla, Vedecnik et al. 2004; Marcol, 
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Kotulska et al. 2005) and may offer an advantage over other materials because it naturally 

forms within an empty silicone conduit connecting the damaged ends of rat sciatic nerve 

(Williams, Longo et al. 1983).  Furthermore, fibrin contains sites for cell binding via integrin 

receptors (Thiagarajan, Rippon et al. 1996), including cell binding sites for Schwann cells 

(Chernousov and Carey 2003) that may facilitate cellular migration. 

Numerous drug delivery methods have also been used with NGCs (Barras, Pasche et 

al. 2002; Fine, Decosterd et al. 2002; Whittlesey and Shea 2004; Piquilloud, Christen et al. 

2007; Dodla and Bellamkonda 2008; Pfister, Alther et al. 2008). However, diffusion-based 

release of growth factors from degradable polymers is the most common delivery method 

(Barras, Pasche et al. 2002; Fine, Decosterd et al. 2002; Burdick, Ward et al. 2006).  One 

shortcoming of this approach is that the release rate cannot be modulated or controlled by 

cells during regeneration.  One alternative is to use an affinity-based delivery system (DS) that 

allows the release of growth factors to be controlled by cell-based degradation of the delivery 

system (Sakiyama-Elbert and Hubbell 2000a).  Our lab has developed an affinity-based 

delivery system that sequesters heparin-binding proteins within a fibrin matrix using non-

covalent interactions (Sakiyama-Elbert and Hubbell 2000a; Sakiyama-Elbert and Hubbell 

2000b).  This system contains a bi-domain peptide containing a transglutaminase substrate 

domain and a heparin-binding domain.  Based on the α2-plasmin inhibitor substrate 

(Ichinose, Tamaki et al. 1983; Kimura, Tamaki et al. 1985), the peptide is able to crosslink 

into the fibrin matrix during polymerization via the transglutaminase activity of Factor XIIIa, 

leaving the other domain free to interact (Sakiyama, Schense et al. 1999; Schense and 

Hubbell 1999).  This heparin-binding domain has the capability to sequester various 

neurotrophic factors due to their ability to bind to heparin via the sulfated domains on the 

heparin (Yamada 1983).  This delivery system has been used with a variety of growth factors 
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in many potential treatment applications (Sakiyama-Elbert and Hubbell 2000a; Lee, Yu et al. 

2003a; Taylor, McDonald et al. 2004; Taylor and Sakiyama-Elbert 2006; Gelberman, 

Thomopoulos et al. 2007; Wood and Sakiyama-Elbert 2008).  Specifically, we have 

characterized the effect of affinity-based delivery of nerve growth factor (NGF) on 

peripheral nerve regeneration (Lee, Yu et al. 2003a). 

Glial-derived neurotrophic factor (GDNF) has shown promise in the treatment of 

peripheral nerve injuries.  While GDNF is has been found to promote the survival of both 

sensory and motor neurons, multiple studies report it to be the most potent motor neuron 

trophic and survival factor (Henderson, Camu et al. 1993; Li, Wu et al. 1995; Oppenheim, 

Houenou et al. 1995; Yan, Matheson et al. 1995; Oppenheim, Houenou et al. 2000; Hoke, 

Gordon et al. 2002).  GDNF expression in peripheral nerves is also upregulated significantly 

in the distal stump of injured sciatic nerve, as well as in the corresponding muscle (Trupp, 

Ryden et al. 1995; Naveilhan, ElShamy et al. 1997).  Given the ability of GDNF to enhance 

peripheral nerve regeneration (Barras, Pasche et al. 2002; Fine, Decosterd et al. 2002; 

Piquilloud, Christen et al. 2007), we chose to examine controlled delivery of GDNF from 

our affinity-based delivery system in vitro and found that GDNF could be retained and 

released from the delivery system in a biologically active form (Wood, Borschel et al. 2009). 

  In the present study, we evaluated the effects of controlled release of GDNF from a 

fibrin matrix containing our affinity-based delivery system within a NGC on nerve 

regeneration in vivo using a rat sciatic nerve injury model.  We included NGF in the current 

study for comparison to our previous study.  We hypothesized that controlled delivery of 

GDNF would enhance nerve regeneration and have histomorphometric equivalence to a 

nerve isograft. 
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5.3 Materials and Methods 

5.3.1 Experimental animals  

Adult male Lewis rats (Harlan Sprague-Dawley, Indianapolis, IN), each weighing 

250-300 g were used in this study.  All surgical procedures and peri-operative care measures 

were performed in strict accordance with the National Institutes of Health guidelines and 

were approved by the Washington University Animal Studies Committee.  All animals were 

housed in a central animal facility, given a rodent diet (PicoLab Rodent Diet 20 #5053, PMI 

Nutrition International) and water ad libitum.  After surgical procedures, animals recovered in 

a warm environment and were closely monitored for 2 hours.  Animals were then returned 

to the animal facility and monitored for weight loss, infection, and other morbidities. 

 

5.3.2 Experimental Design 

Eighty-four animals were randomized into seven groups (n = 12) as shown in Table 

5.1.  An additional six animals served as sciatic nerve isograft donors.  In all experimental 

groups, the sciatic nerve was transected and a 5 mm segment was excised just proximal to 

the trifurcation of the nerve.  The nerve was repaired with a 15 mm silicone conduit 

containing fibrin matrices with or without delivery system and growth factor.  One 

millimeter of nerve was incorporated into each end of the conduit to create a 13 mm nerve 

gap, exceeding the “critical gap” of spontaneous rat sciatic regeneration through silicone 

conduits by 3 mm (Lundborg, Dahlin et al. 1982a; Williams, Longo et al. 1983) (Figure 5.1).  

Group I served as the untreated control group and received an empty conduit. Group II, III, 

and IV were additional control groups receiving conduits containing fibrin alone, fibrin with 
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the delivery system (no growth factor) or fibrin with the growth factor, but no delivery 

system.  These groups examined the isolated effects of the delivery system components.  

The remaining groups (V, VI) were implanted with conduits containing the fibrin matrix 

containing the delivery system with doses of GDNF or NGF, which were selected based 

upon in vitro DRG dose studies  and preliminary data obtained from dose-response pilot 

studies in the sciatic nerve model (test doses included 25, 50, 100, and 250 ng/mL GDNF 

with the delivery system).  Group VII served as a positive control receiving reversed nerve 

isografts from syngeneic donor animals. 

Table 5.1: Experimental Design 

Group GF dose 

(ng/ml) 

Delivery 

System (DS) 

Fibrin 

Matrix 

Number 

of rats 

Number of rats with 

neural regeneration 

I 0 No No 12 3 

II 0 No Yes 12 5 

III 0 Yes Yes 12 3 

IV 100 – GDNF No Yes 12 1 

V 100 – GDNF Yes Yes 12 6 

VI 50 - NGF Yes Yes 12 7 

VII Isograft No No 12 12 

Abbreviations: GF, Growth Factor; GDNF, glial-derived neurotrophic factor; NGF, nerve growth factor. 
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Figure 5.1. Schematic representation of surgical implantation of nerve guidance conduit 
containing the affinity-based delivery system.   A 13 mm nerve gap was repaired with a 15 mm 
silicone conduit containing fibrin matrices with or without delivery system and growth factor and 
sutured to the transected proximal and distal stumps, incorporating 1 mm of nerve on either end.  
The delivery system consisted of a bi-domain peptide cross-linked into the fibrin matrix at one 
domain while the other binds heparin by electrostatic interactions.  The growth factor can then bind 
to the bound heparin, creating a matrix-bound, non-diffusible complex, which can be retained for 
cell mediated degradation of the fibrin matrix. 
 

5.3.3 Preparation of fibrin matrices 

Fibrinogen solutions were prepared by dissolving human plasminogen-free 

fibrinogen in deionized water at 8 mg/mL for 1 h and dialyzing versus 4L of Tris-buffered 

saline (TBS) (33 mM Tris, 8 g/L NaCl, 0.2 g/L KCl) at pH 7.4 overnight to exchange salts 

present in the protein solution.  The resulting solution was sterilized by filtration through 5.0 

μm and 0.22 μm syringe filters, and the final fibrinogen concentration was determined by 

measuring absorbance at 280 nm.  For the delivery system, a bi-domain peptide (ATIII) 

based on a modified version of the antithrombin III-heparin binding domain 

((AcG)NQEQVSPK(βA)FAKLAAR-LYRKA, where AcG denotes N-acetyl-glycine and the 

tranglutaminase substrate is given in italics) (Tyler-Cross, Sobel et al. 1994; Sakiyama, 
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Schense et al. 1999) was synthesized as described previously (Wood, Borschel et al. 2009).  

Fibrin matrices were prepared as previously described.  Components were mixed to obtain 

the following final solution concentrations: 4 mg/mL fibrinogen, 2.5 mM Ca++, 2 NIH 

units/mL of thrombin, 0.25 mM peptide (which results in 8 moles of cross-linked peptide 

per mole fibrinogen (Sakiyama, Schense et al. 1999; Schense and Hubbell 1999)), 62.5 µM 

heparin (sodium salt), and recombinant human GDNF or NGF (at proper dose, Peprotech, 

Table 5.1).   

Silicone tubing (SF Medical, Hudson, MA) (1.5 mm inside diameter x 0.3 mm wall 

thickness) was autoclaved overnight, cut into 15 mm segments, and soaked in 70% ethyl 

alcohol.  Prior to filling, the tubes were rinsed with sterile saline solution.  The fibrinogen 

solution was drawn into the silicone tube using a pipette and allowed to polymerize for 10 

minutes prior to implantation. 

 

5.3.4 Operative Procedure 

All surgical procedures were performed using aseptic technique and microsurgical 

dissection and repairs.  Under subcutaneous anesthesia with ketamine (75 mg/kg) and 

medetomidine (0.5 mg/kg), the hind leg of the rat was prepped and the sciatic nerve was 

exposed through a dorsolateral gluteal muscle splitting incision.  A 5 mm nerve segment was 

excised proximal to the trifurcation of the sciatic nerve and a 15 mm silicone tube, with the 

fibrin matrices with or without delivery system and growth factor, was sutured to the 

transected proximal and distal stumps, incorporating 1 mm of nerve on either end as 

described above (Figure 5.1).  Four 9-0 nylon interrupted microepineurial sutures were used 

to secure the conduit.  In animals receiving the isograft control, a 13 mm segment of sciatic 
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nerve was harvested from a syngeneic donor animal and inserted into the recipient animal.  

Wounds were irrigated with saline, dried, and closed with a running 5-0 vicryl suture in 

muscle fascia, and then interrupted 4-0 nylon skin sutures. 

Anesthesia in experimental animals was then reversed with a subcutaneous injection 

of atipamezole HCl (1mg/kg) (Pfizer Animal Health, Exton, PA), and the animals recovered 

in a warm environment.  After recovery, the animals were returned to the housing facility. 

Six weeks postoperatively, all animals were re-anesthetized and nerve harvests were 

performed by reopening the prior muscle splitting incision.  The nerve conduit and a 5 mm 

portion of native nerve both proximally and distally were harvested.  The specimens were 

marked with a proximal suture and stored in 3% glutaraldehyde in 0.1 M phosphate buffer 

(pH 7.2) at 4°C until histomorphometric analysis was performed.  Under anesthesia, the 

animals were then euthanized with intracardiac injection of Euthasol (150mg/kg) (Delmarva 

Laboratories, Des Moines, IA). 

 

5.3.5 Histomorphometric and Electron Microscopic Evaluation 

The tissues were post-fixed with 1% osmium tetroxide, ethanol dehydrated and 

embedded in Araldite 502 (Polyscience Inc., Warrington, PA).  Thin (1 µm) sections were 

made from the tissue using a LKB II Ultramicrotome (LKB-Produckter A.B., Broma, 

Sweden) and then stained with 1% toluidine blue for examination by light microscopy.  The 

slides were evaluated by an observer blinded to the experimental groups for overall nerve 

architecture, quantity of regenerated nerve fibers, degree of myelination, and the presence of 

Wallerian degeneration (Hunter, Moradzadeh et al. 2007). 
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Proximal and distal cross sections from the host nerve, and sections through the 

conduit or graft were evaluated.  At 1000X magnification, six representative fields per nerve 

were evaluated with an automated digital image-analysis system linked to morphometry 

software using previously described methods to measure nerve morphometry (Hunter, 

Moradzadeh et al. 2007).  Briefly, total fascicular area and total fiber number were measured.  

At least 80% of the nerve area was measured to determine the fiber diameters and density.  

From these primary measurements the following morphometric indices were calculated: total 

number of nerve fibers, nerve fiber density (fiber number/mm2), percent neural tissue (100 x 

neural area/intrafascicular area), and nerve fiber width.  Morphometric indices from 

experimental neural specimens were compared to the isograft controls. 

For electron microscopy, ultrathin 70 nm sections of the embedded tissues were cut 

by a LKB III Ultramicrotome and stained with uranyl acetate-lead citrate.  These sections 

were examined with a Zeiss 902 electron microscope (Zeiss Instruments, Chicago, IL).  

Quality of myelination, relative prevalence of unmyelinated fibers, and the area of myelinated 

and unmyelinated fibers were evaluated. 

 

5.3.6 Statistical analysis 

All results are reported as mean ± standard error of the mean.  Statistical analyses 

were performed using Statistica version 6 (Statsoft Inc., Tulsa, OK).  All data were evaluated 

for differences between groups using the Kruskal-Wallis analysis of variance (ANOVA) and 

median test.  Post hoc Mann-Whitney tests were used for determining differences between 

groups with significance set at α = 0.05.  Additionally, fiber width data was evaluated for 
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differences between groups using ANOVA, and post hoc LSD tests were used for 

determining which groups differed with a significance set at α = 0.05. 

 

5.4 Results 

5.4.1 Nerve guidance conduit harvest 

The effectiveness of GDNF in promoting nerve regeneration across a critical nerve 

gap was evaluated in vivo after sciatic nerve transaction and NGC implantation.  After 42 

days, groups with the delivery system and growth factor resulted in more successful 

regeneration as demonstrated by a neural structure spanning the 13 mm gap with higher 

frequency.  Six of 12 conduits from the 100 ng/mL GDNF with delivery system (GDNF 

DS) and 7 of 12 conduits from 50 ng/mL NGF with DS (NGF DS) groups contained 

regenerated nerve cables.  Five of 12 conduits from the group containing fibrin, 3 of 12 

conduits from DS alone with no growth factor (DS alone (no GF)) group, 1 of 12 of the 100 

ng/mL GDNF (GDNF (no DS)) group, and 3 of 12 from the empty group demonstrated 

nerve regeneration (Table 5.1).  All 12 animals in the isograft group demonstrated 

regeneration.  The gross appearance of the regenerated nerves in the GDNF DS group 

exhibited a larger, more robust nerve cable in comparison to the other experimental groups.  

The neural structure was centered compactly in the conduit, away from the walls, in all 

conduit specimens.  All conduit specimens demonstrated intact connections to the proximal 

or distal sciatic nerve, despite variability in regeneration. 
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5.4.2 Histology 

Qualitative examination of the midline of the conduits or grafts by light microscopy 

revealed differences in nerve architecture as reflected by the arrangement and description of 

the regenerating axons (Figure 5.2).  In particular, the normal rat sciatic nerve contains 

myelinated fibers in a packed, semi-symmetric, uniform arrangement with fibers that are 

relatively similar in size and shape to one another.  Overall, this arrangement can be 

described as “organized” architecture.  The isograft, GDNF DS and NGF DS, reflect this 

organized appearance, while the fibrin alone group demonstrated more random spacing and 

swirling of fibers, as well as, less symmetric shape of the individual myelinated fibers.  In 

addition, groups with growth factor and the delivery system appeared to have more tightly 

packed fibers than the isograft, which was likely due to the compact area for neural 

regeneration in the silicone tube.  No inflammatory response or residual fibrin was 

appreciated. 
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Figure 5.2. Histological sections of regenerating nerves at the midline of the conduit (or 
graft).  (A) Fibrin alone; (B) Isograft; (C) delivery system incorporating GDNF (GDNF DS); (D) 
delivery system incorporating NGF (NGF DS); (E) normal uninjured nerve.  Thin (1 µm) sections of 
sciatic nerve specimens were stained with 1% toluidine blue for qualitative examination of the 
midline of the conduits by light microscopy.  GDNF DS and NGF DS groups demonstrated more 
organized neural architecture, closely approximating the isograft, in comparison to the fibrin alone 
group.  Scale bar, 10 µm. 
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5.4.3 Histomorphometry 

At six weeks, the average total myelinated fiber count, one measure of the 

effectiveness of neural regeneration, was 12,000 ± 600 fibers (n = 12) for the isograft, while 

the conduits with GDNF DS contained 3500 ± 1500 fibers (n = 12) (Figure 5.3A).  The 

NGF DS group had 2000 ± 770 fibers (n = 12), and the fibrin alone group had 1700 ± 800 

fibers.  The GDNF alone, DS alone (no GF), and empty conduit groups had little 

regeneration and resulted in fiber counts less than 1700.  The isograft had significantly more 

fibers than all other groups.  The average number of fibers in a normal rat sciatic nerve is 

approximately 7200 ± 410 (Mackinnon, Dellon et al. 1991). 

Nerve fiber density is another measure of neural regeneration.  The nerve fiber 

density at the midline for the GDNF DS (~13,000 fibers/mm2) and NGF DS (~15,000 

fibers/mm2) groups were not significantly different from the isograft controls (~20,000 

fibers/mm2) (Figure 5.3B).  For normal sciatic nerve, the fiber density is ~12,000 

fibers/mm2 (Mackinnon, Dellon et al. 1991).  Both groups incorporating the delivery system 

and growth factors also had similar percentages of neural tissue at the midline of the conduit 

(15 – 16 %) compared to the isografts (~19 %) (Figure 5.3C).  This assessment provides a 

measure of quality of the regenerating nerve and suggests that the quality of nerve 

regeneration is better in groups containing both the delivery system and growth factor 

compared to control groups. 
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Figure 5.3. Histomorphometric analysis of nerves at the midline of the conduit (or graft).  
The total number of myelinated nerve fibers, density, and percent neural tissue were measured by 
quantitative histomorphometry.  No groups were similar to  the isograft group in terms of total 
number of nerve fibers (A), but the delivery system with GDNF (GDNF DS) or NGF (NGF DS)  
was similar to the isograft in terms of fiber density (B) and percent neural tissue (C).  Data (n = 12) 
represents mean ± S.E.M. and * indicates statistical significance (p<0.05) compared to the isograft. 
 

The myelinated nerve fiber width was assessed as a measure of maturity of the 

regenerating nerve fibers, and groups that were most effective in promoting neural 

regeneration were assessed for their fiber width distribution in regenerating nerves.  All 

groups utilizing fibrin within conduits for regeneration contained fewer smaller nerve fibers 

(2 – 3 μm) compared to isograft controls (Figure 5.4A); furthermore, the GDNF DS group 

also contained fewer nerve fibers than the isograft in the 3 – 4 μm distribution.  Both groups 

containing the delivery system and growth factor demonstrated higher percentages of larger 

nerve fibers (4 – 5, 5 – 6 μm) compared to the isograft, but only the GDNF DS group 
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promoted the higher percentages of large caliber nerve fibers (6 – 7 μm) compared to the 

isograft, suggesting more mature regenerating fibers.  Overall, conduit groups contained 

larger average fiber widths compared to the isograft (Figure 5.4B).  The normal median rat 

sciatic nerve fiber width is ~6.5 μm (Mackinnon, Dellon et al. 1991). 

 

Figure 5.4. Myelinated fiber size distribution of regenerating nerves at the midline of the 
conduit (or graft).  The nerve fiber width distributions (A) and averages (B) were measured by 
quantitative histomorphometry.  The percentage of large regenerating nerve fibers (4-5, 5-6 µm) were 
larger in the GDNF DS and NGF DS groups compared to the isograft group.  GDNF DS had 
significantly the greatest percentage of the largest fibers (6-7µm) compared to the isograft.  Overall, 
conduit groups average fiber widths were larger than isografts.  Data represents mean ± S.E.M. and * 
indicates statistical significance (p<0.05) compared to the isograft. 
 

5.4.4 Electron microscopy 

Electron microscopy was performed to evaluate the regenerative nerve 

ultrastructure.  Representative sections from groups that were most effective in promoting 

nerve regeneration (GDNF DS, NGF DS, fibrin alone and isograft) are shown in Figure 5.5.  

The myelinated and unmyelinated fiber areas were determined from randomly selected 

specimens from each group by a researcher blinded to the groups (n = 3).  Qualitatively, the 

GDNF DS group again appeared to have more organized structure and more uniform fiber 

shape with larger myelinated fibers than the other experimental groups including the isograft, 
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while fibrin alone had the most disorganized appearance and less uniform fiber shapes.  The 

myelinated area of the GDNF DS (27 ± 2.4 µm2) and NGF DS (23 ± 5.1 µm2) groups were 

equivalent to the isograft (25 ± 5.5 µm2), whereas fibrin alone (19 ± 1.4 µm2) had 

significantly less myelinated fiber area (Figure 5.6A).  There were no differences among 

groups for unmyelinated fiber area (Figure 5.6B). 
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Figure 5.5. Electron micrographs of regenerating nerves at the midline of the conduit (or 
graft).  (A) Fibrin alone; (B) Isograft; (C) delivery system incorporating GDNF (GDNF DS); (D) 
delivery system incorporating NGF (NGF DS); (E) normal uninjured nerve.  Ultrathin 70 nm 
sections of the embedded tissues were cut and stained with uranyl acetate-lead citrate.  Qualitatively, 
GDNF DS and NGF DS appeared to have more uniform fiber structures with larger myelinated 
fibers than fibrin alone, which had the most disorganized fiber appearance. Scale bar, 5 µm. 
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Figure 5.6. Myelinated and unmyelinated fiber areas of regenerating nerves at the midline of 
the conduit (or graft).  The myelinated and unmyelinated fiber areas were determined from 
randomly selected specimens by electron microscopy from each group.  The myelinated areas of for 
groups with the delivery system incorporating GDNF (GDNF DS) or NGF (NGF DS) were 
equivalent to the isograft, whereas the fibrin alone group had a lower myelinated fiber area (A).  
There were no differences among groups in unmyelinated fiber area (B).  Data (n = 3) represents 
mean ± S.E.M. and * indicates statistical significance (p < 0.05) compared to the isograft. 
 

5.5 Discussion 

Peripheral nerve injuries are devastating and alternatives to standard repairs of nerve 

gaps rarely lead to complete clinical recovery.  In this study we examined the effect of 

growth factor delivery using a NGC to bridge and enhance nerve regeneration across a 

critical nerve gap length.  We used an affinity-based delivery system within a fibrin matrix to 

immobilize growth factors, slow their diffusion from the matrix, and allow release by cell-

mediated degradation of the matrix, thus, controlling their delivery to the regenerative site.  

This “cell-mediated” matrix degradation and subsequent growth factor release may be 

facilitated through the processes of axonal outgrowth and cell-induced protease activation 

(e.g. plasmin activation on the growth cone) (Kalderon 1984; Krystosek and Seeds 1984; 

Alvarez-Buylla and Valinsky 1985; Pittman and Buettner 1989; Herbert, Bittner et al. 1996). 
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We have previously examined controlled release of NGF with this delivery system in 

vivo and found that affinity-based release of NGF increased myelinated nerve fiber sprouting 

and outgrowth compared to diffusion-based release from fibrin matrices alone (Lee, Yu et al. 

2003a).  In the present study, we focused on the controlled delivery of another neurotrophic 

factor, GDNF, to investigate its effect on peripheral nerve regeneration in a sciatic nerve 

injury model.  We found that controlled delivery of GDNF was superior to controls in 

aspects of nerve regeneration including neural fiber size and organized nerve architecture, 

suggesting more mature neural content.  The use of our affinity-based delivery system 

directly affected regeneration across a 13 mm gap and the inclusion of the delivery system 

sequestering GDNF had a greater effect in eliciting neural regeneration than providing 

GDNF in an unbound form to the regenerative site.  This effect may be explained by the 

delivery’s system’s ability to sequester GDNF and avoid an initial burst of drug release, as 

found in vitro (Wood, Borschel et al. 2009).  Others have cited initial bursts of GDNF release 

to be detrimental to nerve regeneration (Barras, Pasche et al. 2002). 

We anticipated the ability of an exogenous fibrin matrix, with or without an affinity-

based delivery system, to facilitate bridging a critical nerve defect because a fibrin matrix 

naturally forms within an empty silicone conduit connecting the damaged ends of rat sciatic 

nerve over a one week period (Williams, Longo et al. 1983).  However, we were surprised to 

see three out of twelve empty conduits had regeneration across this critical defect, although 

the neural content was histologically poorly organized.  Nerve regeneration has been shown 

to be inconsistent beyond a 10 mm defect without the addition of other components, such 

as extracellular matrix molecules, Schwann cells, plasma, or neurotrophic factors (Lundborg, 

Dahlin et al. 1982a; Williams, Longo et al. 1983).  The regeneration in our empty conduits 

may be a result of superior neural regeneration for rats, as it has been shown that the rat is 
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able to spontaneously regenerate into an unfilled 4.5 cm nerve gap to a distance of 2.4 cm 

after 5 months (Mackinnon, Hudson et al. 1985).  Despite the regeneration in some of the 

controls, the inclusion of our affinity-based delivery system incorporating GDNF or NGF 

more closely approximated neural regeneration of an isograft across a critical gap defect. 

The efficacy of affinity-based delivery of GDNF or NGF to the regenerative site was 

also observed in the histomorphometry and electron microscopy results.  Both groups 

containing the delivery system and neurotrophic factors were not statistically different from 

the isograft controls with regards to fiber density and percent neural tissue, both measures of 

nerve quality.  Beyond enhancing the quality of regeneration, we found that the delivery of 

GDNF and NGF from the affinity-based delivery system improved the maturity of the 

regenerating fibers.  It is well known that axon size and myelin thickness are measures of 

maturity (Aitken, Sharman et al. 1947; Young 1949; Williams and Wendell-Smith 1971; 

Fraher and Dockery 1998).  Both growth factors increased fiber maturity, as seen in 

histomorphometric fiber distributions as well as myelinated fiber area from electron 

microscopy.  Our findings suggest that although not equivalent in fiber number, the delivery 

of GDNF by our delivery system produces larger, mature nerve fibers.  Of particular 

importance, the GDNF group had more 6-7 µm diameter fibers than all other groups 

including the isograft.  In the normal, uninjured sciatic rat nerve, the average myelinated 

fiber width is 6-7 µm.  Furthermore, studies have shown that larger axon diameter and 

myelination results in larger conduction velocity and can be correlated to greater function as 

compared to smaller, less myelinated fibers (Williams and Wendell-Smith 1971; Fraher and 

Dockery 1998).  Although we did not look at functional outcomes in this study, parallel 

studies are underway to explore if these larger diameter fibers result in greater return of 

function. 
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Our study corroborates previous findings in the literature on the effect of GDNF on 

peripheral nerve regeneration.  Barras et al. evaluated the effects of GDNF delivery from an 

ethylene vinyl acetate polymer rod across an 8 mm rat facial nerve defect.  Similar to our 

results, they found that GDNF delivery increased myelination and fiber size.  In this pure 

motor model, they also found that GDNF promoted increased motor neuron labeling in 

comparison to neurotrophin-3, suggesting that GDNF has a significant role in motor nerve 

regeneration (Barras, Pasche et al. 2002).  Given the strong evidence of GDNF in motor 

neuron survival and enhancement of peripheral nerve regeneration, further studies looking at 

the affinity-based delivery of GDNF to specific motor and sensory nerves will be performed 

to elucidate this neurotrophic factor’s impact on modality specific regeneration. 

In addition, Fine et al. evaluated axonal regeneration across a 15 mm long gap in the 

rat sciatic nerve in the presence of GDNF or NGF provided by synthetic nerve guidance 

channels continuously releasing the neurotrophic factors.  They found that the average 

number of myelinated axons at the midpoint of the regenerated nerves was greater in the 

presence of GDNF than NGF.  The GDNF group also had significantly greater numbers of 

retrograde labeled motoneurons.  Thus, these authors report GDNF to have greater efficacy 

than NGF in overall regeneration (Fine, Decosterd et al. 2002).  In contrast, we did not find 

significant differences between GDNF and NGF, except in fiber size distribution.  The 

difference in our findings may be attributed to our method of delivery.  In particular, Fine et 

al. used diffusion-based delivery of GDNF or NGF from a biodegradable conduit where the 

dose delivered to the regenerating nerve was constant for a period of time.  Our delivery 

method relies on cell-mediated release of sequestered growth factor from a luminal matrix, 

which allows the release rate to vary based on the presence of cells and position within the 

NGC.  This result suggests that this method of growth factor delivery may play a role in 
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regeneration.  The effect of delivery rate has been noted by others, such as Piquilloud et al. 

who used a resorbable conduit that released GDNF at three different delivery rates and 

found differences in neural regeneration due to  release rate (Piquilloud, Christen et al. 2007). 

We have examined our delivery system with a silicone NGC because of the 

biocompatibility of the product, its mechanical stability, and well known critical defect length 

in our surgical model.  However, clinically, silicone conduits are not ideal and have 

associated morbidities.  Silicone conduits have been reported to cause chronic nerve 

compression, irritation at the implantation site requiring removal, and inflammatory and 

fibrotic reactions impacting nerve regeneration (Merle, Dellon et al. 1989; Dellon 1994; 

Battiston, Geuna et al. 2005).  Thus, the combination of our drug delivery system with a 

biodegradable conduit would be more desirable for clinical peripheral nerve injury repairs.  

Future studies directed toward this goal would be of certain benefit in translating our 

delivery system into clinical practice. 

Lastly, previous studies have demonstrated that both NGF and GDNF can enhance 

peripheral nerve regeneration (Fine, Decosterd et al. 2002; Boyd and Gordon 2003).   

However, NGF has been shown to primarily promote sensory nerve regeneration in the 

peripheral nervous system (Terenghi 1999; Boyd and Gordon 2003) as motor neurons do 

not express NGF or its receptors (Boyd and Gordon 2003).  Our study further confirms the 

assertion that the delivery of these neurotrophic factors enhances peripheral nerve 

regeneration in a sciatic nerve model, a model that contains both sensory and motor fibers.  

Given that that GDNF and NGF affect different cell populations (Boyd and Gordon 2003) 

and in vitro work demonstrates increased neurite outgrowth with the combination of the two 

factors more than either alone (Deister and Schmidt 2006), an interesting investigation 
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would be to evaluate the possible synergistic effects of delivering a combination of both 

neurotrophic factors on peripheral nerve regeneration. 

 

5.6 Conclusions 

In summary, the goal of this study was to evaluate and elucidate the efficacy of 

affinity-based delivery of GDNF to the regenerative site in a critical size defect model.  We 

examined histological outcomes of this neurotrophic factor and compared it to controls as 

well as NGF.  Given the increased maturity and organized architecture of the regenerating 

nerve under the influence GDNF, we believe affinity-based delivery of GDNF offers insight 

into potential future alternatives for the treatment of peripheral nerve injuries. 



130 

Chapter 6 

 

Fibrin Matrices with Affinity-based Delivery Systems 
and Neurotrophic Factors Promote Functional Nerve 
Regeneration 

 

6.1 Abstract 

 Glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have 

both been shown to enhance peripheral nerve regeneration following injury and target 

different neuronal populations.  Therefore, the delivery of either growth factor may result in 

differences in motor and sensory nerve regeneration and functional recovery.  In this study 

we evaluated the effect of affinity-based delivery of GDNF or NGF from a fibrin matrix in a 

nerve guidance conduit (NGC) on modality specific nerve regeneration and functional 

recovery in a 13 mm rat sciatic nerve defect.  Seven experimental groups were evaluated 

consisting of GDNF or NGF and the delivery system (DS) within the conduit, control 

groups excluding the DS and/or growth factor, and nerve isografts.  The DS with either 

GDNF or NGF resulted in a higher frequency of nerve regeneration versus control groups 

with a nerve cable spanning the 13 mm gap within the conduit.  All groups with a fibrin 

matrix and growth factor in the conduit performed similar to the isograft in behavioral 

measures and had similar relative muscle mass at 12 weeks, while the GDNF DS group had 

better behavioral outcomes than the isograft.  While no differences were observed in nerve 

compound nerve action potentials, groups with GDNF had greater extensor digitorum 

longus twitch and tetanic specific muscle force.  Modality specific regeneration assessed by 
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retrograde labeling revealed the number of labeled ventral horn neurons in the GDNF and 

NGF DS groups were similar to the isograft; however, these counts were greater than those 

of groups without growth factor.  Only the empty conduit group had a lower number of 

labeled DRG neurons and all other groups showed no differences.  Overall, the ability of the 

GDNF DS group demonstrated better functional recovery and equivalent motor nerve 

regeneration compared to the isograft, suggesting it has potential as a treatment for motor 

nerve injury. 

 

6.2 Introduction 

Despite significant advances in the treatment of peripheral nerve injury, complete 

clinical recovery is rare suggesting that an alternative to the current standard of care (nerve 

autograft) is needed.  Critical nerve defects treated by nerve autograft suffer from donor site 

morbidity and remain deficient in positive functional outcomes (Beazley, Milek et al. 1984; 

Dellon and Mackinnon 1988).  An alternative repair strategy involves a nerve guidance 

conduit (NGC), which can be filled with a biomaterial matrix and growth factors, to bridge 

the defect and enhance axonal regeneration (Schmidt and Leach 2003; Bellamkonda 2006).  

NGCs have demonstrated similarities to autografts by histological measures, but data 

supporting their role in motor nerve regeneration and functional recovery is limited.  

Therefore, alternative strategies such as NGCs should focus not only on promoting nerve 

regeneration but also improving functional recovery. 

Functional recovery following peripheral nerve injury has been difficult to achieve 

because the biology of modality specific nerve regeneration (sensory versus motor nerve 
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regeneration) and the requirements for stimulating proper muscle reinnervation are not well 

understood.  One hypothesis is that trophic support acts as a cue to promote the specificity 

of nerve regeneration (Uschold, Robinson et al. 2007).  Through a series of experiments, 

Madison and colleagues demonstrated that motor axons regenerated to their correct parent 

branch due to trophic support derived from their end-organ targets (Robinson and Madison 

2004; Madison, Robinson et al. 2007; Uschold, Robinson et al. 2007).  Alternatively, others 

have suggested that the nerve branches may be a source of modality specific trophic support.  

For example, the use of ventral root (motor) nerve segments in silicone conduits stimulated 

better muscle reinnervation compared to dorsal root (sensory) nerve segments in a sciatic 

nerve defect, possibly due to cues for motor nerve regeneration contained in the ventral root 

nerve segments (Lago, Rodriguez et al. 2007).  Recent work by Hoke et al. demonstrated that 

Schwann cells (SCs) within the nerve branches may be the source of the modality specific 

trophic support.  They observed differences in growth factor expression levels before and 

after injury when comparing motor and sensory nerve branches (Hoke, Redett et al. 2006).  

Additionally, motor and sensory neurons express varying levels of growth factor receptors 

(Boyd and Gordon 2003).  For example, motor neurons and their axons express receptors 

for glial-derived neurotrophic factor (GDNF (GDNFRα1 and RET) but not NGF (TrkA) 

(Boyd and Gordon 2003).  Therefore, the inclusion of growth factors that target motor 

neurons in a conduit may better stimulate motor nerve regeneration and in turn better 

promote functional recovery. 

Differences in nerve regeneration modalities have been observed with growth factor 

delivery from NGCs that target different neuronal populations.  Fine et al. found that the 

controlled delivery of GDNF from synthetic conduits stimulated more motor neurons to 

regenerate versus NGF as assessed by retrograde labeling of the regenerating ventral horn 
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axons (Fine, Decosterd et al. 2002).  Additionally, Barras et al. found that a greater number of 

axons regenerated with controlled delivery of GDNF from synthetic conduits compared to 

neurotrophin-3 (NT-3) in a rat facial nerve injury model, which is a primarily motor nerve 

(Barras, Pasche et al. 2002).  Both studies utilized diffusion-based release of growth factors 

from the NGC.  Based on these studies we hypothesized that an alternative approach, 

affinity-based delivery, could potentially stimulate modality specific nerve regeneration due to 

growth factor release. 

In contrast to diffusion-based release, an affinity-based DS allows the release of growth 

factors to be controlled by cell-based degradation of the DS (Sakiyama-Elbert and Hubbell 

2000a).  Our lab has developed an affinity-based DS that sequesters the drug of interest into 

a fibrin matrix using non-covalent interactions (Sakiyama-Elbert and Hubbell 2000a; 

Sakiyama-Elbert and Hubbell 2000b).  This system consists of a bi-domain heparin-binding 

peptide, where one domain is a transglutaminase substrate, based on α2-plasmin inhibitor 

(Ichinose, Tamaki et al. 1983; Kimura, Tamaki et al. 1985), allowing the peptide  to be 

crosslinked into fibrin matrices during polymerization by the transglutaminase Factor XIIIa.  

The other domain consists of a modified version of the  heparin-binding domain  from 

antithrombin III (Tyler-Cross, Sobel et al. 1994; Tyler-Cross, Sobel et al. 1996; Sakiyama, 

Schense et al. 1999), that allows non-covalent immobilization of heparin to peptide 

crosslinked within a fibrin matrix.  The heparin-binding domain has the ability to sequester 

various growth factors based on their interaction with heparin via the sulfate groups 

(Yamada 1983). 

Delivery of NGF and GDNF from our affinity-based DS has previously been found 

to promote nerve regeneration in short-term studies (Lee, Yu et al. 2003a; Wood, Hunter et 
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al. 2009; Wood, Moore et al. 2009).  In the present study, we evaluated the effects of the 

controlled release of GDNF and NGF from a fibrin matrix containing our affinity-based DS 

within a NGC on modality specific nerve regeneration and functional recovery in vivo using a 

rat sciatic nerve injury model. 

 

6.3 Materials and Methods 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) unless specified 

otherwise. 

 

6.3.1 Experimental animals 

Adult male Lewis rats (Harlan Sprague-Dawley, Indianapolis, IN), each weighing 

250-300 g were used in this study.  All surgical procedures and peri-operative care measures 

were performed in strict accordance with the National Institutes of Health guidelines and 

were approved by the Washington University Animal Studies Committee.  All animals were 

housed in a central animal facility, given a rodent diet (PicoLab Rodent Diet 20 #5053, PMI 

Nutrition International) and water ad libitum.  After surgical procedures, animals recovered in 

a warm environment and were closely monitored for 2 hours.  Animals were then returned 

to the animal facility and monitored for weight loss, infection, and other morbidities. 
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6.3.2 Experimental Design 

One hundred twelve animals were randomized into seven groups (n = 16) as shown 

in Table 6.1.  Fifty-six of those animals were distributed equally by group to the evoked 

motor response portion of the study, while the remaining animals were distributed to the 

retrograde labeling portion of the study.  An additional eight animals served as sciatic nerve 

isograft donors.  Empty conduits served as the untreated control group.  Additional control 

groups received conduits containing fibrin with the DS (no growth factor) or fibrin with 

growth factor, but no DS.  These groups examined the effects of the incomplete DS.  The 

remaining groups were implanted with conduits containing fibrin with the DS and GDNF or 

NGF.  Doses of GDNF and NGF were selected based upon previous in vivo studies (Wood, 

Moore et al. 2009).  Reversed nerve isografts from syngeneic donor animals served as a 

positive isograft control. 

Table 6.1: Experimental Design 

  Motor Response Study 

 

Retrograde Study 

Group Name Group 

Description 

Number 

of Rats 

Number with 

Regeneration 

Number 

of Rats 

Number with 

Regeneration 

Isograft Isograft 8 8 8 8 

GDNF DS Fibrin + DS 

+ GDNF 

8 5 8 5 

GDNF (no DS) Fibrin + 

GDNF 

8 2 8 0 

NGF DS Fibrin + DS 

+ NGF 

8 5 8 6 

NGF (no DS) Fibrin + 

NGF 

8 4 8 1 
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DS (no GF) Fibrin + DS 

(no GF) 

8 3 8 3 

Empty Empty 8 3 8 2 

Abbreviations: DS, Delivery System; GF, Growth Factor; GDNF, glial-derived neurotrophic factor (100 ng/mL); 
NGF, nerve growth factor (50 ng/mL). 

 

6.3.3 Preparation of fibrin matrices 

Fibrinogen solutions were prepared by dissolving human plasminogen-free 

fibrinogen in deionized water at 8 mg/mL for 1 h and dialyzing versus 4L of Tris-buffered 

saline (TBS, 33 mM Tris, 8 g/L NaCl, 0.2 g/L KCl; Fisher Scientific, Pittsburgh, PA) at pH 

7.4 overnight to exchange salts present in the protein solution.  The resulting solution was 

sterilized by filtration through 5.0 μm and 0.22 μm syringe filters, and the final fibrinogen 

concentration was determined by measuring absorbance at 280 nm.  For the DS, a bi-

domain peptide (ATIII) based on a modified version of the antithrombin III-heparin 

binding domain ((AcG)NQEQVSPK(βA)FAKLAARLYRKA, where AcG denotes N-acetyl-

glycine and the transglutaminase substrate is given in italics) (Tyler-Cross, Sobel et al. 1994; 

Sakiyama, Schense et al. 1999) was synthesized as described previously (Wood, Borschel et 

al. 2009).  Fibrin matrices were prepared as previously described (Sakiyama-Elbert and 

Hubbell 2000a).  Components were mixed to obtain the following final solution 

concentrations: 4 mg/mL fibrinogen, 2.5 mM Ca++, 2 NIH units/mL of thrombin, 0.25 mM 

peptide (which results in 8 moles of cross-linked peptide per mole fibrinogen (Sakiyama, 

Schense et al. 1999; Schense and Hubbell 1999)), 62.5 µM heparin (sodium salt), and 

recombinant human GDNF or β-NGF (100 ng/mL and 50 ng/mL, respectively; Peprotech 

Inc., Rocky Hill, NJ). 
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Silicone tubing (SF Medical, Hudson, MA) (1.5 mm inside diameter x 0.3 mm wall 

thickness) was autoclaved overnight, cut into 15 mm segments, and soaked in 70% ethyl 

alcohol. Prior to filling, the tubes were rinsed with sterile saline solution.  The fibrinogen 

solution was drawn into the silicone tube using a pipette and allowed to polymerize for 10 

minutes prior to implantation. 

 

6.3.4 Operative Procedure 

All surgical procedures were performed using aseptic technique and microsurgical 

dissection and repairs.  Four percent isoflurane gas (Vedco Inc., St Josephs, MO) anesthesia 

was used for animal induction followed by 2% isoflurane gas to maintain anesthesia.  The 

hind leg of the rat was prepped and the sciatic nerve was exposed through a dorsolateral-

gluteal muscle splitting incision.  A 5 mm nerve segment was excised proximal to the 

trifurcation of the sciatic nerve and a 15 mm silicone tube, containing fibrin with or without 

DS and growth factor, was sutured to the transected proximal and distal stumps, 

incorporating 1 mm of nerve on either end (resulting in a 13 mm gap).  Four 9-0 nylon 

interrupted microepineurial sutures were used to secure the conduit.  In animals receiving 

the isograft control, a 13 mm segment of sciatic nerve was harvested from a syngeneic donor 

animal and inserted into the recipient animal in reverse orientation.  Wounds were irrigated 

with saline, dried, and closed with a running 5-0 vicryl suture in muscle fascia, and then 

interrupted 4-0 nylon skin sutures.  Experimental animals were recovered in a warm 

environment, and after recovery the animals were returned to the housing facility. 
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6.3.5 Behavioral Analysis 

Two behavioral tests were performed to assess functional recovery in experimental 

groups before any surgical procedures and every 4 weeks before the experimental end point 

at 12 weeks.  Walking track analysis, as developed by de Medinaceli et al., was utilized to 

assess the recovery of hindlimb function (de Medinaceli, Freed et al. 1982).  The rats’ hind 

feet were coated with nontoxic finger paint and the rats walked down a closed, narrow path 

on construction paper.  The footprints were assessed for toe spread, intermediate toe spread, 

and print length as according to de Medinaceli et al. (de Medinaceli, Freed et al. 1982) and 

scored using the sciatic functional index (SFI) previously developed by Bain et. al (Bain, 

Mackinnon et al. 1989). 

Additionally, a grid-grip test modified from Johnson et al. was utilized to measure 

functional recovery in the hindlimb (Johnson, Parker et al. 2009).  For this test, rats were 

observed walking on a fixed grid of bars spaced 1.5 inches apart for 3 min.  Successful grips 

of the grid, defined as 2 or more toes of the injured foot griping the bar and successful 

movement to another bar without slipping, and the total number of steps with the injured 

foot were counted during the allotted time period.  The percentage of successful grid-grips 

was recorded and improvement in the percentage of successful grid-grips was indicative of 

functional recovery. 

 



139 

6.3.6 Measurement of compound neural action potentials (CNAPs) and 

evoked motor responses 

Twelve weeks postoperatively, sciatic nerve function was assessed by examining 

CNAPs of the peroneal branch of the sciatic nerve and the motor response in reinnervated 

EDL muscle upon stimulation of the sciatic nerve.  All animals were re-anesthetized and 

following isolation of the nerve branches and immersion of tissue in a mineral oil bath, 

cathodic, biphasic electrical impulses (duration = 50 µsec, variable amplitudes) were 

generated by a single-channel isolated pulse stimulator (Model 2100, A-M Systems Inc., 

Carlsborg, WA) and delivered to the sciatic nerve proximal to the regenerated nerve segment 

via bipolar silver wire hook electrodes (7 mil, California Fine Wire, Grover Beach, CA).  

Using similar wire hook electrodes, CNAPs were recorded and the resulting signal was 

amplified (gain = 1000X) using an instrumentation amplifier (AD620, Analog Devices Inc., 

Norwood, MA) powered by a constant voltage source before being recorded on a desktop 

PC (Dell Computer Corp., Austin, TX) equipped with a data acquisition board 

(DT3003/PGL, Data Translations, Marlboro, MA) and custom Matlab software (The 

MathWorks Inc., Natick, MA).  Stimulation with a 1 msec delay and recording were 

synchronized through custom software such that electrical stimulation coincided with the 

initiation of a 500 msec recording period, wherein data was sampled at 40 kHz for an 

average of 25 trials per current amplitude tested.  Current amplitudes were varied to 

determine the maximum CNAP and the threshold at which a CNAP and foot twitch (motor 

response) were observed. 

Following measurements of CNAPs, the distal portion of the EDL muscle was 

separated from the leg by severing the distal tendons on the dorsum of the foot and 
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fastening the tendons to a stainless steel S-hook at the musculotendinous junction using 5-0 

nylon suture.  Animals were subsequently placed in a custom-designed force measurement 

jig where the leg was immobilized by anchoring the femoral condyles.  The stainless steel S-

hook attached to the EDL muscle was connected to a 5 N thin film load cell (S100, Strain 

Measurement Devices Inc., Meriden, CT) supported on an adjustable mount.  Cathodic, 

monophasic electrical impulses (duration = 200 µsec, frequency = single-200 Hz, amplitude 

= 0-3 V) were generated and delivered to the sciatic nerve proximal to the regenerated nerve 

segment via bipolar silver wire electrodes.  Resulting force output at the EDL muscle tendon 

was transduced via the load cell and the resulting signal was amplified (gain = 1000X) before 

being recorded as before on a desktop PC with custom Matlab software.  This software 

calculated the passive force and active force for each recorded force trace. 

 Twitch contractions measured using the custom force recording system were utilized 

to determine the optimal stimulus amplitude (Vo) and optimal muscle length (Lo) for 

isometric force production in the EDL muscle.  Stimulus amplitude was incrementally 

increased while muscle length was held constant to determine the largest active force (Vo).  

Muscle length was then increased in 1 mm increments from a relaxed state while the 

stimulation amplitude was fixed at Vo until the largest active force produced was determined 

(Lo).  Lo was directly measured as the length of the EDL muscle from proximal to distal 

musculotendinous junction.  All subsequent isometric force measurements were made at Vo 

and Lo.  Single twitch contractions were recorded, and peak twitch force (Ft) was calculated.  

Tetanic contractions were recorded by delivering 300 µsec bursts of increasing frequency (5-

200 Hz) to the sciatic nerve, while allowing two minute periods between stimuli for muscle 

recovery.  Maximum isometric tetanic force (Fo) was calculated from the active force plateau. 
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Physiological cross-sectional area (PCSA) of the EDL muscle was calculated 

according to the following (Urbanchek, Chung et al. 1999): 

(6.1)     ( )( )( )44.0
cos

Lo
MPCSA
ρ

θ×
=

,
 

where PCSA = physiological muscle cross-sectional area (cm2), M = EDL muscle mass (g), 

cos θ = angle of pinnation for EDL muscle (0o), ρ = density of mammalian skeletal muscle 

(1.06 g/cm3), Lo = optimal muscle length (cm), 0.44 = Lf/Lm ratio for EDL muscle fiber 

length to the muscle belly length.  Maximum specific isometric force was calculated as the 

maximum isometric force normalized to muscle PCSA.  Healthy, uninjured sciatic nerves 

and EDL muscles were similarly tested and evaluated.  The muscle mass of both the injured 

and uninjured EDL muscles were harvested after testing and weighed.  The injured muscle 

mass was normalized to the uninjured muscle mass to determine the relative muscle mass 

and level of muscle atrophy following injury. 

 

6.3.7 Retrograde labeling of spinal cord and DRG neurons 

Retrograde labeling distinguishes and allows quantification of regenerating sensory 

and motor neurons.  Twelve weeks postoperatively, the surgical site was reopened under 

general anesthesia.  The trifurcation of the sciatic nerve 5 mm distal to the conduit or graft 

was transected, and the proximal portion was immediately placed in a silicone well 

containing 4% Fluorogold solution (Sigma-Aldrich, St. Louis, MO).  The nerve was allowed 

1 h to bath in the solution.  The silicone well and solution were removed and the wound 

irrigated with saline, dried, and closed with a running 5-0 vicryl suture in muscle fascia, and 
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then interrupted 4-0 nylon skin sutures.  The contralateral side was labeled in the same 

manner immediately following the experimental side as a control for the retrograde tracing.  

Animals were recovered in a warm environment, and after recovery the animals were 

returned to the housing facility. 

Ten days following the procedure animals were euthanized and perfused in 4% 

paraformaldehyde, and the spinal cord (Lumbar regions L3 – L6) and DRG (L4 & L5) 

harvested.  Twenty µm axial sections of the DRG and lumbar spinal cord were obtained on a 

cryostat (Leica Microsystems).  The number of labeled cell bodies on the control and 

experimental side of each ventral horn spinal cord and DRG section were counted using an 

optical dissector technique facilitated by MicroBrite Field stereology software (MBF 

Bioscience StereoInvestigator version 7.0, Williston, Vermont), where count estimates were 

accepted if the Gundersen coefficient of error was less than 0.08.  Values were reported as 

the percentage of cell bodies labeled relative to the contralateral, uninjured side. 

 

6.3.8 Statistical analysis 

All results are reported for animals with nerve regeneration (nerve cable present in 

conduit/isograft) as mean ± standard error of the mean.  Statistical analyses were performed 

using Statistica version 6 (Statsoft Inc., Tulsa, OK).  All data were evaluated for differences 

between groups using the Analysis of Variance (ANOVA) with post hoc LSD tests with 

Bonferroni correction used for determining differences between groups with significance set 

at α = 0.05 (p<0.05). 
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6.4 Results 

6.4.1 Nerve guidance conduit harvest 

The effectiveness of NGF or GDNF in promoting nerve regeneration across a 

critical nerve gap was evaluated in vivo after sciatic nerve transection and NGC implantation.  

After 12 weeks, groups with the DS and growth factor resulted in higher nerve regeneration 

effectiveness (a neural structure spanning the 13 mm gap, Table 6.1).  Combining animals 

used in both portions of the study (evoked motor response and retrograde labeling), 10 of 16 

conduits from the GDNF with DS (GDNF DS) and 11 of 16 conduits from NGF DS 

groups contained regenerated nerve cables.  Only 2 of 16 conduits from the GDNF (no DS) 

group, 5 of 16 conduits from the NGF (no DS) group, 6 of 16 conduits from the DS alone 

with no growth factor (DS (no GF)) group, and 5 of 16 conduits from the empty group 

demonstrated nerve regeneration, representing a frequency of less than half the animals 

regenerating any neural tissue.  All 16 animals in the isograft group had regeneration.  The 

regenerated nerves in the NGF DS and GDNF DS groups exhibited a larger, more robust 

nerve cable in comparison to the other experimental conduit groups by gross observation.  

The neural structure was centered compactly in the conduit, away from the walls, in all 

conduit specimens and had a smaller cross-sectional area than the isograft group.  All 

conduit specimens demonstrated intact connections to the proximal or distal sciatic nerve, 

despite variability in regeneration. 
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6.4.2 Behavioral testing 

All animals regardless of nerve regeneration were assessed for functional recovery 

using noninvasive behavioral testing over the course of 12 weeks.  Only animals with nerve 

regeneration, as determined at nerve harvest, were included in the behavioral analysis, which 

include animals pooled from the entire study, both the evoked motor response and 

retrograde labeling of SC and DRG neurons.  The average preoperative SFI score was -7.3 ± 

1.1 for experimental groups with no differences between groups, demonstrating normal 

function before injury.  No experimental animals demonstrated improved functional 

recovery 4, 8 or 12 weeks after injury as SFI scores did not differ between weeks (Figure 

6.1).  Toe and ankle contractures (abnormal distortions in the toes and ankles) were 

observed at 8 and 12 weeks after injury, which disqualified these animals for use in walking 

track analysis testing since clear toe spreads and/or print lengths were unobtainable.  

However, animals without contractures did not exhibit differences in SFI scores between 

groups at 4, 8, or 12 weeks after injury. 
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Figure 6.1. Walking track analysis for groups with nerve regeneration 12 weeks after injury.  
Animal hind limb foot tracks were recorded and scored for the sciatic functional index (SFI).  No 
experimental groups demonstrated improved behavioral recovery at any time point and no 
differences were found between groups at any time point.  Data represents mean ± S.E.M. 
 

Animals were also placed on a wire grid every 4 weeks, and the number of times the 

animal successful used its toes to grip the wire mesh without slipping and with visible toe 

curling were recorded to measure return to normal, uninjured behavior.  All groups 

preoperatively averaged high successful grid-grips percentages (79 ± 13%) with no 

differences between experimental groups.  Four weeks after injury, all experimental groups 

demonstrated poor grid-gripping ability with successful grid-grip percentages at nearly zero 

for all groups, and no differences were found between groups (Figure 6.2).  At 8 weeks, the 

isograft had improved functional recovery compared to all other groups with an average 

successful grid-grip of 6.8 ± 1.4%, indicating possible earlier neural reinnervation of muscles.  

However, at 12 weeks the GDNF DS group surpassed the isograft in functional recovery 

with a higher successful grid-grip (13 ± 2%) compared to the isograft (5.9 ± 1%).  All other 

experimental groups except the empty conduit group (0.4 ± 0.4%) were similar to the 
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isograft at 12 weeks in successful grid-grip percentages.  Additionally, all experimental 

groups except GDNF (no DS) had improved functional recovery compared to the empty 

conduit group. 

 

Figure 6.2. Successful grid-grip percentages for groups with nerve regeneration 12 weeks 
after injury.  Animals were placed on a wire mesh to assess the number of times the animal 
successful placed its toes to grip the wire mesh without slipping and the total number of steps taken 
with the injured foot.  The isograft had improved recovery compared to all groups at 8 weeks; 
however, GDNF with the delivery system (GDNF DS) had more successful grid-grips compared to 
the isograft at 12 weeks.  All other experimental groups performed equal to the isograft except the 
empty conduit group at 12 weeks.  Data represents mean ± S.E.M., * indicates statistical significance 
(p<0.05) compared to the isograft, and # indicates statistical significance (p<0.05) compared to 
empty. 
 

6.4.3 Evoked Motor Response 

 The sciatic nerve was stimulated proximal to the injury site to determine functional 

recovery in the peroneal branch by measuring CNAPs for animals with nerve regeneration 

across the conduit.  Normal, uninjured peroneal nerve produced maximum CNAPs of 12 ± 

1.3 mV and first elicited a motor response (foot twitch) with CNAP at 42 ± 4 µA.  The 

number of animals with regeneration and tested for this portion of the study is summarized 
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in Table 6.1.  The DS (no GF) and empty groups contained inferior regeneration that 

complicated measurements, where neither group had more than one animal with nerve 

regeneration with recordable CNAPs; therefore, these groups were omitted from the analysis 

as statistics could not be performed for these groups.  Groups with growth factor (with or 

without the DS) and isografts demonstrated similar CNAPs (1.5 – 0.4 mV) and similar 

elicited motor response thresholds (400 – 180 µA), which were different than normal nerve 

(Figure 6.3A & B).  Data tended to have high variance due to variability in neural 

regeneration in combination with tissue scarring and bleeding, which complicated 

measurements. 

 

Figure 6.3. Maximum CNAPs and current thresholds to elicit motor responses for groups 
with nerve regeneration 12 weeks after injury.  The peroneal nerve was stimulated proximal to the 
graft or conduit at variable current amplitudes to measure CNAPs (A) and to elicit motor responses 
(B).  The maximum CNAP and current threshold amplitudes to elicit motor responses were not 
different between experimental groups.  Data represents mean ± S.E.M. 
 

The sciatic nerve was stimulated proximal to the graft or conduit to measure whole 

force production in the EDL.  These data were normalized to the cross-sectional area of the 

muscle to obtain the specific force, which measures deficits in force capacity and is 

independent of muscle mass.  Normal, uninjured nerve produced twitch and tetanic specific 

forces of 5.0 ± 0.48 N/cm2 and 16 ± 1.6 N/cm2, respectively.  No experimental group 
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matched the normal nerve in either measure.  All groups except GDNF groups produced 

similar twitch and tetanic specific forces compared to the isograft, including groups without 

growth factor, the empty and DS (no GF) conduits (Figure 6.4); however, groups without 

growth factor tended to have high variance due to low number of animals with nerve 

regeneration, which diminished power for statistical comparisons.  Both twitch and tetanic 

specific forces increased for the GDNF DS (3.4 ± 0.36 N/cm2 and 8.9 ± 1.2 N/cm2, 

respectively) and GDNF (no DS) (3.6 ± 0.25 N/cm2 and 11 ± 0.14 N/cm2, respectively) 

groups compared to the isograft (1.4 ± 0.4 N/cm2 and 4.0 ± 0.8 N/cm2, respectively).  

These groups were also increased compared to empty (1.1 ± 1.1 N/cm2 and 2.3 ± 2.3 

N/cm2, respectively) and DS (no GF) (0.98 ± 0.74 N/cm2 and 3.2 ± 2.0 N/cm2, 

respectively) groups.  Overall, the GDNF delivery results possibly indicate superior muscle 

reinnervation. 
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Figure 6.4. Specific force measurements of EDL for groups with nerve regeneration 12 weeks 
after injury.  EDL muscles were stimulated proximal to the graft or conduit to the produce maximal 
twitch and tetanic muscle force, which were normalized to the muscle cross sectional area.  All 
groups, except GDNF groups, produced similar specific forces compared to the isograft.  Specific 
twitch and tetanic forces increased for GDNF groups, compared to empty and DS (no GF) groups 
and the isograft.  Data represents mean ± S.E.M., * indicates statistical significance (p<0.05) 
compared to the isograft, and # indicates statistical significance (p<0.05) compared to empty or DS 
(no GF) groups. 
 

EDL muscles (experimental and contralateral sides) were harvested and weighed 

after evoked motor response testing and normalized to the contralateral (uninjured side) 

muscle mass to assess the level of muscle atrophy due to loss of nerve innervation.  Groups 

with growth factor (53 – 63%) were similar to the isograft (~ 62%), while groups without 

growth factor, empty (~ 30%) and DS (no GF) (~ 41%) groups, had decreased relative 

muscle mass compared to the isograft (Figure 6.5).  Additionally, groups with growth factor, 

except NGF (no DS), had increased relative muscle mass compared to the empty conduit 

group. 
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Figure 6.5. Relative muscle mass of EDL for groups with nerve regeneration 12 weeks after 
injury.  EDL muscles (experimental and contralateral sides) were harvested and weighed, and the 
experimental muscle mass normalized to the contralateral mass.  Groups with growth factor were 
similar to the isograft in relative muscle mass.  Data represents mean ± S.E.M., * indicates statistical 
significance (p<0.05) compared to the isograft, and # indicates statistical significance (p<0.05) 
compared to empty. 
 

6.4.4 Retrograde labeling 

Experimental and contralateral (for normalization) sciatic nerves were labeled with 

Fluorogold solution to stain ventral horn and DRG neurons for animals with nerve 

regeneration.  Cell counts of labeled axons in both regions allow quantification of 

regenerating motor and sensory neurons, respectively.  The number of animals with 

regeneration and tested for this portion of the study is summarized in Table 1.  Neither 

NGF (no DS) nor GDNF (no DS) had more than one animal with nerve regeneration for 

this portion of the study; therefore, these groups were omitted from the analysis as statistics 
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could not be performed for these groups.  Differences in cell sizes, such as diameter, or 

locations within the spinal cord or DRG between experimental groups could indicate 

differences in neuronal populations and fiber types regenerating.  However, no qualitative 

differences in labeled neurons were observed between GDNF DS, NGF DS, and isograft 

groups (Figure 6.6). 

 

Figure 6.6. Representative sections of retrograde labeled ventral horn SC and DRG neurons 
12 weeks after injury.  The experimental and contralateral sciatic nerves were labeled with 4% 
fluorogold to stain sensory (DRG) and motor (ventral horn SC) neurons.  No qualitative differences 
in cell sizes within the SC (A – C) or DRG (D – F) between experimental groups were observed 
between isograft (A, D), GDNF DS (B, E), or NGF DS (C, F) groups.  Scale bar represents 200 µm. 
 

Normal, uninjured sciatic nerve had 3200 ± 180 ventral horn neurons and 11,000 ± 

560 total L4 & L5 DRG neurons labeled.  All experimental group ventral horn and DRG 

neuron counts were normalized to contralateral (uninjured side) nerve counts in their 

respective region to yield a percentage of regenerating neurons.  GDNF DS (62 ± 11%) and 

NGF DS (62 ± 7.1%) groups were comparable to the isograft (57 ± 4.5%) in the percentage 

of normalized ventral horn neurons (Figure 6.7A).  These three groups all had greater 
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percentages of normalized ventral horn neurons compared to empty (1.4 ± 1.4%) and DS 

(no GF) (23 ± 7.5%) groups.  The percentage of normalized DRG neurons were similar for 

GDNF DS (44 ± 4.7%), NGF DS (41 ± 7.2%), and DS (no GF) (44 ± 6.9%) groups 

compared to the isograft (45 ± 2.9%).  Additionally, these groups had increased percentages 

of normalized DRG neurons compared to the empty conduit (14 ± 14%) group (Figure 

6.7B).  No differences between GDNF DS or NGF DS groups were found in either 

percentage of normalized ventral horn or DRG neurons. 

 

Figure 6.7. Percentage of normalized ventral horn SC and DRG neurons retrograde labeled 
12 weeks after injury.  The experimental and contralateral sciatic nerves were labeled distal to the 
conduit or graft with 4% fluorogold to stain regenerating motor (ventral horn SC; A) and sensory 
(DRG; B) neurons.  DRG (L4 & L5) and spinal cords (ventral horn region) were harvested 10 days 
after labeling, and 20 µm sections were evaluated for total cell numbers using stereology techniques.  
GDNF DS and NGF DS were comparable to the isograft in percentages of normalized ventral horn 
and DRG neurons.  Additionally, these three groups contained more labeled ventral horn and DRG 
neurons compared to empty conduit groups.  Data represents mean ± S.E.M. where all cell counts 
were normalized to the contralateral side, and * indicates statistical significance (p<0.05) compared to 
the isograft. 
 

6.5 Discussion 

This study investigated whether the delivery of growth factors using affinity-based 

delivery can affect modality specific nerve regeneration and functional recovery.  Diffusion-

based delivery systems have utilized growth factor delivery to promote nerve regeneration 
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and modality specific nerve regeneration (Fine, Decosterd et al. 2002).  We considered an 

affinity-based DS, which uses non-covalent interactions to sequester and slow the release of 

growth factor leaving it available for cell-mediated release.  Cell-mediated processes, such as 

neurite outgrowth induced protease activation (e.g. plasminogen to plasmin), cleave fibrin 

into smaller fragments, which can regulate growth factor release from fibrin matrices 

(Kalderon 1984; Krystosek and Seeds 1984; Alvarez-Buylla and Valinsky 1985; Pittman and 

Buettner 1989; Pittman, Ivins et al. 1989; Herbert, Bittner et al. 1996).  Therefore, this study 

investigated whether a different delivery method, our affinity-based DS, could stimulate 

modality specific nerve regeneration. 

Regardless of growth factor used, the effectiveness of nerve regeneration or 

frequency of neural regeneration across the 13 mm nerve gap, in the form of a nerve cable 

spanning the conduit, was increased with the presence of the DS (see Table 6.1).  Nerve 

regeneration effectiveness decreased in groups without growth factor or DS establishing that 

both are essential to improve effectiveness.  Others have observed similar increases in nerve 

regeneration effectiveness with controlled growth factor delivery but decreased effectiveness 

without controlled growth factor delivery (Barras, Pasche et al. 2002; Fine, Decosterd et al. 

2002; Dodla and Bellamkonda 2008).  Previously, an initial burst was observed in vitro from 

fibrin matrices with free growth factor (either NGF (Wood and Sakiyama-Elbert 2008) or 

GDNF (Wood, Borschel et al. 2009)), while sequestered growth factor improved neurite 

outgrowth compared to free growth factor with no DS (Sakiyama-Elbert and Hubbell 2000a; 

Wood and Sakiyama-Elbert 2008; Wood, Borschel et al. 2009).  A possible reason that fibrin 

matrices with free growth factor (no DS) did not improve regeneration effectiveness could 

be due to an initial burst of growth factor from the conduit, which has been cited by others 

as detrimental to nerve regeneration (Barras, Pasche et al. 2002).  An initial burst would also 
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leave less growth factor remaining to promote regeneration for migrating cells and axons 

growing into the conduit.  A need for sustained growth factor release could also explain the 

low regeneration effectiveness in groups without growth factor. 

Two behavioral analyses were performed to detect differences in functional recovery 

between groups.  No differences in behavioral recovery were observed between groups as 

measured by SFI scores.  The lack of differences in SFI scores determined by walking track 

analysis was likely due to frequent foot contractures observed in animals, which decreases 

the number of animals that could be assessed using this method and has been cited  by 

others (Hare, Evans et al. 1992; Hare, Evans et al. 1993),  Conversely, in the second analysis, 

grid-grip, contracture formation analysis does not prevent measurements and is therefore 

beneficial compared to walking track analysis in this regard. 

In grid-grip analysis, groups with fibrin were similar to the isograft in behavioral 

recovery.   The overall improvement in successful grid-grip in groups with a fibrin matrix 

could be due to the inclusion of a substrate for cellular adhesion, which is lacking in empty 

conduits.  Initial experiments in the rat sciatic nerve revealed that at one week a fibrin matrix 

spans a silicone conduit used to contain nerve stumps, which is later followed by nerve 

regeneration (Williams, Longo et al. 1983).  Furthermore, fibrin has been used as a 

biomaterial to support nerve regeneration within a NGC (Lee, Yu et al. 2003a; Galla, 

Vedecnik et al. 2004; Marcol, Kotulska et al. 2005) and can promote cell adhesion because it 

contains binding sites for integrins (Thiagarajan, Rippon et al. 1996) and Schwann cells 

(Chernousov and Carey 2003), Therefore, a fibrin matrix can promote neural regeneration. 

We observed faster behavioral recovery for the isograft group compared to conduit 

groups, as the isograft had a higher successful grid-grip percentage at 8 weeks.  However, the 
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GDNF DS group had improved behavioral recovery compared to the isograft at 12 weeks.  

The  improved recovery for the isograft group at 8 weeks may be due to a previous observed 

increase in nerve fibers compared to other groups at 6 weeks (Wood, Moore et al. 2009), 

which correlates with improved function (Aydin, Mackinnon et al. 2004; Lien, Cederna et al. 

2008).  However, in the same studies, GDNF DS had a greater number of larger (5 – 7 µm) 

mature fibers than the isograft (Wood, Moore et al. 2009), which can correlate with greater 

return in function compared to smaller fibers (Williams and Wendell-Smith 1971; Fraher and 

Dockery 1998).  Additionally, increases in EDL twitch and tetanic specific forces for the 

GDNF DS group correlated with an increase in grid-gripping ability. 

There were no differences between experimental groups in measured CNAPs or 

current amplitude thresholds to elicit motor responses.  The largest contributing factor to 

this outcome was high variance in recording, likely due to tissue scarring near the nerve and 

blood from the surrounding tissue interfering with neural electrode contact.  However, 

CNAP recordings do not clearly indicate return of function because the peroneal nerve 

contains a mixture of sensory and motor fibers.  Therefore, measured CNAPs are the 

summation of all nerve fiber types generating action potentials and recording muscle force 

production can better indicate functional recovery. 

EDL specific force production measurements demonstrated that treatment with 

growth factor produced muscle force that was comparable to the isograft.  Most groups with 

growth factor (except NGF (no DS)) also had decreased muscle atrophy compared to 

groups without growth factor.  Taken together, these results indicate that muscle 

reinnervation may generally improve due to growth factor release.  While the empty and DS 

(no GF) conduit groups produced similar specific forces as the isograft, this result is likely 
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due to high variation in nerve regeneration between animals.  Rats have superior neural 

regeneration compared to humans, as the rat is able to spontaneously regenerate into an 

unfilled 4.5 cm nerve gap to a distance of 2.4 cm after 5 months (Mackinnon, Hudson et al. 

1985).  Therefore, negative controls in this injury model tend to have high biological 

variance, which compounded with low regeneration effectiveness in these groups, results in 

poor statistical comparisons. 

A significant outcome in the study was increased twitch and tetanic specific EDL 

forces for GDNF, with or without the DS, compared to groups without growth factor or 

the isograft.  These results suggest superior muscle reinnervation in groups that received 

GDNF.  GDNF is upregulated in Schwann cells in the distal nerve stump and skeletal 

muscle after injury (Nagano and Suzuki 2003; Zhao, Veltri et al. 2004) and regulates 

presynaptic differentiation and neuromuscular junction connections (Nagano and Suzuki 

2003; Yang and Nelson 2004).  Therefore, in our study, exogenous delivery of GDNF at the 

site of injury could have amplified the existing endogenous mechanism for motor nerve 

regeneration and resulted in improved functional reinnervation of the muscle.  This 

hypothesis may explain why groups with GDNF regardless of controlled delivery performed 

better than the isograft in EDL twitch and tetanic specific force production.  Furthermore, 

normalized motor neuron counts for the GDNF DS were comparable to the isograft, which 

would indicate that the motor neurons available are establishing more meaningful functional 

connections with muscles. 

It was not anticipated that the NGF DS would have been similar to the isograft in 

functional recovery as well as motor neuron counts because NGF cannot target motor 

neurons due to a lack of receptors.  Previous studies using NGCs with growth factors that 
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targeted motor neurons or axons, such as GDNF, have increased motor axon counts 

(Barras, Pasche et al. 2002) or retrograde labeled motor neuron counts (Fine, Decosterd et al. 

2002) compared to other growth factors such as NGF and NT-3.  We observed no 

differences in retrograde labeled motor neuron counts between GDNF or NGF delivered 

with the DS but did observe functional differences, as GDNF performed better than the 

isograft in functional recovery measures.  The differences in our study results compared to 

the previous studies could be the inclusion of a material for cellular migration and axonal 

growth within the NGC and the delivery of growth factors from the material, as opposed to 

diffusion-based delivery from the NGC.  We hypothesize that the inclusion of the DS with 

growth factors within the material facilitates both modality specific nerve regeneration and 

Schwann cell migration into the conduit, promoting neural regeneration.  The Mackinnon 

lab has demonstrated that isografts facilitate better nerve regeneration compared to 

decellularized nerve allografts based on measures of nerve regeneration effectiveness and 

histomorphometry (Whitlock, Tuffaha et al. 2009).  They attributed the enhanced nerve 

regeneration in part to Schwann cells retained in isografts promoting nerve regeneration.  

Additionally, Schwann cells contain receptors for both NGF (Taniuchi, Clark et al. 1988; 

Anton, Weskamp et al. 1994) and GDNF (Iwase, Jung et al. 2005), which can facilitate cell 

signaling leading to increased cell proliferation and migration (Anton, Weskamp et al. 1994).  

Therefore, our DS may target motor axons with GDNF, explaining the improvement in 

functional recovery compared to the isograft, while also encouraging Schwann cell 

migration, explaining similarities in functional recovery and motor neuron counts between 

NGF DS and the isograft. 

Silicone conduits serve as a useful model to study nerve regeneration, but clinically 

have associated morbidities.  Silicone conduits have been reported to cause chronic nerve 
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compression, irritation at the implantation site requiring removal, and inflammatory 

reactions impacting nerve regeneration (Merle, Dellon et al. 1989; Dellon 1994; Battiston, 

Geuna et al. 2005).  We examined our DS within a silicone NGC because of the 

biocompatibility of the product, the mechanical stability of the conduit wall thickness 

chosen, and well characterized critical defect length in our surgical model.  The combination 

of our DS with a biodegradable conduit would be more desirable for clinical peripheral 

nerve injury repairs.  Based on the positive functional outcomes observed in our study, work 

directed toward this goal would be beneficial in translating our DS into clinical practice. 

 

6.6 Conclusions 

In summary, the goal of this study was to determine if sensory or motor nerve fibers 

regenerated and the functionality of regeneration due to growth factor delivery with an 

affinity-based DS to the regenerative site in a rat sciatic nerve critical defect.  We examined 

behavioral outcomes and electrophysiological responses including evoked motor responses 

and compared the measures to controls.  We found similar functional outcomes as the 

isograft with the delivery of NGF, but superior functional outcomes with the delivery of 

GDNF, both supported by histological counts of regenerating motor and sensory neurons.  

Due to the observed improved functional measures, we believe that affinity-based delivery 

of growth factors offers insight into potential future alternatives for the treatment of 

peripheral nerve injuries. 
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Chapter 7 

 

Summary and Future Directions 

 

7.1 Summary of Findings 

The results of this thesis work indicated that a fibrin affinity-based delivery system 

(ABDS) delivering growth factors can promote peripheral nerve regeneration.  These results 

were determined through five studies.  These objectives of the studies were: to assess the 

role of peptide binding affinity for heparin in nerve regeneration through the delivery of 

nerve growth factor (NGF); to assess the ability of a different growth factor, glial-derived 

neurotrophic factor (GDNF), to promote nerve regeneration when delivered from the 

ABDS; and to determine the effect of growth factor delivery from the ABDS in promoting 

functional recovery following injury. 

The first and second study of this thesis work addressed the role of peptide binding 

affinity for heparin in promoting nerve regeneration.  The first study determined if peptide 

binding affinity for heparin and the molar ratio of peptide to heparin affected the release rate 

and biological activity of NGF.  Mathematically modeling of the delivery system and in vitro 

experiments confirmed that release rates could be controlled by both peptide binding affinity 

for heparin and the molar ratio of peptide to heparin.  The ABDS was also found to present 

biologically active NGF as assayed by chick embryo dorsal root ganglia (DRG) neurite 

extension, regardless of peptide binding affinity for heparin. Thus release rate appeared to be 

the main mechanism controlling the biological activity of released NGF. 



160 

The second study extended the first study to evaluate the efficacy of the ABDS in 

vivo to promote nerve regeneration in a rat sciatic nerve critical defect and determine if 

peptide binding affinity for heparin affected nerve regeneration.  Histological outcomes 

demonstrated that the ABDS with any affinity peptide and NGF was similar to the isograft 

in aspects of nerve regeneration including: nerve fiber density, the quality of nerve 

regeneration, nerve fiber maturity, and the neural fiber organization of the regenerating 

nerve 6 weeks after treatment.  Additionally, no differences in nerve regeneration due to 

heparin-binding affinity were observed, but general trends indicated that stronger peptide 

binding affinity for heparin promoted superior nerve regeneration. 

Based on the results of the first and second studies, the third and fourth study 

addressed the role of GDNF in the context of the ABDS.  These studies focused on the 

delivery of GDNF from the ABDS incorporating the strongest heparin-binding peptide, 

ATIII.  The ABDS effectively sequestered and slowed the release of GDNF, and the ratio of 

peptide to heparin was found to modulate the rate of GDNF release in vitro.  The ABDS and 

GDNF were found to promote neurite extension comparable to GDNF and fibrin matrices 

alone at specific concentrations. 

The fourth study evaluated the efficacy of affinity-based delivery of GDNF in a rat 

sciatic nerve critical defect.  Histological outcomes of nerve fiber density, the quality of 

nerve regeneration, nerve fiber maturity, myelination, and the neural fiber organization of 

the regenerating nerve demonstrated that the ABDS and GDNF were similar to the isograft 

6 weeks after treatment.  Therefore, the ABDS can promote peripheral nerve regeneration 

following injury. 
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Based on the outcome in short-term (6 week) in vivo studies, the objective of the fifth 

study was to assess functional recovery and modality specific nerve regeneration with the 

ABDS and growth factor in a rat sciatic nerve critical defect over 12 weeks following 

treatment.  Behavioral outcomes and electrophysiological responses including evoked motor 

responses were similar to functional outcomes in the isograft with the delivery of NGF, but 

superior to the isograft with the delivery of GDNF.  Additionally, both GDNF and NGF 

delivery supported the regeneration of motor and sensory neurons equivalent to the isograft, 

as assessed by retrograde labeling.  Overall, this work indicates that affinity-based growth 

factor delivery from fibrin matrices enhances nerve regeneration. 

 

7.2 Recommendations for Future Direction 

 This thesis work evaluated the role of peptide affinity and growth factor delivery 

with an ABDS for peripheral nerve injury.  Based on the observed histological outcomes and 

functional measures, affinity-based delivery of growth factors offers potential alternatives for 

the treatment of peripheral nerve injuries.  During the evaluation in the short-term animal 

studies (6 weeks), all experimental groups with a conduit for treatment of nerve injury 

demonstrated decreased regenerating nerve fiber counts compared to the isograft.  This may 

be due to the silicone conduit limiting the area of nerve regeneration.  This limitation could 

be addressed with a new conduit material (or structure) to contain the luminal fibrin matrix 

and ABDS.  Additionally in the 6 week animal studies, the ABDS with GDNF or NGF were 

similar to the negative control (empty conduits) in regenerating nerve fiber counts.  This 

result could again be due to the above mentioned silicone issue, which could limit the ability 

to demonstrate differences in fiber counts within the conduit.  Alternatively, the fibrin 
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matrix and ABDS could be modulated to provide additional guidance cues for axons.  As 

observed in the final study, GDNF promoted better functional recovery than even the 

isograft while NGF promoted functional recovery similar to the isograft.  This result with 

NGF delivery was not anticipated due to limitations of NGF in stimulating and targeting 

motor neurons, which do not express the major receptor for NGF (TrkA).  Overall, this 

result may indicate that growth factor delivery in general has a synergistic effect on nerve 

regeneration.  Therefore, incorporating other known therapies for peripheral nerve injury, 

such as the incorporation of cells into a fibrin scaffold with the ABDS, may further effect 

nerve regeneration. 

 

7.2.1 Advanced material and delivery strategies for nerve regeneration 

In this thesis work, both GDNF and NGF promoted nerve regeneration.  Although 

it is not clear from this work, either growth factor may have promoted nerve regeneration to 

an extent due to targeting and stimulating axonal growth in different neuronal populations, 

as sensory and motor neurons express different receptors.  An interesting extension of this 

work would be to simultaneously present these growth factors to target the neuronal 

populations.  Deister et al. demonstrated that presenting multiple growth factors to DRG can 

produce synergistic effects on neurite extension in vitro (Deister and Schmidt 2006).  This 

ABDS is capable of binding multiple growth factors simultaneously (Willerth, Rader et al. 

2008), which could allow for delivery of both NGF and GDNF from the same scaffold or 

other growth factor combinations. 

This ABDS could alternatively include additional cell adhesion molecules or peptides 

that interact with heparin.  For example, the peptide sequence IKVAV is the neurite binding 
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sequence contained on laminin (Tashiro, Sephel et al. 1989), and as a synthetic peptide could 

be chemically modified to include a heparin-binding domain.  The incorporation of both 

cellular adhesive molecules and growth factors could have a synergistic or additive effect on 

nerve regeneration.  For example, adding laminin to agarose gels improved nerve 

regeneration compared to agarose gels alone; however, combining laminin and NGF to 

agarose gels improved nerve regeneration more than laminin alone in agarose gels (Yu and 

Bellamkonda 2003).  One consideration when incorporating additional growth factors or 

proteins that interact with heparin would be the availability of binding sites for these 

proteins, which limits the concentration of bound proteins.  Based on the mathematical 

modeling done in this work, the use of multiple growth factors would be reasonable.  The 

ratio of heparin to growth factor in the ABDS was on the order of thousands for the 

sustained and controlled release of a single growth factor.  Cellular adhesion molecules and 

proteins are typically used at greater concentrations than growth factors; therefore, their use 

would be limited to lower concentrations with this delivery system. 

 The fibrin matrices used in this study form via an enzymatic reaction that covalently 

links randomly oriented fibrin monomers.  Consequently, during polymerization fibrinogen 

fibers within a fibrin matrix possess the ability to be aligned by a magnetic field.  Parallel, 

longitudinal arrangements of fibers in a material can promote nerve regeneration better than 

random oriented fibers.  Work from the Bellamkonda laboratory recently demonstrated that 

synthetic polymer fibers oriented in a magnetic field to run parallel to regenerating nerve 

fibers enhanced nerve regeneration compared to randomly-oriented, synthetic polymer fibers 

(Kim, Haftel et al. 2008).  Additionally, in vitro studies have demonstrated that similar 

alignment can increase neurite outgrowth two-fold over randomly oriented fibers in a fibrin 

matrix (Dubey, Letourneau et al. 2001).  Incorporating the ABDS into a fibrin matrix with 
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aligned, parallel fibers could positively affect nerve regeneration.  While it is unclear how the 

delivery of growth factor would be affected by the alignment, the presentation of growth 

factors from aligned fibers within the fibrin matrix would better mimic native nerve, which 

contains parallel, longitudinally-oriented basal lamina tubes. 

Alternatively, the ABDS could be used to create a concentration gradient of growth 

factors or proteins that interact with heparin.  In vivo concentration gradients of neurotrophic 

factors promote enhanced nerve regeneration compared to isotropic presentation of the 

same factors (Dodla and Bellamkonda 2008).  Commonly for a concentration gradient of 

growth factors to exist in an implantable material, the growth factors are immobilized within 

the material.  The ABDS sequesters growth factors due to a fast binding constant (kf), which 

prevents long-term diffusion.  Therefore, this ABDS could potentially sequester a gradient 

of a number of growth factors to construct an implantable material to promote nerve 

regeneration. 

 

7.2.2 Alternative structure to contain the material for nerve regeneration 

 Although the ABDS with either GDNF or NGF promoted nerve regeneration 

equivalent to the isograft by many histological measures, this result could be improved.  The 

silicone conduit used to contain the system proved detrimental in nerve regeneration as 

measured by a decrease in the total number of regenerating nerve fibers for any experimental 

groups with a conduit.  Other researches have noticed this effect on nerve regeneration as 

well (Lundborg, Dahlin et al. 1982b).  Additionally, the implantation of a permanent conduit 

could result in adverse tissue reactions, as noted by others (Dellon 1994), which could 
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require a second surgery to remove it.  Therefore, a different structure to house the material 

would be useful to eliminate the need to permanently implant a device and potentially 

improve nerve regeneration due to an increase in area available for nerve regeneration. 

Loading the scaffold into a biodegradable nerve guidance conduit (NGC) would 

eliminate the safety concerns of permanently implanting a medical device.  It also capitalizes 

on the natural degradation of the fibrin scaffold to construct a device that completely 

degrades over time leaving behind the regenerated nervous tissue.  While this ABDS is 

capable of delivering multiple growth factors, as previously discussed, a biodegradable NGC 

offers the potential to deliver growth factors as well.  Growth factor delivery from the NGC 

and the luminal scaffold would permit greater degrees of freedom in modulating release 

rates, which can affect nerve regeneration.  Previously Piquilloud et al. designed collagen 

NGCs with layers of poly(lactide-coglycolide) that varied in thickness to produce conduits 

that can deliver GDNF at variable rates based on layer thickness.  The NGCs with highest 

release rate of GDNF resulted in improved histological outcomes compared to delivery at 

slower release rates (Piquilloud, Christen et al. 2007).  Therefore, an additional release vehicle 

could allow release rates of growth factors to be modulated to best promote nerve 

regeneration.  Additionally, the ABDS used in this work is limited in its ability to deliver 

growth factors over long periods by degradation of the fibrin matrix, which completely 

degrades by 2-4 weeks (unpublished data from the Sakiyama-Elbert lab).  Delivery from a 

NGC could provide growth factor delivery for periods beyond the fibrin degradation limit.  

Overall, biodegradable NGCs have benefits compared to non-resorbable NGCs; however, 

biodegradable NGCs still demonstrate problematic issues similar to silicone, where the 

available area for nerve regeneration is limited in the NGC before the NGC degrades 
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(Francel, Smith et al. 2003), and the NGC can cause compression on the nerve as the 

conduit degrades (Borkenhagen, Stoll et al. 1998). 

Materials, such as fibrin, are not limited to a NGC, and due to its ability to 

polymerize to a stable hydrogel, it could be incorporated into other structures, such as 

biological grafts.  In particular, this scaffold could be utilized in decellularized biological 

grafts to possibly improve their outcome.  For example, decellularized muscle grafts do not 

produce nerve regeneration similar to autografts, but can match autografts in some 

histomorphometric measures of nerve regeneration when beneficial cues for nerve 

regeneration, such as Schwann cells (SCs), are loaded into the muscle graft (Fansa and 

Keilhoff 2004).  Therefore, the use of both an inductive material, a fibrin matrix with an 

ABDS as demonstrated in this work, and decellularized biological graft could produce 

additive or synergistic effects on nerve regeneration.  Perhaps the ideal structure would be a 

decellularized nerve allograft, which would combine the alignment and natural structure of 

nerve with a vehicle to deliver growth factors. 

 

7.2.3 Cell transplantation for nerve regeneration 

 The migration of SCs into the NGC was not studied in this thesis work, but may 

have played a role in promoting nerve regeneration as they are known to secrete trophic 

support and can adhere to a fibrin scaffold.  This ABDS has been used for many other 

applications including a scaffold for cellular growth, specifically with embryonic stem cell-

derived neural progenitor cells (Willerth, Rader et al. 2008).  Furthermore, the fibrin scaffold 

with the ABDS was capable of promoting these cells to differentiate due to controlled 

growth factor release from the ABDS.  Therefore, SCs cultured within the scaffolds with 
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controlled growth factor delivery may enhance their proliferation, migration, and myelination 

capabilities.  The transplantation of such a scaffold could enhance peripheral nerve 

regeneration. 

Previous work with the transplantation of SCs has shown mixed success.  For 

example, SCs loaded into biological grafts have proven beneficial (Fansa and Keilhoff 2004), 

but others have not observed beneficial aspects.  Specifically, Evans et al. loaded SCs into a 

collagen scaffold in a degradable NGC to treat rat sciatic nerve injury.  However, the 

combination approach did not perform better in nerve regeneration measures than collagen 

alone (Evans, Brandt et al. 2002); therefore, care must be taken to optimize SC growth 

parameters with that of axonal regeneration in order to promote additive or synergistic 

effects on nerve regeneration due to their transplantation. 

Another aspect of SC transplantation that would be of interest to study would be the 

effect of modality specific SC transplantation.  Hoke et al. determined that SCs from 

primarily sensory or motor specific nerve branches express different levels of growth factors, 

indicating that SCs have specific phenotypes (Hoke, Redett et al. 2006).  This result could be 

further extrapolated to explore modality specific regeneration.  For example, motor branches 

may contain SCs that guide motor axons to the correct parent target (Brushart 1988).  

Therefore, the transplantation of phenotypic specific SCs within a conduit or graft could 

affect nerve regeneration modalities. 

Although the proposed future work focuses on the use of the ABDS for treatment 

of peripheral nerve injury, there could be potential for treatment of other diseases and 

injuries.  As already mentioned, this ABDS can be employed using a variety of growth 

factors that interact non-covalently with heparin and to culture cells.  It has been used for a 
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variety of potential treatment applications, which include flexor tendon repair (Gelberman, 

Thomopoulos et al. 2007) and spinal cord injury (Taylor, McDonald et al. 2004; Taylor and 

Sakiyama-Elbert 2006).  Due to the positive outcomes demonstrated in this thesis work, 

future work with this biomaterial for local drug delivery and cell culture would be beneficial. 
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