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ABSTRACT OF THE DISSERTATION

The Interaction of Cofilin with the Actin Filament

by

Diana Yi Fei Wong

Doctor of Philosophy in Biomedical Engineering

Washington University in St. Louis, 2011

Research Advisor: Professor David Sept

The regulation of filamentous actin (F-actin) production from the polymerization

of globular actin (G-actin) within the cell is critical for many cell functions. Since

actin is found in all cells, understanding how actin-binding-proteins (ABPs) bind

and how their regulating mechanisms work is not only important to the basics of

cytoskeletal pathways, but also to understanding associated diseases and creating

possible therapeutics to combat them.

Cofilin is an ABP that plays an important part in the regulation process and in recent

times, has come to be known as a player in maintaining a cell’s homeostasis. It’s ac-

tivity has been shown to have implications in many diseases, such as Alzheimer’s and

certain cancers. Cofilin binds and severs actin filaments, leading to depolymerization

as well as the creation of new barbed ends. Although some of the details of cofilin’s

interaction with G-actin have been illuminated through a range of experimental stud-

ies, the specific interactions with F-actin have remained much more elusive. As of

yet, there are only cryoEM models of cofilin-bound F-actin (where the binding occurs
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at a 1:1 ratio), which are not high enough resolution and do not show molecular in-

teractions. The focus of this research is to build a model of how cofilin binds F-actin

and understand the mechanism of severing.

Computational methods, such as protein-protein docking, all atom molecular dynam-

ics (AA MD) simulations, and Coarse Grain MD (CG MD) can help in understanding

the interactions between cofilin and F-actin. Iteratively combining these methods

with biochemical and mutagenesis experiments to reach a consensus offer a guide

towards a more cogent answer. Here in this dissertation, I describe how I built a

cofilin and F-actin binding model, with the aid of empirical data. This work allowed

me to create several filament models with varying number of bound cofilin, which

replicates different binding states of the filament. I also simulated the dynamics of

these filaments models to gain insight into filament behavior, particularly twist.
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Preface

The research described in this dissertation concerning cofilin and F-actin began in

Spring 2008 but the bulk of the work did not really take flight until our move to

University of Michigan, Ann Arbor. As alluded to in the Acknowledgments section,

UMich has been a great environment to work in and I will never forget the nearly

two years spent there.

There are two other major projects that I worked on during my tenure on the WashU

campus. While they have not produced publications, the experiences I gained from

them have had a deep impact on my graduate student learning. In the first project, I

reparameterized docking software for the purpose of predicting protein-protein bind-

ing. In the second project, I employed the polarizable force field, AMOEBA, from

Jay Ponders lab to find binding energy between Serine proteases and their respec-

tive drugs in an effort to adapt the force field for docking purposes. I am grateful

for all the time and patience that Jay, Chuanjie Wu, and Mike Schnieders took to

teach me about force fields and the grueling accompanying task of parameterizing

new molecules.

Ideally I would like to discuss these projects in more detail so that the years of work

I put into them does not go by the wayside, but time and energy do not permit it.

At the very least, hands on experience with docking software has enabled a more

knowledgeable approach when performing such endeavors on the cofilin-actin work.

The following will be a discussion of how a specific biological question about a partic-

ular protein system can be answered using computational methods. The first chapter

is a primer on actin filaments that will help establish the problem, with more atten-

tion focused on directly relevant literature. The following three chapters describe the

story of how I tried to answer that question in a sequence of steps that lead from one

to the next. Finally, in the last chapter I make final conclusions and remarks of the

xiii



process. And should there be a confusion of voice, sometimes it is the royal we who

is speaking.
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Chapter 1

Introduction

Actin is a protein found in all eukaryotic cells, first isolated by Straub from muscle in

1942. (Kabsch and Vandekerckhove 1992) It is essential to many cellular functions,

such as mitosis, motility and migration, and cell signaling. As an important part of

cytoskeleton, it has the job of supporting cell structure by forming filaments made

up of actin monomers. In order for it to be dynamically changing, to satisfy the

needs of the cell, it also has to exert forces or go to different parts of the cell. It

does so by growing and shrinking. As vital as actin filaments may be, it is the whole

system of proteins involved and their proper regulation of how they work that is

integral to function. Cofilin is one actin-binding protein (ABP) responsible for protein

policing. Preferentially binding to ADP-actin, it not only aids in depolymerization at

the pointed end and works to bring actin monomers to the barbed end for elongation,

but also severs filaments, giving rise to more sites of depolymerization. The exact

details of how cofilin binds (Wriggers et al. 1998, Kamal et al. 2007, Paavilainen et al.

2008) and severs remains controversial and is only conjectured upon. The molecular

mechanism of this process is the focus of this dissertation.

1.1 Actin

A single monomer of actin, or globular actin, is known as G-actin. When these

monomers polymerize, they become filamentous actin, or F-actin. As one pillar of

three components in the cytoskeleton, filaments offer a structural support system to

the cell. Actin has high sequence identity and conservation across eurkaryotic cells

and high protein expression is testament to its profound importance. (Doolittle 1995)

1



1.1.1 Dendritic Nucleation Model of F-actin

In order for filaments to form, there must be a concentration of available G-actin

to allow for binding and polymerization. A filament begins to grow either due to

nucleation or branching from an existing filament and continues in its elongation

phase. Polymerization occurs favorably at one end, the barbed end, and preferentially

with ATP-actin; this can also be an indication that the end with ATP-actin is newer

in age. As a filament ages, the ATP is dephosphorylated to become ADP-actin,

which associates at negligible rates. (Kuhn and Pollard 2005) Kinetics dictate that

the barbed end will grow and the pointed end will depolymerize.

The rate of polymerization has been observed in real-time measurements using

TIRF (total internal reflection fluorescence microscopy). (Kuhn and Pollard 2005)

The association and dissociation rates were measured for barbed and pointed ends

about the critical actin concentration levels and can be see in Table 1.1. The ADP-

Table 1.1: Kinetics Data from Kuhn and Pollard 2005
ka (µM1s1) kd (s1)

ATP @ Barbed 7.4 0.89
@ Pointed 0.56 1.4

ADP @ Barbed 1.4
@ Pointed 0.16

actin that is most likely to dissociate rejoins the pool of G-actin available to re-

polymerize at the barbed end of a filament again, often with the aid of a chaperone

and phosphorylation. Cofilin is one such ABP that aids in this recycling of G-actin

(to be discussed in detail later). (Didry et al. 1998, Carlier and Pantaloni 1997)

This phenomenon of growth at one end and recycling is known as treadmilling (See

Figure 1.1) and first observed from gelsolin-capped actin in vitro. (Lanni et al. 1981,

Selve and Wegner 1986) It is elegant and simple how the differences of association

and dissociation rates make this possible. As an example, this process allows for

filaments to grow toward the edge of a cell and push the membrane in creating

filopodia or lamellipodia. Pollard and Borisy 2003 is a good review on this type

of assembly/disassembly driven cell motility. Capping proteins cap the barbed end

and prevent elongation while Arp2/3 complexes allow for branching in the middle

2



Figure 1.1: Treadmilling

of a filament, as can be seen in Figure 1.2. (Pollard and Cooper 2009) The Arp2/3

nucleation model, Figure 1.3, shows how a number of proteins play together as a

system.

cargo over longer distances in many other cell
types involves microtubules and their motors.

Questions to Ask
First, researchers need a complete list of parts to
understand how the actin system or any biolog-
ical system works. Do we know all the parts of
the actin system? We know many, but the list is
far from complete. Second, which parts interact
with other parts? Third, how does this system of
connected parts work as a whole? Most biolog-
ical systems are so complicated that their operations
are not intuitively obvious, somathematical models
and simulations are needed to connect hypothe-
ses with experimental observations (9).

Examples of Biological Processes That
Depend on Actin
Making connections between molecules and bi-
ology can be challenging. On one hand, any cel-
lular process depends on many different proteins.
On the other hand, a given molecule will con-
tribute many processes, as shown by doing a
PubMed search on any protein mentioned here.
For example, recent publications provide evi-

dence that cofilin participates in cancer, embry-
onic development, HIV infection, pathfinding by
nerve cell axons, learning andmemory, programmed
cell death, Alzheimer’s disease, traffic of intra-
cellularmembranes,mitosis, cytokinesis, tight junc-
tions, and immune reactions of T-lymphocytes. In
each of the following examples, the inventories of
participatingmolecules aremore advanced than our
understanding of the molecular mechanisms or the
operations of these processes at the system level.

Actin filaments as part of the cytoskeleton.
The protein polymers forming the cytoskeleton
are responsible for the mechanical properties and
shapes of cells, which are often critical to their
functions. If the membranes of a human cell are
dissolved away to release soluble components, a
ghostlike meshwork of cytoskeletal polymers re-
mains (Fig. 1B) (10). The polymers include actin
filaments, microtubules, and intermediate filaments
in various proportions and geometries. Actin fil-
aments provide mechanical structure and motility
for amoeboid and animal cells. Microtubules are
responsible for separating chromosomes and long-
range transport of large particles in all eukaryotes.
Intermediate filaments in vertebrates function as

intracellular ligaments and tendons to resist me-
chanical forces.

Interactions among the three cytoskeletal poly-
mers reinforce the cytoskeleton, although some
cross-linking proteins exchange rapidly and the
polymers themselves turn over on time scales of
seconds to minutes. These features give the cyto-
plasm useful properties, such as being stiff when
deformed rapidly and malleable when deformed
slowly. Even the cells of plants and fungi, despite
being encased in a cell wall, use cytoskeletal poly-
mers to direct the shape of their compartments
(11). In addition, the cytoskeleton is part of a
system that senses both external forces applied to
the cell and themechanical properties of the cell’s
environment. This system can influence diverse
aspects of cell function, including gene expres-
sion and differentiation (12).

Actin patches and endocytosis. Actin filaments
assemble at sites of plasma membrane inter-
nalization in budding and fission yeast (13, 14).
In these “actin patches,” filaments assemble de
novo, provide force to form and internalize an
endocytic vesicle from the plasma membrane,
and then disassemble in a process that is self-limited
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Fig. 2. Structures of actin and diagrams of fundamental reactions. (A) Ribbon
and space-filling models of the actin molecule (pdb:1ATN). (B) Spontaneous
nucleation and elongation. Dimers and trimers are unstable. Longer polymers
grow rapidly at the barbed end (B) and slowly at the pointed end (P). (C) Actin
monomer binding proteins. Thymosin-b4 blocks all assembly reactions; profilin
promotes nucleotide exchange and inhibits pointed-end elongation and nuclea-
tion but not barbed-end elongation; cofilin inhibits nucleotide exchange and
promotes nucleation. (D) Nucleation and elongation by formins. Formins initiate
polymerization from free actin monomers and remain associated with the grow-

ing barbed end. Profilin-actin binds to formin and transfers actin onto the barbed
end of the filament. (E) Nucleation by Arp2/3 complex. Nucleation-promoting
factors such as WASp bind an actin monomer and Arp2/3 complex. Binding to
the side of a filament completes activation, and the barbed end of the daughter
filament grows from Arp2/3 complex. (F) Reactions of actin filaments. Capping
proteins bind to and block barbed ends; cofilin and gelsolin sever filaments;
cross-linking proteins assemble networks and bundles of actin filaments. (G)
Myosin motors, such as myosin V, use cycles of ATP hydrolysis to walk along actin
filaments, generally toward the barbed end. Redrawn from images in (38).
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Figure 1.2: Actin Structures and Some Actin Binding Proteins (ABPs): Figure
reprinted from Pollard and Cooper 2009.

The Arp2/3 complex, comprised of 2 actin-related proteins and 5 other proteins,

nucleates new filaments at a 70◦ angle from the existing filament—this dendritic

network can be found in lamellipodia, for example. (Robinson et al. 2001) Cofilin

can modulate this ebbing and flowing of the dendritic network, at least in vivo, since
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these systems work” at the molecular level. Given
the common origin of the genes for the actin
system, evolution should be able to help sort out
the complicated mechanisms. Continuing focus
on tractable model systems should help to establish
the molecular basis for each actin-based function
and general principles that apply more broadly.
Researchwith systems-level genomics approaches
based on genetic and physical interactions in
model organisms continues to increase the parts
list and to reveal new interactions. The missing
rate and equilibrium constants required to trace
pathways and explain how molecules work to-
gether still need to be defined. The regulation of
actin by signaling mechanisms and the interac-

tion of actin with other cellular systems, such as
membranes, requires further attention.

Technical advances should prove critical. For
example, we can now image the behavior of sin-
gle molecules over time, in vitro and in cells, and
we can reconstitute complex processes using
mixtures of purified components. Furthermore,
advances in light and electron microscopy allow
for nanometer-level localization of protein com-
ponents and for measurement of global and local
concentrations of molecules inside living cells.
These advances should prove critical to advance
our understanding of these actin systems, espe-
cially how and where filaments are created and
assembled into networks of varying geometry.

The field has only recently started to create
mathematical models at the microscopic, meso-
scopic, and macroscopic scales. Still, great pro-
gress has been made in several areas, such as
understanding how the actin filaments in a pro-
trusion assemble and create force on the plasma
membrane (9, 18, 35). Quantitativemeasurements
in live cells aided by genetics, specific drugs, and
depletion strategies should provide the data re-
quired to test hypotheses embodied in mathemat-
ical models.

References and Notes
1. H. P. Erickson, Bioessays 29, 668 (2007).
2. T. A. Richards, T. Cavalier-Smith, Nature 436, 1113 (2005).
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Figure 1.3: Apr2/3 Dendritic Model: Figure reprinted from Pollard and Cooper 2009.

cofilin severing allows for actin to be recycled by acting as a chaperone to ADP-

actin, getting it phosphorylated, and bringing it to the elongating edge. (Bernstein

and Bamburg 2010) Cofilin competes with Arp23, decreasing Arp2/3’s affinity for

actin filaments and according to in vitro studies, also decreases branch stability and

enhances branch removal. (Chan et al. 2009)

Tropomyosin binds F-actin and stabilizes the filament but also inhibits cofilin bind-

ing because part of tropomyosin’s binding site overlaps with that of cofilin. (Kuhn

and Bamburg 2008)

1.1.2 Structure of G-actin

An actin monomer is approximately 42 kDa and 375 residues long. Because G-actin

so readily polymerizes (especially in crystallization concentrations), it’s structure was

resolved in the 1990 Kabsch et. al. atomic crystal structure model of rabbit skeletal

muscle actin complexed to pancreatic deoxyribonuclease I, with a resolution of 2.8 Å

in the ATP form and 3.0 Å in the ADP form. (Kabsch et al. 1990) It was only

later when actin was modified by tagging with a tetramethylrhodamine (TMR) at

C374, which inhibits actin treadmilling, was a 1.54 Å resolution ADP-actin monomer
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crystal structure was resolved (PDB ID 1J6Z). See the translucent shadow G-actin

in Figure 1.4 for structure. (Otterbein et al. 2001)

In the structure (Figure 1.4), there are four subdomains (SD), clockwise from the

top right quadrant in the order of SD2 (blue residues 32-69), SD1 (red residues 1-31,

70-144 , 338-375), SD3 (yellow residues 145-180, 270-337), and SD4 (green residues

181-269). There is a nucleotide binding cleft at the center of all four domains to which

ATP or ADP, when dephorphorylated, may bind.
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Figure 1.4: Structure of G-actin: Oda’s 2009 2ZWH model is opaque, Otterbein’s 2001 1J6Z
is the translucent shadow. Oda’s DNase I loop is more loop than helix. Cyan beads correspond to
mutagenesis that is lethal to cofilin binding. (Rodal et al. 1999)

The structure of G-actin makes little sense without putting it in context with F-actin

as specific parts of the globular form are structurally important to understanding how

F-actin can be as strong of a building block it is. F-actin can be either viewed as a

double-stranded helix or two unit spiral, as seen in Figure 1.5. SD3 and SD4 interact

with other protomers (monomers in bound in filament form) and make up the core of

the filament. Residues 262-274, between SD3 and S4 are known as the hydrophobic

plug or H-loop. Along with the C-terminal, it may be essential to stability and

account for lateral contacts within the filament. (Owen and DeRosier 1993) As the

name implies, it is a buried portion of actin that locks itself with a protomer on the

other double strand.
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Another component extremely important to stability is the DNase I loop or D-

loop, in residues 38-52. In the Holmes and Lorenz F-actin models (to be covered in

the next section), it was first proposed to be important to longitudinal contacts, as in

the between the protomers within the two strands. (Holmes et al. 1990) Being very

flexible, there have been many observed conformations of D-loop that range from dis-

ordered loops to helices. (Muhlrad et al. 1994, Orlova and Egelman 1993, Strzelecka-

Go laszewska et al. 1995, Kim et al. 1996, Khaitlina and Strzelecka-Go laszewska 2002)

The nucleotide in actin has been found to be of importance to stability since Nucleotide-

free actin (NFA), created by using denaturants (e.g. urea) to remove the ADP/ATP

and stabilized by sucrose, quickly denature. (Asakura 1961) In high concentrations

of sucrose, NFAs can polymerize, showing that nucleotides are not necessary for fila-

ment formation, but ADP is needed for monomer stabilization, regulating mechanics

and dynamics (to be covered in the Section 1.2 about ATP hydrolysis), and as an

indicator for filament age (for depolymerization purposes). (De la Cruz et al. 2000)

1.1.3 Structure of F-actin

While actin monomers can be crystallized, filaments polymerize to irregular lengths

and have not been crystallized. X-ray fiber diffraction can result in structures but are

not very high resolution and do not show atomic, much less side chain, interactions.

Using such techniques in combination with fitting the Kabsch 1990 G-actin struc-

ture, the Holmes 1990 F-actin filament model was created and used for many years.

(Holmes et al. 1990) The structure of F-actin turns out to be a 13 actin monomer per

turn helix that repeats with a rotation of 166◦, on average, per protomer. As seen

in the Figure 1.5, there is directionality to the filament, with the top end being the

pointed “-” end (SD2 and SD4) and the bottom end being the barbed “+” end

(SD1 and SD3). (Top and bottom are non-conventional terms.) The implications of

non-symmetrical ends, with regards to polymerization and depolymerization, will be

discussed in the Section 1.2.

It was not until the Oda 2009 (PDB ID 2ZWH) model, using X-ray fiber diffraction

on F-actin from rabbit skeletal muscle with a resolution of 3.3 Å in the radial direction

and 5.6 Å along the equator, that a higher resolution model that described an the
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Figure 1.5: Structure of F-actin: 2ZWH from Oda et al. 2009. The DNase I loop is highlighted
in magenta while the Hydrophobic plug is highlighted in cyan.

structure of a true filament was obtained. (Oda et al. 2009) The difference between

G- and F-actin monomer was that in F-actin, there is a rotation of SD3 and SD4

by 20◦ about the SD3-SD1 axis—namely F-actin monomers are flatter. This flatness

may contribute to a more stable helical filament.

Another high resolution electron cryomicroscopy derived structure with 3 Å resolu-

tion of rabbit skeletal muscle was resolved by Fuji et. al. (Fujii et al. 2010) that

generally agrees with Oda 2009. While other methods used averaging of 10,000’s of

images (Holmes et al. 2003, Galkin et al. 2008, Oda et al. 2009), they were able to

obtain higher contrast resolution because of energy filtering. They find that F-actin

is not as flexible as previously thought with only 1◦ twist variability and the D-loop

conformation depends on what is bound, in agreement with the Oda and Holmes

models. That needs to be taken with a grain of salt since they used highly oriented

actin gels in which the filaments were stretched. The “axial” (longitudinal) con-

tacts are tight between the D-loop and SD1 and SD3 of the monomer towards the
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pointed end, binding mostly through electrostatic and hydrophilic interactions (at

V45-Y143 and H40-T169). The “interprotofilament” (lateral) interactions are

“modest” hydrophilic contacts at the hydrophobic-plug (Q263-G273) of SD3 to the

D-loop of the protomer one unit upstream to the barbed end. This paper reiterates

past implications (McGough and Chiu 1999, Bobkov et al. 2004) that lateral contacts

are the weak link to filament strength, as will be discussed later.

The flexibility of F-actin may depend on each protomer, deriving its motion from the

D-loop. (Orlova and Egelman 1993) There is apparently modulation by the metals,

Ca2+ or Mg2+, and nucleotides (ADP or ATP) changes SD2 and thereby affects

filament flexibility in general. (Bobkov et al. 2002)

A recent study (Galkin et al. 2010) has produced cryomicroscopy structures, with a

10 Å resolution, which quantifies the structural states of F-actin, insinuating that past

structures are simply wrong because they only capture one conformation, although it

is obvious that filaments are flexible and can take different forms. They show six main

modes of “polymorphisms” in which the D-loop takes on helical and coil conformations

(a notion that has not been previously denied) and have different rotations with

respect to the actin protomer. The claim is that actin’s high sequence conservation

may be derived from the need for its many structural states in filamentous form

such that mutations and other changes render it less efficient in accomplishing all

its tasks. The paper further categorizes 63,000 segments of F-actin segments into six

classes of structure, including a “tilted state” encompassing 24% of the samples where

the nucleotide cleft is open and correlated to D-loop conformations. The D-loop is

thus named an “allosteric switch.” See Figure 1.10 for states.

It is with these advancements of resolving actin structures that we are able to further

our knowledge of cofilin and other actin-binding proteins. At the time when the

work in this dissertation was performed, the Oda 2009 filament model was the best

structure available and thus used as the basis of the model we present here.
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1.2 ADF/Cofilin Proteins

Since the polymerizing and depolymerizing of actin filaments is so important to F-

actin function, proteins that regulate such a process are profoundly vital to cell func-

tion. There are a plethora of ABPs that do this, but in recent times, the family of

ADF/Cofilin Actin-Depolymerizing-Factor proteins have come to be credited

with more importance than initially thought, playing a significant role in pathways

and biosystems as an “agent of cellular homeostasis.” (Bamburg and Bernstein 2010)

The ADF/cofilin family, known as “Cofilin/tropomyosin-type actin-binding protein”

and identified as PF00241 in the PFam database (Finn et al. 2010), is part of the ADF

clan along with the gelsolin family. This family, with about 40% sequence identity,

consists of ADF, cofilin, destrin, actophorin, coactosin, depactin and glia maturation

factors (GMFs) beta and gamma. (Paavilainen et al. 2008) The defining characteristic

is it is made up of a domain, the ADF-H (ADF-Homology) domain, which is also

found in a more extensive protein family that includes three classes: ADF/cofilins

(made up of one domain), twinfilins (two tandem domains), and drebin/Abp1s (made

up of one ADF-H domain, a variable region and an SH3 domain). (Lappalainen et al.

1998)

Initially first found in porcine kidneys (Nishida et al. 1984), cofilin binds to actin

and enhances depolymerization at the pointed end, thus speeding activity.

It has been known to cause twisting in the filament when bound and can

sever mid-filament, thereby creating more pointed and barbed ends for

depolymerization and elongation. (Bamburg and Bernstein 2010) Porcine cofilin,

identical to human cofilin except there is S109 instead of Cys109, and at merely 21

kDa and 166 amino acids long, is a small unassuming protein. ADF, on the other

hand, was originally found in embryonic chick brains and unlike cofilin, does not have

a β-strand at the C-terminus. (Bernstein and Bamburg 1982)

ADF and cofilin proteins, both non-muscle isoforms, have been greatly compared in

their activity rates. (Yeoh et al. 2002) At saturating concentrations, both can bind

to actin stochiometrically at a 1:1 ratio at the same site, appearing to wedge

itself between two protomers near their lateral contact. Both lead to severing and

activation. Both show about the same affinity to G-actin as well as rates of association
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to the barbed and pointed ends. The main difference is that cofilin nucleates ADP-

actin into polymerization at a rate two times that of ADF, which already nucleates

ADP-actin twice that of ATP-actin. ADF also depolymerizes more at a pH of 8

than cofilin, but both have low depolymerization at a pH of 6.5. Yeoh et al. further

asserts that ADF has greater depolymerizing ability at the pH of 8 not from tighter

binding/severing/dissociation rates but because cofilin simply has a better balance of

polymerization and depolymerization kinetics. (Yeoh et al. 2002)

1.2.1 Other ADF Homology (ADF-H) Domain proteins

As the founding member, ADF/cofilin binds both G- and F-actin. In general, binding

to G-actin inhibits a spontaneous nucleotide exchange. (Carlier and Pantaloni 1997,

De la Cruz 2005, Andrianantoandro and Pollard 2006) In the case of F-actin, cofilin

induces a destabilizing structural change that leads to disassembly, especially in aged

filaments. (Okreglak and Drubin 2007) An exact molecular model for how the binding

occurs in F-actin remains to be debated upon. (Wriggers et al. 1998, Kamal et al.

2007, Paavilainen et al. 2008)

Taking a further step back, there is a sort of “modular structure” to the actin-

regulatory (i.e. binding) proteins in which the gelsolin family contain structurally

similar segments that bind to G- or F-actin. (Puius et al. 1998) The gelsolin family

consist of proteins such gelsolin, severin, and villin, that may not share that much

sequence conservation with ADF/cofilin, but certainly look very structurally, when

superimposed. (Pollard et al. 1994) See Figure 1.6. See Figure 3.1 for more structural

alignments.

Yet another outlying set of proteins contain the WH2 domain, which shows some

similarity to the ADF-H domain. Indeed, the ADF/cofilin and gelsolin families, as

well as WH2 domain containing proteins, inhibit spontaneous nucleotide exchange in

actin monomers by putting SD2 and SD4 in a “closed” state—the exact mechanism

remains unknown. (Tellam 1986, Bamburg 1999, Hertzog et al. 2004, Paavilainen

et al. 2004, Paavilainen et al. 2008)
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1CNU
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1SVY
dictyostelium severin
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chicken villin

Figure 1.6: ADF-H Domain: Examples of differing ADF-H Domain proteins include human
cofilin, Acanthamoeba polyphaga actophorin, dictyostelium severin, and chicken villin. Note the a
common helix at the top of each protein that is consistently aligned.

1.2.2 Structure of Cofilin

Yeast cofilin was first crystallized by Fedorov et. al in the most updated structure,

PDB ID 1CFY. (Fedorov et al. 1997) Human cofilin (PDB ID 1Q8G) was resolved

later with NMR by Pope et al. (Pope et al. 2004) Many of the mutagenesis experi-

ments have been performed on yeast cofilin. See Figure 1.7 for structural comparison.

As seen in the figure, there are two extra loops in human (α2 and α3) that are not

found in yeast (yeast at G22K23 and E43T44) are in green cartoon representation.

GFP/RFP tags were placed in those yeast sites for tagging purposes and the E43T44

yielded a functional cofilin while the G22K23 lost function. (Lin et al. 2010)

Since we are more interested in human cofilin for egocentric human reasons (medical

and otherwise narcissistic ones), the work here will focus on a human model. With

both structures, we can easily structurally align human to yeast and interpolate known

experimental results to human cofilin. The protocol for this process will be discussed

in Chapter 3.

While much work has been done in this area, there is still no high-resolution structure

of cofilin bound to F-actin. The closest structure that shows how cofilin binds G-actin
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Figure 1.7: Human and Yeast Cofilin: Human (1Q8G) and yeast (1CFY) structures compared.
G-/F-sites are in red beads. F-sites are in blue beads. Extra loops found in human that are not
found in yeast (yeast at G22K23 and E43T44) are in green cartoon representation, in the back of
the protein. The right of the two loops, E43T44, (occluded) is where the insertion can take place
without loss-of-function consequences.

is the mouse twinfilin (C-terminal ADF-H domain) and G-actin crystal structur (PDB

ID 3DAW) which was only recently resolved. (Paavilainen et al. 2008) Though twin-

filin has high structural and some sequence homology with cofilin, it is nevertheless

a protein with different function and binding than cofilin. Since twinfillin consists

of tandem ADF-H domains (like two cofilins in a row), the N-terminal ADF-H caps

the barbed end of actin while the C-terminal ADF-H binds approximately at the

same site as ADF/Cofilin. (Paavilainen et al. 2007) Similarly to cofilin, twinfilin has

a high affinity to ADP-actin monomers and filament barbed ends which allows it to

prevent elongation. (Ojala et al. 2002, Helfer et al. 2006) However, glaringly different,

twinfilin has much weaker binding to F-actin and a less extent of disassembly than

ADF/cofilins (Paavilainen et al. 2008), thus making it a model that may not grant

sufficient understanding of the severing mechanism.
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1.3 Actin and Cofilin Interactions

To reiterate, cofilin preferentially binds ADP-actin and can bind both G- and F-actin.

When it binds F-actin, it can aid in depolymerization (perhaps by chaperoning ADP-

actin and lowering the critical concentration) or cause severing to occur mid-filament.

Cryo-EM images show a comparison between F-actin (bare filament) and F-actin

with cofilin bound stoichiometrically (fully decorated filament) in Figure 1.8. The

structural differences of these filaments will be discussed in Section 1.5.1.

Figure 1.8: Bare (F-actin) and Decorated (Cofilactin) Filament: Figure reprinted from
McGough et al. 1997.

1.3.1 Binding Surface

Mutagenesis Studies

The initial binding surface was found through systematic mutagenesis, prior to the

availability of a structure, by changing charged residues to alanine when two or more

were present in a sliding window of five residues. (Lappalainen et al. 1997) This is the

most thorough biochemical characterization study to date, laden with information.

Lapplalainen et. al. tested 20 mutants for their growth phenotype (wt, ts-, or lethal)
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and went on to characterized the temperature sensitive and lethal mutations with

G- and F-actin binding as well as depolymerization activities. (See Table 1.2) Of

those, five mutations are either F/G-sites that lethal to both G- and F-actin binding

(cof1-17, cof1-20 D123/E126, cof1-28 ∆N5) or F-sites that are lethal to only F-actin

binding (cof1-16 R80A/K82A, cof1-22 E134A/R135A/R138A). All these mutations

will be important for confirming a binding model. Also, N-terminus is conserved for

function and when the first five residues are deleted result in a lethal mutation, but

it is not the target of protein kinases.

A few other important important mutagenesis studies have been done on yeast and

porcine cofilin (Moriyama et al. 1992, Moriyama et al. 1996) that are also summarized

in Table 1.2. Select mutagenesis studies on human cofilin have suggested that the

N-terminus corresponds to G-site and C-terminus to the F-site. (Pope et al. 2000)

On the actin front, a systematic series of residues that affect cofilin binding have been

tested and found for actin. (Rodal et al. 1999) These lethal mutations may eliminate

binding, but the list cannot be assumed to be exhaustive since mutating actin is

difficult because changes on the monomer can affect folding or filament assembly,

actin mutagenesis effects on cofilin binding are not straight forward.

Cross-linking Studies

A number of cross-linking studies have been performed (e.g. Kudryashov et al. 2006,

Benchaar et al. 2007, Kamal et al. 2007, Mannherz et al. 2007, Grintsevich et al.

2008) but because disulfide bonds are artificially introduced, it is hard to decipher

how much credence to put into the binding interactions observed.

Mannherz et al.’s cross-linking and peptide array studies suggests that the G-actin

site should include residues: 34-44, 52-62, 136-143, 328-338, and 346-353.

Kamal et al.’s radiolytic oxidative protein footprinting and mass spectrometry sug-

gests that there is a hydrogen bond between H87 in actin and S89 in cofilin, but also

goes on to aggressively challenge models by other groups.
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Table 1.2: Data from Mutagenesis Studies
Mutation Binds

G-actin
Binds

F-actin
Depoly-
merizes

Severs Actin
turnover

Porcine cofilin, Moriyama and Yahara 2002
WT pH 8 (pH ≥ 7.5) + + ++ ++ ++
WT pH 7 (pH < 7) ++ ±

S120A pH 8 + ± + +
S120A pH 7 - ±
S94D pH 8 - ++ - ++
S94D pH 7 - +
∆N5 7/8 + ± - ±

Porcine cofilin, Moriyama et al. 1996
WT S3 (pH ≥ 7.5?) + + +

WT pS3 ( pH < 7.5?) - - -
S3D (like lo pH, pS3) - - -
S3A (like hi pH, wt) + + + +

Yeast cofilin, Lappalainen et al. 1997
WT +++ +++ +++

∆ 1-5 lethal (cof1-28) + + +
D10A, E11A ts- (cof1-5) +++ +++ ++/+++
D34A K36A E38A lethal

(cof1-9)
+++ +++ ++/+++

D68A E70A E72A lethal
(cof1-14)

nd ++ ++

R80A K82A lethal
(cof1-16)

++/+++ + +

R96A K98A lethal
(cof1-17)

+ + +

D123A E126A lethal
(cof1-20)

+ + +

E134A R125A R138A ts-
(cof1-22)

++/+++ ++ ++

Human Cofilin, Pope et al. 2000
K95Q/K96Q Yes No weak

K96Q Yes No
S3D/K96Q No No No
S3D pH 6.3 No No
S3D low salt Yes Yes, wt Yes,

probably
Induces

twist like wt

1.4 Regulation of Cofilin

Although the main goal is elucidate how cofilin interacts with F-actin, it is still

important to understand how cofilin is modulated, most often by interactions with

other proteins. There are already a number of great reviews that discuss this subject.
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(Bamburg et al. 1999, Ono 2003, Troys et al. 2008, Oser and Condeelis 2009, Bamburg

and Bernstein 2010)

1.4.1 On and Off: Ser3 Phosphorylation

In a proteolytic study of porcine cofilin, Ser3 was identified as the site of phos-

phorylation. (Moriyama et al. 1996) Cofilin with pSer3 is unable to bind to G- or

F-actin while Ser3 can. The S3D mutation emulates the behavior of pS3 while S3A

behaves like wild type cofilin. The mutations S2A/S4D and S2D/S4D in yeast cofilin

are also lethal to binding, indicating that bulk in either Serine at the N-terminus

impairs binding. (See Table 1.2.)

Clearly, a site that can deactivate cofilin is a key regulatory switch and other proteins

can capitalize on their signal pathways. In fact there are growth factors that can

activate multiple pathways to promote phosphorylation or dephosphorylation; this

activation of cofilin can ultimately affect cell morphology and neuronal outgrowth.

(Meberg et al. 1998)

Deactivation of Cofilin

LIM Kinase 1 (LIMK1) can inactivate cofilin by directly phosphorylating Ser3.

(Arber et al. 1998, Yang et al. 1998, Bernard 2007) LIMK2 also has the same behavior,

but mice without both LIM kinases are healthy and fertile even though they cannot

phosphorylate ADF/cofilin—perhaps TES kinase (TESK) compensates. (Meng et al.

2004) Even further upstream of regulation is the Rho family of GTPases, also kinases,

which can activate LIM kinase. (Kuhn et al. 2000)

Activation of Cofilin

There are also proteins that can activate cofilin through dephosphorylation such as,

slingshot and chronophin. (Bamburg and Bernstein 2010) While dephosphorylation is

the key to cofilin activation, PIP2 also needs to dissociate, if it is bound. (Song et al.
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2006, Yonezawa et al. 1990, Ojala et al. 2001, Gorbatyuk et al. 2006, van Rheenen

et al. 2007)

1.4.2 When to throw the switch? pH Regulation

Environmental pH is another way to control cofilin, perhaps again having to do with

phosphorylation, although there is a chick ADF mutant that cannot be phosphory-

lated but is still pH dependent so that remains to be clarified. (Agnew et al. 1995)

It was first found in porcine cofilin that at high pH (>7.3), depolymerization

occurred at a higher rate than low pH, even when there was an excess concen-

tration of cofilin. (Yonezawa et al. 1985) Most ADF/cofilin (including human cofilin

and human ADF) are pH sensitive, although Acanthamoeba actophorin (a member of

the ADF/cofilin family) is pH insensitive. (Hawkins et al. 1993, Maciver et al. 1998,

Chen et al. 2004). In wounded fibroblasts, the pH needs to be increased for actin

dynamics to occur for healing. (Bernstein et al. 2000) In many cases, this pH regula-

tion makes sense because there is significant pH change near the plasma membrane,

where filament restructuring often occurs. (Bernstein et al. 2000)

Regulation by pH has been greatly studied in ADF, which is similar enough to cofilin.

ADF is more sensitive than cofilin to pH shifts, with comparatively less binding

at pH <7.1. (Hawkins et al. 1993, Hayden et al. 1993) When increasing the pH,

ADF preferentially co-localizes with G-actin, more than F-actin, which encourages

depolymerization. Cofilin, on the other hand, does not co-localize with G-actin and

is only comparatively weakly enhanced by increasing pH. (Bernstein et al. 2000) See

Figure 1.9

ADP- vs ATP-actin and phosphate release

As mentioned earlier, cofilin binds preferentially to ADP-actin (i.e. older portions of

a filament or monomers not yet ready for polymerization) over ATP-actin (i.e. newer

parts of the filament). Inorganic phosphate (Pi) stabilizes SD2 in F-actin but cofilin

increases disorder and accelerates treadmilling. (Galkin et al. 2003) Pi also lowers the

rate of cofilin binding at physiological Pi concentrations, especially at low pH (6.5);
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pH Regulation

pH ~ 7.3 

Ser3 
(like S3A)

pSer3
(or S3E,S3D)

(+)(-)

X
LIMK1

slingshot/
chronophin

Figure 1.9: pH Regulation

cofilin in turn induces a conformation change to SD2 thereby reducing the Pi’s affinity

to actin’s nucleotide cleft. (Muhlrad et al. 2006) Indeed, cofilin depolymerization

occurs at high pH perhaps because phosphate (Pi) release is also pH dependent.

(Pavlov et al. 2006) This seems like a double check in the case of pH sensitive cofilin

since low pH conditions imply Ser3 would be phosphorylated and less likely to bind

F-actin anyway. Also, cofilin bound ADP-actin should not spontaneously bind Pi and

become ATP-actin again since its fate is either to be severed or depolymerized.

His133

Deprotonating His133 was assumed to be required to activate cofilin. (Pope et al.

2004) In an in vivo study by Frantz et al., both human H133A cofilin and pH insensi-

tive actophorin are able to restore the first phase of actin free barbed ends in fibrob-

lasts that lack H+ efflux by the Na-H exchanger (NHE1) but S3A cannot. (Frantz

et al. 2008) In the mutant H133A, human cofilin remains pH sensitive in NMR

spectra and severing in vivo. Frantz et al. also found that PIP2 inhibits cofilin

activity by binding, with decreased binding at higher pH (7.5 vs 6.5) but is pH insen-

sitive for H133A. They claim through their MD that the salt bridge between H133

and D98 observed by Pope et al. 2004 weakens at high pH.
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1.4.3 Oxidative Stress/Oxidation

Reactive oxygen species (ROS) can induce oxidative stress on cells and potentially

exacerbate cancer. Oxidants include taurine chloramine (TnCl) and hydrogen perox-

ide (H2O2), for example. When cofilin is oxidized, it forms intramolecular disulfide

bonds and dephosphorylates pS3, rendering it into a form that can bind F-actin

but cannot depolymerize F-actin; as follows, T-cells that are under oxidatively

stress cannot modulate F-actin in response to chemotaxis or co-stimulation. (Klemke

et al. 2008) In a series of mutations in human cofilin (C39G, C80G, C139G, C147G),

Klemke et al. finds that C39 and C80 are critical to regulation and function because

they can only be weakly or not at all phosophorylated, respectively, nor do they have

the same migrating pattern as a wild type cofilin in a non-reducing SDS-PAGE. The

results have to be taken with a grain of salt because they are in vitro experiments

that look at conformation via gel assays.

Klamt et al. furthers the work and creates Cys to Ala mutations at all four cysteine

sites (as mentioned in Klemke et al. 2008) and finds that oxidations of every Cys is

required to make cells apoptotic. This comes from the observation that when oxidized

cofilin at the Cys residues along with dephosphorylation of Ser3 loses its affinity for

actin, it translocates to mitocondria where it mediates the opening of permeability

transition pore (PTP) thereby induces swelling and cytochrome C release—this causes

apoptosis.

Self Association—Cofilin Oligomers

When oxidized, cofilin can also self associate but in its dimerized state, it can nei-

ther depolymerize nor sever. (Bamburg and Bernstein 2010) There are a number

of agents that instigate this reaction (in vitro), such as water-soluble carbodiimide,

Ellman’s reagent, or glutathione disulfide, which induces disulfide bond formation,

but can be reversed with dithiothreitol. (Pfannstiel et al. 2001) While single cofilin

encourages severing, oligomerized cofilin induce highly ordered actin bundles to form,

which are groups of ADF/cofilin bound actin filaments, in oxidative stress. Pfannstiel

et al. further proposes that oligomers are stabilized by high cofilin concentrations and

PIP2—not by disulfide bonds. (Pfannstiel et al. 2001)
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1.5 Cofilin’s Effects on F-actin

An even more exhaustive discussion of cofilin interactions and it’s ramifications would

be a great academic exercise, but unfortunately might continue indefinitely, given its

invasion of neurobiology. Instead, the previously discussed molecular details may be

sufficient to understand the original goal of understanding the mechanics involved

when cofilin severs F-actin.

1.5.1 Twist and Destabilization

In a bare actin filament, two values are necessary for a transformation matrix to turn

the coordinates of one monomer into a perfectly symmetrical filament. In the case of

Oda et al.’s bare filament, the single monomer from PDBID 2ZWH only needs to be

translated 27.59 Å up (towards the pointed end) and -166.4◦ around the z-axis. This

rotation around the axis is the angle of twist. (Oda et al. 2009)

One of the first seminal papers on the observation of yeast cofilin inducing twist, in

a stoichiometric fully decorated filament, was done by McGough et al. using electron

cryomicroscopy and helical reconstruction, finding that cofilin binds cooperatively

with maximum binding of 1.16 cofilin and Hill constant of 6.4. A fully decorated

filament is stabilized by the cofilin and has a mean twist of 162◦, which is approxi-

mately a decrease of over 4◦ from a bare filament, as well as shorter long-pitch helix,

increased diameter, and the loss of the phalloidin binding site. (McGough et al. 1997)

The angle of twist is also 162◦ for ADF-saturated actin. (Galkin et al. 2001) A fully

decorated filament is squatter/fatter and more twisted than a bare one, as seen in

Figure 1.8. This is like an over twisted Slinky. See Table 1.3 for a summary.

Table 1.3: Filament TwistData:
from † Hanson et. al. 1967, ∗ McGough et al. 1997, ∓ Fujii et al. 2010

Rotation between
monomers

Subunits per turn Crossover length
( Å)

Bare 166.4◦∓ 2.160∗ 385-358†
Decorated 162◦∗ 2.222∗ 269∗

Mixed (bare) 371∗
Mixed (decorated) 278∗
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1.5.2 Structural Effects

Examining the contacts has provided some insight into the the affects of cofilin bind-

ing and has been done by a number of groups for the case of fully decorated filaments.

The lateral contacts between protomers have been shown to be disrupted. (Mc-

Gough and Chiu 1999, Bobkov et al. 2004) The hydrophobic plug, which bridges the

protomers across opposite strands, is the site of a S265C to C374 crosslinking that

occurs in the filament but is inhibited by cofilin. (Bobkov et al. 2004)

Longitudinal contacts are also weakened upon cofilin binding. (Galkin et al. 2003,

Bobkov et al. 2002) Yet again through cross-linking and FRET studies, Bobkov et al.

shows that cofilin changes the structure of the SD1 and SD2 interface of two protomers

when the DNase I loop shifts away from the adjacent SD1 and Q41C (in the D-loop)

cross-links to C372 (of the H-loop) instead and effectively weakens the longitudinal

contact. EM studies show that the contacts become weak because SD2 and D-loop

simply have a conformational change, which is more extreme on the pointed than the

barbed end (Galkin et al. 2003), where there is more depolymerization.

At high pH, a condition for severing, ADF has the ability to induce a 12◦ tilt–

a change within each protomer subunit with respect to the filament–and that may

cause breakage in longitudinal contacts. (Galkin et al. 2001) Orlova et al. finds that

after making three types of unstable filaments (either from forcing a disulfide bond

between the H-loop and to the subunit, putting a TMR label on the C-terminus of

actin, or examining very newly formed filaments) induces the same “tilted state”

observed in ADF/cofilin decorated actin filaments. There are even different tilted

states in which SD2 does not interact with SD1 in the upstream protomer (towards

the the pointed end) and instead interacts with SD3; the other less common state is

where SD4 interacts with SD1 on the opposite strand. (Orlova et al. 2004)

Destabilization happens at the older, ADP-actin, pointed end, as expected (Galkin

et al. 2003, Orlova et al. 2004), but it seems that new polymerizing filaments also

shrink more at the barbed ends (1.8/s) than older filaments that have become stable

at the pointed ends ( 0.1/s) in vitro. (Kueh et al. 2008) Cofilin on aged filament

accelerate the shrinking to 5.9/s (Kueh et al. 2008) and perhaps halts the process of
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changing disordered new filaments into stable ones in a “time reversal” (Orlova et al.

2004).

Indeed, the D-loop seems to be key to stability. Although the function of cofilin is

to twist and sever, ADF (and presumably cofilin as well) stabilizes certain “helical

variations” in F-actin. (Galkin et al. 2001) Paavilainen et al. proposes that the

D-loop does not contribute to actual contacts but does rearrange when the ADF-

H domain (of twinfilin in their case) binds and weakens the inter-filament contacts.

The hydrophobic loop (residues 262-274), which is important for filament growth and

stability, weakens due to this D-loop change. (Paavilainen et al. 2008)

In the recent F-actin polymorphism paper (Galkin et al. 2010) and from personal

discussion, the author claims that filaments must first twist into a conformation where

the D-loop is disordered (mode 4 or 5 in Figure 1.10) before cofilin can bind. Since

EM images are not of high enough resolution, this proposal is still a proposal and not

fact. In Chapter 5, this will be further explored.
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 dynamics of the filament, or nucleation by 
gelsolin11. The advances that we describe 
result from improved resolution as well as 
improved means of separating heterogene-
ous structures into classes. We suggest that 
the number of mutations in the human ACTA1 gene that cause  
disease is related to the structural dynamics of the actin filament.

RESULTS
Frozen-hydrated actin filaments have structural heterogeneity
Electron cryomicrographs of F-actin were recorded using standard  
methods (Supplementary Fig. 1a). Short segments (containing  
~17 actin subunits) were treated as single particles, and the iterative 
helical real-space reconstruction (IHRSR) method that does not require 
averaging over long filament lengths33 was used. There is no relation-
ship between the length of the segments that we used (~17 subunits) 
and the length of the pseudorepeat of an actin filament (~13 subunits), 
as the single-particle approach to helical reconstruction only requires 
that the segments contain multiple subunits. The 63,288 segments were 
divided into six classes based on a multireference approach.

A tilted state of the subunit, called T-mode (Fig. 1a), accounted 
for 24% of all segments. The cryo-EM reconstruction of T-mode 
is consistent with our earlier observations from negatively stained 
F-actin13 indicating that in this mode, SD2 of the lower protomer 
makes an extensive contact with SD3 of the protomer above it  
(Fig. 1a, cyan arrow), whereas the interaction of SD4 of the lower 
protomer with SD3 of the upper actin subunit weakens compared to 
that of ‘canonical’ F-actin (Fig. 1a, green arrow). In the tilted state, 
the nucleotide-binding cleft is open (Fig. 1a, red asterisk) because of 
the rotation around the hinge region of the two domains of actin by 
~30°, accompanied by a shift apart of these domains by ~10 Å. The 
top and the side helix of SD4 in the tilted reconstruction (filtered to 
16 Å) (Fig. 1a, blue and red arrows, respectively) stick out of the map 
suggesting structural variability of SD4. In contrast, SD1 yields an 
excellent fit at this resolution. The small number of segments in this 
class (n = 15,218) prevented us from carrying out further refinement 
of the structural details of the tilted state.

The remaining segments (n = 48,070) were sorted according to 
the structural state of SD2. X-ray crystallography has shown that the  
D loop, located at the top of SD2, can fold into a -strand5 or an -helix6 
 or be disordered34. We designed model volumes based upon crys-
tal structures and prior knowledge at lower resolution, which we 
then used in a cross-correlation analysis (see Online Methods, 
Supplementary Figs. 1–4 and Supplementary Video). We found five 
additional structural modes of F-actin (modes 1–5), and the corre-
sponding three-dimensional reconstructions are shown in Figure 1. 
In contrast to the tilted state, the resolution of the reconstructions 

for modes 1–4 was determined to be ~10 Å (Supplementary Fig. 1).  
In mode 5 the entire density for SD2 is missing, and the overall reso-
lution is poorer (~14 Å, Supplementary Fig. 1b). The resolution is 
sufficient to resolve the D loop in modes 1–3. In mode 1 the density 
of the D-loop portion of the map is most consistent with being in a 
loop conformation (Fig. 1a,b, blue ribbons), whereas in mode 2 the 
density is more compact and is fit better by a helix (Fig. 1a,b, cyan 
ribbons). This region has been observed as a helix in one crystal6. The 
fit as a helix is constrained by both the width and length of the density, 
given the need to fit the known protein chain. When the density is 
both thinner and longer, the region is modeled as a loop. An -helix 
cannot be extended to fit the longer density without the helix melt-
ing. In mode 3 the D loop is also helical (Fig. 1, mode 3, red ribbons) 
but is rotated toward the exterior of the filament by ~18° (Fig. 1c). 
In the fourth mode (Fig. 1a, mode 4, green ribbons), the D loop is 
disordered (Fig. 1a, mode 4, magenta arrowhead). Mode 5 (Fig. 1a, 
mode 5, yellow ribbons) is marked by the absence of density cor-
responding to SD2, showing that it must be substantially disordered 
(Fig. 1a, mode 5, magenta arrow).

At ~10 Å resolution the overall reconstruction yields an excellent 
match with the recently proposed atomic model of the actin fila-
ment11, except that the N terminus of actin is not visualized in our 
global averaged map (Supplementary Fig. 2).

The interface between the SD3 and SD4 is conserved
The atomic models of modes 1–4 of F-actin have similar SD3 
and SD4 conformations but are very different in the SD2 portion 
(Supplementary Fig. 5). This similarity results in a conserved 
interprotomer SD4-SD3 interface (both lateral and longitudinal) 
in these four modes. Because the resolution of the fifth mode is 
significantly worse than that of the other modes, it is hard to con-
clude whether this SD4–SD3 interface is different in mode 5. In 
addition to the longitudinal contact (Supplementary Fig. 5c), all 
modes possess two lateral contacts between the two actin strands 
(Supplementary Fig. 5d). One lateral contact is formed by residues 
110–115 and residues 191–199 from the two neighboring actin 
protomers across the strand (Supplementary Fig. 5d, blue and 
yellow ribbons). The other lateral contact is formed by the hydro-
phobic plug (Supplementary Fig. 5d, residues 263–273, in cyan) 
forming a contact with residues 171–173 and 285–286 of the actin 
protomer above it on the opposite strand (Supplementary Fig. 5d, 
red and black ribbons, respectively) and residues 201–203 of the 

T-mode

a

b c
Mode 1

z
z

Mode 2

90°
90°

~18°

Mode 3 Mode 4 Mode 5

Figure 1 Six structural modes of actin found 
in frozen-hydrated actin filaments. (a) Three-
dimensional reconstructions of six structural 
modes are shown as gray transparent surfaces, 
with the corresponding atomic models 
derived using a flexible fitting procedure 
(Supplementary Methods) shown as ribbons. 
The absence of the D loop (magenta ribbons in 
mode 4) and SD2 (magenta ribbons in mode 5) 
are marked with magenta arrowhead and 
magenta arrow, respectively. (b) The fold of the  
D loop is a loop in mode 1, but a helix in mode 2 
(black arrowheads). (c) Mode 3 has the D loop 
as a helix, which is rotated by ~18° from its 
position in mode 2 (black arrow).

Figure 1.10: F-actin’s Conformational States: (a.) Cryomicroscopy show F-actin in six main
structural states. These “polymorphisms” are 10 Å and show that SD2 can be disordered and was
not even resolved in some of the mode states. (b.) The D-loop can be a loop (mode 1) or helix
(mode 2). Figure reprinted from Galkin et al. 2010.

In studies that examine mechanical properties, cofilin also affects bending stiffness

of actin. In bare actin, the persistence length is 9.8 µm and the flexural rigidity is
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0.040 pN µm2, but a cofilin decorated filament has a persistence length of 2.2 µm

and flexural rigidity of 0.091 pN µm2. (McCullough et al. 2008) Saturating cofilin

causes the filament to be more flexible, in addition to its over-twisting characteristic.

From this, the authors propose that cofilin weakens and stabilizes subunit interactions

and increases flexibility, inducing change in SD2’s structure leads to “mechanical

asymmetry.” (McCullough et al. 2008)

Through numerical and analytical experiments, De la Cruz et al. have found that

there is a strong twist-bend coupling that the interconversion of energy and stress

between bending and twist is essentially conserved. In their mesoscopic model of

F-actin, 60% of elastic energy comes from this bend-twist coupling and is due to the

double protofilament, helical structure. (De la Cruz et al. 2010) This implies that

cofilin increases twisting and thus increases bending, or vice versa.

1.5.3 Concentration Modulation

The concentration of cofilin greatly changes how it affects actin. The amount of cofilin

in a system can make the difference in disassembly, stability, and even disease (as will

be discussed in Section 1.7). Whereas the previous section was under the assumption

of saturating concentrations, this section discusses the implications of how varying

concentrations implies modulating cofilin-actin activity.

At high concentrations of cofilin, actin severs rapidly but it quickly stabilizes in a

twisted form. (Bamburg and Bernstein 2010) Saturated filaments are not only stable,

but can nucleate and elongate filaments especially when monomers are already bound

to cofilin. (Yeoh et al. 2002, Chen et al. 2004, Andrianantoandro and Pollard 2006)

Crosslinking studies have shown the L180C/L269C/C374 mutant, which crosslinks

the H-loop to SD3/SD4 region, inhibits nucleation and elongation (Shvetsov et al.

2008), although one should be wary of the such forced pinning.

Differential scanning calorimetric (DSC) studies have shown that it is actually the

actin to cofilin ratio that determines stability of the filament. At sub-saturating con-

centrations (i.e. 100:1), F-actin is significantly destabilized, but at saturating con-

centrations (i.e. 1:1), F-actin is “thermally stable”—cofilin stabilizes the protomers
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it is directly bound to but destabilizes parts of the filament that it does not contact.

(Dedova et al. 2004)

Severing and Cooperativity

Severing is most efficient at <1 µM by porcine cofilin (Moriyama and Yahara 1999,

Moriyama and Yahara 2002) and 10 nM by S. pombe cofilin (Andrianantoandro and

Pollard 2006) which is below Kd, confirming that its performance is best when few

cofilin are bound (De la Cruz 2005). Pavlov et al. proposes that cofilin severs using

allosteric and cooperative destabilization by restricting flexibility in cofilin-unstable

regions. (Pavlov et al. 2007)

Since cofilin phosphorylation and Pi binding is pH dependent, it is reasonable to say

that cofilin’s ability to sever is as well. Cofilin binding is pH sensitive (occurring at

a rate 2 to 3 times faster at pH 6.8 than pH 8.0) and depolymerization occurs at a

higher rate at high pH, but in the case of severing, yeast cofilin is actually pH

independent. (Pavlov et al. 2006) However, yeast twinfilin induces filament severing

at low pH. (Moseley et al. 2006)

Cooperativity is a very important aspect of cofilin binding. Cofilin’s cooperative

binding and Arp2/3’s subsequent decreased affinity for filaments results in debranch-

ing, where cofilin directly competes with Arp2/3 even in lower cofilin concentrations.

(Chan et al. 2009)

Building on previous studies (e.g. De la Cruz 2005, Andrianantoandro and Pollard

2006), De la Cruz and Sept propose a one-dimensional Ising model that describes the

cooperativity kinetics. On a bare filament, cofilin activity is high in binding. When

filaments age (or dephosphorylate) and cofilin bind cooperatively in patches, at a

certain concentration when there are the maximum number of boundaries between

decorated and bare regions, the conditions are prime for severing. When cofilin sat-

urate all sites, severing ceases and the filaments are stable. But over a longer period

of time when cofilin dissociate, the number of boundaries begin to increase again and

the conditions tip toward severing again. (De la Cruz and Sept 2010) See Figure 1.11.

Finally, De la Cruz details how cofilin may sever actin filaments. (De la Cruz 2009)
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occur due to the prolonged presence and number of bound-
aries. Intermediate levels of cofilin activation will generate
severing during both association and dissociation phases.
This model explains how cofilin severing activity can
contribute to filament assembly and disassembly both at
the leading edge (33) and the lamella (35).
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Figure 1.11: Model of Cofilin Binding and Severing: Reprinted from De la Cruz and Sept
2010, Elsevier.

1.6 Previous Modeling

There have been a few computational models that have tried to make sense of the

vast data of cofilin twist and severing activity. As mentioned before there is the Ising

model of kinetics (De la Cruz and Sept 2010) and the twist-bend coupling model (De

la Cruz et al. 2010) along with De La Cruz’s other work in process that describe

decorated and bare boundaries. Pfaendtner et al. simulate a periodic native/bare

(with a twist of 166◦ or 36 nm helical repeat) and decorated/cofilactin (with a twist

of 163◦ or 30 nm helical repeat) filament and find that lateral contacts of the H-loop

are disrupted in cofilin binding and that the D-loop reorganizes. (Pfaendtner et al.

2010) Unfortunately, due to the periodicity nature of the model, the bending and

twisting would not be readily captured.

1.7 Medical Significance: Alzheimer’s Disease, etc.

Cofilin has moved into the limelight as its significance to diseases have become more

apparent—it is not merely an “academic exercise” to study this protein. There are
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implications that it has an effect on inherited cancers, Carney syndrome (cardiac tu-

mors), HIV-1 infections, CD4 T-cells, and most notably, Alzheimer’s disease. (Bam-

burg and Bernstein 2010)

As always, there is such thing as too much of a good thing. When filaments are satu-

rated with ADF/coflin, the decorated filaments bundle into large rod structures (often

discussed in the neurobiology), which can occur with overactive cofilin, often caused

by mediators of neurodegeneration. (Minamide et al. 2000, Bernstein et al. 2006)

These rods disrupt microtubules and axonal transport. (Bernstein et al. 2006) Rods

can form in axons and dendrites of stressed neurons and can cause synaptic dysfunc-

tion and eventrually cognitive impairments, such as Alzheimer’s Disease. (Minamide

et al. 2000, Minamide et al. 2010) Moreover, mitochondria in proximity to rods also

malfunction which leads to neurite degeneration. (Bernstein et al. 2006)

When ADF/cofilin are overly active (e.g. in their dephosphorylated state) and in

high concentrations, they lead to an accumulation of fully decorated actin filaments,

or rods, many times stimulated by existing neuronal degenerating conditions (e.g.

oxidative stress, ischemia, or β−amyloid peptides). (Bamburg et al. 2010) These

rods or bundles have been described with great detail in a recent review on their

influence in neuronal dysfunction and degeneration. (Bamburg et al. 2010)

Soluble Aβ 1−42 amyloid peptides, the culprit of Alzheimer’s that aggregates as

plagues in brains and causes cognitive defects, induce rod formation because of its

affects cdc42, which is an upstream regulator of cofilin. (Davis et al. 2009) Also, with

cellular stress or oxidative (i.e. Alzheimer’s), there is a decline of ATP and since cofilin

binds to ADP-actin well, it fully decorates the filament, resulting in rod development.

(Minamide et al. 2000, Maloney et al. 2005, Davis et al. 2009) Cofilin may also affect

the brain in that rods with activated ADF/cofilin can recruit phosphorylated MAPs

(micro-tubule-associated proteins); during mitochondrial inhibition these rods and

inclusions containing hyper-phosphorylated MAP/tau accumulate and imitate neu-

rophil threads, eventually leading to disease progression and more neurodegeneration.

(Whiteman et al. 2009)

Rod formation is not only a player in Alzheimer’s, this event has repercussions in

Huntington’s Disease when huntingtin proteins are unable to clean out the abundant

rods in heat-shocked neuronal cells. (Bernstein et al. 2006)
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While this discussion of medical implications just skims the surface, it is apparent

how important cofilin can be to other pathways with which actin has interaction.

Rod formation happens under stress and occurs early on during neurodegeneration,

making the cofilin and actin interaction a recently identified hot therapeutic target.

(Bamburg et al. 2010)
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1.8 Synopsis of Thesis

With previous ground work laid out, I can now address the three questions I have

sought out to answer about cofilin and F-actin interactions.

1.8.1 Specific Goals

The work in this thesis can be summarized in the following three goals, which comprise

Chapters 3, 4, and 5 respectively:

• Part 1: Structural binding model of cofilin and F-actin: How does

cofilin structurally bind to F-actin?

Here, we use sequence alignments, homology modeling, and docking techniques

to propose a model as to how cofilin binds actin because of the lack of structure

data.

• Part 2: Short-ranged dynamics of cofilin-bound actin filaments: What

are the important domains that affect binding or mechanics?

To answer this question, we build different filament models so that we may

use all atom molecular dynamics (AA MD) to gain insight into the molecular

interactions.

• Part 3: Long-ranged dynamics of cofilin-bound actin filaments: What

are the long ranged behaviors (e.g. twist, bend, persistence length) of filaments

with cofilin bound at varying concentrations and what are the characteristics

that may induce severing?

To make finding the dynamics of this large filament system into a more sur-

mountable task, we use coarse graining techniques. With access to longer time

scales, we can tease out interesting characteristics like twist that may contribute

to severing.
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Chapter 2

Computational Methods

This chapter outlines some of the computational methods we use in this work. First

we will discuss Molecular Docking strategies that can be used, although we only use a

subset of them to accomplish the goals we put forth. Molecular Dynamics is also very

important, but will not be covered in this dissertation. Please refer to Leach 2001,

Chapter 7 for an excellent review of the topic. There are many ways to accomplish

Coarse Graining of a model but the specific methods we use will be discussed at the

end of this chapter.

2.1 Molecular Docking

As difficult as it is to obtain structures for every protein we could possibly want,

getting the co-crystal structure of two bound proteins is often a greater challenge.

Since solving such bound structures may not always be experimentally possible, there

has been significant effort in the simulation community to predict them. The previous

sections covered protocols to obtain structures, whether from x-ray crystallography

or through ab initio prediction, and how to sample dynamics of these structures.

This section will show how to take these results and use them to predict bound

complexes with drugs, ligands or other proteins. As discussed before, the confidence

in binding models obtained from docking methods is only as good as the experimental

information we have a priori. The more information that is available (mutagenesis

data, sequence or structure conservation, etc.) the more reliable docking simulations

will be.
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2.1.1 Basic components

While an end-user of various tools available for docking does not have to understand

the minutiae of all the algorithms under the hood, it is still important to appreciate

some details so as to know which software is suitable for different situations. Every

docking program has two essential components: a search algorithm and an energy

scoring function. (Leach 2001) The details and interdependence of these two compo-

nents varies greatly among the different pieces of software and some of these details

are discussed below. The issue of search space deals with sampling the different pos-

sible orientations, or poses, that the macromolecule and ligand can bind. In rigid

docking, where the internal coordinates of the macro and ligand are held static, there

are six relative degrees of freedom for two molecules: three translational and three

rotational degrees of freedom. This can lead to hundreds of thousands or millions

of possibilities, depending on the size of molecules, but this problem is further com-

pounded in the case of flexible docking. Once bonds are allowed to rotate and side

chain or backbone conformations are explored, the size of the search space increases

exponentially. There are many different search algorithms, ranging from brute-force

conformational searches or more effective and efficient stochastic-based algorithms. In

general, better sampling of the different possible poses will lead to a higher probability

of finding the correct binding structure.

With so many poses generated from the search step, we need a system to rank them

according to their likelihood of being the binding answer(s), whether it be by energet-

ics, binding affinity, or some other metric. Scoring functions (Jain 2006) to evaluate

these structures must not only be accurate in calculating the energy of a pose, but also

efficient to rank a large number of structures in a timely matter. The binding score or

energy resulting from various scoring functions can be based on first principles (like

molecular mechanics force fields), empirical data (functions fitted to experimental

data), semi-empirical (a combination of the two), or knowledge based (statistics and

heuristics). There are programs that show good performance, although they may be

optimized to the selected benchmarks and may only prove to make good predictions

for systems for which they are parameterized. (Huang et al. 2006) Since the difficul-

ties in predicting absolute binding energies are great, it is often more desirable and

effective to predict the correct relative affinities of a group of compounds.
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In reality, the entire procedure to generate a single docked complex needs to be

repeated tens, hundreds or thousands of time. To analyze this large ensemble of

predictions, many protocols use cluster analysis, looking for structures that are re-

peatedly predicted as a measure of confidence. Of course, any result needs to be

compared to known experimental data as a sanity check. Additional analysis would

be recommended, as well as further experimental validation in an iterative cycle to

improve any docked model.

2.1.2 Choosing the correct tool

The first step is to select the appropriate docking software for the system of interest.

Some programs are parameterized for specific kinds of protein structures or particular

ligands (such as only small molecules), while others are more widely applicable. At the

same time, some programs are free for academic use, while others charge a nominal

or substantial fee, even for academic use. Unfortunately it is not possible in this

limited space to provide details on each software package and the user will need to

investigate each package on an individual basis. Table 1 contains a list of software and

web addresses, but some of the more widely used packages are: AutoDock (Goodsell

and Olson 1990), FlexX (Rarey et al. 1995), GLIDE (Friesner et al. 2004; Halgren

et al. 2004), GOLD (Jones et al. 1995), HADDOCK (Dominguez et al. 2003), and

RosettaDock (Schueler-Furman et al. 2005b,a).

Although every software package will claim to have certain advantages, the best

method in assessing their quality is in head-to-head comparisons, hopefully completed

by some independent third party. For small molecule docking, there have been several

published comparison published in recent years. (Leach et al. 2006, Cross et al. 2009,

Cummings et al. 2005, Sousa et al. 2006) In the case of protein-protein docking (Leach

et al. 2006, Bonvin 2006, Ritchie 2008, Vajda and Kozakov 2009), the best resource

for evaluating the most current docking methods is the results gathered from the bi-

annual Critical Assessment of PRedicted Interactions (CAPRI). (Lensink et al. 2007;

Mendez et al. 2005) Like the CASP competition for structure prediction, CAPRI

evaluates blind predictions of protein-protein interactions. In the latest round (of

which results were published in 1997), there is an additional component for assessing

scoring functions. Additionally, there are evaluation tests (Schulz-Gasch and Stahl
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2003, Tiwari et al. 2009, Warren et al. 2006) with decoy benchmarks (Huang et al.

2006, Irwin 2008) or evaluative reviews (Moitessier et al. 2008) that are released

whenever a new tool has been developed.

2.1.3 Preparing the molecules

The ligand of choice impacts how the search step should be carried out. In general,

docking protocol can be divided into protein-small molecule docking and protein-

protein. Each category will be covered in this section, where the smaller molecule (e.g.

drug) is defined as the ligand and the larger protein defined as the macromolecule.

Macromolecule

Regardless of the ligand, the macromolecule protein is usually dealt with in the same

way. The sheer size of a protein and the potential degrees of freedom usually means

that exhaustive sampling is not possible. Many programs have some limited sampling

capability, especially for the side chains through the use of rotamer libraries, but

they tend to not adequately sample backbone conformations. To facilitate whichever

program the reader uses, it can be very beneficial to sample an ensemble of structures

from a molecular dynamics or other type of simulation. Alternatively, if there is

NMR structure data, the ensemble of models can be used in independent docking

runs. In essence, a series of snapshots will give the docking search algorithms a

different starting structure from which to sample, and this may aid in a better holistic

representation of the conformational space.

Once a series of macromolecule structures are chosen, they need to be prepared for

docking. The details of this are specific to the program being used, however there

are several general considerations that need to be kept in mind. Just as with MD

simulations, these would include the protonation state of the protein and particular

residues, the proper treatment of any non-standard amino acids and post-translational

modifications, and the inclusion of any required ligands, nucleotides, ions, etc. If the

sites of these modifications is known or thought to be close to the binding site, these
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may be critical for success if they are more distal from the binding site, they may be

able to be ignored.

Less of a formatting issue and more of a technical one, the charge state of the macro-

molecule is very important and needs to be thoroughly considered as it is often the

driving force of many intermolecular interactions. Experimental information, such as

pH or salt dependency can help in deciding what a charge state of particular groups

should be. Some programs require an active hand in making this determination.

There may be other steps for preparing the macromolecule, such as defining flexible

regions and rotatable bonds, which are important to consider.

Small Molecule Ligands

Drugs and small peptides tend to have more limited degrees of freedom and can

therefore be treated in a more systematic approach. In short, the fewer the rotatable

bonds, the easier it is to sample completely. Depending on the software, docking

packages that allow the user to define fixed or rotatable bonds are usually sufficient,

although caution would still be advised to make sure if enough conformations are used

in docking and that they are not sterically hindered. Just as for the macromolecule,

the electrostatics on the ligand is very important in driving interactions, and if not

correctly represented, the results could be drastically affected.

Protein Ligands

Peptides with secondary structure and proteins being docked as ligands have a slightly

different treatment than drugs or small molecules. While certain parts may be locked

into helices or sheets and thus have somewhat restrictive motions, there could be

unstructured loops or more dynamic regions. Just as we saw before, it is not possible

to fully capture these degrees of freedom, and these protein ligands are treated in the

same fashion as the macromolecule. Again, if there is an NMR structure, those models

can be used or the ligand could be subjected to simulation studies. Ultimately, we

would ideally generate an ensemble of structures for the macromolecule and ligand

and perform docking for every combination of the two. As will be covered in the
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virtual screening section, some have found that combining methods to converge at

a docked model may be more necessary for protein-protein docking. (Vajda and

Kozakov 2009)

2.1.4 Iterative docking and analysis

With the ligand and macro prepared, we can begin the process of generating docked

models (see Figure 2.1). To find the best model, an iterative method is typically the

most successful approach. A general, first pass, docking may help to find a region on

the macromolecule where the ligand is most likely to interact. This is a blind run

docking, meaning that the macro and ligand are allowed to randomly pair with no

bias in any region. To save in time in this step, it is usually best to allow limited or

no flexibility.

Figure 2.1: The Standard Docking Protocol: Reprinted from Saxena et al. 2009, Elsevier.

The second step would be to cluster the results from the blind docking, grouping the

ligands based on location and examining their energetic, or ranking, score. Ideally

this would identify one particular area on the macromolecule, but if there are several

locations, a highly ranked representative structure of each cluster (or binding site)

can be used for finer docking runs. As always, the use of experimental data here is

crucial in determining probable sites as well as in corroborating the selection of the
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best model. Using these filtered results, we can perform refinement docking where

the ligand is restricted to a specified region based on the blind docking results. How

this restriction is imposed depends on the software being used, but most programs

possess this capability. There are often more fine grained tuning options for more

exact exploration, including side-chain sampling or repacking that allow for flexible

docking. (Bonvin 2006) The user should make use of these capabilities as appropriate.

2.1.5 Post analysis

If an iterative docking methodology is used, analysis needs to take place intermittently

to maximize docking success. Clustering coupled with score ranking is the most basic

analysis to find potential good poses. Particularly in the case of protein-protein

docking, the use of experimental data, such as mutagenesis data, may be required.

Such data can be used to filter out false positives and improve the overall results.

Also, although the search and scoring steps of most docking protocols are highly

intertwined, one can easily re-score a set of poses using a different scoring function

or functions. Some programs have multiple and easily manipulated scoring functions.

Although usually requiring extra effort, re-scoring aids in enriching the results and

converging at a consensus result with which other methods agree.

Virtual screening

So far the methods described here assume that the ligand to be docked is already

identified. In the case of drug discovery, the small molecule of interest that binds a

given target may be what we are trying to determine. In such cases, a whole gamut

of small molecule data bases (such as Available Chemicals Directory, ChemACX,

Maybridge Database, Zinc, NCI Diversity Set (Voigt et al. 2001), can be docked

against the target protein for screening purposes. This kind of virtual screening can

aid in narrowing down potential inhibitor candidates before vast resources are devoted

to testing them at the bench. High-throughput virtual screening is obviously very

popular with pharmaceutical companies since it would not only save money from

actual testing but also help in lead drug discovery. With 1,000-100,000 compounds in

each database, high-throughput methods are required to accomplish such screening in

35



a timely matter. Usually this simply means using multiple computer processors with

a reasonably fast docking tool and performing docking with a database of molecules.

Many times it is advantageous to use a combination of several docking software for

both the search and scoring algorithms in order to find a consensus subset of the best

docking small molecules. (Vajda and Kozakov 2009) While the details of this protocol

are out of the scope of this chapter, we list some literature to further elucidate virtual

screening. (Cross et al. 2009, Irwin 2008, Jain 2004, Kitchen et al. 2004, Kontoyianni

et al. 2008, Shoichet 2004, Zoete et al. 2009)

2.2 Coarse Grain Molecular Dynamics (CGMD)

There are many groups that have tried to develop coarse grain models, but Schul-

ten’s group implemented a rather robust version that comes ready-to-use in the

VMD/NAMD package (Humphrey et al. 1996, Nelson et al. 1996). The protocol

for a protein-lipid CG model, based on Marrink et. al.’s CG model for lipids (Mar-

rink and de Vries. . . 2004), is well documented on the websites:

(http:/www.ks.uiuc.edu/Research/CG/ and

http://www.ks.uiuc.edu/Research/vmd/plugins/cgtools/).

2.2.1 Shape-Based Coarse Graining: SBCG

In the case of SBCG, the user must determine the number of beads that will represent

the all-atom structure. The center of mass of whichever atoms are grouped together

becomes the site of the bead that represents them. The fewer beads used, the coarser

the representation. Each of these need to be parameterized and that requires an MD

simulation of the all-atom structure. The longer this all atom MD is, the better the

parameterization, assuming more conformations are represented. Like typical force

fields, a term for intramolecular interactions (bond length, angle, and di-hedrals) as

well as intermolecular interactions (van der Waals and Lennard-Jones potential) are

required. This has been done for a number of protein-lipid models. (Arkhipov et al.

2006, Freddolino et al. 2008)
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2.2.2 Residue-Based Coarse Graining: RBCG

RBCG, on the other hand, requires much less parameterization since we are using

values that have been tested in a number of simulations that include both proteins

and lipids. (Shih et al. 2006a, Shih et al. 2007) Residues are represented with two

beads: one for the back-bone and one for the side chain (or just one in the case of

Alanine).
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Chapter 3

The Interaction of Cofilin with the

Actin Filament

This chapter will describe the work in accomplishing all the goals in Part 1 and a

subset of the goals in Part 2. The first task is to determine how cofilin structurally

bind to F-actin and then find the contacts points and important sites that affect

binding or mechanics. Here, I give details of how to build a model to achieve this end

and present the results of molecular docking and dynamics studies using a muscle

actin filament and human cofilin I. Guided by extensive mutagenesis results as well

as other biophysical and structural studies, I arrived at a model for cofilin bound

to the actin filament. This predicted structure agrees very well with cryo-electron

microscopy results of cofilin-decorated filaments, provides molecular insight into how

the known F- and G-actin sites on cofilin interact with the filament, and also suggests

new interaction sites that may play a role in cofilin binding. The resulting model also

helps to understand the molecular function and regulation of cofilin and will provide

a starting point for larger scale simulation work.

3.1 Introduction

The regulation of actin polymerization is vital for cellular function, particularly in

processes such as cell division and migration where rapid reorganization of the cy-

toskeleton is required. Cofilin plays a key role in this regulation process. Cofilin was

first implicated for its function as a filament severing protein (Hawkins et al. 1993,

Hayden et al. 1993), but it has subsequently been shown to have a much broader
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physiological role (see (Bernstein and Bamburg 2010) for a recent review). In or-

der to understand the molecular function of this protein, the past two decades have

seen an extensive array of biochemical and genetic studies (Lappalainen et al. 1997,

Moriyama et al. 1992, Moriyama et al. 1996, Moriyama and Yahara 2002, Pope et al.

2000, Rodal et al. 1999), x-ray, NMR and cryo-EM structural work (Fedorov et al.

1997, McGough et al. 1997, Galkin et al. 2001, Pope et al. 2004), numerous biophys-

ical studies (Blanchoin and Pollard 1999, De la Cruz 2005, Andrianantoandro and

Pollard 2006, Grintsevich et al. 2008, McCullough et al. 2008, Michelot et al. 2007),

as well as computer simulation work (Pfaendtner et al. 2010, Wriggers et al. 1998,

Carlsson 2006, De la Cruz and Sept 2010, Frantz et al. 2008). Collectively, these

studies have given us critical pieces of information about the interaction of cofilin

with the actin filament.

One complicating factor in this system is that cofilin binds both to monomeric or G-

actin as well as polymerized actin filaments or F-actin. The generation of numerous

cofilin and actin mutations has provided molecular details on how these proteins

interact with each other. (Lappalainen et al. 1997, Moriyama et al. 1992, Moriyama

et al. 1996, Moriyama and Yahara 2002, Pope et al. 2000, Rodal et al. 1999) Through

these studies it has been determined that the G- and F-actin binding modes have some

common features; however there are some intrinsic differences and a number of amino

acids appear to only affect one of the two interactions. Along with this mutagenesis

work, structural studies have provided significant insight into the interaction of cofilin

with actin. Here again, cryo-EM work has characterized the filament interactions,

such as the twist induced by cofilin binding (McGough et al. 1997) as well as changes

in the orientation of the protomer (Galkin et al. 2001), and our knowledge of the

interaction with G-actin with cofilin is informed by co-crystal structures with two

ADF/cofilin homologs: gelsolin segment 1 (McLaughlin et al. 1993) and more recently,

twinfilin (Paavilainen et al. 2008). These structural data are invaluable, however we

still lack a detailed understanding of the direct molecular interactions between cofilin

and F-actin.

Here we present the results of molecular docking and molecular dynamics studies

aimed at deriving a molecular model for the cofilin/F-actin complex. Recent work

from Pfaendtner et al. (Pfaendtner et al. 2010) illustrated the utility of such types

of simulations in studying this system. Using the cofilactin structure derived from
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electron microscopy by Galkin et al. (Galkin et al. 2001), the authors simulated the

dynamics of the cofilin-bound filament and thus were able to gain insight into the

dynamics and mechanics of this system. The methods we employ in this work are

similar, however our objective here is very different, namely to derive an independent

structural model for the cofilin-bound filament that agrees with the biochemical and

structural data detailed above.

3.2 Methods

3.2.1 Secondary Structure Alignment

Multiple sequence alignments (MSA) using standard alignment tools do not account

for secondary or tertiary structure and this has been shown to lead to incorrect align-

ments for ADF/cofilin family proteins (Lin et al. 2010). Here, a secondary structure

MSA was built from a selection of relevant ADF/cofilin family proteins as well as ADF

Homology Domain (ADF-H) homologs. The VMD plugin tool, MultiSeq (Humphrey

et al. 1996), was used for the initial alignment of sequences. The structures used were

for human cofilin (PDB 1Q8G, also the seed structure), S. cerevisiae cofilin (PDB

1CFY), S. pombe cofilin (PDB 2I2Q), chicken cofilin (PDB 1TVJ), A. thaliana ADF

(PDB 1F7S), A. polyphaga actotrophin (PDB 1CNU), and human coactosin (PDB

1T3Y). Some minor manual corrections to the alignment were necessary particularly

at the anchor points near the loops (between human R21 to R32 as well as V57 to

D65), which would not be done correctly based on sequence alone. Porcine cofilin

was used in some mutagenesis work, but since there is no solved structure and it has

nearly 100% sequence identity with human cofilin (a single C108S substitution), we

did not include it in our alignment.

3.2.2 Docking and Refinement Simulations

In order to prepare for molecular docking studies, we first constructed an 8-protomer

actin filament using the recent model from Oda et al. (PDB 2ZWH) (Oda et al.

2009). The filament was simulated using molecular dynamics (MD) as detailed in the
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following section. A series of 6 filament structures were then extracted at 0, 5, 10, 15,

20 and 25 ns for use in docking studies. For cofilin, instead of performing additional

MD simulations, we were able to use 10 models from the NMR structure of human

cofilin I (PDB 1Q8G) (Pope et al. 2004).

Docking was carried out using RosettaDock (Gray et al. 2003). Each combination

of filament and cofilin structure was used resulting in 60 different pairs. An initial

unbiased docking was performed, where the cofilin was given full freedom to bind

anywhere along the actin filament. All bound complexes were ranked by their docking

score and their general correspondence to the cryo-EM structure of the decorated

filament, and the top 20 scoring models were chosen as the starting structures for

refinement dockings. In this next round of docking, more restrictive parameters (e.g.

allowing 10 Å translation, 30◦ rotation from the starting structure) were applied; the

top cofilin models that had the most buried surface area and the greatest number of

F- and G- sites (S3, K96/K98, K112/K114, C139/E142 and E151/K152) in contact

with the actin filament were chosen for each of the six binding sites along the filament.

The 25 ns filament snapshot had the best representation of these top binding models

and became the basis for our fully decorated filament.

(Note that the process of finding the best metric to find the best model was a very

involved process. An exhaustive search for correlations amongst Rosetta Energy,

RMSD, number of contact points, solvent accessible surface area, as well as calculated

energies were explored.)

In order to test the stability of the models, the fully decorated filament, with 6 cofilin

bound in 6 different binding models, was simulated using MD for more than 80 ns.

Using contact analysis and RMSD, two of the six models appeared to be more stable

than their counterparts and maintained better contact with the actin filament. These

two conformations ended up with very similar structures and contacts, and formed

the basis for the final model, and this structure was replicated at all six binding sites

on the filament. This new, decorated filament was used for analysis and further MD

simulation as detailed below.
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3.2.3 Molecular Dynamics Simulations

The bare and decorated filaments were simulated with all atom molecular dynam-

ics (MD). Simulations were performed in an isothermal-adiabatic (NpT) ensemble

with the CHARMM27 force field and TIP3P water model, under periodic boundary

conditions. Each actin protomer had ADP as the bound nucleotide. Bonded interac-

tions were computed every 2 fs using SHAKE, short-ranged non-bonded electrostatic

and van der Waals (with a 10 Å cutoff and smooth switching function beginning at

8.5 Å, and pair-list distance of 11.5 Å). Long-ranged, full electrostatic interactions

were computed every 4 fs with the Particle Mesh Ewald method with grid points at

least 1/ Å in each dimension. Using Langevin Dynamics, NpT conditions were main-

tained at 1 atm and temperature of 300 K with a damping coefficient of 1 ps−1 and

a Langevin piston oscillation period of 200 fs and decay of 100 fs for the production

run (200 fs and 500 fs respectively for both heating and equilibration). Following

minimization, the system was heated in 50 K steps with 40 ps per step and restraints

on the Cα atoms. At 300 K, the restraints were removed and the system was allowed

to equilibrate for approximately 1 ns before the production run was started.

3.3 Results

3.3.1 Secondary Structure Alignment

In order to correlate all of the published experimental mutagenesis results, our first

task was to generate an accurate alignment of the ADF/cofilin sequences. Structural

conservation within this family is high, although sequence conservation is variable de-

pending on which proteins are chosen (average of 32% across the sequences presented

here). There are many insertions and deletions that occur, and this presents real chal-

lenges for alignment methods that only consider sequence similarity. Structure-based

methods produce better sequence alignments in situations like this, but automated

methods that consider both structure and sequence still face difficulties (Kim and

Lee 2007). For this reason, we started with a sequence-based alignment and man-

ually adjusted the gaps based on secondary and tertiary structure. This method
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brings more regions of the proteins into register and we see a much higher degree of

correlation between the secondary structure and the individual mutagenesis results

(see Figure 3.2). Obviously the alignment of human and yeast cofilin is of primary

interest in this effort since these two systems formed the basis for the majority of

the mutagenesis work (Figure 3.3). The difficulties of aligning the yeast and human

cofilin sequences has been noted in the past (Lin et al. 2010). Our manually curated

alignment solves these ambiguities, and we now see proper alignment, for example,

between K22-R32/G58-D66 in human cofilin with the regions K23-K26/D47-S49 in

the yeast protein.

1Q8G

1T3Y1CNU

1F7S1TVJ

3DAW

1CFY 2I2Q

2W0I

Figure 3.1: Structural Alignment

3.3.2 Model for the Cofilin/F-actin Complex

As described in the Methods, we performed several iterations of molecular docking,

using both the mutagenesis results and the stability of the cofilin/F-actin complex

in MD simulations as a quality metric for a given model. The results can be seen in
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Table 3.1: PDB IDSs: PDB IDs and associated proteins.

PDBID Species protein
1Q8G human cofilin
1CFY S. cerevisiae (yeast) cofilin
2I2Q S. pombe (yeast) cofilin
1TVJ chicken cofilin
1F7S A. thaliana ADF
1CNU A. polyphaga actotrophin
1T3Y human coactosin
3DAW mouse twinfilin (C-ter)
2W0I human twinfilin (C-ter)

β-sheetα-helix

1Q8G
1CFY
2I2Q
1TVJ
1F7S
1CNU
1T3Y

1Q8G
1CFY
2I2Q
1TVJ
1F7S
1CNU
1T3Y

1Q8G
1CFY
2I2Q
1TVJ
1F7S
1CNU
1T3Y

1  
1
1
1
1
1
1

55
45
45
55
46
42
41

--MASGVAVS-DGVIKVFNDMKVRKSSTPEEVKKRKKAVLFCLS-EDKKNIILEEGKEI
-MSRSGVAVA-DESLTAFNDLKLGKK-------YKFILFGLN---DAKTEIVVK--ETS
-MSFSGVKVS-PECLEAFQELKLGKS-------LRYVVFKMN---DTKTEIVVE--KKS
--MASGVTVN-DEVIKVFNDMKVRKSSTPEEIKKRKKAVLFCLS-DDKKQIIVEEAKQI
MANASGMAVH-DDCKLRFLELKAKRT-------HRFIVYKIEEKQK---QVVVE--KVG
----SGIAVS-DDCVQKFNELKLGHQ-------HRYVTFKMN---ASNTEVVVE--HVG
---A--TKIDKEACRAAYNLVR-DDGSA-----VIWVTFKYD---G-S-TIVPG--EQG

56
46
46
56
47
43
42

112
96
94
112
97
92
88

LVGDVGQTVDDPYATFVKMLPDKDCRYALYDATYETKE--SKKEDLVFIFWAPESAPLK
-TDP------SYD-AFLEKLPENDCLYAIYDFEYEINGNEGKRSKIVFFTWSPDTAPVR
-TDK------DFD-TFLGDLPEKDCRYAIYDFEFNLGE--GVRNKIIFISWSPDVAPIK
LVGDIGDTVEDPYTAFVKLLPLNDCRYALYDATYETKE--SKKEDLVFIFWAPESAPLK
-QPIQ-----TYE-EFAACLPADECRYAIYDFDFVTAEN-CQKSKIFFIAWCPDIAKVR
-GPNA-----TYE-DFKSQLPERDCRYAIFDYEFQV-DG-GQRNKITFILWAPDSAPIK
--A-------EYQ-HFIQQCTDDVRLFAFVRFTT--GDAMSKRSKFALITWIGENVSGL

113
97
95
113
98
93
89

166
143
137
166
138
137
141

SKMIYASSKDAIKKKLTGIKHELQANC-Y-EEVKDRCTLAEKLGGSAVISLEGKPL-
SKMVYASSKDALRRALNGVSTDVQGTD-F-SEVS-YDSVLERVSRGAGSH-------
SKMVYSSSKDTLRRAFTGIGTDIQATDFSEVAYETVLEKVTRK--------------
SKMIYASSKDAIKKKFTGIKHEWQVNG-L-DDIKDRSTLGEKLGGNVVVSLEG-KPL
SKMIYASSKDRFKRELDGIQVELQATDPTEMDLDVFRSRAN----------------
SKMMYTSTKDSIKKKLVGIQVEVQATD-A-AEIS-EDAVSERAKKDVK---------
QRAKTGTDKTLVKEVVQNFAKEFVISD-R-KELE-EDFIKSELKKAGGANYDAQTE-

lethal/TS mutants potential mutantsWT mutants filament contact points

Figure 3.2: A structure-based sequence alignment for seven ADF/cofilin proteins
and homologs (see Methods for details on the sequences). Shaded regions of the sequences
indicated secondary structure elements and colored bars above the sequence denote regions of contact
in our model and the location of lethal mutations (red), mutations with a WT phenotype (green)
and novel mutations suggested by our model (blue) (see text for mutation references).

Figure 3.4. See Chapter 4 Results Section 4.3.1 for an explanation of analysis, but

briefly, two of the flanking actin protomers (i and i+2 ) to a cofilin are fitted for the

entire trajectory and the relative RMSD is calculated for the cofilin (or actin i+1 as

a baseline control). See Figure 3.7 for a diagram of this indexing. Four of the models
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Figure 3.3: A structural alignment of human cofilin (green) and yeast cofilin (orange).
The secondary structure elements discussed in the text are labeled and the locations of lethal point
mutations explained by our docking model are shown as blue spheres.

(Cofilin 2, 3, and 4) have relative RMSD values of greater than 1 nm (or 10 Å) which

suggests they are not tightly bound, although observing the trajectory would have

been insufficient to observe the subtle difference between bound and unbound. Two

of the binding models (Cofilin 5 and 6) show the lowest relative RMSD values (under

7 Å), not much greater than their actin counterparts; they also have the greatest

number of residues in contact. Not only are the relative RMSD values low but their

fluctuations are also low, like the actin controls. Cofilin 6 was used as the best docked

model for subsequent filament models. See Figure 3.4, purple line (Act6-8Cof6) for

Cofilin 6’s relative RMSD.

The final model showed very good interaction with the filament, appeared to maintain

its contacts with the filament when subjected to MD simulation, and the binding

interfaces explain mutations on both the cofilin and actin sides. Figure 3.5 shows

details of our cofilin/F-actin model where the binding surfaces have been highlighted

in yellow and mutations known to affect cofilin binding are shown in red. This model

was used as a template to produce a fully decorated cofilactin filament consisting of 8

actin protomers and 6 cofilin molecules. MD simulations were then performed using

this cofilactin model and we analyzed buried surface area as well as the statistics of

atomic contacts, salt bridges and hydrogen bonds formed during the course of the
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RMSD of Best Docked Models

Figure 3.4: Relative RMSD of Best Docked Models: Flanking actins (Actin i and Actin
i+2 ) are fitted with least squares and the RMSD of the bound Cofilin i or Actin i+1 on the opposing
side is calculated over the course of the trajectory. Note the low fluctuations for the opposing actin,
signifying consistent binding. Some cofilin show the same low fluctuations (as if bound) and others
do not (as if not bound well). Cofilin 6 appears to be the best model, with its lowest RMSD values
like that of the actin, and was thus used as the best docked model. All frames are sampled at 0.02
ns.

simulation. There is an average of about 700 Å2 of buried surface area per bound

cofilin as well as 4-5 salt bridges at any given point in the simulation. The molecular

details of these interactions will be discussed in more detail in the following section.

(The frequency of salt bridge contacts can be seen in Table 3.2.)

Our model complex obviously matches well with mutagenesis results since a subset

of these results were used to rank and filter our docked models, but it also is in very

good agreement with available structure information. Figure 3.6 shows a comparison

of our cofilin/F-actin complex with the cryo-EM structure from Galkin et al. (Galkin

et al. 2003) as well the twinfilin/G-actin crystal structure (Paavilainen et al. 2008).

In Figure 3.6a, the molecular model fits extremely well within the envelope of the EM

density map. It is also interesting that although complex with monomeric actin, the

twinfilin/G-actin complex also shows good correspondence with our docked model

when put in the context of the full filament (Figure 3.6b). There are some minor

clashes between twinfilin and the Actin-B protomer, but since this crystal is with

G-actin, this is perfectly understandable.
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Figure 3.5: Molecular details of the interaction between cofilin and the actin filament.
On the left is an actin trimer where we have labeled the two actin protomers that contact cofilin
(Actin-P and Actin-B). The contact surfaces within 5 Å of the binding partner have been highlighted
in yellow. Lethal mutations for both proteins are shown as red spheres while other contact points
predicted by the model are shown in blue.

Figure 3.6: Comparison of our cofilin/F-actin complex with (a) the EM volume recon-
struction of Galkin et al. (Galkin et al. 2003) and (b) the twinfilin/G-actin structure
of Paavilainen et al. (Paavilainen et al. 2008). For the EM comparison in (a), our model de-
picts the actin trimer in blue and cofilin in yellow, and the position and orientation was determined
by optimizing the fit between our model and the electron density map using Chimera (Pettersen
et al. 2004). In (b), our model cofilin is shown in orange and twinfilin in green, and the relative
orientation was determined by fitting the G-actin in the twinfilin structure to our Actin-P protomer.

3.3.3 Analysis of Known Cofilin Mutations

Having a detailed molecular model allows us to perform equally detailed analysis of the

interactions between cofilin and the actin filament. In the following section some of the
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Salt Bridge Analysis of AA Decorated Filament, 0-170 ns, dt=0.2 ns, 850 frames
Cofilin Chain

COF ACT Actin CF1 CF2 CF3 CF4 CF5 CF6 Avg
Experimental
K96 D56 3 34% 77% 60% 0% 75% 0% 41%

E93 3 0% 0% 0% 12% 23% 0% 6%
K112 D25 1 26% 4% 13% 23% 10% 16% 15%
E141 K326 1 19% 51% 13% 6% 20% 25% 22%

K328 1 5% 0% 7% 3% 22% 0% 6%
E142 K328 1 36% 80% 48% 67% 49% 66% 58%

R147 1 93% 0% 24% 96% 88% 59% 60%
E151 K291 1 78% 0% 63% 70% 23% 45% 47%
K152 R292 1 70% 60% 17% 58% 0% 33% 40%
Exp Average 40% 30% 27% 37% 34% 27% 33%
NEW Residues
K19 E93 3 0% 0% 86% 16% 16% 6% 21%
K22 D24 3 0% 0% 7% 47% 2% 11%

E2 3 36% 0% 7% 0% 7% 10%
K92 D211 3 0% 58% 2% 0% 14% 13% 15%

E214 3 46% 86% 0% 3% 82% 0% 36%
E93 R335 3 14% 80% 0% 0% 0% 28% 20%

K336 3 14% 0% 0% 91% 0% 5% 18%
E107 R147 1 50% 1% 47% 2% 3% 0% 17%

K328 1 35% 2% 25% 0% 5% 12% 13%
K132 E93 3 99% 99% 86% 77% 18% 64% 74%

D56 3 86% 85% 84% 75% 17% 85% 72%
E134 K61 3 45% 74% 39% 19% 0% 9% 31%
Total Average 38% 36% 30% 33% 23% 24% 26%

Cofilin Residues Key Actin Residues key
1 binds to Actin-P (Act i) ts- or cs-/ts- actin mutation (Rodal)
3 binds to Actin-B (Act i+2) lethal mutation for cofilin binding (Rodal)

known F site new actin residue identified
known FG site

Table 3.2: Salt Bridge Contacts of Known and New Residues: The frequency of salt
bridge formations are presented in this table. Note that as expected, many of the new residues
found are from binding to Actin-B, an “F-site”.

key interactions between cofilin and actin and how these compare with experimental

findings are discussed. We have adopted the convention where Actin-B/Actin-P refers

to the actin protomer directly adjacent to the bound cofilin on barbed/pointed side

(see Figure 3.7). Further, the amino acid numbers and the locations of secondary

structure elements all use the human cofilin sequence/structure as the reference (see

Figure 3.3). Table 3.3 shows exhaustive annotation of the known mutations.
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CF i

AC i

AC i+1

AC i+2

Actin-P (-)

Actin-B (+)

Figure 3.7: Actin-P and Actin-B: Actin-P is downstream towards the pointed end (aka AC i)
and Actin-B is upstream towards the barbed end (aka AC i+1).

Figure 3.8: Binding model contact residues that match cofilin mutagenesis: The pink
and yellow surfaces correspond to mutagenesis from Rodal et al. 1999. Blue and red beads are
basic and acidic residues, respectively, from known mutagenesis studies that are found in salt bridge
formation in our model.

N terminus and Ser3

The deletion of the first five residues in the N-terminus (cof1-28 ) prevents binding

to both G- and F-actin (Lappalainen et al. 1997, Moriyama and Yahara 2002). Sim-

ilarly, mutation of S3 to D/E, a known phosphorylation site, also eliminates binding

(Lappalainen et al. 1997, Moriyama et al. 1996, Pope et al. 2000). We see significant

interactions with this region of cofilin in our model with M1 making contact 100% of

the time, often with D3 on Actin-P, and S3 contacting with actin about 78% of the

time, with no specific hydrogen bonding.
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Alpha 1 – Alpha 2

The cof1-8 yeast mutation K23A/K24A/Y25A aligns to K22/S23/K31 in human

cofilin. This is a temperature sensitive mutation, however it has not been tested

in vitro for F-actin binding (Lappalainen et al. 1997). K22 has 71% contact with

the filament and forms intermittent salt bridges with D24 and E2 of Actin-B while

S23 has 63% contact. Interestingly, the cof1-8 mutation occurs around a loop region

where human cofilin has a short α-helix inserted. This will be covered later in the

Discussion.

Beta 3 – Beta 4

The R80A/K82A mutation in yeast (cof1-16 ) is lethal and weakens binding to F-

actin (Lappalainen et al. 1997). Further, both the S94D mutation (Moriyama and

Yahara 2002) and the K96Q mutation (Pope et al. 2000) appear to eliminate binding

of human cofilin to the actin filament. In many sequence alignments, R80/K82 in

yeast are aligned with K96/D98 in human cofilin (Pope et al. 2004, Paavilainen et al.

2008, Bamburg et al. 1999, Gorbatyuk et al. 2006) however based on function and

interactions we see, it seems more appropriate to equate these amino acids with

S94/K96 in human cofilin even though they are not aligned. There is a sustained

interaction between both S94 and K96 with Actin-B, with K96 on cofilin forming a

persistent salt bridge with D56 on actin, while D98 on cofilin has only 34% contact

and no observable hydrogen bonding or salt bridge interactions. Alternatively, it may

be that only R80A is necessary to lose F-actin binding.

Alpha 4

Yeast R96A/K98A (cof1-17 ) is a lethal mutation (Lappalainen et al. 1997) that ap-

pears to align with human K112/K114. Just two turns along this same helix, S120A

also decreases F-actin binding as compared to WT cofilin (Moriyama and Yahara

2002). There is very good interactions between K112 and D25 on Actin-P with a

salt bridge formed about 82% of the time. K114 also forms consistent contacts with

Actin-P, but appears to be nonspecific. S120 makes some contact with the filament
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(13% of the time), but S119 has 100% contact, and D122 makes 85% contact with

Q49 on Actin-B and Y143 on Actin-P.

Beta 5/Alpha 5 Loop

The yeast D123A/E126A (cof1-20 ) mutation is lethal and results in weaker filament

binding (Lappalainen et al. 1997). These yeast residues align with C139/E142, how-

ever the human protein has an additional glutamate at position 141. C139 does make

consistent contacts in our model, but both E141 and E142 make salt bridges: E141

with K326 and K328 on Actin-P, and E142 with R147 and K328, also on Actin-P. It

seems highly probable that E141 is matching the interactions of D123 in yeast while

E142 matches those of E126, but this discrepancy underlines the difficulties of making

simple assignments based on sequence alignments.

C-terminus

Yeast E134A/R135A/R138A (cof1-22 ) is a temperature sensitive mutation that leads

to reduced F-actin binding (Lappalainen et al. 1997). Based solely on sequence, these

three yeast residues would align with E151/K152/G155 (Pope et al. 2004, Paavilainen

et al. 2008, Bamburg et al. 1999, Gorbatyuk et al. 2006) and indeed there is good

interactions between E151 and K291 on Actin-P, and K152 with D292 also on Actin-

P. G155 obviously appears as a weak candidate for an interaction site based on our

knowledge of protein biochemistry, however the neighboring residue S156 seems like

a much more promising equivalent since it makes contacts more than 75% of the time

and forms hydrogen bonds with residues D211 and D244 on Actin-P.

WT mutations

In addition to the many mutations that affect F-actin binding, there are numerous

cofilin mutations that appear to have WT binding. As seen in Figure 3.2, the vast

majority of these mutations fall outside of our contact regions with the filament. In

this sense they do support our binding model as negative controls, but mutation of
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contact residues does not always have an effect on binding (Bogan and Thorn 1998)

and thus we cannot place too much weight in this correspondence.

New Putative Cofilin Contacts

Although there has been extensive mutagenesis performed on cofilin, our model has

several points of interaction that appear to be novel, namely K19, K92, E93, E107,

K132 and E134. K22 was previously identified, but K19, which aligns to K20A

in yeast, looked to be like wild type (cof1-6 D18A/K20A), but was never tested

for filament binding. In our model K19 forms a salt bridge with E93 on Actin-

B, and the E93A/E95A mutation on actin is lethal to cofilin binding (Rodal et al.

1999). Similarly, there are interactions between K92 and E214 on Actin-B, as well

as E93 with R335/K336 on Actin-B. Although K92 and E93 have not been mu-

tated, the E334A/R335A/K336A mutation on actin is lethal to cofilin binding (Ro-

dal et al. 1999). E107 on cofilin interacts with both R147 and K328 on Actin-P,

and the K326A/K328A actin mutation affects cofilin binding (Rodal et al. 1999), but

E141/E142 on cofilin interacts with this same site. Finally, K132 and E134 show in-

teractions with D56/E93 and K61 respectively, both on Actin-B. Interestingly, these

two residues flank H133 that was tested for its ability to confer pH dependent sever-

ing (Frantz et al. 2008), however these interaction sites have not been directly tested.

These new putative cofilin contacts can be seen more clearly in Figure 3.9.

Unmatched Cofilin Mutations

Our model matches a large group of mutagenesis results, however there are a few

cofilin mutations that are not readily explained. Yeast D10A/E11A (cof1-5 ) and

D34A/K36A/E38A (cof1-9 ) align to human D9/G10 and E42/K44/N46 respectively,

and both are temperature sensitive mutations. (Lappalainen et al. 1997) Neither re-

gion of cofilin shows contact with the filament in our model, but since these mutations

also show no change in F-actin binding in in vitro assays, they may be affecting some

other aspect of cofilin structure, dynamics or interactions that would not be captured

in our binding model. Another mutation, D68A/E70A/E72A in yeast (cof1-14 ), is

lethal and lowers stability and slightly decreases F-actin binding. (Lappalainen et al.
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Figure 3.9: New binding model contact residues on cofilin: The pink and yellow surfaces
correspond to mutagenesis from Rodal et al. 1999. Blue and red beads are basic and acidic residues,
respectively. The magenta surface on cofilin correspond to residues on the model’s binding surface
also seen in experimental data. The orange surface are residues seen only on the model’s binding
surface (within 5 Å of actin averaged over the 50-100 ns of the trajectory).

1997) This mutation maps to D86/T88/E90 on human cofilin, but since it makes no

contact in our model the phenotype is difficult to account for.

Analysis of Actin Mutations

Apart from change to cofilin, there have also been mutagenesis performed with actin.

(Wertman et al. 1992) This series of mutations were tested for cofilin activity with

a mixture of results. (Rodal et al. 1999) Some of the mutations (act1-107, act1-130,

act1-127, act1-128 and act1-108 ) failed to show interaction with cofilin or any other

actin binding protein, suggesting that there may be changes to the structure or stabil-

ity of the actin. However, three mutations, act1-103, act1-106 and act1-126, exhibited

binding defects specific for cofilin. The act1-103 mutation is E334A/R335A/K336A,

and we see ionic bonds formed between both R335 and K336 with E93 on cofilin.

Similarly, the act1-106 mutation involves R290A/K291A/E292A, and salt bridges

form between K291 and E151 on cofilin as well as E292 and K152 on cofilin. Finally,

the act1-126 mutation site has multiple interactions. This mutation is K326A/K328A
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and there are several interchangeable salt bridges between K326A and E141/E151 on

cofilin plus K328 and E107/E141/E142 on cofilin. Several salt bridges also form with

E93 on Actin-B and D288 in Actin-P, but since these amino acids are part of the act1-

130 and act1-107 mutations, respectively, we cannot draw any firm conclusions. As

a potential new contact site, we see significant interactions between R147 on Actin-P

with both E107 and E142 on cofilin.
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Table 3.3: Complete Annotated Table of Human Cofilin: Red mutagenesis affects F/G-
binding, orange affects F-binding only, yellow lowers F-binding, green exhibits wild-type in F-actin
binding, and purple is undetermined in F-actin binding.

Freq 
Contact

Yeast Mutaion 
(Lappalainen 

1997)

Resid Res

w/ in 5 
Å, dt10  
50-170 

ns

match 
experimental new residues

does not 
match 

experimental A
la

ni
ne

 
M

ut
n 

Ph
en

ot
yp

e

Yeast Mutations
Porcine or 

Human 
Mutations 

1 M 1.00 X high contact FG
cof1-28: del M1-G5 

lethal

porcine !N5 binds F 
moderately (+), 

depol weakly (±), 
no sever (-) 

(Moriyama 02)

2 A 0.86 X high contact
yeast S2A/S4D & 
S2D/S4D lethal 
(Moriyama 96)

3 S 0.78 X high contact
S3E, S3D  
no bind

cof1-3: S4E lethal; 
cof1-4: S4A;  

 S3D lethal & pS3 
does not bind 

(Moriyama 96); S3D 
lethal, like pS3 
(Pope 2000); 
porcine S3A 

binds/form rods 
(Moriyama 96)

*pH < 7.5, binds but 
does not sever 

(Moriyama 2002) 
*unphosphorylated 
Ser makes N term 
unstruct & flexible 
(Frantz 08, MD)

4 G 0.40
5 V 0.15
6 A 0.06
7 V 0.00
8 S 0.00

9 D 0.00 X ts-
cof1-5: D10A, E11A 

ts-
10 G 0.00 X D10A, E11A
11 V 0.00

12 I 0.08

13 K 0.00
14 V 0.00
15 F 0.33
16 N 0.47

17 D 0.05 X wt
cof1-6: D18A, K20A 

WT
18 M 0.01
19 K 0.96 E93 (Actin 3) X D18A, K20A

20 V 0.88

21 R 0.75

22 K 0.71 X ND
D24 or E2 (Actin 

3) (low 
confidence)

? ts-, nd
cof1-8: K23A, K24A, 

K26A ts-, not 
determined

23 S 0.63 X ND ? K23A, K24A, K26A
24 S 0.32
25 T 0.14
26 P 0.00
27 E 0.04
28 E 0.01
29 V 0.00
30 K 0.00
31 K 0.00
32 R 0.06 X ND ? K23A, K24A, K26A
33 K 0.00
34 K 0.00
35 A 0.00
36 V 0.00
37 L 0.00
38 F 0.00

39 C 0.00

C39 & C80 critical to 
reg & function; 

C39G weakly phos 
S3; C39G same conf 
change as oxidized 

(Klemke 08)

may disulfide bond 
w/ C147 to self 

assoc. as oligomrs 
dimerization, in vitro 
w/ oxidative stress 
(eg glutathione) 
(Pfannstiel 2001)

if all oxidized, 
disulfide bond as 

C39-C80; can disulf 
bond w/ C139 but 
C80 "ties it up" 

(Klamt 09)

40 L 0.00
41 S 0.00

42 E 0.02 X WT to F
cof1-9: D34A, K36A, 

E38A lethal
43 D 0.09
44 K 0.50 X D34A, K36A, E38A
45 K 0.24
46 N 0.01 X D34A, K36A, E38A
47 I 0.00

Model Results: Binding interactions 
to F-actin

Mutagenesis

Other Annotation from Literature
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48 I 0.00
49 L 0.00

50 E 0.00 X WT
cof1-10: K42A, 

E43A WT
51 E 0.00 X K42A, E43A
52 G 0.00
53 K 0.00
54 E 0.00
55 I 0.00
56 L 0.00
57 V 0.00

58 G 0.00 X WT
cof1-11: D47A, 

D51A WT
59 D 0.00
60 V 0.00
61 G 0.00
62 Q 0.00
63 T 0.00
64 V 0.00
65 D 0.00
66 D 0.00
67 P 0.00

68 Y 0.00

is a Src substrate for 
phos before 

ubiq.&degrad of cof 
(BB 2010)

69 A 0.00 X D47A, D51A
70 T 0.00
71 F 0.00
72 V 0.00

73 K 0.00 X WT
cof1-12: E55A, 

K56A WT
74 M 0.00 E55A, K56A
75 L 0.00 X

76 P 0.00

77 D 0.00 X WT
cof1-13: E59A, 

D61A WT
78 K 0.00
79 D 0.00 X E59A, D61A

80 C 0.00

 C80G does not phos 
S3, C80G same conf 
change as oxidized 

(Klemke 08);

disulf bond w/ C39; 
C39 & C80 critical to 

reg & function; 
(Klemke 08);

if all oxidized, C39-
C80 (Klamt 09)

81 R 0.00
82 Y 0.00
83 A 0.00
84 L 0.00
85 Y 0.00

86 D 0.00 X less F
cof1-14: D68A, 

E70A, E72A lethal; 
much lower stability

87 A 0.00

88 T 0.01 X
D68A, E70A, E72A 

lethal

89 Y 0.11

90 E 0.02 X
D68A, E70A, E72A 

lethal
91 T 0.49

92 K 0.84
D211 or E214 

(Actin 3)

93 E 0.91
R335 or K336 

(Actin 3)

94 S 0.64 X high contact
should be aligned 
to R80A in yeast?

WT
cof1-15: E77A, 

K79A WT

porcine S94D no F 
better D @ pH7, no 
F @ pH 8, no sever 

(Moriyama 02)

95 K 0.43
cof1-15: E77A, 

K79A

K95Q/K96Q in loop, 
yes G, no F (Pope 
00); K96Q CSP 

(Pope 04)

95-102 homologous 
to C-ter villin 

headpiece, KKEK for 
F-actin binding; yst 
79-KRSKIV (Pope 

2000)56



96 K 0.84

D56 or E93 (Actin 
3); should be 

aligned to K82A 
in yeast?

F
cof1-16: R80A, 

K82A lethal

K95Q/K96Q in loop, 
yes G, no F; 

S3D/K96Q yes F, no 
D (Pope 2000); 

K96Q yes G, no F, 
alters chem environ 

B3 & B6-Cter; 
strong wt pH CSP; 

hbond w/ Y89 (Pope 
2004)

in low pH = 6, 
interact with D98 in 
actin, MD (Frantz 

08)

97 E 0.43

98 D 0.34
should not be 

aligned to K82A 
in yeast?

X F R80A, K82A lethal

99 L 0.04
100 V 0.00
101 F 0.00
102 I 0.00

103 F 0.27

104 W 0.00
 104-115: PIP2 

binding site (Kusano 
1999)

105 A 0.69

106 P 0.46
107 E 0.93 R147 (Actin 1) X
108 S 0.50
109 A 0.39

110 P 0.22

111 L 1.00

112 K 0.82 D25 (Actin 1) FG
cof1-17: K96A, 

K98A lethal

K112Q inhibits PIP2 
binding, better with 
K114Q (Moriyama 

92)
113 S 0.01

114 K 1.00 X high contact FG K96A, K98A lethal
K114Q inhibits PIP2 
binding (Moriyama 

92)

115 M 1.00

116 I 0.50

117 Y 0.18

118 A 1.00

119 S 1.00

120 S 0.13 X

porcine S120A lower 
F @ pH7, weaker D 
@ pH 8, no sever/ 

weak turnover 
(Moriyama 02)

121 K 0.86 X WT
cof1-18: K105D, 

D106A WT

122 D 0.85 X K105D, D106A

123 A 0.39

124 I 0.00

125 K 0.77 ? WT
cof1-19: R109A, 

R110A WT

126 K 0.80
? X high contact; 

BB2010
? R109A, R110A

127 K 0.06 ? BB2010 ?

128 L 0.26

129 T 0.86
130 G 0.83
131 I 0.87

132 K 1.00 X NMR CSP
E93 or D56 (Actin 

3)

95-102 homologous 
to C-ter villin 

headpiece, KKEK for 
F-actin binding; yst 
79-KRSKIV (Pope 

2000)
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133 H 0.91

hum H133A pH 
Insens./ salt br. 
weakened when 

H133 deprotonated 
@ higher pH , D98 

to K96 instead 
(Frantz 08)

"confers pH 
sensitivity to PIP2" 
(BB2010, Leyman 

2009)

134 E 0.79 X NMR CSP K61 (Actin 3)

135 L 0.07

136 Q 1.00

137 A 0.31

138 N 0.97

139 C 0.87 X high contact FG

cof1-20: D123A, 
E126A lethal; less 

stable; low G, low F, 
low D

C139G still gets 
oxidized like wt 

(Klemke 08)

if all oxidized, C139-
C47 (Klamt 09)

140 Y 0.05

141 E 0.67

K326 or K328 
(Actin 1); should 

be aligned to 
D123A in yeast?

X not noted as FG 
site in human

142 E 0.98
K328 or R147 

(Actin 1)

 should be 
aligned t o E126A 

in yeast?
FG D123A, E126A lethal

143 V 0.02
144 K 0.08
145 D 0.45
146 R 0.12 X WT cof1-21: D130A WT

147 C 0.41
C147G still gets 
oxidized like wt 
(Klemke 08);

if all oxidized, C139-
C47 (Klamt 09)

148 T 0.54
149 L 0.00

150 A 0.02

151 E 0.88 K291 (Actin 1) Ts-, F
cof1-22: E134A, 

R135A, R138A  ts-

152 K 0.83 R292 (Actin 1)
E134A, R135A, 

R138A  ts-
153 L 0.44
154 G 0.35

155 G 0.63 X high contact
E134A, R135A, 

R138A  ts-

156 S 0.75 X high contact
should be aligned 
to R138A in yeast

X should be R138A

157 A 0.44
158 V 0.06
159 I 0.23
160 S 0.00
161 L 0.01
162 E 0.00
163 G 0.00
164 K 0.00
165 P 0.00
166 L 0.00
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3.4 Discussion

We have developed a molecular model of human cofilin bound to F-actin by utilizing

a combination of experimental data and iterative docking and molecular dynamics

studies. Our model explains numerous mutagenesis results on both cofilin and actin,

and the binding site matches extremely well with available structural data.

One feature that our results highlight is the challenge associated with aligning the

sequences of various cofilin homologs. Sequence conservation is moderate within

this family of proteins (∼32%), but apart from amino acid substitutions, there are

numerous insertions and deletions in the protein, making it very difficult to translate

point mutations in one system to another. Human and yeast cofilin are great examples

of this since the human protein has two insertions in the N-terminal portion of the

protein (Figure 3.3). Based on the protein structures, we would place these insertions

such that the stretch K22-R32 in human cofilin would align with K23-K26 in yeast,

and G58 to D66 in human would correspond to D47-S49 in yeast. Since the function

of these two proteins is very similar, one might expect that these two insertions

points are not critical for filament binding, however this does not appear to be the

case. First, the cof1-8 allele (K23A/K24A/Y25A) spans the first insertion site and

produces a temperature sensitive phenotype in yeast. (Lappalainen et al. 1997).

Second, an attempt to insert fluorescent proteins into the yeast protein produced a

loss of function phenotype at the first insertion site, but resulted in a function protein

at the second site. (Lin et al. 2010) Although our manual alignment fixes discrepancies

in these insertions, there is still some ambiguity in interpreting mutations made in

other regions of the protein, particularly in some of the central β sheets such as

S94 or E142. In this sense, a given sequence alignment does not provide a one-to-

one correspondence, but simply is a guide to understanding the relationship between

sequence, structure and function.

A key interaction point between cofilin and the filament is the DNase-I loop (D-

loop) of the actin protomer. Cryo-EM observations (Galkin et al. 2003), cross-linking

studies (Kim et al. 2000), and molecular dynamics simulations (Pfaendtner et al.

2010) have provided significant evidence that the D-loop, as well as other portions

of subdomain-2, become disordered upon cofilin binding, thus breaking the contacts

between protomers along the long-pitch helix. There are significant interactions with
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subdomain-2 in our model. The α-helix containing E93/E95 in Actin-B makes sus-

tained ionic bonds with cofilin, and this was one of the regions of actin that was

found to be remodeled in previous MD simulations. (Pfaendtner et al. 2010) We also

see hydrogen bonding interactions with Q49 at the C-terminal end of the D-loop and

D56/K61 directly below the D-loop. These interactions appear to alter the dynamics

and conformation of the D-loop enough that its interactions with subdomain-1 of

Actin-P are reduced by about 10% over the course of our MD simulation. The length

of our simulation is clearly a limiting factor and we have not had sufficient time to

observe the twisting of the filament that would further disrupt these interactions, but

this is still consistent with the previous observations mentioned above.

The phosphorylation of S3 on cofilin is a key method of regulating cofilin activity. In

our model S3 makes consistent contacts with the actin filament, but we do not see

any specific hydrogen bonding interactions. Interestingly, through a series of MD sim-

ulations Frantz et al. found that pS3 forms salt bridges with K126/K127 on cofilin.

(Frantz et al. 2008) We see that the α-helix containing K126/K127 makes signifi-

cant contact with the filament, and although mutation of these two basic residues

(R109A/R110A in yeast cof1-19 ) has no discernible phenotype in yeast (Lappalainen

et al. 1997), the interaction of pS3 would cause the N-terminus of the cofilin to mask

several other interaction points along the helix (e.g. K112, K114, S120) and that

would likely be enough to eliminate filament binding.

In summary, we have derived an independent model for cofilin bound to the actin

filament that agrees well with structural and biochemical data, and further provides

insight into filament remodeling and regulation by phosphorylation. This model also

suggests new potential sites of interaction on both cofilin and actin that could be

tested experimentally and will serve as a starting point for larger-scale simulation

studies.
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Chapter 4

Short-Ranged Dynamics of

Cofilin-Bound Actin Filaments

This chapter will discuss my results for Part 2, to simulate the short-ranged dynamics

of cofilin decorated F-actin and explain important contact points that affect binding

or mechanics. I have performed a series of molecular dynamics studies using muscle

actin and human cofilin I. After determining a model for bound cofilin from the pre-

vious chapter, I performed an all-atom molecular dynamics simulations on bare actin

filaments, fully decorated filaments, and filaments with cofilin bound at isolated sites

and explain how I characterize each filament model.

4.1 Introduction

Much work has been done to understand the motions of actin filaments. Not only are

structures insufficiently high enough resolution, they do not capture the full dynamics

of filaments. Moreover, they often involve the inclusion of stabilizing agents that may

introduce artifacts. When studying cofilin-bound F-actin, one can only reliably find

structures for two concentration states: no cofilin and saturating cofilin. Here, we

employ Molecular Dynamics (MD) tools to bridge the gap between experimental data

and the unobservable to understand how, on the molecular level cofilin interacts with

actin.
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4.2 Methods

4.2.1 Building Filament models

A bare, 8-protomer actin filament was built by using the PDB ID 2ZHW (Oda

et al. 2009) and the associated transformation matrix, shifting from one protomer to

the next by translating 27.59 Å up the z-axis and rotating -166.4◦. (In this disserta-

tion, this angle will be described with a positive value, rotating the other direction

on the axis.) A second, fully decorated filament was built using the bare filament

and fitting the best docked model (derived in Chapter 3) at each of the six available

binding sites. To simulate the effects of non-stoichiometic binding conditions, where

the concentration of cofilin is not saturating, two other filaments were also created.

The third model is a sparse filament where a single cofilin is bound at the center

of the filament, between Actin 4 (AC4) and Actin 6 (AC6) (designated Cofilin 4 or

CF4). The intention of this model is to simulate the best conditions for severing,

as described in De la Cruz (2005) and Andrianantoandro and Pollard (2006), where

the most efficient filament severing occurs at low concentrations of cofilin. While it

may be overly optimistic to observe different twisting or possible severing behavior,

especially in an all-atom MD on such low time scales (of hundreds of nanoseconds),

this simulation was nevertheless run.

The fourth model is the split filament had Cofilins 1, 2, 5, and 6 bound (CF1, CF2,

CF5, CF6), but the two center positions (CF3 and CF4) did not. The split filament

models a filament with two domains of decorated filament separated by a bare region.

While this represents sub-stoichiometric conditions, the intention of this filament was

to see if such a scenario would introduce more instability or not.

See Figure 4.1 for filament models.

4.2.2 All-Atom (AA) Molecular Dynamics (MD) Simulation

All four of these filament models were simulated with all atom molecular dynamics

(MD) using the same conditions described in Chapter 3:
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Figure 4.1: All Atom Filament Models: Cartoon representations of bare, decorated, sparse,
and split filament models. Actin protomers are represented with blue circles, designated AC1 to
AC8. Cofilin are in pink circles, designated CF1 to CF6 for the 6 possible sites. Pointed end (-) at
top.

Simulations were performed in an isothermal-adiabatic (NpT) ensemble with the

CHARMM27 force field and TIP3P water model, under periodic boundary condi-

tions. Each actin protomer had ADP as the bound nucleotide. Bonded interactions

were computed every 2 fs using SHAKE, short-ranged non-bonded electrostatic and

van der Waals (with a 10 Å cutoff and smooth switching function beginning at 8.5 Å,

and pair-list distance of 11.5 Å) every 2 fs. Long-ranged, full electrostatic interactions

were computed every 4 fs with the Particle Mesh Ewald method with grid points at

least 1/ Å in each dimension. Using Langevin Dynamics, NpT conditions were main-

tained at 1 atm and temperature of 300 K with a damping coefficient of 1 ps−1 and

a Langevin piston with an oscillation period of 200 fs and decay of 100 fs for the

production run (200 fs and 500 fs respectively for both heating and equilibration).

Following minimization, the system was heated in 50 K steps with 40 ps per step

and restraints on the Cα atoms. At 300 K, the restraints were removed and the

system was allowed to equilibrate for approximately 1 ns before the production run

was started.

Simulations were run at varying times: 90 ns for bare, 170 ns for decorated, over

110 ns for sparse, and over 130 ns for split.

The detailed MD protocol is as follows, with the varying parameters highlighted and

remaining the same in the next step unless otherwise noted:
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1. Solvate (explicit) and Ionize filament. Solvate package (or plugin) with

12 Å padding around the protein and boundary of 2.4. Autoionize package (or

plugin) using 0.060 M (with Na+ and Cl−).

2. Energy Minimization until gradient of (minLineGoal) 1.0e−1 at 0 K. 1 fs

timesteps (2 fs for nonbonded and 4 fs for full electrostatic evaluation, 20 steps

per cycle), margin of 5 Å, Langevin dynamics on (damping of 10 ps−1, tem-

perature of 75K), Langevin piston off. (6,000 steps for non-backbone atoms

(constraining backbone) and 10,000 steps for all atoms.)

3. Heat from 0 K to 300 K at 50 K intervals with restraints on Cα atoms, rigid

bonds. 2 fs timesteps. At each temperature, simulate for 21,000 or more steps.

4. Equilibrate while constraining Cα atoms, rigid bonds. 2 fs timesteps for 40,000

steps. Langevin dynamics on (damping of 10 ps−1, Langevin temperature of

300K). Langevin Piston on (target of 1.01325 bar, period of 200 fs, decay of 100

fs, and temperature of 300 K).

5. Equilibrate with no Cα constraints using previous parameters. 2 fs for

355,000 steps.

6. Production Run with above parameters. Langevin dynamics on (damping of

1 ps−1, Langevin temperature of 300K). Langevin Piston on (target of 1.01325

bar, period of 200 fs, decay of 500 fs, and temperature of 300 K).

There is a consistent error in the simulation where the cell basis vectors (the bound-

aries) were reset after every restarting of the trajectory. This caused the first few

picoseconds of simulation to have wildly behaving pressures, but NAMD quickly cor-

rected itself upon simulation. This does not appear to greatly affect the simulation

results, as the system quickly became stable, but upon fixing this parameter file error,

the simulations did not crash and need to restart as often.

4.3 Results

The beginning portion of the trajectory is considered equilibration period which has

been disregarded in averaging analysis. Although each of the simulations have been
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Table 4.1: All Atom Simulation Details
Filament Model Total

Atoms
Protein
Atoms

No. Na+ No. Cl− No. Water Sim. Time
(ns)

Bare 391,596 47,032 120 8 114,812 90
Decorated 529,530 62,838 141 33 155,506 170
Sparse 451,357 49,633 134 16 133,858 110
Split 530,678 57,556 145 33 157,648 130

run for differing lengths of time, we use the last 50 ns of each trajectory for the

following analysis, (except for the decorated filament in which we used the last 100 ns).

4.3.1 Maintaining Binding Contacts

In order to determine how well the cofilin maintained contact with their respective

filaments, a Root Mean Squared Distance (RMSD) analysis tracked the distances

between the cofilin and of the two flanking actins (Actin-P (i) and Actin-B (i+2))

over time. This means the binding distance will be tracked over the course of the

simulation. Low fluctuations with low average distance signified binding, high fluc-

tuations with large distances indicate the likelihood of poor binding. The control

value is achieved by using Actin i and Actin i+2 for the least squares fitting and

calculating the RMSD of Actin i+1. This value serves as a baseline to compare to

when finding the RMSD of Cofilin i because we assume that the actin protomers in

the filament will maintain their binding contacts. Observing the trajectory would

have been insufficient to observe the subtle difference between bound and unbound.

The RMSD for the decorated filament (Figure 4.3(a)) clearly shows that the values

are much lower (mostly under 8 Å) and with low fluctuations. The lines are not as

thick due to sampling of every 10 frames, 1/10th the rate of the docked models. The

reference frame used was from 3 ns time point, which is why the RMSD is not 0 nm

at time 0 ns.

In the sparse filament, only one cofilin was bound so there is only one comparison

to its actin control (Figure 4.3(b)). In this case, the RMSD fluctuations and values

remain low, below 5 Å. (The reference structure was taken at 6 ns.)
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The split filament uses the same starting structures as the decorated filament and

most of the RMSD values have a lower average; however, the RMSD values of Cofilin

2 are a bit high, though still below 10 Å. See Figure 4.3(c). (The reference structure

was taken at 20 ns.)

Figure 4.2: RMSD of Filament (Final Models): Overall low fluctuations and low RMSD
(with a few isolated cases) show that the contacts, and thus binding, are maintained over time.
Frames are sampled at every 0.2 ns.
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4.3.2 Contact Analysis

A contact point is defined when a residue is with in 3.5 Å of the molecule it is binding

(cofilin or F-actin), which is more stringent than the analysis presented in Chapter

3. This analysis was carried out on the full 170 ns trajectory, with sampling at every

1 ns.

In the actin contacts (Figure 4.3), cofilin contacts only subdomains 1 and 3 of Actin-

P and mostly subdomains (SD) 1 and 2 (occasionally in subdomain 4) of Actin-P.

While the contacts appear to be mostly consistent for Actin-P, the peaks tend to be

lower, if not more spread out, for Actin-B, which may suggest there is more dynamics

occurring.

The cofilin contacts can be seen in Figure 4.4 where there are a mix of very consistent

contacts as well as some intermittent ones.

The average solved accessible surface area (SASA) is shown in Table 4.2 for the last

100 ns of simulation, using a 3.5 Å cutoff to the binding molecule, using a probe

radius of 2.8 Å.
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Figure 4.3: Actin Contacts: The frequency of actin contact points for Actin-P (i) and Actin-B
(i+2) (within 3.5 Å of cofilin) for each residue (by residue id number) are shown here. The red bars
correspond to residues with over 60% contact. The red residue region corresponds to subdomain 1,
blue is subdomain 2, yellow is subdomain 3, and green is subdomain 4.
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Figure 4.4: Cofilin Contacts: The frequency of cofilin contact points (within 3.5 Å of actin) for
each residue (by residue id number) are shown here. The red bars correspond to residues with over
60% contact.

Table 4.2: Solvent Accessible Surface Area (SASA) Analysis: Surface area of binding at
each site (Å2) for the actin up and downstream (Actin-P, pointed end, and Actin-B, barbed end) of
the bound cofilin (Cofiin 1-6).

Monomer Cof1 Cof2 Cof3 Cof4 Cof5 Cof6 average avg std
Actin-P 220.9 204.3 130.4 203.3 178.3 208.9 191.0 32.8
Actin-B 160.6 169.3 140.4 197.9 254.5 142.1 177.5 43.2
Cofiin 367.6 289.3 308.5 313.4 402.3 304.0 330.9 44.1

4.3.3 Root Mean Squared Fluctuation (RMSF)

Root Mean Squared Fluctuation (RMSF) analysis was used to examine the dynamic

regions of the actin protomers to eventually gain insight into filament dynamics.

This means the average fluctuation of movement for a given residue was tracked over

the course of the simulation. Here, we perform these calculations on the Cα of each

residue in the actin protomers. Since the filament ends are highly dynamic and would

introduce artifacts to the results, only the middle four protomers are examined.

The results for the bare filament, the control filament, as well as the decorated filament

can be seen in Figure 4.5. We would expect that since both filaments are uniform,

their RMSF profiles across the middle four the protomers would be approximately

the same. For the most part, there are few peaks except in subdomain 2, exactly at

the DNase I loop, in subdomain 4 around residues 232-234, and subdomain 3 around

residues 320-321. The high dynamics about the D-loop matches the conformations

observed from EM where the D-loop is highly disordered. The decorated filament
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shows marginally more dynamics in subdomain 4 than the bare filament, suggesting

that the protomers in a decorated filament may be more flexible. However without

statistically significant p-values, it is difficult to be certain of this claim.

The RMSF analysis underlines the fact that these systems are highly dynamic and

variable in different conformations. This is particularly true for the sparse and split

filaments since these filaments lack uniformity and the each of the four protomers

being analyzed are inherently different. The results in Figure 4.6 are merely presented

for comparison. With the exception of Actin 4, most of the protomers dynamics seem

to be more muted compared to that of bare and decorated.
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4.3.4 Principle Component Analysis (PCA)

Principle Component Analysis (PCA) can also be used to analyze an MD trajectory.

The overall dynamics of a simulation can be decomposed into a basis set of orthogonal

modes. Normally the motions of the n Cα in a protein are of interest, so there will

3n degrees of freedom and n eigenvectors and eigenvalues to describe the full motion

of the simulation. The highest eigenvalues are associated with the eigenvectors that

contribute the most to the long-ranging motion. In the case of the filament, we

are interested in the intermolecular motion, so trimers of protomers are analyzed

together. An 8-mer filament, if we disregard the end protomers, has four sets of

trimers: Actin 2-3-4, Actin 3-4-5, Actin 4-5-6, and Actin 5-6-7. These four trimer

sets can be concatenated as one contiguous trajectory, which is in turn, converted to

one basis set of motion. Analysis for how a trimer of actin protomers behaving about

a cofilin binding set can be done.

PCA of the four trimer sets was performed on bare and decorated filaments by combin-

ing both simulations for a basis set that is comprised of eight trimer set trajectories.

See Figure 4.7. The four trimer trajectories for both bare and decorated filaments

were combined to form the basis set dynamics onto which both filaments (for the mid-

dle four protomers) were projected. The modes between bare and decorated filaments

differ, but it is difficult to fit distributions since some are not very gaussian or bi-

modal, or trimodal. After creating a porcupine plot of the first top two modes, where

the vectors of each mode‘s movement is depicted as quills on the average actin trimer

structure, there does not seem to be much signature of twist. (Data not shown.)
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Figure 4.7: Distribution of Bare and Decorated Filaments PCA: The basis set is comprised
of the the bare trajectory (25-95ns) and the decorated trajectory (to 125 ns). The first eight modes
are shown here.
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4.4 Discussion

4.4.1 RMSD

In our use of RMSD to determine if a bond is maintained, we have gained more

information than simply checking to see if a simulation has plateaued (which is not

necessarily the case even when RMSD has reached a equilibrated value). This anal-

ysis is particularly useful when the exact binding site or intermolecular bonds are

unknown. We saw a significant difference between binding and non-binding models

in the original dockings. While good agreement with EM envelopes offer a good check,

this provides a more quantitative measure.

4.4.2 Contact Points

Although the contact analysis may only seem relevant to a static observation of

contacts, it may offer some insight into the dynamics. There are high frequency peaks

in Actin-P, suggesting that these contact points are consistent and long withstanding

throughout the course of the simulation. On the other hand, Actin-B also shows a

number of peaks but they tend to be lower in frequency of contact. This may suggest

that contacts are not as well maintained and are perhaps weaker. Perhaps this is

the case because Actin-B contacts are “F-site contacts”. The contacts in Actin-P are

“G-site” contacts and may need to be “stronger” because upon severing, which would

occur at the “F-site,” these contacts would need to be maintained in order for cofilin

to chaperone a G-actin to its next destination.

4.4.3 RMSF

The RMSF analysis did not yield obvious signatures that indicate bare or decorated

behavior. It did however confirm the flexibility of the D-loop. This region varied in

behavior between all four filament models and while we were unable to obtain solid

statistical values, it is still informative because Galkin et al.’s and Orlova et al.’s
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work which categorizes thousands of filament conformations show that different con-

formations of the D-loop allow for different behaviors of the filament; a disordered

conformation favored cofilin binding and thus severed more easily. (Galkin et al. 2003,

Orlova et al. 2004, Galkin et al. 2010) The differences in D-loop fluctuations may be

the key to good binding. On the other hand, these conformational changes may not

be observable due to time and filament length limitations and the EM images are,

again, of insufficient high resolution to make absolute all-sweeping conclusions.

4.4.4 PCA

Bare and decorated filaments have different distributions of motion. Unfortunately,

this changes depending on which part of the simulations are being sampled. This is

more likely due to our only sampling a subset of conformational space (a computa-

tional limitation) than the cofilin’s inability to affect filament dynamics. Since it was

difficult to obtain a clear signature difference between bare and decorated filaments,

we could not extract a definitive mode of motion that may describe a twisting motion.

***

Overall, an AA MD of an 8-mer actin filament model is useful for predicting detailed

molecular contacts. Unfortunately, it does not reasonably yield clear signatures of

more intermolecular dynamics. In our work to characterize twisting behavior in bare

and decorated filaments, RMSF and PCA analysis may ultimately be hindered by

insufficiently long simulation time-scales and filament length, which are restricted by

computational bounds. There are too many atoms to simulate not only for the time

in order for an event, such as severe twist or severing, to occur. Additionally, the

simulation box for the filament needed to be sufficiently large such that F-actin would

not be affected by its periodic image—this prevents building a filament much longer

than 8 protomers which makes our model suffer from edge effects or artifacts during

simulation.

In order to overcome these limitations, we simulated filaments using coarse grain MD.

This work will be discussed in the next Chapter.
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Chapter 5

Long-Ranged Dynamics of

Cofilin-Bound Actin Filaments

Finally, Part 3 will be discussed in this chapter. After determining an all-atom model

for cofilin-bound F-actin (see Chapters 2 and 3), we performed a coarse-grain molec-

ular dynamics simulations on bare actin filaments, fully decorated filaments, and

filaments with cofilin bound at isolated sites. We find that the binding of cofilin as

domains or in isolated sites affects the average twist angles as well as the twist fluc-

tuations. Decorated filaments not only have a greater average twist, in agreement

with cryo-EM studies, but also a lower local fluctuation of twist angle. Additionally,

we show how cofilin introduces local disorder in a filament. These results illumi-

nates cofilins effects on F-actin twisting and bending and provide some clues about

cooperative binding kinetics and filament severing.

5.1 Introduction

Much work has been done to understand the motions of a actin filaments. While

the knowledge of the structures have mostly been obtained through NMR studies

where thousands upon thousands of conformations have been sampled, they do not

show high resolution molecular details of the structure. (Oda et al. 2009, Fujii et al.

2010) Moreover, finding a specific conformation that is not uniform to the filament,

particularly twisting that will lead to severing, cannot be done when the images used

to reconstruct a structure require the averaging of many filaments. Also, when study-

ing cofilin-bound F-actin, one can only reliably find structures for two concentration
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states: no cofilin and saturating cofilin. Here, we employ Molecular Dynamics (MD)

tools to bridge the gap between experimental data and the unobservable to under-

stand how cofilin interacts with actin in terms of twisting and severing, and if we are

lucky, cooperativity.

5.2 Methods

5.2.1 Building Coarse Grain Models

Coarse Grain (CG) MD does not only allow us to explore longer time scales but also

extend the size of our filament without incapacitating our computational resources

(even if there are 96 processors working around the clock running simulations); more-

over, there are already established parameters for proteins, though they have mostly

been used for lipid-embedded proteins. (Shih et al. 2006b, Shih et al. 2007, Arkhipov

et al. 2006, Freddolino et al. 2008)

A bare, 20-protomer actin filament was built by using the PDB ID 2ZHW (Oda

et al. 2009) and the provided transformation matrix, shifting from one monomer to

the next by translating 27.59 Å up the z-axis and rotating -166.4◦. The VMD CG

Builder plugin requires a protein and water database to convert the all atom filament

into coarse grain bead representations when using the Residue-Based Coarse Grain

(RBCG) model. The conversion maps backbone and side chain atoms to one bead

each while four water molecules are mapped to one bead. (Shih et al. 2006b, Shih

et al. 2007) See Figure 5.1.

Since the ADP-Mg in actin is a non-standard molecule (heterogeneous atoms, neither

protein nor water), we must create a Shape-Based Coarse Grain (SBCG) model with

the Shape-based Coarse Grain Builder plugin. (Arkhipov et al. 2006, Freddolino et al.

2008) Four beads were used to coarse grain the ADP-Mg molecule. While the bond

lengths, angles, and torsions derived from the plugin were adequate, but the elec-

trostatic and the Lennard-Jones potential needed to be adjusted. First, the charges

were scaled down from -1.0 to -0.7 to match the charges of other residues. Secondly,

value of ε = 1.195 was used to also more closely match that of the residues, but Rmin
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Figure 5.1: Coarse Graining Protocol: Use the VMD CG Builder plugin to convert an all-atom
filament to a coarse grain filament for bare, decorated, and sparse models.

comes from the plugin’s calculated value. A comparison of the AA, RBCG CG, and

SBCG CG (for ADP-MG) Lennard-Jones parameters can be seen in Figure 5.2. The

parameters for ADP-MG have slightly longer Rmin distances but still fall within of

reasonable range of the switching distance cutoffs. Part of the curve is curtailed but

the values are low enough that it should not affect the simulations greatly.

The rest of the protocol is similar to AA MD in NAMD. Once the structure (PSF)

files for the filaments (with or without cofilin bound) have been created, the system

is solvated with a CG waterbox and a padding of 20 Å on all sides, which is generous

enough so that the protein is not affected by its periodic image. The solvent is ionized

with CG ions to 60 mM.
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Figure 5.2: Lennard-Jones Potential of AA and CG: The Lennard-Jones potential of all-
atom (aa) and coarse grain (cg) are shown. The green and blue curves are two examples of an
all atom potential in the backbone (between two carbons, or a carbon and phosphorous). The
other curves are either for RBCG (a typical backbone residue ε or lowest ε values) or the specially
parameterized SBCG ADP-MG hetatom (for beads A1-A4 or A2-A3). The vertical lines represent
boundary distances; the solid lines are for CG and the dashed lines are AA. The red line represents
the start of switching (the distance at which to activate switching/splitting function that smooths
the curve to a 0 energy potential for electrostatic and van der Waal calculations). The blue line
represents the cutoff distance (the interaction distance at which both electrostatic and van der Waals
energies become 0). The green line represents the pair list distance (distance between pairs of atoms
for inclusion in pair lists).

The decorated filament and sparse filament models are built similarly except

that the cofilin are included before conversion to CG. The decorated filament has 8

cofilin bound in the center 8 sites (CF6 to CF13) and the sparse filament has 2 cofilin

bound at sites CF7 and CF12. See Figure 5.3.

5.2.2 Coarse Grain Molecular Dynamics (CGMD) Simula-

tion

Again, CG MD simulations are similar to that AA MD, as these are run in NAMD.

Simulations were performed in an isothermal-adiabatic (NpT) ensemble with the

CHARMM-like force field and CG water model mentioned above, under periodic

boundary conditions. Each actin protomer had ADP-Mg as the bound nucleotide.
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Figure 5.3: Coarse Grain Filament Models: Cartoon representations of bare, decorated, and
sparse CG filament models. Actin monomers are represented with blue circles, designated AC1 to
AC20. Cofilin monomers are in pink circles, designated CF1 to CF8 for the 8 possible sites in the
center of the filament. Pointed end at top (-). The sparse model has cofilin CF7 and C12 bound.

Bonded interactions were computed every 4 fs using SHAKE, short-ranged non-

bonded electrostatic and van der Waals (with a 12.0 Å cutoff and smooth switching

function beginning at 10.0 Åand pair-list distance of 15.0 Å, and “exclude 1-2” for

non-bonded parameters). Long-ranged, full electrostatic interactions were computed

every 4 fs with the Particle Mesh Ewald method with grid points at least 1/ Å in

each dimension. Using Langevin Dynamics, NpT conditions were maintained at 1

atm and temperature of 300 K with a damping coefficient of 5 ps−1 and a Langevin

piston oscillation period of 200 fs and decay of 100 fs for the production run (200

fs and 500 fs respectively for both heating and equilibration). In the pre-production

phase, a damping coefficient of 10 ps−1 and time step of 2 fs were used. Following

minimization, the system was heated and cooled for two cycles from 100k to 500K

in 100K increments at 0.2-0.3 ps each, and finally cooled to 300K so that the CG

system could be relaxed back to a non-overlapping conformation. An equilibration

time of more than 1 ns was necessary before going to production phase because at

higher timesteps and lower damping coefficients, the atoms would move too quickly

and the simulation would crash.
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The detailed MD protocol is as follows, with the varying parameters highlighted and

remaining the same in the next step unless otherwise noted:

1. Solvate (explicit) and Ionize filament. Solvate plugin with 20 Å padding

around the protein and boundary of 5.0, using CG water beads and solvent

water box (cgwat.psf). Autoionize plugin (using cgionize.tcl) using 0.060 M

(with CG versions Na+ as SOD and Cl− as CHL).

2. Energy Minimization until gradient of (minLineGoal) 1.0e−1 at 0 K for

100,000 steps. 1 fs timesteps (2 fs for nonbonded and 4 fs for full electro-

static evaluation, 20 steps per cycle), margin of 10 Å, Langevin dynamics on

(damping of 10 ps−1, temperature of 75K), Langevin piston off.

3. Simulated Annealing/Heat from 100 K to 500 K (at 100 K intervals), 500

K to 100 K (at 100 K intervals) and finally 100 K to 300 K (at 50 K intervals).

1 fs timesteps (2 fs for nonbonded and 2 fs for full electrostatic evaluation, 10

steps per cycle). After each temperature change, run for 3,000 – 5,000 steps

when heating and 1,000 steps when cooling.

4. Equilibrate at 300 K. 2 fs timesteps for minimum of 500,000 steps or until

stable to increase steps per cycle. Langevin dynamics on (damping of 10 ps−1,

Langevin temperature of 300K). Langevin Piston on (target of 1.01325 bar,

period of 100 fs, decay of 100 fs, and temperature of 300 K).

5. Production Run with above parameters, using 2 fs or 4 fs depending on

system stability (i.e. larger timesteps with longer simulations before crashing

and also increasing non-bonding and full electrostatic evaluations with 4 fs).

Langevin dynamics on (damping of 5 ps−1, Langevin temperature of 300K).

Langevin Piston on (target of 1.01325 bar, period of 200 fs, decay of 100 fs, and

temperature of 300 K).

All three filament models followed this protocol. Also, each model was simulated for

three independent runs at 500 ns each in which the filament (with or without cofilin)

began as a perfectly symmetrical filament built from the Oda model. The first of the

simulations was split into three parallel simulations at the 250th ns (Sim 1a, 1b, and

1c), two of which being initiated with new starting velocities. See Figure 5.4.
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In Simulation 1 of each model, the cell basis vectors were reset (like the error in the

All Atom model simulations). While there does not seem to be much overall behavior

differences, eliminating the reset allowed the simulations to run for longer time steps

(4 fs) and for longer times without crashing.

Simulation Protocol

Symmetrical
Starting
Filament

Sim. 1

Sim. 2

Sim. 3

Sim. 1a

Sim. 1b

Sim. 1c250ns 250 ns

250 ns

250 ns

500 ns

500 ns

Figure 5.4: CG Simulation Protocol: All three filaments were run in 3 independent simulations
for a total of 500 ns. The first simulation was restarted at the 250th ns with two new velocities as
three parallel simulations.

Table 5.1: Coarse Grain Simulation Details:
Number of coarse grain atoms are listed for each category. Note that the ions and water are also
coarse grain beads.

Filament Model Total Atoms Protein Atoms No. “Na+” No. “Cl−” No. Water
Bare 109,304 14,520 353 73 94,358
Decorated 113,229 17,104 348 84 95,693
Sparse 110,379 15,166 352 76 94,785

5.2.3 Defining Metrics

Although we can visually observe the movement of the filaments in VMD, it is difficult

to see the subtle changes that occur. We have developed a set of metrics to track the

behavior of the filaments to compare them quantitatively.
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The physical lengths of the filament can be described by the number of values. The

longitudinal distance is the distance between the centers of mass (COM) of

actin protomers Ai and Ai+2, most associated with the D-loop. The lateral distance

is the distance between protomers Ai and Ai+1, associated with the H-loop. See

Figure 5.5.
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Figure 5.5: Definition of Metrics: Actin protomers are approximated by their centers of mass.
This allows for the calculation of axis points. The axis allows for the calculation of twist. Two axis
units are sufficient for the calculation of bend.

The axis is determined by first finding where the axis points are. This has been

done in other models (e.g. Pfaendtner et al. 2010). Again, using the centers of mass

(COM) for all protomers, we find the midpoint of Actin Ai and Ai+1 and call it point

m1. The midpoint between the COM of Actin Ai+1 and point m1 is p1 (orange point)

which becomes the axis point for the trimer of Actin Ai, Ai+1, and Ai+2. When this

process is repeated for the next set of trimers, Actin Ai+1, Ai+2, and Ai+3, we get the

next axis point, p2. See Figure 5.6 for these values. If:

−→a =
−−−−→
p1Ai+1 (5.1)

−→
b = −−→p2p1 (5.2)
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(considered one axis unit)

−→c =
−−−−→
Ai+2p2 (5.3)

the effective dihedral angle between them is the twist θ of Actin i+1 to Actin i+2.

For purposes of established convention on angles, it is actually twist = 180 - θ.

twist θ = tan−1

 |−→b |−→a · (−→b ×−→c )

−|−→b |2−→a · −→c + (−→a · −→b )(
−→
b · −→c )

 (5.4)

The Oda 2009 bare filament is 166.4◦ which actually has a negative sign in front,

as seen in the transformation matrix, so values less than that (and in our analysis)

represent over-twisting and values above are under-twisting.

3

2

a

b
c

1

2

3

4

twist =

1

3

2

3

2
a
b

m1
m2

p2

p1

cA(i+2)

A(i)
A(i+1)

A(i+3)

Figure 5.6: Twist: Twist can be calculated for two consecutive trimers, Actin Ai, Ai+1, Ai+2 and
Actin Ai+1, Ai+2, Ai+3. The blue dots, A, represent the center of mass (COM) for each protomer.
The orange dots, p represent the axis points. Red arrows a, b, and c are vectors.

The bend φ is defined as the angle between two axis units

−−−→
axis1 = −−→p1 p2 (5.5)

−−−→
axis2 = −−→p2 p3 (5.6)

bend φ = 180− cos−1(
−−−→
axis1 · −−−→axis2) (5.7)
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as seen in Figure 5.5.

The axis length is described as the summation of each axis unit. This is a better

measure than the filament length, which we define here as the distance between the

first and last protomer’s COM. Note both measures are shorter than the actual length

that a filament spans.

The fluctuation of twist (or any other measure) is defined by the average of 10 ns

sliding window ahead of a given time point. This helps determine how much change

in motion (either smoothness or disorder) is occurring within the filament in a short

amount of time.

5.3 Results

5.3.1 Maintaining Contacts (Relative RMSD)

Just as in Chapter 4, where Relative RMSD was used to evaluate binding contacts,

it is used again here to determine how well the cofilin remain bound. Values for both

decorated and sparse filaments remain below 10 Å, which is lower than the average

AA MD. Since this is CG, we expected to be more generous with binding distance,

but it seems that the cofilin stay close to the actin and do not disconnect. See Fig 5.7

for RMSD of decorated and sparse filament. Only Simulation 2 of both models is

shown as an example of this analysis.

5.3.2 Twist

In looking for a trend in the numbers, it appears there is not an obvious one, as will

become clear in the following results. Initially, each of the filament models were run

as one simulation, Sim 1a. These results were very promising in terms of the twist

angles having a clear signature for each model. The goal of the trifurcation at 250 ns

was to collect more statistics, with the assumption that simulating long enough after

this break-point, with new velocities, could generate new conformations; however,
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Figure 5.7: RMSD of CG Decorated and Sparse Filament: RMSD remain below 1.0 nm
for decorated and below 8.5 nm for sparse. (Flanking actins, Actin i and Actin i+2, are fitted with
least squares and the RMSD of the bound Cofilin i or Actin i+1 on the opposing side is calculated
over the course of the trajectory.) Note that the RMSD scale is scaled to be comparable to RMSD
plots in Chapter 4. All frames are sampled at every 0.02 ns.

the filaments appeared to be similar. See Figure 5.8. But to increase the statistics

and to see how reproducible these results were, Sim 2 and Sim 3 were launched from

a perfect filament. Only then did it become apparent that it was actually quite

stochastic. Since each simulation takes months to run and yields essentially only one

data point (or at least one independent filament structure), there is very limited data,

and thus difficult to calculate statistics.

Filament Average

The twist of the filaments was calculated by taking the last 100 ns of each simulation

(from 400-500 ns) and averaging them for a single set of values. (In the case of Simu-

lation 1 where there is a trifurcation in the simulation, the last 100 ns of Simulation

1a, 1b, and 1c were combined and averaged.) A graphical view of the results can be

seen in Figure 5.10 and the values can be seen in Table 5.2.

On a case by case basis, the bare simulation shows a trend for the first two independent

runs. The average twist in the middle of the filament is about 170◦ for Sim. 1 and

Sim. 2. (The issue of twisting not being about the observed 166.4◦ will be addressed
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Figure 5.8: Example of Filament Twist from Trifurcating Simulation: For the decorated
filament, these are an average of the last 100 ns of (a.) Sim 1a, (b.) Sim 1b, and (c.) Sim 1c.

in Section 5.3.3.) Indeed, the shape of the filament is very similar with consistent

and even twisting in the middle and either significant over- or under-twisting on the

edges. Sim. 3 seems to be a outlier with a lot of variability and sudden under-twisting

(beyond 180◦) at the pointed end, followed by over-twisting (to 155◦) in the middle

of the filament, and finally back to under-twisting, before finishing over-twisted at

the barbed end. This roller-coaster twisting is most prominent in Bare Sim. 3, in

comparison to all the other simulations. This is perhaps a stability issue.

The decorated filament also does not exhibit the same behavior across its three sim-

ulations, but does not seem to have as much of an outlier. It ranges from lack of

variability (Sim. 2) and roller-coaster characteristics which can be attributed to iso-

lated regions under- or over- twisting and the neighboring sites trying to adjust (Sim.

1 and 3). It cannot be concluded that the filament is overall, under- or over- twisting.

The sparse filament cannot readily be analyzed with averages because of its expected

asymmetrical behavior, even though such results are presented here. The shape of

the filament that is most prominent in the region between the two cofilin binding

sites, in Sim. 2 and 3, where there is a change from high to low values of twisting.

This could be attributed to the bound cofilin, but since there are only 3 simulations,

the statistics are insufficient to prove that case.

87



Figure 5.9: Coarse Grain Filaments: The filaments for the 500th ns are shown here, from left
to right, bare (Sim. 2), decorated (Sim. 3), and sparse (Sim. 3).

(a) Filament in Full CG Bead Representation

SparseDecoratedBare
(b) Filaments in Ribbon Representation: The color scale
for the twist ranges from red (over-twisting) to blue
(under-twisting, flat).
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Table 5.2: Average Twist for middle 5 twist values: The last 100 ns of each simulation was
averaged for the middle 5 twists (4-5 and 14-15) as denoted by the green lines in Figure 5.10.

Filament Sim 1 Sim 2 Sim3 Avg σ
Bare 169.2◦ 170.4◦ 163.4◦ 167.7◦ 3.7
Decorated 165.1◦ 172.1◦ 170.3◦ 169.2◦ 3.7
Sparse 168.5◦ 170.7◦ 165.8◦ 168.4◦ 2.4
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Figure 5.10: Average Twist of 3 Simulations of 3 Filaments: Average values for the middle
5 angle values, to eliminate edge effects.

Figure 5.8 shows the filament twist across a trifurcating simulations (at the 250th ns).

The last 100 ns (from 400-500 ns) are averaged for each of the three plots. While there

are some differences, the shape is generally the same. This shows that once a CG

simulation of this size is underway with a given set of starting velocities, simulating for

a long period of time (150 ns) after reinitiating velocities does not greatly change the

course in which the dynamics are heading. Namely, the trifurcating simulations are

not independent of one another. Twisting may actually be determined by stochastics,

whatever the random initial velocities are. Once a simulation has begun, the way it

is going to twist is fixed. Although the trifurcation occurred after the filament has

equilibrated in filament length, the path of twisting is most likely set even before that

point in time.
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Figure 5.11: Trifurcating Simulation: Sim 1a, 1b, and 1c for the three models. Note the
similarity across the trifuctating simulations in each of the filament models.
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Distribution

The distribution of twist is perhaps is by far more informative than the values them-

selves.

The bare filament, in Sim. 1 and 2, have a fairly low distribution of twist angles;

Sim. 3 is an outlier with the widest spread out of all simulations—the spread seems

to widen with time. But notably through all three simulations, the fluctuations are

higher than both decorated and sparse filaments. See Figure 5.13a (right most column

for fluctuations). The histogram of the last 200 ns for Sim. 1 and 2 can be seen in

Figure 5.12a. (Including Sim. 3, the outlier, as in Figure 5.15, still shows a peak

around 169◦, but also appears bimodal.) The majority of the twist angles is at 170◦.

The decorated filament, on the other hand, has lower fluctuations (Figure 5.13b, right

column). It also has a wider spread that is bimodal (Figure 5.12b) with two peaks at

about 164◦ and 172◦.

The sparse filament shows higher fluctuations like that of the bare filament, as well

as a fairly large spread like that of the decorated filament, although Sim. 1 shows a

smaller spread. (Figure 5.13) It appears to have a peak at around 167◦.
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Figure 5.12: Distribution of Twist
Distribution of Twist: These histograms show the distribution of twist angles over the last

200 ns of simulation (from 300 to 500 ns) for the combined trajectories of Sim 1a, 2, and 3. (In the

case of the bare filament, Sim 3 has been omitted because it shows some outlier behavior. See

Figure 5.15 for a comparison.)

91



0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

 

 4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12
12 13
13 14
14 15

0 100 200 300 400 500
155

160

165

170

175

180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

0.5

1

1.5

2

time  (ns)

va
ria

nc
e

0 100 200 300 400 500
150

160

170

180

time  (ns)
an

gl
e

0 100 200 300 400 500
155

160

165

170

175

180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

0.5

1

1.5

2

time  (ns)

va
ria

nc
e

0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

0 100 200 300 400 500
155

160

165

170

175

180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

1

2

time  (ns)

va
ria

nc
e

0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

 

 
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12
12 13
13 14
14 15

0 100 200 300 400 500

160

170

180

time  (ns)

an
gl

e
0 100 200 300 400 500

0

1

2

time  (ns)

va
ria

nc
e

0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

0 100 200 300 400 500

160

170

180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

1

2

time  (ns)

va
ria

nc
e

0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

0 100 200 300 400 500

160

170

180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

1

2

time  (ns)

va
ria

nc
e

0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

 

 
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12
12 13
13 14
14 15

0 100 200 300 400 500
155

160

165

170

175
180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

0.5

1

1.5

2

time  (ns)

va
ria

nc
e

0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

0 100 200 300 400 500
155

160

165

170

175

180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

0.5

1

1.5

2

time  (ns)

va
ria

nc
e

0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

0 100 200 300 400 500
155

160

165

170

175
180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

1

2

time  (ns)

va
ria

nc
e

Bare Sim1

Sim2

Sim3

Dec Sim1

Sim2

Sim3

Sparse Sim1

Sim2

Sim3

0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

 

 4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12
12 13
13 14
14 15

0 100 200 300 400 500
155

160

165

170

175

180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

0.5

1

1.5

2

time  (ns)

va
ria

nc
e

0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

0 100 200 300 400 500
155

160

165

170

175

180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

0.5

1

1.5

2

time  (ns)

va
ria

nc
e

0 100 200 300 400 500
150

160

170

180

time  (ns)

an
gl

e

0 100 200 300 400 500
155

160

165

170

175

180

time  (ns)

an
gl

e

0 100 200 300 400 500
0

0.5

1

1.5

2

time  (ns)

va
ria

nc
e

a.

c.

b.

Figure 5.13: Twist Over Time: (a.) Bare, (b.) Decorated, (c.) Sparse. The first column tracks
each individual twist (from twist 4-5 to 14-15, omitting the ends). The second column is the average
twist of the middle 11 twists in a filament over time and its standard deviation. The third column is
the fluctuation of twist for a 10 ns window. Simulations 1a, 2, and 3 are presented for each model.
Note how the fluctuations in bare are higher than that of decorated.
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5.3.3 Distance Measurements

The measures of axis length, lateral distance, and longitudinal distance over time

are plotted in Figure 5.14. There are two major points of this figure. First, the

filament seems to shrink approximately 2 Å per protomer, which is actually about

a 5% reduction. Initially, it seemed like this effect was due to the coarse graining

and the possible interstitial space between the beads, from the AA to CG conversion,

that leads to compression. However, the the Oda 2009 and Fuji 2010 structures

were stretched for imaging. (Fuji et. al. used blotting conditions that made the

filaments straight.) The all-atom filaments from Chapter 4 do not shrink as much.

The shrinking in the coarse grain simulations stabilizes after about 250 ns. This may

be a reflective of true filaments.

There are fluctuations in the lateral and longitudinal distances, but this does not

immediately appear correlated to twist. The most change appears in the longitudinal

distance while the lateral distances mostly stay at comparable lengths to one another.

Sim. 2 clearly has at least two longitudinal lengths that are much higher than the

others, in a split into two populations. The more extreme changes in longitudinal

distances, particularly in the sparse model Sim. 2., may be a sign that it is the

weaker contact point and thus perhaps the site of severing.
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Figure 5.14: Filament Lengths over Time: (a.) Bare, (b.) Decorated, (c.) Sparse. The first
column tracks the axis length. The second column is the lateral distance. The third column is the
longitudinal distance. Simulations 1a, 2, and 3 are presented for each model.
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5.4 Discussion

Much of the twist and distance analysis had been done for the AA simulations, but

the filaments proved to be too short for any meaningful conclusions. The CG model

seems to have compensated for this shortcoming and has allowed for statistics on

more data points.

Because our filaments are of a finite length, they will be free to move. A periodic

filament of infinite length has been simulated previously—with a 13 protomer per

repeat (or crossover length) in the case of a bare filament, it is possible to connect the

ends. (Pfaendtner et al. 2010) However, such a filament would not replicate natural

free dynamics and would be expected to have less mobility. Moreover, it would also

not be able to twist and sever due to enforced periodicity. While we have not yet

seen such an event in our CG model, there is still the hope of it in the unsymmetrical

behavior we see between the pointed and barbed ends. The shrinking of the filament

length, while somewhat an artifact of CG, also might reflect the fact that the original

Oda filament is straightened and possibly also stretched (Galkin et al. 2010), but that

stretching notion seems to be debated by people in the field. Unfortunately, time and

length scales may still be a hindrance.

The shortening effect in the CG simulation may partially be a result of the coarse

grain beads being parameterized for membrane bilayers and therefore may have bead

radii that are slightly short. Since the simulations do no fall apart and the protein

system still possess their filament characteristics, it is most likely that the radii are not

terribly short. It would be interesting to increase the radii in subsequent simulations.

Since the filament is decorated all at once, it still has the characteristics of a bare

filament. Even with 500 ns of simulation time, it cannot be expected that the filament

can become fully twisted because it takes a lot of time for the twists to propagate out

to the ends. Ironically, it was because the All Atom filaments were too short that we

saw edge effects, but with these longer filaments, the twists become trapped within

the filament. While we cannot see the process of a filament becoming a decorated

state, this may cast light on the activity of a true filament.
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The simulations show that over-twisting at one point leads to under-twisting at an-

other. With our finite filament, these effects could be propagated out to the ends,

which may be possible with simulated annealing if our time scales cannot get that

far. With this, the twist angle values would be more meaningful, particularly since

the decorated filament is effectively a bare filament with cofilin binding cooperatively

in one region.

Another interesting discovery, concerning these simulations is how important initial

velocities seem to be. Once each simulation is launched from a perfectly symmetrical

filament, the course of how the filament changes conformation may be establish. The

250 ns time point was chosen as a point of trifurcation because the filaments appeared

to mostly stopped shrinking and had overall been equilibrated. That apparently is

too late of a time to reinitialize velocities because the structures, with an additional

250 ns of simulation, do not appear to be vastly different. With this respect, it may

be wiser to start many simulations for about 150-200 ns each in order to obtain a

better sampling of conformations.

This realization may also be relevant to the bare filament and its outlier Sim. 3. It

could be that Sim. 3 is not an outlier and that a bare filament simply has the ability

to be more flexible (or at least more wildly behaved). In such a case, perhaps it

twists wildly (with the right conditions) and allows a cofilin to bind in such a state.

In order to see if the bare model has high or low spread, it may need more simulations

of shorter time. This would resolved the confusion as to whether Sim. 3 should be

included in analysis or not (5.15).
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Figure 5.15: Distribution of Bare Filament Twist: Histogram of bare filament, the last 200
ns of (a.) all three simulations, and (b.) removing the outlier Sim 3 data.
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The sparse filament must be analyzed differently than that of the bare and decorated

filaments. The twist distributions show a shift, which shows that there is a difference

against the other filament models. We have looked for a trend of twisting up and

down stream of bound cofilin, but the results are currently incomplete.

In an attempt to look for a severing event, or even sever twisting, we plan to use

simulated annealing methods to reach more conformations. This will be relevant for

all three filament models. It may also help in ironing out the over- and under-twisting.

Additionally, all the filament cases need many shorter (∼200 ns) simulations so that

there will be more statistics and better histograms of the data.

In the F-actin polymorphism paper (Galkin et al. 2010) and from personal discus-

sion, the author claims that filaments must first twist into a conformation where the

D-loop is disordered (mode 4 or 5 in Figure 1.10) before cofilin can bind. In recent

discussions during the March 2011 Biophysical Society Meeting, Galkin stated that

the Oda structure is not proper for cofilin binding simulations because of it’s struc-

tured D-loop. He suggested either deleting the D-loop all-together, because of its

disordered structure, or using his fitted structure (to one of his bare/native filament

modes, possibly with deleted D-loops, with greater twist like that of decorated cofi-

lactin) would be a better representation and starting point of decorated system. Our

all-atom simulations, however, do not form helices and in observing them seem to un-

der take very random coil forms, with little correlation to one another (at least during

trajectory visualization). In coarse graining the filaments, the secondary structure

seems to lose its importance as the surface generated by side chain beads (with elec-

trostatic and Lennard-Jones parameters defining the different types of residues) begin

to be more prominent alongside the general globular structure of each protomer or

cofilin. It might be interesting to use a pre-twisted filament to see how the twisting

distributions change, especially since it is hard to guarantee sampling such conforma-

tions even with CG and may be worth trying. However, deleting the D-loop may be

unnecessary and possible detrimental. The D-loop is very dynamic and many studies

have already shown that its reactivity and importance is high; one would think that

its presence is vital for a believable model. With CG, the D-loop further loses its

secondary structure and deleting it would introduce a large gap. This would prob-

ably introduce a large warping of the filament and the resulting twist and bending

may not actually be credited to the cofilin. However, it might be entertaining to try
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since it just might at least result in a severing event (even if it might not be real or

correct).

Another characteristic that would be very interesting is the energy of a twist. This

would be difficult to calculate since using the simulation to calculate such a property

would require only one twist angle change at one site on the filament in a before and

after twist snapshot. This may still be possible if we only consider trimers using ei-

ther the all-atom simulation or the coarse-grain snapshots converted back to all-atom

structures. Such analysis would be interesting, juxtaposed with some new and un-

published work presented by De La Cruz (also at the March 2011 Biophysical Society

Meeting), where he calculated the energies associated with twisting and bending of

cofilactin regions next to bare ones. His data suggests that bending energy is insuf-

ficient to break a filament, but that twist energy at the boundaries is approximately

equivalent to the energy needed to hold subunits together. With a sampling of con-

formations from the all-atom and/or coarse grain simulations, calculating energies of

different states of twist/bend may be possible.
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Chapter 6

Conclusions and Future Work

6.1 Part 1: The Interaction of Cofilin with the

Actin Filament

In this section, we have built a binding model for how cofilin interacts with F-actin,

with the aid of mutagenesis and biochemical data as well as docking and molecular

dynamics tools. This model is also in agreement with structural EM data as well.

From this model we have found residues of importance that not only matches previous

data, but also found new residues that could be of interest.

6.1.1 Future Work

The new residues need to be experimentally verified. Once that work is done, I can

refine the model.

Additionally, there are the loops where human cofilin α-2 and α-3 are located, as seen

in the structural alignment of the structures (Figure 3.1) where they are colored in

red. Since a mutation in α-2 renders yeast cofilin unstable, it would be interesting to

see how that loop affects human and other ADF/Cofilins as well as other structurally

similar proteins.
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6.2 Part 2: Short-Ranged Dynamics of Cofilin-

Bound Actin Filaments:

An All-Atom MD Simulation of Filament Models

Bare, decorated, sparse, and split filament models were built from the model created

in Part 1. In this section, I more carefully examined the cofilin-actin interactions by

running all-atom MD simulations of all three filaments. The cofilin binding contacts

are well maintained for the decorated and sparse models, but I could not obtain a

clear dynamics signature to distinguish between all three models. This is due to

the limited time-scale for so large a system (with so many waters) as well as the

short filament that computational resources allow us to simulate. This work was still

important to lay basis for coarse graining work in the next section.

6.2.1 Future Work

Some of the PCA work can be redone using the basis set of only the bare trajectory.

Although not the best use of time, bootstrap analysis can be done to show statistical

significance in the RMSF analysis.

6.3 Part 3: Long-Ranged Dynamics of Cofilin-Bound

Actin Filaments

A Coarse Grain MD Simulation of Filament Models

To reach longer time scales and filament lengths, I ran simulations of bare, deco-

rated, and sparse filament models using coarse graining techniques in Part 3. Here,

the characteristics of twist as well as other length measurements were more obvi-

ous. Decorated filaments may have a wider spread of angles and lower fluctuations

than most of the bare model simulations. Also, the distributions differ between the

filaments.
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6.3.1 Future Work

To be more statistically confident in our results, I would like to run more simulations

for shorter periods of time. Additionally, using simulated annealing will shake up the

system and perhaps reach these conformations more quickly. Additionally, I would

like to explore the idea of increasing the bead radii for CG in a water (as opposed to

lipid membranes). Finally, though I wish I had done this in time for the dissertation,

Kolmogorov-Smirnov test can be used to compare the histograms of the existing data

to see if they are significantly different.

Per peer request, I would also like to use different filament models as the starting

point of CG simulations. While I would not go as far to say these alternative states

should have been used instead of the Oda filament, using them may put certain peers

at ease, although perhaps a poor allocation of time. Because CG does not depend so

much on contacts, fitting the current model to a new filament should yield filaments

that are reasonable. Using a pre-twisted filament will probably not have a comparable

distribution to the filaments we are currently using since they represent a different

population. Also, such a condition would replicate binding that has occurred for a

while; this is scenario where a filament first twists before cofilin binds, which has not

been definitively proven to be true yet. It may be worth trying a filament without

the D-loop and seeing if there is greater twisting and possible severing.

Finally, it would interesting to explore the energy aspects of twisting (and possibly

bending). That will require additional preparation.

Although these studies are worth looking into, there is still a possibility that this CG

model may be insufficient to find the severing event for which everyone is searching.

However, any coarser of a model in which the characteristics of certain residues, and

thus surfaces, would be lost may not necessarily result in finding an answer. This

fine balance between the detail of an all-atom model that cannot reach long time or

length scales and a coarse model that cannot pick up molecular subtleties has as of

yet been unreached.

*****
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In summary, while I have completed much work in this thesis, there is still tirelessly

more work to be done.
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H Nakayama. Long-range conformational effects of proteolytic removal of the last
three residues of actin. Biochem J, 307 ( Pt 2), Apr 1995.

R L Tellam. Gelsolin inhibits nucleotide exchange from actin. Biochemistry, 25(19),
Sep 1986.

R Tiwari, K Mahasenan, R Pavlovicz, C Li, and W Tjarks. Carborane clusters
in computational drug design: a comparative docking evaluation using autodock,
flexx, glide, and surflex. J Chem Inf Model, 49(6), 2009.

Marleen Van Troys, Lynn Huyck, Shirley Leyman, Stien Dhaese, Joël Vandekerkhove,
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