Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-35

1989-08-01

Host-Network Interface Architecture for Gigabit Communications

James P. G. Sterbenz

There are two complementary trends in the computer and communications fields. Increasing
processor power and memory availability allow more demanding applications, such as scientific
visualizations and imaging. Advances in network performance and functionality have the
potential for supporting applications requiring high bandwidth communications. However, the
bottleneck is increasingly in the host-network interface, and thus the ability to deliver high
performance communications capability to applications has not kept up with the advance in
computer and network speed. We have proposed a new architecture that meets these
challenges, called Axon. The Axon thesis is that an essential requirement for the support... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Sterbenz, James P. G., "Host-Network Interface Architecture for Gigabit Communications" Report Number:
WUCS-89-35 (1989). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/900

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/900?utm_source=openscholarship.wustl.edu%2Fcse_research%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/900

Host-Network Interface Architecture for Gigabit Communications

James P. G. Sterbenz

Complete Abstract:

There are two complementary trends in the computer and communications fields. Increasing processor
power and memory availability allow more demanding applications, such as scientific visualizations and
imaging. Advances in network performance and functionality have the potential for supporting
applications requiring high bandwidth communications. However, the bottleneck is increasingly in the
host-network interface, and thus the ability to deliver high performance communications capability to
applications has not kept up with the advance in computer and network speed. We have proposed a new
architecture that meets these challenges, called Axon. The Axon thesis is that an essential requirement
for the support of high performance distributed IPC is to provide a direct channel for object transfer
between the communicating processes. Thus, this research centers on how to create an end-to-end
pipeline to deliver this high bandwidth to applications. The goals are to develop a suitable architecture,
determine the key issues and tradeoffs, and evaluate them as data rates scale beyond 1 Gbps. Novel
aspects of this research include: an integrated design of hardware, operating systems, and
communications protocols, stressing both performance and the required functionality for demanding
applications; the proper division of hardware and software function; and reorganization of end-to-end
protocols to take advantage of the increased functionality of the emerging high speed internetworks.

https://openscholarship.wustl.edu/cse_research/900?utm_source=openscholarship.wustl.edu%2Fcse_research%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/900?utm_source=openscholarship.wustl.edu%2Fcse_research%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages

HOST-NETWORK INTERFACE
ARCHITECTURE FOR GIGABIT
COMMUNICATIONS
[dissertation proposal]

James P. G. Sterbenz

WUCS-89-35

August 1989

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Szint Louis, MO 83130-48090

ABSTRACT

There are two complementary trends in the computer and communications fielda. Increasing
processor power and memory availability allow more demanding applications, such as scientific
visuslization and imaging. Advances in network performance and lunctionality have the poten-
tizsl for supporting applications requiring high bandwidth communieations. However, the
bottleneck is increasingly in the host-network interface, and thus the ability to deliver high per-
formance communication capability to applications has not kept up with the advances in com-
puter and network speed.

We have proposed a new architecture that meets these challenges, called Axon. The Azon thesis
is that an cssential requirement for the support of high performance distributed IPC is to pro-
vide a direet channel for object transfer between the communicating processes. Thus, this
research centers on how to create an end-to-end pipeline to deliver this high bandwidth to
applications. The goals are to develop a suitable architecture, determine the key issues and
tradeolls, and evaluate them as datn rates seale beyond 1 Gbps.

Novel aspects of this research include: an integrated design of hardware, operating systems, and
communications protocols, stressing both performance and the required functionality for
demanding applications; the proper division of hardware and software function; and reorgani-
zation of end-to-end protocols to take advantage of the increased functionality of the emerging
high speed internetworks.

Reflerences updated April 5, 1990.

James Sterbenz is on leave from IBM Corpeoration at Washington University in St. Louis.

HOST-NETWORK INTERFACE
ARCHITECTURE FOR GIGABIT
COMMUNICATIONS

[dissertation proposal]

James P. G. Sterbenz
+1 314 726 4203 jps@wucsl.wustledu

1. Introduction

The ongoing research in the computer communication and telecommunications fields suggests two
emerging trends which are complementary to one another. First, as time goes on we will continue
to witness communication networks which can support increasingly high data rates. For example,
networks with data rates of a few hundred Mbps are being prototyped, and networks with data rates
of a few Gbps are being planned. The future generation of internetwork, consisting of these high
speed subnetworks, will be referred to as the very high speed internetwork (vHsi) [Pa89]. Second,
a diverse application set having differing bandwidth, latency, and reliability requirements will have
to be supported on the VHSI communication substrate. For example, video distribution, computer
imaging, distributed scientific computation and visualisation, distributed file and procedure access,
and multimedia conferencing are all target applications. These trends pose a number of new chal-
lenges and opportunities to the researchers in the field. One such challenge is how to support high
performance interprocess communication (IPC) in this environment.

We argue that the existing approach of supporting IPC cannot deliver the underlying high band-
width to newer and demanding applications because of a number of reasons: there is a lack of
integration among host architecture, operating system, and communication protocols; there are
numerous performance bottlenecks in the existing end-to-end protocols; and the shared memory
paradigm is not well supported in a loosely coupled or network environment.

‘We propose a new communication architecture for distributed systems called Axon. The primary
goal of the Axon architecture is to support a high performance data path delivering visi bandwidth
directly to applications. The significant features of Axon are:

e An integrated design of host and network interface architecture, operating systems, and com-
munication protocols. To serve the needs of high performance IPc, it is essential that the
design and implementation of all of these areas are coordinated to minimise the overhead in
their interaction.

e A network virtual storage facility which includes support for virtual shared memory on loosely
coupled systems. This is accomplished by extending segmented, paged virtual storage man-
agement to allow segments to be addressed anywhere within the vHs1.

2 Dissertation Proposal

o A high performance, lightweight object transport facility which can be used by both message
passing and shared memory mechanisms. Flow control is rate-based, and uses an underlying
connection oriented internet substrate, Error control is decoupled from flow control, and to a
great extent from end-to-end latencies, and specifically tailored to object transport.

o A pipelined network interface which can provide a path directly between the visi and host
memory. This is accomplished by implementing critical protocol and operating system assist
functions in hardware.

The Axon thesis! is that an essential requirement for the support of high performance distributed
IPC is to provide a direct channel for object transfer between the communicating processes. Thus,
a pipeline is set up that directly connects the memory addressed by the applications, without in-
termediate bufifering, data copying, or transfer of control. The proposed research consists of of the
design of the Axon architecture to satisfy the Axon thesis, and of exploring the issues that arise in
maintaining an application-to-application pipeline through the vHSI as data rates scale upward.

1.1. Organisation of this proposal

This proposal indicates weaknesses of current communications models applied to the visI envi-
ronment, and describes a more suitable model for high performance communication. The Axon
architecture is described, and a number of research issues are identified along with methodology to
address them.

This proposal is organised as follows: Section 2 gives motivation for the investigation of high
performance 1PC, and sumarises problems with current implementations. Section 3 provides back-
ground for further research by describing the Axon architecture at a high level. Section 4 discusses
the issues that will be pursued in the proposed dissertation, narrowing the focus from the initial
Axon research and design. The central theme is based on a high performance end-to-end 1PC pipeline
between applications. The current status of the research is indicated, along with a plan to complete
the dissertation. Section 5 describes other related current and previous work, and Section 6 is the
conclusion.

More detail on the Axon architecture can be found in the technical reports [StPa89a, StPa89b,
StPa80c, S5t90]. Based on the information in the Axon overview section of this proposal (§3), details
on Nvs can be gotten from [StPa89b} §3-5, on ALTP-0T from [StPa89c) §3-4, and on the host
and network interface architecture from [St90] §4-6. An example of an Axon segment transfer is
presented in [StPa89a] §3.6.

An overview of the Axon architecture is presented in [StPa89a); there is substantial overlap in
the motivation and Axon overview sections with this proposal. If [StPa89a)] is read first, §2.3 and
§4 of this proposal may be read in isolation without significant loss of content.

2. Motivation

We are witnessing a number of revolutionary changes to the communication substrate, At least
a few orders of magnitude increase in communication bandwidth is imminent, giving rates on the
order of 1-10 Gbps. This is also accompanied with improved functionality and lower error rates
of the communication substrate. For example, emerging networks are designed to carry multiple

thesis is used in the sense of a hypothesis which will be assumed to be true, on which the proposed research is
based

Sterbenz 3

types of traffic: video, voice, and data, and designed to make performance guaraniees based on their
characteristics [PaTu89].

The scientific computatior environment has also come a long way. There are a growing number of
scientists in all disciplines solving bigger and more complex problems using computers, some of which
are accessed remotely across a network (e.g. [Fe84, Pe84, KaSm87, Ni89]). Thus, the application
set for the vHSI communication substrate includes application classes such as computer imaging,
distributed scientific computation and visualisation, large distributed file and procedure access, and
multimedia conferencing,.

2.1. Target environment

Figure 1 depicts what we view as a typical future scientific and engineering computation environment
[McDe87, Pa87, RaLa87, K188]. At the heart of this is a high bandwidth communication substrate
(vHs1) which can support communication at rates of at least 1 Gbps, and provide performance
guarantees in terms of throughput, delay, packet loss rate, and packet sequencing. The vHSI provides
access to a number of large mass storage facilities. These facilities store data and images obtained
from computation, such as simulations, finite element analysis, and molecular modeling, as well
as from real-time data acquisition, such as from satellite telemetry and medical scanning. User
applications can use and cause the generation of parts of this data during their execution.

supercomputer .
mass storage (1-10 Gflops) ;E:;:)as]e
(1-10 Tbyte) system

!
VHSI
(1-10 Gbps)

——— m————
e

minisuper
computer

display

meinframe

graphics
workstation
(RKx2K pixel)
{10—-100 Mflops)

Figure 1: Target Environment

In this scenario, users have high performance graphics workstations with compute engines (such
as the Ardent Titan [Dilla88] or Stellar G51000/2000 [SpMo88, St88b]). These workstations include
a bit mapped display (~2Kx 2K pixel), floating point processor(s) (10-100 Mflops), and a large fast
memory (32-512 MB). In a local environment, the user will have access to modest parallel machines
and mini-supercomputers (such as the Intel iPsc-2 [Ra85, In86a]) and to mainframe computers
(such as a cpc Cyber 180/990 {Cpc84a, Cpc84b] and 1BM 3090 [IBM86a, 1BM88a]). The local

4 Dissertation Proposal

machines can be used to solve smaller problems or to perform trial runs of a bigger problem. Access
to supercomputers (such as the Cray-2, ETA-10, or NEC sx [Hw87, Hw89]) and special purpose
systems (such as simulation engines) will be provided across the vHsI.

An example computation might involve large modeling or simulation programs to be run on
supercomputers and special purpose processors. Results may be accumulated on mass storage,
or piped in a stream to the workstation as produced, allowing the progress to be viewed. The
workstation takes raw output data, and performs visualisation computations to produce images.
The local rendering of images allows for the user to examine the visualisation in real time, e.g.
rotation of a 3-dimensional image, or variable speed playback of a time-varying animation. In
another scenario, the user may want to view images generated directly by the supercomputer, or
stored in an image database. Additionally, the user may wish to use the supercomputers in a time-
shared mode, e.g. rerunning parts of simulations with differing parameters to render new images.
This demands very low latency (ideally sub-second). The important points to note about this type
of application environment are the following:

s An application is programmed as one distributed program which uses remote procedure calls,
shared memory segments, streams of data, and/or message passing primitives for communica-
tion.

e Application communication needs are bursty, and the bursts require large amounts (megabytes)
of data to be moved across the network.

s Applications require the interactive use of the resources across the network, to allow the control
and modification of the computations, which requires the blocks of data to be delivered with
low latency (sub-second). This coupled with the size of the data demands very high bandwidth
(=1 Gbps).

o Both ends of communication may have to do processing of the data, allowing local processing
of data and real-time image interaction, in addition to the remote data access and processing,.

¢ Communication processing overhead must be minimised to provide low latencies at high band-
width.

¢ As processor speed and network bandwidth increase, end-to-end latency is an increasingly
dominant factor, affecting the performance of communicating processes and the policy and
performance tradeolls in systemn design.

2.2. Limitations of the existing model

These characteristics of communication pose a number of challenges to the designers of host inter-
faces. Over the past few years significant progress has been made in the fields of communications
and computer architecture. Specifically, the communication networks are able to move increasingly
large amounts data from one place to another at high bandwidths and with low latency, Similarly,
computers can process data increasingly fast, and even support interactive visualisation. The major
bottleneck, however, remains at the host-network interfaces. The ability to deliver high bandwidth
communications to applications has not kept pace with other developments. For example, even on
a high performance graphics workstations, current IPc implementations achieve throughputs of no
more than a few Mbps.

The problems with existing architectures can be explained as follows: At the user level, processes
communicate either by shared variables or by passing messages. At the system level, the two
corresponding paradigms are shared memory and message passing. The shared memory mechanism

Sterbenz 5

| shared varisbles | | message pessing | user | shored variables | [message passing |

|

ghared memory | | message passing | | shared memory l | message passing —l

virtual storage I

| net virtua) storage | |net mossage pnsslng—l
— communication —

[771/0 subsystem | [object trnnaport |

l

t
b protocels —f sysem l]

local memory hardware local memory intematwork

(a) typlical approach (b) Axon approach

Figure 2: Interprocess Communication Implementation

is supported on tightly coupled systems with shared physical memory. Shared memory is not directly
supported across a network, and must be mapped onto message passing at the system level. Message
passing is supported on both tightly and loosely coupled systems. The support for message passing
on tightly coupled systems is provided by reading and writing messages to shared physical memory,
or by sending and receiving messages using queues or buffers. The support for message passing
across a network typically consists of a stack of network protocols and mechanisms to treat the
network as an /o device, as shown in Figure 2a. The problems with this approach are the following:

Architectural: There is a lack of integration of hardware, operating system, and communication

protocols. This results in considerable inefficiency and complexity for several reasons. The
functionality of operating system and communications system components are not optimised
for one another, thus the interaction and interfaces between them is inefficient and complex.
There is a lack of correspondence between network and host data objects (e.g. packets and
pages), and therefore inefficient synchronisation between components (e.g. per packet process-
ing and page fault handling). This results in unnecessary control transfer, data buffering and
reformatting.

The network interface is treated like an /o device, and therefore, the per packet processing
involves servicing interrupts, context switches, and data copying to protocol and 1o buffers.
Furthermore, since /0 processors are designed to handle a wide diversity of /o devices, ranging
from slow character and unit record devices to high speed mass storage, 1/0 processors are not
designed to perform optimally for vHSI type communications. In addition, the data stream is
subject to the delays of both the I/0 processors and network interface.

There is no way to directly use the shared variables paradigm for 1PC across a wide area
network, which leads to performance compromises for applications naturally suited for data
sharing.

Transport protocols: Many existing and proposed transport protocols are general purpose, and

are not designed to perform well for various classes of demanding applications.

General purpose error and flow control schemes are used which are complex to implement
in hardware, and which do not exploit the improved functionality of the newer high speed
networks.

6 Dissertation Proposal

End-to-end flow control schemes, such as the sliding window and variants, are unable to control
the exact rate of transmission, due to interaction with error control.

Congestion control is prone to instability due to inaccurate estimates of end-to-end latency
and lost packets, and other system interactions.

Flow and congestion control mechanisms are less able to respond to changing network condi-
tions as data rates increase, i.e. by the time adjustments are made, the conditions that induced
the adjustment may have drastically changed.

Network interface: Communication is handled through front end network interface or commu-
nication processors, which are stored-program processors that manipulate packets in a store-
and-forward manner, resulting in latency due to their programmed operation and buffering of
data. The network interface must also communicate with the host system using the standard
i/o interface, which is not optimised for high speed communication (as mentioned above in the
context of host architecture), resulting in an interface to the host not well suited for very high
performance communication.

2.3. A model for high performance communication

A new host communications architecture is proposed, called Axon, to address the problems outlined
above, and meet the requirements of high performance applications. The critical aspect of the
Axon architecture involves providing an end-to-end data path between distributed processes with
the characteristics of high bandwidth (sustained data rates of at least 1 Gbps), low latency, and
the required functionality for communications across the vHsI. This requires that the data path
be pipelined to a fine granularity (bit/byte level rather than packet level store-and-forward). This
section will develop a model for high performance communication in an incremental manner, starting
with & simple pipeline model, and indicating the difficulties in providing this end-to-end path. Then,
a realistic model for pipelined communications will be developed that will be the basis for the Axon
architecture presented in Section 3.

Simple pipeline model. An extremely primitive model is depicted in Figure 3. In this case,
processes execute on CPUs with their code and data in a dual ported vRAM type memory, using
the conventional random access ports. To communicate across the viisi, data is shifted through the
serial ports. As long as the serial ports are capable of shifting data at VHSI rates, the end-to-end
pipeline has been established.

CPU CPU
)
| |
VRAM VRAM

Figure 3: Simple Pipeline Model

Note that it is also important for the vHSI to provide the path internally to support the end-
to-end pipeline, but for purposes of this research, the vHsI will be treated as a pipeline whose

Sterbenz 7

characteristics can be described by a set of parameters to reflect its performance. This simple model
suffers from a number of limitations when applied to a realistic setting:

e The path between vRAM modules through the viist has considerably higher latency than in
the local environment, and with a non-uniform distribution. In a tightly coupled environment,
the smaller uniform latency can be easily dealt with. Across an internetwork, the need for
end-to-end flow control arises, resulting from internal network congestion and rate control,
and the lack of clock synchronisation at the ends.

e Related to this is the presence of errors in data transmission, resulting from bit errors, and
packet loss, duplication, and misordering. Some internetwork paths may have higher error
probabilities, which the application may want to trade for performance and cost.

These are the standard arguments for the need for transport level protocols, relating to condi-
tions not present in a tightly coupled environment. Even though the underlying internetwork
and protocols will provide a quasi-reliable connection [StPa89¢], the requirements for flow and
error control cannot simply be ignored.

e The objects to be communicated must be mapped into the application name (or address)
space. In the case of the transmitting end, it may be reasonable to expect the application to
be aware of the object binding to a range of real store locations to be transmitied serially out
the vRAM. On the receiving end, however, the mapping is much more difficult. The receiving
VRAM must accept all data presented to it at the prevailing data rate, and the application must
decide where objects reside to perform the required binding. In addition to the performance
implications of this, allowing processes to arbitrarily examine incoming data is not desirable
from a security and privacy perspective. Since the end-to-end pipe must place data objects
directly into the receiving process address space without the overhead of a store-and-forward
operations, providing known buffer areas for incoming data is an unacceptable solution.

This motivates the need for system level (host hardware and operating system) assistance in
the symbol binding and address mapping. Since this requirement is similar to the motivation
for providing virtual storage mechanisms, a good solution is to extend these mechanisms to
include objects transported across the network. In addition to mapping remote objects for the
application, this provides address space isolation between processes (unless sharing is explicitly
desired). Note that some form of mapping is necessary regardless of the 1pc paradigm in use.
In the case of message passing 1PC, the message buffers/queues are mapped into the process
address space. In the case of shared variable 1PC, objects (segments) are mapped into virtual
address spaces as if a tightly coupled shared memory were available.

e The requirements for a transport protocol and mapping mechanism mentioned above require
the appropriate system level support. Clearly, to support data rates above 1 Gbps, much of
this support must reside in hardware. This includes the entire data path from the network
interface to the host memory, as well as the routine control functions to support the pipelined
data transport. This is referred to as the critical path. Thus, an interface is needed between
the memory and the network. The network connection to host memory is part of the critical
path, and requires network interface hardware to implement parts of the transport protocol
and assist in the object mapping (as well as other desirable functions such as encryption).

Axon pipelined communications model. By building upon the simple pipelined model,
and providing the required functionality motivated by its limitations, a realistic model for end-to-
end data transport can be constructed. This is referred to as the Axon pipelined communications
model, and is presented in Figure 4.

8 Dissertation Proposal

rexmit timers

link fault congram switch congram switch segrment present
segment foult rate specification address decode pc%e present
page fault header bulld header decode CMM ollocata
ALTP—host chksum generoie chksum compare ALTP-host
poge adr
CPU | CMP, CMP. [* | cPU
page adr pkt pres
ki adr f f pkt adr
I p I hdr /troil fwidr /traf I o ullncI
——={ CMP CMP —— CMM
CMM reod pkt M d d write pkt
encrypt decrypt
encoyge dedcode

Figure 4: Axon Pipelined Communications Model

The CPUs access a CMM (communications memory module), which is similar in design to a
VRAM. The symbolic namespace to virtual address to real address bindings are performed by the
Nvs (network virtual storage) mechanisms. The transport protocol is implemented as an ALTP
(application-oriented lightweight transport protocol), which is specifically designed to have its critical
path implemented in hardware, and is particularly oriented toward the end-to-end transfer of objects
for 1pc. The cMP (communications processor) is the network interface, implementing the required
ALTP critical path and Nvs assists. In the Axon pipeline model, the cMP consists of datapath (cmpy)
and control (CMP¢) functions. Thus the end-to-end data pipeline in the Axon architectural model
consists of:

CMM &— CMPq +— VHSI +— CMP4 +=— CMM

It should be evident that the Axon pipelined communications model requires significant changes
to existing operating systems, communications protocols, and host-network interfaces, The Axon
architecture incorporates the necessary changes. The next section will present an overview of the
Axon architecture as a whole. Then this proposal will focus on exploring the architectural require-
ments and performance tradeofls in support of the Axon pipelined communications model.

3. Overview of the Axon Architecture

The Axon architecture provides the support for efficient, high performance (high bandwidth, low
latency) 1PC across an end-to-end pipeline through the visi. This is done by providing an object
transport facility (ALTP-0T), which is used by the Nvs (network virtual storage) subsystem and
network message passing (NMP) interface. This is illustrated in Figure 2b.

This section provides an introduction to the Axon architecture, providing background on the
research that has been done to date, and setting the stage for the central research issues to be
discussed in Section 4. Axon is described in greater detail in technical reports [StPa89b, StPa89c,
S5t90]. First, IPC primitives are discussed within the framework of the vHsI environment. Then,
a briefl description is presented of significant Axon architectural components. An example of the
interaction of these components is given by describing the transport of a segment object across the
vHSI in [StPa89a] §3.6.

Sterbenz 9

3.1. IPC in the Axon architecture

Irc is supported as either a shared variable or message passing paradigm. Shared variable IPC is
characterised by the use of read/write (r, w) primitives to shared data structures. Message pass-
ing 1pc is characterised by the use of send/receive (s, r) primitives, and requires explicit message
synchronisation by the programs communicating. A generalised remote procedure call (GRPC) is
supported, in which the location of the procedure, data, and execution are all arbitrary. Addition-
ally, segment streaming is supported, which transports multiple segments at high bandwidth with
no per segment request overhead.

A logical view of the Axon protocol hierarchy is presented in Figure 5. It is important to note
that this layered view is a logical view of functionality only, and does not imply that strict layering
(in the 1Is0-0sI sense) is being adhered to.

Host CPU+Memory Host CPU+Memory
process IPC~~ |- process IPC
{s,7) {{r,w) I GRPC {slream slream| GRPC | (rw)| (57
NMP NVS (08) CMP CMP NVS (0S) NMP
ALTP-0OT ALTP [=======; ALTP ALTP-0OT
MCHIPf=======1 MCHIP
NAP NAP

Figure 5: Axon Logical Protocol Hierarchy

The shared memory mechanism for 1PC across the vHsI is implemented by Nvs (network virtual
storage). This can be utilised by an application either by referencing segments that are non-local,
through the facilities provided by GRPC (generalised remote procedure call), or by the use of segment
streaming. GRPC and segment streaming are described in [StPa89b] §2.1.

Support for message passing IPC is provided by a network message passing interface (NMp), which
provides the support for invocation of the appropriate message based transport protocol calls. The
transport mechanism is supplied by an application-oriented lightweight transport protocol (ALTP)
tailored for the class of applications using IPC object transfer; this type is ALTP-0T. ALTP-OT resides
as a set of software modules in the host system, and as hardware in the CMP (communications
processor). The underlying internet/network layer of function is provided by a multipoint congram-
oriented high-performance internet protocol (McHiP) [PaB9, MaPa89), and network access protocols
(NAP), which will be assumed to be present for the purpose of this proposal.

To provide support for IPC three major areas of the Axon architecture are involved: system level
support for IPC (NVS and NMP), transport protocol support for the movement of objects involved in
IPC (ALTP-0T), and the host hardware architecture and communications processor (cMP). Each of
these will be sumarised briefly to provide an introduction to the Axon architecture, and framework
for remainder of this proposal.

3.2. System level IPC support and NVS

The system level support for the various application level IPc paradigms is provided by two com-
ponents: Nv5 and NMP. Nvs is the system level shared memory interface for shared variables,
GRPC, and segment streaming. NMP is the system level message passing interface. NMP performs

10 Dissertation Proposal

Process System Network

program address

| i <5> |0 ————mmm N
¥ KsST i
___________________ L ..
UDi r '
hutied P N . 'L_ ey DR S i get—segmeni(<s>)
]
i known seq | I | !
I A vs . vp.vo] veEV
H T T T T virtwal nh:rzlé
i address database
HAT
APT KHT host
s known addr
hosts
She - —— - <ho L b= e Gt <ho R
g r——— gel—segmeni(h)
i SOT AST
segment octive
escr segments
Y
- e
i deser R
i real
| ') store
e -——1
Lo, T
Lan &, —-——
3

- J.‘:::.‘.E g

Figure 6: Network Virtual Storage Address Translation

a relatively straight-forward transformation of progtam (send, receive) primitives to correspond-
ing transport protocol message-object transfer calls, Thus, the emphasis in this section will be on
describing Nvs.

Nvs extends the typical virtual storage mechanisms to include systems throughout the vusi. A
segmented programming model is used, with underlying paging to facilitate storage management, in
a manner based on the Multics operating system [Be72, Or72, MaDo74]. Details on segmented paged
virtual storage are provided in [StPa89b] §3; this section only briefly discusses the NVs extensions.

Nvs extensions allow the segments to be addressed when resident on a non-local host. This is
accomplished by either including a host id. field in the virtual address (network virtual address), or
the host id. in the segment descriptor table (SDT) entry (local virtual address). When a segment
fault occurs for a nonlocal segment (indicated in the segment descriptor), the dynamic address
translation facility invokes ALTP-0OT to get a copy of the segment from the appropriate system.

Sterbenz 11

When the segment is returned, the appropriate page and segment descriptor presence bits are set,
go that program execution can resume with the normal fault recovery mechanisms. The address
translation data structures are presented in Figure 6. Address pointers are represented by arrows
on solid lines, the copying of data is represented by arrows with dashed lines.

The local storage management data structures are extended to allow the addressing of segments
on other hosts. This is accomplished by adding a host id. field to the known segment table (KsT),
which holds the symbolic segment bindings. This is an index into the per process known host table
(xuT), which holds the symbolic host name to address/path bindings. This binding is resolved by
searching the host address table (HAT) for each host, which gets its binding by invoking an internet
name server, using the host name database (HND). There are also tables to assist in n-way 1PC using
multipoint connections (not shown in Fig. 6). Depending on the method used for network-to-host
object mapping, a packet presence bit vector may be in page descriptor table (PDT) entries.

Nvs in Axon also involves extensions and additions to storage management policies. The re-
placement policy is affected as a result of pages from remote segments in the locality set, which
requires redefinition of the working set to account for non-local segments. An entirely new policy,
the remote placement policy, is used to determine where remote segments are placed while being
used by the local system. These include real store (Rs), auxiliary store (As), a combination (RAS),
or frame buffer (FB) placement, with a number of sub-policy options (swappable, nailed, efc). The
NVs storage management policies are described in detail in [StPag89b) §5.

3.3. Transport protocol

At the transport level, applications using the vHsi are best supported by a set of simple ALTPs
{application-oriented lightweight transport protocols) for various classes of applications. Key issues
in the design of an ALTP are the implementation of critical functions in hardware, rate based flow
control, application-oriented error control, and structured collections of packets.

ALTPs have their critical path functions implemented in vLs1 hardware. The critical path consists
of the data path, and routine control functions allowing data to flow at peak network rate, once a
transport operation has been initiated. By optimising the critical path functions, and by processing
multiple packets in a single transport level operation, the per packet processing can be performed in
real time at the full sustained data rate. For the protocol to be efficiently implemented in hardware,
the protocol, hardware design, and host operating system should be well integrated. ALTPs can be
optimised to provide the kind of performance guarantees and functionality the specific applications
need,

The ALTP type that will be investigated is designed to support tPc by the transfer of objects, with
primary consideration in supporting Nvs segments. This will be referred to as ALTP-OT. ALTP-OT
uses rate based flow control, where the rate specification consists only of parameters important to
1pc, and efficient error control streamlined to include only what is necessary for object transfer.
The various error conditions are handled by ALTP-0T as follows: duplicate packets are discarded;
corrupted packets are discarded with retransmission request; missing packets are detected by the
expiration of a timer with retransmission request; packet sequence is ignored since the packets are
placed directly in the proper location of the target store. Note that due to the orientation of ALTP-OT
to this application, the handling of duplicate and out-of-sequence packets is considerably simpler
and more efficient (avoiding sequence buffers) than would be the case for a general purpose transport
protocol.

Information is transferred throughout the internetwork in packets. A structured group of packets
corresponding to a single ALTP-OT semantic action is a super-packet, consisting of an initial control
packet (which may also contain data), and optionally followed by data packets. Bits in the packet

12 Dissertation Proposal

header indicate whether the packet is control (MCHIP or ALTP) or data. ALTP-0T control packets
require processing by the ALTP-OT logic in the cMP (communications processor), as well as by the
host system hardware and 0s. Data packets require considerably less processing, all of which can be
done in real time by the cMp hardware. The significant point is that most of the usual per packet
control processing is only performed per super-packe? in Axon. In addition, since ALTP-OT is an
integrated system program, it has direct access to the appropriate operating system facilities (via
lightweight system calls) and data structures. The format of a data packet is presented in Figure 7.

segment page
MCHIP i connid| ALTP | reqid (trame)| (seanline) pkt data cksum
type| ¢ |oltyee| g figl| k| Isl | 5 |4 z
2 2 2 1 1 1 2 2 1 2

Figure 7: ALTP-0T Data Packet Format

Thue a structuring of the data that is recognised by ALTP-0T allows the per packet processing
to be simplified to the extent that vLsI implementation is reasonable and efficient.

The ALTP-OT requests and operations include:

e Connection management: join-ipc, respecify-rate, leave-ipc, invalidate-segment

e Object receive: get-segment, acquire-segment, get-page, get-copy, get-stream, receive-message,
retransmit-packets

¢ Object transmit: release-segment, release-page, remote-execute, send-copy, send-stream,
send-message

ALTP-OT is described in detail in technical report [StPa89¢], including arguments in favor of the
choices made for error and rate control.

3.4. Host and network interface architecture

High performance computer systems typically consist of one or more central processors, which com-
municate with memory banks and 1/o processors through an interconnection network. In addition,
various caches may be present to utilize fine-grained locality, and perform speed-matching of data
rates. Additionally, the memory system may consist of a multi-level hierarchy including extended
memory, such as for virtual backing store. Two high-level host configurations are part of the Axon
architecture, which give the ¢MP (communications processor) direct access to memory.

The first gives the cMP a relationship to the system similar to that of 1/0 processors, thus
interfacing the cMp directly into the processor-memory interconnection network. This is referred
to as interconnect interface architecture (11a). The second, interfaces the CMPs to the back end
of a special dual-ported cMM (communications memory module), which is referred to as memory
interface architecture (MIA). In this case, the cMM has a conventional random access port which
appears like any other memory bank to the processor-memory interconnect. The second port is a
high speed serial access interface to the cMP. The design of the cMM is similar in concept to vRAM
design. If all real storage is not cMM, the physical address space of the system must be partitioned
between conventional and communications memory.

The Axon architecture interfaces the cMP directly to the processor or memory. On the network
interface side, the cMP must be capable of receiving and transmitting packets at the full network
data rate. On the host side, the cMP must either interface to the processor-memory interconnect,

Sterbenz 13

or the cMM, depending on the host architecture (11a or Mia, respectively). More details on Axon
host architecture configurations are presented in [St90] §4.

The goals for the design of the cMP include the ability to perform critical path functions in
real time, with no packet buffering, and the ability to incorporate the necessary function in vLsI.
This may be realised by organising the cMP as a pipeline, dynamically reconfigurable based on the
ALTP type and options for a particular connection. The pipeline organisation allows packets to be
processed while moving at the vHsSI interface data rates.

CU
Cl C2 * s » CM
i i Control Bus j

-

| 4

1

]

i

]

1

=

]

1

]

]

1

]

1

]
e

Dl D2 . & @ DN
l

! | Dy, .

Data Interconnect

Figure 8: Communications Processor Implementation Model

The cmp implementation model (Figure 8) consists of a set of datapath modules (DMs)
D={Dy,D;,...Dn41}, and control modules (cMms) C={Cy,Cs,...Cy}. The DMs perform data
manipulation

and transformation on packets as they pass through the cMP. In general, each pM should be
designed to perform its function without buflering a packet, except for the pipeline delay as the
packet passes through. One of the cms (C}) is responsible for pipeline configuration and control.

A particular configuration of the pipe C;, consists of a permuted sequence of data modules
d = (do,d;,...d,) C D, forming a logical pipeline, along with a set of control modules controlling
them ¢ = {cp,€1,...¢m} C C. The DMs are connected by a high speed interconnection network,
which is capable of transferring data between the modules subject to the configuration C;. Each
type of ALTP requires a particular configuration of the pipeline, e.g. ALTP-0T induces a configuration
Cor of the pipeline. Note that while this model allows for reordering of the bMs, a fixed sequence
pipeline may be sufficient in most implementations.

Examples of data modules include the network receive and transmit interfaces, CMM interface,
parallel/serial conversion, data format conversion (including generic network standards), encryp-
tion/decryption, and video widow coordinate translation. Control modules include rate control,
checksum generate/compare, CMM address generate, header generate/decode, and packet presence
timers and retransmission logic. The cMP implementation is discussed in more detail in [St90] §6,
particularly with respect to the supporting ALTP-OT.

4. Focus of Proposed Research

Previous sections have motivated the need for delivering high bandwidth communications directly
to applications that require the transfer of large objects with low latency. The Axon pipelined

14 Dissertation Proposal

communications model was introduced (§2.3) as an end-to-end data path sllowing applications to
utilise vis1 bandwidth., The Axon host communications architecture was proposed (§3) to meet the
requirements of this model, and to provide the framework for high performance 1P¢ using various
paradigms.

This section provides the focus for continued research, by returning to the end-to-end pipeline,
and identifying the research issues of concern, centered around data transport at gigabit data rates,
with scope appropriate for the proposed dissertation. The thrust of this research will be to explore
the architectural requirements and performance tradeoffs in support of this end-to-end pipeline,
starting at 1 Gbps, and scaling toward 1 Tbps. First, the main problems to be pursued will be
stated. Then, a more formal statement will be made, indicating parameters of interest and tradeofls
to be investigated in their resolution. Finally, a plan of action for the continuation of this research
will be indicated, describing the design, specification, simulation, and evaluation activities, along
with the type of results expected.

4.1. Research questions and issues

The research questions to be pursued within the scope of this dissertation will be presented, with a
high level introduction to each one. Note that there are a large number of other interesting problems
that arise from the proposed Axon model and architecture (such as in the area of object coherency
and storage management), but these are left outside the scope of this thesis. At this level each
question will be posed, with a brief indication of why it is important to solve. The first three of
these will receive the greatest emphasis in the proposed research.

Critical path: It isclear that to sustain data rates above 1 Gbps, the critical path function will have
to be implemented in hardware. This includes the data path and routine control functions
necessary to keep the data path moving at the required rates. An important question is
then: What are the critical and non-critical path functions to allow end-to-end pipelined
communications at 1 Gbps, and how do these scale with higher data rates? Note that some
function, such as the data path from network to memory is clearly part of the critical path,
as are some control functions that govern routine packet processing, such as the rate control
logic. Other control functions may or may not need to be part of the critical path, depending
on the data rate, and time-space complexity tradeoffs (discussed later). Examples of functions
that may or may not be completely in the critical path are packet retransmission timers and
host-network object mapping. Parallelism in the data path can be used to provide a speed
advantage, allowing higher data rates for a given CMP processing rate. In addition, pipeline
delay can be used to allow control functions the necessary time to operate at high data rates.
A time-space complexity analysis will indicate which functions should reside in the eritical
path.

There are two possibilities for the implementation of non-critical path functions. The first
is implementation in host software. In some cases, however, it may make sense to have a
microprocessor assist to the cMP, which will allow a performance level greater than that of
host software, and without impacting the normal program flow on the host. This cMP assist
processor (CAP) may be useful for functions involving control between the cMP and host cpu.

Host-network interface control: The main path between the cMP and host system is via the
serial data port of the cMM, which is primarily used for data transfer. It is necessary, however
to pass control information as well, e.g. for host~network object mapping (discussed below),
ALTP-OT operation initiation, real storage allocation for incoming objects, ete. The question
is: What is the best way to handle the transfer of control and synchronisation between the
CcMP and host CPU (and operating system)? Additionally, if a cAP (CMP assist processor) is

Sterbenz 15

used, it will be involved in, and may actually be primarily responsible for the cMP's control
communication with the host.

Object mapping: Network data objects are packets and super-packets; host data objects are
words, swords (interleaved memory data path width), cache lines, pages, segments, and seg-
ment groups. The resulting question is: How is the mapping between network and host data
objects handled? Since page-level objects are used for storage management, it is the packet-
to-page mapping that is of greatest concern (as well as the super-packet-to-segment mapping).
In the ideal case, the packet size equals the page size. This allows the placement of packets
directly into the target page location, and a packet arrival corresponds to a page fault recov-
ery. It is likely, however, based on current experience with host page sizes and network packet
sizes, that packets will be smaller than pages. In considering heterogeneous systems that may
have differing page sizes, communicating across a viisi constructed of subnetworks with dif-
fering packet sizes, it becomes essential to consider how to manage the arrival, presence, and
movement of smaller network data objects that are mapped within larger host objects. This
mapping must, in part, be within the critical path, since it is part of routine packet handling.

Latency: As network bandwidth and processor performance increase, the speed-of-light latency
becomes an increasingly serious problem. The total end-to-end delay of an object transmission
consista of several components: the speed-of-light latency, the queuing delay due to vusi
subnetwork switching, the pipeline delay at the transmitting and receiving host/cMp, and
finally the delay involved in receiving the entire object at the prevailing data rate. All but
the first of these latency components will be reduced by the Axon and vHsI architectures.
Unfortunately, there is no reasonable expectation to scale the speed-of-light downward, and
it will thus increasingly dominate as other delay components scale. One solution is to pre-
fetch objects before their reference. This is not accomplished without difficulty and cost. The
question is then: How to best deal with the increasing dominance of the speed-of-light latency,
and to either prefetch earlier or with larger granularity, based on application behavior and
locality sets?

Note that by using the segment as the granularity of object transfer, rather than pages, a
certain amount of prefetching at the page level is automatically done, which helps reduce the
impact of this problem.

Error control: A number of error control strategies are possible, in particular governing the manner
in which retransmission requests are made, The Axon architecture allows application-oriented
selective retransmission of error or lost packets, which gives considerable flexibility in retrans-
mission strategy. There are, however, a number of alternatives that can be considered to
optimise the retransmission policy:

location of retransmission request timers (Axon uses the receiving end since it is best able
to estimate when packets should arrive [Cl87a])

granularity of retransmission and timer values: selective packet requests can be accumulated
to packet (PKT), page/scanline (PGE), segment/frame (SEG), or segment-group/image
(GRP) quantities, allowing multiple packets to be retransmitted in a single operation

fetch policy determines whether packets are always requested for retransmission (anticipa-
tory — AR), or only if a page is referenced that contains them (demand ~ DR)

preemption of the primary data stream by the packet retransmissions (PE), or non-preemptive
(nP), since error control is in band

An important issue is to determine the appropriate selection of retransmission policies from
this space of sub-options, as various application and network performance parameters vary,

16 Dissertation Proposal

and based on other Axon architectural decisions. Related to this is how to determine the timer
values and mechanisms to trigger retransmission. Note that this policy selection interacts with
the issues previously described. The retransmission policies are described in [StPa89c] §4.

4.2. Investigation of problems

This section looks at each of the research questions described in the previous section in a somewhat
mote formal manner, indicating some of the tradeofis and parameters of interest that will be inves-
tigated as part of this research. These formal statements will be developed and incorporated in the
simulation models (§4.3) and analysis, to evaluate associated tradeofls and find optimal operating
points.

Critical path: The determination of what control function should be implemented as part of the
critical path involves a time-space complexity tradeoff.

Time complexity: The impact on time complexity of a control function is the time taken for
a hardware implementation (in clock cycles), vs. the time taken for a software implementation
(in host/cAP instruction cycles).

For the host, the time that control function C; takes to complete ¢; is based on the instruction
cycle t and the number of instructions to execute m;, as well on any extra overhead m! in
terms of context switches, system calls, etc., thus: ¢; = (m; + m{)t. For simplicity, caP
implementation is not considered in this discussion.

Tor the cmp, define the minor eycle T to be the inverse of the serial data rate on VHSI com-
munications links, (e.g. for 1 Gbps, 7=1ns). Define the cMP major cycle 7., as the clock cycle
internal to the cMP within the parallel data path w bits wide, (e.g. for 1 Gbps and octet-wide
data paths, 7s==8ns). By allowing n; stages of pipeline delay for a particular control function
C; to take place, the time it takes to complete is then 7; = n;7y. Thus, define a metric for
critical path time savings. CP; = t;— ;.

Note that by implementing a control function in the critical path, there may be an associated
cost, in increasing the latency through the cMP by increasing the number of pipeline stages by
Ang;, i.e. the object transmission latency for all objects would increase by 7, An;.

Space complexity For the host, space complexity consists of memory used for software
implementation of the function. This will be ignored for this discussion, since a given operation
is a sufficiently small fraction of total host or CAP memory.

For the cMP, space complexity has two measures: chip area and off-chip interconnect lines.
Define a; as the area [m?] required to implement C;. Control functions can be classified by
their complexity sensitivity to other parameters: [1) Fixed-cost control functions utilise a fixed
area, relatively independent of other parameters (an example of this is the rate control logic).
[2] Datapath-width sensitive control functions have an area that is a function of the data path
width of the cMp: @; = f(w), and thus constrain the possible speedup of the CMP by greater
parallelism, in the same manner that total available chip area limits the possible datapath
width (an example of this is the checksum logic). Note that a; need not be linear in w. [3]
State-sensitive control functions are those that utilise on chip memory in maintaining state,
(An example is the packet presence function, if implemented using a memory array of presence
bits, which can be estimated by a; = f([¢||4]|]|5]|p|/|r]), where || is the expected number of
concurrent connections, |§| is the expected number of cutstanding requests, |7| is the average
number of segments being transported per request, |3] is the average segment size in pages,
|p| is the page size in bits, and || is the packet size in bits.) The constraint to be met is
that the sum of all the control and datapath functions implemented on the cMP must not

Sterbenz 17

exceed the available area for a given process technology: }°;a; € acupe. It will be assumed
that a complementary logic family will be used so that power dissipation is not the dominant
constraint,

The other space complexity measure is the number of off-chip interconnect lines (pinout using
conventional packaging techniques). Define /; as the number of off-chip interconnect lines
needed to implement control function C; on the cMP. Thus, I; is constrained by the threshold
of available interconnect on a chip using a given packaging technology: ;& < leme-

Thus, in determining if a function should be in the critical path, the tradeoff is in time saving
CP;, vs. acceptable chip complexity (a;,4). Particularly as data rates scale upward, the
decision can be made determining which functions should be included into the critical path.

Object mapping: This mapping must be part of the critical path, since it is part of routine packet
handling, either explicitly or implicitly. The cMp will place packets directly into the proper
locations of the target page. In the explicit case, the cMP critical path records packet arrivals,
and determines page presence when all of the page’s packets have arrived. One option is for
the cMP to have a packet presence bit array g, with a bit for each packet of each page of each
segment of each group of each request of each active connection. Thus the size of the array
required is |y = |é||§]|7]|3]|p|/|=|, as indicated above. This scheme is simple, particularly in
the random addressability of packets, but requires significant memory. Another possibility
is to structure queues that are tagged by connection and request id (c,q), and contain the
packet number m;p;s; only for missing packets of pages that are not yet fully present. When
the entire page has arrived (initially or after retransmission), it is marked present in the pPDT,
and the cMP memory is freed. Note that both explicit mappings allow the cMP to request
retransmission of missing or corrupted packets based on the best retransmission policy, e.g.
whenever the timers fire for each packet.

In the implicit case, when packets arrive, packet presence bits are set in the corresponding
host PDT (page descriptor table) entry. When the host page faults, the packet presence vector
is examined to determine if the whole page is present. Note that while relieving the cMP of
a certain amount of complexity (especially memory for the packet presence bit vectors), this
restricts the ability to request missing or corrupted packets to page fault events, rather than
based on CMP timers. An alternative implicit scheme uses additional structure in the cMm to
tag packet chunks of memory with presence bits, which are used by the host (or CAP) to set
PDT presence bits,

Latency: For the speed-ol-light latency problem, define the total end-to-end transmission delay
of an object o by D, = d.+ dy+ d:+ d-+ d, + d,, with components: the speed-of-light
latency d. = g/e; (g = distance, c; = velocity of light in fiber), the queuing delay due to
VHS1 subnetwork switching dg, the pipeline delay at the transmitting and receiving cMM/cMP
d:+ dr = (nz+ n,)ry, and finally the delay involved in receiving the entire object at the
prevailing data rate d, = [o|r. The goal is to minimise D,. As indicated in the previous
section, it is the responsibility of the vHSI to minimise dy, and the Axon architecture to
minimise dz+d,. As these scale downward, (with ¢ and 7}, d. dominates d., d,, dg. Also note
that if |o| scales up with application demands and host cPU power and memory size, d, may
remain a significant part of the latency.

The time a program must wait to use an object for the first time is dependent on the total
delay D,, and how far in advance prefetching occurs ¢3, i.e. min(D,, D,—t;). Ideally {; can be
increased, so that the latency D, is not significant, but this of course has a number of costs:
Segment and segment group transfers utilise program structure and data structure locality,
but may prefetch data not in the programs current locality set, e.g. if an entire segment
is placed in real store, the induced working set of pages P may be much greater than the
actual locality set P, resulting in extremely inefficient use of real store (P — P, wasted). If

18 Dissertation Proposal

an object must be exclusively used, and therefore be locked, processes waiting for the lock
remain blocked for longer periods as the prefetching time and granularity increase. Finally,
while some applications may be able to predict address reference traces p, it is unreasonable
to expect this in the general case. This means that “fine-tuning” t; to optimally match D,
seems to be a difficult goal.

Note that the range of latencies can be partitioned into three regions, based on the geographic
diameter g [km] of the network. This resulis in differing magnitudes of d. (and also to some
extent d;). Assuming fiber optic transmission technology, there is dy,y < 10us for local area
networks (g < 2), 10ps € duan < 500us for metropolitan area networks (2 < g < 100), and
500us < dwan < 100ms for wide area networks and internetworks (100 < g < 20x103). Clearly,
the latency problem is worst for long haul networks, but it will be useful to evaluate the latency
tradeoffs in the context of the three classes of networks. For example, it may make sense to
page across a LAN, but nol across the vHs1, where segments are a better granularity of object
transfer.

Error control: The optimal choice of retransmission strategy is sensitive to a number of parame-

ters, with each of the three policy sub-options (granularity, preemption, fetch policy), having
a somewhat differing dependency. The parameters of interest are defined as:

p the program address reference trace p = {pg, p1,...p}y Fi €V

2, the event of a lost packet as random variable

D, the end-to-end delay waiting for a retransmitted packet

lo| the object size in transit (if NP ~ non-preemptive)

n, the number of retransmission requests (o granularity)

The policy that minimises D, is PKT-ARPE (packet granularity with anticipatory preemptive
retransmission). The policy that minimises overhead (in terms of n, and CMP processing) is
GRP-NP (segment group granularity with non-preemptive retransmission; the relative efficiency
of demand vs. anticipatory retransmission is dependent on p). Thus, there is a tradeoff between
delay and efficiency. Other factors affect the policy choice. The object latency component to
receive a packet d, = |r|r will be much smaller than d.+d, for waNs. Since the page is
the unit of reference at the host, and dy = d, € d., it may make sense to use at least PGE
granularity. In addition, if implicit host PDT mapping is being used, it is at page reference
time that missing packets will be discovered, and the minimum useful granularity is PGE.

Identify a particular packet as m;p;s¢. The timer for this packet expires after [StPa89c]:

k=1
bripjon = Tr + 2(det de-b dog+- d,) + 7l7| |i 4+ (G = 1)% + Z x"’”_’“l

k=1 | I

where =, is the time to fetch a packet at the remote end, the delay componenis d are as
used above, and the expression in brackets corresponds to the packet number. Note that the
purpose of the timers depends on the fetch policy in use. For AR the timer value indicates
when a packet retransmission request should be made, and for DR the timer indicates how long
te wail before a referenced packet is assumed to be missing, and thus retransmitted.

Some combination schemes will be worth investigating, e.g. PGE-DRPE/SEG-ARNP. This policy
uses a page granularity, requesting preemptive retransmission of any page referenced (i.e. page
fault). Otherwise, the primary data stream is allowed to complete before all other error packets
are retransmitted. This would provide a compromise between the desire to maximise efficiency
(by accumulating requests for the entire segment), vs. minimising the time for a page to obtain
all of its packets on reference. This policy may be superior to either a pure NP or PE scheme.

Sterbenz 19

4.3. Plan of action and current status:

To deal with the limitations of the current communications model, and to satisfy the requirement
of the Axon pipelined communications medel, the components of the Axon architeciure have been
identified, along with the research questions to be pursued within the scope of this dissertation. The
purpose of this section is to state the scope of the dissertation, report on the current status, and
suggest a plan of action for continued research.

The scope of this research involves a number of activities, which can roughly be categorised as
design and specification, or as simulation and evaluation of research issues. The main emphasis so
far has been on the design and specification activities, which have been necessary to determine how
the simulation and evaluation activities should proceed, and to narrow the scope from an extremely
large range of potential issues.

The design and specification activities are:

Host architecture: Suitable configurations of host architecture are identified, to provide direct
VHSI access to host memory. The 114 (interface interconnect architecture) and M1A (memory
interface architecture) configurations are defined. This work is described in [St90]. This
dissertation will use MiA for the exploration of research issues.

e Nvs design: A segmented paged virtual storage system is extended to include segments located
throughout the visi. Data structures are added for symbolic host name binding, and extended
to allow non-local segments to be handled, as well as to allow distributed n-way 1pc. Link and
segment fault resolution procedures are extended, especially for remote segment faults. Addi-
tionally, the impact on storage management policies and working/locality set considerations is
defined. The replacement policy is reconsidered, in the light of locality sets with remote pages,
and working sets with remote segments. A remote placement policy and space of sub-options
is defined. This work is described in [StPa89b).

® ALTP-OT design and specification: The requirements for a transport protocol to operate in
the VHSI environment, in response to the deficiencies of current and proposed protocols, are
identified (as first outlined in [BhS188]). The rate and error control strategies appropriate for
object transfer are specified, along with detailed strategies for packet retransmission and timers.
The ALTP-OT operations are specified, in terms of interface to higer levels, and operational
description. Key operations are specified in detail, in the form of state machines and procedural
description. This work is described in [StPa89c); and the detailed specification of many of the
ALTP-OT operations remains to be done.

o CMP/cMM design: A generic, high level reconfigurable pipeline model for the cMP is described.
Appropriate DMs (datapath modules) and cMs (control modules) to implement ALTP-0T that
are clearly part of the critical path are identified. The first estimation of other candidate
critical path cMs are also identified. Potential bottlenecks for 1 Gbps operation are identified
(such as for packet presence and retransmission timers) that will be explored in particular.
Cap implementation of some of this function will be considered. This work is currently in
progress, and described in sumarised in [St90]). A cMP and CMM based on these blocks is being
designed.

A high level simulation model is constructed to evaluate the research issues and confirm the
validity of the Axon design decisions, and is presented in Figure 9. This model consists of five major
sub-models, whose relationships are indicated in the figure by directed arcs between the sub-models.
External parameters and policy choices are indicated by arcs into the sub-model blocks. The five
sub-models are briefly sumarised as follows:

20

Dissertation Proposal

opplicotion parametric
parometers benchmarks
. app!
model oddr ref
maodel
CPU clack lfr‘f,‘f:“
9:_“"3' . NVS poge/seg
pc,"c;gs functional | | foults
simulotion
ALTP
control calls
ALTP-0OT
rexmit
policy partial
implementation

dota rate

critical? path control

VHSI

behavieral
simulation

CMM+CMP

unctlonal /logid
simulation

packets

Figure 9: Axon Simulation Model

o Application behavior: Application behavior may be modeled in two ways: A generic program

behavior can be used and extended to model applications using Nvs. For example, using the
hierarchical 8L1 (bounded locality interval) model [Ma76, Ma82), non-local segments can be
included. A model for determining the distribution of non-local segments can be constructed. It
is likely that some form of topological locality will be a useful concept, and this may correspond
to the top level BLI in some manner. Alternatively, specific models of program behavior
corresponding to one of the target vHsI applications (such as scientific visualisation and remote
image access) can be constructed, (referred to as parametric benchmarks in Fig. 9). The
simulation will use one or both of these methods.

Nvs: The simulation will incorporate the functional behavior of Nvs, in particular link, seg-
ment, and page fault resolution, as well as the use of a TLB for address mapping. An extended
queuing model has been constructed to model Nvs behavior [St88d].

ALTP-0T: A partial implementation of ALTP-0T will be made for demonstration purposes, and
for use in the simulation of research issues, tradeofls, and policy decisions. This will specifically
include the object transport operations for representative calls, such as for get-segment and
get-stream, as well as the appropriate error control strategies. An extended queueing model
has also been constructed to model ALTP-0T and the visI [St88d).

Cmp/omMm: A high level functional simulation of the cMP and cMM will be constructed to
model their behavior. By altering the cM content of the cMP, along with their chip complexity
analysis, the appropriate critical/non-critical path choices can be made, as the data rate scales
upward. If a CAP is determined to be desirable, it will be included in the simulation.

Sterbenz 21

e VHsI/MCHIP: A behavioral model of the viisi will be constructed, consisting primarily of the
latency d, and packet loss z+ random variables. The behavior of McHIP will be specified for
connection/congram management and rate control.

These simulations, implementation, and models will be used to explore the research questions
described in the last section (§4.2). The questions will be further formulated, in terms of detailed
optimisation problems and tradeoff evaluations. The simulations will be used to evaluate the proper
parameter operational ranges and policy choices. When possible this will consist of optimal choices.
When tradeoffs are involved, reasonable operating ranges of parameters and policies can be deter-
mined from the appropriate plots. Additionally, it is expected that further important issues will
arise as this research proceeds.

4.4, Expected contribution of dissertation

The goals of this research are to design an architecture capable of supporting an end-to-end pipeline
between applications, at data rates above 1 Gbps, and to understand what the constraints and
bottlenecks are as the data rate scales upward. The types of solutions expected from this research
are:

s Demonstration of viable Axon design (functional, performance) from the design specifications,
implementations, and overall simulations. This provides for the proof of concept.

o Determination of function that is part of the critical path, as data rates scale above 1 Gbps,
based on the time-space complexity analysis. Justification for vEsI implementation, in terms
of overall chip complexity, particularly memory space requirements and off-chip interconnect.

e Specific solutions for the network-host cbject mapping, determination of components to be
included in the critical path, ©s interaction, and determination of whether implicit or explicit
mapping is better.

o Understanding of relationship between latency and memory requirements in terms of locality
and working sets, based on latency (especially LAN/MAN/WAN), processor performance, and
network bandwidth, with respect to the incorporation of function in the critical path.

5. Related Work

This section describes background and ralated projects and research efforts. Motivation for the
proposed research has been given in Section 2, and is also indicated, for example, in [RaLa87, K188,
Le88].

5.1. Network virtual storage

A segmented, paged virtual store was first implemented by Multics [Be72, Or72, MaDo74] on a
GE-645 and the Ism 360/67 [IBM72] running Tss/360 [Co65, Le65, IBM78a). The Multics line
continued on the His 645, 6180, brs-60/68, brs-8/M, but has now been terminated. Modern systems
that owe significant heritage to Multics include the Cpc Cyber 800 Nos/vE [Cpc84a, Cpc84b,
Cpc84c] and Prime 50 Primos [AuLa83a, AuLa83b]. Segmented virtual store was not used by other
operating systems in the IBM System/360 and 370 family, until the addition of features provided by
ESA/370 [P189, ScGa89, IBMB8Ba, IBMB8b] under MVs/EsA.

22 Dissertation Proposal

Additionally, systems that provide a segmented paged virtual store include the IBM A5/400
[IBMB8c] and System/38 cpF [IBM8Gb, IBM85a, IBM78b), AT&T 3B series [HeKu83, ATT86a, ATT86b],
Intel iAPX432 [In81, In83a, In83b, Or83) 80386 [In86b, In87} i486 [In89) and 80960 [In88), and Mo-
torola 68030 [Mo87).

For quite some time, there has been an ongoing discussion in the research community about the
relative advantages of the shared memory and /o models of 1pc. Though this discussion has not
been conclusive in favor of either approach, it is clear that the application program semantics should
use the communications model most appropriate for its function {AnSc88, Re82), and for a large class
of problems, the shared memory model provides a natural paradigm [FI87). These include certain
1Pc and RPC (remote procedure call) problems, as well as process, procedure, and file servers, and
some types of distributed database access.

Advantages typically associated with the shared memory model are the close mapping of the
primitives to computer hardware, and the idea that the reading and writing of shared variables is
fundamentally primitive [FiFr84, LyFi81}, to be used as a base for other programming paradigms.
Additjonally the shared memory paradigm provides the best abstraction for handling shared state in
distributed systems [Ch86a], allowing distributed systems to be more easily constructed, understood,
and proved correct [AlGo89).

It is interesting to note that arguments for the duality of the two models have been made [LaNe78),
which indicate that a relatively simple transformation can be made between the program primitives
of the two models. But more recently, it has been shown that the duality arguments can only be
applied to indicate that an underlying structure can support either model [Re82]. Problems which are
naturally suited to the shared memory paradigm can be somewhat difficult to map onto an 1/o based
physical implementation. On the other hand, problems that are naturally formulated as message
passing can easily use shared memory, by reading and writing to mailboxes [AlGo89)]. Additionally,
in the cases where read-only or execute-only access is required, explicit program synchronisation is
unnecessary using the shared memory paradigm, but would be required under the 1/o paradigm (due
to the necessity to deal with message transmission).

Early work in the research community on 1PC and the design of distributed systems was done
in the context of tightly coupled multiprocessor systems, as opposed to loosely coupled systems
situated across local and wide area networks. There were only a few exceptions to this trend,
including Dcs [Fa88, Fa75, Fa74, FaFe73, FaHe70], which is one of the first distributed systems
to have implemented 1Pc for processes communicating across a local area network. Other early
work included an implementation on a Newhall ring [MaPe75], which provided for a shared memory
transfer of segments around the ring, and considered the value of a cMP implementing critical path
protocol function. Note that both of these designs involved local area networks.

Berkeley UNIX successfully demonstrated that the tPc mechanisms can be interfaced to commu-
nication protocols, with the result that 1Pc can be done across any network. Berkeley UNiX 1PC
[SeB6, LeFa86] is strictly based on the Ifo paradigm, and does not significantly address performance
issues. However, this effort has spurred a lot of interest among the research community to improve
1PC over the communication networks in a number of ways. Some of these activities have resulted
in systems such as Amoeba, Accent, and V. Most of these efforts are derived from UNIX in some
sense, and use its I/o paradigm for 1Pc. Also, the /0 paradigm interfaces well with the existing pro-
tocols, and requires little change to host architecture and the underlying mechanisms of an existing
operating system. Some of these improvements can summarised as follows:

Amoeba [ReSt88, ReTa87, TaMu86, MuTa85] is based on client workstations and server nodes,
with a primary design goal of high performance, achieved in part with simple communications
protocols and contiguous disk file allocation. It is interesting to note that the high performance in
this context has meant ability to cope with some fraction of the rather modest maximum bandwidth
of existing local area networks.

Sterbenz 23

Accent [FiRa86, Ra86, RaRo81] uses copy-on-write semantics to avoid the copying of large data
objects. This is more reasonable in a local environment than in a high-bandwidth internet, since a
process must block to receive a copy of a small data object that has been modified. Its successor,
Mach [RaTe88, YoTeB87, Ra86] is designed to be more UNIX compatible. It is designed to be portable,
at the expense of performance, and the virtual storage management is highly decoupled from the
hardware architecture.

The extension of IPC across wide area networks is manifest in the evolution of proprietary main-
frame network architectures, such as sNA and BNA. In these systems, the Ifo mechanisms are also
used. In BNA [Bu81, Un87b], programs communicate by standard file 1/0 to special port files. In
sNa [GrHa83, IBM85c, I1BM81, IBMB3), programs communicate with one another as logical units
(Lu type 6), but a message based paradigm is used. In both cases, the underlying communication
passes through 1/o subsystem software, /o processors (or channels), and communications front end
processors,

There has been some research on exploring the shared memory paradigm for IPC over the network,
exemplified by Memnet and Locus. Locus [PoWaB5, WaPo83, PoWaBl] is a UNIX variant, based
on a distributed file system. Implementation problems were incurred in the original version of
Locus, due to the use of a message based model, rather than shared memory [PoWa85]. To improve
LOCUS IPC, UNIX System V communication primitives [Ba86) have been added, specifically, messages,
semaphores, and shared-memory [F186]. Due to the difficulty of distributing the System V shared
memory mechanisms (which are not reliant on hardware segmentation), this function was restricted
to use on a single cpPu. Current work [F187] is extending this support to provide a distributed shared
memory to LOCUS.

In the case of Memnet [De88, DeSe88, DeFa85), processes communicate across a ring local network
by reading and writing into shared memory. Memnet’s emphasis has been on studying caching
algorithms and their hardware implementations, to reduce the network traffic, and to avoid network
latency for remote memory accesses. However, Memnet assumes a perfect communication medium
with no errors, and does not allow virtual storage. Thus, the Memnet effort suggests viability of the
basic idea, that is, the shared memory model can be used for IPC across the network. However, there
are a number of research questions about the suitability of this model that need to be addressed. The
purpose of this dissertation is to take this model a few steps further by including support for virtual
storage, and providing mechanisms so that the shared memory model can work in a real wide-area
internetwork with errors, congestion, and longer latencies. This involves evaluation of a nurnber
of tradeoffs in the areas of virtual storage management, and protocol design and implementation.
The CapNet project [TaFa89] is also extending the Memnet work in similar directions, but with
somewhat dilferent emphasis. The Apollo DomaIN [LeLe83, Ap85, Ap87] system also provides a
shared memory interface on a LAN ring.

There are also other research groups that are starting to explore use of shared memory for
IPC across network, including current work on Ivy, Mermaid, Shiva, Ra, and the Tapestry project
[CaRe88, CaRu88]. The Ivy [Li86], Mermaid [LiSt88], and Shiva [LiSc89] research explores a shared
virtual memory, with particular emphasis on providing page level coherency, and accommodating
heterogeneous systems. Unlike Axon, the granularity of object transfer is the page, rather than the
segment. The Ra [AuHu87) kernel project for the Clouds distributed system includes an investigation
of distributed shared memory (DsMm). This consists of exploring alternative address translation
schemes and memory management hardware [RaKh88b], with particular emphasis on the object
orientation of the system [RaKh88a).

24 Dissertation Proposal

5.2, Transport protocols

Currently, most transport protocols in wide use [MePe82) (such as Tcp [Co88, St88a, RFc793),
and the transport levels of X.25 [St87], sna [Cy78, MaCh87, IBM85b, IBM85c], BNA [Un87a, Busl],
DcA [Un88, SpBl], elc.) are designed to be general purpose, and are therefore not optimised to
different classes of applications requiring high performance. These protocols are sufficiently complex
that their implementation must reside largely in the software of the host system and front end
communications processor. They are also not specified to allow the separation of critical functions
to be optimally implemented in hardware. The classical layering mechanisms (exemplified in the
extreme by the 150-051 model), result in significant penalties if layer boundaries are strictly adhered
to. The layered model also frequently results in a number of functions (such as error and flow
control) replicated at multiple layers, when much functionality could be moved to the ends of the
connection [LeLe83, SaRe84, PoWa8l]

TcP has been the most popular and successful transport protocol in the current pop Internet,
and there have been constant efforts to make it better [Ja88, KaPa87, Zh86]. Although these efforts
have significantly improved Tcp performance, the fundamental changes dictated by the vHSI envi-
ronment indicate that assumptions about the communications substrate made by TcP are becoming
increasingly outdated. This justifies the consideration of completely new transport protocols.

Several other protocols have been proposed for use in higher performance versions of the Dobp
Internet. These include vMTP [Ch86b, Ch88a] and NETBLT [CI87a, CI87b]. VMTP is designed as a
general purpose transport protocol, with emphasis on RPC (remote procedure call) and page level file
access. Significant aspects of VMTP design applicable to this research include the packet grouping
and selective retransmission based on bit vectors. NETBLT is a protocol designed for transport of
large blocks of data with high throughput. The most significant aspect of NETBLT design applicable
to this work is the decoupling of error and flow control. In addition it is based on a simple rate-based
flow control mechanism, with selective retransmission determined by timers at the receiving end of
a transmission. Both of these protocols group packets to increase efficiency of transport.

Another approach to the performance problem is to implement existing transport protocol mech-
anisms in hardware. This is manifest in the work on the express transport protocol (XTP) and the
protocol engine (PE) [Ch86¢c, ChEi88, Ch88c]. While the goals for XTP are similar to those for ALTPs
in VHS1, there are also some significant differences. The XTP approach is to take the existing proto-
cols mechanisms, streamline the packet format for pipeline processing, and implement each step in
the pipeline using a customised VLSI processor.

In summary, NETBLT, VMTP, and XTP have contributed a number of interesting ideas to the
design of transport protocols, and they do improve upon TCP within the current DOD internet for
the applications they were originally designed for. However, we believe that these protocols are not
appropriate solutions for the vHs1 model, because the underlying assumptions and trade-offs that
these protocols are based on are very different in the vist model. Specifically, these assumptions
include the quasi-reliability provided by an underlying connection-oriented internet protocol (McHIP)
[Pa89, MaPaR9], and data rates that are several orders of magnitude greater than these proposed
protocols assume. We argue that the transport protocols in the vHSI model should avoid end-to-
end flow control as much as possible, and make the end-to-end error control application specific
and independent of the end-to-end latency. In general, the transport protocols should be simpler,
designed to be mostly implemented in vLs1, well integrated with the host architecture and operating
system, and targeted for a specific class of applications. More detail concerning the incompatibility of
these protocols extended to the vHsI environment, and the justification of ALTPs has been discussed
in [BLSt88).

Sterbenz 25

Acknowledgments

It may be somewhat premature to include an acknowledgement section in a dissertation proposal,
but I feel the need emphasise the particular gratitude I feel toward several people.

I owe much to Gurudatta Parulkar, who is everything that one could poessibly want in an advisor.
He is an exceptionally supportive and motivating influence as this research progresses. I am indebted
to to Jerome Cox, whose insight and guidance in the formulation of the focus of this research has
been invaluable, as has been his general support. I would also like to thank the other members of
the dissertation committee for their interest in this research: Gary Delp (IBM Yorktown), Martin
Dubetz, David Farber (U. Penn.), and Jonathan Turner. Finally, I am indebted to my wife Kris, for
the continuing understanding and the sacrifice of living with a graduate student.

26 Dissertation Proposal

References

[AlGo89] Almasi, George S. and Allan QGottleib, Highly Paralle!l Computing, Ben-
jamin/Cummings, Redwood City, Calif., 1989.

[AnSc88] Andrews, Gregory R. and Fred B. Schneider, “Concepts and Notations for Concurrent
Programming”, in Concurreni Programming, Narian Gehani and Andrew D. McGet-
trick, eds., Addison-Wesley, Wokingham, England, Mass, 1988, pp. 3-69.

[Ap85] Programming with System Calls for Inlerprocess Communication, Apollo Computer,
Inc., Chelmsford, Mass., 005696, rev 00, 1985.

[Ap8T) Network Computing System Reference, Apollo Computer, Inc., Chelmsford, Mass.,
010200, rev 00, 1987.

[ATT86a] WE 32100 Microprocessor Information Manual, AT&T Technologies, Allentown, Penn.,
J07-730 issue 2, 1986.

[ATT86b] WE 32101 Memory Menagemeni Unil Information Manual, AT&T Technologies, Al-
lentown, Penn., 307-731, 1986.

[AuHu87] Aubain, José M. Bernabéu, Phillip W. Hutto, and M. Yousef Amin Khalidi, The Archi-
teclure of the Ra Kernel, Georgia Institute of Technology, School of Information and
Computer Sciences, technical report G1T-105-87/35, Atlanta, 1987.

[AuLa83a] August, Martha and Sarah Lamb, PRIME 50 Series Technical Summary, Prime Cor-
poration, Framingham, Mass., rev 19.1, DOC6904-191, 1°* ed., 1983.

[AuLa83b] August, Martha, Alice Landy, and Marilyn Hammond, PRIME System Architeciure
Reference Guide, Prime Corporation, Framingham, Mass., rev 19.2, DOC3060-192P,
3™ ed., 1983.

[Ba86) Bach, Maurice J., The Design of the UNIX Operating Sysiem, Prentice-Hall, Engel-
wood Cliffs, N.JI., 1986,

[Be72] Bensoussan, A., C.T. Clingen, and R.C. Daley, “The Multics Virtual Memory: Con-
cepts and Design”, Communicaiions of the ACM, Vol.15 #5, AcM, New York, May
1972, pp. 308-318.

[BhSt88] Bhatia, Anil, James Sterbenz, and Guru Parulkar, Comments on Proposed Trans-
port Protocols, Washington University Computer Science Department, technical report
wucs-88-30, S5t. Louis, Oct. 1988.

[Bu81) Burroughs Network Architecture (BNA) Architectural Description, Operating and Pro-
gramming Reference Manual, Burroughs Corporation (Unisys), Blue Bell, Penn.,
1132172, 1981.

[CaRe88] Campbell, Roy H. and Daniel A. Reed, Unifying Shared and Distributed Memory Par-
allel Systems, University of Illinois Department of Computer Science Department,
UIUCDCS-R-88-1449, Urbana, Illinois, Aug. 1988.

[CaRu88] Campbell, Roy, Vincent Russo, and Gary Johnston, A Class Hierarchical, Object-

Oriented Approach {0 Virtual Memory Management in Mulliprocessor Operaling Sys-
tems, University of Illinois Department of Computer Science Department, UIUCDCS-R-
88-1459, Urbana, Illinois, Sept. 1988.

Sterbensz

27

[Cpc84a)
[Cbc84b]
[Cpc8dc]

[Chss)

[Ch86a)

[Ch86b)

[Ch86c]
[Ch88a]

[Ch88c]

[ChEi88]

[ChG188]

[ChGu88]

[ChZw83)

[ChZw85]

[CI82)

Sysiem Architecture: Cyber 180 Systems, Control Data Corporation, Minneapolis,
204 137, 1984.

CDC Cyber 170 and Cyber 180 Volume I: Virtual State System Description, Funclional
Descriptions, Control Data Corporation, Minneapolis, 60462090, 1984.

CDC Cyber 170 and Cyber 180 Volume IT: Instruction Deseriptions, Programming
Information, Control Data Corporation, Minneapolis, 60458890, 1984.

Cheriton, David, “Preliminary Thoughts on Problem-Oriented Shared Memory: A
Decentralized Approach to Distributed System Design”, Operating Systems Review,
Vol.11 #4, acM s1Gops, New York, Oct. 1985, pp. 26-33.

Cheriton, David, “Problem-Oriented Shared Memory: A Decentralized Approach to
Distributed System Design”, Sizth International Conference on Distribuied Computer
Systems, 1EEE, 1986, pp. 190-197.

Cheriton, David, “vMTP: A Transport Protocol for the Next Generation of Computer
Systems”, SIGCOMM '86 Symposium: Communications Architectures and Proifocols
{Computer Commaunication Review), Vol.16 #3, AcM siGcoMM, New York, 1986, pp.
406-415.

Chesson, Greg, “Protocol Engine Design”, Proceeding of the Useniz Conference, 1986.

Cheriton, David, “vMTP: Versatile Message Transaction Protocol”, DARPA Internetl
Program Protocol Specification, Defense Advanced Research Projects Agency — Infor-
mation Processing Techniques Office, RFC-1045, Arlington Va., Feb. 1988

Chesson, Greg, “XTP/PE Overview”, Prolocol Engines, Inc., PEI 88-83, Santa Barbara,
Calif., 1988.

Chesson, Greg, Brendan Eich, Vernon Schryver, Andrew Cherenson, and Al Wha-
ley, “XTP Protocol Definition”, Revision 3.1, Protocol Engines, Inc., PEI 88-13, Santa
Barbara, Calif., 1988.

Chesson, Greg, and Larry Green, “XTP - Protocol Engine vLs1 for Real-Time LANsS”,
EFOC/38 Amsterdam, Protocol Engines, Inc., PEI 88-53, Santa Barbara, Calif., 1988.

Cheriton, David, Anoop Gupta, Patrick D. Boyle, and Hedrick A. Goosen, “The vMP
Multiprocessor: Initial Experience, Refinements and Performance Evaluation”, JEEE,
1988, pp. 410-421

Cheriton, David, R. and Willy Zwaenepoel, “The Distributed V Kernel and its Per-
formance for Diskless Workstations”, Ninth ACM Symposium on Operaling Sysiems
Principles (Operating Systems Review), Vol.17 #5, ACM s1GoPS, New York, 1983, pp.
129-140.

Cheriton, David, R. and Willy Zwaenepoel, “The Distributed Process Groups in the V
Kernel”, ACM Transactions on Compuler Sysiems, Vol.3 #2, acMm, New York, 1983,
pp. 77-107.

Clark, David D., “Modularity and Efficiency in Protocol Implementation”, DARPA In-
ternet Program, Defense Advanced Research Projects Agency — Information Processing
Techniques Office, RFC-817, Arlington Va., July 1982,

28

Dissertation Proposal

[C185)

[C187a]

[CI87hb]

[Cob5]

[Co88]
[Cy78]
[De65]
[De68]
[De70]

[De88]

[DeFa85]

{DeSeB8]

[Dila88)

[Fa74]

[FaT75)

Clark, David D., “The Structuring of Systems Using Upecalls”, Tenth ACM Symposium
on Operating Systems Principles (Operating Systems Review), Vol.19 #5, ACM siGoPs,
New York, 1985, pp. 171-180.

Clark, David D., Mark L. Lambert, and LiXia Zhang, “NETBLT: A High Throughput
Transport Protocol”, SIGCOMM ’87 Symposium: Froniiers in Compuler Communi-
cations Technology (Computer Commaunication Review), Vol.17 # 5, AcM, New York,
1987, pp. 353-359.

Clark, David D., Mark L. Lambert, and Lixia Zhang, “NETBLT: A Bulk Data Trans-
fer Protocol”, DARPA Inlernet Program Protocol Specification, Defense Advanced Re-
search Projects Agency - Information Processing Techniques Office, RFC-998, Arlington
Va., Feb. 1988.

Comfort, Webb T., “A Computing System Design for User Service”, Proceedings of the
Fall Joinl Computer Conference, Vol.27 Part I, AFipPs, Spartan Books, Washington
D.C., 1965, pp. 619-626.

Comer, Douglas E., Inlerneiworking with TCP/IP: Principles, Prolocols, and Archi-
teciure, Prentice-Hall, Engelwood Cliffs, N.J., 1988.

Cypser, R.J., Communication Architeclure for Disiribuled Systems, Addison-Wesley,
Reading, Mass, 1978.

Dennis, J.B., “Segmentation and the Design of Multiprogrammed Systems”, Journal
of the ACM, Vol.12 #4, AcMm, New York, Oct. 1965, pp. 589-602.

Denning, P.J., “The Working Set Model of for Program Behavior”, Communicaiions
of the ACM, Vol.11 #5, Acm, New York, May 1968, pp. 323-333.

Denning, P.J., “Virtual Memory”, ACM Computing Surveys, Vol.2 #3, Acm, New
York, Sept. 1970, pp. 153-189.

Delp, Gary S., The Archilecture and Implementation of Memnel: A High-Speed Shared-
Memory Computer Communication Network, University of Delaware Department of
Electrical Engineering, technical report #88-05-1, Newark, Del., May 1988.

Delp, Gary S. and David J. Farber, Memnei: An Ezpertment in High Speed Memory
Mapped Local Network Interfaces, University of Delaware Department of Electrical
Engineering, technical report #85-11-1, Newark, Del., Nov. 1985.

Delp, Gary S., Adarshpal S, Sethi, and David J. Farber, “An Analysis of Memnet:
An Experiment in High-Speed Shared-Memory Local Networking”, SIGCOMM ’88
Symposium: Communications Archilectures and Protocols (Computer Communication
Review), Vol.18 #4, Acm Siccomm, New York, 1988, pp. 165-174,

Diede, Tom, Carl . Hagenmaier, Glen S. Miranker, Jonathan J. Rubenstein, and
William 5. Worley, Jr., “The Titan Graphics Supercomputer Architecture”, Computer,
Vol.21 #9, IEEE Computer Society, Los Alamitos, Calif., Sept. 1988, pp. 13-30.

Farber, David J., “Software Considerations in Distributed Architectures”, Computer,
Vol.7 #3, IEEE Computer Society, March 1974, pp. 31-35.

Farber, David J., “A Ring Network”, Datamation, Feb. 1975, pp. 44—-46.

Sterbenz

29

[Fas88]

[FaFe73)

[FaHe70)

[Fa88]

[FaPug8g]

[Fe84]

[FiFr84]

[FiRa86]

[Fi86)

[FI87)]

[GrHa83]

[HeKu83]
[Hw87]

[Hw89]

Farber, David J., “Some Thoughts on the Impact of Ultra-High-Speed Networking
on Processor Interfaces”, University of Pennsylvania Distributed Systems Laboratory
unpublished note, April, 1988.

Farber, David J., Julian Feldman, Frank R. Heinrich, Marsha D. Hopwood, Keneth
C. Larson, Donald C. Loomis, and Lawrence A. Rowe. “The Distributed Computing
System”, COMPCON 78 Digest of Papers: Computing Nelworks from Minis to Maczis
- Are They for Real?, IEEE Computer Society, New York, 1973, pp. 31-34.

Farber, David J. and Frank R. Heinrich, “The Structure of a Distributed Computer
System - The Distributed File System”, First International Conference on Computer
Communication, Washington, D.C., 1970, pp. 364-370.

Farber, David J., “Some Thoughts on the Impact of Ultra-High-Speed Networking
on Processor Interfaces”, University of Pennsylvania Distributed Systems Laboratory
unpublished note, April, 1988,

Farber, David J. and Guru Parulkar, “Some Thoughts on the Impact of Ultra-High-
Speed Networking on Processor Interfaces”, Washington University Computer and
Communications Research Center internal memo, 1988.

Fernbach, Sidney, “Applications of Supercomputers in the U.S. — Today and Tomor-
row”, in Supercomputers: Design and Applications, Kai Hwang (ed.), IEEE Computer
Society Press, Silver Spring, Md., 1984, pp. 421-428,.

Filman, Robert E. and Daniel P. Friedman, Coerdinaied Computing: Tools and Tech-
nigues for Disiributed Software, McGraw-IIill, New York, 1984.

Fitzgerald, R. and R.F. Rashid, “The Integration of Virtual Memory Management and
Interprocess Communication in Accent”, ACM Transactions on Compuler Sysiems,
Vol.4 #19, AcM, New York, May 1986, pp. 147-177.

Fleisch, Brett D., “Distributed System V IPC in Locus: A Design and Implementa-
tion Retrospective”, SIGCOMM ’86 Symposium: Communicalions Archileclures and
Protocols (Computer Communication Review), Vol.16 #3, AcM Siccomm, New York,
1986, pp. 386-396.

Fleisch, Brett D., “Distributed Shared Memory in a Loosely Coupled Distributed Sys-
tem”, SIGCOMM 87 Symposium: Frontiers in Computer Communications Technology
{Computer Communication Review}, Vol.17 #5, AcM SiccomM, New York, 1987, pp.
317-327.

Gifford, 1.P., P.J. Hansen, P. Homan, M.A. Lerner, and M. Pozefsky, “Advanced
Program-to-Program Communication in SNA”, IBM Systems Journal, Vol.22 #4, IBM
Corporation, 1983.

Hetherington, LK. and P. Kusulas, “3B20D Processor Memory Systems”, Bell Sysiem
Technical Journal, Vol.62 #1 Part 2, AT&T Co., New York, 1983, pp. 207-220.

Hwang, Kai, “Advanced Parallel Processing with Supercomputer Architectures”, Pro-
ceedings of the IEEE, Vol.75 #10, IEEE, New York, Oct. 1987, pp. 1348-1379,

Hwang, Kai, “Exploiting Parallelism in Multiprocessors and Multicomputers”, in Par-
allel Programming for Supercompulers and Ariificial Inielligence, Kai Hwang and Dou-
glas DeGroot (ed.), McGraw-Hill, New York, 1989.

30

Dissertation Proposal

[IBM81]
[1BM72]
(IeM78a]
[1aM78b]
[18M81]
[18M83)
[1BM85a)
[1BM85b]
[Iem85c]
(1BM86a)
[18M86b]
(IBM88a]

[IBM88b)

[IBM8Bc]

[In81]

[In83a]

[In83b]
[In86a)

{In86b}

Syslems Nelwork Archileciure - Sessions Beiween Logical Unils, 1BM Corporation,
GC20-1868-2, 1981.

IBM System/860 Model 67 Functional Characieristics, IBM Corporation, Poughkeep-
sie, New York, GA27-2719-2, 1972.

IBM Time Sharing Sysiem Concepls and Facilities, IBM Corporation, Poughkeepsie,
New York, GC28-2003-6, 1978.

IBM System/88 Technical Developmenis, IBM Corporation, Rochester, Minn., G580-
0237, 1978.

Systems Nelwork Archilecture - Sessions Between Logical Units, IBM Corporation,
GC20-1868-2, 1981.

Systems Nelwork Archilecture: Transaclion Programmer's Reference Manual for LU
Type 6.2, IBM Corporation, GC30-3084-1, 1983.

IBM System/38 Functional Reference Manual, Volume 1, IBM Corporation, Rochester,
Minn., GA21-3331-6, 1985.

Systems Network Archilecture: Concepls and Producis, IBM Corporation, GC30-3072-
2, 1985.

Systems Network Architecture: Technical Qverview, IBM Corporation, GC30-3073-1,
1985.

IBM 3090 Processor Complex: Functional Characteristics, IBM Corporation, Pough-
keepsie, New York, SA22-7121-3, 1986.

IBM System/38 Funclional Concepts Manual, 18M Corporation, Rochester, Minn.,
GA21-9330-6, 1986.

IBM System /370 Enlerprise System Archilecture Principles of Operation, IsM Corpo-
ration, Poughkeepsie, New York, SA22-7022-0, 1988.

MVS/Enterprise System Archileciure System Programming Library: Application De-
velopment - Exlended Addresssbilily, 1BM Corporation, Poughkeepsie, New York,
GC28-1854-0, 1988.

IBM Application System /400 Technology, IBM Corporation, Rochester, Minn., SA21-
9540-0, 1988,

Introduction to the iAPX {32 Architecture, Intel Corporation, Santa Clara, Calif,,
171821-001, 1981, reprinted in: Tuilorial on Advanced Microprocessors and High-Level
Language Computer Architecture, Veljko Milutinovié (ed.), IEEE Computer Society
Press, Washington, D.C., 1986, pp. 358-421.

iAPX 432 General Data Processor Architeclure Reference Manual, Intel Corporation,
Santa Clara, Calif., 171860-004, 1983.

iMAX 432 Reference Manual, Intel Corporation, Santa Clara, Calif., 172103-003, 1983.

1P5C System Overview Manual, Intel Scientific Computers, Beaverton, Ore., 310610-
001, 1986.

80386 Programmer’s Reference Manual, Intel Corporation, Santa Clara, Calif., 230985-
001, 1986.

Sterbenz

31

[Ing7]
{In88]

[In89)
[Ja88]

[KaPa87)

[KaSm87]

[K188]

[Ko81]

{LaNe78]

[Le65]

[LeB8]

[LeFa86)

[LeLe83]

[LeMc89]

80886 System Software Wriler’s Guide, Intel Corporation, Santa Clara, Calif., 231499-
001, 1987.

80960MC Programmer’s Reference Manual, Intel Corporation, Santa Clara, Calif,,
271081-001, 1988.

i486 Microprocessor, Intel Corporation, Santa Clara, Calif., 240440-001, 1989.

Jacobsen, Van, “Congestion Avoidance and Control”, SIGCOMM '88 Symposium:
Communications Archilectures and Prolocols (Compuier Communication Review),
Vol.18 #4, acM siccomM, New York, 1988, pp. 314-329.

Karn, Phil and Craig Partridge, “Improving Round-Trip Estimates in Reliable Trans-
port Protocols”, SIGCOMM ’87 Symposium: Frontiers in Compuier Communications
Technology (Computer Communication Review), Vol.17 #5, acMm siacoMM, New York,
1987, pp. 2-7.

Karin, Sidney and Norris Parker Smith, The Supercompuler Era, Harcourt Brace Jo-
vanovich, Boston, 1987.

Kleinrock, Leonard, et al, “Toward a National Research Network”, National Research
Network Review Committee; Computer Science and Technology Board; Commission on
Physical Sciences, Mathematics, and Resources; National Research Council; National
Academy Press, Washington, D.C., 1988.

Kogge, Peter M., The Archilecture of Pipelined Computers, McGraw-Hill, New York,
1981.

Lauer, H.C. and R.M. Needham, “On the Duality of Operating Systems Structures”,
Proceedings Second International Sympesium on Operatling Systems, IR1A, 1978, pp.
17-43.

Lett, Alexander S. and William L. Konigsford, “TSS/360: A Time-Shared Operating
System”, Proceedings of the Fall Joint Computer Conference, Vol.30, Arirs, Thompson
Book Co., Washington D.C., 1968, pp. 15-28.

Leiner, Barry, ed., “Critical issues in High Bandwidth Networking”, Defense Advanced
Research Projects Agency - Gigabit Working Group, Network Working Group, RFcC-
1077, Arlington Va., Nov. 1988

Lefiler, Samuel J., Robert S. Fabry, William N. Joy, Phi! Lapsley, Steve Miller, and
Chris Torek, “An Advanced 4.385D Interprocess Communication Tutorial”?, UNIX Pro-
grammer’s Supplemeniary Documents, Vol 1 (PS1), Virtual VAX-11 Version, Com-
puter Systems Research Group, Computer Science Division, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, Calif., printed
by usenix, 1986, pp. 8-1-8-40.

Leach, Paul J., Paul H. Levine, Bryan P. Douros, James A. Hamilton, David L. Nelson,
and Bernard L. Stumpf, “The Architecture of an Integrated Local Network”, IEEE
Journal on Selecied Areas in Communication, Vol. sac-1 #5, IEEE, New York, Nov.
1983, pp. 842-856.

Leffler, Samuel J., Marshall Kirk McKusick, Michael J. Karels, and John S. Quar-
terman, The Design and Implemenialion of the §.3BSD UNIX Operating Sysiem,
Addison-Wesley, Reading, Mass., 1989.

32

Dissertation Proposal

[Li86)]

[LiSc89]

[LiSt88]

[LyFi8i]
[Ma76]
[Ma77]
[Ma82)]
[MaCh87}
[MaDo74]

[MaPe75]

[MaPa89]

[McDe87]

[MePeg?]
[Mo87]

[MuTa85]

[Nig9)

Li, Kai, Shared Virtual Memory on Loosely Coupled Multiprocessors, Deptartment of
Computer Science, Yale University, YALEU/DCs/RR-492, New Haven, Conn., Sep. 1986.

Li, Kai and Richard Schaefer, An Operating Sysiem Transforming a Hypercube into
a Shared-Memory Machine, Department of Computer Science, Princeton University,
CS-TR-217-89, Princeton, N.J., April. 1989.

Li, Kai, Michael Stumm, David Wortman, and SongNian Zhou, Shared Viriual Memory
Accommodating Helerogeneily, Computer Systems Research Institute, University of
Toronto, technical report csri-220, Toronto, Dec. 1988.

Lynch, N.A. and M.J. Fischer, “On Describing the Behavior and Implementation of
Distributed Systems”, Theoretical Computer Science, Vol.13 #1, 1981, pp. 17-43.

Madison, A.W. and A.P. Batson, “Characteristics of Program Localities”, Communi-
calions of the ACM, Vol.19 #5, Acm, New York, May 1976, pp. 285-294.

Matick, Richard E., Compuler Storage Systems and Technology, Wiley-Interscience,
New York, 1977.

Madison, Alan Wayne, Characieristics of Program Localities, UMI Research Press, Ann
Arbor, Mich., 1982,

Martin, James and Kathleen Kavanagh Chapman, SNA: IBM’s Nelworking Solution,
Prentice-Hall, Engelwood Cliffs, N.J., 1987.

Madnick, Stuart E. and John J. Donovan, Operating Systems, McGraw-Hill, New York,
1974,

Manning, Eric and R.W. Peebles, “Segment Transfer Protocols for a Homogeneous
Computer Network”, Proceedings ACM SIGCOMM/SIGOPS Inierprocess Communi-
cation Workshop (Operatling Systems Review), Vol.9 #3, AcMm Sicops, New York,
1975, pp. 656-73.

Mazraani, Tony Y. and Gurudatta M. Parulkar, Specification of a Multipoini Congram-
Oriented High Performance Inlernet Proiocol, Washington University Computer Sci-
ence Department, technical report wucs-89-20, St. Louis, Aug. 1989.

McCormick, Bruce H., Thomas A. DeFanti, and Maxine D, Brown, “Visualization in
Scientific Computing”, Computer Graphics Newsletter), Vol.21 #6, ACM SIGGRAPH,
Baltimore, Md., Oct. 1987.

Meijer, Anton and Paul Peeters, Computer Network Architectures, Computer Science
Press, Rockville, Md., and Pitman, London, 1982.

MC68030 Enhanced 32-Bit Microprocessor User’s Manual, Motorola, Inc., Phoenix,
MC68030UM/AD, 1987.

Mullender, S.J. and Andrew S. Tannenbaum, “A Distributed File Service Based on Op-
timistic Concurrency Control”, Tenth ACM Symposium on Operating Sysiems Prin-
ciples (Operating Sysiems Review), Vol.19 #5, AcMm Sicops, New York, 1985, pp.
51-62.

Nielson, Gregory M., ed., “Visualization in Scientific Computing”, JEEE Computer,
special issue Vol.22 #8, IEEE Computer Society, Los Alamitos, Claif, Aug. 1989.

Sterbenz

33

[Or72]
[Or83]

[Pa87)

[Pa89]

[PaTu89)

[Pe84]

[P189]

[PoWa81}

[PoWa85)

[Ra85]

[Rag6)

[Ra77]

[RaKh88a]

Organick, Elliot I., The Mullics Sysiem: An Ezaminaiion of Iis Structure, MiT Press,
Cambridge, Mass., 1972.

Organick, Elliot I, A Programmer’s View of the Intel {52 Sysiem, McGraw-Hill, New
York, 1983,

Padua, David A., Vincent A. Guarpa Jr., and Duncan H. Lawrie, Supercomputer Pro-
gramming Environments, Center for Supercomputing Research and Development, Uni-
versity of Illinois, cSRD-673, Urbana, Illinois, June 1987.

Parulkar, Gurudatta M., The Nezt Generalion of Internetworking, Washington Uni-
versity Computer Science Department, technical report wucs-89-19, St. Louis, May
1989,

Parulkar, Gurudatta M. and Jonathan S. Turner, “Towards a Framework for High
Speed Communication in a Heterogeneous Networking Environment”, Proceedings
of the Eighth Annual Joint Conference of the IEEE Compuler and Communica-
tions Societies (Infocom '89), IEEE Computer Society, Washington, D.C., Vol.II, pp.
655-667, also, Washington University Computer Science Department, technical report
wucs-88-7, St. Louis, 1988.

Peterson, Victor, L., “Impact of Computers on Aerodynamics Research and Develop-
ment”, Proceedings of the JEEE, Vol.72 #1, IEEE, New York, Jan. 1984, pp. 68-79,
reprinted in: Supercompulers: Design and Applicalions, Kai Hwang (ed.), IEEE Com-
puter Society Press, Silver Spring, Md., 1984, pp. 462-473.

Plambeck, K.E., “Concepts of Enterprise Systems Architecture/370”, IBM Systems
Journal, Vol.28 #1, IBM Corporation, Armonk, New York, 1989, pp. 39-61.

Popek, G., B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudidin, and G. Thiel,
“Locus: A Network Transparent, High Reliability Distributed System”, Fighth ACM
Symposium on Operating Systems Principles (Operating Sysiems Review}, Vol.15 #5,
AcM Sicops, New York, 1981, pp. 169-178.

Popek, Gerald J. and Bruce J. Walker, The LOCUS: Distribuled Sysiem Archileclure,
MIT Press, Cambridge, Mass., 1985.

Rattner, Justin, “Concurrent Processing: A New Direction in Scientific Computing”,
Proceedings of the Nationael Computer Conference, Vol.b4, AFIPS Press, Reston, Va.,
1985, pp. 157-166, reprinted as, Intel Technical Paper TP-9, Intel Corporation, Santa
Clara, Calif., 280265-002.

Rashid, Richard F., “From RiG to Accent to Mach: The Evolution of a Network Op-
erating System”, Proceedings 1986 Fall Joint Compuler Conference, IEEE Computer
Society Press, Washington, In.C., 1986, pp. 1128-1137.

Ramamoorthy, C.V. and H.F. Li, “Pipeline Architecture”, Computing Surveys, (special
issue: “Parallel Processors and Processing”), Tse-Yun Feng, ed., Vol.9 #1, AcM, New
York, Mar 1977, pp. 61-102.

Ramachandran, Umakishore and M. Yousef Amin Khalidi, An Implementation of Dis-
tribuled Shared Memory, Georgia Institute of Technology, School of Information and
Computer Sciences, technical report GIT-1C5-88/50, Atlanta, Dec. 1988.

34

Dissertation Proposal

[RaKh88b)

[RaLa87]

[RaRo81)

[RaTe88)

[ReB2]

[ReSt88)

[ReTa87]

[RrcT91]

[RFc793]

[SaRe84]

[ScGa89)

[Se86]

[SIKr87]

Ramachandran, Umakishore and M. Yousef Amin Khalidi, An Eveluation of Mem-
ory Management Structures for Object-based Systems, Georgia Institute of Technology,
School of Information and Computer Sciences, technical report GIT-1c5-88/53, Atlanta,
Dec. 1988.

Raveché, Harold J., Duncan H. Lawrie, and Alvin M. Despain, ed., “A National Com-
puting Initiative: The Agenda for Leadership”, Report of the Panel on Research Is-
sues in Large-Scale Computational Science and Engineering (SIAM workshop), S1aM,
Philadelphia, 1987.

Rashid, Richard and George G. Robertson, “Accent: A Communication Oriented Net-
work Operating System Kernel”, Proceedings of the Eighth Symposium on Operating
Systems Principles (Operating Sysiems Review), Vol.15, #5, AcM SiGors, New York,
Dec. 1981, pp. 64-75.

Rashid, Richard, Avadis Tevanian Jr., Michael Young, David Golub, Robert Baron,
David Black, William J. Bolosky, and Jonathan Chew, “Machine-Independent Vir-
tual Memory Management for Paged Uniprocessor and Multiprocessor Architectures”,
IEEE Transactions on Compulers, Vol.37, #8, IEEE Aug. 1988, pp. 896-908.

Reid, Loretta Guarino, Conirel and Commaunicalion in Programs, UMi Research Press,
Ann Arbor, Mich, 1982.

Renesse, Robert van, Hans van Staveren, and Andrew S§. Tannenbaum, “Performance of
the World’s Fastest Distributed Operating System”, Operating Systems Review, Vol.22,
#4, AcMm S1cops, New York, Oct. 1988, pp. 26-34.

Renesse, Robert van, Andrew 5. Tannenbaum, Hans van Staveren, and J. Hall, “Con-
necting Rrc-Based Distributed Systems using Wide Area Networks”, Seventh Inter-
national Conference on Distribuled Compuler Sysiems, IEEE, Washington, D.C. 1987,
pp. 28-34.

“Internet Protocol”, DARFPA Internel Program Proiocol Specificalion, Defense Ad-
vanced Research Projects Agency — Information Processing Techniques Office, RFC-791,
Arlington Va., Sep. 1981

“Transmission Control Protocol”, DA RPA Iniernel Program Protocol Specification, De-
fense Advanced Research Projects Agency — Information Processing Techniques Office,
RFC-793, Arlington Va., Sep. 1981

Saltzer, Jerome H., David P. Reed, and Pavid D. Clark, “End-to-End Arguments in
System Design”, ACM Transactions on Compuler Systems, acM, New York, Vol.2,
#4, Nov. 1984, pp. 277-288.

Scalzi, C.A., A.G. Ganek, and R.J. Schmalz, “Enterprise Systems Architecture/370:
An Architecture for Multiple Virtual Address Space Access and Authorization”, IBM
Systems Journal, Vol.28 #1, IBM Corporation, Armonk, New York, 1989, pp. 15-38.

Sechrest, Stuart, “An Introductory 4.385D Interprocess Communication Tutorial”,
UNIX Programmer’s Supplemeniary Documents, Vol. 1 (PS1), Virlual VAX-11 Ver-
sion, Computer Systems Research Group, Computer Science Division, Department of
Electrical Engineering and Computer Science, University of California, Berkeley, Calif.,
printed by USENIX, 1986, pp. 7-1-7-25.

Sloman, Morris and Jefl Kramer, Distributed Sysiems and Computer Networks,
Prentice-Hall (UK) International, London, 1987.

Sterbenz

35

[Sp81]

{SpMo88]

[SpOr75]

[5t87]

[St88a]

[St88b)

[St88d]

[StPa89a)

[StPa89b]

[StPag9c]

[St90]
[Sug6a]
[Sus6d)
[TaFa89)

[TaMu86]

Sperry Univac Telecon System Description, Sperry Univac (Unisys), upP-8455, 1981
Rev. 2.

Sporer, Michael, Franklin H. Moss, and Craig J. Mathias, “An Introduction to the Ar-
chitecture of the Stellar Graphics Supercomputer”, 397 IEEE Computer Sociely Inter-
national Conference, IEEE Computer Society, Los Alamitos, Calif., 1988, pp. 464-467.

Spier, Michael J. and Elliot Organick, “The Multics Interprocessor Communications
Facility”, in Software Systems Principles: A Survey, Peter Freeman (ed.), Science
Research Associates, Chicago, 1975, pp. 133-167,

Stallings, William, Hardbook of Computer Communication Standards, Volume I: The
Open Systems Interconnection (OSI) Model and OSI-Related Standards,, McMillan,
New York, 1987.

Stallings, William, Paul Mockapetris, Sue McLeod, and Tony Michel, Handbook of
Computer Communication Standards, Volume 3: Department of Defense (DOD) Pro-
tocol Standards,, McMillan, New York, 1988.

Stellar Graphics Supercomputer Model G51000 Sysiem Overview, Stellar Computer,
Tnc., Newton Mass., MD-0001, 1988.

Sterbenz, James P.G., High Performance Host and Neiwork Interface Archilecture (re-
quest for comments), Washington University Computer Science Department, research
note JPs-88-6, St. Louis, October 1988

Sterbenz, James P.G. and Gurudatta M. Parulkar, Azon: A High Speed Communica-
tion Architecture for Distribuled Applications, Washington University Computer Sci-
ence Department, technical report wucs-89-36, St. Louis, Sept. 1989, presented at the
Fourth IEEE Communications Society Workshop on Computer Communications, Dana
Point, California, Oct-Nov 1989.

Sterbenz, James P.G. and Gurudatta M. Parulkar, Azon: Network Virtual Slorage

Design, Washington University Computer Science Department, technical report wucs-
89-13, St. Louis, May 1989.

Sterbenz, James P.G. and Gurudatta M. Parulkar, Azon: Application-Oriented
Lightweight Transpori Protocol Design, Washington University Computer Science De-
partment, technical report wucs-89-14, St. Louis, Oct. 1989.

Sterbenz, James P.G., Azon: Host-Network Inlerface Design, Washington University
Computer Science Department, technical report wucs-90-7, St. Louis, March 1990.

“Network Services Guide”, in Networking on the Sun Workstation, Sun Microsystems,
Mountain View, Calif., 800-1324-03, Rev. B, 1986.

“Network File System Protocol Specification”, in Nelworking on the Sun Workstation,
Sun Microsystems, Mountain View, Calif., 800-1324-03, Rev. B, 19886.

Tam, Ming-Chit and David J. Farber, “CapNet — An Alternative Approach to Ultra-
High Speed Network”, (abstract), submitted to: JCC *89,

Tannenbaum, Andrew S., S.J. Mullender, and Robert van Renesse, “Using Sparse
Capabilities in a Distributed Operating System”, Sizih Inlernational Conference on
Distributed Computer Sysiems, IEEE, Washington, D.C. 1986, pp. 558-563.

36

Dissertation Proposal

[Te87]

[Un87a)
[Un87b]
[Un8S)

[WaPo83]

[YoTe87)

[Zh86]

Tevanian, Avadis, Jr., Architecture-Independent Virlual Memory Managementi for for
Parallel and Distributed Environments: The Mach Approach, Carnagie-Mellon Depart-
ment of Computer Science, technical report cMu-cs-88-106, Pittsburgh, Dec. 1987.

Burroughs Network Architecture (BNA} Version 2 Capabilities Overview, Unisys (for-
merly Burroughs), Blue Bell, Penn., 1182318, 1987.

A Series I/0 Subsystem Programming Reference Manrual, Unisys (formerly Burroughs),
1169984, 1987.

Distributed Communications Architecture (DCA) Technical Overview, Unisys (formerly
Sperry Univac), St. Paul, Minn., ur-9676 Rev. 1, 1988.

Walker, Bruce, Gerald Popek, Robert English, Charles Kline, and Greg Thiel, “The
Locus Distributed Operating System”, Proceedings of the Ninth Symposium on Oper-
ating Sysiems Principles (Operaling Systems Review), Vol.17 #5, AcMm Sicops, New
York, 1983, pp. 49-70.

Young, Michael, Avadis Tevanian, Richard Rashid, David Golub, Jeffrey Eppinger,
Jonathan Chew, William Bolosky, David Black, and Robert Baron, “The Duality of
Memory and Communication in the Implementation of a Multiprocessor Operating Sys-
tem”, Eleventh ACM Symposium on Operating Systems Principles (Operating Systems
Review), Vol.21 #5, AcM siGoPs, New York, 1987, pp. 63-76.

Zhang, LiXia, “Why Tc¢P Timers Don’t Work Well”, SIGCOMM '86 Symposium: Com-
munications Archileclures and Protocols (Computer Communication Review), Vol.16
#3, AcM siGcoMmM, New York, 1986, pp. 397-405.

	Host-Network Interface Architecture for Gigabit Communications
	Recommended Citation
	Host-Network Interface Architecture for Gigabit Communications

	tmp.1466443446.pdf.a2ktq

