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ABSTRACT OF THE DISSERTATION
Probing the Early Stages of Polyglutamine Aggregation

with Computational Methods

Exonic CAG repeat diseases are a class of neurodegenerative age-of-
onset diseases caused by an unstable trinucleotide expansion in a coding region
of a gene. The most prominent example is Huntington’s disease (HD) whose
symptoms are characterized by loss of motor control and cognitive deficits. For
all nine of the known CAG repeat diseases, pathology is ascribed to the mutant
proteins which carry expanded stretches of glutamine residues (polyglutamine).
The length of the polyglutamine segment is inversely correlated with the disease
age-of-onset. Protein aggregates are routinely found in postmortem tissue
samples of brains of HD patients. These findings suggest a prominent role for
polyglutamine-mediated protein aggregation in disease pathogenesis.

Subsequent studies characterized the intracellular aggregates as amyloid-
like. In amyloids, the polypeptide backbone predominantly adopts conformations
in the B-basin of the Ramachandran map, i.e., the aggregates have high net -
content. This has led to the hypothesis that p-rich conformers play a prominent
role in mediating the aggregation process; specifically, it has been postulated
that a B-rich form of polyglutamine acts as the monomeric nucleus from which

fibrillar aggregates grow via a downhill elongation mechanism.
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This thesis investigates the intrinsic properties of polyglutamine during
early stages of aggregation. We employ computer simulations to obtain a
qualitative picture of the process at an atomistic level. Our results suggest the
following: soluble polyglutamine is intrinsically disordered and forms collapsed
globules in aqueous solution. These globules associate readily and randomly to
form disordered dimers. We identified no structural requirements for association
to occur. The conversion of monomeric polyglutamine to a conformation high in
B-content, i.e., to a putative aggregation nucleus, is associated with a high free
energy penalty. We detect no coupling between structure and associativity, but
find a profound modulation of polyglutamine’s intrinsic properties in the presence

of wild-type flanking sequences.

From our results, we postulate a model where polyglutamine forms large
soluble and disordered oligomers which undergo a rate-limiting conformational
conversion to a fibrillar precipitate. We conclude that structure-based drug
designs may not prove a viable strategy for interfering with the early stages of

polyglutamine aggregation and hence with disease pathology.
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CHAPTER I|. INTRODUCTION

I.1. Preamble

Ideally, a doctoral thesis is the coherent sequence of novel and
reproducible research on a system of relevance to the field of study. It is placed
in a broader thematic context and is expected to advance the field significantly. A
thesis remains distinguished from a journal article by its focus on a connected set
of questions rather than a select few. Answers to all of them would simply extend
beyond the scope of a single article, both in terms of sheer quantity of data and

in terms of the impact of the results to the overarching storyline.

The present thesis is presented toward the partial fulfillment of the degree
requirements for a Ph.D. in Molecular Biophysics. The system of relevance we
chose is — not surprisingly — a biological one studied at the molecular level. In the
broadest sense, it is that of protein aggregation diseases. More specifically, we
targeted CAG-repeat diseases,’ i.e., diseases in which pathological aggregation
occurs due to the translation of an extended polypeptide stretch in the host
protein. This stretch is composed entirely of glutamine residues due to the
repeated CAG-codons on the disease gene being translated.? As is outlined in 1.3,
we asked and attempted to answer very specific questions about the basic
physicochemical mechanism of polyglutamine aggregation employing computer

simulations as our solitary tool.

It is very important to point out that we have attempted to remain deeply

rooted in the knowledge provided by the vast body of both in vitro and in vivo



experimental work. Throughout this multi-year endeavor, we have constantly
evaluated our numerical and theoretical approaches in this manner, since only
then can we confidently satisfy the requirements of both producing relevant
results and of advancing a specific field significantly. The second point requires
some elaboration: Biology poses the unique challenge that it makes
conceptualizations extremely difficult due to its innate complexity. Conversely,
physicists routinely attempt to simplify the problem to a level where such
conceptualizations become feasible. Undoubtedly, one may ultimately succeed in
defining a framework and a resolution at which feasibility is obtained. However,
to provide a significant advancement of a specific area of biology, it is not only
necessary to find such a framework, but also to make sure that it still describes

the specific system with qualitative accuracy.

This last point is best illustrated using an example: Consider the problem
of protein folding, which is much narrower in biological complexity than that of
CAG-repeat disease pathology. It has lent itself to extremely helpful
conceptualizations from a biophysical point of view; it has, for example, spawned
the entire field of protein energy landscape theory.® In terms of a generalized
theoretical framework, simplistic models such as minimalist lattice models have
been immensely helpful, since they have the power to elucidate underlying and
unifying concepts.* They do, however, fail in answering specific questions about
the folding mechanism of a “real” protein. Instead, they facilitate the formulation
of hypotheses for said “real” protein, which can then be tested using a more

accurate numerical model or — of course — experimental techniques.



The above example demonstrates the fragile juncture at which the field of
biophysics is placed in 2009. The physicists in us are drawn to the
conceptualizations and principles, to the unifying mechanisms and driving forces
at work. Conversely, the biologists in us are drawn to the details of the specific
system under study, toward the primary goal of understanding precisely that
system and not necessarily anything else. We have tried to benefit from the
implied synergy in understanding the molecular mechanism of the pathology of
CAG-repeat diseases. Thinking about physical driving forces gave rise to
hypotheses which we tested computationally. The results helped us understand
and reinterpret experimental data reliant too much on qualitative speculation
otherwise. They also helped experimental colleagues think about new

experiments of utmost biological relevance.

However, this fundamentally interdisciplinary process remains fraught with
difficulty. Primarily, there are communication barriers which need to be eliminated
for biophysicists to be truly operating at the interface. Transfer of concepts and
knowledge in either direction is severely hampered by simple language barriers.
Prejudice against different “schools of thought” presents additional hurdles. Much
like modern scientists in a competitive funding environment are asked to be
salesmen and —women of their own talents, they are equally asked to be
diplomats, translators and even mediators. It appears as if the ability to quickly
“‘export” one’s own set of methodologies, tools, and knowledge into an unfamiliar
problem setting represents one of the fundamentally important skills a 21°%-

century scientist must acquire to successfully operate at the interface of



disparate areas of research and — sometimes — disparate schools of thought.
Without that ability, biophysics might remain a subdivision such as physical

biology or biological physics for the time being.

The remainder of this thesis is organized as follows: in the subsequent
parts of Chapter | we introduce the topic of polyglutamine expansion diseases
and review the literature as of 2009. While it would be easier to motivate
hypotheses and methods for each of the additional chapters (Il to VI) given the
state of the field at the time the particular projects were started, it would also
impose a historical tone onto the thesis. Instead, we opt to provide a current
overview which clearly places our results in a current context. Our results are
presented in Chapters Il to VI. The work in Chapter Il to V has been published

previously in peer-reviewed journals,*®

while the manuscript for the material
presented in Chapter VI is being prepared for submission in the very near future.’
The published articles are used directly in those chapters with minor
modifications intended to preserve the flow of content and logic of this thesis. In
particular, Chapters Il to VI each have a preamble meant to place them in the
broader context of the thesis, to report alternative approaches which were
pursued but proved unfruitful, and to point out the contributions of co-authors
whenever other researchers beyond my advisor and myself were involved. The
introduction appearing in the published articles is often (at least partially)
removed, since a unifying introduction is provided here in Chapter |. Finally,

Chapter VII summarizes the relevance of our efforts and looks ahead to future

projects which have been or will be spawned by this work.



With the exception of this particular sentence, | have chosen to use the
‘we”-form for the entirety of this thesis. The reason is simple: while it might
appear desirable to always attempt to decompose the efforts of individuals,
science is teamwork, and a laboratory like ours represents a thinking
environment fueled by incessant communication, ie., it represents a
fundamentally collaborative model of productivity. That said, we will try to make it

as clear possible to delineate individual co-authors’ contributions as stated above.
1.2. Polyglutamine Expansion Diseases

1.2.1. Overview

Trinucleotide repeat diseases' derive their name from their unifying
genetic feature that a specific codon is repeated on a gene multiple times. The
repeat is unstable and can expand leading to a much improved susceptibility of
the host organism to exhibit a disease phenotype. This connection was not
understood until the early 1990s when the causative genes for X-linked spinal
and bulbar muscular atrophy (SBMA),’® Huntington’s disease (HD),"" and

spinocerebellar ataxia type 1 (SCA1)"

were identified. Since then, further
diseases have been characterized. Table 1.a summarizes those in which the
trinucleotide repeat is exonic, i.e., is actually translated to yield a mutant protein.
In all those cases, the unstable codon is CAG, which results in expanded
polyglutamine stretches in the mutant proteins. A separate class of trinucleotide

repeat diseases is obtained if the repeat stretch is found in non-coding areas of

the gene. This class is not considered further here.



Disease Host Protein CAG repeat length

Huntington’s disease (HD) Huntingtin 36-121

Spinocerebellar ataxia type 1 (SCA1) Ataxin-1 39-83

Spinocerebellar ataxia type 2 (SCA2) Ataxin-2 32-77

Spinocerebellar ataxia type 3 (SCA3) Ataxin-3 54-89

Spinocerebellar ataxia type 6 (SCAG) Cayv2.1-a 19-33

Spinocerebellar ataxia type 7 (SCA7) Ataxin-7 37-306

Spinocerebellar ataxia type 17 (SCA17) TATA-BP 47-55
Androgen

Spinal and bulbar muscular atrophy (SBMA) 40-63
Receptor

Dentatorubral pallidoluysian atrophy (DRPLA) Atrophin-1 49-84

Table 1.a: Overview of the exonic CAG-repeat diseases.'® Diseases are listed along
with the host protein and the mutant allele repeat number. The wild-type allele repeat
numbers are generally non-overlapping ranges of shorter lengths. All these numbers are

based on patient data and hence hampered by small sample sizes due to generally low

prevalence."®

All the diseases listed in Table 1.a are hereditary age-of-onset diseases, i.e.,
symptoms start to develop later in life, usually when patients reach 30-50 years
in age. The severity of symptoms is usually progressive, although none of the

diseases are directly fatal (see 1.2.2).

The host proteins are generally unrelated in both sequence and function
(see 1.2.3). This finding has dominated the hypotheses formulated with respect to

CAG expansion diseases: Pathogenesis is assumed to be triggered by the



unifying characteristic, viz. the polyglutamine stretches. Support comes directly
from clinical data, which show that for all nine diseases the age-of-onset is
inversely correlated to the length of the polyglutamine expansions.’ The
presence of inclusions in the brains of the first mouse model for HD'" established
protein aggregates as a histological hallmark of CAG repeat diseases. This
placed them in the broader category of age-of-onset protein aggregation
diseases such as Alzheimer's and Parkinson’s. When a qualitatively similar,
inverse dependence of in vitro aggregation rates on repeat length was
established with isolated peptides and truncation constructs (see 1.2.5),"8'9 it
appeared quite reasonable to formulate an overarching, universal hypothesis of
the pathogenic mechanism of CAG repeat diseases: The aggregation of protein
fragments rich in glutamine and not the details of the host protein and its biology
is the crucial pathogenic event.?>?" This is not dissimilar from the amyloid
cascade hypothesis?®> formulated for Alzheimers disease (also see 1.2.6).
Additional support for such a hypothesis emerged from several studies in vivo, in

which somewhat universal behavior was observed even for very disparate

sequence constructs (see 1.2.4).

In recent years, however, doubt has been cast on the universality of this
polyglutamine- and aggregation-centric view. Sequence context is considered
with renewed emphasis and the wild-type biology of the host proteins has
become a dominant area of research (see 1.2.4 and 1.2.7).2?® Therapeutic
strategies focus not just on interfering with protein aggregation but target other

implicated cellular pathways as well. It remains to be seen how much merit the



aggregation-centric view will hold for the efficient design of treatment and

strategies and ultimately a cure.

1.2.2. Symptoms and Treatment

HD is estimated to be the most prevalent of all CAG-repeat diseases,
although reliable numbers have not been established for all the diseases in Table
1.a, and — more importantly — prevalence varies drastically with population. HD
was characterized first by the physician George Huntington in the second half of
the 19™ century by the vivid descriptions of one of its symptoms: chorea, i.e.,
brief and arrhythmic muscle contractions leading to erratic and uncontrolled

motion.'®%*

Generally speaking, the course of HD and DRPLA can be divided into
three stages: i) a pre-symptomatic stage during which patients are completely
healthy by clinical standards; ii) a weakly symptomatic stage during which
patients might be unaware of any symptoms but careful tests reveal a
quantifiable phenotype, and iii) a strongly symptomatic phase which is diagnosed
by clinical signatures such as chorea, motor impersistence, or lack of
coordination (ataxia). Stage iii) is accompanied by cognitive symptoms; they
often include an impairment of cognitive control, i.e., patients have difficulties in
organizing, planning, and coordinating tasks. This may lead to an emotional
detachment of the individual from her or his social environment and result in an
increased risk for suicide.?® By the neurodegenerative nature of the disease, both
motor and cognitive functions are impaired. This makes patient care during

advanced stages of the disease a necessity.



SBMA or Kennedy’s disease is an X-linked muscle weakness syndrome.
In its characterized form, it is found in males only, although female carriers show
very mild but quantifiable symptoms.'>?® Through neurodegeneration, voluntary
muscle movements are negatively affected in the limbs, mouth, and throat. This
impairs mobility, speech, and the ability to swallow. Symptoms of the disease are
relatively mild compared to other CAG repeat diseases and very rarely include
cognitive impairment. The primary risk of premature death comes from a
weakened respiratory system via secondary infections.”®> Conversely, those
spinocerebellar ataxias which are polyglutamine-based (see Table 1.a) exhibit a
wide range of symptoms: the most common feature is — as the names of the
diseases suggest — a lack of motor coordination resulting in altered gait, posture,
and oculomotor deficits.™ In general, symptoms are highly variable and — unlike

SBMA - have considerable overlap with those seen in HD and DRPLA.

Currently, there is no cure for any of the CAG repeat diseases. Because
the molecular mechanisms of pathogenesis remain poorly understood, treatment
approaches are purely symptomatic. For SBMA, vitamins are administered to
help with muscle cramps. The clinically most advanced strategy beyond that has
been to reduce the androgen levels in the affected patients.?®?” Both castration
and chemical reduction of testosterone levels improved symptoms and slowed
down progression in a mouse model of SBMA.?® For HD and the ataxias, the
situation is similar if not worse. Pharmacological treatment is occasionally
reported to be beneficial but remains largely ineffective.'%?° An illustrative data

point comes from the observation that the survival expectancy in a remote



Venezulean patient population was very similar to that of populations with ready
and thorough access to pharmacological treatment options.*®> Non-
pharmacological strategies provide another route to symptomatic treatment.
Logopedics, physiotherapy, and counseling are all vital in maintaining as much

quality of life as possible for both the patient and her or his family.

1.2.3. Repeat Instability and Host Proteins

The molecular origin of the genetic instability which leads to the expansion
of the trinucleotide repeat region on the gene remains poorly understood.®’ In
general, we can distinguish between somatic expansion and germline instabilities.

The former has been demonstrated for HD3>3

giving rise — for example — to
tissue-specific expansion patterns.®* This is an important aspect since the
disease phenotype is itself tissue-specific suggesting a connection between the
two.%*® Even more strikingly, it was demonstrated that DNA polymorphism can
occur in adult, post-mitotic neurons.*” Distinct from somatic mutations, germline
instabilities create mutations in an intergenerational sense, ie., meiotic
expansion of the trinucleotide repeat during spermatogenesis and oogenesis

might predispose future generations to an earlier age-of-onset (a phenomenon

referred to as anticipation).

The molecular mechanism for the instability remains somewhat
speculative.®® Roughly speaking, during DNA replication, the trinucleotide repeat
on one of the separated strands is predisposed to secondary structure formation,
typically a hairpin. This hairpin can occur on the template strand leading to

contraction or on the nascent strand leading to expansion. By interfering with
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replication, ultimately the trinucleotide repeat stretch self-mutates. If it is located

on a coding region, the translated proteins will reflect that mutation. What are the

functions, localizations, and sizes of the host proteins such that the organism

tolerates such variable mutations?

Table 1.b gives an overview of the disease proteins:

Host Protein Localization Function Size in kD
Huntingtin Cytoplasma ~350
Associated with diverse cellular
Ataxin-1 Neuronal Nuclei ~90
pathways / functions
Ataxin-2 Cytoplasma variable
Ataxin-3 Cytoplasma Deubiquitinase™ ~40
Subunit of a voltage-dependent
Cay2.1-a Cell Membrane ~282
calcium channel*
Part of transcriptional regulatory
Ataxin-7 Nucleus ~100
and histone acetylation complexes®’
TATA-BP Nucleus Transcriptional regulator*? ~35
Nucleus and
Androgen Receptor Steroid receptor (testosterone)43 ~110
Cytoplasma
Transcriptional corepressor via
Atrophin-1 Cytoplasma ~125 (83)

nuclear receptors*

Table 1.b: Overview of host proteins for the nine exonic CAG-repeat diseases.

Proteins are listed (see Table 1.a) along with their typical localization, dominant

characterized function, and approximate size. Ataxin-1, Ataxin-3, and Huntingtin have all

been vaguely implicated in multiple cellular processes. To an extent, this is true for
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Ataxin-3, Ataxin-7, and Atrophin-1 as well. The problem stems largely from the difficult
conversion from identified macromolecular interaction partners to assigned function.

Sizes were obtained from transcript entries via Ensembl.*®

As Table 1.b suggests, the native function of the host proteins implies that
the most common cellular process implicated in polyglutamine diseases would be
transcriptional regulation. In 1.2.4, it is argued that a general mechanism not
reliant on host protein function emerges. Such a general mechanism is supported
by the rather uniform phenotype (see 1.2.2) given the unrelated nature of the
gene products listed in Table 1.b. No significant sequence similarities and no

structural similarities have been discovered for the host proteins.*°

1.2.4. Suggested Pathogenic Mechanisms

In this section we review the general pathogenic mechanism brought forth
to explain the deleterious effects of poylglutamine expansion on neuronal cells.
Ironically, this excludes the most obvious explanation, which is as follows: the
host protein is adversely affected by the expansion — for example misfolded —
and fails to perform its biological function in the same manner as the wild-type
protein would. As outlined in 1.2.1, this loss-of-function hypothesis by construction
postulates a specific mechanism for each disease given that the host proteins
are unrelated (also see 1.2.3).2 But not all seemingly specific hypotheses do
exclude the possibility of a generic mechanism: An example was touched upon in
1.2.2 for SBMA for which the host protein, viz. the androgen receptor, allows a
specific modulation of the disease phenotype by reducing testosterone levels.?®

This approach is probably indirectly linked to polyglutamine: it appears

12



reasonable to assume a subsequent down-regulation of the expression levels of
the androgen receptor. The reduced amount of disease protein would then
consequently reduce the disease phenotype. Another mechanism we do not
consider here is that of a direct toxicity of the mutant mRNA construct. Such a

role was recently demonstrated for SCA3.%

But what cellular pathways do the disease protein, its putative proteolytic
fragments, and the aggregation intermediates interfere with? Here, we consider

three major processes, which are not necessarily separable:

i. The polyglutamine expansions have been shown to disrupt wild-type protein-
protein interaction networks through a coupled loss- and gain-of-function.
Native interactions are lost, and new, deleterious interactions are formed by
the mutant protein. The polyQ-expanded host protein of SCA1, ataxin-1, has
been demonstrated to interact more favorably with a putative RNA-binding
protein but less favorably with a transcriptional repressor protein.*®*° In this
case, the affected downstream process is almost certainly transcriptional
regulation. It is altered through an upstream modification of protein-protein
interactions which are directly polyglutamine-dependent. Similarly, the host
protein for SCA17, viz. the transcriptional regulator TATA-box binding protein
(TBP), has been shown to exhibit a reduced propensity to homodimerize in a
polyglutamine length-dependent fashion. Similar to ataxin-1, an interaction
with a different transcriptional regulator is positively affected leading to a
direct hypothesis for pathogenesis through altered transcriptional regulation.>

Interestingly, TBP has also been shown to be sequestered in Huntingtin-

13



containing aggregates through a presumed interaction of the polyglutamine
stretches.®' Lastly, polyQ-expanded TBP also shows reduced interactions

with its other native binding partner, DNA.%2

. The formation of larger oligomeric but soluble species might operate as a

generic modulator of cellular function by engaging in degenerate protein-
protein interactions. Vital proteins might be sequestered into growing
oligomers causing stress to the cell.>® This is a direct generalization of i), but
focuses on non-specific interactions mediated by the polyglutamine tract.
Indirect support for such a mechanism comes from studies in vivo employing
overexpressed constructs with polyQ-expansions beyond the pathological
length threshold. Takahashi et al.>** demonstrated that sequence constructs
with polyglutamine stretches attached to truncated native sequences derived
from Huntingtin or atrophin-1 and additionally tagged with GFP form soluble
oligomers, which are cytotoxic in a length-dependent manner. Similarly, Wong
et al.>® characterized SDS-insoluble, spherical oligomers in an inducible
Drosophila model of SCA3. The presence of these oligomers was shown to
correlate with the neurodegenerative symptoms exhibited by the fly model.
Such a generic model of toxicity is also supported by the existence of a
common antibody recognizing amyloid-like oligomers.®® Both of the

aforementioned studies®*®°

provide further evidence that microscopic,
precipitated aggregates in cells (inclusion bodies) are not correlated with
neurodegeneration and cell survival. A controversial point several years ago,

enough evidence has been brought forth that it now seems widely agreed
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upon that visible, cellular aggregates are circumstantial signs of

neurodegeneration but are in no way causative.?"->°

As a direct consequence of both i) and ii), polyglutamine expansions might
impair the cellular protein quality control system (PQCS). Heat shock proteins
in the 70kD family (Hsp70) have been detected in or associated with cellular
aggregates induced by pathological polyQ-expansions.’*®%®! Proteins in the
Hsp70 family often act as molecular chaperones and are hence partially
responsible for the folding and re-folding of nascent and misfolded proteins.
The molecular chaperone machinery is linked through regulatory interaction
networks to the ubiquitin-proteasome degradation pathway. This linkage
includes a few well-characterized proteins such as CHIP or BAG1.
Upregulation of proteins in or associated with the Hsp70-family can be

protective®°°

although the complexity of the network might prevent the
overexpression of just a single protein from having any effect. A universal
mechanism of pathogenesis is suggested, however, by the multiple
independent findings that components in the PQCS reduce polyglutamine-
induced toxicity upon overexpression or exacerbate it upon siRNA
suppression. Recent cases include but are not limited to such demonstrations
for the regulatory protein sacsin in a model of SCA1,°® CHIP in a model of
SCA3,%" and p97-type chaperones,®® the TRIC chaperonin,®®”® and HYPK"" in

models of HD. A model for pathogenesis emerges in which the mutant protein

incapacitates the PQCS by resisting both proteolytic degradation and
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chaperone-assisted refolding, which ultimately has fatal downstream

consequences for the cell.”*"

Other pathways and systems which have — at least temporarily — attracted a

75,76

considerable amount of attention involve mitochondrial function and protein,

in particular histone acetylation.””

However, it is not at all straightforward to identify a causative role for
aggregation in the above mechanisms. While the examples listed in ii)
demonstrate correlation between neurotoxicity and the presence of soluble
aggregates, more direct evidence for a causative effects comes from the
protective effects exhibited by aggregation inhibitors: early work including small
molecules such as trehalose’ was performed exclusively in vivo and hence
remains indirect. Since then, compounds such as polyphenols found in green
tea’®, proline®®, and the amlyoid-specific dye Congo Red®'®? have all been
shown to inhibit aggregation in vitro, and to alter pathogenesis in disease models.
Most recently, renewed interest has been shown in the undecapeptide QBP1,%
which had been identified and characterized as a peptidic aggregation inhibitor.®*

All these studies suggest that the process of protein aggregation remains at least

partially responsible for pathogenesis in exonic CAG repeat diseases.

One area that remains the subject of much scrutiny is the role of
proteolytic cleavage.®>® Analysis is hampered by the fact that it is very difficult to
identify prominent fragments in vivo. Several studies suggest that suppression of
proteolysis reduces toxicity.**! This gives rise to the “toxic fragment” hypothesis,

which is one of the major justifications of studying the intrinsic properties of the

16



polyglutamine stretch alone. Figure 1.1 summarizes the above discussion as a

graphical sketch:

Partially Misfolded
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Figure 1.1: A graphical illustration of the possible progression of CAG repeat
disease pathology. The expanded gene yields a mutant protein. The polyQ-expansion
is generally unstructured and might cause the host protein to partially unfold. The PQCS
is constantly occupied with remedial activity. Eventually, a proteolytic fragment is
obtained, which oligomerizes heterogeneously. A size-threshold is passed and a cellular
precipitate (microaggregate or inclusion body) forms, which might have amyloid-like
characteristics. The PQCS remains stressed by continuing efforts to clear away
“misbehaved” protein material. Cell death occurs, although it is not known which process

ultimately triggers it, nor whether there even is a universally applicable mechanism.
Aggregation — a key event in Figure 1.1 — has been characterized extensively for
model peptides in vitro, and this is discussed next.

1.2.5. Aggregation Studies and Kinetic Analysis

Peptides rich in glutamine are prone to aggregation (see 1.2.6). This

inherent tendency has complicated the in vitro analysis of this system due to the
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difficulty in preparing an aggregate-free sample. Early studies by Scherzinger et
al.'® revealed a striking dependence on the polyglutamine stretch length (N) for
the aggregation of a GST-based protein construct containing flanking sequences
of the Huntingtin protein (see Table 1.c). The rate of aggregation increased
strongly with N and with concentration. Moreover, the authors showed the
aggregation data to be consistent with a nucleation-dependent mechanism. The
most obvious demonstration came from the fact that adding pre-formed

aggregates completely eliminated the kinetic lag-phase.

Wetzel and colleagues then established protocols to reliably perform in
vitro aggregation assays using more reduced model systems, i.e., synthetic
peptides composed entirely of glutamine except for two lysine residues on either
end for increased solubility (K2QnKz). Protocols to overcome technical problems
in the purification, storage, and disaggregation of these synthetic peptides were
developed.”” Based on the work of Ferrone,* in vitro aggregation data were
analyzed as follows. Consider a generic, step-wise polymerization reaction for

species 4:%

Avd=d, K="=

(1-1)
K = ki+l — [Ai+l]

A+A= A =
- K [A]A]

i+1

In Equation 1-1, K indicates equilibrium constants, k rate constants, and square

brackets denote activities. Only the initial (dimerization) step and the
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generalization for later steps are shown. For a nucleated process, let us assume

a rapid pre-equilibrium controlling the association up to a nucleus of size n*:

n*A#A* K*: n_— = (1'2)

We can now define the net rate of formation of growing polymer ends by:

d . . W .
%:lgc*[A]—k_c* =K. [A]" (k. [4]-K) (1-3)

In Equation 1-3, ¢+ denotes the concentration of nuclei and ¢, the concentration of
growing ends. The pre-equilibrium in Equation 1-2 was used to obtain an
expression in powers of [4]. If we assume aggregate size-independent rate
constants beyond the nucleus size n*, then monomer loss is governed by:

d(c,~[4]) _aa _

= _E_cp-(/ﬁ[A]—k,) (1-4)

Here, ¢, is the total monomer concentration. We make the following further
assumptions:

k. =k =0 ; k =k, ; [A]zct=const. (1-5)
The assumption about the free monomer concentration essentially corresponds

to a focus on the initial rate of polymerization. We can then combine Equations 1-

3 and 1-4 to yield:

d * *,
dt c kc):k+c, ;tp =K"kz’c " (1-6)
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Equation 1-6 can be integrated to give a very rough estimate of the initial time
course of a polymerization reaction in which a well-defined nucleation event is

followed by irreversible, kinetically uniform, downhill addition of monomers: %%

A(t) = %K ke P (1-7)

By plotting A as a function of 7, the pre-factor containing the two relevant
constants can be obtained via linear regression.’® Measurement of this pre-factor
as a function of concentration allows the determination of the nucleus size, n*, by

using a double logarithmic plot:

2
dIn dZA
dt n* p Ct
N B T AL S, (1-8)
dlnc, K"k

Furthermore, Wetzel and co-workers developed an assay which allowed the
quantification of ¢, when the nucleation rate is slow in comparison.”® Then,
monomer loss can be measured to yield an effective first-order rate constant
according to Equation 1-4 with the assumption that ¢, is constant. From this, the
elongation rate constant k. may be extracted which in turn allows the

determination of K"* from a slope of a plot of A as a function of 7.

In 1962, Oosawa and Kasai® proposed an alternative simplification for
homogeneous nucleation in which nucleus formation is treated as an irreversible,

kinetic event. The resultant expression is:
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lni+—x =2 k" k.ne” -t

—X
o 1-9
x=1-|*—
Ct
In Equation 1-9, ¥"" is the effective rate of formation of nuclei. A series expansion
of the logarithmic term yields that the leading dependence of A is on ¢ which is in

agreement with the approximation shown in Equation 1-7. The models can be

matched up by the following proportionality:
k" occk K™ (1-10)

Using Equations 1-9 and 1-10, we obtain simulated data over the entire time
course and are able to test the robustness of the analysis outlined in Equations
1-7 and 1-8 given that an accurate determination of the actual, initial rate of
aggregation may be very difficult if not infeasible. Of course, the Oosawa-Kasai
model still maintains the fundamental tenet that the process is homogeneously
nucleated. If we find that the resultant estimates for n* depend astutely on the
approximations introduced, then experimental errors may be large and a re-
analysis using a more complete model of aggregation is in order. If we, however,
find that the estimate of n* is fairly robust, then we can infer something about the
underlying aggregation mechanism should — for example — estimates of n* be

fractional rather than integer numbers (see below and Chapter VII).
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Figure 1.2 shows simulated data for the initial time course using the models as
given by Equations 1-7 and 1-9 for different concentrations ¢,. We use values

reported in the literature of k, =10*M's™ |, K" =2.6:10° ,and n*=1.%

Ain M

Slope in Mh (log-scale)

12 11.5 1 105 10 9.5 9
¢;in M (log-scale)

Figure 1.2: Simulated kinetic aggregation data. Panel A shows the entire course of
aggregation according to Equation 1-7 (blue dashed lines) and Equation 1-9 (red lines).
Panel B shows a close-up of the initial stage of aggregation. Clearly, the leading
dependency on ¢ is shown by both models. Panel C plots the aggregation time courses
from Equation 1-9 against 7 (red circles). Deviations from linearity are minor as indicated
by linear fits (black, dashed lines). Panel D is a double-logarithmic plot of the slopes of
the lines in Panel C against total concentration. Panels C and D are equivalent to the

analysis by Chen et al. and the slope in Panel D yields the critical nucleus size.
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As Figure 1.2 points out (see below), the #-model is very limited in
describing the long-time behavior of aggregation in accordance with expectation
(Panel A) but agrees well with the Oosawa model for the initial phase (Panel B).
In order to evaluate the robustness of the analysis yielding the critical nucleus
size, we introduce substantial noise. In Panel C, linear fits according to Equation
1-7 are shown (A vs. ) with the data obtained from the (more realistic) Oosawa
model. Since in experimental work the ranges used to define the “initial” phase
are not rigorously controlled, we sample the cutoff uniformly in an interval from
10-60% of monomer loss. This is the source of considerable noise as indicated
by the varying quality of the linear fits in Panel C. Even then, the nucleus size is
extremely well-described by the linearization shown in Panel D. The slope of the
line is ~3.0 in perfect agreement with the expectation value of 3.0 (Equation 1-8).
Repetition showed that the noise in the estimate is small and normally distributed
with a standard deviation of about 0.06 (data not shown). More importantly, if the
arbitrariness of defining the initial phase is removed, the fit in Panel D becomes
independent of the quality of the linear approximation in Panel C, and the slope is

always exactly 3.0 (data not shown).

Wetzel and co-workers used the model defined in Equation 1-7 and
partially tested in Figure 1.2 to conclude the following about the aggregation of
polyglutamine-based synthetic polypeptides in vitro:

e The aggregation follows the mechanism of homogeneous nucleation. This is
weakly established by the linearity of plots of A vs. . Such a dependence is

by no means a unique characteristic of a nucleated polymerization

23



reaction.”% More — but equally suspect” — evidence comes from the
qualitative observation of the ability to seed the aggregation, i.e., to attenuate

the lag-phase by the addition of a small amount of pre-formed aggregates.'®®

e The size of the nucleus obtained via Equation 1-8 is less than unity (equivalent
to the slope in Panel D of Figure 1.2 being significantly less than three).'® If
homogeneous nucleation applies, this result appears only to be consistent with
a monomeric nucleus. In this scenario, Equation 1-2 relaxes to the equilibrium
for a critical conformational event. The peptide undergoes a rare transition® to

yield a toxic species which is prone to aggregation.

e The aggregation kinetics are chain length-dependent. The longer the peptide
the faster aggregation occurs. The exact dependencies of the constant terms
in Equation 1-7 are not known. For K;Q47K> elongation was estimated to be

significantly slower than a diffusion-limited reaction would suggest.®

e The pre-equilibrium constant K" is very small and corresponds to a free
energy barrier of more than 12kcal/mol for the peptide K2Q47K2. This suggests
that free nuclei would never be observed in solution at measurable
concentrations. The barrier is expected to decrease with increasing chain

length and vice versa.*®

Figure 1.3 sketches the proposed mechanism graphically. The monomeric
nucleation event is interpreted and depicted as a conformational transition,
specifically a disorder-to-order transition. However, several lines of criticism may

be formulated against this simple picture.

24



N

Figure 1.3: The homogeneous nucleation model for polyglutamine aggregation.
Disordered, soluble polyglutamine undergoes a rare folding transition to a “toxic”
conformer with equilibrium constant X”*. This monomeric nucleus seeds the downbhill
aggregation to the mature, fibrillar aggregate via monomer addition. The elongation rate
is too slow to be consistent with a diffusion-limited reaction, and hence a “dock-and-lock”
mechanism is proposed: initial docking is followed by slow conformational re-
arrangement. Most of the aggregation rate dependence on chain length is hypothesized
to be captured by the first step.

e The nature of the conformational transition is unknown. The assignment of a
folding transition from a disordered species to a p-rich conformer is based
entirely on the known facts about the endpoints of the reaction (see 1.2.6). The
fully mature fibril, however, is a species so far removed from the monomer that
this assignment seems questionable. Evidence is usually seen in the fact that
different experimental metrics of monomer loss (such has HPLC) coincide on

a coarse time schedule with the formation of B-secondary structure as

determined by CD spectroscopy.'®

e Rigorously speaking, the kinetic model implies the absence of soluble
intermediates, and this has been argued to be the case.” There is

considerable evidence, however, that soluble oligomers form and are valid
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reaction intermediates.**°%'%2 This would much more likely be consistent with
a heterogeneous reaction in which multiple pathways for aggregation and/or
multiple free energy barriers along the aggregation pathway(s) exist.'® Such a

model appears particularly relevant in an in vivo setting.

e The linear fits which yield the nucleus size were shown to be very robust in
theory (see Figure 1.2). Given that the obtained values for n* are typically less
than unity,' it is reasonable to conclude that the model does not apply
rigorously. In accordance with the previous point, such significant deviations
from unity suggest the need for a more complicated model even in vitro. This

finding is exacerbated in the presence of other flanking sequences.'®*

It is very important to emphasize that the use of a model which fits the data
reasonably well is in itself not a matter of any concern. Rather, the mechanistic
interpretation of such a model based simply on that fact that it does apply merits
further scrutiny.’” It is one of the core aims of this thesis to evaluate the
plausibility of the above model using tools which are not inherently limited by

5

their inability to detect and characterize small oligomers,'® viz. computer

simulation (see 1.3 and Chapters IV, V, and VI).

In silico work on the issue of protein aggregation has been invaluable in
providing a molecular picture associated with the process. Dima and
Thirumalai'® showed that protein folding and aggregation are inherently coupled
and that the resultant phase diagram is much richer than the simple kinetic

analysis outlined above (which implies only two distinct phases) would suggest.

Using simplified models, nucleation-dependent aggregation mechanisms have
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been established as feasible models and their dependency on environmental and
intrinsic parameters has been investigated.'”'% As might be expected, such
studies are invaluable in establishing a quantitative, conceptual framework for

defining the problem but sacrifice realism for feasibility.
1.2.6. Structural Characteristics of Polyglutamine

Monomeric, Soluble Polyglutamine

One of the dominant characteristics of soluble polyglutamine is the
absence of a consensus structural signature. Both synthetic polypeptides and
even polyQ-expansions in artificial or native host systems are universally
characterized as being disordered. This result is obtained predominantly by the

19,98,110-112

use of CD spectroscopy . Further corroboration comes from NMR

111

experiments''" as well as computer simulation'"® including this thesis.>’

The lack of a consensus structure has led to the unfortunate notion that
polyglutamine is random coil-like in solution. This has certainly been interpreted
to imply that the peptides populate ensembles of swollen conformations without
any further proof. It was subsequently established via FCS'™* that this notion is in
fact incorrect. In water, polylgutamine-based peptides populate collapsed
structures whose hydrodynamic radii grow with chain length in a way consistent
with water being a poor solvent for this system (see Chapter Il). In a poor solvent,
chain-chain interactions are preferred over chain-solvent interactions, and the
dominant conformations are disordered, collapsed globules. This result is in
5

congruence with the well-known insolubility of synthetic polymers'"® rich in
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glutamine and suggests a generic driving force for both collapse and

aggregation.’®

It should be pointed out that there is a minimum length scale for this
behavior, which is given by the inherent stiffness of polypeptides. The concept of
the “blob length”, i.e., the length scale over which the inherent polymeric behavior

is masked by conformational rigidity,'"

may be used to explain why a recent
experimental study found triplet contact quenching data (Trp-Cys) to be
consistent with extended conformations for short, synthetic peptides composed
predominantly of glutamine."” Similarly, a crystal structure has been published
showing a short, glutamine-based peptide bound to a polyQ-antibody.'® At

present, it is difficult to adjudicate how relevant this structure is for the

conformational ensemble of polyglutamine in solution due to similar concerns.

Polyglutamine Aggregates

The finding that aggregates derived from mutant Huntingtin do in fact

show amyloid-like features''®1%°

was one of the key results placing HD and other
CAG repeat diseases in the context of prominent amlyoidoses like AD.
Unfortunately, the term amyloid is phenomenologically defined and relies on
specific experimental signatures of protein aggregates'®' such as: i) Congo red
staining and birefringence under polarized light; ii) CD and fiber diffraction signals
indicative of p-secondary structure; iii) thioflavin T (ThT) binding and

fluorescence shift; iv) fibrillar architecture with characteristic dimensions and twist

as seen in electron micrographs. While polyQ-derived fibrils exhibit some of
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those features, they typically do not or only weakly exhibit the characteristic
Congo red birefringence.’®® The most common, amyloid-specific probe of fibril
formation for polyglutamine-based peptides in in vitro experiments is ThT
fluorescence. Other methods that do not rely on structural characteristics include
light scattering and quantification of the soluble fraction via HPLC. Coincidence
of these methods has been used to argue against the presence of disordered,

insoluble intermediates and aggregates.®

Previously, Perutz had speculated that polyglutamine would be amenable

t,122

to an amyloid-like arrangemen which is characterized by the presence of

ordered B-strands perpendicular to the fiber axis. Two structural models were
derived from the diffraction data: the prominent nanotube-like p-helix'®* and the
multi-pleated sheet'®*"?°. Much computational effort has been invested to create
and test structural models of assembly of polyQ-based peptides in a fashion
consistent with either of these two possibilities. Such studies are ultimately
limited by their inability to probe the energy landscape beyond the local minimum
the system was initially prepared in; hence, results have been obtained which are
either conflicting or point toward the possibility of substantial heterogeneity in

assembly structures.'?1%

1.2.7. Sequence Context Dependencies

As was touched upon in 1.2.4, the issue of proteolytic cleavage remains an
active point of investigation. It is presumed that fragments rich in glutamine are

dominant toxic players, but how are their properties modulated by the wild-type
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sequence context? In vivo, it is nearly inevitable that some amount of variation
occurs with the ongoing processes of proteolytic degradation and heterogeneous
association (see Figure 1.1). Considerable evidence has been brought forth in in
vitro experiments that sequence context does matter but that it can be masked

1."? showed

by the inherent properties of the polyQ-expansion. Robertson et a
that terminal polyQ-expansions did not alter the properties of a model host
protein and that the host protein did not alter the qualitative aggregation behavior
mediated by the polyQ-expansion. Conversely, if the polyglutamine stretch was
moved to the interior of the protein, the host protein was drastically destabilized.
Nagai et al."*? found that they could isolate a monomeric form of a fusion protein
of thioredoxin and polyglutamine, which was shown to act qualitatively as an
aggregation seed. The authors used CD to show that the toxic form is B-rich via
equilibrium measurements. This result clearly is a function of the artificial

sequence context and could not have been obtained with peptide constructs

such as those used by Bhattacharyya et al.*®

It might therefore seem questionable to employ de novo sequence
constructs to study the biomedically relevant properties of polyglutamine. Table
1.c gives an overview of the wild-type sequence context for the nine exonic CAG

repeat diseases:

Host Gene
Sequence
Protein (MIMm)

o MATLEKLMKAFESLKSFQyPPPPPPPPPPPQLPQ
Huntingtin | 143100 PPPQAQPLLPQPQPPPPPPPPPPGPAVAEPLHRP
KKELSATKKDRVNHCLTICENIVAQSVRNS
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Host Gene
Sequence

Protein (MIMm)

AHLPHTFQFIGSSQYSGTYASFIPSQLIPPTANPVTSAVA

Ataxin-1 | 164400 SAAGATTPSQRSQLEAYSTLLANMGSLSQTPGHKAEQuyHL
SRAPGLITPGSPPPAQQNQYVHISSSPQNTGRTASPPAIPY
HLHPHQTMIPHTLTLGPPSQVVMQYADSGSHF

PTRASPLGARASPPRSGVSLARPAPGCPRPACEPVYGPLT

Ataxin-2 | 183090 MSLKPQ,PPPAAANVRKPGGSGLLASPAAAPSPSSSSVS
SSSATAPSSVVAATSGGGRP
_ DMEDEEADLRRAIQLSMQGSSRNISQDMTQTSGTNLTSEE
Ataxin-3 | 109150 LRKRREAYFEKQQQKQyGDLSGQSSHPCERPATSSGALGS

DLGDAMSEEDMLQAAVTMSLETVRNDLKTEGKK

GTSTPRRGRRQLPQTPSTPRPHVSYSPVIRKAGGSGPPQAA
Cay2.1-a | 183086 VARPGRAATSGPRRYPGPTAEPLAGDRPPTGGHSSGRS
PRMERRVPGPARSESPRACRHGGARWPASG

_ MSERAADDVRGEPRRAAAAAGGAAAAAARQAPPPPQPQRQ
Ataxin-7 | 164500 QHPPPPPRRTRPEDGGPGAASTSAAAMATVGERRPLPSPEV
MLGQSWNLWVEASKLPGKDGTELDESFKEFG

MDQNNSLPPYAQGLASPQGAMTPGIPIFSPMMPYGTGLTP

TATA-BP | 607136 QPIQNTNSLSILEEQQRQAAVAAAAVQQSTSQQATQGTSG
QAPQ
Androgen MEVQLGLGRVYPRPPSKTYR GAFQNLFQSVREVIQNPGPR
313200 HPEAASAAPPGASLLLLQVETSPRQQQQQQGEDGSPQAH
Receptor RRGPTGYLVLDEEQQPSQPQ

PASSSAPAPPMRFPYSSSSSSSAAASSSSSSSSSSASPFP
ASQALPSYPHSFPPPTSLSVSNQPPKYTQPSLPSQAVWSQ
GPPPPPPYGRLLANSNAHPGPFPPSTGAQSTAHPPVSTHHH
HHQyHHGNSGPPPPGAFPHPLEGGSSHHAHPYAMSPSLGSLR

Atrophin-1 | 125370

Table 1.c: Protein sequences surrounding polyglutamine stretch in host proteins
of CAG repeat diseases. Protein names are listed along with gene access codes for
the MIM database. The third column lists the protein sequences for the host protein in
the vicinity of the polyglutamine stretch indicates as Qy. Data were originally compiled by
Tim E. Williamson.

Table 1.c shows that the most dominant unifying feature is the presence of other

low complexity sequences in the immediate vicinity of the polyQ-expansion.
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Polyserine, polyproline or polyalanine stretches are found in several of the
proteins. This suggests that the polyglutamine stretch might inherently be located
in a disordered region of the protein, which constitutes a straightforward
explanation as to why the cell seems to tolerate such genetic instabilities at all
(see 1.2.3). This finding correlates somewhat with the pattern observed for the
maximum mutant repeat lengths shown in Table 1.a, which are lowest for the
gene products with well-known function (TATA-BP, androgen receptor, and

Cay2.1-a, see Table 1.b).

Most careful proteolytic analyses have focused on huntingtin (htt).'3>3*
The sequence context of this protein has also triggered the most studies
employing artificial constructs mimicking what a wild-type fragment could
putatively look like. In htt, the polyQ-expansion is close to the start codon for
exon1. The effect of the 17 residues N-terminal of the polyQ-expansion has been
recently investigated. In vitro aggregation experiments suggest a substantial
enhancement of the aggregation propensity for htt"""Qy with respect to the
KoQpKz constructs used before. It was hypothesized that the hydrophobic
residues in the N-terminal fragment enhance the aggregation propensity and
rate.'® Experiments in vivo showed that the presence of the 17 N-terminal
residues alters the subcellular localization of a fusion construct, usually with
GFP."*>"%¢ On the C-terminal side, the polyQ-expansion is flanked by a proline-
rich region. Two in vitro-studies have quantified the effect of C-terminal
oligoproline flanking sequences on the aggregation of polyglutamine

peptides.””"*® In both cases, it was found that aggregation is retarded and that
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the proline segment somewhat disrupts the characteristic structural signatures
associated with the growing aggregate (see 1.2.6). The effects of flanking
sequences on the molecular properties of polyglutamine are the focus of Chapter

VI.
1.3. Synopsis

As was suggested in 1.2.4, the physicochemical process of aggregation of
polyglutamine appears to be a crucial determinant of pathogenesis in exonic
CAG repeat diseases. Even though the biological and chemical contexts are
known to modulate its behavior, the polyglutamine expansion seems to possess
inherent properties which mediate and control the process of aggregation.
However, detailed, structural models for the early stages of aggregation -
including nucleation - are missing due to the inability of present experimental
technologies to monitor these low likelihood species.'® In silico work has
attempted to remedy this shortcoming. Computer simulations control the
resolution directly through the chosen representation of the system and low-

likelihood events can be unmasked within equilibrium measurements.

In this thesis, we address several questions regarding structural and
mechanistic aspects of polyglutamine aggregation. In detail, the major points are

as follows:

i. In Chapter II,°> we show that concepts borrowed from polymer physics can be
used to rigorously quantify the monomeric, disordered state of polyglutamine

peptides in solution. We confirm the experimental result that water is a poor
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solvent for polyglutamine. These peptides adopt collapsed, globular
conformations with no significant consensus structure. This type of disorder
has important consequences for the intrinsic dynamics of these peptides.
Conformational rearrangement on the collapsed manifold is slow, and glassy
behavior is obtained on the nanosecond timescale. The glassiness renders
canonical MD approaches employing an explicit representation of the solvent
infeasible. Water’s poor solvent nature might appear surprising given that the
molecules are composed exclusively of polar moieties. However, it is
consistent with polylgutamine’s aggregation propensity observed in vivo and in
vitro and identifies a generic driving force linking conformational ensembles at

the monomer level to the observed driving force for phase separation.

. Motivated by the infeasibility of the sampling approach employed in Chapter Il

to model the phenomena of interest to us, we developed a novel continuum
solvation model termed ABSINTH (for self-Assembly of Biomolecules Studied
by an Implicit, Novel, and Tunable Hamiltonian).® Chapter Il reports on the
theory underlying the model and its calibration. It was specifically designed to
provide a simple and accurate framework for describing solvation of
biomolecules sampled via the Metropolis Monte Carlo method. The degrees of
freedom are not the Cartesian coordinates of all atoms but the “essential”,
internal degrees of freedom, i.e., the dihedral angles along freely rotatable and
semi-rigid bonds. We show that ABSINTH accomplishes the difficult task of
balancing the strength of specific interactions and structural propensities as a

function of simulation temperature. We do so by investigating the model’'s
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ability to reproduce experimentally determined melting profiles for a variety of
small polypeptides capable of adopting a specific fold in aqueous solution. Its
favorable performance in this regard indicates that ABSINTH is well-suited to
describe intrinsically disordered systems such as polyglutamine, which might
only transiently adopt specific structural motifs. We provide evidence that there
are no qualitative differences between the conformational ensembles for
polyglutamine generated by the (presumably) more accurate approach in
Chapter Il and the novel, implicit solvation approach and that all the results for
polyglutamine are in fact consistent with experimental data obtained for

soluble polyglutamine.

In Chapter IV,” we apply the newly developed continuum solvation model
introduced in Chapter Il to study the chain length- and solvent quality-
dependent properties of polyglutamine at the monomer and dimer levels. We
employ simulation temperature as a generic dial for solvent quality: the higher
the temperature, the better the solvent. Analysis of globule-to-coil transitions
allows us to identify the 6-temperature for this model, i.e., the temperature at
which solvent quality is such that chain-chain and chain-solvent interactions
are effectively balanced. We can therefore establish a phase diagram for the
system by tuning conditions to range from poor via indifferent to good solvent
qualities. We find that these molecules spontaneously associate to form stable
dimers in the poor solvent regime. This happens at concentrations and
environmental conditions approaching those of typical in vitro experiments for

chains of length N=215. The spontaneity of these homotypic associations
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increases with increasing chain length and decreases with increasing
temperature. Similar and generic driving forces govern both collapse and
spontaneous homodimerization of polyglutamine in aqueous milieus. Collapse
and dimerization maximize self-interactions and reduce the interface between
polyglutamine molecules and the surrounding solvent. There do not appear to
be any specific structural requirements for either chain collapse or chain
dimerization, i.e., both collapse and dimerization are non-specific in that
disordered globules form disordered dimers. These results suggest that
polyglutamine aggregation is unlikely to follow a homogeneous nucleation
mechanism with the monomer as the critical nucleus. Although we do not test
this directly, our results support the formation of disordered and soluble
oligomers as early intermediates — a proposal that is congruent with a growing

body of experimental data (see 1.2.4 and 1.2.5).

. To confirm the results obtained in Chapter 1V, we attempt to directly test the

homogeneous nucleation model brought forth for the aggregation of
polyglutamine (see 1.2.5 and Figure 1.3 in particular) in Chapter V.2 In

particular, we test three of its major tenets:

a. Is the formation of a putative, monomeric nucleus rich in B-secondary
structure an extremely rare event? We quantify the thermodynamic
likelihood of polyglutamine to adopt structures consistent with a high amount
of B-secondary structure. We employ a biased sampling approach to

construct the free energy profile along a reaction coordinate quantifying the
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net amount of B-content and find that a putative nucleus would indeed be an
extremely low likelihood species.

. Does the likelihood to form the monomeric nucleus increase with increasing
chain length? By performing calculations as detailed in a) for a range of
chain lengths spanning the pathological threshold region, we show that the
adoption of structures high in B-content becomes less likely with increasing
chain length. Moreover, we identify no local minima along the reaction
coordinate indicating that the putative nucleus would strictly be a transient
species.

. Is the dimerization propensity of molecules pre-organized to resemble
putative nuclei significantly enhanced in comparison to disordered
conformers? By studying the dimerization propensity in the presence of a
structural bias predisposing polyglutamine to adopt B-rich structures, we
establish that the presence of canonical B-secondary structure does not
enhance associativity. We show that, even though the conformational
ensemble of individual molecules is drastically altered, the chains associate
spontaneously just as much as disordered, collapsed globules do at the
dimer level. We do find that -secondary structure is enhanced at the dimer
interface. This suggests that high B-content is a property associated with
larger aggregates, for which the collapse constraints imposed by the poor
solvent nature of the environment are relieved by complete sequestration

from the solvent.
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v. Chapter V allowed us to arrive at the conclusion that p-secondary structure
plays a role only during the later stages of polyglutamine aggregation. But how
are the early stages, i.e., the formation of disordered oligomers, modulated in
the presence of flanking sequences? Chapter VI presents work similar in
approach to the work presented in Chapter IV: here, we quantify the
conformational ensembles and the associativity exhibited by sequence
constructs of the 17 N-terminal residues of exon1 of htt (see 1.2.7) and
polyglutamine stretches of varying length. We show results that establish a
significant propensity of the N-terminal fragment to adopt o-helical
conformations. Longer polyglutamine stretches suppress this propensity and
induce more extended conformations in the N-terminal segment. Overall, the
peptides remain disordered and their dimerization is mediated by the polyQ-
expansion. Analysis of contact patterns and visual inspection of central
structures of dominant clusters reveal that the interactions of hydrophobic
residues in the N-terminal fragment are frustrated due to their proximity to
charged residues and contribute little to the intermolecular interface. We show
that the interfacial penalty experienced by the chimeric peptides is nearly
obliterated and that associativity is consequently reduced relative to the
homopolymer. However, it appears to be increased relative to sequence
constructs of the type K,QuK,. Overall, we find a profound alteration of the
intrinsic properties of polyglutamine due to the presence of the flanking
sequence and comment on consequences for possible pathogenic

mechanisms in HD.
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The above synopsis focuses predominantly on the context of CAG repeat
diseases. Accomplishments outside of this scope are discussed along with the

disease-relevant results in Chapter VII.
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CHAPTER L QUANTIFICATION OF CONFORMATIONAL
EQUILIBRIA.  OF MONOMERIC POLYGLUTAMINE: INSIGHTS

FROM ANALYSIS BASED ON POLYMER PHYSICS

II.1 Preamble

The project of using a brute-force computational approach to quantify
conformational equilibria of monomeric polyglutamine employing an explicit
representation of solvent has a history which extends beyond the manuscript’
incorporated into this chapter. Previous work? had revealed interesting and
somewhat similar insights for peptides of length five and fifteen but the analysis
then had focused much more on topology and hydrogen bond statistics. Part of
the reason is that the data were too immature to arrive at conclusions of similar
rigor as shown below. One of the focal points of this chapter is the
interdisciplinary approach: we apply analysis concepts borrowed from polymer
physics to a biological polymer at atomic resolution (see 1.1). Another focal point
is the quantification of the difficulty of sampling a system of this complexity by
establishing timescales for conformational re-arrangement. The major conclusion
with respect to the latter is that that difficulty becomes overwhelming very quickly
(see 11.5), hence motivating the development of an alternative sampling

technique as detailed in Chapter Il

As mentioned above, this chapter is based on a research article which
appeared in the Biophysical Journal in 2007." Xiaoling Wang is a co-author on

this manuscript and hence her contributions need to be established in detail: she
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ran and partially analyzed an original set of calculations for Acetyl-Qgo-N-
methylamide (Q20). The scope of that analysis was slightly different from what is
presented here. The calculations themselves turned out to be insufficient and all
results presented in this chapter are based on an independent set of data not
generated or analyzed by her. She therefore established the groundwork for this

project as is also evidenced by our prior work.?

.2 Introduction to the Application of Polymer Physics on

Conformational Equilibria of IDPs

Intrinsically disordered proteins (IDPs) are functional proteins that do not
fold into well-defined, ordered tertiary structures under physiological conditions.*®
These proteins are termed intrinsically disordered because disorder prevails
under non-denaturing conditions and amino acid sequence encodes the
propensity to be disordered. Generic IDP sequences have a combination of low
overall hydrophobicity’ and low sequence complexity.® Consequently, they
include low complexity polymers composed predominantly of polar amino acids
such as glutamine which is found frequently in aggregation-prone sequences.’
The question of how disorder is used in function — whether it is related to its
native biological role or to disease pathology — will remain unanswered pending
the availability of accurate physical models for conformational equilibria of IDPs.°
Conformational equilibria refer to ensemble averages and spontaneous

fluctuations of structural properties of IDPs in their native milieus.

Theories based on the physics of polymer solutions are relevant for
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describing conformational equilibria of IDPs.' The focus in these theories is on
global measures such as the ensemble-averaged radius of gyration, (Rg>.11 The
balance between chain-chain and chain-solvent interactions is determined by the
nature of solvent milieus, which are classified as being good or poor solvents.'*'
The scaling of (R,) with chain length N is written as (R,) = R,N". In a good solvent,
the main repeating unit is chemically equivalent to the surrounding solvent, the
effective chain-chain interactions are strictly repulsive, and (R,) ~ N**. In a poor
solvent, attractive interactions dominate and the result is a preference for an
ensemble of compact conformations such that (R,) ~ N**." In the simplest of
polymer frameworks, conformational ensembles for IDPs in aqueous milieus can
be classified either as disordered swollen coils in a good solvent or compact,
albeit disordered globules in a poor solvent. Which of these classifications best
suits the description of conformational ensembles for the disease-related IDP
polylgutamine in water? This is one of the core questions of this chapter.

Specifically:

1. Is it possible to make quantitative assessments regarding the quality of a
solvent milieu for polyglutamine at a single chain length using data obtained
from molecular simulations? To answer this question, we study polyglutamine
of chain length N=20. Specifically, we compared results from analysis of
multiple replica molecular dynamics (MRMD) for Qy in water to data from two
sets of Metropolis Monte Carlo simulations for reference ensembles in good

and poor solvents. The Monte Carlo simulations employed here are routinely
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used in the polymer physics literature and are based on the use of generic
Hamiltonians that lack the specificities of chain-chain and chain-solvent
interactions.''® The comparative analysis is guided by the use of polymer

theories,'”'®

which make specific predictions regarding variations of order
parameters such as the scaling of internal distances, angular correlation
functions, and radial density profiles as a function of solvent quality. We show
that the comparative analysis leads unequivocally to the identification that
water is a poor solvent for Qy, which is consistent with experimental results
obtained using fluorescence correlation spectroscopy (FCS).' The main

highlight of this analysis is that it can be adapted to classify the nature of

disorder for any IDP sequence, in particular those with low complexity.®

. Why is water a poor solvent for polyglutamine? The observation that water is a
poor solvent for polyglutamine can be inferred from its strong aggregation
propensity.?>?? However, it seems counterintuitive that a system composed
entirely of polar moieties readily forms aggregates given that the building
blocks of polyglutamine, ie., primary and secondary amides, are freely
miscible with water.?®?* If anything, the high miscibility of model compounds
suggests that water should be a good solvent for polyglutamine. Obviously,
the concatenation into a polymer alters the solvation properties of amide
groups. Here, we present a preliminary analysis based on comparisons of data
from simulations of aqueous solutions of amide mixtures to that of Qy in water.

Based on this analysis, we propose that favorable intra-backbone interactions
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in the polymer provide at least part of the driving force for the collapse of

polyglutamine in water.

3. What is the nature of conformational relaxation dynamics for polyglutamine?
Polyglutamine forms aggregates, albeit very slowly.”® Chuang et al.® have
proposed that the rate limiting step for aggregation of polymers in poor
solvents is conformational relaxation within polymer globules. Consistent with
this prediction, we find that — although the collapse transition for Qy in water is
rapid (ca. 5ns) — the time scales for conversion between distinct compact
conformations are very slow and the dynamics are akin to structural relaxation
in glassy systems.?” We also show that the glassy behavior of Qy in water is

uncovered using the MRMD methodology employed in our work.

The rest of this chapter is structured as follows: A thorough presentation of the
methods (11.3) is followed by the results (11.4). We conclude by placing the latter

in the broader context of the field: specifically the scope of this thesis (11.5).
1.3 Simulation Details and Methods of Analysis

11.3.1. Potential Functions for Simulating Conformational Equilibria of Polymeric

Reference States

Reference conformational equilibria of disordered polymers in good and
poor solvents can be simulated using generic, implicit solvent models.™® In this
approach,? conformational equilibria for chains in good solvents are simulated
using interatomic interactions based on a purely repulsive, inverse power

potential as shown in Equation 2-1:
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U, = 4Z§Sf’(r_~J (2-1)

Equation 2-1 corresponds to the so-called excluded volume (EV) limit, wherein
only steric interactions are included. Simulations of conformational equilibria in
the EV limit provide a good mimic for equilibria in good solvents. Conversely, the
non-specific drive of a chain to sequester itself from making contacts with a poor
solvent can be captured by adding attractive van der Waals interactions to the
repulsive potentials from the EV limit. This model, based on the Lennard-Jones

functional form, is shown in Equation 2-2 and is termed the LJ model.

U,=42.2¢, {ZJ - _,J (2-2)

In Equations 2-1 and 2-2, r; denote distances between any two non-
bonded atoms, c; are contact distances, and ¢; are the LJ dispersion parameters.
For the EV limit, Equation 2-1, the parameters for o; and ¢; are those used in
previous work by Tran and Pappu.?® Conversely, for the LJ model, Equation 2-2,
we used the parameters from the OPLS-AA/L force field.*® Here, standard
geometric combination rules were used to obtain the o; and ¢g; from the ¢; and ¢;.
These choices are justified on the following grounds: The o; values used in
previous work were derived from Pauling’s parameterization, which in turn
reproduce data for the heats of fusion of model compounds. These c;; values can
be used in purely repulsive potentials and it has been shown that in conjunction

with the ¢; derived from atomic polarizabilities these parameters allow the
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reproduction of accurate Ramachandran maps.?® Conversely, the values of ¢; in
the OPLS-AA/L force field are co-parameterized with ¢; to reproduce the heats of
vaporization and densities of neat liquids. Therefore, the o, values in OPLS-AA/L
are too large to be used in purely repulsive potentials. However, use of the
OPLS-AA/L parameters for the LJ model guarantees that the densities of the
maximally compact reference globules are similar to those expected for globules

populated by chains in explicit water.
11.3.2. Simulations of Reference Conformational Equilibria

We carried out Metropolis Monte Carlo simulations, as described in
previous work,?®* to simulate reference conformational equilibria for
polyglutamine peptides using the EV and LJ models. In these simulations, the
degrees of freedom were the backbone and sidechain dihedral angles of an
isolated chain (compare Chapters IlI-VI). We obtained two sets of data using
each of the models shown in Equations 2-1 and 2-2. In the first set, we carried
out simulations for a series of chain lengths to demonstrate that ensemble
averaged radii of gyration ((R,)) scale with chain length as ca. N"® for the EV
model and as N’ for the LJ-model. The scaling of (R,) with chain length N was
obtained by gathering statistics for peptides of the form: Ace-(GIn),-Nme, where
Ace denotes the acetyl group and Nme stands for N-methylamide. For the EV
limit, N=50, 75, 100, 150, and 250 and for the LJ model, we simulated equilibria
for N=24, 27, 33, 36, 40, 47. The simulation temperatures were T=298K and

T=425K for the EV and LJ models, respectively. We used a higher temperature
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in simulations based on the LJ model to improve the efficiency with which
conformational space is sampled and to reduce the error bars in our estimates
for polymeric properties. Given the high melting temperature for the LJ model, at
T=298K we would have needed simulations that were orders of magnitude
longer in order to obtain converged estimates; hence 425K was chosen as the

simulation temperature.

As noted above, the purpose of the Monte Carlo simulations was to
demonstrate that the two models, viz. EV and LJ, reproduce the scaling
behaviors for polymers in good and poor solvents, respectively. The EV limit
calculations were carried out for longer chains to overcome the finite size
artifacts because the thickness of the polymer “tube” has to be negligible when
compared to its contour length. For polyglutamine, this requirement does not hold
true for chains with N<50. In contrast, finite size effects play a minor role for
quantifying the scaling law for chains in a poor solvent. This is true so long as N
is larger than the length of locally stiff segments, approximately seven residues.?®
The chain lengths used for calculations in the globular limit were therefore
chosen in correspondence with recent FCS studies.” In addition to the
simulations used to quantify scaling laws, we also simulated conformational
equilibria for Qg using both the EV and LJ models. As is shown in 1.4, the
comparative analysis between ensembles obtained for Qg using the EV, LJ, and
molecular mechanics potentials in explicit solvent allows us to assess if the
conformational equilibria for Qo in water are congruent with those of chains in

poor versus good solvents.
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11.3.3. Setup of Molecular Dynamics Simulations for Qg

To characterize conformational equilibria in water we used an approach
that we refer to as multiple replica molecular dynamics (MRMD). This approach
relies on the use of data from a large number of independent simulations and the
advantage is that data are gathered using multiple independent simulations as
opposed to a single, long, and potentially uninformative simulation.
Conformational space is explored more efficiently by relying on the underlying
stochasticity of phase space trajectories given different initial positions and

velocities.

We used version 3 of the GROMACS simulation package® for all MD
simulations. In this work, we report data from MRMD simulations applied to the
peptide Qg in water at T=298K. We simulated 60 independent replicas. For the
peptide we used the OPLS-AA/L force-field.*® Peptides were soaked in a bath of
8952 TIP3P water molecules.®* We randomly selected peptide conformations
from the EV ensemble for this purpose. By adding or deleting water molecules,
we ensured that we ended up with the same number density for all replicas. In
each case, a steepest-descent minimization to remove steric clashes was
followed by an equilibration run of 11ns in the isothermal-isobaric ensemble
(T=298K, P=1bar). The final configuration of the latter was used as the starting
point for the production run of 50ns length. Therefore, the total simulation time for
each of the 60 independent simulations was 61ns for a cumulative simulation

time of approximately 3.7 us.
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The leap-frog integrator was used with a time-step of 2fs. The temperature
was maintained through the Berendsen thermostat®® with a coupling time of
0.2ps. Similarly, constant pressure was maintained by the Berendsen manostat®
with a coupling time of 1ps and a compressibility of 4.5x10°bar™. It is important
to point out that the Berendsen weak-coupling scheme does not rigorously
achieve sampling of the canonical ensemble.> However, for the robust
equilibrium properties assessed here, the impact of the quenching of energetic
fluctuations can be expected to be minor. Additionally, integrator noise led to the
actual simulation temperatures being slightly higher than the specified bath
temperature (298K). Again, artifacts deriving from such minor deviations are
expected to be insignificant for the range of properties studied here. The average
size of the cubic box throughout the simulations was roughly 65.4A with
negligible volume fluctuations. Bond lengths for atoms in the polypeptide were
constrained using the LINCS algorithm®* and the rigidity of water molecules was
achieved using the SETTLE algorithm.35 For non-bonded interactions, we
employed 10-14A twin-range cutoffs. Both LJ and Coulomb interactions within
distances of 10A were calculated at every step. Conversely, interactions within
the twin-range (10-14A) were re-calculated every ten steps, as were neighbor
lists. The reaction field (RF) method*®® was used as a correction term for polar
interactions beyond 14A. For each of the sixty independent simulations,
structures of the peptide alone were saved once every 4ps for subsequent

analysis.
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11.3.4. Setup of Simulations for Aqueous Solutions of Model Compounds

To assess the differences between polyamides (such as polyglutamine)
versus amides in water we carried out simulations of aqueous mixtures of amides.
The systems studied were aqueous mixtures of frans-N-methylacetamide (NMA)
and propionamide (PPA) in water; NMA is a model compound mimic of the
peptide backbone (a secondary amide) whereas PPA is a mimic of the sidechain
(a primary amide). We followed the simulation protocol described for Qgo. The
amides were modeled using the OPLS-AA/L force field,*® and we used the TIP3P
model for water molecules. To achieve concentrations of 1m, 2m, and 4 m
respectively, 15, 30, and 60 molecules of each amide were soaked in a box of
833 water molecules and equilibrated for mixing purposes for 1ns in the
canonical (NVT) ensemble at T=298K. The production run was carried out in the
isothermal-isobaric (T=298K, P=1bar) ensemble for 50ns after an extra
equilibration period of 200ps. Ten such trajectories were run for each
concentration and the snapshots of the amide configurations, which were saved

every 10ps, were analyzed to calculate site-site pair correlation functions.
11.3.5. Reliability Analysis

Given n; independent trajectories, the standard error in our data was
estimated by computing the average of an observable for each trajectory. The
standard error is defined as the standard deviation in n; independent estimates of
the mean. Our procedure for computing the standard error is an adaptation of

conventional block averaging methods. The difference is that the size of the
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block being averaged over is the length of an individual trajectory. The standard
deviation of the trajectory-averaged structural quantities yields the standard error
indicated by error bars in the plots. This approach for calculating error bars is

reasonable because data from different trajectories are in fact truly uncorrelated.
11.3.6. Calculations of Intra-Polymer Site-Site Correlation Functions

Consider all unique pairs of backbone donor (N) and acceptor atoms (O),
respectively. For generality, we shall use the labels A and B to refer to these
atom pairs. Let Aiy(r.z) denote the histogram of interatomic distances obtained
from analysis of MRMD simulation data for Qg in water. Additionally, let Ap(r.45)
be the histogram obtained by gathering statistics from simulations based on an
appropriate default model. Given the two histograms, hu(r4z) and hp(rys), the

desired site-site correlation function is defined as:

A
&8s (7‘)— hD (rAB) (2-3)

It is important to emphasize that the choice for the default model
determines the profile we obtain for g4(r). The standard non-interacting model
used in the theory of liquids is the so-called ideal gas prior. In this model, the
sites are parts of rigid molecules that are free to translate and rotate around each
other. The applicability of this default model for polymers is questionable
because the resultant profiles one obtains for g4z(r) are dominated by the
presence of chain connectivity in the real chain, which increases the effective

concentration of repeating units with respect to each other. Therefore, we
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constructed intra-chain site-site correlation functions using a so-called ideal chain
model, which is analogous to the freely rotating chain model of Flory.'? In this
model, bond lengths and bond angles are held fixed at equilibrium values® and
the peptide unit is held fixed in the frans-configuration. An ensemble of freely-
rotating chain conformations is generated by ignoring (turning off) all non-bonded
interactions, including excluded volume effects. Histograms, p(r4s), constructed
using the resultant ensemble include the effects of chain connectivity and

exclude the effects of intra-chain and chain-solvent interactions.
1.4 Results

11.4.1. Demonstration of the Validity of Reference Models
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Figure 2.1: Scaling laws for the two reference models (see Equations 2-1 and 2-2).
The fit for the EV limit is done only over the last five points. As can be seen, finite-size
effects cause the data for shorter chain lengths to fall off this line. Including these points

would significantly overestimate the scaling exponent. In the globular reference state,
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finite-size effects are restricted to much shorter chain lengths. The theoretical exponent

of ~0.33 is slightly underestimated.

Figure 2.1 shows the scaling of (R,) versus chain length N for
polyglutamine in the EV and LJ limits, respectively. In the log-log plots shown,
the slopes provide an estimate of the scaling exponent. We find that slopes for
polyglutamine in the EV and LJ limits are similar to the theoretical values of 0.59
and 0.33 in good and poor solvents, respectively. Deviations from theoretical
values are primarily due to finite-size effects, i.e., the fact that we did not gather
data for very long chains. In properly converged simulations, the scaling
exponent in the EV limit will be over-estimated when there are finite size artifacts.
This is because short chains in the EV limit have a smaller, apparent (R,;) when
compared to the theoretical prediction. Conversely, finite size artifacts lead to an
underestimation of the poor solvent exponent. This is because short chains have

a larger apparent (R,), which is precisely what we find.

The preceding analysis demonstrates that conformational equilibria
simulated using the EV and LJ models provide limiting distributions for
disordered polypeptides in good versus poor solvents. Due to the extensive
computational cost of the simulations in explicit water (see below) we cannot
determine the scaling exponent, which requires very expensive simulations for
multiple chain lengths. Instead, analyses of specific polymeric measures for Qg
in water were compared to those of Qg in the EV and LJ limits, respectively. This
allows us to make definitive conclusions regarding the solvent quality of water for

polyglutamine.
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11.4.2. Quantification of Polymeric Properties

After establishing the validity of the reference models with respect to their
universal scaling behavior, we now turn our attention to a detailed analysis of
polymeric properties of Qo in aqueous solution. As outlined in 1.2, the analysis
relies on structural quantities inspired by polymer physics. This is crucial since in
the absence of a canonical fold it is not as easy to define informative metrics (see

below).
Comparative analysis of the distribution of shapes and sizes

For a specific conformation of a polymer, the shape and size are
quantified using the gyration tensor defined as:

zZ

I & _ _
T=Z—m-§(ri—r)®(ri—r) (2-4)
Here, Z, is the number of atoms in the molecule, r; are the position vectors of
individual atoms, r is the position vector of the centroid, and the symbol ® refers
to the dyadic product. If we use A1 3 to denote the eigenvalues of T, the radius of

gyration (R;), the measure of size, and asphericity (5), which measures chain

shape are given as:

R :«/7\1+7»2+k3

g

(kk FAA +M\ (2-5)

1_3{ 12 2’3 3 1J
(>b1+x2+x3)z

8:
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For a perfect sphere, 6=0, and for a perfect rod, 6=1; for intermediate values, the
chain assumes ellipsoidal shapes. Therefore, & quantifies the degree to which
chain shape deviates from that of a perfect sphere. This measure of shape has
been very useful for analyzing asymmetry in protein structures®” and for the

analysis of average shapes of denatured proteins.?®

Two-dimensional histograms, viz. p(R,, 8) in the space spanned by the two
parameters R, and §, provide insights regarding the preferred shapes and sizes
of a molecule.? Figure 2.2 shows these distributions for Qo in water and for the

two reference models:
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Figure 2.2: Two-dimensional histograms of the normalized radius of gyration and
asphericity (see Equation 2-4) for Q, in water and the two reference models. The
data are binned with a spacing of 0.05A on the R,axis and 0.02 on the &-axis,
respectively. For the purpose of clarity, the colors are slightly offset from the white

background.

Conformations with low asphericity and low R, are favored for Qy in water.

This is suggestive of water being a poor solvent for Q. This point is reinforced
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by favorable comparison of histograms in water to those obtained for the globular
reference ensemble using the LJ model. The only difference is that the latter are
characterized by smaller-scale fluctuations. In stark contrast, the peptides in the
EV limit prefer conformations with larger R, and asphericity values. Even more
importantly, there is no overlap between histograms obtained in the EV limit
versus those for either Qo in water or Qy in the reference globule. Polymers of
the requisite length have access to three distinct phases, viz. the globule, caill,
and rod phases.'® The data shown in Figure 2.2 support the conclusion that
conformational equilibria for Qg in water and calculated using the LJ model are
consistent with the globule phase while equilibria in the EV limit are consistent

with those of the coil phase.
Collapse does not mean order

One might be tempted to speculate that Qo prefers a specific globular
structure in water. If true, such an observation would be incongruent with
experimental observations according to which soluble and monomeric
polyglutamine peptides are described as being disordered by measures such as

CcD? or NMR.*®

Figure 2.3 shows that our results are consistent with interpretations of
experimental data. The inter-residue contact maps show no preference for
specific contacts. We can, however, distinguish two classes of disorder: (i)
disorder under the constraint of dense packing results in relatively large contact

probabilities (see Panels B and C), and (ii) disorder in the swollen-coil state with
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very low contact probabilities (see Panel A). The preferred contacts in the EV
limit are exclusively local. Conversely, in both the LJ globule as well as in water,
long-range contacts (sequence spacing >10) are actually more likely than mid-
range contacts (sequence spacing 5-9). Local contacts are enhanced in the
aqueous case vis-a-vis the LJ globule. We attribute these differences between
the LJ globule and the aqueous globule to specific local interactions present in

the latter,? a feature that is missing in the case of the LJ globule.
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Figure 2.3: Contact maps for Q, in water (Panel B), in the EV limit (Panel A), and in
the globular limit (Panel C). Grayscale indicates the frequency of observing a given
residue-residue contact throughout the simulation. Short-range contacts are excluded to
enhance the signal-to-noise ratio. A contact is defined by any two atoms & and [/ from

residues i and j having a distance less than 3A. The maps are by definition symmetric.

One might argue that our analysis of disorder observed for Qg in water
masks the identification of secondary structure, since a-helices or B-sheets with
highly variable registry might be possible. However, previous analysis of

backbone segments confirmed that there is little to no stable canonical
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secondary structure.? Similar conclusions were drawn from the current dataset

(data not shown).
Scaling of internal distances with sequence separation

The first polymeric measure we quantify is the scaling of internal distances

with sequence separation:

<Rg>=<%.22‘r; _r;> (2-6)

In Equation 2-6, the r., and r; denote the position vectors of atoms m and n,
which are part of residues i and j, respectively, and Z; is the number of unique
pairwise distances between the two residues. As in all equations, the angular
brackets indicate the average over all trajectories and all saved snapshots.
Plotted as a function of sequence separation, it is expected that for chains in a
good solvent (R;) ~ |j-i|>°°* which is true in the EV limit.?® In a good solvent,
polymers behave like fractal objects, i.e., internal distances scale with sequence
separation the way end-to-end distances scale with chain length. Figure 2.4
shows that the scaling of internal distances in the EV limit ensemble agrees with
the theoretical scaling law. Significant deviations occur at small sequence
separations, for which the local rigidity and detailed structure of the polymer
modulate the limiting behavior. Similar observations were made by Ding et al.*° in

their analysis of the scaling behavior of proteins near and above the folding

transition.

69



40 w

35 +on: Water )
. o\
0-Q,y EV
30 . = .
’O’QZO' Globule

20 22

|1

Figure 2.4: The scaling of average internal distances as a function of sequence
separation (see Equation 2-6). A theoretical good solvent scaling law is indicated by the
dotted line. Standard errors are indicated by error bars for the data in water and the
globular reference state. Errors are negligible for the EV ensemble and hence not shown.
The polypeptide caps are included in this analysis, which is why there are effectively 22
residues in the chain. Unless otherwise noted, lines are drawn exclusively to guide the

eye. This is true for all subsequent figures in this thesis.

Conversely, for chains in a poor solvent, theory tells us that ensemble-
averaged internal distances should plateau to a constant value corresponding to
chain length and the density of the collapsed species.’® The scaling of internal
distances for Qg in water and in the globular reference state is found to be
consistent with this expectation. The plateau values achieved are in agreement

with each other within error. Local length scales, also known as “blob” lengths
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are a characteristic of linear flexible polymers.' Over this length scale, the
scaling of internal distances as a function of sequence spacing is determined
primarily by steric interactions, and it is not possible to distinguish good from poor
solvents based on conformational equilibria over the “blob” length. Blob lengths
can be deduced from the rising part of the curves shown in Figure 2.4 and are

found to be about seven to eight residues; consistent with previous findings.?®2°

Up-and-down topologies in water

Ensemble-averaged angular correlation functions, ¢;, provide a way to
quantify average topologies adopted by chains in different milieus. This function,

analogous to a function proposed by Socci et al.,*' and computed as a function of
sequence spacing, is defined as:

¢; = <‘cos ®U‘> = < > (2-7)

Here, 1;) denotes the vector from the backbone nitrogen of residue i(j) to the

1-1

rJ

12

carbonyl carbon on the same residue, and / is its length. Therefore, ®; is the
effective angle between the direction of the chain at residues i and ;. For chains
in a good solvent ¢; will decay exponentially as a function of sequence
separation |i-j|. Conversely, chains in a poor solvent are under a packing
constraint, and on average, the chain will reverse direction. This results in

negative values for c;.

Figure 2.5 shows precisely this behavior. In the EV limit, correlations

slowly decay to zero as expected for a worm-like chain. In contrast, the data for
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the peptide in water and for the globular reference state are characterized by
significant anti-correlation at about five to ten residues of sequence separation.
This is the aforementioned mid-range length scale, over which the chain on
average turns on itself. Beyond this length scale, correlations decay to zero. The
large error bars for the data in water seen in Figure 2.5 are due to two effects: i)
every trajectory results in a distinct topology for the globule, and ii) on the
timescale of the simulations there is no interconversion between these distinct

topologies indicating quenched disorder (see below).
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Figure 2.5: The angular correlation function (see Equation 2-7) as a function of
sequence separation. The polypeptide caps are excluded from this analysis. For details

on errors see caption to Figure 2.4.
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Radial density profiles

Density profiles are another way to characterize the average shape of

macromolecules, and form the basis for Lifshitz-type theories for the coil-to-

globule transition:"""’

Zn M, -[H(rl. - r)— H(i - (r + Ar))}
plr+Ar) = ; Vir+ Ar)— V(r)

(2-8)

Here, r; is the distance of atom i from the molecule’s center of mass, m; is the
mass of atom i, Z,, is the number of atoms in the molecule, ¥(r) is the volume of a

sphere with radius » and H is the Heaviside step function.

Figure 2.6 shows that p(r) reaches a plateau value for short distances in
both the globular reference state and for the peptide in water. The limiting density
is ca. 1.2g/cm>. The most significant difference is in the long distance regime of
the density profile. This implies that the peptides in water undergo larger-scale
conformational fluctuations than in the globular reference state. The observed
plateau value for the density of globules in water and in the LJ reference state is
less than that of small, folded proteins.*> We attribute this difference to the
presence of pronounced conformational fluctuations for an IDP such as Qy, when
compared to stable, folded polypeptides. As may be expected, this discrepancy
disappears for longer chain lengths as was established in work comparable to
that presented in Chapters IV and V (data not shown). Even for Qso, the limiting
density approaches that of small proteins. Conversely, in the EV limit, the density

profile is shallow, and reaches a plateau value of about 0.4-0.5g/cm®. Such a low
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value is possible, since chains in the EV limit are characterized by interior
cavities of all sizes,?® and the density is averaged over both void spaces and the

chain itself.
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Figure 2.6: The average density as a function of distance to the center of mass

(see Equation 2-8). For details on errors see caption to Figure 2.4.
Kratky profiles

Finally, Kratky or scattering profiles, K(¢),* provide a direct connection to
experimental data as they are available from small angle X-ray scattering (SAXS)
measurements. If we assume homogeneous scattering cross-sections across the
molecule, the Kratky profile becomes an effective measure of the peptide’s

density as a function of a specific length scale:
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K (q)= Ng*(P(q))

zZ

& & sin(gry) (2-9)
P(q)_Z (z, _1)§J;1 ar,

Here, the r; are pairwise atomic distances, Z, is the number of atoms in the
molecule, N is chain length, and ¢ are wavenumbers in units of A", Large peaks
in the low and intermediate g-regime (0.1<¢<0.4) are indicative of compact
geometries as they result from a dense collection of scatterers. Conversely, if the
Kratky profile is essentially flat with generally low amplitudes, we infer that the
scatterers form a loosely packed object with low average density. This is the

expected signature for chains in the EV limit.

Figure 2.7 shows that our expectation is again met by the actual data:
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Figure 2.7: Ensemble averaged Kratky profiles (see Equation 2-9) calculated for the

three different models. For details on errors see caption to Figure 2.4.
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The profile for the chain in water is very similar to that in the globular reference
state, and is undoubtedly distinct from the profile for the EV chain. It is interesting
to note that the Kratky profile shows significant quantitative differences between
the globular reference and the water data in the high-¢ regime. This probes
differences in local structural propensities between the two ensembles which

may ostensibly be accessible to wide angle X-ray scattering experiments.

Moreover, a double-logarithmic plot of P(g) vs. ¢ in principle allows for the
direct determination of the scaling exponent for fractal objects given the data for
a single chain (much like the internal scaling analysis in Figure 2.4 does in
theory). Here, a specific linear regime is fit and the slope is identical to the
negative inverse of the scaling exponent. A benefit of this analysis is that Porod’s
law™® holds for non-fractal, compact spherical objects of homogeneous density, in
which case the slope is expected to be -4. The major drawback is that for small
systems the identification of the linear regime is non-trivial. We did, however
identify a clear, linear regime for the data in water and obtained a slope of -4.03
(plot not shown), a result consistent with all the data presented in Figures 2.4

through 2.7.

Based on the preceding discussion, we conclude that polymer theory
provides us with at least four distinct measures that allow us to establish that
water is a poor solvent for Q. The four quantities we have used to make
conclusive analyses are the scaling of internal distances, angular correlation
functions to measure average topologies, radial density profiles, and Kratky

profiles (closely related to radial density profiles). When these quantities are
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computed for data obtained from simulations in explicit water and compared to
analysis of simulation data from reference states, we are able to make an
unequivocal adjudication regarding the balance between chain-chain and chain-

solvent interactions, i.e., solvent quality.
11.4.3. Driving Forces for the Collapse of Polar Polyglutamine in Water

Polyglutamine is a polyamide built of a repeat of secondary amides in the
backbone and primary amides in the sidechain. Figure 2.8 shows a comparison
of site-site pair correlation functions, g(r), for Qo in water and for aqueous

mixtures of dissociated primary and secondary amides:
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Figure 2.8: Comparative analysis of pair correlation functions. The left column
shows site-site correlation functions for different atom pairs for Qy in water. The data
are normalized by an ideal chain prior (see 11.3.6). Dotted lines indicate standard error

intervals. The right column shows analogous site-site correlation functions for the
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solutions of NMF and PPA in water normalized by an ideal gas prior. Data for three
different concentrations are shown (1 m solid curves, 2 m dashed curves, and 4 m dash-
dot curves). The sensitivity of the results to amide concentration is small. Standard

errors are negligible for these simulations.

We normalized the intra-chain and intermolecular pair correlation functions
using different default models because the former is a polymer and the latter is a
mixture of freely diffusing molecules. We used an ideal chain model for the
polymer and an ideal gas prior for the model compounds. Details are discussed
in 11.3.6. The model compounds chosen to represent the “dissociated” peptide
are trans-N-methylformamide (NMF) and propionamide (PPA) mixing freely in
solution. NMF, a secondary amide, is an analog of the backbone peptide unit,
whereas PPA, a primary amide, is an analog of the polar sidechain of glutamine.
We choose NMF instead of trans-N-methylacetamide (NMA) due to the incorrect

match of total carbon number in the latter.

The first row in Figure 2.8 compares correlation functions between intra-
chain backbone donor and acceptor atoms to the site-site correlations between
NMF donors (Nnwe) and NMF acceptors (Onmr). The first peak around 3A is
pronounced for the polymer and only weakly present for the model compound
mixtures in solution. A different scenario holds for the comparison of pair
correlations between backbone-donor and sidechain-acceptor atoms to those
between Nyuwr and Oppa, Which are shown in the second row of Figure 8. There is
a distinct, yet broad peak at 3A separation in the polymer but general depletion

otherwise. For the amide mixtures in solution, the situation is inverted in that
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there is relatively strong association at 4-5A but no short-range peak at ca. 3A.
On the polymer side, the situation is very similar for the inverse pair correlation,
viz. backbone acceptor and sidechain donor. Again, there is a weak yet distinct
peak around 3A and a general depletion of density for short distances (third row
of Figure 2.8). However, for the model compounds, we observe a dominant peak
at 3A followed by a broad second peak in the site-site correlation function for
Nppa-Onmve. Finally, there is minimal deviation between pair correlations for the
sidechain-sidechain donor-acceptor pair in the polymer and Nppa-Oppa (fourth
row of Figure 2.8). For the polypeptide, the correlation function is much smoother
than that for other pairs. This is because the sidechains have the most flexibility
to rearrange with respect to one another. For both the polymer and the free

amides we observe a distinct peak at 3A.

In summary, we can establish the following changes in the self-association
behavior for amides in solution when compared to amides that are part of

polyglutamine:

1) For the model compounds in solution, we observe a marked preference for
short-range correlations (ca. 3A) between donor atoms of primary amides
(Nppa) and acceptor atoms of secondary amides (Onwr). Interrogation of the
inverse pair correlations between sites Nywr and Oppa suggests favorable,
solvent-separated intermolecular associations. These differences in donor-
acceptor pair correlations are not preserved in the polymer. Instead, both
types of pair correlations, viz. sidechain donor to backbone acceptor and

backbone donor to sidechain acceptor, are equivalent.
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2) For the polymer, we observed a general trend that correlation function values
are larger than unity for short (ca. 3A) and long distances (>6A) but are
diminished over medium ranges (3.3A-6A). This is due to excluded volume
effects, which are absent in the ideal chain model used to normalize the pair

correlations (see 11.3.6).

3) The two pronounced terms in the polymer are the backbone-backbone and
sidechain-sidechain correlation functions, which measure effective interactions
between donor and acceptor atoms. Of these two correlation functions, only
the pair correlations between backbone units are enhanced vis-a-vis the
model compound counterparts. It appears that concatenated backbone units
can solvate each other more favorably when compared to free secondary
amides. Therefore, our preliminary conclusion is that the main driving force for
collapse of polyglutamine in water derives from favorable intra-backbone
correlations. This finding appears to be consistent with recent experimental
data.** There could be multiple sources for enhanced pair correlations. These
include hydrogen bonding, the entropic benefits of releasing water molecules

into the bulk, and the associated increase in chain packing density.

In the interest of clarity, we reiterate that the intra-polymer and model
compound site-site pair correlations were normalized using different default
models. Details of the normalization were presented in 11.3.6. For the polymer, we
used an ideal chain model. This is different from the ideal gas model used as the
default model for analyzing distance histograms for model compounds. Therefore,

an intra-polymer site-site correlation is meaningful only if the peak or trough in
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the pair correlation function is greater than or less than unity, ie., all
enhancements and depletions in intra-polymer pair correlation functions arise
due to specific multi-body interactions which either can be repulsive or attractive.
The signals should not be misinterpreted as being a consequence of elimination

of entropic barriers via chain connectivity.

An alternative approach for making assessments regarding driving forces
for collapse is to quantify the contributions of enthalpy and entropy to the free
energy change associated with coil-to-globule transitions for polyglutamine. If this
transition were to resemble hydrophobic collapse, the driving force would be
primarily entropic in nature.***° The data necessary to make judgments
regarding entropy and enthalpy are not available from simulations carried out for
a single set of solution conditions. Free energy calculations on the solvation of
collapsed versus extended states of Qz would be able to address the above

issue but are intractable at this point.

11.4.4. Conformational Relaxation Dynamics — Evidence for Glassy Kinetics and

Ruggedness of the Energy Landscape

Figure 2.9 shows a checkerboard map of the average root mean square
deviation ((RMSD);) calculated by superposition of all the structures in trajectory ;
onto the final structure in trajectory i. We find that the diagonal has a significantly
lower average RMSD when compared to the off-diagonal elements, i.e.,
(RMSD);<(RMSD);. This is indicative of two features: first, there is strong

residual correlation within each trajectory; second, no pair of trajectories yields
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similar final structures. The latter observation clearly establishes the disordered

nature of the ensemble.
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Figure 2.9: Checkerboard map of the average all-atom RMSD in A of the structures
observed in trajectory j (y-axis) from the final structure of trajectory i (x-axis). This

map is by construction not symmetric.

One might argue that inaccurate molecular mechanics force fields as well
as the sluggishness of conformational sampling are the primary sources for our
observation that the ensemble for polyglutamine is disordered. In other words,
the MRMD simulation methodology applied to any polypeptide sequence with
initial conformations drawn from the EV limit ensemble may yield a similar result.
While this skepticism is reasonable, it is also noteworthy that the ensemble

dynamics methods of Pande and coworkers, which are similar in spirit to MRMD,
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have been used to successfully fold several small two-state proteins and obtain
accurate estimates of their folding rates.*® Therefore, we propose that the
congruence between our results and those based on spectroscopic experiments
are robust because the homopolymeric nature of polyglutamine provides a
reasonable physical basis for its intrinsic disorder. Of course, the concern
expressed above can be addressed fully only through application of the MRMD
approach to a wide range of sequences that have stable folds as well as to
sequences that are predicted to be intrinsically disordered. These types of
simulations are computationally challenging and may become feasible with

appropriate methodological advances.

In Figure 2.10, we show a comparative analysis of the differences
between the time scales for collapse versus the time scales associated with

conformational relaxation:

0.45,
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] 12 . ek
= Fit to stretched exponential
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+ == Standard Error

0.4

035
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Figure 2.10: Analysis of glassy relaxation dynamics for Q. Panel A — The time

evolution of S(r), a normalized measure of (R,) as a function of time, t. The plot also
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shows the fit to a single exponential function S(t):S exp[—/} with §,=0.40 and
° T

t=5ns. The norm of the residuals between the raw data and the exponential function is
0.01. Panel B: RMSD of the structures within a trajectory from their final structure (gray
diamonds) is compared to that of the structures within a trajectory to the final structure of
other trajectories (gray circles). Standard errors for the former could not be obtained, as
there is only one value per trajectory and per time-point. For the cross-term, the 59
values per trajectory and per time-point were pre-averaged and standard errors could be
obtained as usual. Data for the average conformational relaxation within a trajectory
(gray diamonds) are fit to a stretched exponential function of the form described in the
text. This is shown as the solid curve in the plot. Deviations from the stretched
exponential function are largest for the earliest time points, t<5ns and for the last 10ns
interval. The former is explained by the rapid collapse over short time scales, while the
latter is entirely due to our choice of the final snapshot of the trajectory as the reference

snapshot for analyzing conformational relaxation.

In Panel A, we plot s()= (R )O{r)] as a function of time. A single

(&)

exponential fit for the decay of S(zf) versus ¢ is also shown. This function,

s(r)= S()exp{—i} has the parameters S$,=0.40 and t=5ns. In each of the
T

trajectories, collapse from the relatively extended starting conformations, which
are extracted from the EV ensembles, is found to be a rapid process and occurs
within a time scale of approximately 5ns, which is shorter than the equilibration

times (11ns) used in our analysis of MRMD data. This observation is robust
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across all trajectories. In the interest of clarity, we have added data from the
equilibration periods. This was done for the analysis reported in Figure 2.10

alone. For all other figures, only data from the production runs were used.

Although collapse is rapid, conformational relaxation is considerably
slower. Panel B of Figure 2.10 shows the time evolution of the average RMSD for
superposition of structures within a trajectory i to the final structure of trajectory i,
i.e., (RMSD(?))sir- The temporal evolution of this parameter is described using a
stretched exponential function: (RMSD(#))seir = Roexp[-(#/1)’], with R,=22A and
B=0.15; Here, 1 is set to be 5ns — the time scale for collapse. The stretched
exponential function, also known as the Kohlrausch-Williams-Watts (KWW)
function (with 0<3<1), is used to describe structural relaxation in glassy systems
(below the glass transition temperature).’’”'* If B assumes small values, then
the system has access to a broad and heterogeneous distribution of relaxation
times.”’ Our discovery that conformational relaxation of Q follows non-
exponential kinetics with a fairly small value of B is consistent with the postulate
that distinct collapsed structures are likely to be of equivalent stability on account
of the homopolymeric nature of polyglutamine, i.e., the energy landscape is
rugged for Qg in water at 7=298K and P=1bar.

There are two predicted features for rugged energy landscapes: The first
is slow, non-exponential relaxation within distinct basins, which is best described
using a KWW function.?”"*? Secondly, there should be evidence of even slower

interconversion between distinct basins.®' Evidence for the latter is also shown in
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Panel B of Figure 2.10. Here, we track the temporal evolution of (RMSD(?))cross,
which is the average RMSD for superposition of a snapshot from trajectory i
upon the final structure of trajectory j, where j#i. The desired average is
calculated over all unique pairs of trajectories (i) and final structures (;). We find
that, once the chain is collapsed, (RMSD(f))u0ss ShOWws no significant time
dependence over the remaining time scale of 50ns. The time dependencies of
both (RMSD(#))cross @and (RMSD(?))sir taken together are interpreted as follows:
Although collapse is rapid and the (R,)-values across trajectories are similar to
each other, each trajectory samples a distinct family of globular conformations,
and there is no obvious interconversion between the distinct globules over the
50ns time scale.

Our MRMD approach provides reliable information regarding global,
polymeric order parameters because this information is converged and roughly
equivalent across all trajectories. Conversely, any analysis of specific structural
propensities would yield mostly unreliable information because this requires
interconversion between distinct conformational basins. To achieve this, each
independent trajectory in the MRMD approach will need to be extended into the
us-range or longer. Perhaps, an increase in the number of independent
trajectories will be necessary as well. The impact of conformational heterogeneity
and diminished conformational averaging is seen in the large error bars for the

angular correlation function (Figure 2.5). This measure probes local
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conformational propensities as well as global properties and is therefore most

sensitive to the quality of statistics we gather.
I.5. Summary and Conclusions

We have analyzed MRMD simulations for a single polypeptide chain, Qao,
in water. Our analysis — combined with polymer physics theories — and
comparison to data from reference simulations allows us to conclude that Qy in
water has all the characteristics of a chain in a poor solvent (Figures 2.2-2.7).
The physics of homopolymers allows us to generalize and conclude that water is
a poor solvent for polyglutamine, i.e., at infinite dilution these systems form
disordered globules and at finite concentrations the stable thermodynamic state
will be the phase-separated aggregate.'*** Implications of the poor solvent
nature of aqueous solvents for the mechanism of aggregation have been
discussed in detail’® and will be elaborated upon later (see Chapter IV in

particular).
Polymer theory helps in making robust predictions

We borrowed the methods for analyzing conformational equilibria from the
polymer physics literature.”''*161855 The motivation was to ask if the analysis of
simulation data for a single chain length could lead to robust assertions about
solvent quality. We showed that this is possible using comparative analysis of
specific “order parameters”."” Of particular relevance is the scaling of internal

distances because it obeys a rigorous scaling law for fractal objects, i.e., chains

in good and 0-solvents. Departure from a scaling law for this quantity must mean
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that the solvent is poor. Finite size effects limit the usefulness of such a measure
only if the chain length drops below the “blob” length of seven to eight residues
since in this regime local structure overrides the mean polymeric behavior.'* The
presence of two distinct length scales, viz. the blob length and a generic length,
also means that the conclusions obtained from our analysis for N=20 are robust
and valid for all chain lengths N>20. This point is emphasized in the development

of modern theories for homopolymers'"'*1”

and in the previous work by Crick et
al.® who showed that the poor solvent scaling of chain size with length is obeyed
for all lengths N>15. Our analysis was feasible due to low-sequence complexity,
i.e., the homopolymeric nature of polyglutamine and the appropriate choice of
chain length (longer than the blob length). The analysis methods are likely to be
of general relevance for quantitative characterization of conformational equilibria

for IDPs because many of these sequences are deficient in hydrophobic residues

and are of sufficiently low sequence complexity.®®
Why is water a poor solvent for glutamine-rich peptides?

Combining experimental studies and our computational results, there
remains little doubt that water is in fact a poor solvent for glutamine-rich peptides.
These peptides are assumed to be in a “random-coil” state, the implication being
that the ensemble is consistent with that of highly denatured proteins. Our results
suggest that the absence of a consensus experimental signal in CD

20,38,56

experiments is the result of a different type of disorder, ie., of a

heterogeneous ensemble of globular conformations. Given the polar nature of
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the sidechain, and the infinite solubility of small amides in water, it is obvious that
the solvation behavior changes upon transitioning from amides in water to a
polyamide in water. To be able to compare the two cases, we remove effective
concentration as an obvious factor by appropriate normalization (Figure 2.8). We
conclude that the short-range steric and topological constraints in the polymer
alter the solvation behavior primarily for the backbone unit, i.e., the secondary
amides are more favorably solvated by themselves than by water. As a result,

the chain collapses and minimizes its interface with water.

However, the above does not imply that these peptides behave like
classical hydrophobic solutes, such as polyethylene. At this point, we are unable
to adjudicate the nature of the collapse transition since we only have simulations
of conformational equilibria for a single set of solution conditions. However, the
qualitative result in and of itself appears to be robust. More recent work has
shown that another archetypical IDP free of any hydrophobic residues, viz.
polyglycine, similarly collapses in water.®” Given the fact that polyglycine is also a
polyamide but has no sidechains, the hypothesis that the backbone amides
appear to be the driving force behind this somewhat counterintuitive
phenomenon of “polar collapse” appears reasonable. Further work in this
direction is currently being carried out in an attempt to quantify both the
physicochemical origin and the structural signatures of polar collapse

(Wyczalkowski and Pappu, unpublished).
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Implications for the feasibility of future computational studies on polyglutamine

aggregation using the MRMD protocol presented here

Ultimately, our interest lies in characterizing the process of aggregation of
peptides of the type studied here. As is clear from Figures 2.3 through 2.7, the
standard errors for most of the data concerning the conformational equilibrium of
the peptide are relatively large considering the investment of computational
resources. This is a direct consequence of the very long interconversion times for
different globular states of these peptides as detailed in Figures 2.9 and 2.10. It
might be possible to reduce the computational cost for this particular system via

enhanced sampling techniques.®®°

It was demonstrated that a global coordinate
such as R, can be used as a bona fide reaction coordinate in an umbrella
sampling approach.”” However, the fundamental problem of increasing system
sizes remains unsolved. With an explicit representation of the solvent, the
number of solvent molecules will increase linearly with volume. The required box
lengths for studies of monomeric polyglutamine will ideally increase linearly with
chain length. Ultimately, this yields a cost dependency on chain length of N° even

if we optimistically assume linear scaling of CPU time with number of atoms in

the system.

Given current computing resources and given the manifold of sequences
researchers will ultimately be interested in simulating, mean-field representations
of the solvent are therefore a necessity for computer simulations to address
questions pertaining to the conformational equilibria and aggregation of disease-

associated IDPs such as polyglutamine. A development of a novel mean-field
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representation of water is presented in Chapter Ill and Chapters IV through VI
detail its application to the polyglutamine aggregation problem. However,
additional help with sampling is needed. The popular replica exchange (REX)
method®'*%? could theoretically have been used here. It employs high temperature
replicas to enhance conformational re-arrangement via increased rates of barrier-
crossing. While this is useful in theory, we would suffer from the fact that we
would need multiple replicas for each temperature. This is unavoidable for
disordered systems such as polyglutamine in water; therefore the required
resources would actually increase. A much more straightforward application of
the REX technique emerges if we are interested in quantities as a function of the
control parameter, typically temperature, and if the bulk properties of the solvent
bath do not depend drastically on the control parameter. Neither condition was
true for the scope of this chapter. Both are true for Chapters 1V, V, and VI which

routinely employ the REX method.

As is the case in most molecular simulations of biomolecules, the choice
of the force-field will determine the details of simulation results.®® Since all force-
fields share similar features, our analysis methods applied to simulation data
gathered using different force-fields will in all likelihood lead to the conclusion
that water is a poor solvent for polyglutamine. However, details such as the
length scale for collapse transitions and the stability of the collapsed states might
vary from one force-field to the next. The OPLS-AA/L force field*® employed in
this study has not been parameterized with this application in mind. It is worth

pointing out that its parameterization paradigm rests mostly on small molecule
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data; hence, better transferability and accuracy for basic physicochemical
properties can be expected than for other common force fields. Nevertheless, a
comparative study across multiple force fields appears desirable. While such
studies have become more common in recent years®¥®® they are still
prohibitively expensive. For the data presented here, we used ca. 1200 CPU
days on a single 2.6Ghz Intel Conroe Core with the fastest, freely available
simulation engine, viz. GROMACS. Maybe more than anything else, this raw
number clearly points out the computational cul-de-sac the MRMD approach
presents for studying a system of this complexity. Following the preceding
discussion, this is especially true given the need to repeatedly demonstrated both

accuracy and reliability.
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CHAPTER IlIl. DEVELOPMENT OF A NOVEL IMPLICIT SOLVENT
MODEL TO FACILITATE SIMULATIONS OF THE ASSOCIATION

OF DISORDERED POLYPETIDES RICH IN GLUTAMINE

l11.1. Preamble

As the results in Chapter Il demonstrate, a brute-force computational
strategy resting entirely on what appears to be the most adequate and accurate
model for the problem of polyglutamine aggregation, i.e., MD in explicit solvent,
was and is infeasible. Specifically, the strict coupling to a temporal evolution of
the system and the extremely poor scaling behavior with system size present
fundamental obstacles even for obtaining converged properties of the relatively
short peptide Q2. However, as is outlined in Chapter I, the relevant physiological
length scale extends well beyond that range. More importantly, at representative
and hence relevant concentrations (referring to typical experimental conditions in
both in vivo and in vitro settings) even the minimal unit of aggregation, namely
the dimer, requires simulation systems of sizes completely inaccessible to an all-
atom representation of the solvent.

We therefore endeavored to coarse-grain, i.e., to reduce the represented
number of degrees of freedom in the system, loosely defined as uM solutions of
polypeptides rich in glutamine. Significant time was spent in late 2005 and early
2006 developing a formalism ultimately resting on an inverse Boltzmann
strategy.! Here, knowledge-based potentials are extracted from simulation

databases and defined over coordinates presumed to be statistically independent,
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i.e., separable from the viewpoint of the system Hamiltonian. Ultimately, this
strategy failed even when considering collective coordinates obtained using
statistical decomposition approaches. In particular, we tried to obtain linear
combinations of the dihedral angles as collective coordinates. The hypothesis
was that via a technique called independent component analysis, ICA,? we would
arrive at a set of collective coordinates for which the knowledge-based potentials
are by definition separable. In such a scenario, application of inverse Boltzmann
techniques is trivial. The approach gave unsatisfactory results primarily due to
the following fundamental weakness: the theory underlying ICA (and the more
popular PCA) is entirely linear, whereas the actual correlations in the data

showed substantial non-linearities.

It may actually be called a fortunate event that the knowledge-based
approach failed so rigorously. It motivated us to pursue an avenue explored
previously (summer of 2005) with renewed emphasis. Fundamentally, an
alternative coarse-graining strategy lies in an attempt to conceptualize the
physics of the process of interest and to describe that conceptualization in
quantitative terms. A model emerging from such an approach might be called
semi-empirical: parameter optimization is undoubtedly needed, but all
parameters relate to physically intuitive properties. Molecular mechanics force
fields are a very good example for a semi-empirical method: for instance, rather
than describing Coulombic interactions at the level of electronic structure, they
use a point charge model to represent static multipole interactions. The partial

charges for individual atoms remain to be fit, but their physical meaning is
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straightforward. This has the important advantage that auxiliary calculations and
experiments can guide the parameterization. In case of partial charges, those
can be quantum mechanics calculations in conjunction with experimentally

determined dipole moments.

Implicit solvent models and their underlying theories such as continuum
electrostatics theories attempt to follow the semi-empirical paradigm outlined in
the previous paragraph. The difference is that here interactions with the solvent,
typically aqueous, are attempted to be captured in a mean-field fashion. Since
the tradeoff of computational efficiency and accuracy did not appear favorable for
many of the established continuum solvation models, we developed a novel one,
which — of course — at the same time remains deeply rooted in the work of others.
The remainder of this chapter is mostly identical to the work we published on the
description and testing of our novel implicit solvent model termed ABSINTH (for
self-Assembly of Biomolecules Studied by an Implicit, Novel, and Tunable

Hamiltonian).®
lll.2. Introduction to Implicit Solvent Models

Generally speaking, computer simulations of biomolecules complement
experimental methodologies by providing a detailed representation of the system
of interest. They allow for analysis of novel quantities and lead to insights
regarding the mechanisms and driving forces underlying experimentally observed
phenomena.* Common simulaton methodology and popular molecular

mechanics force fields are usually designed to work with explicit water models,
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i.e., all solvent molecules in the system must be represented explicitly in atomic
detail. As mentioned in Ill.1, this can become prohibitively expensive for
biological phenomena such as self-assembly or even the unfolding of a single
protein molecule. These processes require spontaneous fluctuations that span
multiple length and time scales. The idea of representing solvent as a continuum
in particular for studying large-scale phenomena has therefore retained appeal
within the simulation community.® If one uses an implicit / continuum model for
solvation, the computational cost of a single energy or force calculation will, in
theory, scale with the number and size of the biomolecules of interest rather than

with the spatial dimensions of the simulation system.

Part of the motivation for developing a new implicit solvation model
emerged and continues to emerge from growing interest in the topic of
intrinsically disordered proteins (IDPs), amongst them polyglutamine (see
Chapter Il). IDPs do not fold into well-defined, ordered tertiary structures under
physiological conditions. Disorder prevails under non-denaturing conditions and
amino acid sequence encodes the propensity to be disordered. Recent data from
simulations using explicit solvent models and fluorescence-based experiments
show that archetypal polar IDPs such as polyglutamine,® the N-domain of the
yeast prion protein Sup35, and glycine-serine block copolypeptides7 form an
ensemble of disordered, collapsed structures in water. Disorder in these systems
is not a consequence of the inability to collapse; rather it reflects a lack of

sequence specificity for a unique collapsed structure, i.e., a fold.
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Naturally, the domain of parameterization for almost all common force
fields has been that of well-folded structures. It has been argued that strong
biases toward canonical polypeptide secondary structure exist in different force
fields. An example is the strong a-helical tendency of earlier incarnations of the
AMBER force field.®® This implies that an inadvertent bias against disorder is
built into most of these force fields. They therefore appear unsuitable to capture
properly the subtle interplay between conformational entropy and enthalpy
involved in an IDP adopting transient, partially folded structures when interacting
with suitable binding partners. Similarly, they appear unsuitable in elucidating the
role of canonical secondary structure in driving or modulating the aggregation of

an IDP like polyglutamine.

As pointed out above, for such studies we need to carry out large-scale
simulations in atomistic detail; hence, we require highly efficient molecular
simulations. Furthermore, since the primary objective is to describe
conformational ensembles in terms of coarse-grained order parameters, it is
reasonable to pursue the development of implicit solvent models that emphasize
speed with some tradeoff in fine-grained accuracy. For example, the type of
model we have developed here would not be ideal for predicting the three-
dimensional structures of proteins to very high accuracy. Instead, it is intended to
be useful for identifying the native-state basin in a coarse-grain manner while
also providing quantitatively accurate assessments regarding competing

conformational basins. The latter is especially useful for understanding how

101



spontaneous fluctuations lead to disorder-mediated functional interactions as well

as deleterious interactions such as protein aggregation.

Prior to summarizing the features of the new model, we first review the
features that underlie existing approaches for modeling solvent in an implicit
manner. Methods based on the Poisson-Boltzmann (PB)'® equation are regarded
as the most accurate implicit solvent models in terms of electrostatics. The
Poisson equation is based on the assumption of a dipolar continuum for the
solvent. The polar contribution to the solvation free energy of a biomolecule is
modeled as the mean-field response of a dipolar continuum to the formation of a
set of point charges within a low dielectric cavity that is in turn embedded in a
high-dielectric medium. In the PB equation, the continuum is extended by a
mobile, Boltzmann-distributed charge density. With current computing power,
both the Poisson and Poisson-Boltzmann equations can be solved numerically
even for very large systems to a high level of accuracy." This provides a strategy
to estimate the solvation free energy of individual biomolecular conformations or
specific, large-scale assemblies. However, such calculations remain prohibitively
expensive for most simulation purposes where one needs large numbers of
independent evaluations of solvation free energies for the system of interest.'
Additionally, while the polar contributions to the transfer of a complex solute into
the continuum and the dielectric screening of polar solute-solute interactions are
modeled accurately, PB methods cannot address the non-polar part of the
transfer process. In principle, this is achieved by addition of a non-polar term as

described below. In practice, PB methods are not typically used in simulations of
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biomolecules; rather they are used for interrogating solvation free energies of

static structures.

Generalized Born (GB) models® are an analytical approximation to PB
models. In the GB surface area (GB/SA) variants, the non-polar contribution to
the transfer process is represented by a surface-area based term, while the
electrostatic contribution is based on an analytical expression. The Born equation,
generalized to account for the macromolecular environment, describes the
charging process for individual sites. Cross-terms represent the modulation of
polar interactions by the dipolar continuum and by the protein.”™ Most of the
deviations of the GB approach from the PB model to modeling electrostatics can
be attributed to inaccurate Born radii, which result from approximations to the
appropriate integrals.'* Additional errors arise because reaction-field effects are

ignored.™

In the earliest incarnations of GB/SA models, the non-polar treatment
relied on the solvent-accessible surface area (SASA) to describe cavitation.™ It is
well-known, however, that the validity of the SASA to describe hydrophobic
solvation only holds beyond a certain length scale and that the solvent-
accessible volume (SAV) provides a better metric for rough surfaces with high

curvature.'%°

Moreover, dispersion terms describing favorable non-polar
interactions between solute and solvent have also been shown to be
relevant.?>?" Consequently, significant improvements in the non-polar treatment

in GB models have been achieved by adding a volume-dependent dispersive

term to the SASA-dependent cavitation term.?
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It should be noted that both PB and GB methods can suffer from
surprisingly poor performance when compared to explicit solvent calculations
depending on the system. GB models become ineffective if the calculation of
Born radii needs to be repeated frequently as would be the case in Monte Carlo
(MC) simulations where large conformational changes can occur rapidly.
Conversely, PB methods require numerical solutions of the Poisson-Boltzmann
equation and remain comparably slow despite significant advances in the
available technology.'® Often, in both PB and GB models, there can be a tradeoff
of accuracy for speed,?® which might be appropriate for certain systems but not in
general. It is also noteworthy that GB models are usually calibrated with respect
to PB models and not with respect to calculations in explicit solvent. This leads to
internal consistency between the two models. However, weaknesses due to the
assumption of a dipolar continuum prevail in both models, and this weakness®* is
emphasized by the hypersensitivity of PB/GB models to the definition of the

dielectric boundary.®?°

There are other, simpler versions of implicit solvent models. These yield
qualitatively correct results and have been used to extend the time scale in
molecular dynamics (MD) simulations well into the ps-range. Caflisch and
coworkers®®?’ have employed a SA-based term to capture the mean-field
interaction of the solute with the solvent and a simple distance-dependent
dielectric to describe the modulation of polar interactions by the continuum. The
EEF1 model by Lazaridis and Karplus28 follows a paradigm which differs

fundamentally from that of PB/GB(SA) models. Here, the transfer process is
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decomposed into a direct mean-field interaction and a screening term rather than
into polar and non-polar contributions as is the case in PB/GB(SA) models. The
treatment of the direct mean-field interaction (DMFI) is designed to reproduce
experimental transfer free energies from vacuum into aqueous solution for small
functional groups according to a decomposition scheme proposed by Privalov
and Makhatadze.? The sum of these contributions determines the maximal, net
solvation free energy for the entire biomolecule. This sum is reduced from
reference values if the accessibility of the sites is less than maximal, i.e., if other
solute atoms shield solvation sites from the continuum. The EEF1 model does
not rely on the popular SASA-metric to determine accessibility. Instead, it
employs a Gaussian, volume-based term corresponding to the SAV. In its
original implementation, EEF1 used a simple distance-dependent dielectric to
describe the screening of Coulombic interactions. This was later revised to

include an exposure-dependent component.®

In designing our implicit solvation model, we aimed to maximize efficiency
and accuracy with respect to the target applications while also offering the ability
to tune the model and make it more versatile. The result is a model we refer to as
ABSINTH, which stands for self-Assembly of Biomolecules Studied by an Implicit,
Novel, and Tunable Hamiltonian. In ABSINTH, the transfer process of a solute
into the continuum is written as the sum of two terms, viz. a DMFI, and a term
used to model the screening of polar interactions. The solute molecule is
decomposed into sets of distinct solvation groups. The DMFI is written as a sum

of contributions from each of the solvation groups, which are analogs of model
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compounds. SAV fractions (n) are used as the metric for solvent accessibility.
Electrostatic interactions are treated using charge groups to eliminate spurious,
short-range electrostatic interactions. Continuum-mediated screening of these
interactions is treated as a purely environmental term with no explicit distance-
dependence using a framework similar to the one used for the DMFI. Finally, we
do not use torsional potentials and both Lennard-Jones (LJ) parameters as well
as partial charges are treated as modular entities, i.e., they are not co-dependent.
As discussed below, the model offers parameters that allow one to tune the
cooperativity of transitions between fully solvated and fully desolvated states,

although we have not fully explored this feature in the present work.

To summarize, in ABSINTH both the polar and non-polar parts of the
transfer process are treated simultaneously using reference free energies of
solvation for the solvation groups, which is fundamentally different from the
approach taken by PB and GB models. Differences between EEF1 and
ABSINTH arise in the way we measure the solvent accessibility. We introduce a
generalized, stretched sigmoidal function to compute solvation states from
solvent accessibilities. We also depart from EEF1 in the choice of solvation
groups; we use larger model compounds, thereby using experimental data
directly without relying on empirical decompositions of these data.

In the remainder of this chapter, we present the model in several stages.
We comment on the choice of degrees of freedom for all the work underlying this
chapter. We then introduce the DMFI using n as its primary metric. This is

followed by a discussion regarding the choice of LJ parameters. Next, we
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introduce the polar components of the model, consisting of a modified short-
range electrostatics model and the description of screening of interactions
between partial charges due to the local environment. We conclude the
presentation of the model by commenting on miscellaneous issues including the
treatment of ionic groups and computational efficiency. After sketching the
simulation design for the work underlying the results in this paper, we provide a
brief history of the calibration of the model. We then present a representative set
of preliminary results obtained using ABSINTH. In discussing these results, we
attempt to make direct connections with experimental data. We conclude with a

brief summary of merits and future improvements to our model.
lll.3. The ABSINTH Model

111.3.1. Overview

In ABSINTH, a polypeptide chain is parsed into a series of model
compounds corresponding to individual backbone units and sidechains. This is
done for the purpose of calculating the DMFI. The sampled degrees of freedom
are the dihedral angles and rigid-body coordinates of the macromolecules of
interest while bond angles and lengths are held fixed. The ABSINTH Hamiltonian

can be written as a sum of the following terms:

E

total

=W,

solv

+ ULJ + I/Vel + Ucorr (3_1)

In Equation 3-1, W, is the solvation term corresponding to the DMFI. Uy,
represents the contributions from short-range steric and dispersive interactions,

which are accounted for by the Lennard-Jones model. W, encompasses the
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electrostatic model we employ. It is written as W, instead of U, because the
mean-field dielectric modulates the interactions based on the conformation of the
macromolecule. Finally, U, represents torsional correction terms applied only to
dihedral angles subject to electronic effects, i.e., those that cannot be captured
by Uw;. In the following paragraphs, all of the terms are explained in detail in the

order they appear in Equation 3-1.

111.3.2. Degrees of Freedom

In all of our simulations of polypeptide chains, the degrees of freedom are
the backbone and sidechain torsion angles, viz. the set of ¢,y, ®, and yx-angles.
All bond lengths and bond angles are held fixed. The assumption of fixed bond
lengths and angles has been made repeatedly in the literature, and it has been
shown recently that in MC simulations such a treatment does not introduce
artifacts,®' unlike in molecular dynamics.®> However, such constraints can
suppress fluctuations necessary for the interconversion between adjacent basins
in phase space® because the precise nature of constraints is important if one is
interested in the quantitative details of barriers, as has been shown in a recent

study employing a quantum mechanical Hamiltonian.>*
111.3.3. Direct Interaction of Solutes with the Mean-Field

The following paragraphs will describe the direct interaction of solutes with
the mean-field, i.e., the work done when inserting any solute from vacuum into

the continuum solvent while not considering intramolecular terms.>
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When inserting a rigid molecule into water, there are at least three distinct

terms that contribute to the solvation process and the transfer free energy:

1) The purely entropic, unfavorable free energy to create the solute-sized cavity

in the dense fluid (cavitation term which is non-polar)"”’

2) The favorable free energy gained from uniform dispersive interactions of the
solute with the surrounding water molecules (contributes to the non-polar

term)>®

3) The favorable free energy gained by specific polar interactions of the solute
with surrounding water molecules through dipole-dipole or charge-dipole

interactions (polar term)*’

These terms are accounted for by the first few solvation shells.® For a rigid
solute, our model treats the above three terms “in one shot”, i.e., we do not use a

formal decomposition.

The use of reference free energies of solvation at the model compound level

We parse the solute into a series of solvation groups, which are all
analogs of small, usually rigid model compounds. As an example, the atoms N, H,
C, and O of the peptide backbone form a solvation group, and the analog is N-
Methylacetamide. Figure 3.1 illustrates how we parse the peptide sequence of
Met-Enkephalin into solvation groups. For each solvation group, our approach
guarantees accurate solvation free energies. This is achieved by construction
since for each solvation group we use experimentally measured free energies of

solvation presented in Table 3.a.
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Peptide Units: trans-N-Methylacetamide
-10.1 kcal/mol

Phe: Toluene
-0.8 kcal/mol

Tyr: p-Cresol
Met: Ethyl Methyl Thioether -6.1 kcal/mol
-1.4 kcal/mol

Figure 3.1: Parsing a solute into model compounds using Met-Enkephalin (Acetyl-
YGGFM-N-Methylamide) as an example. The six peptide units are shown in blue, cyan,
green, yellow, orange and red, each using N-Methylacetamide as the model compound.
The sidechains for the tyrosine, phenylalanine, and methionine residues are as indicated.
The corresponding model compounds are p-Cresol (Tyr), Toluene (Phe), and Ethyl

Methyl Thioether (Met). Details of the parsing are shown in Table 3.a.

Residue or Model List of Atoms in AG;, (kcal/mol) used in
Unit Compound Solvation Group ABSINTH
Polypeptide N-
ypep -CO-NH- -10.1
backbone Methylacetamide
Formylated N-
-CO-NH- -10.0

peptide N-Cap  pethylformamide

Amidated
. Acetamide -CO-NH, 9.7
peptide C-Cap
Charged
_ Methylamine -NH; -106.5
N-terminus
Charged
. Acetate -COO -107.3
C-terminus
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Residue or Model List of Atoms in AG;, (kcal/mol) used in
Unit Compound Solvation Group ABSINTH
Glycine - - -
Alanine Methane All +1.9
Valine Propane All +2.0
Leucine 2-Methylpropane All +2.3
Isoleucine Butane All +2.2
Proline Propane All +2.0
-3.6 (Ethyl Methyl Thioether
o Ethyl Methyl -S- (Ethy Y
Methionine — Butane)
Thioether
-CH,-CHs;, -CH3 +2.2 (Butane)
Serine Methanol -OH -5.1
_ -OH -5.1 (MetOH)
Threonine Ethanol
-CHj,3 +0.1 (EtOH-MetOH)
Cysteine Methanethiol -SH -1.2
Asparagine Acetamide -CO-NH. -9.7
-CO-NH, -9.7 (Acetamide)
Glutamine Propionamide cH +0.4 (Propionamide —
? Acetamide)
Phenylalanine Toluene All -0.8
_ -OH -5.3 (p-Cresol — Toluene)
Tyrosine p-Cresol
Rest -0.8 (Toluene)
NH -3.5 (3-Methylindole -
Tryptophan 3-Methylindole Naphthalene)
Rest -2.4 (Naphthalene)
Histidine 4-Methylimidazole -NH-C-N- -10.3
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Residue or Model List of Atoms in AG;, (kcal/mol) used in

Unit Compound Solvation Group ABSINTH
Aspartate (-) Acetic Acid -COO -107.3
Glutamate (-) Propionic Acid -COO -107.3

Lysine (+) 1-Butylamine -NH; -100.9
Arginine (+) n-Propylguanidine  Guanidino Group -100.9
Sodium (+) - Na* -87.2
Chloride (-) - Cr -74.6

Table 3.a: Detailed inventory of the solvation groups in ABSINTH. In general, amino
acid residues are partitioned into a sidechain model compound as well as a (universal)
backbone model compound. The first column lists the residue name (for specific amino
acids referring to sidechains only), the second column gives the model compound used,
and the third column lists the atoms making up the solvation group. Note that atoms not
listed play no role in the DMFI for that particular residue. Such a choice is often
motivated by a single moiety dominating the free energy of solvation. The fourth column
lists the reference free energies of solvation as taken from various experimental papers
summarized in Marten et al.;** most prominently the work of Wolfenden®*' for net
neutral peptide model compounds, and Pliego Jr. and Riveros* for ions. Unfortunately,
experimental uncertainties are not provided in those original publications. We treat
model compounds with distinct polar solvation sites and a significant hydrophobic portion
as follows: using the tyrosine sidechain as an example, the difference between the
model compound’s total free energy of solvation and the underlying hydrophobic model
compound (the difference between p-Cresol, -6.1kcal/mol, and toluene, -0.8kcal/mol) is
assigned to the hydrophilic functional group(s) (-5.3kcal/mol) while the value for the

hydrophobic compound (-0.8kcal/mol) is assigned to the hydrophobic part(s). Within
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each subgroup the weight factors for all atoms are uniform. The treatment for isotropic
compounds is much simpler (entry “All” in third column). It must be pointed out that the
sensitivity to these choices is generally small due to the correlation between the
solvation states of the atoms comprising the solvation group. This correlation is also
what justifies dropping atoms from the DMFI calculations entirely. The values for
charged peptide moieties are lowered artificially by ~30kcal/mol and this was the result
of a systematic calibration process (see text).

While the treatment is trivially correct for isolated model compounds, we
postulate a model by which the degree of solvent accessibility in larger molecules
controls the modulation of the DMFI. This modulation is assessed by evaluating
the average solvation state (defined below) for all the atoms comprising the

particular solvation group:
Nsg ) Nsg | ) ) )
W =26, AGyy, = Z{Z A ~o’k]AG;,1v (3-2)
i=i i=i | k=1

In Equation 3-2, Nsg is the number of solvation groups in the system, AG' . is the

Solv
reference free energy of solvation for solvation group i, and »; is the number of
atoms belonging to solvation group i. The A are weight factors (0 <} <1) for the
K™ atom in solvation group i and the v, are the corresponding solvation states for
individual atoms as discussed below. The choices for the atoms comprising the
various solvation groups and their weight factors (1, ) are summarized in Table
3.a and illustrated in Figure 3.1. The A, are uniform over each subgroup listed in

the third column of Table 3.a.
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Calculation of atomic solvation states (02) for the k™ atom in solvation group i

The atoms within a solvation group i can be fully solvated (v =1), fully
desolvated (v, =0), or partially (de)solvated (0<v, <1). The latter two states

are realized when solvation by water is replaced with solvation by different
species. For example, groups buried on the inside of a protein are no longer
solvated by water but by the protein core. In order to compute the solvation state
for an individual atom, we need to assess the interface of solutes with the

surrounding mean-field, i.e., the atomic solvent-accessibilities. These are defined

as n, which are the resulting fractions of free volume around an atom & (in

solvation group i) after subtracting the atomic volumes of other solute atoms from

the maximum accessible volume (¥} .. ), which is defined by the radius of the

mean-field solvation shell (see Figure 3.2):

- \3 - \3
I/vkimax:4_ﬂ: rw+£ - ﬂ
’ 3 2 2

Ngg 1 J 3
e =1.0- ,-1 ZZYH%(%}J

k,max j=1 I=1

(3-3)

Here, r,, is the radius of the solvation shell, d,i denotes to the diameter of atom &

in solvation group i (usually derived from Lennard-Jones parameters, see below),

and vy, is the overlap factor for the solvation shell of atom & with the volume of

atom [:
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partlal
desolvation

Figure 3.2: Schematic illustration of the computation of the solvent accessible
volume fraction for atom % in solvation group i, nj{ . The light gray circle depicts atom

k and the dark gray circle around it its mean-field solvation shell. The medium gray

circles indicate other atoms either too far away to affect the solvation of atom & (left side)
or occupying part of atom ‘s solvation shell and consequently reducing n; according to
Equation 3-3 (right side).

The solvation state, v, , will be defined as a function of n;, (also see Figure 3.3).
As is clear from Equation 3-3, the n, for a given site can be obtained using the

size of the solvation shell (r,) and the hard-sphere radii of other atoms alone.

To define the fully desolvated state we consider the packing of hard

spheres, for which the available space will never be fully used but instead an

interstitial space of ~26% will remain. Therefore, if n, <0.26, then atom % in

solvation group i is assumed to be fully desolvated, i.e., v, =0 (see Panel A in
Figure 3.3). Conversely, atoms in solvation groups are covalently connected to

each other and therefore the upper limit for n; , viz. 0, ... will not be unity. This is

because connected atoms will always diminish the accessible volume. To
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account for this topology-derived deviation, we adjust the determination of the

solvation state of individual atoms to reflect the fact that there is a reduced

maximum n, and define this to correspond to v, =1 (see Panel A in Figure 3.3).

The simplest representation for partially solvated states is shown in Panel

A of Figure 3.3, where v, is a linear function of n, . Instead of a fixed model, one

can generalize the interpolation function to be a stretched sigmoid, which

provides flexibility in describing the physics of partial desolvation:

-1
A —(n,—d
U;‘Z{I'OMEXP[MH d,+d,
d

dl = anll;,max + (1 0 - Xd )njc,min

-1 -1\!
(- (- 34
d, = [1.0+exp{—(m’“‘” dl)ﬂ {1.0+exp( (M dl)]] (3-4)
T4 Ta
) -1
d3=1.0d2~[1.0+exp[MH
Ty

In Equation 3-4, the 1, ;. and n, .. are the minimum and maximum expected

solvent-accessible volume fractions, which are fixed for a given atom. 14 is the

steepness of the stretched sigmoidal function, and y4 is its mid-point relative to

the limits n, ., and n, ..., respectively.
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Figure 3.3: The mapping from the solvent accessible volume fraction 1, to the
solvation state v, . In Panel A, the naive choice v, =m, is shown along with

corrections introduced by the natural bounds of nj{ (see text). In Panel B, the

generalized, sigmoidal interpolation is shown. At 14=0.25 and %4=0.5, the curve is very
similar to the linear case using the same bounds. Shifting x4 to 0.1 and 0.9, respectively,
shifts the mid-point of the transition accordingly but leaves the overall curvature largely
unaffected. Conversely, values of y4=0.5 and 14=0.1 increase curvature and yield a more

step-like transition. See Equation 3-4 for details.

For the functional form in Equation 3-4, linear interpolation is recovered in

the limit of Ty = <, which is true irrespective of the value for y4. Conversely, a

step function at position x4 relative to 1, ., and n, ... is obtained in the limit tq
- 0. One might encounter rare cases where n, falls below n, ;. or exceeds
M - IN SUCh cases, the solvation state is set to be zero or unity, respectively.
Panel B of Figure 3.3 shows how 14 and x4 control the variation of v, as a

function of n, .
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The choice of particular values for t4 and yq4 defines the response of the
system to a physical perturbation in which water molecules either enter or exit
the hydration environment of a solvated site. Unfortunately, there are no
experimental data to help us make the right choices for t4 and ygq, respectively. In
the absence of such guidance, it seems safe to assume that the linear limit is
physically reasonable based on the comparable linearity found for the binding
enthalpy of solute-water clusters as a function of the number of water molecules
in the clusters.*® Additionally, hydration numbers are known to be linearly

correlated with the magnitude of the solvent interface.*

Summary of the DMFI

Polypeptide chains are decomposed into solvation groups which are
analogs of model compounds (see Figure 3.1 and Table 3.a). Similar to EEF1 but
unlike GB and PB models, the polar and non-polar parts of the transfer process
are treated simultaneously using reference free energies of solvation for the
solvation groups. Compared to EEF1, we use a different way to measure solvent
accessibilities which are fed into a generalized, stretched sigmoidal function to
compute solvation states. Finally, we choose model compounds as solvation
groups, which allows us to use experimental data for their free energies of

solvation directly.

All continuum models of solvation have to provide a quantitative
description of partially solvated states. For example, in both GB and PB models,

the definition of the dielectric boundary will influence the estimate of charging
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free energies. In PB, this estimate will be particularly sensitive to the surface

45-47

description of the dielectric boundary in regions with high curvature, whereas

in GB this sensitivity is manifest in the model chosen to calculate the effective

Born radii. 3254852

111.3.4. Treatment of Steric and Dispersive Interactions
We employ the commonly used Lennard-Jones 12/6-potential to describe
both steric repulsions and the weak dispersive attractive interactions:

Uy =422 18 (iJ _L%] (3-5)

i Ty i

In Equation 3-5, r; is the distance between atoms i and j, ¢; are the
pairwise dispersion parameters, and the c; are the pairwise size parameters. f;; is
unity for pairs of atoms separated by at least one rotatable bond and zero
otherwise. The ¢; and o; are obtained from the g; and o; through geometric and
arithmetic combination rules, respectively. The choices for the ¢; and o; are
adaptations from Pauling / Hopfinger's values which were parameterized to
reproduce physical properties of small molecule crystals.>® The choices for the o;;
differ considerably from values used in classical force fields. These differences
are motivated based on the following considerations:

In most classical force fields, physical data for neat liquids, most notably
densities and heats of vaporization, are used to fit LJ parameters for the atom
types occurring in the small molecules comprising the calibration set.>**° By

necessity, however, these parameters will be co-dependent on the set of partial
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charges employed, which immediately questions their transferability, in particular

to a continuum solvation model.> ™

The transferability can be questioned in terms of the size parameters
since the concatenation of small molecules into polymers generates new
torsional degrees of freedom for which the rotational barriers will usually have to
be corrected by applying elaborate torsional potentials. We do not have to
employ these correction terms since the size parameters we employ are
substantially smaller than those in standard force fields. We have shown that a
variant of our LJ parameters gives an accurate account of local steric effects in
polypeptide chains.>® Moreover, the transferability can be questioned in terms of
the interactions strengths because the hydrophobicity with respect to a given
water model will not have been calibrated properly. The appropriate test for the
latter is to computationally determine the transfer free energies for these small
molecules from vacuum into water. Such studies®*® have usually revealed some
systematic flaws in the traditional force fields and have primarily been used to
improve the charge sets employed.®®? Interestingly, it has been noted that it
might be impossible to unify both sets of calibration data, i.e., both neat liquid
data as well as transfer free energies, with a single set of fixed-charge
parameters.’>***®%%2 However, the steric and dispersive parameters are usually
excluded from these improvements. Hence, we use LJ parameters which are
chemically accurate rather than the result of a fitting procedure that requires us to

rely on the assumption of transferability. They are summarized in Table 3.b:
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Atom Type Example ciin A giiin kcal/mol  Valency
Aliphatic or aromatic N (sp?) Amide N 2.70 0.150 3
Aliphatic N (sp®) Amine N 2.70 0.150 4
Non-protonated, aromatic N imidazole N 3.20 0.150 )

(sp?)

Proline N (sp?) Proline N 2.70 0.150 3
O (sp) Carbonyl O 2.70 0.200 1
O (sp?) Alcohol O 3.00 0.150 2
Aliphatic C (sp°) Methyl C 3.30 0.100 4
Aromatic or aliphatic C (sp?) Phenyl C 3.00 0.100 3
Non-polar H Methyl H 2.00 0.025 1
Polar H Alcohol H 2.00 0.025 1
Na* Sodium lon 3.33 0.003 0
Cr Chloride lon 4.42 0.118 0

Table 3.b: Summary of Lennard-Jones parameters. These parameters were used for
most of the results presented in this and subsequent chapters. The first column lists
atom types with hybridization states, the second column provides a chemical example
for every atom type, the third and fourth columns list the actual LJ parameters o; and g;,
and the fifth column gives the valency of each atom type. lon parameters are loosely

based on the Aqvist parameters in the OPLS-AA force field.

111.3.5. Treatment of Polar Interactions
Polar interactions are typically viewed as the primary determinant of

specificity in biomolecular interactions. In almost all classical force fields intended
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to work with explicit water models they are treated by applying Coulomb’s law to

the interactions of a set of carefully determined, fixed point charges.

Short-range electrostatics in the point-charge approximation

A majority of functional groups in polypeptides are polar and net-neutral.
Dipole moments of these functional groups are modeled using point charges.
Therefore, a majority of electrostatic interactions involve groups of point charges
that are net-neutral, and interactions should only be evaluated between those
charge groups. Violation of this rule leads to the computation of spurious charge-
dipole and charge-charge interactions although the charges will be fractional.
This issue arises for atoms which are close due to chain connectivity since
bonded interactions (separated by one (1-2) or two bonds (1-3)) are excluded
from the non-bonded energy calculation. Classical force field development has
addressed this problem through the use of torsional potentials as well as ad hoc

factors to scale interactions between atoms separated by three bonds (1-4).

A recent study has shown that the manipulation of these ad hoc factors
can impact the predictions made by force fields even in simulations using explicit
solvent.® In many implicit solvent calculations, however, the presence of many-
body terms will overemphasize the effects of ill-represented short-range
interactions. To circumvent this problem, we re-formulate the electrostatic model.
We only include interactions between net-neutral groups of point charges, unless
the functional group has a net charge. These groups will collectively be referred

to as charge groups. Consequently, the electrostatic interactions are written as:
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W= > 1, 4x4i s, (3-6)

In Equation 3-6, Ncg is the number of charge groups in the system, n;j is

the number of point charges in charge group i(j), and the ¢, and ¢/ are the

charges on the & and /™ atom in charge groups i and j, respectively. ry is
distance between atoms k£ and [ and s, denotes the net screening factor (see
below). g is the vacuum permittivity, and f; is a factor which assumes a value of
zero if charge groups i and j possess any pair of atoms & and / that are (1-2)- or
(1-3)-bonded to one another. Otherwise, f; assumes a value of unity. The
functional form implies that there can never be any polar interactions within a
charge group. Additionally, interacting charge groups cannot have any pair of
atoms separated by less than a single rotatable bond. This modification has no
major consequences on the majority of the polar interactions because they are

largely non-local.

For a given polypeptide, the number and composition of the charge
groups will depend on the charge set, i.e., the molecular mechanics force field
from which we obtain the charges. Our model is best-suited for charge sets such
as OPLS-AA®>® or GROMOS®> in which charge groups are typically small and
localized. Conversely, charge sets such as AMBER®® or CHARMM® with
significant pre-polarization in the fixed charges seem less well-suited. This is due
to their large charge groups, which would result in the complete elimination of
local polar interactions. We will present results from tests on different charge sets.

As was noted previously, charge sets in classical force fields are co-
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parameterized along with LJ and other parameters, although the extent of co-
parameterization depends on the specific paradigm adopted by a force field.
Consequently, it might seem counterintuitive to treat the LJ and charge
parameters as modular entities. We believe that rigorous co-dependence of
parameters is valid only in the limit of neat liquids or dilute binary mixtures of
small molecules in aqueous solution. Beyond this regime, numerous
approximations and assumptions are required to transfer model compound
parameters for use in simulations of polypeptides. Additionally, the use of similar
parameter sets for simulations with explicit versus implicit solvation models has
been questioned in general.>'® Therefore, we see no a priori reason to maintain
strict adherence to the coupling paradigm adopted by a specific force field.
Instead, we converged on the modular approach of using Pauling-style LJ
parameters and allowing flexibility in the choice of charge sets. For the work in
this and the following chapters we primarily use the OPLS-AA/L®® charge set
because it fits well with our approach for modeling electrostatic interactions (see

Equations 3-6 and 3-9).

Solvent-modulation of Coulombic interactions

The remaining component of the model is the screening of Coulombic
interactions by the continuum dielectric. In PB/GB models, screened Coulombic
interactions are coupled to the polar component of the transfer process. In the
GB formalism,™ the polar contribution to the solvation free energy is written as

follows:
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Here, ¢, is the dielectric constant of water, ¢,; denotes the charges on

(3-7)

atoms i(j), r; is the distance between the two atoms, and the o; and o; are the
generalized Born radii for atoms i and j, respectively. While the sum can formally
be decomposed, the screening process and the polar component of the DMFI

remain coupled through the Born radii as shown below:

i=l j=i+l JGB

G,, (1—-]2 y a2 (1——}2‘] (3-8)

In the cross-term (first term on the right-hand side of Equation 3-8), the Born radii
de-screen polar interactions between buried charges since those will have large
values for the a;.

In ABSINTH, we handle the transfer process separately. Therefore, only
the modulation of solute-solute polar interactions needs to be dealt with at this
stage. In ABSINTH, the solvation states v, replace the Born radii as indicators of

how buried or solvent-accessible the charges are, and the total Coulomb energy

is written as:
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The product of the two square brackets in the first line of Equation 3-9 is the
screening factor, sy, for this interaction (see Equation 3-6). Note that Equation 3-
9 corresponds to the first term in Equation 3-8. In Equation 3-9, there is no term
corresponding to the second one in Equation 3-8 since the polar part of the DMFI

is an integral part of the free energies of solvation (Equation 3-2).
The use of solvation states (u;,v/) in both the Coulombic screening

(Equation 3-9) and the DMFI (Equation 3-2) would allow us to couple these two
processes. However, such models have only two adjustable parameters. Initial
tuning indicated that when the two terms are coupled the free energy of solvation
term dominates and therefore conformations that are maximally solvated are
generally preferred (data not shown). Therefore, we define a second stretched

sigmoid analogous to the one in Equation 3-4 to determine the solvation states,

v, and v/, for use in Equation 3-9. For the second function, the parameters y4

and t4 are replaced with different parameters ys and ts, respectively. If ys=y4 and

1s=14, then the values for v} in Equations 3-2 and 3-9 are identical. The physical

reason for using independent parameters is the different nature of the two

processes described. We cannot assume that the free energy contribution from
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the DMFI responds to changing numbers in water molecules in the hydration
shell in the same way as the dielectric response which leads to screening of
polar interactions. This decoupling is similar to the use of different interfaces in
PB/GB models for non-polar versus polar components, because the dielectric
boundary does not necessarily coincide with the surface definition used to

determine the non-polar contribution to the solvation energy.

To summarize the foregoing discussion, the central difference between
the ABSINTH / EEF1 paradigm and the PB/GB paradigm lies in the treatment of
the solvation process. In the former, the DMFI comprising both polar and non-
polar contributions is considered “in one shot” but the screening of polar
interactions by the continuum dielectric has to be considered separately.
Conversely, in PB/GB models, the polar part of the DMFI and the dielectric
screening are coupled and captured “in one shot”. Here, the non-polar

contributions to the solvation process have to be considered independently.
111.3.6. Miscellaneous

Using specific torsional potentials to restrain pseudo-rigid bonds

By omitting torsional potentials, we prescribe that the majority of rotational
barriers can be captured by excluded volume interactions. However, there are
certain cases where electronic effects lead to strong rotational barriers, and we
handle these separately. The amide bonds along the peptide backbone are
quasi-rigid, and we employ torsional potentials taken directly from the OPLS-AA

force field® to keep the peptide dihedral (®) predominantly in the trans-
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configuration. It has been argued that oscillations of the w-angle mediate crucial
correlations between the surrounding dihedral angles;?® this supports the view
that constraining these degrees of freedom might suppress conformational
flexibility. Similarly, we adopt torsional potentials for the rotation of the polar
hydrogen in the tyrosine sidechain which — against steric preferences - favors an

in-plane arrangement.

The treatment of ionic groups

In principle, the paradigm outlined so far may be applied to solvation and
charge groups carrying a net charge as well, such as mobile counterions or
charged moieties in polypeptides. The solvation properties of ionic groups pose
unique challenges for all continuum electrostatic models.®” There are several
reasons for this but in general one can argue that dipolar and ionic solvation
differ fundamentally from each other, as is evidenced by the large body of

theoretical and experimental work dedicated exclusively to electrolyte solutions.®®

An obvious advantage of the ABSINTH paradigm is that inorganic ions are
represented explicitly. This means that correlations due to finite size are
addressed automatically. In this sense, the model is similar to extensions of PB
theory, which add explicitly represented counterions.®® The LJ and free energy of
solvation parameters used to model these ions in the bulk are listed in Tables 3.b

and 3.a.

Special consideration is required for treating ionic groups that are part of

the polypeptide chain. Free energies of solvation for monovalent, organic or
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inorganic ions typically range from -50 to -100kcal/mol**’® and are an order of
magnitude larger than the values for neutral, small molecules. Nonetheless,
desolvation of charged moieties in polypeptides might be favorable due to
electrostatic interactions of equivalent strength, such as salt bridges. Due to the
large magnitude of the energies, the balance between these two effects is very
sensitive if the same paradigm (Equations 3-2 and 3-9) is used for ionic solvation
as is for dipolar solvation. If the balance tips over to the desolvated side, the
system can become trapped in deep, local minima; either because the mean-field
nature of the model and the finite sampling suppress the necessary fluctuations
to escape from such minima or because they are in fact stable states for the
particular Hamiltonian. Due to recurring problems with desolvated charges (data
not shown), we lowered the values used for the free energies of solvation of
charged peptide moieties substantially (see Table 3.a) while maintaining an
identical paradigm (Equations 3-2 and 3-9) for all solvation groups in the system.
The only other modification vis-a-vis electrostatic interactions between neutral
moieties is that we ignore cutoffs for groups carrying a net charge (in reference to

Equation 3-6).

Computational Efficiency

The model including the DMFI but excluding the screening of polar
interactions is as efficient as gas phase calculations using the same underlying
non-bonded potential functions. This is possible because we compute solvation

states of individual atoms using the same distance information required to
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compute short-range, non-bonded interactions given certain simplifying

assumptions. These assumptions are as follows:
1) We treat all atoms as spheres with a well-defined radius.

2) Spherical envelopes of covalently bound atoms will overlap and hence we use
a pre-computed, pairwise correction term to reduce the volume of such atoms

by subtraction.

3) We use linear approximations to assess all spherical overlaps. These work

reasonably well providing the radii of the spheres are roughly comparable.
4) Overlaps involving three or more spheres are assumed to be negligible.?®

While more complicated expressions could be used,”’ the qualitative nature of

the model and the goal to be as efficient as possible justify the simpler choice.

The screening of polar interactions poses more of a challenge, as effective
three-body interactions become possible, i.e., the Coulomb interaction between
two (partial) charges is in fact a function of the coordinates of other nearby atoms
due to their effect on the solvation state of the two charges. For MC simulations,
this implies that upon a proposed move more energy terms need to be evaluated
than just the ones involving atoms that moved relative to one another. We have
implemented a detailed bookkeeping scheme to track the interactions that
change with different MC move sets. This significantly reduces the overhead
associated with the computation of screened electrostatic interactions. With
these approximations in place, the computational expense for simulations

increases by factors of ~2.0-5.0 with respect to gas-phase calculations.
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ll11.4. Simulation Details

This section will provide the details of the simulation setup for the different
test systems. All simulations were performed using MC sampling (see Table 3.c)
in the canonical ensemble with a spherical droplet boundary condition. The latter
was generally modeled using a stiff harmonic potential (see Equation 4-1). The
peptides were built according to the Engh-Huber high-resolution, crystallographic
geometries,”? and the sampled degrees of freedom encompassed all rotatable
(d,w,x) and some semi-rigid dihedral angles, in particular the peptide m-angle as
well as the y-angle describing the rotation of the polar hydrogen in tyrosine. All

other semi-rigid dihedrals such as those in aromatic rings were held fixed.

NMR Proteins FS Trpzip PolyQ
0% / 0% / 1% 5% 10% 5%
P o,
Rigid Body | 900, 54, (75%, 2.5, | (50%, 2.0A, | (50%, 2.0A, 0%
60°) 25°) 10°) 10°)
0% / 25% /
9% 28.5% 30%
Sidechain 24.8% 14.3%
) (2x, 60%, (3x, 60%, (4x, 60%,
XiXi (2x, 60%, (2x, 60%, 30°)
30°) 30°) 30°)
30°)
90% / 67.5% /
Pivot 65.2% 58.3% 47.9% 37.8%
66.8%
(6.v) (70%, 10°) (70%, 10°) | (70%, 10°) | (70%, 10°)
(70%, 10°)

131



NMR Proteins FS Trpzip PolyQ
10% /7.5% /
Omega 11.5% 6.5% 5.3% 4.2%
7.4%
() (85%, 5°) (90%, 5°) (90%, 5°) (90%, 5°)
(85%, 5°)
Concerted
Rotations:
Four (¢,y) | 0% /0% /0% 4% 16.2% 13.3% 28%
pairs in
concert

Table 3.c: Overview of the details of the move sets employed for individual
systems discussed in the Results section. The first column lists the degrees of freedom
sampled by a particular type of move. Rigid-body moves are always coupled and sample
global rotational and translational degrees of freedom. These moves are especially
important for the simulations of the two proteins, the FS peptide, and “trpzip1”, because
the droplet consists of the polypeptide, neutralizing counterions, and excess salt. The
concerted rotation approach” samples four consecutive sets of backbone ¢, y-angles.
The second through fifth columns give the frequencies (in percent) with which the
specific move type (row element) is picked for each system. “NMR” stands for coupling
constants, “Proteins” refers to the thermal unfolding of two small proteins, “FS” and
“Trpzip” indicate the reversible folding of the FS-peptide and trytophane zipper,
respectively, and “PolyQ” stands for the polymeric properties of polyglutamine. There are
three separate values listed for the coupling constant work, which are for alanine (no y-
angles), net neutral dipeptides, and net charged dipeptides, respectively. Additional
information is given in parentheses, indicating what portion of the moves of a certain

type consists of stepwise perturbations of the respective degree(s) of freedom, along
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with the maximum step size. The remaining fraction consisted of moves fully
randomizing the respective degree(s) of freedom. In addition, due to their low
computational complexity, sidechain moves consist of multiple identical cycles indicated

by the first entry in parentheses.

We used spherical cutoffs of 12.0A for Coulomb interactions between net-
neutral charge groups. No cutoffs were used for interactions involving ionic

groups. Cutoffs for the short-range interactions were chosen to ensure maximum

accuracy for the computation of the n; and ranged from 9.0-10.5A for the

different simulations. For the results presented here, we used the values shown

in Table 3.d for gy, ry, Ts, %s T4, @nd yq, respectively.

Iy in A ‘ Td ‘ Xd ‘ Ts ‘ s ‘ Ew

Table 3.d: Parameters of the continuum solvation model, which are used in all

ABSINTH calculations presented in this thesis.

We explore different LJ parameters and charge sets in our studies of NMR
coupling constants. For all other calculations we choose the OPLS-AA/L
charges® in conjunction with the LJ parameters shown in Table 3.b. The
software used was our in-house MC package (CAMPARI)"* developed alongside

the continuum model presented here.

NMR Coupling Constants
All twenty naturally occurring amino acids except glycine and proline were

modeled as dipeptides (Acetyl-X-N-Methylamide) in a droplet of 125.0A radius
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along with a neutralizing counterion (Na* or CI') when appropriate. The simulation
temperature was 298K and a total number of 2x10° MC moves were attempted,
while statistics for the coupling constants were accumulated every ten steps. For
details of the move set employed, see Table 3.c. For an individual conformation,
the coupling constant between the hydrogen atoms at the N- and the C,-position

was calculated using the Karplus relation:"
‘J(HyH,)=a-cos® ¢'~b-cosd'+c (3-10)

Here, ¢' is the effective dihedral angle between the two hydrogen atoms of
interest, and is directly proportional to the backbone angle ¢. For the empirical
parameters a, b, and ¢, we use the same strategy as Avbelj and Baldwin in their
work on the coil library,”® i.e., we averaged over four independently obtained sets

of these parameters.

Thermal Unfolding of two Small Proteins

The B1 domain of protein G (PDB accession code: 1GB1) and the
engrailed homeodomain (PDB accession code: 1ENH) were, after a brief
minimization and relaxation to the Engh-Huber geometry, used as starting
structures for simulations in a droplet of 75.0A radius. To reduce the complexity
of the calculation while maintaining a somewhat realistic electrolyte environment,
the protein was simulated in the presence of neutralizing counterions (the net

charges of the proteins are -4 and +7, respectively) and a low-salt background of
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either ~9mM NaCl (1GB1) or ~13mM NaCl (1ENH). The simulations were
carried out at evenly spaced temperatures from 260K to 440K and consisted of
2.5x10” MC steps the first 10’ of which were discarded as equilibration. For
calculating the RMSD values, structures were saved every 10° steps, while
polymeric quantities were averaged every 100 steps. Details of the move sets for

all simulations are summarized in Table 3.c.

Reversible Folding / Unfolding of a Helical Peptide

The FS-peptide (Acetyl-As(AAARA);-N-Methylamide) was simulated in a
droplet of 45.0A radius in the presence of neutralizing counterions (the net
charge of the peptide is +3) as well as a low-salt background of ~15mM NaCl.
The simulations were carried out at evenly spaced temperatures from 260K to
440K and used either a perfect a-helix (unfolding runs) or random extended
conformations (folding runs) as their starting conformations. For details of the
move set employed, see Table 3.c.

The data were analyzed according to Lifson-Roig (LR) theory for helix-coll
transitions.”” The a-basin in d,y-space was defined as a roughly spherical area
around the ideal a-helix geometry with a radius of ~30° largely in agreement with
previous work by others.”®”® Statistics of the backbone angles ¢ and y were
recorded every ten steps and the distribution of segments with one or more
consecutive residues in a-helical conformation was obtained. From this, the LR
nucleation and propagation parameters are accessible through a fitting

procedure:”®*°
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(3-11)

Here, <N,> and <N,> describe the average number of helical hydrogen
bonds and number of helical segments of at least two residues in length,
respectively. Z is the partition function in the LR theory and is written in matrix
form using the statistical weight matrix M. The latter contains the helix
propagation parameter w and the helix-nucleation parameter v, both of which are
fit by matching the expected number of helical segments and hydrogen bonds to
the computational data using segment statistics. The symbol v, refers to v in the
first row and second column of M, i.e., the partial derivative is with respect to that

element alone.

Reversible “Folding / Unfolding” of a f-Hairpin Peptide
The peptide SWTWEGNKWTWK-NH, was simulated in a droplet of 45.0A
radius in the presence of neutralizing counterions (in accordance with

t,%! the N-terminus is modeled as charged bringing the net charge of

experimen
the peptide to +2) as well as a low-salt background of ~20mM NaCl. The starting
structure for the unfolding runs was the NMR structure (Model 1 in 1LEO), which
was used after a brief minimization to conform it to the Engh-Huber geometries,

and for the folding runs we employed random extended conformations. The

136



simulations were carried out at evenly spaced temperatures from 260K to 440K
and comprised of 4x10” MC steps with 2.5x10” steps of equilibration. For details

of the move set employed, see Table 3.c.

The data were analyzed by computing various orders parameters for 10*
snapshots for each individual simulation. The RMSD was computed for all heavy
backbone atoms excluding the N-terminal serine and the C-terminal amide group.
The radius of gyration of the hydrophobic cluster was calculated by taking into
account the atoms of the four tryptophan sidechains. An average strand-to-strand
distance was defined by computing the average distance between heavy
backbone atoms (N, C,, and C) on one strand and their properly aligned
counterparts on the other strand assuming a perfectly symmetrical hairpin. This
includes for example atom pairs Glu5:N / Lys8:C or Thr3:C, / Thr10:C,. The
order parameter L was obtained from Snow et al.,*> and represents the sum of
native hydrogen bond distances as well as CD2-CD2 distances for tryptophan
sidechains found in contact in the NMR ensemble. Finally, hydrogen bonds were
counted if the distance between donor nitrogen and acceptor oxygen atoms on

opposite strands was less than 4.0A.

Polymeric Behavior of Polyglutamine

Acetyl-(GIn),-N-Methylamide was modeled and simulated for chain
lengths of N=20, 24, 27, 33, 36, 40, 47, i.e., for chain lengths mostly in
accordance with a recent fluorescence correlation spectroscopy (FCS) study.®

The simulation system in each case was a droplet with a fixed radius of 130.5A,
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large enough to accommodate fully extended chains. This eliminates all potential
boundary artifacts. The simulation temperature was 298K and a total number of
(N/2)x10° MC moves were attempted for each of the four independent replicas
for each chain length (V). The details of the move set are summarized in Table

3.c.
l11.5. Calibration of the ABSINTH Model

In this paragraph, we summarize a few of the major steps involved in
advancing the model to its current state. The basic paradigm of the model used
to describe the DMFI of the solutes with the continuum has provided the
relatively rigid framework within which all further development was carried out.
Using the “traditional” model — including (1-4)-scaling — for the treatment of short-
range electrostatic interactions tended to generate unreasonable results for the
conformational preferences of dipeptides, which caused us to design the
modified model presented above. We also found that for solutions of small

molecules we encountered a lack of favorable intermolecular interactions when
using a linear mapping from n, to v, with the same parameters employed for
both the DMFI and the screening of Coulombic interactions. The introduction of
both the generalized sigmoidal interpolation function (see Equation 3-4) and the
de-coupling of the interpolation parameters y and t for the two different aspects
of solvation helped eliminate this deficiency with respect to calibration results
obtained in explicit solvent. At this juncture, several test simulations on a variety

of systems including short peptides, solutions of small model compounds, and
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the stabilities of small proteins indicated that the model reproduced expected
data reasonably well (based on comparison to data from all-atom molecular
dynamics (MD) simulations or to expectation derived from experimental
evidence). The remainder of the development then focused on testing various
parameter sets for the ¢;, o;, and partial charges and on the optimization of the

solvation parameters s, s, T4, and ygq.

Work on longer peptides, which show reversible folding, remained largely
unsuccessful, until the crucial modification of increasing the size of the solvation
shell radius, r,, from the original value of 2.8A to 5.0A. In retrospect, the larger
value for ry is in accord with locations of first hydration shell water molecules
around most of the solvation groups used in this work (calibration data not
shown). Thereafter, the testing continued by re-assessing the choices for all the
parameters, including charge sets and LJ parameters, in the context of results for
the reversible folding of a-helix- and B-hairpin-forming peptides. These studies
were complemented by continuing work on assessing local steric preferences for
peptides (through quantitative comparison of NMR coupling constants) and
through work on intrinsically disordered polypeptides, such as polyglutamine.

The preceding summary neglects many of the choices explored during the
development phase. We wish to remind the reader that — due to computational
infeasibility — we did not perform a systematic search of the entire parameter
space, specifically for combinations of r,, T, %s, T¢, and yq4. Additionally, we have

not been exhaustive in calibrating the model on a large number of systems.
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Consequently, the true efficacy of the model can only be adjudicated upon
following large-scale calibration exercises, which will require significant

investment of computational resources. This is part of ongoing work.

I11.6. Results

We present results on several different test systems to assess the validity

of the ABSINTH model. These are as follows:

1) NMR coupling constants for dipeptides and comparative analysis of alanine

dipeptide
2) The thermal unfolding of two small, stable proteins (1GB1 and 1ENH)
3) The reversible folding / unfolding of the FS-peptide
4) The reversible “folding / unfolding” of the tryptophan zipper “trpzip1”

5) The polymeric behavior of the intrinsically disordered polyglutamine peptides

as a function of chain length

Briefly, we use NMR coupling constants to motivate our final choice of LJ
parameters. To justify our decision to ignore torsional potentials for a majority of
rotatable bonds, we present a comparative analysis of the conformational
equilibria of alanine dipeptide to published simulation results. We use the thermal
unfolding of the two proteins to show that fully folded proteins with differing folds
are stable states for the Hamiltonian presented here and that they exhibit
authentic, cooperative unfolding in response to thermal denaturation. We

demonstrate the ability to simulate reversible melting using the a-helical FS-
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peptide which has been a popular model system for computer simulation. For the
tryptophan zipper, we present results indicating that the system reversibly adopts
a native-like mean topology at low temperature but that the ABSINTH
Hamiltonian fails to predict the specific NMR-determined structure as a stable
minimum. Finally, we show that the Hamiltonian provides an accurate description
of conformational equilibria for intrinsically disordered polypeptides such as
polyglutamine. All of the test systems attempt to make direct contact to
experimentally obtained results and strive to define analytic measures most

closely related to the experimental measurements.

For a Hamiltonian designed to study IDPs, it is insufficient to present
calibration data on the stability of folded proteins or on the accurately reproduced
experimental numbers for somewhat unrelated calibration systems such as small
model compounds. For simulating self-assembly, it is crucial to describe both the
generic polymer character of these macromolecules as well as the stability of the
structural preferences they might exhibit. In this light, it seems “safer” to
underpredict the latter rather than to follow the approach taken by standard force
fields, which commonly overpredict structural preferences, as they are designed
to primarily simulate the folded ensembles of polypeptides (see I11.2). This is
achieved partially through a local pre-organization of the backbone as is

demonstrated in the next section.
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I11.6.1 NMR Coupling Constants and Conformational Equilibria for Alanine
Dipeptide

Vicinal, 3J(Ha,HN), proton-proton coupling constants report primarily on
the ¢-angle of the polypeptide backbone. The relationship between the measured
coupling constants and ¢ is expressed via the Karplus equation”® shown in
Equation 3-10. This equation has been parameterized repeatedly to provide
better predictive power for structure determination using the 2J(H,,Hn). It should
be pointed out, however, that their extraction from simulation data is non-trivial, in
particular in the presence of large conformational fluctuations.®® This fundamental
inability to connect simulation results to experimental readouts provides a
potential explanation for some of the discrepancies encountered below. This is
particularly true for the systems studied here, i.e., extremely short peptides which
will quickly switch from one conformational state to the other. In our analysis, we
assume that each snapshot is an independent, “zero-motion” member of the

NMR ensemble.

Figure 3.4 shows results using the ABSINTH model coupled to charge and
LJ parameters from three common force fields while ignoring all other terms
inherent to these force fields, i.e., torsional potentials. Coupling constants
obtained from simulation are plotted against the experimental values for
dipeptides at pH 4.9%* along with values obtained through coil library fits for all
common amino acids with the exception of glycine and proline. Aspartate,
glutamate, lysine, and arginine were modeled in their charged states, while

histidine was modeled in its neutral state:
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Figure 3.4 NMR 3J(H,N.) coupling constants obtained using ABSINTH’s
continuum solvation model coupled to standard force field parameters. Panel A
shows the correlation between values measured by Avbelj et al. to the coil library as well
as ABSINTH/OPLS-AA/L. Panels B and C show analogous plots for
ABSINTH/GROMOS and ABSINTH/AMBER, respectively. Finally, Panel D shows a
comparison of the values obtained with ABSINTH/OPLS-AA/L to the other two
computational models as well as the coil library. Alanine is indicated in all plots as the

most drastic outlier.

Panel A of Figure 4 shows that the values obtained for the OPLS-AA/L
force field (circles) are insensitive to the type of sidechain, and that they are
generally too large when compared to the direct measurements. Alanine is the

most drastic outlier as indicated on the plot but the agreement is generally poor.
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The values obtained from the coil library fits’® show better agreement with
experiment, although the slope of the correlation is less than unity for both
comparisons implying larger similarity between simulated values and coil library
fits compared to simulation and (direct) experiment. This suggests that the
application of the Karplus equation to extract coupling constants inherently gives
rise to some similarity but might always deviate somewhat from direct

measurements of the 2J(Hy,Hn).

The situation for the AMBER-99 force field is almost identical (Panel C)
even though the values for the coupling constants are slightly larger and hence
further away from the measured values. Finally, the GROMOS53a6 force field
(Panel B) is unable to generate reasonable coupling constants because aliphatic
hydrogen atoms - including the peptide a-hydrogen - are not actually steric
interaction sites. This removes an important barrier for the ¢-angle, normally
separating the B- and polyproline Il basins, and leads to vastly overestimated
coupling constants. A comparison of these force fields to one another and to the
coil library (Panel D) illustrates the small range of coupling constants obtained
using LJ parameters for standard force fields. This finding disagrees qualitatively
with the predictions made based on coil libraries. We find excellent agreement
between calculations based on parameters using the OPLS-AA/L and AMBER

force fields, and this is noteworthy given the differences in the parameters.

Excluded volume interactions based on standard force field parameters

(OPLS-AA/L, AMBER, and GROMOS) lead to severe restrictions in (¢,y)-space.
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This was inferred from visual inspection of Ramachandran maps (data not
shown) and we concluded that LJ parameters from these standard force fields
are not well suited for use with the ABSINTH model. This conclusion is justified
based on the observations that: i) all coupling constants are too large and ii)

there is little to no sensitivity with sidechain type.
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Figure 3.5: NMR 3J(H,N.) coupling constants obtained using ABSINTH’s
continuum solvation model coupled to modified LJ parameters and standard
partial charge sets. Panels A, B, and C show the comparison of experimental values to
the coil library values as well as the simulated results for the OPLS-AA/L (A), the
GROMOS (B), and the AMBER (C) charges, respectively. Panel D shows a comparison

between the values obtained with OPLS-AA/L to the other computational as well as the

coil library data. Drastic outliers are indicated on the plots.
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Figure 3.5 shows that we are able to remedy the deviation between the
different parameter sets, irrespective of charge set used, by using a consistent LJ
parameter set which is detailed in Table 3.b. These parameters are based on
atomic radii in small molecule crystals®® and on generic choices for the
interaction strengths, intended to mimic values used in standard force
fields.5**5%% As is apparent, these parameters coupled to any of the three charge
sets (Panels A, B, and C) provide better agreement and a larger sensitivity with
respect to residue type. Prominent outliers with respect to the experimental
values are alanine, aspartic acid, and histidine. Similarly, outliers with respect to
the coil library are alanine, threonine, and aspartic acid, which are indicated in
Panel D. Panel D also shows that we observe extremely good agreement for
coupling constant values using charge sets from independent force fields.

Within the continuum solvation model adopted in ABSINTH, steric
interactions dominate the preferences for the ¢-angle. Therefore, we are able to
remedy deviations in local steric preferences by using a different, consistent set
of LJ parameters with all three charge-sets and the hallmark of these LJ
parameters are the smaller values for hard sphere radii. The only consistent and
drastic outlier is alanine for which we currently have no convincing explanation.
The extremely low coupling constant seen experimentally suggests dominant
population of the polyproline II- and a-basins, much more so than for any other
residue type. Such a strong preference is inconsistent with the broadness of
distributions in ¢/\y-space we generally observe in our simulations. Most other

outliers involve charged residues for which there typically is more variation in
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experiments as well, such as a significant dependence on pH,* which is difficult
to represent in our continuum model. We also simulated capped pentapeptides
with the sequence construct (Gly),-Xaa-(Gly), for which there are experimental
data under denaturing conditions.2®> Coupling constants are known to be
insensitive to the presence of denaturant;®® hence we simulated these
pentapeptides using the ABSINTH continuum solvation model. The calculated
coupling constants obtained for residue Xaa in the context of flanking glycine
residues are similar to those obtained for dipeptides (data not shown). This
corroborates our conclusion that the LJ parameters are crucial for determining
short-range structural preferences, which contribute to the measured values for

vicinal coupling constants.

One could argue that the above result is due to the general absence of
torsional parameters in ABSINTH, although there are exceptions as described in
[11.3.6. These parameters describe barriers and staggered conformations for
rotations about bonds within polypeptides and one might question the validity of
their omission. It has been noted that improvements in torsional parameters are
crucial for quantitatively accurate descriptions of conformational equilibria for
polypeptides.65 To test our approach, we calculated conformational populations
for alanine dipeptide and compared our results to those obtained by Hu et al.®
These authors analyzed conformational equilibria for glycine and alanine
dipeptides using a hybrid quantum mechanics / molecular mechanics (QM/MM)

approach. They modeled intra-peptide interactions using the self-consistent

charge density functional tight binding (SCC-DFTB) method, whereas peptide-
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solvent and solvent-solvent interactions were described using standard molecular
mechanics models. They compared their results to those obtained using a range
of molecular mechanics force fields with explicit solvent. None of these agreed
with the conformational distributions calculated using the QM/MM approach.
They also noted that conformational distributions calculated with different

molecular mechanics force fields did not agree with each other.

Table 3.e shows conformational populations for alanine dipeptide,
calculated using ABSINTH that are compared to those obtained by Hu et al. from
their QM/MM calculations as well as their molecular mechanics calculations
using different force fields:

Qv/MM  QM/MM  AMBER CHA. CEDAR OPLS ABS.

B 0.48 0.48 0.16 0.50 0.71 0.69 0.50
Pass 0.16 0.14 0.00 0.00 0.00 0.06 0.09
o-R 0.27 0.33 0.84 0.50 0.22 0.25 0.39
o-L 0.07 0.03 0.00 0.00 0.05 0.00 0.01

State 4 0.01 0.01 0.00 0.00 0.02 0.00 0.01
RMSD, 0.00 0.08 0.68 0.29 0.29 0.24 0.15
MaxD, 0.00 0.06 0.57 0.23 0.23 0.21 0.12
RMSD,, 0.08 0.00 0.62 0.22 0.29 0.24 0.08
MaxD,, 0.06 0.00 0.51 0.17 0.23 0.21 0.06

Table 3.e: Comparative analysis of conformational statistics for alanine dipeptide.
Data for conformational statistics shown in columns 2-6 are taken from Tables | and Il in
the work of Hu et al.®® They are SCC-DFTB with AMBER, SCC-DFTB with CHARMM 22,

AMBER, CHARMM 22 (CHA.), and CEDAR. Values for conformational statistics for
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OPLS were computed using molecular dynamics simulations. In these simulations, we
used parameters from the OPLS-AA/L force field for the peptide and the TIP3P model
for water molecules. The simulations were carried out with a single alanine dipeptide in a
cubic box of side 25A. The Berendsen thermostat (T=298K; coupling constant 0.1ps)
and manostat®” (P=1bar; coupling constant, 1ps) were used to simulate the peptide in
water in the isothermal-isobaric ensemble. The SETTLE algorithm was used to constrain
bond lengths and bond angles for the water molecules, whereas the LINCS method was
used to constrain all bond lengths in the peptide. A time step of 2.0fs was used and the
equations of motion were integrated using the leapfrog method as implemented in the
GROMACS package. A 10A spherical cutoff was used for both LJ and electrostatic
interactions. Neighbor lists were updated once every five time steps and a reaction field
with a bulk dielectric constant of 80 was used as a method to introduce corrections due
to long-range electrostatic interactions. Data shown in the table are averages over 40
independent simulations, each of length 30ns. Values for conformational statistics for the
ABSINTH model were obtained using MMC simulations. Details of the move sets used
are shown in Table 3.c. RMSD, is the root-mean-square deviation between statistics
shown in columns 2-8 (for the five conformational states) and the statistics shown in
column 2 (SCC-DFTB with AMBER). MaxD, is the unsigned maximal deviation between
statistics shown in columns 2-8 and the statistics shown in column 2. Conversely,
RMSD,, is the root-mean-square deviation between statistics shown in columns 2-8 and
the statistics shown in column 3 (SCC-DFTB with CHARMM 22) and MaxD, is the
unsigned maximal deviation between statistics shown in columns 2-8 and the statistics

shown in column 3.

Hu et al. reported two sets of QM/MM data that were consistent with each

other (SCC-DFTB with either AMBER or CHARMM 22). The two calculations
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differed in the choice of LJ parameters used to describe the peptide for modeling
peptide-solvent interactions. The QM/MM calculations did not include any
empirical torsional potentials because all intra-peptide interactions were

described using quantum mechanics:

The results shown in Table 3.e are very encouraging for our approach.
When we compare the statistics for specific conformational intervals, it becomes
clear that the results obtained using the ABSINTH force field show the best
agreement with the QM/MM data. This point is also emphasized when we
compare pairwise root mean square deviations between data obtained using
different force fields and those obtained using QM/MM. Hu et al. also showed
that their QM/MM data (and by extension the ABSINTH data) are in good
agreement with statistics obtained from the distributions of ¢,y-angles in the

protein data bank.%®

The good agreement between QM/MM data and ABSINTH is very
important because it suggests that the description of backbone conformational
equilibria using ABSINTH is reasonable. The energy landscape obtained using
QM/MM and ABSINTH for alanine dipeptide is in general flatter than what one
obtains with the other force fields. It appears that the combination of LJ
parameters and stiff torsional potentials in molecular mechanics force fields
makes them too restrictive. This in turn might pose challenges for accurate
modeling of conformational heterogeneity in IDPs because of significant pre-
organization at the level of an individual residue. Given our interest in IDPs as

opposed to structure prediction, we propose that the ABSINTH approach might
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be a more reasonable alternative for simulating conformational heterogeneity that

is characteristic of IDPs.

111.6.2. Thermal Unfolding of two Small Proteins

The 56-residue B1 domain of streptococcal protein G is stable as an
isolated construct and characterized by a well-defined o/pB-fold and unusually
high thermal stability. Its structure has been determined by NMR®® and the
maximum melting temperature was found to be 87°C at a pH of 5.4.% The exact
melting temperature is strongly pH- and salt-dependent: the stability is expected
to be significantly reduced at neutral pH based on a recent, systematic study on

a structure-preserving mutant.®’

The B1 domain has been studied extensively by
computational methods as well.”** Its o/B-fold, its initial characterization as a
prototypical two-state folder, and its outstanding stability suggest that this domain

is a useful test case for testing new models.

Ideally, the reversible folding of the B1 domain would be demonstrated by
simulating the system from two different initial conditions (randomized vs. folded)
over a wide range of temperatures. However, the entire domain folds on the ms-
timescale, which is a regime that remains inaccessible to unbiased simulation
techniques. Here, we show results of MC simulations of the thermal unfolding of
the B1 domain when starting from the folded structure (PDB: 1GB1). At low
simulation temperatures, we expect the fold to remain stable, while at high
temperatures, we expect full denaturation. The unfolding transition is known to be

cooperative; another feature expected to be prominent in plots of folding
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measures against temperature. A study of thermal unfolding allows us to test two
aspects of our model: first, we can assess if the folded species is a stable
minimum for a given Hamiltonian. Second, we assess if the protein shows a
cooperative transition between folded and unfolded states, in accord with
experimental observations and irrespective of the measure used to assess
conformational stability. The second point is rarely addressed in simulation
studies since the primary interest often lies in the folded species. To describe
phenomena such as folding, assembly, or disorder, however, it is crucial that the

folded state is not over-stabilized.

Figure 3.6 shows three different folding measures for the B1 domain of
protein G as a function of temperature, the first two of which are based on the
root mean square deviation (RMSD) from the PDB structure after superposition,
using different subsets of the protein. The third is the radius of gyration (R,) of the
molecule, a quantity used to describe its overall size, i.e., to monitor chain
collapse / swelling. Both RMSD measures probe secondary and tertiary structure
simultaneously. The thermal stability of the B1 domain has mostly been studied
using differential scanning calorimetry and circular dichroism (CD)
measurements which have been shown to agree well in general.®*®" The overall
RMSD hence seems like a good candidate to unite the local and global features
measured experimentally. Conversely, the R, measure can only probe overall

size and is shown to illustrate the polymeric behavior for this system.
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Figure 3.6: Unfolding measures for the B1 domain of protein G as a function of
simulation temperature. Panel A shows two raw values for the RMSD to the PDB
structure: i) for all heavy backbone atoms excluding the terminal residues; and ii) for just
the heavy backbone atoms in the helical portion of the protein. It also shows the radius
of gyration. The RMSD is based on structural alignments using only the corresponding
residues as alignment criteria. Panel B shows values for all three measures normalized
to their end points at 260K (0.0, fully folded) as well as 440K (1.0, fully unfolded). Error

bars are obtained through block averaging using a block size of 5x10° MC steps.

As can be seen in Figure 3.6, all three measures report a cooperative and
well-defined unfolding transition with well-defined baselines below 320K and
above 380K. Interestingly, when normalized (Panel B), the two RMSD curves
coincide almost perfectly indicating that the overall a.,B-fold unfolds cooperatively
rather than exhibiting disparate stability of the helical and B-sheet parts of the
structure. Conversely, the R,-transition is shifted to slightly higher temperatures
indicating that secondary structure melts out partially while the chain remains

collapsed. Overall, however, swelling and unfolding are roughly concomitant.
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This observation, agrees with the apparent two-state folding behavior reported
for this protein.®*®" More importantly, the melting temperature in the model can
be estimated to be around 340K (65-70°C), which is in good agreement with
experiment when realizing that the cited 87°C°°! are obtained under conditions
of maximum stability. The value also coincides well with the number given at low

salt and neutral pH for the aforementioned mutant.®’

To further corroborate that folded proteins are stable minima and show
reasonable temperature dependence we chose to study the engrailed
homeodomain from Drosophila whose structure was solved to 2.1A resolution by
X-ray crystallography (PDB: 1ENH).*° It is a three-helix bundle protein which
undergoes thermal melting with a midpoint of about 45°C as monitored by
CD.%>% |t serves as a good, complementary test case for the following reasons.
First, it is among the fastest folders known to date,97 which has enabled
computer simulations to study the unfolding of this protein directly using MD in
explicit solvent on a realistic timescale.®®*” Second, it has been described as a

difficult and hence a good test case for continuum solvation models.*

Panel A of Figure 3.7 shows four different unfolding measures which are
all based on the RMSD from the PDB structure. If all the proteins heavy
backbone atoms are aligned and the RMSD is computed, one obtains a melting
curve with a very well-defined upper baseline but a relatively high RMSD of about
3.5A at low temperature, which continuously grows with increasing temperature.
In contrast, if one uses the three helices independently to do the alignment and

RMSD computation, helices A and B yield highly cooperative and well-defined
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melting transitions with a mid-point of about 330K, while helix C yields a more
gradual transition resembling that of the whole protein but shifted to slightly
higher temperatures. In Panel B of Figure 3.7 all four unfolding measures are
presented in normalized fashion assuming the baseline at low temperature is
reasonably flat. As can be seen all measures taken together report on a broad

transition region of 300-350K in agreement with experimental data.
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Figure 3.7: Unfolding measures for the engrailed homeodomain as a function of
simulation temperature. Panel A shows four raw values for the RMSD to the PDB
structure which are based on all heavy backbone atoms excluding terminal residues as
well as based on the heavy backbone atoms for the three helices individually. Using the
PDB-numbering (1ENH), the helices were defined as residues 11 to 25 (A), residues 29
to 41 (B), and as residues 43 to 57 (C). Likewise to Figure 3.6, the RMSD is based on
structural alignments using only the corresponding residues as alignment criteria. Panel
B shows values for the four measures normalized to their end points at 260K (0.0, fully
folded) as well as 440K (1.0, fully unfolded). Error bars are obtained through block

averaging using a block size of 5x10° MC steps.
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We can interpret the data as follows. Unlike for the B1 domain of protein G,
the tertiary contacts for the engrailed homeodomain are weak and have
substantial residual entropy even at low temperatures. In other words, the
relative arrangement of the three helices is not very tightly constrained. With
increasing temperatures, tertiary contacts are lost completely but alternative
collapsed states with intact helices are visited transiently. This leads to
intermediate values for the total RMSD and to large error bars in the transition
region. Finally, at high temperature the chain expands fully, and the helices
become unstable and melt. This picture obtained from the simulations is
consistent with the conclusion from both experiments and computation that the
folding of the engrailed homeodomain can be explained using the diffusion-
collision model®”*® in which quasi-stable secondary structure elements “dock” to
result in the folded tertiary structure. It is also consistent with the view that the
system seems to be much less of a two-state system compared to the B1 domain
of protein G and that helix-rich intermediates are populated along the
folding/unfolding pathway.®” Finally, our results somewhat contradict previous
simulation work® in that we do not find the helices to be significantly populated at
high temperatures. It should be noted, however, that the RMSD measure
employed here fails to report on small but significant populations of the helical
state which we certainly observe for helices A and C, but not for helix B (data not

shown), which is in agreement with the literature.®®

Regarding the reasonable agreement of T,-values we find with the

experimental literature, it must be pointed out that it is well known that simulation
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temperatures do not correspond to actual temperatures, because the phase
behavior of the solvent is not captured by the continuum. In fact, the proper way
to realize temperature dependence in ABSINTH would be to capture the thermal
behavior of all the underlying parameters including the reference free energies of
solvation (decomposed into entropies and enthalpies), the continuum dielectric,
and of course all atomistic parameters. The point here is not to provide
quantitative agreement between melting temperatures but to show that the model

does not drastically over-stabilize the folded state.

111.6.3. Reversible Folding / Unfolding of the a-Helical FS-Peptide

The 21-residue FS-peptide (Acetyl-As|[AAARA]3;-N-Methylamide) is a
member of a class of extremely simple polypeptide systems which undergo a
folding transition in aqueous solution. Its melting temperature is estimated to be
ca. 305K, i.e., the folded form is expected to be substantially populated at room
temperature.'®'%? The a-helical nature of these peptides in the folded form has
been established primarily through CD measurements and other spectroscopic

techniques.

The FS-peptide is simple and allows us to simulate reversible folding /
unfolding transitions as a function of temperature. Additionally, there have been
several computational studies on the FS-peptide.®’®"® These studies show that
the helical form is over-stabilized in simulations with standard force fields, and
that ad hoc modifications such as the scaling of short-range interactions and the

modulation of torsional potentials improve agreement with experimental data.®™®
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It is worth reiterating that the ABSINTH model does not employ ad hoc scaling
parameters; nor does it include torsional potentials.

In Figure 3.8, we present the results from 20 independent simulations. For
each of the ten temperature values there is both an unfolding simulation starting
from the canonical a-helix and a folding simulation starting from a random,

extended conformation:
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Figure 3.8: Temperature-induced melting of the FS-peptide. The temperature-
dependence of the fractional helical content (Panel A), the mean number of helical
hydrogen bonds (Panel B), and the mean number of helical segments of at least two
residues in length (Panel C) are plotted. The folding and unfolding simulations are
shown as solid and dashed lines, respectively. The dotted line in Panel A indicates a

fractional helicity of 50%, which is used to roughly estimate the melting temperature.
Panel A in Figure 3.8 shows the fractional a-helical content computed
according to LR theory. A distinct and cooperative transition is found for both sets
of temperature-dependent simulations. We observe virtually no hysteresis
between the unfolding and refolding arms indicating that sampling is exhaustive.

From the transition region, the melting temperature can be seen to be ~330K,
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which is higher than the value of ~305K obtained from experimental studies.
However, as Table 3.f shows, the disagreement is smaller vis-a-vis previous
computational studies using variants of the AMBER force field with either explicit
solvent or a GB/SA continuum solvent description.”® Panels B and C show how
<N,> and <N;> vary as a function of temperature (see Equation 3-11). The data
indicate that the dominant species at low temperatures is a single, straight o-
helix, an observation confirmed by visual inspection of the trajectories (data not
shown). The data around 300K are very similar to observations made by
)78

Nymeyer and Garcia (see Figures 1 and 2 in their work)™~ using their modified

version of AMBER in either explicit or implicit solvent.

Method ThinK v (T in K) w
Experiment ~305 0.036 (273) ~1.3
AMBER-94 393 /- 0.27 (300) / 0.36 (305) 2.12/1.67
AMBER-GS 342/ - 0.13 (300) / 0.70 (305) 1.67/3.70

AMBER-94 / GB/SA 380 0.79 (300) 2.20
AMBER-GS / GB/SA 431 1.57 (300) 4.03
AMBER-99 - 0.06 (305) 0.70
AMBER-99¢ - 0.26 (305) 1.26
AMBER-94 -SQ - 0.28 (305) 1.28
ABSINTH ~330 ~0.5 (300) ~1.9

Table 3.f: Comparative analysis of parameters of the helix-coil transition for the
FS-peptide. AMBER-94 is the full Cornell et al. force field®® while AMBER-GS is the
modification introduced by Garcia and Sanbonmatsu.’®® AMBER-99'% is a more recent

version known for disfavoring a-helices while AMBER-99¢ is the correction introduced
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by Sorin and Pande.” Finally, AMBER-94-SQ is a further modification introduced by
Sorin and Pande shown to illustrate their more extensive study on the impact of non-
covalent term scaling.® The second column shows the melting temperatures in Kelvin,
the third and fourth columns the LR parameters at 300K or 305K, respectively. Two
different datasets are shown for AMBER-94 and AMBER-GS which come from

Garcia’s’® and Pande’s’®

groups, respectively.

Figure 9 shows the LR nucleation and propagation parameters as a
function of temperature in Panels A and B. These quantities have been estimated
via Equation 3-11 (see lll.4) and describe the propensities to populate the a-

helical basin in the absence of hydrogen bond stabilization and to extend existing

helix nuclei through hydrogen bond-stabilized growth.
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Figure 3.9: The temperature-dependence of the Lifson-Roig (LR) nucleation (Panel
A) and propagation (Panel B) parameters shown analogously to Figure 3.8. Dotted
lines indicate a temperature of 300K. The thick dashed line in Panel A is the
experimentally determined temperature dependence of the propagation parameter.
Panel C shows predictions for the mean, fractional number of helical hydrogen bonds
(lower set of curves) and for the mean number of helical segments (upper set of curves)

from LR theory as a function of the nucleation parameter. A family of curves for values of
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w=1.27,1.42,1.57,1.72, 1.87, 2.02, 2.17 is shown in either case. Increasing values of w
are shown as lighter-colored graphs and dashed and solid lines alternate for better
clarity.

Panel A shows that w follows the trend for the overall helicity, and that it
decreases from values around 2.8 to values around 0.45 throughout the
temperature range studied here. Panel B shows that v is temperature-dependent
as well, decreasing from values around 0.75 to values around 0.15. Just as we
observed for the various measures of helicity in Figure 3.8, the hysteresis
between unfolding and refolding arms is minimal indicating very well-converged
data. Table 3.f shows that the estimates obtained using ABSINTH are generally
comparable to values obtained with other force fields. The work of Nymeyer and
Garcia’® makes it clear that even though v and w might show better agreement
with experiment melting temperatures may be overestimated. Furthermore, the
experimentally determined temperature-dependence of w® is crudely shown as
a thick dashed line in Panel A of Figure 3.9. Obviously, ABSINTH slightly
overestimates the propagation parameter but it does seem to provide a
reasonable representation of the slope. If anything, the latter seems to be slightly
overestimated, which stands in contrast to the AMBER-based models deemed
most reasonable for which the slope seems to be underestimated.” The most
relevant comparison in Table 3.f is between the simulations using the GB/SA
model and ABSINTH. For this specific system, the latter shows better agreement
with experiments than the former, and this holds for all the measures used to

quantify helix-coil transitions as shown in Table 3.f.
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Two additional points need to be made. As has been noted in the literature,
v is generally overestimated by roughly an order of magnitude in simulations. We
suggest that this is partly due to the method employed for analyzing simulation
data. In experiments, v is obtained through fits to kinetic data on helix

nucleation, %1%

while computationally it is obtained through fits to the
equilibrium population of helix segments. Panel C in Figure 3.9 shows predictions
from LR theory as a function of v. Clearly, for large enough values of w, high
helicity coupled to an average number of helical segments significantly larger
than unity (as is usually observed) is only possible if v is substantially larger than
the experimentally determined value of 0.036. Even at high temperatures, when
entropy dominates, it is impossible to observe very low values for v given the way
we compute this parameter from simulation data. This point will be addressed in
detail elsewhere. Finally, Table 3.f allows one to make comparisons between the
AMBER and OPLS-AA charge sets. It should be noted that the latter were used
for the ABSINTH calculations shown here. Gnanakaran and Garcia® have
observed sharper transitions in their study of a related peptide Alaz¢ using explicit

solvent and the OPLS-AA/L force field®® suggesting that the lack of cooperativity

in AMBER might be due to the charge set employed.
111.6.4. The Reversible “Folding” of a -Hairpin Peptide

For peptides engineered to fold into a B-hairpin, there often is no well-
defined transition between the folded and unfolded ensembles. The thermal

denaturation of these systems usually shows a broad transition with ill-defined
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baselines and little cooperativity.?''%%° We can summarize the differences with

respect to a-helical peptides as follows:

The folding of a-helical systems is backbone-driven. This is apparent from the
fact that low-complexity sequences such as the FS-peptide do in fact fold and
that the simplest chiral residue (alanine) is the one with the largest helix
propensity.’'®""" Conversely, the folding of B-hairpins or three-stranded p-
sheets is sidechain-driven. This point is made by the fact that design attempts
succeed by focusing on optimizing the turn sequence and the sidechain
registry.8"1%8112113 |n other words, the chiral peptide backbone of short
peptides in aqueous solution shows an intrinsic propensity to populate a-
helical but not B-rich conformations. This is illustrated indirectly by the
prevalence of ordered, B-rich structures in environments which become less
and less aqueous such as protein aggregates' or organic solvent

mixtures.'®

The folding of a-helical systems is well-described by simple models (see
above) whereas that of short B-sheet peptides is distinctively heterogeneous

and highly sensitive to the experimental probe employed.'®

The folded ensemble for a-helical systems is characterized by residual
entropy in fraying ends, bending, and possible kinks but always remains well-
described by local backbone propensities and the i to i+4 hydrogen bond
registry.®? Conversely, the folded ensemble for most p-sheet peptides is

almost exclusively constrained by non-local effects such as the arrangement

163



of sidechains coming from opposite strands. Experimentally, this type of
ordering relates to the fluorescence of aromatic residues®'"'® or NMR order

parameters such as NOEs. "2

e The kinetics for helix formation are at least an order of magnitude faster than
those for hairpin formation.”"” Hence, systems of the latter type pose a much
stiffer challenge for computational efforts trying to demonstrate reversible

folding.

Most of the simulation studies carried out on [B-hairpin peptides have
focused on a fragment of the B1 domain of protein G, more precisely the C-
terminal hairpin, as it was shown to exhibit features resembling the “native”
hairpin experimentally.116 However, the order parameters chosen in simulation
work usually do not relate to experimental probes directly; hence, the relevance
of such results for the goal of calibrating force fields is questionable. Moreover, it
was recently shown that the NMR data are in fact much more consistent with
highly disordered simulation ensembles involving large populations of non-native
like structures than with predominantly folded ensembles.''

The preceding discussion leads us to choose the so-called tryptophan
zippers as our model system. These are very short peptides with two tryptophan
pairs on either side which “zip” together to stabilize the B-hairpin conformation.®’
NMR structures could be obtained using distance as well as dihedral restraints.
From a simulation standpoint, the system has been studied most extensively

using continuum solvation models of the GB/SA flavor.81%9119120 Eyen in a
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continuum solvent, sampling is surprisingly difficult given the small size of these
peptides. The system was shown to exhibit heterogeneity both in terms of the
kinetics of its thermal unfolding behavior in aqueous solution'® and in terms of its
simulated conformational equilibrium at temperatures, for which experimental

data are interpreted to indicate dominant population of the folded basin.""

Here, we study “trpzip1” (pdb code: 1LE0)®" which has the lowest melting
temperature among the 12-residue designs but seems to show the cleanest
transition between predominantly folded and predominantly unfolded ensembles.
Even for this system, however, the experimental data are interpreted to imply that
the fraction of folded molecules decreases almost linearly from 0.8 to 0.1 over
the wide temperature range of 300 to 360K. Moreover, the maximum folded
population is never expected to exceed 0.8, hence indicating substantial residual
disorder even in the low-temperature regime. Figure 3.10 shows the temperature
dependence of various order parameters for simulations starting from either
random extended conformations (folding simulation) or from the NMR structure,
more precisely the first model (unfolding simulation). In general, both sets of
simulations agree very well with one another. At 300K discrepancies start to
arise, and we could not generate hysteresis-free data for temperatures below
300K. This agrees with previous studies which had to use substantially elevated

temperatures to achieve converged results for this and similar systems."?'%’

Panel A of Figure 3.10 shows the mean RMSD, which decreases with
decreasing temperature, but only reaches a value of 3.5A at 300K. Panel B

shows the R, of the hydrophobic cluster driving hairpin formation, ie., the
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sidechains of the four tryptophan residues. This is an order parameter typically

122,123

used for B-hairpin systems, since it addresses the driving force for folding

directly. For the tryptophane zippers, however, the NMR structures do not show a
true hydrophobic cluster, but instead show the indole rings to be in an edge-to-
face arrangement on one face of the hairpin with substantial solvent-accessibility
and no stacking or hydrogen bonds. Guvench and Brooks'®* argue that this
unusual structure arises due to the electrostatic multipoles in the non-polar parts
of the indole rings. The NMR ensemble has a resultant value for the R, of the

hydrophobic cluster of 6.4A, which is actually larger than what we observe at

300K.
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Figure 3.10: The temperature dependence of various order parameters

characterizing the simulated ensembles of the tryptophan zipper “trpzip1”. Sets of
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folding and unfolding simulations are shown as solid and dashed lines, respectively.
Panel A shows the heavy backbone atom RMSD to the PDB structure (Model 1 in 1LEO)
excluding the N-terminal serine and the C-terminal amide cap. Panel B shows the radius
of gyration of the sidechains of the four tryptophan residues. Panel C shows the mean
strand-to-strand distance for the perfect hairpin, whereas the order parameter L as

defined by Snow et al.?? is shown in Panel D.

Panel C of Figure 3.10 shows the average strand-to-strand distance. The
behavior is similar to that seen for the backbone RMSD in that the value for the
NMR ensemble (4.8A) is approached with decreasing temperature but that even
at 300K the deviation is quite substantial. Similarly, the order parameter L as
defined by Snow and co-workers® takes into account native hydrogen bond
distances as well as sidechain-sidechain distances for the trypophan pairs found
in contact experimentally. Panel D shows that L behaves similarly to both the
RMSD and the mean strand-to-strand distance with the NMR ensemble yielding

an average L of 27.9A.

In summary, these results indicate that the ABSINTH Hamiltonian
predominantly samples disordered conformations which emphasize the driving
force for the collapse of the hairpin but fail to populate the specific structure
determined by NMR. In an average sense, a broad basin of structures with
native-like features becomes more populated with decreasing temperature, which
is in accordance with the experimental data on thermal melting but contradicts
the folding estimates deduced from such data.?' Yang et al.'® have shown for

“trpzip2” that by various spectroscopic probes multiple melting transitions can be

167



identified none of which can be interpreted to uniquely report on the loss of the
specific NMR structure as the order parameters in Panels A, C, and D of Figure

3.10 do.

In order to show the differences and similarities between our results and
those of other simulation studies we computed two-dimensional potentials of
mean force (PMFs) in various combinations of order parameters. Figure 3.11
shows plots analogous to Figure 3a in the work of Snow et al.?? for the folding

(Panel A) and unfolding simulations (Panel D) at 300K, respectively:
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Figure 3.11: Various two-dimensional potentials of mean force for combinations of
order parameters for “trpzip1” (see lll.4 and Figure 3.10). The data are obtained at
300K and are shown for the folding simulation in Panels A, B, and C, and for the

unfolding simulation in Panels D, E, and F.

168



In these PMFs of order parameter L vs. the backbone RMSD, the native
state would be located in the lower left corner. Clearly, the precise NMR structure
is not a relevant part of the free energy landscape. Instead, structures with
native-like low L values or low backbone RMSDs are observed independently of
one another. This means for example that misfolded hairpins with non-native
tryptophan arrangements are observed. In Panel B, we can identify such a
misfolded hairpin basin for low values of both the strand-to-strand distance and L,
which was not observed to the same extent in the unfolding simulation (Panel E).
Panels C and F show PMFs as a function of the number of strand-to-strand
hydrogen bonds vs. R, of the hydrophobic cluster and illustrate this point more
clearly. For the folding simulation we found a weak, but distinct basin of
conformations with substantial hydrogen bonding. In both cases, however, the
vast majority of conformations have little to no strand-to-strand hydrogen bonds.
It is crucial to point out that in the work of Snow et al. the PMFs are created by
analysis of a vast number of independent simulations starting from extended
states. While they discard a sufficiently long equilibration phase (100ns, which is
several times the collapse time), the free energy surfaces are not equilibrated,

and the unfolded state is overrepresented.
This leads to the following major conclusions for “trpzip1”:

e The native basin as defined by a specific NMR structure is not a stable
conformation for the ABSINTH Hamiltonian. It is noteworthy that Snow et al.
show that the OPLS-UA force field coupled to the GB/SA continuum solvent is

equally unable to stabilize the native basin, and that — unlike common
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practice — no 14-scaling was employed in any of their OPLS-AA/GB results.
This is an important modification of the force field because the underlying
energy landscape may depend strongly on this choice,® in particular in a

continuum solvent as discussed in Il11.3.

e A broad basin of states with native-like topology is populated readily and
increasingly so with decreasing temperature. This finding suggests that the
ABSINTH model can be used to reliably identify native-like basins albeit in a

coarse-grained manner.

At this point, we wish to re-emphasize that ABSINTH is not designed as a
structure prediction tool. For the applications of interest, it appears more
beneficial to underpredict rather than to overpredict the specific structural
preferences of polypeptides. While we are actively invested in understanding
what components of our model lead to the observed discrepancies for “trpzip1”,
we also wish to point out that this result does not imply a general problem of the
model in dealing with B-structures. This assertion is supported by our results for
the B1 domain of protein G, for which we observe cooperative unfolding in
agreement with experimental data indicating that within the context of the full-
length protein the hairpin is not destabilized. Therefore we do not pursue tuning
of ABSINTH to generate stable hairpins given that the experimental data suggest
that such an approach would be unjustified and that the ensembles for such short

peptides are indeed heterogeneous.'*®
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111.6.5. Polymeric Behavior of Polyglutamine

We have shown, both experimentally® and computationally,’®>'?® that
homopolypeptides composed predominantly of glutamine exhibit a strong
preference for collapsed states in aqueous solution. They are intrinsically
disordered and have no marked preference for canonical secondary structures.
The latter point is supported by experimental results based on CD and NMR

127129 35 well as high-resolution computational studies, i.e.,

spectroscopy
molecular dynamics (MD) simulations in explicit solvent.'® The collapsed nature
of the ensemble can be established through a polymeric scaling law, i.e., the
change in size of the molecules with chain lengths. For chains in a poor solvent,
i.e., a solvent in which chain-chain contacts are preferred over chain-solvent

contacts, collapsed states are preferred and the radius of gyration should scale

with chain length N with a scaling exponent of ~0.33 (see 1.2):
(R,)=R,N"; where v =% (3-12)

Here, (R,) is the ensemble-averaged radius of gyration of an individual
polypeptide chain, N is the chain length, v is the actual scaling exponent, and R,
is a parameter related to the monomer size. By plotting (R,) versus N in a double-
logarithmic plot, one can obtain the scaling exponent through linear regression.

In previous computational work including that presented in Chapter I1,'%>1%

we
were unable to directly measure the scaling exponent according to Equation 3-12
due to the prohibitive cost of such simulations. Instead, we compared the

polymeric behavior of Qo in water to two reference models, and established
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through alternate means that these chains form collapsed globules and that

water is indeed a poor solvent even for such short glutamine-rich peptides.

Figure 3.12 shows the double-logarithmic plot of (R,) versus N obtained

using ABSINTH compared to the two reference states employed in Chapter I

(see 11.3.1 in particular):"®
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Figure 3.12: Scaling law for the peptide series Acetyl-(GIn)y-N-Methylamide. The
data obtained with ABSINTH’s solvation model is compared to the data for two reference
models used in previous work. Error bars on the data for ABSINTH indicate a crude
estimate of the reliability of the R,-values based on the standard deviation of the
averages of four independent runs. The uncertainty in the fit parameters was estimated
using 50000 independent samples of the data drawn from the estimated normal
distributions for each chain length. Due to the crude determination of the parameters for
the latter distributions, the numbers are not to be viewed as a rigorous, statistical error

estimate.
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The preference for collapsed states is preserved in the continuum
solvation model and this result agrees with both theory and experiment. Using
the uncertainty in the data themselves, we used MC re-sampling of the raw data
to obtain an error margin for the scaling exponent of 0.33<v<0.45. Clearly, this is
only consistent with poor solvent scaling and not with good solvent scaling, which
is observed in the excluded volume (EV) limit as shown in Figure 3.12. Moreover,
the experimental results® arrive at similar conclusions with regards to the scaling

exponent.

However, the scaling exponent is not necessarily the best illustration of
solvent quality as small amounts of noise in the data can lead to substantial
variability in its estimate. Figure 3.13 shows a more detailed comparison of 30
independent trajectories for Qg to the MD simulations we carried out for the

same system (see Chapter 1)'?°

. We plot the scaling of internal distances (see
Equation 2-6) using ABSINTH compared to the calculation in explicit solvent as
published. Differences between the two sets of results are mostly statistically
insignificant. This suggests that for intrinsically disordered polyglutamine
differences in conformational averaging between the implicit and explicit solvent
calculations are negligible. Both curves also coincide with the globular reference
state indicating that in both explicit and implicit models of solvation water is in
fact a poor solvent for these peptides. Furthermore, we analyzed contact maps
(data not shown) and concluded that overall there seems to be little to no

preference for any kind of consensus secondary structure, even though

backbone segment statistics indicate that extended stretches of a-helix are
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encountered in a few of the simulations. The observed preference for disorder is

in agreement with both experiment and the previous computational studies.
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Figure 3.13: The scaling of internal distances with sequence separation. The data

shown are the results obtained with ABSINTH compared to published results obtained in

explicit solvent as well as the two reference models'?. Error bars are shown for the data

in explicit solvent and in ABSINTH and are obtained by calculating the standard

deviation of the final averages for each of the 60 and 30 trajectories used, respectively.

lI.7. Summary and Conclusions

In this chapter, we have introduced a new continuum solvation model

termed ABSINTH. In the broader context of this thesis, a lot of the calibration

work performed with the model might appear tangential to the reader. It is very

important, however, to point out that i) it is a fundamental necessity for the
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relevance of the work presented in subsequent chapters to carry out such
detailed tests, and ii) that establishing a model in the broader context of
biomolecular applications simultaneously broadens the impact of this thesis for
future research which extends far beyond the confines of a particular

neurodegenerative disease.

With respect to the second point, the following paragraphs attempt to
illustrate why ABSINTH represents a worthy addition to the available continuum

solvation models.

ABSINTH is promising

For the test systems analyzed in this manuscript, ABSINTH provides a
reasonable description of the underlying physics. Most results are in general
agreement with what is known from experiments with two notable exceptions, i)
we find specific outliers in the analysis of NMR coupling constants, and ii) we find
that the ABSINTH Hamiltonian fails to predict the specific NMR structure for the
tryptophan zipper “trpzip1”. For the latter, however, the results are not
necessarily in fundamental disagreement with the published experimental data
as a function of temperature. The test cases here probe the short-range steric
preferences of short peptides, the general polymeric nature of Qq, the thermal
stability of two small proteins, and reversible folding of both an a-helical and a -
hairpin peptide. Therefore, we conclude that ABSINTH is suitable for simulating
processes such as folding/unfolding and self-assembly with semi-quantitative
accuracy. The principles underlying phenomena of biological interest are

identical; hence, the physical model behind ABSINTH should always apply. We
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do have faith that the model can be applied to problems outside of the immediate
calibration domain. As an example, other disordered and aggregation-prone
systems such as the Ap-peptide implicated in Alzheimer’'s disease are currently

being investigated in our laboratory using ABSINTH.

As explained in Il11.3, ABSINTH shares a lot of similarities with the EEF1
model of Lazaridis and Karplus, which has been successfully applied in a variety
of contexts™®"*3. ABSINTH, however, does have novel aspects: those include
the protocol used to calculate the solvent-accessible volumes; the use of small
molecule solutes as solvation groups; the description of partially solvated states;
and the screening of Coulomb interactions based on the local solvation
environment. The features listed above make ABSINTH a useful model for

continuum solvation, which combines aspects of the EEF1 and GB models.

ABSINTH is tunable

It is worth noting that the continuum solvation model can be tuned to
change the nature of the solvent. This can be accomplished by varying the
solvation parameters ry, Ts, (s, Td, and xq. These parameters modulate properties
of solvent by tuning the stability of and the cooperativity of transitions between
differently solvated states. Similarly, broad changes can be introduced by
swapping out parameter sets for the LJ parameters or partial charges as
demonstrated in some of our results. It is also possible to carry out simulations
including co-solutes such as urea and/or explicit water molecules using the same
underlying paradigm, as we have demonstrated for inorganic ions in this work.

Finally, there is no fundamental barrier to replace water as the continuum solvent,
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as long as the reference free energies of solvation and bulk dielectric are known

experimentally for the alternative solvent of interest.*?

ABSINTH has potential for substantial improvement

All results shown in this manuscript were obtained using MC sampling.
Obvious improvements include a switch to a stochastic dynamics approach or
even hybrid methods. The treatment of ionic groups as part of the polypeptide
and in the bulk provides room for improvement. The goal is to be able to
seamlessly integrate the explicit representation of the polymers in aqueous
solution with the explicit representations of mobile counterions, which semi-
quantitatively capture experimentally observed properties. In addition, the impact
of our modified model for short-range electrostatic interactions needs to be
analyzed in detail. Possible corrections based on comparison to quantum-

chemical data may be required.

Conclusion

We thus conclude that we succeeded in creating a sampling methodology
suitable for the questions we wish to ask about the process of polyglutamine
aggregation at a physicochemical level. The barrier we encountered and
delineated in Chapter Il can be breached enough such that our studies extend
into chain lengths and system sizes relevant from a disease point of view.
Application of the ABSINTH model to this problem is the content of the remaining

chapters of this thesis.
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CHAPTER IV. THE EFFECTS OF CHAIN LENGTH AND SOLVENT
QUALITY ON CONFORMATIONAL EQUILIBRIA  AND

DIMERIZATION OF POLYGLUTAMINE

IV.1. Preamble

Progress in science is rarely linear. As might be concluded from the
magnitude of Chapter lll, the calibration process for the ABSINTH model took an
extraordinary amount of time and effort. However, we did not want to lose sight of
our biological interests. Hence, work on the dimerization of polyglutamine
peptides began long before all the work pertaining to Chapter Il was completed.
Xiaoling Wang, at that time a postdoctoral researcher in the laboratory, had
already been successful in establishing and testing the simulation protocol
followed in Chapter Il. Her contributions to the work in this chapter are similar:
She carried out all of the groundbreaking work needed to establish a reliable
protocol which would allow the equilibrium sampling of the association of two
polyglutamine peptides across a range of chain lengths relevant in the disease
context (Qs, Q1s5, Qs0, and Qus) and under a range of solvent qualities using
temperature as a universal control. She performed preliminary analyses and —
unlike in Chapter Il — here she also set up and ran the simulations we ultimately

analyzed for the manuscript to emerge from this work.’

Given this “historical” context, it is not overly surprising that the data

presented in this chapter carry two minor caveats. First, as detailed in 1V.3.3, we
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employed a slightly modified version of the ABSINTH force field as introduced in
Chapter I11.2 This was simply a result of the calibration efforts not being finished
when the work presented here started. Second, as is also detailed in IV.3, we
used a sampling protocol not guaranteed to quantitatively preserve sampling of
the canonical ensemble at all temperatures. By allowing the replica-exchange
(REX) protocol to swap structures between all solvent qualities, a minor bias is
introduced due to asymmetric mixing. This bias error leads to perturbations,
which lets transitions along the exchange parameter (temperature) appear

slightly broader than they might actually be.

The criticism as to why we chose not to use a more rigorous sampling
protocol is answered as follows: the simulations presented here are of substantial
cost and cannot easily be repeated. This obvious resource limitation motivated
us to find a compromise between rigor, i.e., a minimization of any bias errors,
and accuracy, i.e., a minimization of any statistical errors. Due to the inherent
complexity of sampling conformational equilibria and association of peptides of
up to 45 residues in length, we willingly traded a small bias error for a significant
gain in statistical accuracy. This is justified twofold: first, all results presented in
this chapter are qualitative in nature and minor quantitative deviations do not
affect its conclusions in any way. Second, more recent work® has shown that the
impacts of both caveats stated in the preceding discussion are in fact minor. This

work is presented in Chapters V and VI.
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IV.2. Introduction to the Association of Homopolymers

The pathogenic features of CAG repeat diseases are typically interpreted
to be predominantly triggered by the polyglutamine stretches found in the
expanded disease proteins (see 1.2). This is due to the qualitatively similar
phenotypes exhibited by diseases affecting completely unrelated proteins. We
can therefore formulate a model system in silico in which we address the intrinsic
properties of peptides composed exclusively of glutamine. By stripping away
native flanking sequences, the problem is reduced to that of studying the

conformational equilibria and aggregation of a homopolymer in a poor solvent.

The connection between the phenomenology of polyglutamine
aggregation and the well-established field of conformational and phase equilibria
of synthetic homopolymers has been made in a recent review article.* This line of
thought originates in the seminal works of Flory,>® Huggins,”® and others.>'?In a
poor solvent, polymers form homogeneously mixed solutions of isolated globules
under dilute solution conditions. As concentration increases, the system enters
the two-phase regime where there is a clear driving force for phase separation,
i.e., aggregation. The poorness of the solvent is now exemplified in its expulsion
from a polymer-rich phase. Conversely, in the single molecule limit, intra-chain
interactions are preferred to chain-solvent interactions for chains in a poor
solvent, and chain sizes measured using radii of gyration (R;) or hydrodynamic
radii (R,) scale as N'? with chain length N (see 1.2 and 111.6.5).”*" In poor
solvents, the stabilities of collapsed structures and the spontaneities of

homotypic intermolecular associations — both of which are governed by attractive
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two-body interactions — will increase with chain length.* We directly test this last

statement for a particular homopolymer — polyglutamine — in this chapter.

Departure from such general homopolymeric behavior may be expected if
the polymer is prone to the formation of specific structures in a chain-length
dependent fashion. This occurs much more readily for block copolymers. For
example, the self-assembly of spider silk block copolymers15 or collagen
microfibrils’® would be ill-described by the basic tenets outlined above.
Monomeric polyglutamine constructs, however, are intrinsically disordered and
this holds true irrespective of chain length.'”'® As would be expected from a
simple model, the spontaneity and overall rate of aggregation increase
systematically with chain length.'®2° Under certain conditions, synthetic peptides
rich in glutamine form large aggregates with many morphological and dye-
binding characteristics that mark these aggregates as being amyloid-like.?"?
This latter point is important since it suggests that there are structural signatures
associated with the aggregation of polyglutamine — at least under certain solution
conditions. Work which analyzes the impact of the characteristic -secondary

structure on the thermodynamics of polyglutamine dimerization is presented in
Chapter V.

Here, we seek to learn more about the mechanisms by which
polyglutamine molecules self-associate to form aggregates.'® Computational
work?® presented in Chapter Il and results from FCS studies®* helped establish
that aqueous milieus at ca. 25°C are poor solvents for polyglutamine. This

defines a simple and generic driving force for aggregation. Is it then reasonable
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to assume that polyglutamine aggregation follows homogeneous nucleation as
suggested?'® Is the formation of a specific, high energy, conformational species
at the monomer level a pre-requisite for aggregation??® The number of chain
molecules within an aggregate can vary and the smallest “aggregate” is a dimer.
If the mechanism of aggregation strictly follows the above model and we find
dimerization to be spontaneous, then there are two possibilities: i) the monomeric
form of polyglutamine must be the critical nucleus; or ii) the observed dimer must
be an off-pathway event. Scenario ii) is much more likely but also gives rise to an
alternative explanation: theoretical work suggests that polymer aggregation in
poor solvents does not follow homogeneous nucleation.”® Dimer formation might
instead be indicative of heterogeneous pathways leading to a wide distribution of
soluble oligomers. The latter may well represent either on-pathway intermediates

or off-pathway states of a much more complex aggregation mechanism.

Here, we wish to begin to distinguish between conflicting suggestions, and
hence we interrogate intermolecular associations and conformational
preferences realized at low concentrations and low copy numbers via computer
simulation. The ABSINTH framework?® allows us to employ temperature as a
smooth dial of solvent quality. The characterization of system properties as a
function of solvent quality will allow us to adjudicate how much polyglutamine

behaves like a generic homopolymer.

The rest of this chapter covers the following material: first, we introduce
the computational methods employed here (IV.3). Next, we present results from

quantitative studies of the length dependence of coil-to-globule transitions for
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monomeric polyglutamine molecules (1V.4.1). This is followed by quantification of
the length and temperature dependence of monomer-dimer equilibria (IV.4.2).
We then focus our analysis on the correlation between collapse and dimerization
(IV.4.3) as well as the driving forces and conformational requirements for both
processes (IV.4.4 - IV.4.7). In the discussion section (IV.5), we summarize our
results and place our findings in the context of the existing body of experimental

data and proposals for mechanisms of polyglutamine aggregation.
IV.3. Simulation Details

IV.3.1. System Setup

Capped polypeptides composed exclusively of glutamine residues (Acetyl-
(GIn)x-N-Methylamide abbreviated as Qy) were built with fixed bond lengths and
angles according to the Engh-Huber high-resolution, crystallographic geometries.
Peptides with chain lengths N = 5, 15, 30, and 45 were simulated in the nV'T
ensemble in a spherical droplet of radius Rgwpe=200A, where n denotes the
number of individual molecules, 7 the volume of the simulation droplet, and T the
simulation temperature. In all cases, polar interactions were truncated at 14A and
short-range steric and dispersive interactions were truncated at 10A. The cutoffs
are justified by the fact that specific interactions between these peptides are

exclusively dipolar.

The simulation system consisted of either a single chain (n = 1) for the

monomer simulations or of two chains (n = 2) for the dimer case. The chain
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molecules were confined to the simulation volume by applying a stiff harmonic

boundary potential restraining the molecules to the simulation droplet:

0 if |
Ebaund = z k
b

a ound (| Vo = Vo

<R

Nt

_ro

i

Droplet (4_ 1 )

2
-R else

Droplet )

Here, the sum runs over all the C,-atoms for all residues, 7, is the position vector

o

of those C,-atoms, 7

ori

is the position vector of the center of the droplet, and ki
is the stiffness of the one-sided, harmonic restraint.

It is important to note that for a given simulation fluctuations in » are
quenched in the nV'T ensemble. Therefore, the monomer simulations mimic the
infinite dilution limit despite the fact that the simulation volume is finite. For the
dimer case, the effective concentration was ca. 100uM, which is in the
concentration range of most in vitro experiments. Given our simulation setup,
there is no possibility of studying the formation of oligomers larger than a dimer.
This does not mean that we predict the absence of such larger species in the
concentration range of 100uM. Rather, our simulations focus on quantifying the
spontaneity of chain length- and temperature-dependent intermolecular
associations at low copy numbers and high effective concentrations. This
scenario might be reminiscent of in vivo settings, although this claim is purely
speculative in nature. Extensions to study the formation of larger oligomers will
require improvements in sampling methodologies and these are currently being

pursued.

193



IV.3.2. Conformational Sampling

All the simulations presented in this work were performed using Metropolis
Monte Carlo (MMC) sampling of the relevant degrees of freedom which for
polyglutamine are the ¢, vy, and ®» angles of the polypeptide backbone as well as
the three sidechain dihedral angles (x1, x2, x3) of the glutamine residue.
Additionally, for n=2, we include the sampling of rigid body degrees of freedom,
namely translations of centers-of-mass and rotational reorientations of

molecules. Details of the move sets employed are summarized in Table 4.a:

Settings for Settings for
Move type simulations of monomeric simulations with pairs of
polyglutamine polyglutamine molecules
Rigid-body 0% 30% (50%, 10A, 20°)
Omega (») 7% (90%, 5°) 4.9% (90%, 5°)
Sidechain (y1, %2, x3) 30% (4x, 60%, 30°) 21% (4x, 60%, 30°)
Backbone ¢/ 63% (70%, 10°) 44.1% (70%, 10°)

Table 4.a: Overview of the frequency of the different Monte Carlo moves sets used
in simulations of monomeric and pairs of polyglutamine molecules. To be able to
probe multiple length scales simultaneously, Monte Carlo moves in ABSINTH either fully
randomize a given degree of freedom, or perform a stepwise perturbation that has a
maximum size. The frequencies for different moves are chosen to reflect the relevance
of the various degrees of freedom to both the conformational equilibria and the
association of these peptides. Additionally, these choices reflect the associated
computational cost. As an example, m-angles are sampled relatively infrequently as their
values are expected to remain close to the perfect frans-conformation. Note that there

were a small number of moves for each simulation which were used as swap attempts
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for replica exchange. Details on the individual moves are as follows: Rigid-body moves
simultaneously change rotational and translational degrees of freedom of the whole
molecule. The first value listed in parentheses is the fraction of moves assigned to finite
perturbations whereas the remaining attempts fully randomize the respective degrees of
freedom. The second and third values are the maximum translational and rotational
step-sizes associated with the finite perturbations. For Omega-moves there are N+1 -
angles for a chain length of N due to the acetyl and N-methylamide capping groups. The
two sets of values in parentheses are the fraction of m-moves, which attempt a stepwise
perturbation along with the maximum step-size. Sidechain moves perturb the x-angles of
a given sidechain in the peptide. In each attempt to alter sidechain degrees of the
freedom, two of the three y-angles are randomly altered. Sidechain moves are
inexpensive and therefore several sidechains are sampled during each “move” (first
value in parentheses). The remaining two values in parentheses again give the fraction
of y—moves with a finite perturbation and the maximum value of that perturbation. Lastly,
the most important moves are those which perturb both the ¢- and the y-angle of a given
residue. The values in parentheses are interpreted the same way as for m-moves.

It is important to remind the reader that appropriate design of MMC move
sets allow us to simultaneously probe multiple, disparate length scales rather
efficiently, taking advantage of the low overall density. This situation is unlike
molecular dynamics sampling which is quite inefficient for sampling large-scale
conformational changes as well as intermolecular associations / dissociations.
The latter is hindered by slow diffusion and will require adaptive approaches and

indeed MMC sampling may be viewed as a variant of such an adaptive

195



approach. All simulations were carried out using our CAMPARI software

package.”® An overview of all simulations is given in Table 4.b:

Number of

independent Simulation Total number of = Number of
Simulation rep lica temperature of A MMC moves that moves
system excr\an e different make up a between
simulatigns replicas (K) production run | REX swaps
i 7
Monomeric Qs 298. 305, 315, 2x%x10 0.5 x 10°
Monomeric Qss 325, 335, 345, 10
4 355, 360, 370,
Monomeric Qs 380, 390, 400, 2 x 10’ .
410 1x10
Monomeric Qus 3x 10’
Qs Dimerization 298, 305, 315, 2 x 107
Q15 Dimerization 325, 335, 345, 1x10°
4 355, 360, 370,
Q3o Dimerization 380, 390, 400, 4 x 10’
410
Qg5 Dimerization 6 x 10’ 1.5 x 10°
Monomeric Qs 430, 450, 470,
at higher 1 490, 510, 530, 107 0.5 x 10°
temperature 550
Monomeric Qsg 430, 450, 470,
at higher 1 500, 550, 600, 2 x 107 10°
temperature 650, 700
Monomeric Qs 420, 430, 450,
at higher 1 470, 500, 550, 3 x 107 4 x10°
temperature 600, 650, 700

Table 4.b: Overview of the magnitude of MMC sampling used for polyglutamine.

As was shown in previous work, intrinsically disordered polyglutamine
systems pose a serious challenge for conformational sampling. To improve the
quality of our simulation data, we used thermal replica exchange (REX)?" which
adds an extra Markov chain to the MMC sampling. Details of all the parameters

for the REX method are summarized in Table 4.b. We improve the overall
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efficiency of REX given the finite number of swaps that are feasible during a
simulation as follows: In our simulations, we allowed swaps between all unique
pairs of replicas in the range 298K<T7<410K because the acceptance of
proposed swaps between non-adjacent replicas remained finite and we found
that this improved the overall quality of sampling, especially for the lower
temperatures. A small bias error may be introduced by such a procedure, but the

improved statistical accuracy outweighs this concern (see also IV.1).

IV.3.3. Molecular mechanics force field

All of the data presented here were generated using the ABSINTH
continuum solvation model.? The model was explained in detail in Chapter IIl. It
suffices to point out that it has been shown to reproduce the polymeric behavior
of polyglutamine when compared to both simulations in explicit solvent as well as
to experimental data (see I11.6.5). As alluded to in IV.1, the results presented in
the current work were obtained using minor modifications to the published force
field. First, for reasons of computational efficiency, partial charges on net-neutral
methyl and methylene groups were omitted. All other partial charges are identical
to those reported previously and are based on the OPLS-AA/L force field.?®
Second, we employed slightly modified Lennard-Jones (LJ) parameters
compared to the parameters published recently (see Table 3.b). The LJ
parameters used in this work are shown in Table 4.c. These two modifications
were not necessary. As Chapters V and VI show, all of the conclusions regarding
the length and temperature dependencies of polyglutamine conformational

equilibria and the spontaneities of homodimerization remain qualitatively robust.
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However, Ty, shifts to a value that is lower than 410K when we use the

parameters that are shown in Table 3.b (see Figures 5.10 and 6.6).

Atom Type Example ci in A & in kcal/mol
N (sp?) Amide N 2.70 0.200
O (sp) Carbonyl O 2.70 0.200
C (sp?) Carbonyl C 3.00 0.100
C (sp’) Methylene C 3.30 0.100
Non-polar H Methylene H 2.00 0.025
Polar H Amide H 2.00 0.025

Table 4.c: Hard sphere diameter and well depth parameters used for computing LJ
interactions. Parameters for cross-interactions were computed using the geometric
mixing rule. With the exception of o; parameter for sp? hybridized nitrogen atoms (see

italics) all other parameters are identical to those shown in Table 3.b.

IV.3.4. Data analysis

Most analysis quantities were computed once every 10° to 10* steps
depending on the total extent of the simulation (see Table 4.b). For each
monomer / dimer simulation, we carried out multiple, independent simulations
with the REX methodology. Therefore, we used a modified block averaging
technique to estimate error bars. In this approach, for each temperature point,
the data obtained from a single REX simulation run is treated as a single block.
With this approach, we are not confronted with the problem of having to chop our
simulation data into ad hoc blocks. Independence of blocks for averaging is

guaranteed because the starting conformations for all simulations are completely
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randomized. However, we do not have the resources to carry out hundreds of
independent replica exchange runs. Instead, we typically have data from four
independent replica exchange runs. Hence, the error bars that result from “block
averaging”, which in reality is averaging over completely independent
trajectories, are not rigorous estimates of statistical and bias errors in sampling;
rather, they act as qualitative indicators of the reproducibility of our results

between independent runs with randomized starting conformations.
IV.4. Results

IV.4.1. Length Dependence of Conformational Equilibria for Monomeric
Polyglutamine

We performed simulations for monomeric polyglutamine as a function of
temperature and chain length. Flexible polymers undergo coil-to-globule
transitions that are akin to second order phase transitions and characterized by

the existence of a “tri-critical” 6-point.”>'*** At the 6-temperature (T=Tp), (R,) is

(%)

proportional to N°°. Therefore, plots of £=2=L as a function of temperature for

JN
different chain lengths should intersect at 7=T7,. Theory also predicts that for
T>Ty the ratio & increases with increasing N whereas for T<T, this ratio
decreases as N increases. These predictions are consistent with the fact that for
T>T, chain-solvent interactions are preferred in a so-called good solvent: the coil

0.59

state is favored, and (R,) scales as N . Conversely, for 7<T,, the chain

collapses to minimize contacts with the poor solvent and (R,) scales as N3,
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Finally, as chain lengths increase, the sharpness of coil-to-globule transitions

should increase and the width of the transition region should decrease.

In Figure 4.1, we plot the variation of & as a function of simulation

temperature for Qs, Q15, Qz0, and Qus, respectively:
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Figure 4.1: Coil-to-globule transitions for monomeric polyglutamine molecules of
different chain lengths plotted as the variation of normalized chain size & (ordinate)

with temperature (abscissa).

We find that the coil-to-globule transition is ill-defined for the Qs peptide;
this is consistent with the concept of “blobs”. Within a blob, the balance of chain-
chain, chain-solvent, and relevant solvent-solvent interactions is smaller than kgT.
Here, T is temperature, and kg is Boltzmann’s constant. If there are & residues in
a blob, then the radius of gyration of the blob scales as &"* and this scaling holds

irrespective of solvent quality (temperature). From Figure 4.1 it is clear that Qs is
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essentially a blob-sized-peptide because & does not change significantly with
temperature.

From Figure 4.1 we also see that as chain length increases the sharpness
of coil-to-globule transitions increases and the width of the transition region
decreases. The curves intersect at a common temperature of 7~410K. For
temperatures that lie outside the transition region, 360K<7<430K, ¢ decreases
with increasing N in the globule limit (7<360K) and it increases with increasing N
in the coil limit (7>420K). All of these observations are consistent with
expectations listed above from the physics of generic, linear, flexible
homopolymers. Such systems collapse in poor solvents in order to sequester
themselves from unfavorable interactions with the surrounding milieu. In our
calculations, T<360K corresponds to poor solvent conditions.

The results shown in Figure 4.1 suggest that 7~410K is a reasonable
estimate for Ty. We test this proposal in Figure 4.2 where we plot the scaling of
ensemble-averaged internal distances (compare Figures 2.4 and 3.13) as a
function of separation in linear sequence. At T, ensemble averages of inter-
residue distances (Rjj) scale as i-i|*>. Conversely, for T<Ty, especially if T is
outside the transition region, (R;) for a range of sequence separations should
plateau to a constant value. This value is predominantly governed by the density
of globules adopted in poor solvents.?® Ensemble-averaged internal distances
(Rijy as a function of temperature were calculated as shown below (compare

Equation 2-6):

201



<RU>T=<%ZZ

ij keilej

ri - r/‘> (4-2)
T

Here, r,i and r/denote the position vectors of atoms & and /, which are part of

residues i and j, respectively; n; denotes the number of unique pairwise
distances between residues i and j and the angular brackets denote an average

over all of our simulation data for the system in question at temperature T.

Figure 4.2 shows the variation of (R;) with sequence spacing |j-i| for
different chain lengths and temperatures. In Panel A we see that (R;) increases
systematically with sequence separation for Qs and this holds true irrespective of
the simulation temperature. For longer chains and 7<360K, (R;) plateaus to fixed
values for a range of sequence separations. This temperature regime mimics
poor solvent conditions where collapsed states are preferred for monomeric
polyglutamine. For 7>360K, the data in Panels B, C, and D show that (Rjy)
increases systematically with sequence separation and as T approaches 410K,
(Ry;) scales as |j-i|”> with [j-i|. This is demonstrated by favorable comparison of
data at 7=410K for Q15, Q30, and Qs to dashed curves in Panels B, C, and D
that plot (R;) as R,[j-i|*°, where R,=5.7A is the value of (R;)) for |j-i|=1, for all chain
lengths and temperatures.

Therefore, for the force field used in this work, 7=410K is a reasonable
estimate for the 0-temperature (7;) for polyglutamine in aqueous solutions. At this
temperature, polyglutamine molecules, specifically the longer chains (N=15),

behave indifferently with regards to their preference for chain-chain versus chain-
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solvent interactions. The driving forces for intermolecular associations should be
prominent below the 6-temperature. For 7>T, or even for temperatures in the
immediate vicinity of Ty, there is no a priori reason to expect favorable
intermolecular associations because chain solvent interactions are favored over

chain-chain interactions.
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14 . . . . . .
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Figure 4.2: Scaling of average internal distances (R;;) between residues i and j as a
function of sequence separation, |j-i|, for monomeric polyglutamine. In each panel,
the dashed curve plots (R;) as R,[j-i|’*, where R,=5.7A, which is the expected profile at

Ty,. By comparing data from simulations to the dashed curves we note that 7=410K is a

reasonable estimate for T;, for polyglutamine modeled using the ABSINTH force field.
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IV.4.2. Length and Temperature Dependence of Spontaneous Homodimerization

Next, we simulated homotypic associations of polyglutamine as a function
of chain length and temperature. In addition to the monomer degrees of freedom,
i.e., backbone and sidechain torsion angles, rigid body degrees of freedom for

each molecule were sampled. Details are presented in 1V.3.2.

Figure 4.3 shows temperature dependent cumulative distribution functions

F(R) of intermolecular distances for pairs of Qs, Q15, Q30, and Q45 molecules:
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Figure 4.3: Cumulative distribution functions measuring the probability of
sampling specific intermolecular distances between pairs of polyglutamine

molecules.
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For a given pair of molecules, F(R) is an estimate of the probability that the
average intermolecular separation is less than or equal to R. For Qs, the
cumulative distribution functions are essentially independent of temperature. The
likelihood of realizing a specific value of R increases with distance, suggesting
that these molecules prefer to diffuse freely about each other. The conclusion is
that both conformational equilibria and intermolecular associations for short
glutamine-rich peptides are consistent with the behavior of short polar amides in

water.

From the analysis of coil-to-globule transitions shown in Figure 4.1 we
know that longer chains form more stable globules for 7<360K. This chain length
dependent drive for intramolecular phase separation has consequences for the
spontaneity of intermolecular associations as shown in three of the four panels of
Figure 4.3. For temperatures in the range T7<360K, the probability of
spontaneous homodimerization increases with increasing chain length. For a
given value of T, this is quantified in terms of higher probabilities associated with
longer chains realizing close intermolecular separations. Conversely, for a given
chain length, the probability of spontaneous dimerization decreases with
increasing temperature. To quantify these observations, we computed excess
interaction coefficients B,,(7) using the cumulative distribution functions shown in

Figure 4.3. These coefficients are defined as follows:

j“’ (£, (R)-F; (R)[R%aR

B, (T) =220t (4-3)
22( ) J-R deme (R)deR

R=0 T=T,
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In Equation 4-3, F,(R) is the cumulative distribution function at
temperature 7, F,_, (R) is the cumulative distribution function at 7y and

Daropler=400A is the diameter of the droplet used in the simulations (see IV.3.1).
The integrals were calculated using an extended trapezoidal rule. The excess
interaction coefficients are in the spirit of normalized second virial coefficients
that are routinely used in statistical thermodynamics to assess the magnitude of
intermolecular associations in solutions of small molecules as well as flexible
polymers.®®3! If B,,(7) is less than zero, spontaneous homodimerization is
thermodynamically favored vis-a-vis the 6-point and the degree of favorability is
assessed by the magnitude of Bx(T7). If Bx(7) is positive, then the chains avoid
each other, more so than at the 6-point indicating a clear preference for
dissociated states. If the preference for associated and dissociated states is akin
to that of an ideal chain, then B,,(7) will be zero. It is important to note that B,,(7)
will plateau to well-defined negative values for molecules which remain
associated throughout the entire simulation. It is system size-dependent which
does not matter for the context here since Dy, is fixed throughout. Moreover, it
is weakly dependent on molecule size given equal associativities with smaller

molecules yielding more negative values due to the smaller contact separation.
Figure 4.4 shows two sets of plots. Panel A plots the variation of B,(7) as
a function of temperature for 7<T,. Separate curves are shown for each of Qs,

Q15, Q30, and Qus, respectively. For Qs, Bx(7) is negligibly small across the entire

temperature range; for the longer chains, Bx(7) is negative over different
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temperature ranges and the absolute magnitude of Bx(7) decreases with
increasing temperature. Specifically, B,»(7) is negative in the temperature range
T<315K for Q45 and negative in the range T<360K for both Q3 and Qus.
Additionally, at temperatures where By,(7) is negative, its magnitude is greater for
longer chains. This is summarized in Panel B which plots the variation of B,,(7)

as a function of chain length and the different curves denote different

temperatures.
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Figure 4.4: Variation of the intermolecular excess pair interaction coefficients
B, (T) as a function of temperature (Panel A) and chain length, vV (Panel B).

The results from Figures 4.1, 4.3, and 4.4 may be summarized as follows:
the sharpness of coil-to-globule transitions of monomeric polyglutamine
increases with chain length. For 7<360K, Qs and Q45 form stable globules. In
this temperature range, these peptides also form stable homodimers whose
stability decreases steadily with increasing temperature. For a given temperature

in the range T<360K, homodimers of Q45 are more stable than homodimers of
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Q3. In contrast, homodimers of Q5 are generally less stable and are accessible
over a narrower temperature range 7<315K and this weak dimerization is
consistent with the shallow coil-to-globule transition observed for this molecule.
The observation of length-dependent dimerization shows that the driving force for
polyglutamine aggregation increases with chain length. We now analyze the
physical basis for the length and temperature dependence of spontaneous

homodimerization in polyglutamine.

1V.4.3. Correlation between Properties of Monomeric Polyglutamine and B:,(T)
Panels A and B of Figure 4.5 show correlations between the temperature
dependencies of specific conformational characteristics of monomeric

polyglutamine chains and the temperature dependence of B,,(7) in the collapse

regime:
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Figure 4.5: Correlation between monomer properties and By(7). Plots showing

correlations between temperature dependencies of B, (7T) and approximate chain
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N
density, p=——--— (units of A%) in Panel A and normalized radius of gyration, & (units

6(R,)

of A) in Panel B. Data are shown for Qs and Qs in the temperature range
298K<T<360K. This temperature regime corresponds to poor solvent conditions for

polyglutamine in the ABSINTH model.

Panel A shows a correlation between the density of monomeric globular
polyglutamine and By (7). The magnitude of the latter decreases as density
decreases. Similarly, Panel B shows that the magnitude of B,,(7) decreases as
the ensemble averaged value of R, increases for monomeric globular

polyglutamine.

For a given temperature, the driving forces for chain collapse may be
decomposed into two components.® Specifically, the mean-field internal energy

per residue may be written as:

U
<—N> = (TG, (T)v (4-4)
Here, N denotes chain length, (U) is the average potential energy at

temperature T, C,(T) measures the bulk energy density, and C,(7T) measures the
surface energy density. C(7) provides an estimate of the effective strength of
self-interactions and C,(7) estimates the energy associated with making
interfaces between polyglutamine and the surrounding solvent. Self-interactions
are favorable if Cy(7) is negative and the strengths of favorable interactions are
measured by the magnitude of C(7). If C,(7) is positive, its magnitude measures

the energy penalty associated with increasing the size of the unfavorable chain-
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solvent interface. Conversely, if C,(7T) is negative, then mixing of the chain and

solvent is preferred.

Panels A and B in Figure 4.6 plot the temperature dependencies of C,(7)

and Cx(7) in the range T<360K:
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Figure 4.6 Energy decomposition analysis. Plots showing the temperature

dependencies of the coefficients C4(T) and Cy(T) that result from linear regression

analysis by plotting (U) vs. N7 . The coefficient C+(T) has units of kcal/mol-N, whereas
N

C,(T) has units of kcal/mol-N?3.

Consistent with previous observations, with decreasing temperature, the
stabilities of collapsed states increase. This is indicated by the fact that Cy(7)
becomes more negative and C,(7) becomes more positive. From the correlation
analysis in Figures 4.4 and 4.5 and the data in Figure 4.6 we conclude that B,,(7)
becomes increasingly more negative as the driving force (magnitudes of Cy(7)
and Cy(7), respectively) for forming compact (small &), dense globules (large p)

increases. Upon collapse, self-interactions are maximized. Dimerization leads to
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a diminution of the unfavorable solute-solvent interface and increased self-

interactions through intermolecular association.

Since collapse and dimerization result from the combined drive to
minimize unfavorable solute-solvent interfaces and maximize self-interactions,
the surface-to-volume ratio (Rsy) of a single chain in a poor solvent provides a
generic measure of the relevant driving forces.®® For globules, Rgy decreases
with increasing chain length because it scales as N ""*. For small N, Rsy is large,
which means that unfavorable surface energies are not readily offset by
favorable self-interactions. As a result, a relatively short peptide like Q45 shows
weak tendencies toward collapse and stable dimerization. Very few self-
interactions may be formed on the inside of a globule for this chain and all
residues remain at least partially solvent-exposed. Rsy decreases as a function of
chain length with N"'*. Hence, it is significantly reduced for Qs and even more so
for Q45. From the data we conclude that Rsy is small enough to allow for the
unfavorable surface energies to be offset comfortably by favorable self-
interactions. Visual inspection suggests that these chains form globules with well-

defined interiors in which some residues are sequestered from solvent entirely.

Q30 and Q45 encompass the threshold length range for polyglutamine
disease phenotypes.34 We may speculate that the preceding discussion identifies
Rsy as a rather simple signature associated with the observed chain-length
dependent phenotype: association is phenomenologically coupled to collapse
and phase separation may be triggered by a very small nucleus.' It is important

to point out that such a conjecture is only meaningful because the system is
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composed of highly flexible polymers. If instead they were rigid spheres that
interacted primarily through surface contacts,® then the value of Rgy for a single
chain would be less meaningful because C,(7) would be irrelevant. In this case,
the relevant surface-to-volume ratio would be that of clusters of molecules and
not that of a single molecule. The description of polyglutamine aggregation would
then follow classical models for homogeneous nucleation where aggregation is

favorable only if the cluster size is greater than some critical number.*

1V.4.4. Conformational Specificity in Collapse and Intermolecular Associations

The foregoing analysis focused on generic polymer physics parameters
and the correlations between these quantities and the spontaneity of
intermolecular associations. We also assessed the presence of specific,
ensemble-averaged conformational propensities that can be implicated in
promoting both collapse and intermolecular associations. Specifically, we asked
if there is a discernible increase in -sheet propensity associated with collapse,
spontaneous associations, or both? To answer this question, we computed the
fractional a-helical and -sheet contents using our simulation data.

There are several ways to assess secondary structure content in proteins
and polypeptides. We have developed a strategy that is based on analysis of
distributions of the ¢,y-angles of the peptide backbone. The resultant measure,
shown below, provides a reasonable estimate of secondary structure content as
compared to popular measures such as DSSP* (compare Figure 5.5). The

fractional o and 3 contents, £, and f3, respectively, are defined as:
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N
1.0 if (9,7, )e X

exp(—rxdi(i)) otherwise

df@ - {[\/[@)’ oy Jmod2n | +[ (v, ~ vy Jmod2n | - rxj mod 2n}2

In Equation 4-5, fx denotes the fractional content of secondary structure

- (@-5)

type X, where X is either o or . The mod2=n terms corrects for periodicity effects
when calculating distances in angular space and N is the number of residues in
the sequence, excluding capping groups. The coordinates (¢x,yx) define the
reference ¢,y-values to be adopted by an individual residue for the secondary

structure motif of type X. If a residue i adopts ¢,y-angles that lie within a circle of

radius rx, then the parameterf)gi) is set to unity; otherwise,f)g) assumes a value

between 0 and 1, and the precise value is determined by two parameters, viz. the

distance dx; and tx. The latter is the width of the Gaussian function used to

determine the value to be assigned for fg) For X=a, (¢o,We)=(-60°,-50°),

r=30°, and 1,=0.002deg™. Conversely, for X=, (dp,yp)=(~125°,125°), r3=40°, and
13=0.002deg™.

Figure 4.7 shows four panels that summarize the temperature
dependencies of fractional o-helical (f,) and B-strand (f3) contents in Qs, Q15, Qao,

and Q5. Data are shown from simulations of monomeric polyglutamine and

those with two chains (“dimer”):
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Figure 4.7: Temperature dependencies of the fractional a-helical (f;) and B-sheet
(fs) contents for Qs, Qs5, Q30, and Qs, respectively. The squares (blue and black)
quantify f, and f using data from simulations of monomeric polyglutamine. Conversely,
the diamonds (green and red) quantify f, and f; using data from simulations of pairs of
polyglutamine molecules. Data are shown over a range of temperatures spanning the

collapse regime and the transition regime up to Ts.

From the data shown in Figure 4.7 we conclude the following. First, there is a
clear, statistically significant diminution in f, with increasing chain length.
Inasmuch as intermolecular associations become favorable with increasing chain
length, the decreased a-helical propensities with increasing N suggest a weak
correlation between decreased helical propensity and chain associations.
Second, while collapse and intermolecular associations show clear temperature
dependencies, conformational propensities measured in terms of f, and f; show

very weak temperature dependencies. Therefore, local conformational
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propensities appear to be only weakly coupled to the driving forces for collapse
and intermolecular associations. Third, for a given solvent quality (defined by the
value of the simulation temperature T), the fractional 3-content is greater than or
equal to the fractional a-content, and this is true irrespective of chain length.
Fourth, of the three chains, Q5, Q30, and Qus, the two longer chains show a
diminution in the a-helical content and an enhancement in 3-content by a weak

increase in f with increasing temperature.

Local secondary structure content changes weakly as a function of
temperature and chain length. Despite this, the driving forces for collapse and the
spontaneities of homodimerization show clear temperature and length
dependencies. Therefore, we conclude that disordered globules associate to
form disordered dimers. This observation is congruent with the findings of

Krishnan and Lindquist®®

for the aggregation of the NM regions of the yeast prion
protein Sup35. They found that “molten oligomers”, which form as precursors to
NM fiber formation, are dominated by contacts between the globular forms of the

glutamine- and asparagine-rich N-domain®® which also forms collapsed

structures in its monomeric form.*°

1V.4.5. Evidence for Intrinsic Disorder in Polyglutamine

Experimental data and computational studies have documented the lack
of conformational specificity in monomeric polyglutamine. In our simulation data,
this preference for intrinsic disorder prevails despite the preference for collapsed

states for temperatures in the range 7<360K. In Chapter Il, we proposed that
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intrinsic disorder is a direct consequence of the homopolymeric nature of
polyglutamine. The lack of sequence specificity implies that a variety of compact
species, irrespective of chain conformation, have equivalent stabilities and that
the conformational ensemble therefore is a heterogeneous collection of compact
conformations. While this type of disorder is distinct from the disorder associated
with denatured proteins, collapse does not imply folding.*' Our analysis of local

conformational propensities makes this point.

Additionally, we can analyze the variations in contact patterns between
individual members of the conformational ensemble to assess the degree of
disorder as a function of temperature. To accomplish this, we quantify disorder
by computing a single figure of merit, namely the normalized variance in the

number of intramolecular contacts (o?v) as a function of temperature. This

quantity, computed for monomeric polyglutamine, is defined as follows:

) W
O3 2 () A0
nmax(N)
(=% )

k=

(4-6)

Here, N denotes the chain length, T is the simulation temperature, and p,gN)(T)

is the probability of realizing & intramolecular contacts in a chain of length N at

temperature T. A contact is defined by any two non-bonded atoms from residues

i and j having a distance less than 3A. <nc>gN) is the average number of
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intramolecular contacts in a chain of length N at temperature 7 and nm.(N) is the
maximal number of realizable intramolecular contacts in a chain of length N.

Results for the variation of ci, as a function of temperature for Q4s, Q3o,

and Qs are shown in Panel A of Figure 4.8:
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Figure 4.8: Temperature dependence of the variance in the number of
intramolecular contacts for monomeric polyglutamine of different chain lengths — Panel

A — and for two globular proteins with well-defined folds, viz. the B1 domain of protein G
(1GB1) and engrailed homeodomain (1ENH) — Panel B.

In the high temperature limit (7>450K), past Ty, chains sample canonical
denatured state ensembles where the dominant contacts are local and the
likelihood of realizing distal contacts is very small; this is true for a majority of
conformations in the ensemble. Consequently, the average number of contacts is
small and so is the variance. Just below Ty, the chains are in the transition region

and sample conformations from two distinct ensembles, viz. the coil and globule
states. In this regime, conformational fluctuations are large and values for csfv

are high because vastly different types of conformations are sampled. In
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complete congruence with the analysis shown in Figure 4.1, the sharpness of the
coil-to-globule transition increases with N. This is manifest by the fact that as ¥

increases the width of the transition region decreases and the peak height
increases in Panel A of Figure 4.8. In the collapse regime, csi, decreases with

decreasing temperature and does not plateau to a well-defined value. This

systematic decrease of ci, with decreasing temperature is a characteristic

signature of dynamical disorder and is consistent with the glassy behavior
quantified in Chapter Il (specifically, see 11.4.4).2 The assignment of dynamical
disorder to collapsed polyglutamine is made clear by comparing the variance
profiles shown in Panel A of Figure 4.8 to the variance profiles obtained from
simulation data for thermal unfolding of two well-folded proteins (shown in Panel
B of Figure 4.8), namely the B1 domain of protein G (GB1) and the engrailed

homeodomain (ENH) (see Figures 3.6 and 3.7 and 1l1.6.2 as well). There are
well-defined baselines in the values of G?v on either side of the transition region.

Additionally, the unfolded baseline (high T) is higher in value than the folded
baseline (low 7), which is consistent with the adoption of a roughly rigid structure
with small-scale fluctuations at low temperature and a heterogeneous ensemble
characterized by dominant local contacts at high temperature. In contrast, for

polyglutamine, there are temperatures well into the collapsed regime (7<360K)
for which G?V is actually higher than the asymptotic value achieved in the high

temperature regime (7>450K). These data are consistent with the proposal that

monomeric  polyglutamine fluctuates between disparate collections of
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conformations of roughly equivalent compactness. Intrinsic disorder results
because collapse is only weakly coupled from folding in these simple systems
that lack the requisite sequence specificity to prefer a specific compact

conformation.

IV.4.6. Importance of Spontaneous Fluctuations for Promoting Intermolecular
Associations

We have established that monomeric polyglutamine, which is intrinsically
disordered, associates to form disordered homodimers. The latter point is
underscored in the analysis where we showed that local conformational
propensities are essentially unchanged between the isolated monomer and
associated dimer, Figure 4.7. Using a simple approach, we interrogated the role
of intrinsic disorder (spontaneous fluctuations) of polyglutamine in promoting
intermolecular associations. This was done in a series of simulations where we
quantified the likelihood of realizing spontaneous associations of rigid globules.
These simulations were carried out as follows: random globular conformations
were chosen from the conformational ensemble of monomeric Q3o at 7=298K.
The internal coordinates were then frozen and only rigid body Monte Carlo
moves were allowed for subsequent sampling. Statistics were recorded to
construct the requisite histograms for intermolecular separations sampled in
simulations with rigid globules. The process was repeated approximately a
thousand times and the resultant, average cumulative distribution F(R) was
compared to that obtained for the association of “fully flexible” chains. These

comparisons are shown in Figure 4.9:
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Figure 4.9: The important of fluctuations for the spontaneity of association.
Cumulative distribution functions F(R) quantifying the probability of realizing an
intermolecular separation that is less than or equal to R for pairs of Q3y molecules that
are either fully flexible (solid curves) or rigid (dashed curves) globules. Data were
gathered from Metropolis Monte Carlo simulations that were performed with the

simulation temperature 7=298K.

The dashed curve, which corresponds to the cumulative distribution
function for rigid globules, reveals the importance of conformational fluctuations
in promoting intermolecular associations. The suppression of conformational
fluctuations at 7=298K leads to a diminution of intermolecular associativity for
Q30. The lack of rigid structural preferences or a stable fold upon collapse is
clearly responsible for promoting intermolecular associations between disordered
globules. This result is consistent with the observation that many aggregation
sequences are also intrinsically disordered. However, some caution is required in

interpreting the results of Figure 4.9. For instance, Figure 4.8 shows that the
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degree of disorder measured by G?v increases with temperature for 7<360K and

yet By, (T) decreases with increasing temperature. The physical basis for the latter
observation comes from the analysis in Figures 4.5 and 4.6, which demonstrates
that the poorness of solvent decreases with increasing temperature. Therefore,
we conclude that both poorness of solvent and spontaneous conformational
fluctuations work together to promote spontaneous homodimerization. This point
is reinforced by the following observation: in the temperature regime
360K<7<410K the magnitudes of conformational fluctuations go through a
maximum for all chain lengths. In this regime, the surface energy penalty,
measured by Cy(7), is still positive and approaches zero only as T approaches Ty
(data not shown). Under these conditions, homodimerization might require the
formation of an appropriate conformational nucleus to which only appropriate
conformations would be able to dock and minimize the unfavorable interface with
the surrounding solvent. Alternatively, some other, higher-order, oligomeric
species might be the thermodynamically favored entity because such a species
might minimize the unfavorable solute-solvent interface more efficiently than
dimers in the regime 360K<7<410K. A detailed investigation of the precise
correlation between poorness of solvent and the magnitude of conformational

fluctuations merits further scrutiny and is reserved for a separate study.

IV.4.7. Contacts that Promote Collapse and Dimerization
Polyglutamine molecules are polyamides built by a repetition of backbone

secondary amides and sidechain primary amides. To analyze the types of inter-

221



atomic contacts that lead to collapse and dimerization, we computed site-site pair
correlation functions. The site-site correlation functions of interest to us are
between backbone donors (N) and backbone acceptors (O), sidechain donors
(N) and sidechain acceptors (O), backbone donors (N) and sidechain acceptors
(O), and sidechain donors (N) and backbone acceptors (O). If we denote donor
atoms as D and acceptor atoms as A, then the relevant donor-acceptor site-site

correlation function gpa(r) at temperature 7' is computed as (see Equation 2-3):

W7 )(r)
2oa )=—3) (4-7)
o

Here, h]()TA)(r) is the histogram of relevant donor-acceptor distances at

temperature 7 and hg? (r) is the corresponding histogram of distances at 7. If

gpa(r) > 1, then there is an enhancement of the relevant donor-acceptor contacts
in the ensemble at temperature T vis-a-vis Ty; if gpa(r) = 1, then the distribution of
donor-acceptor contacts at separation r is equivalent to that of Ty; finally, if gpa(r)
< 1, then there is a depletion of donor-acceptor contacts at separation r vis-a-vis
To.

Figure 4.10 shows intramolecular donor-acceptor site-site correlation
functions for monomeric Q5. As T approaches Ty, all pair correlation functions
converge upon values of unity for all distances. For lower temperatures,

specifically 7<360K, there is significant enhancement vis-a-vis Ty of short-range
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(3A<r<5A) sidechain donor — sidechain acceptor and sidechain donor —

backbone acceptor contacts:

Backbone N — Backbone O B Sidechain N — Sidechain O
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: \ . — 305K
1.0
L & K — 315K
— 325K
0

g(r)

10 20 30 40 10 20 30 40 | 335K
Distance in A Distance in A 345K
Backbone N — Sidechain O D Sidechain N — Backbone O 335K

3.5 360K
3.0 — 370K
25 380K
z,, —— 390K
%0 100K
L5 W\ ‘&/,\\ 410K

« N | N

10 20 30 40 10 20 30 40
Distance in A Distance in A

Figure 4.10: Temperature dependent, intramolecular site-site correlation functions
for different pairs of backbone and sidechain atoms. The pair correlation functions

were computed using data from simulations of two polyglutamine molecules.

All four sets of site-site correlation functions in Figure 4.10 show
systematic enhancements of medium-range contacts (5A<r<20A) and depletion
of distal contacts. This feature is consistent with the preference for collapsed
states at lower temperatures. The pair correlation functions shown in Figure 4.10

suggest that the collapsed states are characterized by prominent sidechain-
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backbone interactions, again with respect to 7y, indicating that the sidechain
amides solvate the backbone and are thereby minimizing the interface between

backbone secondary amides and the aqueous milieu.

The approach used here to calculate pair correlations differs from the one
used in Chapter Il (see Figure 2.8). Here, we used Ty as our reference state
whereas previously we used an ideal chain model as the reference. Therefore,
the two sets of correlation functions for collapsed, monomeric polyglutamine are
different. Nonetheless, if we juxtapose the conclusions from Chapter Il and here,
then in 11.4.3 backbone-backbone interactions were identified as the dominant
interactions promoting collapse. Conversely, here we identify sidechain-mediated
interactions. We can speculate that this result is tied to a fundamental difference
between the two models: in ABSINTH, the free energy of solvation for the
backbone secondary amide (N-methylacetamide) is set to the experimental value
of -10.1kcal/mol (see Table 3.a). The work in Chapter Il, however, employed
simulations in explicit solvent using the Tip3p water model*? and the OPLS-AA/L
force field?®. For this combination of force fields, we measured the free energy of
solvation computationally and obtained a value of only -6.5kcal/mol (Vitalis and
Pappu, unpublished), i.e., a value suggesting much less favorable interactions
between the backbone model compound and the solvent water. Therefore, it
would not seem surprising that backbone-backbone interactions are more
important in the work presented in Chapter Il. A comparative analysis of mixtures
of N-methylacetamide and propionamide (the sidechain model compound)

between the two force fields may shed more light on this issue.
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Figure 4.11 shows intermolecular donor-acceptor site-site correlation
functions calculated using simulation data for a pair of Q45 molecules in the
simulation volume. These pair correlation functions are shown on a log-scale to

facilitate the visualization of all the data:
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Figure 4.11: Temperature dependent, intermolecular site-site correlation functions
for different pairs of backbone and sidechain atoms. The ordinate is shown in a
natural log-scale to facilitate the visualization of the variation of the pair correlation over

the entire range of intermolecular separations. As for Figure 4.10, the pair correlation
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functions were computed using data from simulations with pairs of polyglutamine

molecules.

For temperatures that are in the collapse regime, there is significant
enhancement of all flavors of donor-acceptor contacts. This is because of
significant intermolecular donor-acceptor contacts that are absent at the theta-
point. These observations suggest that spontaneous dimerization of
polyglutamine is the result of the drive to minimize the interface with the
surrounding aqueous environment, a poor solvent for polyglutamine, and to
replace this interface with favorable intra- and intermolecular contacts between
all combinations of backbone donors, backbone acceptors, sidechain donors,

and sidechain acceptors.

IV.5. Discussion of Implications for the Aggregation of

Homopolymeric Polyglutamine

Summary of Results

In this chapter, we have presented results from atomistic simulations on
the length and temperature dependence of conformational equilibria and
spontaneous dimerization of polyglutamine molecules. Our main findings are as

follows:

e Profiles for coil-to-globule transitions (Figure 4.1) show a striking length
dependence that is in good agreement with expectations from polymer
physics theories. Specifically, the sharpness of this transition increases with

N, and this implies that the stability of collapsed states in aqueous milieus
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increases with chain length. Curves that plot the variation of normalized chain

size with temperature coincide at the “tri-critical” point, 7.

Homodimerization is spontaneous in the collapse regime and its spontaneity
increases with chain length (Figure 4.4). Conversely, for a given chain length,
its spontaneity decreases with increasing temperature. Homodimerization is
tightly coupled to the collapse of monomeric polyglutamine (Figures 4.5 and

4.6).

Driving forces for collapse of monomeric polyglutamine have two generic
components. These are: (i) the drive to maximize self-interactions; and (ii) the
drive to minimize the unfavorable solute-solvent interface with the
surrounding aqueous milieu. Congruently, dimerization should lead to the
formation of additional self-interactions (Figures 4.6 and 4.11) and the
number of favorable intra- and intermolecular self-interactions should
increase with chain length similar to the “linear lattice” effect proposed by

/.43

Bennett et al.”™® Similarly, dimerization leads to further minimization of the

unfavorable solute-solvent interface (Figure 4.6).

Evidence that the length dependence of spontaneous homodimerization is
non-specific and originates in generic considerations for polymers in poor
solvents comes from Figure 4.7. Here, we showed that there are no
substantial local conformational changes, such as B-sheet formation or
conversion from a-helical forms that can be implicated in promoting

homodimerization.
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e We show, in complete agreement with experimental and computational
data,’”"82*% that polyglutamine molecules, irrespective of chain length, are
intrinsically disordered even under conditions where collapsed states are
thermodynamically favored (Figure 4.8, also compare Chapter Il). This
intrinsic disorder, i.e., the inability to adopt a stable fold can be implicated in
the spontaneity of homodimerization. Suppression of disorder by quenching
conformational fluctuations leads to a significant diminution in the preference

for associated states (Figure 4.9).

e We have shown that homodimerization is spontaneous and that the
spontaneity increases with chain length for a prescribed poorness of the
solvent. However, dimerization does not require the obligate formation of a
specific, thermodynamically unfavorable, conformational species of the
monomeric form (Figures 4.7 and 4.10). Our results also suggest that higher-
order oligomers can form readily, although this needs to be studied carefully
in future work. Hence, homogeneous nucleation is unlikely to be the correct

mechanistic explanation for polyglutamine aggregation.

Connection to Interpretations of Experimental Results

Chen et al.' described the formation of large ordered polyglutamine
aggregates as a nucleation-dependent reaction using the model of Ferrone®
(see 1.2). In the schematic that emerged monomeric polyglutamine (irrespective
of chain length) is in rapid pre-equilibrium with an ordered nucleus (presumably
an ordered B-sheet conformation). This unfavorable folding reaction is a

conformational pre-requisite for the formation of aggregates of all sizes, including
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dimers. Four probes were used to monitor the kinetics of aggregation. These
were CD, light scattering, ThT binding, and reverse phase HPLC. If B-sheet
contents do not vary with oligomerization, then CD signals would not change as
oligomers formed. Similarly, light scattering cannot resolve the presence of small
oligomers; ThT binding most likely reports only on the formation of large ordered
aggregates and is expected to correlate well with the CD signal. Lastly, if the
oligomers are part of the soluble species, then reverse phase HPLC would not

/.19

detect them, either. Hence, the data presented by Chen et al.”” cannot rule out

the presence of soluble oligomers in the reacting mixture.

Interestingly, other lines of experimental evidence support the presence of

14" measured the

oligomers as identifiable intermediates.***® Recently, Lee et a
aggregation kinetics of Qg3 using peptide constructs that were similar to those
used by Chen et al' Using both static and dynamic light scattering, these
authors found evidence for the formation of soluble, linear aggregates during the
lag-phase. They also found the early aggregates to be lacking in regular
secondary structure. Inasmuch as we can connect dimer formation with formation
of larger aggregates, we propose that our results, which show a lack of local
conformational specificity in chain collapse and intermolecular interactions, are

consistent with the observations of Lee et al. Similar interpretations with respect

to the existence of soluble oligomers were obtained in vivo by Takahashi et al.*®

The presence of disordered low and high molecular weight aggregates
implies that simple homogeneous nucleation models may not accurately describe

polyglutamine aggregation. Questions persist regarding the degree of complexity
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needed in mechanistic models for polyglutamine aggregation. One possibility is
that the formation of disordered linear or spherical aggregates, unlike the
formation of ordered aggregates, occurs off-pathway and does not follow the
tenets of homogeneous nucleation theory. Alternatively, as suggested by Lee et
al.*” and others,*® disordered aggregates that are sufficiently large might convert

to ordered forms. The different scenarios are summarized in Figure 4.12:
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Figure 4.12: Schematic for the formation of higher order aggregates given a prescribed

poorness of solvent.

Within the cartoon in Figure 4.12, the simulations in this chapter have
addressed steps (a), (b), and (c), albeit at very low copy numbers and high
effective concentrations. In step (a) we find that monomer conformational
equilibria favor non-specific collapsed states as opposed to a single folded
species or an ensemble of extended conformations. Step (b) shows the
favorable, spontaneous homodimerization and formation of disordered dimers.

Step (c) shows that in our simulations disordered dimers are favored over
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ordered dimers. We probe step (d), which requires probing the formation of high
energy species along a well-defined reaction coordinate, in Chapter V. The
schematic addresses possible routes to the ordered aggregate shown in the
bottom right corner of the picture. Scenario | calls for the conformational
reorganization within a large, disordered linear / spherical aggregate. This
scenario resembles the concept of gelation or ordered aggregation which
requires a critical number of intermolecular contacts. Scenario Il is that of Chen
et al'® Here, non-specific oligomers represent off-pathway events which
effectively modulate the pre-equilibrium implied in (a). Scenario Il depicts the
formation of ordered aggregates via entanglement of swollen conformations that

are also high energy species in a poor solvent.

The schematic is congruent with the tenets of the generalized Lumry-
Eyring model put forward recently by Andrews and Roberts.®® The work in
Chapter V will address how likely the different scenarios appear by explicitly
probing the impact of structure on dimerization propensity and mechanism.
Chapter VI will resolve the impact of sequence context on the qualitative picture
depicted in Figure 4.12. This is a crucial point since a fundamental difference
between the in silico experiments presented here and typical in vitro experiments
is the ideal hompolymeric nature we stipulate to probe the intrinsic properties of
glutamine-rich polypeptides. Capped homopolymers are so insoluble, however,
that they cannot be studied experimentally and are flanked with charged residues

instead.®’
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Alternative Mechanisms Proposed Based on Computer Simulations

Molecular simulations have played an important role in generating insights
and testable hypotheses for various self-assembly phenomena involving folded
proteins and intrinsically disordered proteins.®*** The latter are challenging
systems for simulation and experiment alike because their free energy
landscapes are both degenerate and rugged. Marchut and Hall®>*® employed a
conceptually different, structurally guided, coarse-grain model to describe peptide
and solvent. Despite this difference from our approach, a brief comparison of the

results is in order.

In their most recent study, the concentration used is 2.5mM for a system
comprised of 24 molecules with chain lengths ranging from 16-48 residues at
various reduced temperatures. They find that at temperatures close to the
effective Ty of their model large-scale aggregates with relatively large fractions of
B-sheet hydrogen bonds and with distinctive ring-like topologies are populated.
The authors note that experimental evidence for these structural motifs is lacking.
However, at lower reduced temperatures they describe “amorphous aggregates”,
i.e., aggregates lacking in structure. Our results are congruent with this
unstructured “phase”. In their parlance, disordered globules with unstructured
interfaces are termed amorphous aggregates. As for the observed ordered phase
(“sheets”), we argue that the concentration regime in their work as well as the
employed model predispose the results toward this order. This is suggested by
the fact that B-rich structures appear even at the monomer level, which is

incongruent with existing experimental data for monomeric polyglutamine.'”'® It
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is therefore likely that the appearance of an ordered phase for small oligomers is
an artifact of the way their models were built. These differences not withstanding,
the results of both studies appear to share some overlap in predicting amorphous
aggregates under certain conditions. Whether more of the results will be
reconciled if the simulation conditions between the two studies are fully matched,

remains to be seen, and is a topic for future investigation.
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CHAPTER V. THE THERMODYNAMICS OF 3-SHEET FORMATION

FOR MONOMERIC AND DIMERIC POLYGLUTAMINE

V.1. Preamble

One of the prominent results of Chapter IV' is that structure does not
seem to be a requirement for two homopolymers composed of glutamine to
favorably interact at concentrations in the uM-range. Such a generic propensity
to dimerize would suggest that larger oligomers form readily and are spherical
and disordered in nature. One proposal would be that canonical B-secondary
structure can much more readily form in a water-deprived (“dry”) environment
and that larger assemblies are hence needed to observe conformational re-
arrangement toward higher p-content. Such a simulation would be a
computationally infeasible endeavor with current resources and remains reserved
for future work. Even then, significant effort might have to be spent upfront to

coarse-grain the representation of the system further (see Chapter VII).

In silico, we do enjoy the benefit of having access to tools which allow the
(biased) sampling of low likelihood species. When set up properly, such an
“‘unphysical” simulation can reliably yield thermodynamic data for regions of
phase space which would not be visited during a finite length equilibrium
simulation. We take full advantage of this idea in this chapter. Nicholas Lyle, the
co-author on the manuscript underlying this chapter,? took over an established

protocol for biased simulations quantifying the thermodynamics of the formation
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of B-secondary structure in polyglutamine. He also adopted the technology and
analyses introduced in Chapter IV to quantify the associativity of two
polyglutamine chains. His contributions to the work in this chapter are as follows:
he verified that the reaction coordinate which measures pB-content is meaningful
and fine-tuned its parameters. All the data presented in this chapter were
generated by him. He analyzed those data and created the figures based on

suggestions and specific requests.

V.2. Introduction to the Putative Role of 3-Secondary Structure during

the Early Stages of Polyglutamine Aggregation

As was outlined in 1.2.6, one of the key findings in the molecular
characterization of CAG repeat diseases was the discovery that aggregates rich
in polyglutamine display amyloid-like features, ie., that they trigger the
characteristic fluorescence shift upon ThT binding and exhibit fibrillar
architectures in electron micrographs.>* CD spectroscopy adjudicates
polyglutamine-based aggregates to be rich in B-secondary structure, which we
have to consider agnostically: B-helices,® parallel and antiparallel p-sheets,® and
B-hairpins are all putative secondary structure motifs giving rise to the
characteristic CD signal.

Such considerations appear to place polyQ-aggregates firmly in the realm
of amyloids. Short sequences derived from amyloidogenic proteins including the
peptide GNNQQNY from the yeast prion Sup35 have been successfully

crystallized and studied by X-ray diffraction.”® The structure identified reveals a

238



cross B-spine architecture and suggests -secondary structure as the dominant
conformation in condensed peptide phases. It is difficult, however, to obtain such
microcrystals consistently,® and their relevance as reporters even for the

structure of fibrillar aggregates of amyloidogenic proteins may be questioned.

Solid-state NMR data have been used to derive structural models for fibrils
formed by the most prominent amyloidogenic peptide, i.e., the Alzheimer's
peptide AB. These models provide the only atomistic structures of directly
disease-related amyloids. Interestingly, polymorphism is obtained even when
fibrils are grown under identical conditions.'® Much like polyQ-based peptides, AB
is intrinsically disordered but known to exhibit some transient structural
preferences and to form oligomers of specific size.'"'? Neither of those is true for
polyglutamine. We might expect based on the complete lack of specificity (see
Chapters 1I"* and IV) that polymorphism in aggregates of polyQ-based peptides
is amplified. However, to our knowledge, no comprehensive analysis of this has
been performed to date. We speculate that it is not at all clear that a
heterogeneous environment will consistently yield amyloid-like aggregates for
polyglutamine, in particular in vivo. In fact, a hypothesis may be formulated that
under a wide range of conditions amorphous aggregates are the
thermodynamically stable phase or at least represent a necessary reaction
intermediate for fibril formation.'*'® Of course, amorphous aggregates are ill-
defined and hence difficult to quantify using the aforementioned, experimental

techniques.
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The above discussion does not suggest any particular relevance of -
secondary structure during the early stages of polyglutamine aggregation. As
detailed in 1.2.6, monomeric, soluble peptides rich in polyglutamine are usually
completely disordered, even though a toxic monomeric conformation rich in -
sheet has been identified for a fusion construct with a non-native host protein."’
As a first-pass model, Wetzel and co-workers'®' have suggested an
aggregation mechanism involving a toxic folding event®® at the monomer level to
yield a B-rich nucleus (see 1.2.5 and Figure 1.3). It has been argued that the
intrinsic disorder and hence its ability to undergo large-scale conformational
transitions predispose polyglutamine to such a mechanism.?' Evidence against a
mechanism like this comes from studies in which soluble intermediates were
discovered and characterized as being free of canonical secondary structure.?**

This would be much more consistent with the proposals brought forth in IV.5 and

Figure 4.12.

Can these observations be reconciled? Three major tenets of the model in
Figure 1.3 are the assumption of homogeneous nucleation, the nucleus size of
one, and the proposal that the conformation of the nucleus is the same as in the
final aggregate. It is possible that the observed disordered and soluble oligomers
occur off-pathway and that their presence gives rise to an effective nucleation
rate by depleting the monomer pool. This would allow aggregation to remain
homogeneously nucleated by a monomeric conformer rich in p-secondary

structure. On the other hand, it seems quite plausible that the physical
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mechanism of aggregation is much more heterogeneous and that the details are

masked by the simplicity of the kinetic analysis (see 1.2.6).2*%

In summary, the mechanistic importance of B-secondary structure during
the early stages of polyglutamine aggregation remains unknown. This is primarily
due to the difficulty in experimentally characterizing the involved species.? The
prevalence of this conformation of the peptide backbone in condensed phases
deprived of water appears to support the idea that p-rich conformers will self-
interact more favorably than conformers with low B-content. We may also
conjecture that monomeric, B-rich structures are difficult to populate for short
homopolymers since a-helical and disordered conformations might be better
suited to sequester the protein backbone from the solvent and to satisfy the
collapse constraint imposed upon all uncharged and polar (and not just
hydrophobic) polypeptides.™?° In this chapter, we test both of those conjectures

directly. Specifically we ask:

e How likely is the formation of an ordered, B-rich structure at the monomer
level? Are such species observed as stable or metastable states along a

reaction coordinate measuring the net -content of the chain?

¢ Does the likelihood of forming species high in B-content increase, decrease, or
stay constant with increasing chain length? Does the result support the model
that the chain length dependence of the rate aggregation is explained by more

favorable nucleation with increasing chain length (see 1.2.5)?

241



e Do ordered species increase, reduce, or do they not affect the spontaneous

driving force for dimer formation of polyglutamine peptides?

e Are the structural signatures associated with the dimerization of polyglutamine

altered if high p-content is enforced, in particular at the dimerization interface?

We organize the remainders of this chapter as follows: first, the necessary
details of our methodology are introduced. Emphasis is given to parts that differ
from the work presented in Chapter IV (see 1V.3). We then show data to justify
our approach and provide answers to all of the above questions. We conclude
with a summary and discussion of our results in the context of the structural

aspects of the early stages of polyglutamine aggregation.
V.3. Simulation Details

V.3.1. The Reaction Coordinate fz

In Chapter IV, we have defined global metrics of secondary structure
content (see Equation 4-5). Here we will employ this definition to define a
reaction coordinate f; that allows quantification of global B-content. As a reminder,
fp relies on measuring the fraction of residues whose ¢,y-angles occupy the

region in ¢,y-space characterized as the p-basin:

fffﬁz

i=1

L& {1.0 if (9. v,) <P

exp (-rBd(zl-) ) otherwise
(5-1)

dg;) = {\/[(4), ~ g )mod2n]2 + [ (i - v )mod2nf - ] mod 27:}
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In Equation 5-1, f3 measures the fractional B-content of the polypeptide
chain by averaging over the N residues with polypeptide ¢,y-angles. The mod2zn
terms correct for periodicity effects when calculating distances in angular space.
The coordinates (¢p,yp) define the reference ¢,y-values to be adopted by an
individual residue. If they lie within a circle of radius 73, then they contribute a full
fractional count 1/N to the total B-content; otherwise, residue i will contribute a
reduced fractional count in the interval [0:1/N]. Its precise value is determined by
two parameters, namely the angular distance d; and the decay parameter 1.
The latter is the width of the Gaussian function used to determine the value to be

assigned for f3 and ensures a continuously differentiable function.
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Figure 5.1: The reaction coordinate f; as a function of the ¢,y-angles. Parameter

values for r3 and tg are as defined in text.
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The parameters were obtained via a calibration process:
(dp,wp)=(—152°,142°), r=50°, and rB=O.002deg'2. The resultant profile for a
single residue in ¢,y-space is shown in Figure 5.1. Data supporting our choices

are reported in V.4.1.

V.3.2. Biased conformational Sampling and System Setup

The basic approach to conformational sampling via MMC simulations of
the dihedral angles of the peptides was identical to the work in Chapter IV (see
Table 4.a). For clarity, Table 5.a summarizes details of the move set employed in

this chapter:

Settings for Settings for
Move type simulations of monomeric simulations with pairs of
polyglutamine polyglutamine molecules
Rigid-body 0% 30% (50%, 10A, 20°)
Omega (®) 7% (90%, 5°) 4.9% (90%, 5°)
Sidechain (1, %2, x3) 30% (4x, 60%, 30°) 21% (4x, 60%, 30°)
Backbone ¢/ 63% (70%, 10°) 44.1% (70%, 10°)

Table 5.a: Overview of the frequency of the different Monte Carlo moves sets used
in biased simulations of monomeric and pairs of polyglutamine molecules. Please
refer to the caption to Table 4.a for details.

The starting conformations for all simulations of either single
polyglutamine chains or pairs of polyglutamine chains were extracted at random
from an ensemble of self-avoiding random walks. For Qs, Qq5, and Q3o the first
10° MC steps were used for equilibration followed by 4x10” steps of production.

For Qus, we used 1.5x10° steps of equilibration and 6x10” steps of production. A
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droplet boundary condition was used in all cases (Equation 4-1). For monomer
simulations, the concentration corresponded to infinite dilution conditions, and for
dimer simulations it was 100uM. The ABSINTH model was used as presented in
Chapter Il (including the parameter settings given in Tables 3.a, 3.b and 3.d).
The small modification to the LJ parameters detailed in IV.3 is not present here.
This means that the results show small differences for the cases in which a direct
comparison is possible (see V.4.5 and V.4.6 in particular).

For the majority of the work in this chapter, Equation 3-1 is augmented by
and additional potential energy term which restrains the reaction coordinate f; via

a harmonic umbrella potential:*’

Uy =y 11 )2 (5-2)

Here, kg is the spring constant determining the stiffness of the potential, and fBO is
the equilibrium position of the restraint. The restraint potential has two
advantages: i) it allows us to map out the phase diagram of polyglutamine with
the two axes being general solvent quality modulated by simulation temperature
(see Chapter IV) and p-content modulated by k3 and fﬁo; and ii) it allows us to
employ ensemble re-weighting techniques (WHAM)*? to obtain free energy
profiles along f;3 even if the adopted values correspond to extremely low

likelihood regions of phase space.

In order to determine the free energy profile along f3 under poor solvent
conditions, we performed simulations of monomeric polyglutamine at 298K. For

each chain length, we performed eleven sets of distinct umbrella sampling
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simulations and in each simulation f; was restrained to one of eleven target f;’-
values: [0.0, 0.1, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 1.0]. This initial coarse
schedule was augmented by additional simulations to test the robustness of the
analysis: based on overlap statistics, six additional values for fp,-o were
considered: [0.2, 0.35, 0.45, 0.55, 0.7, 0.95]. Due to the lower computational cost
for these systems, we repeated the REX umbrella sampling calculation for Qs
and Qqs with the full schedule comprised of 17 independent values for fB-O and
found the results to be independent of schedule density (data not shown). All
analyses reported in V.4.3 employ the full set of 17 replicas in the WHAM
reconstruction. The number of ¢,y-pairs that contribute to f increases with N and
the value of kg in Equation 5-2 varied with N. We used values of kg=25kcal/mol
and 75kcal/mol for Qs and Q1s, and kg=150kcal/mol for Qzg and Qus, respectively.
Therefore, kg varies from 1.7kcal/mol (Q4s) to 2.5kcal/mol (Qs, Q45, and Qszo) per
restrained degree of freedom. For each window, sampling was enhanced using
the REX technique in fB-space.33 In contrast to Chapter IV, swaps were only
allowed between neighboring replicas. For each chain length, we performed
three independent REX umbrella sampling MC runs using the coarse schedule
provided above. The quality of sampling was assessed by computing statistics
for the extent of overlap of f3 histograms between adjacent windows and statistics
for replica exchange (see V.4.1).

For polyglutamine dimer simulations, we combined MC simulations with

thermal REX. In two of the three sets of simulations, each chain was restrained
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to target fBO values of = 0.75 and 1.0, respectively, while the third simulation set
involved unrestrained molecules. For each chain length, we carried out three
independent replica exchange runs. The following Kelvin temperature schedule
was used for the replica exchange simulations: [298, 305, 315, 325, 335, 345,
355, 360, 370, 380, 390]. The temperature schedule was based on data for coil-
to-globule transitions of unrestrained monomeric polyglutamine (see V.4.5). We
wish to quantify the spontaneity of intermolecular associations in the poor solvent
regime. However, the overlap between coil and globule ensembles is small and
decreases with increasing N. Therefore, we set the upper limit for the replica
exchange temperature schedule to be Ty=390K to ensure that the replicas were
used judiciously.

Lastly, error analysis proceeded in identical fashion to Chapter IV (see

IV.3.4).
V.4. Results

This section is structured such that the biologically relevant results are
presented coherently from V.4.3 onward. V.41 and V.4.2 are sections
demonstrating the validity of the approach taken in this chapter, which might not

appear as intuitive as — for example — the work presented in Chapter IV.

V.4.1. Robustness of Data from Restrained Simulations
Since the use of a restraint potential on f; is unprecedented, here we strive

to provide evidence that the results are reproducible. Figure 5.2 shows the
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histograms obtained for the reaction coordinate in the biased simulations of

monomeric polyglutamine at 298K:
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Figure 5.2: Biased histograms of f;. Data were obtained using a Hamiltonian
augmented by Equation 5-2 and for values of f;° as indicated in the figure legend. The
plots for Qs and Qs reveal the underlying discrete nature of the reaction coordinate. In
the limit of t3 approaching infinity, f3 becomes a strictly discrete function which only
adopts fractional values corresponding to the number of residues in the B-basin: e.g., for
Qs possible values would be 0/5, 1/5, 2/5, 3/5, 4/5, and 5/5 — the longer the chain, the

smoother the histograms.

Figure 5.2 reveals that — while there does seem to be some amount of noise in
the data for longer chain lengths — the overlap between neighboring replicas X
and X+1 is generally quite high with the complete schedule offB-O—vaIues. It can

be quantified using an overlap measure Oy x+;:
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fa=l
o ‘PX (fB)_PX+1 (fs)‘dfg
Jp=0

Ox x11= (5-3)

2
Here, Px(f3) is the probability of observing a specific fz-value in replica X
which is characterized by a specific f;’-value. Figure 5.3 shows a plot of Oy, for

all restrained sets of simulations of monomeric polyglutamine:
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Figure 5.3: Overlap statistics for simulations with restraints on f;. Overlap metrics
between neighboring replicas as calculated by Equation 5-3 are shown as bar plots for

simulations of monomeric polyglutamine for all chain lengths.

Figure 5.3 suggests that the overlap between neighboring replicas is sufficient to
ensure reliable data and an efficient REX-protocol (see V.3.2). As a final test of

the robustness of the analysis, we show that two independent methods of
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quantifying the free energy differences between adjacent fgo-values give the
same results, and — furthermore — that those results are independent of whether

a coarser or a finer schedule for £;” is used:
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Figure 5.4: Free energy differences between adjacent ﬁ,—o-windows obtained using
independent methods. A comparison between the cumulative free energies between
adjacent windows is shown. Data were obtained using the iterative WHAM procedure or
thermodynamic integration (Tl), and are tested for robustness when using a sparser
schedule of f;’-values.

Figure 5.4 demonstrates that the free energy differences between

neighboring fﬁ-o—values are independent of both the methodology employed to

obtain them (Tl or WHAM) and of whether the six additionalfp-o-values, which are
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part of the finer schedule, are included or not. We therefore conclude that the

analysis below is robust and reproducible.
V.4.2. Validity of f3 as a Reaction Coordinate

We assessed the validity of f3 as a measure of B-content by quantifying its
ability to estimate B-content in proteins of known three-dimensional structures.
We used PDBSelect® to create a database of 3,693 non-redundant protein
structures from the protein data bank. Sequences in this dataset have less than
25% sequence identity with each other. For each structure in the dataset, we
calculated the f; values and their DSSP E-score,* normalized by the number of
residues, as an alternative to measure the degree of ordered B-sheet. DSSP E-
scores are entirely based on hydrogen bond patterns and therefore represent an
excellent complementary measure to f3 which is based entirely on dihedral angle

populations.

Figure 5.5 shows the correlation between f3 and fractional DSSP E-scores.
The correlation coefficient is 0.83 between the two independent metrics. As
detailed in the caption to Figure 5.5, E-scores may be zero for structures free of
any canonical B-hydrogen bonds whereas f3 never rigorously approaches zero.
The differing stringencies for the two criteria give rise to scatter in Figure 5.5.
Figure 5.6 shows ribbon drawings of three-dimensional structures for five
structures from the database to illustrate that such scatter is easily explainable by

the type of structure present.
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09l —f= 0.86(DSSP Fractional E-Score) + 0.11
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Figure 5.5: Correlation between f; and fractional DSSP E-scores. The solid line is
the line of best fit that quantifies the strength and direction of the linear correlation
between f; values and fractional DSSP E-scores. Parameters for the slope and intercept
are shown in the inset. Structures that have high fractional DSSP E-scores also have
high f; values, although there is some scatter about the line of best fit. For approximately
27% of the structures in the dataset, the fractional DSSP E-scores are zero. Although
the f; values for most of these structures are small (<0.3), they span a finite range of f;

values.

Since we do not have definitive prior knowledge of the type of ordered (-
sheets that polyglutamine molecules adopt in fibrillar aggregates, it appears
reasonable to use a reaction coordinate which reflects that degeneracy, i.e., f3,
instead of the more stringent fractional DSSP E-scores. The high degree of

correlation shows that nonetheless f; is an informative readout of net B-content.
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2F1VA: DSSP= 0.69, /= 0.68 1H4GB: DSSP=0.60, f3=0.59

1BPV: DSSP=0.40, f3=10.39

1XU1: DSSP= 0.20, f3=0.20

2BI6h: DSSP=0, f3= 0.40

Figure 5.6: Ribbon diagram illustrations of the correlation between f; and
fractional DSSP E-scores. A prominent outlier is shown in 2BI6H which adopts mostly
extended structures giving rise to a non-zero fz-value but has no canonical B-hydrogen

bonds as defined by DSSP. Graphics were generated using VMD.*

V.4.3. Potentials of Mean Force as a Function of f3 for Monomeric Polyglutamine
The first question of interest is the likelihood of forming p-rich structures at

the monomer level for polyglutamine. As outlined in V.2, this emerges directly

from proposals in which the formation of a rare, B-rich species represents the

nucleation event for polyglutamine aggregation. From simulations employing

restraints on a suitable reaction coordinate (see V.3.2, V.4.1 and V.4.2), the free
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energy profile along an axis measuring B-content, viz. f3, can be obtained using

WHAM. Figure 5.7 shows our results:
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Figure 5.7: Free energy profiles along the reaction coordinate f3. Panel A shows the
PMFs with standard errors. Panel B shows the finite differences of the PMFs, i.e., the
mean force. The insets show the Pearson correlation coefficients — r* — that diagnose the
strength and direction of the hypothesis that the mean force profiles are linear. The
slopes and intercepts for the lines of best fit are as follows: Qs (0.25,-0.05), Q45 (2.00,-
0.27), Qa0 (5.74,-1.38), Q45 (9.5,-2.65). Both slopes and intercepts have units of kcal/mol.

Panel A of Figure 5.7 shows free energy profiles for monomeric
polylgutamine of four chain lengths at 298K. The profiles along f; are mostly
featureless, and possess broad minima for N=215. For Qs the PMF is almost
entirely flat and this is consistent with the idea that this short peptide
preferentially populates extended conformations. The minima for longer chains

are all located at small to intermediate values of f3, consistently around 0.3. The

free energy penalties for accessing conformations with values of f; that deviate
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significantly from 0.3 are large and this is especially true for high values of f. For
N=15, polyglutamine generally prefers compact, disordered states because
water is a poor solvent for these polymers.37 At low temperatures, this is true
irrespective of the presence / absence of restraints on f;. There is no inherent
driving force for secondary structure formation with the exception of a somewhat
pronounced a-helical propensity for Q45 (data not shown). This helix propensity is
the reason for the flatness of the free energy profile for values of f; less than 0.3
for this peptide, since the a-helix represents a well-populated, favorable
conformation for which f3 equals zero. The decreased o-helical propensity for
longer chain lengths leads to an increase in the free energy penalty for f3<0.3.
The results in Chapter IV exhibit the same trend in helix propensity with chain
length (see IV.4.4).

The free energy profiles do not show evidence for distinct, local minima,
which would be indicative of the presence of metastable states. This is confirmed
by analyzing the derivatives of the PMFs. In the harmonic limit with a single
minimum a mean force profile will be a straight line. This is what we observe as
in Panel B of Figure 5.7. Absence of anharmonicities supports the conclusion
that monomeric polyglutamine does not have access to metastable, B-rich states
in isolation. While this result questions the term “pre-equilibrium” used in the
kinetic analysis (see 1.2.5, in particular Equation 1-2), it does not render the

computational and experimentally data mutually inconsistent.
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Bhattacharya et al."® have estimated the nucleation free energy for Q47 to
be roughly 12.2kcal/mol. Following the analysis shown in Figures 5.5 and 5.6, we
expect monomeric, B-rich putative nuclei to correspond to values of f3 between
0.6 and 0.7, i.e., significantly less than unity. This is due to the topological
requirement for turn and loop formation in canonical all-$ folds. From Panel A in
Figure 5.7 we estimate that such structures are associated with free energy
penalties of 10-15kcal/mol from the ground state for Q4s. This estimated range is
consistent with the result obtained by Bhattacharya et al.

Next, we turn our attention to the chain length dependence of the PMFs.
Wetzel and coworkers proposed a model in which the aggregation rate
dependence on chain length is tied to an increased nucleation rate, ie., a
reduced free energy barrier for forming the monomeric, p-rich nucleus.'® Our
data as shown in Figure 5.7 suggest an opposite trend since for four chain
lengths spanning the in vivo threshold range (N=37 for HD and similar for several
other CAG repeat diseases)® the penalty associated with forming structures with
high f3 increases monotonically. As explained below (see V.4.7), we do provide
evidence which supports the belief that high levels of B-content are a property of
larger aggregates. Our calculated free energy profiles do not support the
hypothesis that the spontaneity of B-secondary structure formation increases with
increasing chain length and thereby contradict the proposal of Chen et al.® The
data do reveal that the increase in barrier height appears to level off for Qus, i.e.,

the PMFs for Q39 and Q45 bear much more resemblance to each other than those
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for Q3o and Qqs. This observation suggests the possibility of a disappearance or
even reversal of the trend of increasing free energy penalty with increasing chain
length. Such a result is unlikely going to reconcile our observations with the
hypotheses of Chen et al., however, since experimentally the aggregation rate

increases monotonically with chain length.'®

V.4.4. Structural Characterization of Monomers with High p-Content

In Figure 5.5 (see V.4.2) we show that -content can be measured by two
independent parameters, viz. DSSP E-scores and f, and that the assignments
correlate well. In Figure 5.8 we present a scatter plot of the observed fs-values in
the saved snapshots of all simulations for monomeric polyglutamine of chain
length N=15 against the DSSP E-scores calculated for those conformations.
Here, the data are simply pooled and the results illustrate the accessible range of

values for one measure B-content given a prescribed value for the other.

Figure 5.8 makes two important points. First, there is good correlation
between f3 and the maximally accessible DSSP E-scores which are simply the
fractions of all residues assigned to be part of canonical p-secondary structure.
This implies that no structures are observed in which the value of f; is misleading,
i.e., in which it would predict low B-content in the presence of characteristic f3-
hydrogen bond patterns. Second, there is a very substantial spread in the
observed E-scores which indicates heterogeneity, ie., the presence of
disordered conformations with no consistent backbone-backbone hydrogen bond

patterns even though the value for f3 may be high.
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Figure 5.8: Scatter plot of DSSP E-scores and f; for monomeric polyglutamine.
Dots of different colors correspond to chains of different length. Representative points
are marked using stars and the corresponding structures are shown in cartoon
representation. Graphics were generated using VMD.* Note that the fractional p-content
according to DSSP is an inherently discrete quantity for chains of finite length. Qs is not

shown since the chain is too short to have non-zero DSSP-E scores.

We can therefore conclude that at high values of f3 the restraints on f;
provide a diverse ensemble of structures. We can also conclude that the most
prominent conformations high in B-content for both metrics are almost all j-
sheets or B-hairpins, but never B-helices. For the latter to be stable, the peptides

may have to be Ionger.39 Conversely, conformations with high fs-values but low
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DSSP E-scores appear completely disordered. The latter are high in B-content

only when measured by ¢,y-propensities but lack the characteristic backbone-

backbone hydrogen bonds.

Consequently, we asked if disordered structures contain large numbers of
hydrogen bonds which are either unsatisfied or are assumed to be satisfied by
the solvent? In Figure 5.9, we plot mean hydrogen bond numbers corresponding

to the backbone and sidechain acceptor oxygen atoms, respectively:
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Figure 5.9: Hydrogen bond statistics around acceptor atoms for monomeric

Average Count
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polyglutamine. Data are shown for hydrogen bonds around the backbone (Panels A
and C) and sidechain (Panels B and D) acceptor oxygen atoms, respectively. BB
denotes backbone and SC denotes sidechains; Values are shown for T=298K and three

different chain lengths (Qis5, Qap, Q4s5) and restraint values. Hydrogen bonds were
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determined using the general definition introduced by Kabsch and Sander consistent

with the definition of the DSSP E-scores.*®

The data are parsed into backbone-backbone, sidechain-backbone, and
sidechain-sidechain terms. They reveal three main trends. First, all four terms
contribute significantly and roughly equally to the total hydrogen bond registry. In
agreement with the large spread observed in Figure 5.8 along the DSSP-axis, no
obvious preference for specific intramolecular contacts is seen even in the
presence of restraints. Second, summing up around the acceptor sites, the mean
occupancy is typically less than unity indicating that for all chains studied here we
assume a substantial fraction of hydrogen bonds are satisfied by the (implicit)
solvent. This is simply saying that the interface with solvent is non-negligible. The
surface-to-volume ratio (Rsy) decreases with increasing chain length and for
longer chains more peptide donor atoms are found around the acceptor atoms on
average. This explains the general increase in values with increasing », including
the overall very low values for Qs, which is simply too short a peptide to form
intramolecular hydrogen bonds. Third, restraints to high values of f3 seem to
increase the number of solvent-exposed hydrogen bond acceptors indicated by
the generally lower values. This is consistent with the observed swelling of
chains, in particular for fp,0=1.0 (see Figure 5.10 in V.4.5). Even though the
backbone torsions are forced into the B-basin, the peptides prefer to take
advantage of all possible intramolecular contacts. This is of course not

unexpected; specific sidechain-interactions were part of Perutz’s earliest models
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for aggregates of polyglutamine and are found prominently in microcrystals of

short amyloidogenic peptides.®*°

V.4.5. Coil-to-Globule Transition

From previous work (see Chapters Il and IV)""*" we know that
polyglutamine exists as compact, disordered globules under poor solvent
conditions and that the chains undergo a cooperative swelling transition with
increasing solvent quality which can be modulated by temperature. The data in
Figure 5.9 provide evidence that in the presence of conformational restraints on
fp the solute-solvent interface is significantly increased. It is therefore worth
asking whether the nature of the coil-to-globule transition is significantly altered
or whether the transition is entirely obliterated by the presence of restraints.

Figure 5.10 plots the normalized radius of gyration as a function of
simulation temperature. Two trends are apparent in the data shown in Figure
5.10. First, the coil-to-globule transition becomes sharper vis-a-vis the
unrestrained case for target values of f3 greater than 0.5 whereas the opposite is
true for £,<0.25. Second, the normalized value of (R,”) remains in the vicinity of
the value for the unrestrained chain for temperatures that are in the globule
regime; conversely, for temperatures in the coil regime the normalized (Rg2>
values are significantly larger than unrestrained values if f320.75 but significantly
smaller if f3<0.25. Both the increased cooperativity and the divergence of the

baselines become more pronounced with increasing chain length. In particular,
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the lack of swelling due to restraints in the collapse regime is observed only for

Qgs, but not for Q15 and Qao.
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Figure 5.10: Coil-to-globule transitions for monomeric polyglutamine in the
presence of restraints on f;. Data are shown as a function of simulation temperature
and for several different values of f;’ indicated above each panel. Data include the
unrestrained case for which the most data are available. Three different chain lengths
are shown: Qqs, Q30, and Q5. Qs was omitted since the peptide is too short to undergo a

distinct swelling transition.

The above discussion is consistent with the result in Figure 5.9 which
shows the most pronounced depletion of hydrogen bonds with restraint potentials
for a shorter chain, viz. Q5. The results in Figure 5.10 may be understood as

follows: when £;° is high and local order is increased, the effective stiffness of the
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chain increases due to the enthalpic cost associated with leaving the p-basin.
The collapse transition is altered: in the absence of restraints, dense packing of a
highly flexible coil occurs, whereas high values offﬁ0 lead to a scenario in which
semi-rigid rods are assembled into a compact body in a topologically frustrated
manner. The observed increase in cooperativity is consistent with predictions

from the polymer literature on an analogous model system.*’

V.4.6. Dimerization Propensity in the Presence of (-Bias

Next, we turn our attention to the question of the dimerization propensity
of polyglutamine. Previously we found that — at concentrations approaching those
of typical in vitro experiments — dimerization of polyglutamine occurs
spontaneously at room temperature (see Figure 4.4)." We showed that within the
spontaneous fluctuations accessible to the system there is no structural signature
associated with this homotypic association to occur. In other words, disorder is
maintained from the monomer to the dimer, and this disorder includes the
interface. Here, we first focus on the spontaneity of dimerization when high levels
of B-content are enforced through the application of restraints. We consequently
simulated dimers of polyglutamine of the same four lengths as before at varying
temperatures and values for the target restraint value, f;°, specifically f;’=0.75
and f[3°=1.0. Now, the restraint acts on the net B-content of the system, i.e., it

inherently averages over the two molecules in the system.

|18,19

If the homogeneous nucleation mode were correct, one would predict

that associations involving ordered species are extremely favorable and that the
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ordered nucleus is capable of preferentially biasing a bound monomer toward a
similarly ordered state. We re-employ the excess interaction coefficient B,,, which
resembles a normalized second virial coefficient (see Equation 4-3) with the
slightly different value for the 6-point obtained here: Ty=390K (see Figure 5.10).
As was detailed in Chapter IV, there we used slightly modified LJ parameters and
a reduced partial charge set which alters the results somewhat (compare Figures
4.1 and 5.10 for the unrestrained case). Figure 5.11 shows B,, as a function of

chain length and temperature and in the presence or absence of restraints on fg:
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Figure 5.11: The excess interaction coefficient in the presence of restraints on f;.
Each panel shows Bj, as a function of temperature extracted from simulations with

unrestrained chains and simulations where each chain in the simulation has a target

restraint of £,"=0.75 or £;"=1.0.
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In general we find no evidence of B-rich structures promoting the
association of polyglutamine. Panel A reveals that Qs at the simulated
concentration is non-associative. Figure 5.7 showed that there is almost no
penalty to access B-rich states yet dimerization is never spontaneous. This result
questions the relevance of work on short peptides extracted from amyloidogenic
sequences for obtaining insight about the aggregation pathways of longer
peptides.***® For Qis, as shown in Panel B of Figure 5.11, a comparison of data
using unrestrained chains to data from simulations with restraints of f,"=0.75 and
#"=1.0 indicates no significant differences. At the lowest temperatures, B, is
negative for all three cases. It increases monotonically with increasing
temperature and reaches zero at about 340K indicating a complete elimination of

intermolecular associations from this temperature onward.

As in previous work," we conclude that dimer formation is only possible for
a long enough chain in a poor enough solvent, i.e., at a low enough temperature.
From Figure 5.10, we note that the coil-to-globule transition as a function of
decreasing temperature is maintained with similar transition temperatures even in
the presence of conformational restraints but that — at least for Q45 — the interface
with the surrounding solvent is increased in the collapse regime (see Figure 5.9).
This, however, does not translate into increased associativity with respect to the
unrestrained chains as Figure 5.11 makes clear. Instead, the actual poorness of
the solvent, i.e., the simulation temperature remains the main determinant of the

spontaneity of intermolecular associations.
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Panels B and C of Figure 5.11 show the same sets of data for Q3p and for
Quss. In agreement with our previous results, longer chain lengths exhibit a shift of
the transition region for eliminating association to higher temperatures. Within the
statistical accuracy of the data, chains with restraints appear to be
indistinguishable from the unrestrained ones. For Qgap, the restraints might
actually lead to a diminution of dimer formation compared to the unrestrained,
disordered globules, especially at £;°=0.75. Taken together, these data indicate
very clearly that the association propensity of polyglutamine peptides over a
relevant range of chain lengths is not strongly tied to any structural motifs or even
to the size of the solute-solvent interfaces. They therefore provide no supporting
evidence for a structure-centric, homogeneously nucleated aggregation
mechanism. Instead, we expect to see heterogeneity at the level of small
oligomers which would show little to no preference for the secondary structure
content or even polymeric state of the recruited monomers. This observation is
ultimately in line with the extremely low solubility of polypeptides devoid of

charged residues in a wide variety of aqueous solution conditions.

V.4.7. Intermolecular Interfaces in the Presence of -Bias

Finally, we interrogated the nature of the associations between
polyglutamine chains in the presence of conformational restraints on both chains.
Specifically, we asked if the insensitivity of B,, to the presence or absence of
restraints can be explained simply as an invariance of the interface size. Based
on Figures 5.9 and 5.10 we suggested that monomers possess increased

interfaces with the surrounding solvent at high values of £;°. To illustrate this point,
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we linearly fitted the system energy (excluding the restraint potential) against

chain length according to:

Utotal_U -
wzq(ﬂfﬁoﬁg(ﬂfﬂo)N% (5-4)

Here, N is chain length, U, is the total system energy, Uy is the restraint
potential energy, and C; and C, are the volumetric and surface terms,
respectively. Figure 5.12 shows plots of C; and C; as a function of temperature

for different values of f;:
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Figure 5.12: Energy density C; (Panel A) and surface energy term C, (Panel B) for
monomeric polyglutamine. Data were obtained for unrestrained polyglutamine and two
other simulations with restraints on f;. The quality of the fits underlying these data cannot

be accurately assessed since they are fits to data from only three chain lengths (we
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have to exclude Qs excluded from analysis since it is too short for a volumetric term to
contribute). Instead the robustness of the analysis is tested through its ability to capture
well-defined limits (see text).

When compared to the unrestrained simulations, it becomes clear that in
the collapse regime the energy densities C; are generally less favorable in the
presence of restraints indicating the high free energy of structures with high
values of f3 (see Figure 5.7). Additionally, for a given temperature the values for
C, are generally more positive indicating a less favorable, i.e., simply a larger
interface with the surrounding solvent.

For higher temperatures two observations are noteworthy. First, as
T>Ty=390K, the value of C, reliably approaches zero, independent of whether
restraints are applied or not. A value of zero for the surface energy indicates that
the interface has become indifferent with respect to interactions with either
solvent or the chain. This is nothing but the Flory-definition of the 0-state and
hence a satisfying if expected result. Second, for temperatures beyond Ty, C,;
appears to converge toward a value of roughly -20kcal/mol. This is the
approximate mean-field energy for a fully solvated glutamine residue within the
ABSINTH Hamiltonian (see Table 3.a), which constitutes the expected limiting
value for a chain preferring chain-solvent interactions to chain-chain interactions.
These two results indicate the robustness of the analysis. We conclude that in
the presence of restraints toward high values of f3 the chains do indeed swell and
form a less favorable interface with the surrounding solvent. However, these two

features do not translate into differences in B,, vis-a-vis the unrestrained chains.
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Instead, they may contribute to conformational rearrangements, evidence for

which is presented next.

To show that the dimer interface at high values of fz promotes p-content,
Figure 5.13 shows bar plots of the mean DSSP E-scores observed in the dimer

simulations along with those encountered in the monomer simulations:
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Figure 5.13: Bar plots comparing the average fractional DSSP-E scores between
monomer and dimer simulations. Data are shown for 298K and for three chain lengths

using data from simulations with unrestrained chains as well as data from simulations for
£#’=1.0.

The second molecule in the simulation system significantly increases the
prevalence of canonically hydrogen-bonded, B-rich structures when compared to
the monomer case. This difference seen upon introducing a second molecule
into the simulation system is strongly suggestive of the intermolecular interface

being responsible for promoting p-sheet content. Consistent with Figure 5.8,
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values for the shorter chains are generally higher. Figure 5.14 is analogous to

Figure 5.8 and uses data from dimer simulations:
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Figure 5.14: Scatter plot of DSSP E-scores and f; for dimers of polyglutamine. This
plot is analogous to Figure 5.8. Note that we only performed dimer simulations for three
different conditions: two restrained sets for specific values of f;” and the unrestrained
case. Therefore, the scatter plot here is much less homogeneously populated compared
to the one in Figure 5.8. Data are obtained at 298K.

Comparisons of example structures shown in Figures 5.8 and 5.14 along
with the data in Figure 5.13 illustrate that dimerization in a poor solvent promotes
the formation of canonical B-secondary structure providing the monomer is
predisposed to high B-content. Non-specific collapse, however, imposes a

requirement for bends and turns on the polypeptide backbone and thereby
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precludes efficient and extensive formation of B-hydrogen bonds. Both f3 and

DSSP E-scores are low in the absence of structural restraints.

To further illustrate the ability of infermolecular contacts to promote [3-

content, Figure 5.15 shows a bar plot similar to Figure 5.9 for intermolecular

hydrogen bonds:
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Figure 5.15: Average number of intermolecular hydrogen bonds per acceptor
oxygen atoms. This plot is similar to Figure 5.9 except that the hydrogen bond statistics
are shown for simulations with two molecules. Only intermolecular hydrogen bonds are
shown. Qs is excluded from this plot since no intermolecular hydrogen bonds are

detected in these simulations. Data are obtained at 298K.

First, it is clear that intermolecular hydrogen bonds are formed

predominantly by the glutamine sidechains independent of restraints. This is
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intuitive as the sidechains are generally closer to the surface of the globule.
Second, there is significant enhancement in intermolecular backbone-backbone
hydrogen bonds for Qs and Qso when f;°=1.0. This result is entirely congruent
with the increased DSSP E-Scores (see Figure 5.13). Nonetheless, some
amount of disorder is maintained even under these conditions as indicated by the
non-negligible contributions from all possible intermolecular hydrogen bonds.

As a final point, we wish to emphasize that the increased prevalence of
canonical B-sheets does not coincide with a significant reduction in the free
energy penalty to access states with large f3. At 298K, the per-molecule PMF
obtained via WHAM for two Q3o molecules in the simulation system (data not
shown) is virtually identical to the one obtained for the monomer case (see
Figure 5.7). We therefore conjecture that it might take much larger oligomers to
provide an environment in which B-rich conformations are spontaneously

accessed. This would presumably happen on the inside of such larger oligomers.

V.5. Summary and Discussion of a Putative Role of 3-Secondary

Structure in Polyglutamine Aggregation

We have shown that polyglutamine peptides in a length range
encompassing the threshold length for Huntington’s disease do not easily adopt
conformations rich in B-content, i.e., conformations that have been proposed as
putative aggregation nuclei. Our estimate for the free energy barrier for
nucleation is roughly consistent with the literature estimate,” but shows an

opposite trend with chain length. We observe that longer chains are less likely to
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adopt conformations rich in canonical B-secondary structure and therefore
dispute the validity of explaining the age-of-onset dependence on chain length
with that free energy barrier. We find that structures which are forced into states
characterized by partial swelling, larger solute-solvent interfaces, and increased
B-content do not specifically promote aggregation. While structural differences
are obvious, the peptides seem to associate to similar extents independent of
those differences. This observation points to the poorness of the solvent as the
invariant driving force for promoting aggregation of these homopolymers — a
result entirely consistent with Chapter V. Even though high B-content remains
thermodynamically as unfavorable at the dimer level as at the monomer level, we
do find that intermolecular interfaces appear to promote the formation of

canonical, backbone-driven B-secondary structure as it is found in amyloid fibrils.

From our data, we infer that the role of B-secondary structure for the
aggregation of homopolymeric polyglutamine is not so much that of the structural
hallmark of an aggregation-competent species but rather that of the favored
conformation in peptide-rich phases such as large oligomers and fibrillar
aggregates. Figure 5.16 (compare Figure 4.12) outlines how the formation of
insoluble, fibrillar aggregates could proceed through a stage characterized by
intermediate, soluble aggregates composed of collapsed, disordered monomers

and disordered interfaces between them:
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Figure 5.16: Schematic of possible aggregation pathways for polyglutamine in
vitro. n denotes the number of polyglutamine molecules within a disordered aggregate
and nr denotes the number of polyglutamine molecules within an ordered amyloid fibril.
The ordered amyloid fibril rich in B-sheets is shown in the bottom right corner of the

schematic. The gray shaded region encompasses steps (a), (e), (c), and (d) and depicts

the homogeneous nucleation proposal of Chen et al.*®

In the schematic shown in Figure 5.16 we quantified the thermodynamics
of step (a), which indicates that the formation of ordered conformations is
thermodynamically unfavorable. This is an extension of the work in Chapter IV
which remained agnostic about the barrier heights and their chain length
dependence implied in step (a). Step (b) pertains to the thermodynamics of
interactions between chains that have been restrained to adopt ordered
conformations. Associativities of restrained chains — step (b) — are akin to the

associativities of unrestrained chains — step (g) — as shown in Figure 5.11.
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However, the likelihood that chains will sample the associations shown in step (b)
is very small because this is tied to the equilibria in steps (a) and (f) and requires
the population of the conformations with high p-content (Figure 5.7). The
aggregates achieved in step (h) are likely to be large (in terms of n) and exhibit
spherical, “liquid-like”, “molten”, or micellar organization of polyglutamine chains
around each other. Such a phenomenology was observed for other aggregation-

prone polypeptides.***

Step (i) depicts a slow conformational conversion of
individual / small numbers of chains to B-sheets. Such a conversion is supported
by the idea that the peptide aggregate represents a 6-solvent for an individual
molecule, in which the swelling necessary for large intermolecular interfaces in
extended B-sheets is greatly facilitated.?* This slow conversion is likely to lead to
the creation of an ordered template for fibril formation via monomer or oligomer
addition and elongation to yield the ordered, precipitated amyloid fibril. Steps (a),
(b), and (g) are anchored in the collection of data generated in this work and
previous work (Chapters Il and IV). However, the reversible associations

depicted in step (h) and the conformational conversions depicted in step (i) are

yet to be tested.

It has been argued, but is of course difficult to prove rigorously, that
polyglutamine aggregation is much more complex than a simple homogeneous
nucleation model would suggest.?*?*?" This is particularly true if non-negligible
sequence context is introduced. Much work has been carried out in the context of
completely unrelated proteins such as myoglobin,*® GST,*® CRABP,” or

thioredoxin." Collectively, these studies suggest a generality to the behavior and
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consequences of expanded polyglutamine regions. However, they also suggest
that the details of the aggregation mechanism might depend very strongly on
sequence context. So far, the work in this thesis has sought to isolate the intrinsic
preferences of polyglutamine. The results have led us to the mechanistic view
sketched in Figure 5.16. The next step is concerned with how and by how much
those intrinsic preferences are modulated by the presence of both N- and C-
terminal flanking sequences as they might occur in proteolytic fragments found

natively in vivo. Part of this work is presented in Chapter VI.
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CHAPTER VI. SEQUENCE CONTEXT DEPENDENCIES IN
POLYGLUTAMINE AGGREGATION: AN ILLUSTRATION USING

THE N-TERMINUS OF HUNTINGTIN

VI.1. Preamble

Our interest in the sequence context dependencies of polyglutamine
aggregation was initially triggered by in vitro studies on oligoproline. Two studies
showed that a C-terminal attachment of an oligoproline segment to polyglutamine
could alter the aggregation rates, the morphology of resultant aggregates, and
even the conformational ensembles of soluble peptides."? In the host protein of
HD, huntingtin, the polyQ-expansion is C-terminally flanked by a proline-rich
segment starting with eleven consecutive proline residues (see Table 1.c). This
suggests a direct relevance of these studies to the pathogenesis of HD in vivo.
As is detailed in V1.2, it is not intuitively clear that such relevance can be upheld
due to the diversity and length of fragments encountered in vivo, and their strong
differential effects on pathogenesis when studied individually.

Nonetheless, these and similar in vitro data'

appeared to present a
worthwhile challenge to our ability to realistically model the properties of
polyglutamine in the presence of flanking sequences. Work in Chapters IV* and
V° had exclusively focused on the intrinsic properties of polyglutamine but
provided no further assessment of the ability of the ABSINTH implicit solvation

model presented in Chapter 1II° to realistically describe the properties of more

complex peptides. In early 2008, Tim E. Williamson — at that time a graduate

280



student in the laboratory — began simulation work on sequence constructs of the
type Acetyl-Qq5P11-N-methylamide. A detailed account is not given here but may
— upon completion — appear elsewhere in the future. Briefly, studies at the
monomer level revealed that these peptides continue to undergo a well-defined
coil-to-globule transition as a function of simulation temperature (see Chapter 1V)
and that they remain disordered. Analysis of the proline segment yielded that,
with the ABSINTH force field and a Monte Carlo sampling approach, large
fractions of the amide bonds of the proline residues sampled the cis-
conformation and the oligoproline stretch overall appeared surprisingly flexible.
We suspected this to be a simulation artifact based on the (albeit highly variable)
estimates for the cis-content of proline-based peptides extracted from various
experimental techniques. We revised our modeling of proline slightly, and
subsequent results exhibited significantly lower cis-contents for proline-based
peptides. However, a satisfactory, global agreement with data on model peptides
extracted from NMR spectroscopy7 was not obtained. The peptides still appeared
to be too flexible and to populate the cis-configuration in excess of experimentally
derived expectation. This coincided with a developing interest in the N-terminal
flanking sequence encountered in huntingtin and the project was temporarily
suspended.

In early 2009, Emma Morrison — at that time a rotation student —
attempted to quantify our ability to correctly model proline using a different set of
model peptides and a different set of experimental data.®® In direct contradiction

of the previous result, she found that the simulated populations of the cis-
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configuration of the amide bond were generally too low. This point presented an
impasse: MD-based in silico approaches with putatively more accurate force
fields are rendered infeasible due to the extremely long timescale needed for
cis/trans-isomerization. Experimental data seem to be mutually inconsistent with
each other and/or depend crucially on the detailed nature of the model peptide
employed. Guidance is hence limited in extracting physical principles to inform an
improved model for proline. Moreover, a strong case has been made that
electronic effects'® are indispensable in explaining the intricate nature of proline,
which we would only be able to capture empirically. Given these observations,
we decided that it would remain incredibly difficult to distinguish simulation
artifact from relevant result in studies of proline-rich systems; hence, all our focus

shifted to the N-terminal segment.

This chapter is based entirely on simulations run and data analyzed by
Tim E. Williamson. His contributions are as follows: he established a simulation
protocol for obtaining reliable data on peptides of the type Nt17-Qy. Partially
based on suggestions and continued discussions he analyzed the data in a
manner reflecting the heteropolymeric nature of the peptides. With the exception
of Figures 6.1 and 6.4, all the figures in this chapter were created by him. The
text in VI.3 and V1.4 is partially based on a skeletal manuscript prepared by
him."" Scott L. Crick, a graduate student in the laboratory, performed the CD
spectroscopy measurements presented in VI.4.1 and Figure 6.4. Peptides were
obtained as a generous gift from Trevor P. Creamer at the University of

Kentucky, Lexington (see VI.3.3).
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VI.2. Introduction to Sequence Context Dependencies in HD

We touched upon the issue of proteolysis in Chapter I, specifically in 1.2.4
and 1.2.7. Almost all in vivo studies report a differential pathogenic effect in
animal or cellular models of exonic CAG repeat diseases if different sequence
constructs are expressed.'>"” Even though there may be exceptions, it is
commonly thought that the full-length, mutant host protein (see Table 1.b in 1.2.3)
is not the dominant toxic species. Instead, it appears as if proteolytic fragments
derived from the expanded disease protein are more likely disease causing

agents (“toxic fragment” hypothesis)."> 1819

Following |.2.4, this may be
understood conceptually: the presence of the folded domain solubilizes the
mutant protein and partially protects the PQCS from the ill effects which would be
induced if the polyQ-expansion were to be cleaved off. A mechanism for this
would be similar to what applies to all folded proteins: hydrophobic residues for
instance are tolerated if they are (at least partially) sequestered away and hence
not available for potentially pathological interactions. Furthermore, the hydrophilic
surface of globular proteins will prevent molecular chaperones from interacting
with sequestered hydrophobic stretches and stress on the PQCS is minimal. But
what happens if a homopolymeric, intrinsically insoluble, disordered, and
aggregation-prone expansion is introduced? Clearly, the resultant properties will

depend on the relative sizes of the protective host sequence and the mutant

expansion: such dependence is demonstrated in VI.4.

Table 1.c (see |.2.7) shows that the sequences surrounding the polyQ-

expansion in the host proteins for the nine exonic CAG repeat diseases share no
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similarity except that they exhibit some prevalence for low complexity sequences.
Most experimental research has been performed on HD, and hence it becomes
our focus here: huntingtin (htt) is a large protein of roughly 350kD and mostly
unknown function (see Table 1.b). The first exon on the gene (exon1) contains
the CAG repeat. Short N-terminal sequence constructs encompassing exon1
have been used to demonstrate several specific protein-protein interactions in
Drosophila.’® The identified interaction partners were confirmed to be genetic
modifiers of the disease phenotype. N-terminal sequence constructs — unlike full-
length htt — of varying length were shown to mediate the association with
mitochondria; a pathogenic mechanism related to axonal transport and Ca?*
homeostasis was suggested.?"?? It was demonstrated that the presence of the 17
residues N-terminal to the polyQ-expansion (Nt17: MATLEKLMKAFESLKSF)
redirected polyQ-expanded fragments from their normal nuclear location to
mitochondria and that it altered the peptides’ in vivo aggregation behavior.?’
Consistent with the idea of Nt17 acting as a cytosolic retention signal, it was
shown that SUMOylation of lysine residues located within the Nt17 stretch
promotes both nuclear localization and subsequent interference with

transcriptional regulation when compared to non-SUMOylated substrates.??

The above results strongly suggest that the impact of flanking sequences
may be profound and that an exclusive focus on the intrinsic properties of
polyglutamine may fail in explaining HD pathogenesis. It is however not easily
possible to quantify and characterize in vivo fragments as they might occur

during proteolysis of mutant htt. Hence, the relevance of results obtained with

284



artificial constructs may be questioned: proteolytic analysis of htt has in fact
revealed that despite the presence of well-defined cleavage sites the resultant
fragments form a heterogeneous population of peptides of differing lengths.?*2°
As a somewhat parsimonious guess, we nonetheless attempt to quantify the
effects of the Nt17-fragment on the intrinsic properties of polyglutamine in this
chapter. It is very likely to be present in actual disease-relevant constructs due to

its immediate proximity to the polyQ-expansion which we still assume plays the

dominant pathogenic role.

Thakur et al.?® recently demonstrated that the previous results obtained for

peptide constructs of the type KoQyK,2"?

are strongly altered for peptides of the
type Nt17-QuKy: distinct spherical oligomers are seen in electron micrographs
early, the aggregation overall proceeds faster, and the apparent nucleus size for
homogeneous nucleation yields the nonsensical result of -1 indicating that
homogeneous nucleation does not apply. Mutational analysis appears to identify
a prominent role for hydrophobic residues in the Nt17-fragment in mediating the
increased aggregation rate. NMR and CD data indicate the Nt17-fragment to be
mostly disordered, although a-helical conformations are readily populated in 10%
(viv) TFE. Recent in silico work® suggests more prominent a-helicity. Figure 6.1
shows that the Nt17-fragment may form an amphipathic helix as suggested.?
The structural models reveal that the presence of a-helical hydrogen bonds
requires the two interfaces characterized by either hydrophobic groups or by

charged groups to be slightly twisted. Nonetheless, the amphipathic character is

clearly visible in either panel.
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Figure 6.1: Renderings of the Nt17-peptide in idealized a-helical conformation. The
structure was obtained by setting all backbone ¢,y-angles to values of -57.8° and -
47.0°, respectively. Panel A shows a side view and Panel B a top view analogous to a
helical wheel diagram. Space-filling representations are chosen for select atoms:
hydrophobic sidechains in yellow, negatively charged sidechains in red, and positively

charged sidechains in blue. Graphics were generated using VMD.*

Here, we attempt to address the following questions pertaining to the
modulation of polyglutamine’s intrinsic preferences by the presence of the Nt17-

fragment, i.e., we investigate peptide constructs of the type Nt17-Qy:

e Does the known secondary structure preference of the Nt17-fragment induce
secondary structure in the polyQ-segment or does the latter remain
disordered? Are any induced conformational biases dependent on N?
Conversely, does the presence of polyQ-expansions of sufficient length alter
the conformational ensembles populated by the Nt17-segment as suggested

by Thakur et al.??°
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e What types of intramolecular interfaces are formed? Are the hydrophobic
residues effectively sequestered from solvent in constructs with large enough

N or do they remain surface-exposed?

e Does polyglutamine spontaneously dimerize in the presence of the Nt17-
fragment? What are the intermolecular interfaces formed? Is the association

driven by hydrophobic contacts, by the polyQ-expansion, or by both?

e s there a differential effect on associativity as observed by Thakur et al.??° Do
glutamine homopolymers associate more or less readily and what is the

impact of the flanking sequences used in in vitro experiments?

The rest of Chapter VI is structured as follows: first, we briefly introduce
the simulation details which are largely similar to previous work (Chapters v
and V°) and provide details for the CD spectroscopy experiments (VI1.3). We then
give a detailed account of our results (VI.4) and finish by discussing the impact of
the results on in vitro and in vivo experiments, in particular the work of Thakur et

al.® (VL1.5).
VI1.3. Simulation and Experimental Details

VI.3.1. System Setup and Conformational Sampling

The simulation methodology employed here agrees largely with what was
presented in 1V.3.1 and IV.3.2. Peptides were generally capped at the N- and C-
termini. We studied three different types of constructs: acetyl-Nt17-Q,-N-
methylamide (Nt17 = METLEKLMKAFESLKSF), Acetyl-Qy-N-methylamide, and

Acetyl-KoQpK2-N-methylamide. The chains were modeled in atomic detail and
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their interactions with each other and the solvent was described by the ABSINTH
continuum solvation model® (see Chapter Ill). For all simulations, sampling was
enhanced by the replica exchange (REX) method in temperature space.®’ The
following temperature schedule was used: T = 298K, 305K, 315K, 325K, 335K,
345K, 355K, 365K, 375K, 385K. A summary of the simulations we performed is

shown in Table 6.a:

Peptide Monomer Dimer (100pM) Dimer (500 M)
Nt17 10 5 )
Nt17-Qs 5 5 5
Nt17-Q0 4 - -
Nt17-Qs 16 9 5
Nt17-Qqo 5 - -
Nt17-Qzs 3 5 5
Nt17-Q30 3 - -
Nt17-Q3s 3 5 5
Nt17-Qqs 3 - -
Qs - 3 -
Qi 9 5 -
Q20 3 - -
Qzs 3 5 -
Q3o 3 - -
Qss 3 5 -
Qus 3 - -
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Peptide Monomer Dimer (100pM) Dimer (500uM)

K2-Qs-K> - 3 -
K2-Q15-K> - 3 -
Ko-Qo5-K> - 3 -
K2-Qa5-K> - 5 -

Table 6.a: Extent of simulations studying the effects of the Nt17-fragment of
huntingtin. For each peptide investigated, the table lists the number of independent
sets of replicates obtained for a given condition. A single replicate is defined as a REX
run encompassing ten individual replicas corresponding to ten different temperatures
(see text). Each individual replica was run for 5.15-10” production steps after 10’ steps
of equilibration. These settings were needed to obtain quantitatively meaningful results
for the longest peptides studied. Not all constructs were simulated under all conditions

as indicated by dashes.

Markov chain Metropolis Monte Carlo (MC) simulations were performed in
the canonical ensemble utilizing our in-house CAMPARI software.>* The peptides
were enclosed in a spherical droplet whose boundary was modeled as a stiff,
one-sided harmonic potential according to Equation 4-1. At pH 7, the Nt17-Qy
constructs are expected to carry a net charge of approximately 1.0. To prevent
strong simulation artifacts from electrostatic interactions modeled in an unrealistic
milieu, we added explicit chloride counterions plus a number of sodium and
chloride ions equal to a salt concentration of 2.5mM. To model the effects of
peptide concentration we used two different droplet sizes in dimer simulations:

117.0A and 200.0A corresponding to peptide concentrations of 500 and 100uM,
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respectively (see Table 6.a). All monomer simulations were performed in droplets

of radius 200.0A.

The presence of explicit counterions means that the sampling of rigid-body
degrees of freedom in the MC methodology may be less efficient. We therefore

employed the MC move set detailed in Table 6.b:

Move type Parameters
Rigid-body 27% (50%, 10A, 20°)
Random cluster 3% (50%, 10A, 20°)
Omega (o) 4.9% (90%, 5°)
Sidechain (x4, %2, x3) 21% (4x, 60%, 30°)
Backbone ¢/y 44.1% (70%, 10°)

Table 6.b: Overview of the frequency of the different Monte Carlo moves sets used
in simulations of polyQ-expanded Nt17. Random cluster moves attempt to perturb the
rigid-body coordinates of two molecules simultaneously: two molecules are chosen at
random, translated by a common vector, and rotated around their mutual center of mass.
By preserving their relative orientation, tightly associated molecules can be sampled
much more effectively. Please refer to the caption to Table 4.a for details about the other

move types and their underlying parameters.
VI.3.2. Analysis of Simulation Data

Error Analysis
Snapshots of the system were saved every 5000 steps and intermolecular
distances and polymeric properties were recorded every 500 steps. In general,

errors were obtained by running simulations as multiple replicates (see Table
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6.a). The standard deviations of computed ensemble averages from each
trajectory yield standard errors. Those are typically reported in the figures in this
chapter. The analysis in Figure 6.14 required rigorous error propagation of the

standard errors through the linear regression analysis we performed.

Contact Analysis

We collected contact maps describing the frequency of observing an
interaction between all residue pairs in Nt17-Qy. Such data were collected every
500 simulation steps. A contact is counted between two residues only if those
residues are not adjacent in sequence space and the minimum distance between
any atom pair is less than 3.5A. The residues of Nt17-Qy are classified as being
hydrophobic (M, A, F, L - “hydrophobes”), hydrophilic (K, E, S, T ->
“hydrophiles”), or glutamine. With increasing N, the probability of forming more
contacts involving glutamine grows by default. We therefore defined a
combinatorial prior assuming that the sets of residues are allowed to mix freely.
There are N glutamine residues, eight hydrophobes, and nine hydrophiles in
peptides of the type Nt17-Qy. We corrected the combinatorial weights in the prior
for the fact that next-neighbor contacts are excluded in the contact analysis. For
example, there are (N+17)-( N+16)/2 - (N+16) total non-neighbor, intramolecular
contacts. Of those, N-( N-1)/2 — (N-1) are glutamine-glutamine contacts. The ratio
of the latter and former numbers defines the combinatorial prior that a given
intramolecular contact is a glutamine-glutamine contact. Similarly, the remaining
combinatorial weights can be obtained for all other possible contacts, both intra-

and intermolecularly.

291



Clustering analysis

To identify clusters of structures within the trajectories of either one or two
peptides of the type Nt17-Qy, we utilized a variation of a bottom-up clustering
algorithm®® implemented in the GROMACS 4.0 utility g _cluster.®* Structural
clustering allows us to identify the most common conformations in the ensemble.
A matrix of pairwise all-atom RMSD values was computed for all structures within
a trajectory at 305K (a minimum of 10,300 structures). The number of neighbors
of each structure, within a cutoff value of 3.0A, was counted and the structure
with the largest number of neighbors was removed from the pool along with all
neighbors. This was repeated on the remaining members of the pool until every
structure was assigned to a cluster. Due to memory constraints, each
independent replicate was clustered independently and the results were
subsequently combined. An examination of pairwise RMSD values between
central structures of clusters obtained from different trajectories for the same
peptide suggested that a modest reduction in the number of clusters would occur
were the data for a given peptide combined before the analysis. The largest
effect was seen for central structures obtained from Nt17-Qs monomer data with

a ~27% reduction.

In the algorithm described above, the number of clusters is not explicitly
defined prior to the analysis. The fraction of the ensemble (Fensembie) represented
by the most populated cluster ranged from 0.215-0.360 for Nt17-Qy dimers and
0.160-0.312 for monomers and the number of clusters required to represent

95% of the ensemble was equal to 0.78 to 4.32% of the identified clusters for
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Nt17-Qy dimers and 14.8 to 42.2% for monomers. These statistics (see Table

6.c) indicate that the settings chosen for the algorithm are reasonable.

Solvent Accessible Volume Analysis

The solvent-accessible volume of each atom in each glutamine residue
was computed according to Equation 3-3. Data were obtained either for
simulations using the ABSINTH model at 305K or for simulations in an excluded
volume (EV) reference state in which only steric repulsions are present. The
latter is a reference model used in previous work to model conformations with
large solvent-accessible volumes.***® The difference between the two values
(Asav=SAVn0-SAVey) provides an estimate of the similarity between the two
ensembles from the viewpoint of the solvent accessibility of glutamine residues.
Data were accumulated every 500 simulation steps and obtained for three chain

lengths for constructs of the types Nt17-Qy and Qy.

VI.3.3. CD Spectroscopy

Chemically synthesized, uncapped Nt17-peptide in purified form was
obtained as a gift from Trevor P. Creamer. We collected CD spectra using a
Jasco J715 spectropolarimeter with a 1mm path length quartz cuvette. Nt17
(1mg) was initially dissolved in a mixture of 1ml of trifluoroacetic acid (TFA) and
1ml of hexafluoroisopropanol (HFIP). This solution was divided in half and
evaporated under a nitrogen stream followed by lyophilization for one hour to
remove any residual TFA and HFIP. The peptide was re-suspended to a

concentration of Tmg/mL in freshly prepared solutions of either 6M urea or 50%
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(v/v) trifluoroethanol (TFE) in 100mM phosphate buffer (pH 7.2). These stocks
were diluted to a final working concentration of 0.1mg/mL (50uM). Wavelength
scans were performed at a rate of 50nm per minute in discrete steps of 0.1nm.
The temperature was held constant at 25°C. The reported results represent

averages of ten scans.
Vi.4. Results

VI.4.1. Secondary Structure Propensity of Nt17 as a Function of PolyQ-
Expansion Length

Figure 6.1 illustrates that the Nt17 peptide in isolation may well exist as an
amphipathic o-helix. It is suggested experimentally and computationally that
transient helical segments may form and that their stabilities are dependent on
solution conditions.?®?° However, the secondary structure propensity of polyQ-
expanded Nt17 is uncharacterized. We therefore investigate the dependence of
the expected a-helical propensity on polyQ-expansion length. Polyglutamine in
its soluble form is well-known to be disordered and consequently we also ask
whether the Nt17-fragment induces any canonical secondary structure in polyQ-

expansions.

Panel A of Figure 6.2 shows that Nt17-Qy monomers show high a-helicity
within the Nt17-stretch for short polyQ-expansions and low temperatures. For
temperatures T<365K, this propensity is depleted in a polyglutamine length-
dependent manner and approaches the baseline defined by the high temperature

limit for N>20. From Panel A we also see that the polyQ-expansion suppresses
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the inherent secondary structure propensity of the Nt17 segment. Panel B makes
the point that we do in fact observe an induction of a-helix in the Qx-fragment for
small enough N. Similar to the loss of structure in the Nt17-fragment, this trend is
N-dependent and vanishes for N>20. This indicates that the entire peptide
becomes increasingly disordered with increasing N — a result which makes
intuitive sense given the intrinsic preference for disorder exhibited by

polyglutamine.
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Figure 6.2: a-Helix propensities for constructs of the type Nt17-Qy. Panel A shows
the mean probability of the residues in the Nt17-fragment to adopt a-helical conformation
and Panel B shows the same for the Qy-fragment. Probabilities were calculated by
analyzing the backbone ¢/y-angles and considering consecutive residues in the a-helix

basin. Only segments of at least three residues in length were counted.

The loss of a-helix propensity in itself is no rigorous indicator of disorder.
However, Figure 6.3 shows that the propensity for consecutive residues to

populate the B-basin of the Ramachandran map — a prerequisite for the formation
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of B-hairpins and p-sheets — is vanishingly small. Both panels show no
discernible dependence of the B-strand propensity on the length of the polyQ-
expansion. This is consistent with the results obtained in Chapter V which show
that polyglutamine is extremely unlikely to form a structure with high p-content
under typical conditions. Figure 6.3 rejects a speculative suggestion brought forth
in the literature?® which proposed an induction of B-content in the Qu-fragment

with the Nt17-fragment serving as a putative template.
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Figure 6.3: B-Strand propensities for constructs of the type Nt17-Q,. Panel A shows
the mean probability of the residues in the Nt17-fragment to form a B-strand and Panel B
shows the same for the Qy-fragment. Probabilities were calculated analogously to Figure
6.2: only here the B-basin of the Ramachandran map is considered.

Based on NMR and CD data, Thakur et al.?® suggest a weak propensity of
the Nt17-fragment to form o-helices. However, in the presence of 10% (v/v)

TFE,*"® significant helicity is induced suggesting that the peptide may be on the
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cusp of adopting a stable fold in solution. To corroborate both this result and our
own analysis, which indicates high but transient helix-content, we used circular
dichroism (CD) spectra as a function of TFE and urea concentration. We expect
that with increasing TFE concentration the peptide eventually exists exclusively
as a well-defined a-helix. Conversely, we expect that with increasing urea
concentration the peptide eventually exists exclusively as a disordered coil.
These two limits define the baselines of a two-state model which is analyzed as
follows. Even though the exact origin of the CD signal is poorly understood, we
assume that the total helix-content is directly proportional to the ellipticity at

222nm. We can then define the fractional a-helix content as:

H,0 coil
_ 9222 — ‘9222

— phelix coil
‘9222 - 0222

Ja (6-1)

In Equation 6-1, &; is the baseline value obtained for high urea concentration,
and 6" is the baseline value obtained at high TFE concentrations. The

experimental values were 2.0-10°degcm?dmol” and -3.3-10*degcm?dmol™,

respectively. Figure 6.4 shows our results for ¢,:2°. The observed dependence

on TFE concentration confirms the result of Thakur et al. cited above. However,
the urea data indicate that there is signficant residual a-helix content in neat
buffer conditions, which we estimate to be about 34%. As a comparison and a
direct test of the robustness of our analysis following Equation 6-1, we estimated

/. using an empirical reference state proposed in the literature:>*°
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H,0
femp _ 0222
a - ehelix
222

(6-2)

elix 25 -
o :—4x104.{1—N—] [deg cmzdmoll]

pep
In Equation 6-2, N, is the length of the polypeptide under investigation. The
resultant value for 6" is -3.41-10°degcm®dmol”, very close the value we
obtained from the TFE titration (3.5% difference). Using Equation 6-2, we

determine /" to be ~29%, also in good agreement with the estimate from
Equation 6-1.
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Figure 6.4: CD spectroscopic analysis of the a-helix propensity of the Nt17-
peptide. Data were obtained at 298.15K and as a function of TFE (filled circles) and
urea (open circles). Helicity is calculated from the data as detailed in the text.
Comparison to Figure 6.2 reveals that the computational estimates for the
a-helix content suggested higher values: for the isolated Nt17 peptide at 298K

we obtain a value of 61.4%. There are two possible explanations: i) the
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computational ensemble exhibits artificially enhanced helix content, and ii) the
computational and experimental readouts are incongruent. While we cannot
exclude i), results in Chapter Ill show that the helix-coil transition is quantitatively
well-described by the ABSINTH model.® We address ii) in Figure 6.5. Panel A
shows that the estimate of helicity for the isolated Nt17 fragment of 33.5% agrees
with the CD estimate if we stipulate that at least two helix turns (seven residues)
need to be formed in order to observe helicity in CD experiments. Qualitatively,

the trends established in Figure 6.2 are all preserved with this modified definition.
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Figure 6.5: Adjusted a-Helix propensities for constructs of the type Nt17-Qy. These
plots are identical to those in Figure 6.2 with the exception that only segments of at least

seven consecutive residues in a-helical conformation were considered.

VI.4.2. Polymeric Properties of Chimeric Peptides
In previous work (see Chapters II** and IV*) we established that
polyglutamine intrinsically prefers to collapse to disordered globules in poor

solvent conditions and that it undergoes a well-defined globule-to-coil transition
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with increasing solvent quality which can be modulated by simulation
temperature. Panels B of Figures 6.2 and 6.3 suggest that this intrinsic
preference might be preserved. Figure 6.6 shows that as a function of

temperature the chimeric Nt17-Qu-peptides swells much like the homopolymer

does:
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Figure 6.6: Coil-to-globule transition for chimeric peptides. The average radius of
gyration was calculated and normalized by chain length. The 6-temperature, T,, was
estimated to be ~390K in previous work.® Consistent with that estimate, we find that 7,

may be set to 385K for this work based on the intersection of all curves at that

temperature. € is defined as <Rg >/ /Zpep where Z,,, is the total peptide length.

A comparison of data for Nt17-Qos, Nt17-Q45, and Q25 in Figure 6.6 shows
that from a coarse polymer-centric view the latter two peptides behave nearly
indistinguishably while Nt17-Q25 shows a significantly different swelling profile. In

such a scenario, the global response to changes in solvent quality does not seem
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to depend strongly on the precise nature of the polypeptide sequence, but more
on overall peptide length. Conversely, data for Nt17-Qss and Qss appear perfectly
matched indicating that the effects of overall length and polyQ-expansion length
are not independent of one another. This is a very important consideration for the
design of experimental controls: it questions for example whether the modulating
effects of the Nt17-fragment on the peptide Nt17-Q45 can be adequately tested

by comparing its properties to those of Q1s.

If from a polymeric standpoint the chimeric peptides behave similarly to
the homopolymers, we may conjecture that the Nt17-fragment becomes more
extended in the presence of long enough polyQ-expansions. This would be
driven by the entropic gain in forming diverse interfaces with other parts of the
polymer showing little overall specificity. This idea is supported by the analysis of
contact distributions shown further below and suggested by the loss of secondary
structure propensity established in VI.4.1. An N-dependent swelling of the Nt17-
fragment in chimeric peptides is shown by Thakur et al. via the use of a suitable
FRET pair.?®

Figure 6.7 shows that we do see such a transition in the simulations as
well. The ensemble-averaged radius of gyration (R,) computed for just the Nt17-
fragment in Nt17-Qy monomers shows the adoption of a collapsed conformation
for small N at physiological temperatures. This is clear from the fact that the
values are below those obtained for a straight a-helix which in itself is a rather
compact conformation for a peptide of this length. This indicates that the high

helix-content observed in Figure 6.2 is not the result of the peptide forming a
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straight a-helix, but rather a result of the population of transient, shorter helix
segments consistent with the data shown in Figure 6.4. The increase in R, as a
function of N indicates swelling induced by the presence of the polyQ-expansion.
This signal correlates with the loss of a-helix content seen in Figures 6.2 and 6.4.
The observation of the swelling of Nt17 as a function of N has important
consequences for the formation of an interface between the two segments and
this is discussed next.
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Figure 6.7: Radius of gyration of the Nt17-fragments in chimeric peptides at 305K
and 385K. The dashed line represents the R, of just the Nt17-fragment in a straight o-

helical conformation (8.83A, compare Figure 6.1).

VI1.4.3. Characterization of Intra- and Intermolecular Interfaces Formed by
Chimeric Peptides
In VI.4.1 and VI.4.2 we demonstrated that, for large enough N, peptides of

the type Nt17-Qy have no discernible secondary structure preferences and that
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the Nt17-fragment becomes more extended. We stipulate that this is consistent

with the Nt17-segment forming an extended interface with the Qx-segment, and

test this idea by quantitative analysis of contact probabilities. Panel A of Figure

6.8 shows intramolecular contact probabilities (see VI.3.2) for monomeric

chimeras at 305K:
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Figure 6.8: Intra- and intermolecular contact probabilities for chimeric peptides.

The length dependence of the probability of observing a contact between specific

classes of residues in Nt17-Qy constructs is shown. The definition of a contact and the

calculation of a random prior model are provided in VI1.3.2. The contact bias is computed

as the difference of the observed contact probability from that of a random prior. Panel

A shows intramolecular contacts in Nt17-Qy monomers at 305K, Panel B intermolecular

contacts in Nt17-Qu dimers at 305K, Panel C intramolecular and Panel D intermolecular

contact biases.
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The data in Panel A indicate three defining features of the intramolecular
interactions within Nt17-Qn: (i) intra-segment Nt17 contacts are significantly
present only at short polyQ-expansion lengths (N<15), (ii) the polyglutamine
segment retains the ability to form extensive collapsed interactions as glutamine-
glutamine contacts prevail when N increases, and (iii) an intramolecular interface
forms between the Nt17-hydrophobes and the polyglutamine segment. Panel C
reveals that the data are partially explainable by combinatorial arguments: by
subtracting from the observed probabilities those of a random prior (see VI1.3.2),
we establish that the “excess” interactions for N>15 are dominated by a
promotion of glutamine-glutamine contacts and a depletion of hydrophile-
glutamine interactions. For smaller N, hydrophobes play a much more
pronounced role: Panel C reveals that the dominance of hydrophobe-hydrophile
interactions seen in Panel A for small N is mostly explained by combinatorial
arguments and that it really is hydrophobes which associate with each other in a
preferential manner. It should be noted that the random prior does not correct for
proximity relations in the primary sequence with the exception of the exclusion of

nearest-neighbor contacts.

For a select set of chimeric peptides, we simulated their intermolecular
association as detailed in VI.3.1. As is shown below (see Figure 6.11), the
molecules associate at low enough temperatures and intermolecular contacts are
observed often enough for analyses to be quantitative. In Panels B and D of
Figure 6.8 we apply the same analysis as in Panels A and C to intermolecular

contacts within Nt17-Qy dimers. Our data demonstrate that the intermolecular
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interface is dominated by glutamine-glutamine contacts. Interactions of
hydrophobic residues with hydrophobes or glutamine residues on the other chain
play a dominant role only for the shortest peptide studied. The comparison to the
combinatorial prior in Panel D demonstrates that the interface is predominantly
formed across the polyglutamine segments of two monomers. This is a rather
striking signature since all other contact types appear indifferent or diminished.
These data are consistent with the observation of the formation of an
intramolecular interface between the Nt17-hydrophobes and the polyglutamine
segment in Nt17-Qy monomers. We speculate that only those hydrophobes that
are not sequestered into an intramolecular interface may contribute to the

formation of the intermolecular interface.

Our previous results presented in Chapter IV* suggest that polyglutamine
is strongly associative, and this is consistent with the observation that contacts
between residues of the Nt17-segments of each monomer do not contribute
significantly to the formation of the dimer interface. Conversely, it has been
proposed in the literature that the intermolecular interface forms across the
hydrophobic face of the Nt17-segment®® and that the hydrophobic residues in the
Nt17-segments are crucial determinants in mediating associativity.?® The latter
conclusion comes from the profound impact single-point mutations showed on
the aggregation propensity of chimeric peptides. Our data challenge the
mechanistic interpretation that this points to an association mechanism in which

the Nt17-segments provide the intermolecular interface.
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So far the data suggest that the structural impact of the Nt17-fragment is
relatively minor for N>15. We next asked whether there are dominant members
in the ensembles characterized by a specific topology or structure which eluded
the analysis thus far. Moreover, we wished to quantify whether the ensembles of
dimer structures are composed of structures observed in the monomer
ensembles and — by extension — whether the presence and nature of higher-
order oligomers may be predicted from the data presented here. Table 6.c

summarizes the statistics of a clustering of all conformations (see VI.3.2):

Monomer Dimer
System Nciusters Fensemble Nos Nciusters Fensemble Nos
Nt17-Qs 567 0.160 239 3326 0.250 81
Nt17-Q+s 169 0.297 53 797 0.215 29
Nt17-Qzs 46 0.312 18 1537 0.360 12
Nt17-Qss 61 0.278 21 278 0.297 12

Table 6.c: Cluster statistics for ensembles of Nt17-Qy. N.usters denotes the total
number of clusters found for the specified ensemble and Fgnsemble indicates the fraction of
structures contained within the most populated cluster for that ensemble. Ngs is the
minimum number of clusters needed to represent 95% of the entire ensemble of
structures given the fixed cluster assignment. For dimers, Fensemnie @and Ngs are restricted
to those clusters representing associated states as defined by a minimum distance

criterion (<3.0A).

From Table 6.c, it does appear as if a large fraction of the data may be

represented by a small number of clusters. This point has to be considered
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carefully, however, since poor sampling would give rise to the same trend and
this may be the case for the longer peptides. Nonetheless, it does appear
relatively clear that no specific fold is adopted for any of the peptide constructs
studied as indicated by the numbers for Ngs which are significantly larger than
unity. The central structure taken from the most populated cluster from each

monomer ensemble is presented in Figure 6.9:

Nt1 7'Q5 Nt1 7'Q15 Nt1 7-Q25 Nt1 7'Q35

23T

Figure 6.9: Central structures of the most populated cluster for monomeric
chimeras. Graphics were generated using VMD.*® Atoms are drawn in space-filling
representation and colored according to residue type: positively charged (blue),
negatively charged (red), hydrophilic excluding glutamine (green), hydrophobic (yellow),
and glutamine (orange).

Figure 6.9 suggests that all monomer structures share a common feature
where the charged groups are separated from both the glutamine and the
hydrophobic residues. For Nt17-Qs, the Nt17-fragment is collapsed unto itself
and the hydrophobic residues form a semi-accessible core which forms an
interface with the glutamine residues. This is consistent with the analysis in

Panels A and C of Figure 6.8. For larger N, the Nt17-fragment becomes more
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extended (Figure 6.7) and the hydrophobic residues are sequestered against the
polyglutamine domain. Clearly, the primary sequence determines that the
hydrophobic residues remain in the vicinity of the charged residues and — by
extension — close to the surface of the globular structure. This topological
frustration suggests that they play little role in the formation of soluble oligomers,
for which the “micellar” nature, i.e., the exposure of the charged groups to the
solvent, is preserved. Their role might be much more amplified, however, under
conditions in which desolvation of the charged amino acid sidechains is possible,
i.e., at the onset of phase separation. Such a scenario could reconcile the

apparent conflict with experimental data stated in the discussion to Figure 6.8.

The average topology observed in Figure 6.9 allows the prediction that
soluble oligomers will form in a way that preserves the monomers’ “micellar”
character. Figure 6.10 shows representations of the central structure of the
dominant clusters for associated dimers. It confirms what Figure 6.8 reported,
i.e., that the association is mediated by dominant glutamine-glutamine contacts
augmented by glutamine-hydrophobe contacts for small N. For the two longest
peptides shown, the Nt17-fragment is significantly extended and forms a band
across the large, globular, dimeric polyglutamine domain. All structures in Figure
6.10 exhibit interfaces which appear amenable to the formation of higher-order
oligomers. However, they do suggest that the distribution and structure of the
populated oligomers in solution may be very different from what is seen for the
homopolymer due to the constraint of maintaining a global, “micellar’

architecture. The elucidation of important oligomer sizes and topologies is the
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subject of ongoing and future work. Interestingly, the Alzheimer’'s peptide Ap42,

just like Nt17-Qy a heteropolymeric and amyloidogenic system, is known to form

soluble oligomers of specific sizes.*!*?

Nt17-Q, Nt17-Q,

Figure 6.10: Central structures of the most populated cluster for associated
chimeras. Graphics were generated using VMD.* The bottom row is the same structure
as the top row rotated by 180° around a horizontal in-plane axis. Atoms are drawn

identically to Figure 6.9.

VI.4.4. Associativity of Chimeric Peptides in Comparison to Different Control
Peptides

Previously, we found that dimerization of polyglutamine homopolymers
occurs spontaneously at room temperature and effective concentrations

approximating those of a typical in vitro experiment.*® Here, we probe the effect
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of the Nt17-segment on spontaneous dimer formation in polyQ-expanded
peptides. To quantify associativity we computed a temperature-dependent
excess interaction coefficient B,,(T) identical to previous work (see Equation 4-3),
which can be viewed as a normalized second virial coefficient. The 6-temperature
was 385K as shown in Figure 6.6. The reader is reminded that B,»7) is a
saturating parameter with a well defined lower (always associated) bound. Panel
A of Figure 6.11 plots B,,(7) as a function of polyQ-expansion length for dimers

of:

A o005 : B o005
-0.05 -0.05
° 298K
= =
tN 01 * 305K t; -0.1
S 3
R ¢ 35K A .15
® 325K
0.2 ® 335K 0.2
025 ° 345K 025
® 355K
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
N (glutamines) N (glutamines)

C -0 D o0s
0 H ¥ 0 O i@
-0.05 -0.05
=~ =~
t -0.1 t -0.1
N N
R 015 S XT
-0.2 -0.2
-0.25 -0.25
L] 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
N (glutamines) N (glutamines)

Figure 6.11: The associativity of chimeric peptides relative to controls. The
temperature-dependent excess interaction coefficient B,»7) as a function of
polyglutamine chain length from simulations of two chains is plotted for Nt17-Qy at an

effective concentration of 100uM in Panel A, for Qy at an effective concentration of
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100uM in Panel B, for Nt17-Qy at an effective concentration of 500uM in Panel C, and

for K;QuK; at an effective concentration of 100uM in Panel D.

The data in Panels A and B indicate that the associativity of
polyglutamine-expanded chains is significantly reduced by the presence of the
Nt17-fragment when compared to the homopolymers of identical glutamine-
length. Even though the net associativity is weak, similar conclusions with
respect to the N- and T-dependencies of B,,(T) as before are obtained (see
Chapter V).° Panel C clarifies that the large attractive interfaces postulated based
on Figure 6.9 are not misleading: if the concentration is increased fivefold, strong
associativity is observed for all chimeric constructs. The absolute values of B,»(7)
are more positive simply because the droplet size is smaller (see Equation 4-3).
Analysis of cumulative distribution functions revealed that the chains are mostly
associated even for polyQ-expansions as short as five residues (data not

shown).

Thakur et al.?® show a profound enhancement of the bulk aggregation rate
of both Nt17-Q35K2 and Nt17-K,Q36K2 over KoQssK,. Panel D of Figure 6.11
shows that our data are not necessarily inconsistent with this experimental result.
When we use K;QyK, as the control, aggregation of the “homo”polymer is
significantly reduced compared to the chimeric peptide shown in Panel A. This
result emphasizes again the need for careful controls if one is interested in
delineating the intrinsic effects polyglutamine on the aggregation of polyQ-

expanded peptides.
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The somewhat surprising lack of associativity exhibited by K,QuKz
prompted us seek a structural explanation for this phenomenon. Figure 6.12 is
analogous to Figure 6.10 and shows the central structure of the most populated
cluster for the only peptide forming appreciable dimers at 100uM, K>-Q35-Ks.
Figure 6.12 shows that the structures of dimers that do form must associate in a
manner that separates the terminal Ky-groups on each chain and keeps them
solvent-exposed. This suggests that the associativity is weaker than that of the
true homopolymer or of the chimeras due to the increased difficulty in finding a

productive dimer conformation given the Kz-group repulsion.

Figure 6.12: Central structures of the most populated cluster for associated
K2QssK,. Graphics were generated using VMD.* The right panel is rotated by 180°
around a vertical axis. Atoms are drawn identically to Figure 6.9 with the exception that

the glutamine residues of the second molecule are shown in grey.

Can we quantitatively identify an origin for the negative impact the Nt17-

segment has on the intrinsic associativity of polyglutamine? In Figure 6.13, we

312



compare the change in solvent accessible volume from an excluded volume (EV)

reference state (Asav):
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Figure 6.13: Change in solvent accessible volume per glutamine residue for
chimeric peptides from the EV reference state. Data are plotted as a function of
simulation temperature for the chimeric peptides Nt17-Qy and their homopolymeric
counterparts Qy for lengths N of 15 in Panel A, 25 in Panel B, and 35 in Panel C. Data

are shown for both the monomer and the dimer case. For details on the calculation of
Asav see VI.3.2. Note that values generally become more negative with increasing chain
length; this indicates that sequestration from solvent becomes more and more complete

for larger peptides.

Figure 6.13 shows that the values are in general negative: the simulated
ensembles in water are less accessible to solvent than the EV reference state.
They become more negative with decreasing temperature indicative of collapse
in both the monomer and dimer cases. However, the data make the point that
Qx-homopolymers achieve significant sequestration of glutamine residues from

the solvent by forming dimers. This is indicated by the more negative values
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seen for dimers of Qy at temperatures at which association occurs when
compared to monomers (see Figure 6.11). This trend is universally observed for
all three polyglutamine lengths shown. Conversely, for Nt17-Qy monomers
glutamine residues are just as effectively sequestered from the surrounding
solvent as they are for associated Nt17-Qy dimers. This is an intriguing result and
suggests that the association-prone interface, i.e., the polyglutamine segment, is
partially sequestered by the Nt17-segment and hence protected from
intermolecular association thereby explaining the reduced associativity observed

in Figure 6.11.

Based on Figure 6.12, we conjecture that the “reactive” interaction surface
of the chimeric peptides is much smaller than that of the homopolymers. In
energetic terms, this would correspond to a much reduced “surface tension” of
the chimeric peptides. We carry out a decomposition of system energies similar

to previous work (see Equation 4-4):

<Utatal (T)_UNtU (T)>
N

=C(T)+C,(T)N* (6-3)

In Equation 6-3, U, is the total system energy and Uy, is the total
system energy of the isolated Nt17-peptide including the counterions. For
application to polyglutamine homopolymers, the term Uy, is ignored. Equation 6-
3 is written in such a way that the internal contribution of the Nt17-fragment
would be normalized out completely if its conformation remained rigid for the

entirety of the simulation. However, Equation 6-3 does include contributions from
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both changes in conformation of the Nt17-segment and from its interactions with
the polyQ-expansion.

Figure 6.14 shows the results we obtain for monomeric peptides. The
analysis in Figure 6.14 indicates that the Nt17-segment alters the energetics of
the Qy-segment profoundly. In the collapse regime, a significant increase in the
volumetric term of ~5kcal/mol relative to the homopolymer indicates a reduction
of self-interactions within the polyQ-expansion (Panel A). This confirms that the

Qx-segment does not adopt as tightly a globular conformation as it would in the

homopolymer.
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Figure 6.14: Volumetric and surface energy contributions for chimeric and
homopolymeric peptides. Volumetric (C; shown in Panel A), and surface (C; in Panel
B) energy contributions obtained from fits according to equation 6-3 for Nt17-Q, and Qy
monomers. Fits were obtained from data for chain lengths N=(15, 20, 25, 30, 35, 45).
The quality of the fits underlying these data is assessed through the plotted errors bars

which result from a rigorous propagation of error though the fitting procedure (see
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VI1.3.2). Only chain lengths of N>15 are used, as shorter chains are not likely to have a

volumetric contribution to the potential energy.

Do the more positive values for C; imply that globules formed by the
chimeric peptides are less stable overall? The analysis in Figure 6.6 contradicts
such a claim since Ty obtained for homopolymeric polyglutamine appears to be
unaltered by the presence of the Nt17-flanking sequence. Moreover, Panel B
shows that the surface energy penalty experienced by the polyglutamine domain
is significantly reduced in the presence of the Nt17-fragment. This is indicative of
the formation of a favorable interface between the two pieces of the chimeric
peptide. Conversely, the homopolymer exhibits a large surface penalty indicating
that globules of Qy are highly amenable to intermolecular association. Panel B of
Figure 6.14 therefore gives a direct explanation for the reduced associativity of

the chimeric peptides seen in Figure 6.11.

With increasing temperature, the discrepant behavior of the two different
systems becomes less pronounced, and the data roughly agree from 350K
onward. We interpret this to mean that with increasing temperature the polyQ-
segment becomes gradually dissociated from the Nt17-segment as the driving for
overall collapse is weakened. In the absence of an extensive interface, the
contributions from the Nt17-fragment are normalized out by Equation 6-13, and

the curves for the two different peptide constructs should and do agree.
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VI.5. Summary and Discussion

In this chapter, we have investigated the impact of the 17 residues N-
terminal to the polyQ-expansion in huntingtin on the intrinsic properties of
polyglutamine. The relevance of this study lies in the issue of sequence context
dependencies of exonic CAG repeat diseases: what are representative in vivo
fragments, and how may the presence of flanking sequences explain differences
observed in pathogenesis? HD is the most prevalent of the exonic CAG repeat
diseases and exon1 of the host protein possesses a fragment N-terminal to the
polyQ-expansion which was shown to increase aggregation rates relative to
specific control peptides.?® Furthermore, peptides carrying the Nt17-segment
showed different subcellular localization and a different propensity to form visible
aggregates in cellular models of disease (see VI.2). Our results may be

summarized as follows:

e The intrinsic preference of the Nt17-fragment to form an a-helix becomes
increasingly suppressed in the presence of polyQ-expansions of increasing
length. Specifically, for N>15 the chimeric peptides as a whole form

disordered globules at physiological conditions (Figures 6.2 to 6.6).

e The Nt17-fragment undergoes a distinct swelling transition and forms an
interface of increasing size with increasing N (Figures 6.7 and 6.9).
Intramolecular contacts are dominated by glutamine-glutamine interactions for

large N but a significant interface between the hydrophobic residues in the
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Nt17-segment and the polyQ-domain is observed (Panels A and C of Figure

6.8).

We find that chimeric peptides form dimers less readily than homopolymers
but more readily than experimental control peptides carrying flanking lysine
residues for identical N (Figure 6.11). We show that the presence of the Nt17-
fragment imposes a “micellar” nature on the accessible conformation space

(Figure 6.10) which restricts productive encounters.

We establish quantitatively that the dimerization propensity is mediated by the
polyglutamine stretch (Panels B and D of Figure 6.8). It is quenched in the
chimera because the polyQ-expansion forms an extended and favorable
interface with the Nt17-fragment (Figures 6.10 and 6.13) that lowers the

effective “surface tension” of the polymer (Figure 6.14).

Our results have a significant impact on the understanding of the effects of

flanking sequences on the molecular properties of polyglutamine. The cross-talk

of secondary structure propensities we observe points to the protective effect

certain flanking sequences may exhibit. If a long enough polyQ-expansion is

found in the context of a well-folded protein, it may disrupt the fold and cause

additional stress to the PQCS. If, however, the expansion is short enough that

the host protein domain induces regular secondary structure in the polyQ-

segment, sequence context may relieve its deleterious effects. Finally, if the

polyQ-stretch is not part of a well-folded domain, it can be expected to adopt

conformations corresponding to the intrinsic preferences of polyglutamine and

sequence context might be less important. While evidence for differential effects
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4344 the last scenario is

in line with the first two scenarios is found in the literature,
very much consistent with the popular toxic fragment hypothesis (see 1.2.4 and
1.2.7). Here, the fragments would eventually be short enough that the properties
of polyglutamine override the preferences of the remaining flanking residues.

From such a model, a reasonable explanation for the astute, but variable length

dependence of the disease age-of-onset*® (see Table 1.a) begins to emerge.

The modulation of associativity that we observe is contradicting the work
by Thakur et al.?® at first glance only. With respect to control peptides solubilized
by the addition of lysine residues, we observe the same trend that is seen
experimentally. We also report a similar swelling of the Nt17-fragment with
increasing polyglutamine length. Interestingly, electron micrographs show that
early stages of aggregation of chimeric peptides are characterized by the
presence of spherical oligomers.?® These oligomers precede the formation of
fibrillar aggregates which remain characterized by substantial polymorphism. Our
results suggest that the reactive surface for oligomer formation is glutamine-rich.
We therefore speculate that higher-order oligomers form along glutamine-
glutamine and mixed hydrophobe-glutamine interfaces but that the “micellar”
nature imposed by the presence of charged groups will restrict oligomer
formation in an astutely N-dependent manner. Alternatively — as suggested by
Lee et al.*® — large, linear aggregates may form in solution. Our interpretation of
these data from the point of view of this chapter would be that the flanking lysine
residues impose this topology at the level of not only the dimers (Figure 6.12) but

also larger aggregates. We disagree with the proposed mechanism by which the
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amphipathic nature of the Nt17-segment is a mediator of intermolecular
associations for oligomer formation.?®?° Our results suggest that topological
frustration imposed by primary sequence lessens the effect of hydrophobic

residues in comparison to the polyQ-expansion.

In summary, our results largely agree with what is known about this
system in vitro. Specific localization effects and an association with mitochondria
were observed in vivo for chimeric peptides carrying the Nt17-fragment. At this
point, our data offer the insight that the Nt17-fragment — due to the micellar
architecture of monomers and dimers — remains exposed to the surface of
whatever glutamine-rich fragment it is attached to. It appears plausible that the
surface-exposed location may predispose the Nt17-fragment to engage in
transient interactions much like a functional IDP. Protein-protein or protein-
membrane interactions are a minimal requirement for a species to act as a
localization signal, and our data explain why those interactions may not be

obliterated despite the formation of soluble oligomers.*’
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CHAPTER VII. CONCLUSIONS AND FUTURE WORK

The accomplishments of this thesis may be categorized into three broad areas.
First, we have obtained a revised molecular picture of the biologically relevant
process of the aggregation of polypeptides composed predominantly of
glutamine. This is the major accomplishment and detailed in VII.3. Second, we
have followed an interdisciplinary approach to our research: we demonstrated
how a system of biomolecular interest represented at atomic resolution may be
analyzed using ideas adopted from the conceptual physics of low complexity
polymers. We summarize the relevance of this effort in VII.2. Third, we have
created useful models and tools for other researchers in the process; specifically,
we developed a novel continuum solvation model and a novel software package
which both have unique features that should benefit the biomolecular simulation
community. We describe those features and benefits next.
VIl.1. Novel Methods for Computational Molecular Biophysics
VII.1.1. The ABSINTH Continuum Solvation Model

Chapter Ill presented the development and testing of a novel continuum
solvation model' similar in paradigm to the EEF1 model of Lazaridis and
Karplus.? The ABSINTH model (for self-Assembly of Biomolecules Studied by an
Implicit, Novel, and Tunable Hamiltonian) is a major accomplishment of this
thesis and consumed a considerable fraction of the time entering research. It has
several noteworthy features which make it suitable for specific problems in the

field of biomolecular simulations:
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e ABSINTH is a computationally efficient implicit solvation model that
nonetheless attempts to capture multi-body interactions. Typical MC
calculations are slower by a factor of 3.0-5.0 than corresponding calculations
using a gas-phase Hamiltonian. The situation is even better when equations of
motion are integrated globally such as in MD: here, the factor is usually
reduced to ~2.0. This places ABSINTH in a class with very simple implicit

solvation models®* and highly optimized variants of more complex methods.*

e The calibration of the model was somewhat unusual (see 1ll.5 and Ill.6): we
attempted to recapitulate the thermal stabilities and intrinsic disorder in
biomolecular systems. We consciously avoided a parameterization with
respect either to systems of little direct relevance (such as neat liquid and
solution data of small molecules like activities, densities, heats of vaporization,
etc.) or to just the stabilities of specific conformations of relevant biomolecules.
Our parameterization paradigm predisposes ABSINTH to be used in studies of

IDPs and in general of phenomena located near order-disorder transitions.

e ABSINTH inherently supports the simulation of co-solutes such as small
molecules and counterions explicitly. This is because they are integrated into
the same underlying framework. As is detailed below, this treatment may
necessitate further improvements to the model in the future. Nonetheless, the
ability to modulate solution conditions at this level of representation is an

unusual feature for implicit solvation models.

One of the benefits of the ABSINTH paradigm is its flexibility. It opens

several avenues for future improvements and extensions. First, pending the
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availability of transfer free energies of solvation for the biomolecular model
compounds (see Table 3.a) into organic solvents, we can conceive of simulations
in other milieus. If the solvent is represented as a continuum, it may even be
possible to simulate certain binary solvent mixtures that way. An example would
be mixtures of water and urea as they are employed in CD spectroscopic
experiments shown in Figure 6.4. Co-solvents are used in many applications in
protein science, whether for chemical denaturation (urea, guanidinium chloride)®
or for structural stabilization (TFE, THIP),° and reliable and exhaustive
simulations of biomacromolecules under those conditions are currently lacking in

the field.

The previous idea can be extended to address the simulation of lipid
membrane environments in an implicit manner. There is precedent for this
approach in general, and ABSINTH might offer a very natural framework to add
to the list of descriptions currently available.” Strong interest in such methods
has emerged in the biomolecular simulation field due to the increased focus on
describing systems in environments more and more akin to what the native

context might look like in the cell.

An application particularly suited to implicit solvation is the simulation of
more appropriate ensembles for small volumes, i.e., those in which the particle
numbers fluctuate. The grand canonical ensemble is an underused description in

biomolecular simulations, %"’

primarily — or so we speculate — due to the inherent
architectural constraints imposed by most simulation software packages. The

accurate simulation of ensembles in which the pH remains constant'? is a
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specific application fitting into this broader framework and a direction for
development in the immediate future. In the long run, a grand canonical
description appears indispensable for the simulation of polyelectrolytes in the
ABSINTH paradigm: this is another area in which our particular formulation of

continuum solvation may excel compared to other implicit solvent models.

Lastly, there is one prominent weakness in the current treatment which
needs to be addressed. The free energies of solvation of charged peptide and
nucleic acid moieties have to be artificially lowered in order to prevent the
formation of spurious salt bridges (see Table 3.a). This is fundamentally tied to
the inability of the model to parse the system for the presence of multiple
dielectric cavities. Given the polymeric context, which leads to some amount of
desolvation, we need to be able to identify whether a second charged moiety
(whether on a polymer or an ion in solution) shares the same dielectric cavity or
not. There are several approaches to this rooted in either graph theory or simpler,

geometric algorithms.*

In modern science, models gain traction by continued usage and by
showing robust features in the process. Therefore, our primary aim for the
immediate future should be to encourage the community to test the model on
problems of interest to them and to continue to apply and evaluate the model
ourselves. This way, the accuracy of our treatment can be continually refined by

critical feedback received from a broad set of users.
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VII.1.2. The CAMPARI Software Package

The development of a software package we termed CAMPARI (for
Computational Analysis of Macromolecular Properties Across Resolutions and
Interfaces) is an aspect of this work that has hardly been mentioned thus far. Al
the results in Chapters IlI-VI have been obtained using CAMPARI which was

almost exclusively written by the author of this thesis.

The fundamental benefits and caveats of employing Monte Carlo methods
in the conformational sampling of biomacromolecules have been reviewed
recently.” The ability to “jump” in phase space is of fundamental appeal in
rugged energy landscapes due to the inherent ability to cross barriers which
might be associated with infeasible timescales when their crossing is simulated
dynamically. Furthermore, the effective speed of conformational diffusion can be
greatly enhanced in MC methods over an MD treatment if the landscapes are
sufficiently flat. This is best illustrated using the simulations of macromolecular
dimerization we carried out in Chapters IV, V, and VI: the simulation volumes are
large (the droplet diameter typically was 40nm) and diffusion of the
macromolecules would easily become prohibitively slow. A realistic modeling of
the diffusional on-rate in those simulations would have been detrimental to our
ability to quantify the thermodynamics of macromolecular association.

However, MC simulations are by no means the panacea of computational
biophysics. Much like dynamics-based methods they have an application
domain: that of systems with low average density and sufficient degeneracy. It is

near-impossible for example to sample aqueous solutions of multiple, different
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small molecules at ambient conditions. Here, density and specificity are both
placed in a regime in which MC simulations become impractical. Conversely, our
approach consisted of coupling the conformational equilibria to an implicit
description of the solvent in which co-solutes present at low enough
concentrations may be represented explicitly (see VII.1.1). It has been argued,
not only by us™ but by others as well,’'® that such a setting is amongst the
scenarios conducive to MC methodologies exhibiting superior performance when

compared to dynamics-based methods.

The CAMPARI software package has been developed as a simulation
engine designed to take advantage of these putative benefits. It is intended for
release in late summer of 2009 under a public license which allows the scientific
community to benefit from our work at no cost. Its major features — and by
extension its representation of the accomplishments of this thesis — are as

follows:

e To our knowledge, it is the only simulation software presently available which
offers comprehensive support for the ABSINTH implicit solvation model and

the paradigm of the ABSINTH force field (see Chapter Ill and VII.1.1).

e CAMPARI offers a collection of move sets specifically designed to sample
biomacromolecules when using standard molecular mechanics Hamiltonians.

Support exists not only for polypeptides but also for polynucleotides.

e The software has validated support for most of the common molecular

mechanics force fields, i.e., CHARMM, AMBER, OPLS, and GROMOS. Since
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CAMPARI also supports the basic paradigm underlying those force fields,
comparative studies, a necessary endeavor whenever new simulation territory
is explored, are feasible to an extent going beyond what is possible with other

free simulation packages.

Within the limits of our abilities and resources, CAMPARI is designed to be
computationally efficient. Recent work on all major simulation software

718 indicates that researchers are less and less

packages in this direction
willing to spend their “experimental” resources, i.e., CPU time, on inefficient

algorithms.

CAMPARI attempts to go beyond pure MC sampling and offers a variety of
dynamics-based techniques, most prominently molecular and Langevin
dynamics in both Cartesian and internal representations of the system. The
ability to employ hybrid sampling protocols should carry substantial appeal in
times when our ability to sample conformational space efficiently does not
nearly grow as fast as our interest in more and more complex biological

systems.

Much of the analysis presented in Chapter II-VI is built into the software.
Existing trajectory data may be re-analyzed using CAMPARI and informative
quantities are computed on-the-fly for new simulations. This is a paradigm not
typically encountered in simulation software but has proven a popular feature
due to the significant time savings associated with not having to “manually”

analyze all data a posteriori.
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Future work on CAMPARI will undoubtedly be a collaborative effort.
Several features may increase its relevance even more. Those include support
for other biomolecules: lipids, polysaccharides, typical co-enzymes, ligands, and
cellular metabolites, etc. Methodological advances are needed to be able to
reliably simulate ensembles with constant pH or constant chemical potentials
(see above). Continued efforts to make the software computationally more
efficient are indispensable in ensuring that CAMPARI can become an accepted
and widely employed tool in the biomolecular simulation community. Support for
various platforms and architectures is an equally useful development direction to
appeal to a wider audience of potential users. Lastly, we have actively
considered the addition of alternative implicit solvent models to the available
Hamiltonians, most prominently GB/SA-based models and the EEF1 model. This
would allow comparative calculations across different continuum treatments of
aqueous solvation with the ultimate goal of identifying consistent flaws in any of
the models and cross-inform future improvements that way (see VII.1.1). It may
sound surprising, but presently such efforts are hampered by the plethora of
minute differences in implementation and interpretation of models one

encounters from software package to software package.
VII.2. Interdisciplinary Aspects and the Role of Biophysicists

In 1.1, we touched upon the interdisciplinary flavor an emergent field like
biophysics holds due to its very definition: the application of rigorous and

quantifiable methods, of concepts established in “pure” physics, and of a
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corresponding school of thought to systems of biological interest. We pointed out
the difficulty in remaining faithful to the details of the biological system given the
inherently coarse-grained nature of the approach. Furthermore, we argued that
we would continually reference our work to available experimental data. This
second “interdisciplinary” aspect of connecting in silico to experimental data is

discussed in this section as well.

The results in Chapter Il illustrate the first aspect: we adopted order
parameters and structural metrics from polymer physics to apply them to the
problem of determining the conformational ensemble of polyglutamine.’® Why
was this possible, necessary, and beneficial at the same time? The first half of
the answer lies in the low complexity of the primary sequence: polyglutamine is a
homopolymer; therefore its properties may be predicted to be renormalizable
albeit not in the rigorous sense of the term.?° This allowed us to study a single
chain length, yet make unequivocal predictions about chains of different lengths.
This would of course not have been possible were the primary sequence that of a
typical protein, i.e., had we studied a non-random heteropolymer capable of
adopting a specific fold. Polyglutamine’s intrinsic disorder, which is well-
characterized®?? and was confirmed multiple times in Chapters 1I-VI, provides
the second half of the answer to the question above. The lack of a consistent
preference for structural motifs allows the application of more coarse-grained
metrics such as the ones presented in Chapter II: as an example, the scaling of
internal distances with sequence separation (Figures 2.4 and 3.13 and Equation

2-6) may be considered. If the chains were to adopt a specific fold, this metric
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would become uninformative: a plot like the one in Figure 2.4 would merely be a

low-resolution transformation of the underlying structural motif.

However, it is not easy to convey the value of analyses like those
presented in Chapter Il to a broader audience. They appear less intuitive than
atomistic pictures and condense information in a way that inevitably relies on
averages over broad, disordered ensembles. One might argue that the reliance
upon visualizations in the vein of structural biology has been an unfortunate bias
in the biomolecular simulation field. We can speculate that the reason for this
bias is that atomistic images of structures appeal to us because i) they go
beyond the resolution provided by most experimental techniques; and ii) they
satisfy our inherent conditioning and alignment of cognitive abilities toward visual
culture.>2* The latter point may be illustrated by the concept of aesthetics often
ascribed to “intuitive” visualizations, in particular in cell biology.?® However, in the
absence of X-ray crystal or NMR structures, i.e., in the absence of directly
comparable data, what is the intrinsic value of “representative” visualizations of

simulation data?

The answer to this question is hierarchical. This thesis has attempted to
circumvent the pitfall of referencing itself to in silico work as much as possible.
Kratky profiles, for example, are direct readouts of SAXS experiments (see
Figure 2.7).° Similarly, the scaling of internal distances can be probed
experimentally (at least in theory) by a systematic FRET study with small enough
dyes. By quantifying the scaling relationship of size and chain length, we

obtained a single number from multiple sets of simulation data that is comparable
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to the result of an FCS experiment (see Figure 3.12)."?" If we find that attempts
to reproduce a set of experimental results as faithfully as possible are successful,
we can then proceed to analyze our data further. We may identify microscopic
driving forces within our models, derive mechanistic models, and create visual
representations to illustrate our thinking. However, this is a meaningful and
straightforward exercise only if our models are based on physical principles —
whether implicitly or explicitly.

However, not all experimental techniques routinely employed in studies of
biomolecular systems are understood well enough to be able to derive an
efficient framework for their computation from simulation data. For example, the
intrinsic fluorescence of tryptophan residues is a common readout of protein
folding. Changes in macromolecular environment create a change in signal but
the exact response function is poorly understood. NMR chemical shifts share the
same feature, and their computation from simulation data is entirely empirical in
nature.?® In both cases, the theoretical framework of quantum dynamics would be
needed to predict the experimental data ab initio.”® With methods like these,
coincidence of multiple, independent readouts is the most common way to
address concerns about potential caveats underlying individual techniques.
Figure 3.10 shows an analogous case for the interpretation of in silico data for
the thermal melting of a small B-hairpin peptide: several coarse-grained,
structural readouts are defined and shown to report on the same transition.

Conversely, Figures 6.2, 6.4, and 6.5 present an example in which the lack of a
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rigorous and quantitative interpretation of experimental data, in this case CD data,

poses a problem for assessing the validity of our computational models.

Lastly, NMR methods present a particular challenge: often, multiple
experimental constraints are obtained and fed into a computational algorithm
which attempts to minimize deviations from the constraints given a chemically
accurate representation of the system locally. This approach is prevalent in NMR
structure determination and inherently assumes that all constraints need to be
satisfied simultaneously. Consequently, several NMR “structures” of small
peptides have been proposed.®®>? |t is very difficult to distinguish whether the
experiments report on a canonical fold or on certain ensemble preferences
sampled from an inherently disordered manifold. We addressed those concerns
in detail in 111.6.4. They point to the fact that presently there are cases in which a

direct comparison between experimental and computational work is impossible.

What does the above discussion suggest with respect to the
accomplishments of this thesis and with respect to the role of biophysicists in
upcoming years? The first part is answered as follows: we have taken an unusual
approach to quantifying the intrinsic properties of polyglutamine.'®*%** We were
largely inspired by the physics of homopolymers and have attempted to add to
the field of protein aggregation our insights and analyses.*® Of course this line of
thinking is not unique to us: e.g., an influential paper by Kohn et al. demonstrates
the application of low resolution experimental techniques to extract global
characteristics inspired by polymer physics of a heterogeneous set of

polypeptides.®® Furthermore, our data and analyses directly suggest experiments
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to be performed (e.g., the systematic FRET analysis mentioned previously). In
recent work, we have extended our approach to the biological problem of
protamines.®” Similar to the work in Chapter VI,*® the realistic representation of
the peptides has allowed us to remain faithful to the details of the system and to
delineate global preferences from local heterogeneities which would be masked
by analyses such as those presented in Chapters Il and IV. An experimental test
of some of the results of this study is underway (Crick and Pappu, unpublished

data).

The second question aims at the role of biophysicists: the preceding
discussion and the results of this thesis suggest that transfer of knowledge allows
us to take a “fresh” look at biological problems and to arrive at novel and testable
hypotheses. This is consistent with the very definition of being a biophysicist.
Continuing efforts should be invested into the congruence of experimental and
computational readouts, ie., into a better understanding of the concepts
underlying common biophysical techniques and a better understanding of their
limitations including guidance toward the design of suitable controls (see Chapter
VI). Computational models should continue to be assessed carefully for their
physical validity and qualitative and quantitative accuracy. Only then can
mechanistic insights obtained from simulation data which extend beyond the
resolution of experimental techniques live up to their potential. Lastly,
communication skills will be a fundamental means in determining the success of

biophysics.** We should always be able to apply our school of thought to a
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problem domain in that problem domain’s particular language and not expect

others to translate for us.

VIl.3. Aggregation of Polyglutamine and CAG Repeat Disease

Pathogenesis

There is no cure for any of the nine exonic CAG repeat diseases known
today. This statement was true a few years ago when research entering this
thesis was started and remains true today upon its completion. So what have we
accomplished from the point of view of the mission enabling us to conduct this
research, that is, from the point of view of the mission of public health? Extensive
discussions of the results of each chapter pertaining to this question are found in
IV.4, V.4, and VI.4. We do not wish to repeat these in their entirety here but
instead provide a brief evaluation of the results of this thesis in the context of

understanding disease.

VII.3.1. Properties of Monomeric Polyglutamine and Implications for Disease
Recent work has placed pronounced emphasis on soluble species in
delineating the causative agents for CAG repeat disease pathogenesis. This
means that our understanding of the physicochemical and biological processes
and mechanisms acting at the level of polyglutamine at very low concentrations
and small copy numbers in cellular environments is crucial to understanding
disease. A striking observation in CAG repeat diseases is the universally
observed inverse correlation between disease age-of-onset and polyglutamine

expansion length.** Consequently, research in Chapters Il, IV, and V has
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attempted to elucidate the structural preferences of monomeric polyglutamine
homopolymers as a function of solvent quality and chain length. Our findings are

as follows:

e At physiological temperatures and pressures, polyglutamine exists as compact,
globular species in solution. Water is a poor solvent for polyglutamine and
chain-chain interactions are preferred over forming an interface with the

solvent.'®3*

e Solvent quality may be modulated by a suitable control parameter such as
temperature. We can induce a well-defined coil-to-globule transition as a
function of solvent quality.®* The very high 6-temperature of ~390K*® we
observe in an atomistic model using a realistic implicit solvation model known
to reproduce melting temperatures for other polypeptides suggests that it may
be difficult to adjust solvent quality for polyglutamine experimentally. This is
indirectly supported by experimental results that show that peptides of the
form GQ)CK; with a cysteine-attached fluorophore remain collapsed and
aggregation-prone even under chemically denaturing conditions at which most

proteins unfold and are soluble (Crick and Pappu, unpublished data).

e The ensemble is disordered, in particular for longer chain lengths. No
canonical secondary structure elements are detected in more than transient
incarnations.’®* There is no sudden change in the conformational equilibria
with chain length as was suggested repeatedly in the literature based on the

threshold expansion length observed for HD (N=37). We do not expect to ever
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encounter critical chain length dependencies for the properties of the
homopolymer, and this is consistent with the variable threshold lengths

observed for the various CAG repeat diseases (see Table 1.a).%°

e The conversion to a conformation rich in p-secondary structure is
accompanied by a steep free energy barrier for polyglutamine.®® Such a state
would correspond to the putative arrangement in aggregates exhibiting

amyloid-like characteristics.

e In poor solvent conditions, the interconversion between different disordered
states for monomeric polyglutamine is hindered by the requirement to remain
on the manifold of collapsed states. Conformational diffusion is slow, and the
sluggish relaxation dynamics pose unique challenges for computer simulations

of polyglutamine.®

The intrinsic disorder we observe for polyglutamine naturally places these
peptides in the class of IDPs. Functional IDPs in the cell remain soluble by

possessing large fractions of charged residues.*'*?

It may be assumed that they
pose little to no stress for the cellular machinery concerned with protein folding
and degradation with which they co-evolved. How is this possible? Molecular
chaperones recognize mis- or unfolded proteins by exposed hydrophobic
residues for which they provide large and non-specific binding surfaces.*
Disordered sequences rich in charge are preferential binding motifs for the
ubiquitin-proteasome degradation pathway and are efficiently degraded.*

Conversely, well-folded proteins — for which water generally is a poor solvent —

resist interactions with either chaperones or the proteasome by their micellar
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architecture: hydrophobic and polar groups, including the polypeptide backbone,
are sequestered away from the solvent by burial inside of a globular structure
whose surface is coated with charged sidechains which interact favorable with
the aqueous milieu encountered in the cell. Polyglutamine does not fit either of
those two categories: water is a poor solvent but sequestration of solvophobic
groups is by definition incomplete. Surface-exposed glutamine residues are
expected to continually interact with molecular chaperones. The peptides may
resist degradation via the ubiquitin-proteasome pathway due to their collapsed

nature.*>*4’

A rigorous quantification of the conformational ensemble of
homopolymeric polyglutamine has therefore enabled us to postulate a
mechanism of toxicity given previous findings. However, the cellular relevance of
hompolymeric polyglutamine is highly questionable. As is detailed in VII.3.2, we
expect these peptides to fall out of solution very rapidly. It seems fairly unlikely
that evolutionary pressure would allow cells to consistently waste energy on the
creation and clearance of intracellular deposits even if we assume that the latter
are non-toxic. The progressive development of visible aggregates in animal
models of CAG repeat diseases suggests that polyQ-expanded proteins and their
degradation products are largely kept soluble.*® Given our results in Chapters IV
and V, we cannot envision a scenario in which homopolymeric polyglutamine

would remain soluble and be subjected to a controlled turnover cycle in the cell.
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VII.3.2. Revised Aggregation Mechanisms for Polyglutamine

The results presented in Chapters I, IV, and V have led us to believe that
the intrinsic properties of polyglutamine would give rise to an aggregation
mechanism very different from what is proposed in the literature. It was touched
upon several times that amorphous aggregates are not typically studied
experimentally: they are morphologically ill-defined and are more likely viewed as
waste products of failed protein preparations or experiments.*® Moreover, the
intrinsic heterogeneity renders a systematic characterization by experimental
methods infeasible. Nonetheless, we conclude based upon the results in
Chapters 1V-VI that homopolymeric polyglutamine would rapidly aggregate to
form an amorphous precipitate. Of course, observation of such a phenomenon in
well-controlled conditions is very difficult due to the inability to chemically
synthesize peptides without any flanking, charged residues added for solubility.
Work in the 1960s had essentially established this on much larger

polyamides.®*"

However, as the discussion in VII.3.1 highlights, we continue to view the
intrinsic properties of polyglutamine as the predominant driving force in CAG
repeat disease pathogenesis. The formation of soluble oligomers has been
documented both in vitro®® and in vivo,” and hence polyQ-mediated associations
— whether with itself or with other aggregation-prone peptides present in the
cellular milieu — remain a focal point of research in the field of exonic CAG repeat
diseases. Recently, Bernacki and Murphy®* argued that kinetic aggregation data

using monomer loss as the experimental readout may be fit with a variety of
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different mechanistic models including that brought forth by Wetzel and
coworkers.>® Distinguishing between models was shown to be difficult in the
absence of more detailed data, in particular the complimentary readout of fibril
numbers and sizes. Similarly, Morris et al.®® demonstrated that a mechanism
termed “the Finke-Watzky model of nucleation followed by autocatalytic surface
growth” fits several independent sets of protein aggregation data reasonably well

with only two free parameters.

It should be noted that in both of the aforementioned models no
heterogeneities are included: neither in the (effective) nucleation nor in the
elongation steps. Let us now consider a model in which monomers in solution
quickly associate to give rise to a specific distribution of oligomers. If we consider

monomer addition only, we have at equilibrium:

A+A=4, K, = [Azz]
L] (7-1)

Ai +4 # A7‘+1 Ki+l = [AHI]
[4]04]

In Equation 7-1, A is the aggregating (polymerizing) species, square

brackets denote activities (from here on: concentrations), and the K; are
equilibrium constants. We can generate equations for the population of individual

species, f;, by observing conversation of mass:

t t j=2 (7_2)
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Here, ¢, is the total concentration of aggregating material in monomeric
units. Equation 7-2 provides an implicit relationship between the concentration of
free monomer and the total monomer concentration. Let us now consider the
case where the infinite sum in Equation 7-2 is well-approximated by a finite sum;
this is reasonable since we focus on soluble oligomers here. We define a
maximum oligomer size iy.x by setting K; to be zero for i>i,,.. Equation 7-2 then

reads (for clarity):

4] .
u-' Kj[A] fori<i,,

0.0 else (7-3)

The graphical representations in Figures 6.9, 6.10 and 6.12 led us to
believe that this may be a reasonable scenario for the sequence constructs of
interest to us here. Let us now assume that there is a very slow and irreversible

conversion of large enough oligomers A4; with i>i,,;, to fibrillar species:
Aim,.ﬁl i 1 (7_4)

In Equation 7-4 F; denotes a fibrillar species composed of i monomers. They are
formed through a unimolecular process which we can assume to correspond to
an internal re-arrangement akin to the ideas presented in Figure 5.16. Due to the

slowness of the process we may safely assume that the oligomer distribution re-
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equilibrates rapidly (pre-equilibrium assumption). We can then write a rate

equation for heterogeneous fibril formation as:

@%[4%&[4'@9 [4]
dc -

7:: i k,.[A,]= i ki[A]'l:!Kj[A]

In Equation 7-5, ¢, is the total concentration of growing ends (independent of the
size of the particular fibril nucleus) and the k; are a set of heterogeneous
nucleation rate constants. Consequently, we can treat elongation via monomer

addition as:

F+A—==F,

i+1

dc,
th =k, [A] ~kc, (7-6)
dzcl, B d[A]

7_k+cp7+(k+[‘4]_k)'i%ki[A]'HKj[A]

J=2

Here, k. is the elongation rate constant for monomer addition, k& is the rate
constant for monomer loss from a growing fibril, and ¢, is the total concentration

of monomers incorporated into fibrils.

If we focus on the initial rate of aggregation and treat fibril elongation as
irreversible and homogeneous, we may assume, at least for certain values of the
K;, that the free monomer concentration [A] is static and determined by its pre-
equilibrium value in the absence of any fibrillar aggregates. This concentration a,
is obtained implicitly via Equation 7-3. Then, we can integrate Equation 7-6

similar to Equation 1-6:
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¢, (t) = %kaao . IZ: k.a, ~HKja0 (7-7)
=i, j=2

This form allows us to now pursue an analysis identical to the one
proposed by Wetzel and colleagues. Figure 1.2 has shown that the analysis in
itself is fairly robust given a homogeneously nucleated process. But what
happens in the case of heterogeneous nucleation to the concentration
dependence of the initial rate of aggregation? This question is answered directly
by Equation 7-7. First, we see that the slope of a double logarithmic plot still
convolutes elongation and nucleation processes much like in the original analysis.
Second, we recognize that the effective dependence on total concentration is
now not at all guaranteed to yield a well-defined integer slope in a double
logarithmic plot since it crucially depends on the relationship of ay and ¢,, which is
given by Equation 7-3. It is in parts the significant population of off-pathway, i.e.,
fibril-incompetent oligomers and in parts the heterogeneity of the nucleation
mechanism itself that fundamentally alters the concentration dependence.
Interestingly, Equation 7-7 recovers the model postulated by Wetzel (Equation 1-
7) if both i,,, and i,. adopt a value of two. The only difference is that the pre-
equilibrium constant K" becomes a pre-equilibrium dimerization constant K, and
that the bimolecular nucleus elongation rate constant k. becomes a
unimolecular nucleation rate constant k,. The model proposed here is therefore a

valid generalization of the homogeneous nucleation model.

We illustrate the altered concentration dependencies and resultant

nucleus size estimates in Figure 7.1. We define a simple model for both the K;
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and the k; by drawing them from a normal distribution with well-defined means
and variances. We can then determine large numbers of apparent slopes from a
double logarithmic plot analogous to Panel D of Figure 1.2 to study the impact of
heterogeneous nucleation on estimates of the nucleus size assuming

homogeneous nucleation, i.e., n* following the idea of Equation 1-8:
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Figure 7.1: Apparent nucleus size estimates »* for simulated aggregation data for
a heterogeneously nucleated process. The parameters of the distribution to generate
the k; were constant throughout (mean and standard deviation are 102s™"; values are
adjusted to zero if drawn as negative), and i,, was always 20. Panel A shows
histograms of apparent nucleus size estimates for a minimum fibril-forming oligomer size
of ten and for different values of the mean of the distribution of K;. The variance was
fixed and set to 1x10°M™". Again, values were adjusted to zero if drawn as negative.
Cases with bad parameter values were discarded. Every histogram represents 10°

simulated datasets. Within each dataset, 450 free monomer concentrations up to the

high uM-range were used to obtain species distributions and total concentrations via
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Equation 7-3. Linear regression of a double logarithmic plot of the constant terms in
Equation 7-7 against ¢, yielded n*+2 according to Equation 1-8. To mimic experimental
conditions, only values for ¢, of 1-500uM were considered for the line fit. Panel B shows
an analogous plot. Here, i,,, is varied and the mean of the K; is fixed to 4x10°M™. The
obtained nucleus sizes are somewhat concentration range-dependent (not shown). This
convolution of effects is another important point to consider for example in the work of

Thakur et al.®’

Panels A and B of Figure 7.1 show that the estimated nucleus size from a
heterogeneously nucleated process (as defined above) depends strongly on
which regime the system is prepared in. If most of the aggregating material exists
in fibril-incompetent forms (small K; and/or large i,.,), the apparent nucleus size is
large but smaller than i,;. Fractional values are easily observed similar to

experimental data.?*°’

If, however, large fractions of the aggregating material are
present in soluble oligomers large enough to promote fibril formation (large K;
and/or small i,,,), the limiting value for the apparent nucleus size appears to be
close to zero (corresponding to a slope of 2.0) but can in fact be less. This finding
is inadvertently consistent with the autocatalytic surface growth mechanism
proposed by Morris et al., whose initial rate dependence on total concentration
would similarly yield a slope of 2.0.%® If we interpret the analysis according to
Equation 1-8, nucleus size estimates of fractional numbers smaller than unity are

entirely possible (the apparent n* can indeed be negative as reported by Thakur

et al.). It should be noted that the parameters chosen for Figure 7.1 are arbitrary.
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The model merely illustrates how experimental data may be more reasonably

explained by a fundamentally different process than the one postulated.

We can therefore propose a revised aggregation mechanism for
glutamine-rich, heteropolymeric polypeptides. Taken together, the results of
Chapters IV, V, and VI and of Figure 7.1 are very much consistent with a
mechanism outlined in steps (g), (h), (i), and (j) of Figure 5.16. Under typical
experimental conditions in vitro, polyQ-expanded peptides spontaneously form
soluble oligomers.”?> The properties of these species are controlled by the
location and prevalence of solubilizing (charged) amino acid residues.*® Large
enough oligomers may provide a water-deprived environment for chains on the
inside of soluble oligomers. A rate-limiting conversion to a fibrillar species occurs
and induces phase separation which leads to a quantifiable readout of monomer
loss.>*** Figure 7.1 suggests that the experimental work of Wetzel and
coworkers is carried out in conditions where soluble oligomers are prevalent.
This provides a clean explanation for the fractional values of less than unity

observed for (homogeneous) nuclei sizes experimentally.?*°>°’

VII.3.3. Therapeutic Strategies

The lack of successful and general therapeutic strategies means that
present-day treatment of patients is entirely symptomatic at the level of the
behavioral and physiological phenotypes (see 1.2.2).°® However, various
molecular therapeutic strategies have been discussed and begun to be tested in

cellular or animal models of disease.”® Many of those ideas hinge upon the
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availability of gene therapy, ie., the effective, cost-efficient, well-controlled
delivery of exogenous genes to the affected tissues. The actual molecular
therapeutic is then made available by the cellular machinery and underlies
normal metabolic processes. As an inherently endogenous material, such
polypeptide or RNA drugs circumvent several side effects possible with small
molecule drugs due for example to metabolic by-products. The expression of
exogenous antibodies recognizing mutant huntingtin (“intrabodies”) has been
demonstrated to exhibit neuroprotective effects in Drosophila and mouse models
of disease.®®®' However, with current medicinal technology, a transfer of this
strategy is not yet feasible. If it were, efforts to re-engineer those intrabodies to
work as polyglutamine-specific proteases would seem like an extremely valuable
research target. Since molecular medicine has not matured to this stage yet, the
remainder of this section discusses the relevance of our findings in the context of

more feasible strategies.

Modulation of the PQCS

In 2009, a considerable body of literature exists that supports the idea that
an up-regulation of the activity of molecular chaperones may have a
cytoprotective effect.?>®® The underlying idea is consistent with the dominant
hypothesis of toxicity outlined in 1.2.4: glutamine-rich peptides including soluble
forms and — to a lesser extent — precipitated forms cause stress to the PQCS
which the cell eventually succumbs to. Our results are very much consistent with

this hypothesis as was detailed in VI.5 and VII.3.1.
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But how does this represent a route to therapy? The only current and
feasible application being pursued is the administration of small molecules known
to change the protein levels of those species involved in the PQCS. Compounds
such as geldanamycin and derivatives have shown potential in fly models.®* The
advantage of this strategy is that it might be generalizable to other protein
aggregation diseases as a universal involvement of the PQCS has been
proposed.®® However, this thesis does not shed any light on the molecular
mechanisms underlying the efficacy of such compounds; hence, any further

discussion is omitted.

Small Molecule Inhibitors of Aggregation

Our results suggest that an efficient sequestration of reactive interfaces
mediating deleterious protein-protein interactions may represent an effective
strategy to prevent the PQCS from being impaired by the presence of glutamine-
rich, disordered peptides. They also suggest that the unique challenge posed by
polyglutamine might lie in its ability to remain soluble enough to form liquid-like
monomers and oligomers in solution which are amenable to reversible
associations. What about homopolymeric sequences that are expected to be
even more aggregation-prone? Evidence suggests that evolutionary pressure
has rigorously prevented the presence of gene expansions which would give rise

to peptide fragments rich in hydrophobic residues.”

Various medium- or high-throughput screening assays have been set up
in recent years to identify compounds — among those with some ability to cross

the blood-brain barrier — that can inhibit aggregation of polyQ-expanded protein

351



in vitro or in vivo.”"? One of the problems imposed by the absence of a detailed
mechanistic understanding of the process is the selection of evaluation criteria.
For example, our data suggest that the formation of fibrillar aggregates need not
be an informative readout of therapeutic potential (see VII.3.2). Not surprisingly,
results pertaining to the cytoprotective effects of the amyloid-binding and
aggregation-inhibiting dye Congo Red remain controversial.”>’* Instead, we
propose that an in vitro characterization of oligomer distributions and aggregation
rates for sequence constructs identified by analysis of proteolytic fragments may
yield a much more informative assay for the screening of small molecules.
However, severe concerns remain: i) the polyQ-expanded protein is constantly
being produced by the cell; ii) it is very unlikely that a small molecule identified in
a screen has high enough selectivity to not interfere with other cellular — in
particular self-assembly — processes when applied in suitable dosages, and iii) it
is well-known that screening assays may yield generic false positives referred to
as chemical aggregators.”® Compounds in that latter class could easily prove
toxic due to their reported ability to sequester functional proteins from the

surrounding milieu and to (at least partially) unfold them.”

Structural Drug Design

We concluded in Chapters Il, IV, and V that there is no consensus
structural motif present in homopolymeric polyglutamine at the level of monomers
and dimers. We speculate that the same will hold true for larger, soluble
oligomers. The early stages of polyglutamine aggregation would be intrinsically

disordered in terms of their protein secondary, tertiary, and quaternary structures.
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Even if we stipulate that B-secondary structure is a common motif in glutamine-
rich aggregates, that motif would by no means be unique. Our results strongly
suggest that structure-based design targeting the polyglutamine segment is not a
viable therapeutic strategy — primarily due to the absence of a consensus motif

and due to the low concentration of glutamine-rich fragments in vivo.

Conversely, Chapter VI elucidated that wild-type flanking sequences may
very well exhibit structural preferences. Our results argue that those preferences
might be transient in nature and that their prevalence will depend on the relative
lengths of the structured motif and the polyQ-expansion. Ironically, it might be
easier to engineer structurally designed drugs that recognize fragments carrying
non-pathogenic polyQ-expansions than to engineer drugs recognizing those with
longer polyglutamine stretches. Presently, polypeptides which specifically bind
polyQ-expanded protein have been identified via screening’’ or as antibodies’
and not via targeted design. Recently, the “exposed p-sheet hypothesis” has

been brought forth>®

which was formulated primarily based upon results obtained
for a thioredoxin fusion protein” as discussed in 1.2.7. We argue that this is
misleading as a general hypothesis: our studies of the intrinsic properties of
polyglutamine attribute little significance to p-secondary structure. The two lines
of thought are easily reconciled if we neglect the secondary structure component

and propose a modified “exposed reactive polyglutamine hypothesis” as outlined

above.®°
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Summary

In summary, our findings as a whole question our ability to selectively
interfere  with polyglutamine-mediated aggregation processes in cellular
environments. The lack of selectivity suggests that many compounds will also be
cytotoxic and may not be suitable drug candidates for the treatment of exonic
CAG repeat diseases. The cellular machinery which successfully handles the
stress imposed by the mutant proteins is already in place. Assisting the PQCS
may represent a viable strategy for the treatment of all protein misfolding and
aggregation diseases. Beyond that, our results indicate that future research
should focus on identifying naturally occurring, glutamine-rich fragments to be
able to screen them for putative drug targets within the flanking sequences.
Research along the lines of the work presented in Chapter VI will be

indispensable in providing a molecular characterization of such polypeptides.

VII.3.4 Future Directions

Our work has remained limited by the system sizes we are able to study.
Even though we obtained an atomistic picture of the dimerization of
polyglutamine at various chain lengths and sequence contexts, all our results on
higher-order assemblies remain speculative in nature. Concepts adopted from
basic polymer physics have assisted us in deriving meaningful predictions from
our data (see Chapters IlI, IV, and V). However, Chapter VI has elucidated that

our intuition may only guide us to a certain point.

Future in silico work should therefore strive to bridge the gap between

different length- and timescales by further coarse-graining the representation of
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the system. This is a difficult objective if our interest is to continue to capture the
underlying physics of the assembly process, in particular for heteropolymeric
polypeptide sequences. Work has begun which will address the stability of
amyloid-like aggregated phases (Lyle, Vitalis, and Pappu, unpublished).
Ultimately, a demonstration of the phenomenon implied in Equation 7-4, i.e., the
structural re-arrangement of a disordered oligomer into an ordered fibril is an

ambitious but worthwhile goal for future computational research.

Furthermore, we should strive to identify alternative experimental readouts
which report on the sizes and numbers of soluble oligomers. A better
understanding of metrics employed routinely in the protein aggregation field —
such as ThT binding or CD spectroscopy — appears as a highly desirable goal for
future work as well. Then, the predictions outlined in VII.3.1 and VII.3.2 become

testable by experimental techniques — a universal goal of all in silico work.

Lastly, our focus should migrate beyond the realm of CAG repeat
diseases. While detrimental for the families involved, prevalence is generally low.
Other, more prevalent neurodegenerative diseases, in particular Alzheimer’s,
share basic mechanistic features which make them attractive targets to apply our
methodology, thinking, and resources to. Work in this direction has already

begun (Ramasubramanian and Pappu, unpublished).
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