Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-82-7

1982-02-01

A Rigorous Approach to Building Formal System Requirements

Gruia-Catalin Roman

This paper reports the author's experience in the use of formal specifications and presents a
step by step approach to developing functional requirements for computer-based systems. A
simple model of system requirements is introduced first. A systematic approach to developing
requirements by starting with the general model and adapting it to the needs to the problem at
hand is described and illustrated by means of the simple but realistic example. A basic
knowledge of predicate calculus and set theory is assumed on the part of the reader. The
presentation is tutorial in nature.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin, "A Rigorous Approach to Building Formal System Requirements" Report Number:
WUCS-82-7 (1982). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/897

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/897?utm_source=openscholarship.wustl.edu%2Fcse_research%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

A RIGOROUS APPROACH TO
BUILDING FORMAL SYSTEM REQUIREMENTS

Gruia-Catalin Roman

WUCS-82-7

February 1982

Department of Computer Science
Washington University
St. Louis, Missouri 63130

As appeared in Proceedings of the Computer Software and Applications
Conference, November 1982, pp. 417-423.

ABSTRACT

This paper reports the author's experience in the use of formal
specifications and presents a step by step approach to developing
functional requirements for computer-based systems. A simple model of
system requirements is introduced first. A systematic approach to
developing requirements by starting with the general model and adapting it
to the needs of the problem at hand is described and illustrated by means
of a simple but realistic example. A basic knowledge of predicate
calculus and set theory is assumed on the part of the reader. The
presentation is tutorial in nature.

Acknowledgement: This work was partially supported by Rome Air
Davelopment Center and by Defense Mapping Agency under
coniract F30602-80-C-0284.

Keywords: formal specifications, functional requirements.

‘G.~C. Roman

INTRODUCTION

Formal definition of functional requirements for computer-basad
systems has received considerable attention in recent years. A measure of
the researchers' concern with this topic is the great variety of
specification language proposals that have been put forth. They differ in
the degree of formality, power, and the nature of the formalisms being
usad. Some approaches are based on the use of finite-state machines
[HENI79] and, thus, they offer simplicity but also reduced power. Others
amphasize dataflow (SADT [ROSS77], PSL/PSA [TEIC77]). They are concernad
with the functions to be performed by the system and the data being passed
between them. Yet another approach is used in RSL [BELL77] which defines
the requirements in terms of stimulus-response paths. ttempts have also
been made to capture the behavior characteristics of the systems in
algebraic specifications, e.g., [RIDD78], and as partial orders [GREIT7].
Data-oriented modeling of the reguirements has been stimulated by efforis
in the database area fTSICBZ] while applicative languages have been
advocated as a means to achiesve executability of the requirements

[zAvES1].

The dominant concerns of those involved in the development of
requirements specification languages have been the esase of use and the
potential for automation of their respective proposals. There are,
however, a number of other important issues demanding careful
investigation. They relate to the pragmatics of using formal
specifications. How one choses an appropriate specification language, how
one develops the specifications, how one gets started, are questions often
formulated by designaers that feel the need for improvements in the quality
of the system requirements but have no experience with the use of formal
specifications. These questions also explain why formal specifications
are rarely usad in practice despite the great need to accumulate
experience in this area and despite the benefits they promise.

This paper addresses several of these issues. It reports on the
author's experience in the use of formal specifications and presenis a
step by step approach to developing formal requiremenis. The tutorial is
intended to give assistance and confidence to the novice and to share with
other practitioners some observations about the nature of system
requirements. A basic knowlaedge of predicate calculus and set theory is
assumed on the part of the reader. While no exposure to any requirements
definition language is required, some appreciation for the role the
requirements play in the development of the sysftem is nacessary.

The remainder of the presentation is separated into four sections.
Tne first one introduces a formal model of system requirements. A
systematic approach to developing formal requirements by starting with the
general model and by addpting it to the needs of the problem at hand is
described and illustirated by means of & simple but realistic example in
the section that follows. A discussion of several topics related to the
development of formal reguirements, including unraesolved issues and
current concerns, precedes the conclusions.

‘G.-C. Foman Page 2

FORMAL MODEL OF SYSTEM REQUIREMENTS

Tne sysitem requirements are generated in the problem definition stage
and prior to any attempt at system design. They consist of a conceptual
model and a set of consiraints which together define the acceptability
critverion for any proposed system realization. A sysitem is said to meet
its requirements if and only if it carries out the functionality describad
by the conceptual model and satisfies all relevant constraints, also
called non-functional requirements.

The role of the conceptual model is to capture in finite and precise
terms the functional aspects of the interaction beiween the needed system
and its enviromment. The consiraints, on the other hand, limit the design
space by imposing restrictions over the class of sysitems the designer
mignt consider. Actually, the degree of complexity of & sysiem is
measurad not by size alone but also by the severiiy of the consirainis it
must satisfy.

Before continuing the discussion of the conceptual model which is the
main concern of this paper, it ought to be pointed out that recent
increases in the ability to define formally the desired funciionality have
not been accompanied by commensurable advances in the definition of system
constraints. There are four important reasons contributing to this state
of affairs. First, there is a great diversity of itypes of constraints
(e.g., response time, space, relisbility, cost, schedule, weight, power,
etc.). Second, some of them are related to possible design sclutions
wnich are not formally stated at the time the sysiem requiremenis are
conceived. Furthermore, their relevance differs at different points in
the design. Third, many constraints are not formalizable given current
state-of-the-art. Finally, not all constrainis are explicit. For
instance, the designer is expacted to follow generally accepted rules of
the trade in designing a system without having them explicitly stated.

In general, there is considerable agreement among authors with regard
to the nature of the concepiual model. The conceptual model must have the
ability to describe all pertinent environmental states, an absiraction of
the system states, and the way in which both environmental and system
states change. The conceptual model is denoted CM and is defined as

follows:
CM = (E, EO, S, SO, F) where

E is the set of environmenitsl states,
EO is the set of possible initial environmental states,
53 is the set of system states,
SO dis the set of possible initial system states,
F is the set of state transition rules, i.e.,
F SUBSET.OF ((E x 8) x (E x 8)).

(See the Notation Summary for conventions used in this paper.)
Although significantly more complex models have been developad for the

study of systems in general (e.g., [WYMOG?]), this simple model appears to
be adequate for many types of computer-based systams.

C.-C. Roman Tage 3

Tne definition above makes clear iwo importani facts. irst, because
both the environmental and the system siates may be infinite in number,
the model may not be reduced, in general, to a finite-state machine.
Second, in the general case, the state transition rules define a relation
between pairs of states because nondeterminism is present in most systems
and their environments.

The approach to describing the states and the siaie transition rules
varies from one specification language to another. The notation used in
the next section, for instance, is borrowad from set theory (for
describing the environmental and the system states) and predicate calculus
(for defining the staite iransition rules). Furthermore, some languages
make implicit assumptions about either or both the nature of the states
and of the state transition rules; the loss in generality is justified by
increased specificity in the handling of a particular application area.

As an example, a system that responds to stimuli from the environment in a
manner which is independeni of the history of previocus stimuli and
responses may be easily described in a language which squates the state of
the environment with the current stimulus, which has no ability to
describe sysiem states, and which is able to define a mapping from the set
of stimuli fo the set of responses. Another example could be used to
illustrate the fact that thers is also grest varisbility in the way state
transitions may be described: in & biomedical simulation system a new
state is generated as a result of the integration of a set of differential
equations.

If the conceptual model is siructured in & hierarchical mannar, e.g.,
CM" = (CM, CM'), then one needs the noiion of decomposition definad below.
CM' is said to be a decomposition of CM, i.e., CM' REFINES CM, if and only

if
given CM = (E, EO, S, SO, F) and CM' = (E', EO', S', SO', F')
there exists a funciion PHI such that
a. PHI : (E' x 8") ——> (E x 8)
b. PHI is onto (E x S)
c. for-all e0',s0' there-exist ¢0,s0: PHI(e0',s0') = (20,s0)
d. ITF (((e1',s1"), (e2',s2')) MEMBER.OF F') AND
PHI(e1',s1') = (e1,sl) AND
PHI(e2',82') = (22,s2) AND

ROT((ei,s1) = (e2,52))
THEN ((et,s1), (e2,s2)) MEMBER.OF F

In the case of large systems, where iop-down specification of the
concepiual model bescomes a necessity, this definition establishes a
fundamenial criterion for checking the self-consistency of the system
requirements.

G.-C. Roman Page 4

THE APPROACH

Tnis section introduces the reader to a systematic approach to
developing formal functional requirements. The conceptual model
introduced in the previous section and an informal description of the
application are the starting point for this approach. The application
considered nere is a simplified version of a banking oparation:

EGBANK is a small bank having several branch offices in the
city. Tellers from each branch office are authorized %o
create new accounts, to check the balance of some account,
to make deposits and withdrawals from on2 account at a iime,
and to itransfer money from one account %o anoiher. All
replies must be complete, i.e., they must include the
account number, customer name, and current deposit value for
every account accessad by the teller. All queries resuliing
in successful banking transactions are logged for auditing
purpeses. The 1log entries always include the +eller
identification.
For illusiration purposes, these functional requirements are assumed o

represeniy a complete definition of the customer's needs. The way in which
they are converied to a conceptual model is outlined below.

Preliminary tailoring of the formal model.

Most applications do not require the full power of the requirements
definition model. This explains _why in some cases even finite-siate
machines proved adequate [HEN179]. Early didentification of the complexity
of the state transition rules may bring about significant savings in the
effort involved in generating the requirements. This statement is
strongly supported by past experience and may be explained by the fact
that, by understanding the exact nature of the iransition rules one is
better prepared to avoid two opposite but equally time wasting pitfalls:
(1) the use of formalisms which are not powerful enough to do the job and
(2) the generation of specifications which are unnecessarily complex and
whose simplification often turns out to be more expensive than starting

from scratch.

Fortunately, a priori determination of the nature of the state
transition rules appears to be possible. By analyzing the informal
problem definition one may be able to establisn that the state iransition
rule, F, is indeed a function. (In general, nondeterministic behavior
suggests the use of a relation rather then a function, i.e., given the
current system/environment state there are several possible next siates.)

In EGBANK, the state of the enviromment is given by the nature of the
currently pending teller queries. The state of the system is represented
by the composite of all bank accounis. tate changes in the environment
occur due to arrival of new customers which irigger new queries in their
behalf and due fo arrival of replies to pending queries. tate changes in
the system take place due to processing of queries which may change the
emounts present in various accounts and may create new accounts.

‘G.~-C. Rcman Page 5

It appears, therefore, that F is not a function and that both E and S
are non-finite. While this degree of complexiiy seems unavoidable, there
are still some opportunities for simplifications and they should be
investigated. For instance, F may be decomposable into simpler relations
or functions.

The suggestion has been made earlier that the sitate of the
environment is determined by the pending queries. An argument could be
made, however, that the system is affecied noi by the pending queries, but
by the processing of each new query. Furthermore, the answer to a query
is determined by the nature of the respective query and by the state of
the system at the time the query is processed (not at arrival time).
Consequently, the sysiem actions are captured by the funciion FS defined
below:

FS : (@ x 8) -==> (R x 8)

wnare
Q is <he set of possible gueries

R is the set of possible replies

S is the set of sysiem siates (as before).

4.t

(&

Each query may be considered as if it were alone in the sysiem because
this is exactly the tellers' perception of the system.

As far as the environment is concerned, one may define a relation FE
which captures the changes that occur at zach teller: the issuing of some
query from Q, the return of some answer from R, and the lack of activity
which is denoted by "nil". Furthnermore, FE indicates that concurrent
access to the sysiem is required (without suggesting that concurrent
processing, a design issue, is needed) and that queries ars not
necessarily processed in the order of arrival.

FE SUBSET.OF (E x E)
where
n is the number of tellers
E = (Q UNION R UNION {nil})*#*p

for-all x,y:
[(C...,x,...), (...,y,...)) MEMEER.OF FE
IFF
((x MEMBER.OF Q) AND (y MEMBER.OF R) AND id(x)=id(y))
OR ((x MEMBER.OF R) AND (y = nil))
OR ((x = nil) AND (y MEMBER.OF Q))]

The function "id" appearing above will be formally defined later. It was
introduced nere, however, in order io sitate that the answer (i.2., y)
received by some teller bears the same identification as the original
query (i.e., x) sent by the same teller.

‘G.-C. Roman Page 6

At last F may be defined by using FS and FE. (Note: FS, S, Q, and R
will be fully defined later.)

((e, s1), (e2,s2)) MEMBER.OF F
IFF

(ef, 22) MEMBER.OF FE
AND
IF ((e1=(...,x,...) AND 22=(...,y,...) AND
(x MEMBER.OF Q) AND (y MEMBER.OF R))
THEN (((x, s1), (y,s2)) MEMBER.OF FS)
ELSE si=s2

Wnile it is true tnat F could have been defined directly in terms of S, Q,
R, and n, there are certain advaniages to the sirategy being presented.

In many cases, the atiempt to look for a decomposition of F results in
much simplified formalizaiions--not so in our example. More importantly,
howaver, it often leads 1o a degree of separation of concerns useful in
the understanding and analysis of the requiremenis. In our example, for
instance, FS deals with the gquery processing aspect while FE relates to
behavioral aspacis of the environment indicating such things as the fact
that a reply must succeed the respective query, that gueries are not
necessarily processad in the order of arrival, etc.

Definition_g{ the environmental states.

The informal requirements specify the nature of the gqueries (Q) and,
indirectly, the nature of the replies (R) that have been used in the high
level definition of the environmental states. There are four types of
queries: accouni creation, reading of the account data, updating of the
account, and fund transfer between two accounts. Furthermore, sach
account is generally characterized by the owner's name, by the amount on
deposit, and by some account number. By taking advaniage of this
knowledge and by the fact that each query must have a teller identifier,
the set Q may be now defined

Q@ = tellerids x

(({create} x customers x deposits)
UNION
({read} x accounts)
UNION
({update} x accounts x deposits)
UNION

{trans} x accounts x accounts x deposits))

The sets tellerids, accountis, cusiomers, and deposits are laft undefined
in this paper because their definitions are trivial to consitruct, not from
the earlier informal specification of the probdlem dbu:i by soliciting the
missing information. This illustrates one important advantage of ihe
formal specificatvions. They frequently uncover many important details
that were left out in the informal requiremenis definition.

G.~C. Remen Tepa 7

By refering back fto the informal requirements the set of replies, R,
is defined as follows:

R = tellerids x
({error

UNION
(accounts x customers x deposits)

UNION
((accounis x customers x deposits)

x
{accounts x cusiomers x deposits)))

At this point, it is easy to deduce the definition of the id functiion
introduced earlier. It simply returns the first 2lement of any n-tuple

supplied ss its argument.

Definition of system states.

The state of the system is characterized, at any point in time, by
the status of all the accounts and by the transaction log. Therefore, the
system state might have to be defined in terms of a set that captures the
state of the accounts (call it "b" from bank records) and by a sequence
that models the log (call it "1").

s = (b, 1)
Next, one could propose b to be described by

b SUBSET.OF (accounts x (customers UNION {nil}) x deposits)
This definition, however, would permit the undesirable situation where the
same account appears itwice in the sysitem. Both (1234, Smith, $350) and

(1234, Brown, $250) could be part of S. The single account number
occurrence condition forces b to be a function from asccounts to customers

cross deposits:

b : accounts --> (cusiomers x deposits)
Notation-wise, however, later use of b will be permitted to iake both the
form of a set (e.g., (a,c,d) MEMBER.OF b) and that of a funciion (2.g.,

b(a)), depending on which one is more convenient at the time.

‘Given the nature of the log which is only a sequence of queries,

i.e.,
1 MEMBER.OF Q%*,
the set of system states, S, becomes
S SUBSET.OF {b | b : accounts --> {customers x deposits)} x Q%

Tris completes the definition of the system states.

G.-C. Foman Page

Definition of state itransition rules.

Because part of the definition was already given earlier in this
section, all that remains to be done is to complete the definiiion of FS
which has been established to be of the form:

FS : (Q x S) --> (R x 8)

For the sake of clariiy, separate definitions are provided for cach of the
four types of queries.

Tne creation of a new account requires that account to be unassigned
to eny customer. Furthermore, at creation time, both the customer name
and some value for the initial deposit must be provided. The account

number is supplied by the system.

Fs((id,create,c,d), (b,1))
¢== if (c MEMBER.OF cusiomers) AND
(4@ MEMBER.OF deposits) AND d>0 AND
(there-exist a: ((a,nil,0) MEMBER.OF b))

then
((id’a!cid)i
((b MINUS {(a,nil,0)} UNION {(a,c,d)}),
((id,create,a,c,d).1)))
else

((id,error), (b,1))

It should be noted that in case the query is improperly specified, the
reply being returned is an arror message. Moreover, in accordance with
the stated requirements, errors are not logged.

In order to find out information about an account, its number has to
be supplied.

Fs((id,read,a), (b,1))
<== if (a MEMBER.OF accounts) AND
(there-exist ¢,d: ((a,c,d) MEMBER.OF b) AND
NOT(c=nil))

then
((id,a,c,d), (b,({id,read,a).1)))

else
((id,error), (b,1))

Wnile testing the fact that "a" is a valid account is mathematically
redundan<, it is kept in the definition for clarity purposes. (This issue
often causes long discussions during requirements reviews but it is the
author's sirong conviction that clarity must come befores brevity.)

G.-C. Foman Page 9

Both deposits and withdrawals are accomplished via the update guery.
It depends upon the sign of the amount being supplied by *he teller. An
additional condition for the success of the query is that the amount laft
in the account must be strictly positive.

Fs((id,update,a,d), (b,1))
¢== if (a MEMBER.OF accounts) AND
(a4 MEMBER.OF deposits) AND
(there-exist ¢,d0: ((a,¢,d0) MEMBER.OF b) AND
NOT(c=nil) AND {(d0+d > 0))
then
((id,a,c,d0+d),
((b MINUS {(a,c,d0)} UNION {(a,c,d0+d)}),
({id,update,a,d).1)))
else
((id,error), (b,1))

The transfer query, called irans, allows one to iransfer funds
between iwo accounits. Its meaning is analog to that of removing a
positive amount from the first account followed by a deposit in the second

account.

Fs((id,trans,al,a2,d), (b,1))
<== if (at MEMBER.OF accounis) AND
(a2 MEMBER.OF accounis) AND
(d MEMBER.OF deposits) AND (d>0) AND
(there-exist cl,d1: ((at,c1,d1) MEMBER.OF b) AND
NOT(ci=nil) AND (d1-d4 > Q)) AND
(thers-exist ¢2,d2: ((a2,¢2,d2) MEMBER.OF b) AND
NOT(¢2=nil))
then
((id,al,cl,d1-d,a2,c2,d2+d)
((b MINUS {(ai,c1,d1%i UNION {(at,ct,di-d)}
MINUS {(a2,c2,d2)} UNION {(a2,c2,d2+4)}),
((id,trans,al,82,d).1)))
else
((id,error}, (b,1))

Tne entire specification is complete. Iis adequacy still needs to be
established tnrough reviews involving the intended user or cusiomar.

Because increases in the complexity of the items being described
result in more complex definitions, the introduction of more powerful
notation than the one employed in tnis paper becomes a necessity. At a
minimum, one needs to formulate the definitions in terms of primitive
functions which are separately defined at some later point. Mtimately,
the designer is led naturally, by the need for clarity and simplicity, to
developing hierarchical specifications.

G.-C. Roman Page 10

DISCUSSION

The approach described in this paper has grown out of the experience
gained in the last four years during which formal requirements have been
defined for a large variety of relatively small problems. These include:
the semantic definition of numerous toy languages, the specification, ai
several levels, of the message handling subsystem for a local
communication network, the definition of the communication primitives for
& proposed message-based version of Pascal, and some data processing
applications comparable to the example used in the previous section.
Involvement in the development of requirements for some real production
systems using a partially-formalized technique described in [ROMA79] also
resulted in better understanding of what is pragmatically feasible with
regard to the role in production of formal requirements.

It is the contention of this paper that the approach is ready for use
in small to medium size data processing and real-time sysiems.
Nevertheless, special considerstion musi be given to the nature of the
problem being considered, the background of the personnel involved, the
formalism being contemplated, and to the balance between the formal and
the informal components of the requiremenis to be produced.

The introduction of formal requirements into an organization can be
neither sudden nor complete. A wise first siep is to employ formal
requirements only for the hard-to-define aspects of the system
requirements in conjunction with some other less formal but already
familiar technique. Thus, the few designers who happen to have the
appropriate formal background may be utilized effectively and the initial
learning curve has a minimal effect on the overall project performance.

Furthermore, the combined use of formal and informal specifications
appears to be not just a iransient solution meant to bring about the
widespread use of formal specifications but a highly desirable property of
requirements definitions in general. Experience has shown that, even when
the requirements are completely formalized and ihe people involved have
above average mathematical skills, the absence of an accompanying informal
narrative greatly increases the review time and reduces their
effectiveness. Finally, one other important factor affecting the success
of a formal specification is the use of standard notation. Future use of
computer-aided design tools will make this issue obsolete but, until then,
lack of standardization may result in misunderstandings and confusion.
(Our policy has been to sitay with basic mathematical notation. However,
the use of a standard keyboard character set has resulied in some

compromises.)

One issue that has been ignored throughout most of this paper is the
formal definition of the systiem constraints, i.e., non-functional
requirements. So far, the formal requirements we developed centered on
rendering the system functionality (the conceptual model) and allowed ine
constreints o be formulated through the use of natural language.
However, atiempis to specify formelly some of the consirainis have been
made by othexs in conjunciion with work on specification ldnguages
[A1FO79, ZAVEBI] and in the area of system modeling and theory WYMOB?].
Making some of these resulis accessible to the general practitioner is a

G.-C. Roman Page 11

task for the future.

More work is also required to establish techniques for checking the
self-consistency, completeness and accuracy of the requirements. Ad-hoc
mathematical proofs and group reviews proved adequate for small scale
problems but are not expectad to be cost effective and accurate enougnh for
large projects where the use of computer-aided design tools able to carry
out some of these checks and proofs becomes a necessity.

CONCLUSIONS

A rigorous approach to the development of formal sysiem requirements
definitions has been presented in a tutorial fashion and illustrated on a
simple example of a banking sysiem. The approach reflects the authnor's
sgveral years experience developing formal requirements for a varisiy of
small scale problems. The notation used in the paper is based on set
theory and predicate calculus both of which are generally considerad
essential in the education of today's computer scientist and are familiar
to many system designers. The paper coniends that, based on the
experience accumulated with the use of both formal and semi-formal
specifications, the development of formal requiremenis for small to medium
size systems is feasible and can be cost effective.

‘G.-C. Roman Page 12

REFERENCES

[ALF0791 Alford, M., "Requirements for Distributed Data Processing
Design,"” Proc. 1'st Int. Conf. on Distributed Computing Sysiems,

pp. 1-14, October 1979.

[BELL77J Bell, T. E., Bixler, D. C. and Dyer, M. E., "An Extendable
Approach to Computer-Aided Software Requirements Engineering,”
IEEE Trans. on Soft. Eng. SE-3, No. 1, pp. 49-60, January 1977.

[GREI??] 6reif, I., "A language for Formal Problem Specification,”
CACM 20, No. 12, pp. 931-935, December 1977.

[HENI79] Heninger, K. L. "Specifying Software Requirements for Complex
Systems: New Techniques and@ Their Applications,” Proc. Conf. on

Specifications of Reliable Software, April 1979.

[R1DD78] Riddle, W. E., et al, "Behavior Modeling During Sofiware
Design," IEEE Trans. on Soft. Eng. SE-4, No. 4, pp. 671-678,
July 1978.

[roMAT9] Roman, "G.~C., "Verification Procedures Supporting Software
Systems Development,” Proc. of 1979 NCC, pp. 947-956, Juns 1979.

[ROSST7] Ross, D. T., "Structured Analysis (SA): A language for
Communicating Ideas,” IEEE Trans. on Soft. Eng. SE-3, No. {1,
pp. 16-34, January 1977.

[TEIC77] Teichroew, D. and Hershey, ITT, E. A., "PSL/PSA: A
Computer-Aided Technique for Structured Documentation and
Analysis of Information Processing Systems,” IEEE Trans. on
Soft. Eng. SE-3, No. 1, pp. 41-48, January 1977.

[TSIC82] Tsichritzis, D. C. and lochovsky, F. H., Data Models,
Prentice-Hall, Inc. 1982.

[WYMOS?] Wymore, A. W., A Mathematical Theory of Systems Engineering--The
Elements, John Wiley and Sons, Inc., 1967.

[ZAVE81] Zave, P. and Yeh, R. T., "Executable Requirements for Embedded
Systems,” Proc. 5'th Int. Conf. on Soft. Eng., pp. 295-304,
March 1981.

G.-C. Roman

n-tuple
gset definition

function definition

quantifisers
existential
universal

cross product
n'power cross product

logical implication
legical operators

subset test

set membership test

set operations

set of all sequences
over some set

concatenation

special constant

NOTATION SUMMARY

(a, b, ...i
{a, b, ...
{x | predicate(x)]}

fname: domain --> range

fname(arguments)
(== if predicate then valuel

else value2

(thers-exist x: predicate)
(for-all x: predicata)

setl x set2
set¥¥p

IF predicatel THEN predicate?2
AND, OR, XNOT

seti SUBSET.OF set2
element MEMEER.OF set
UNION, INTERSECTION, MINUS

set¥*
sequancel.saquencea?
nil

Pages 13

	A Rigorous Approach to Building Formal System Requirements
	Recommended Citation

	tmp.1465590965.pdf.arlsE

